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LIBOR ADDITIVE MODEL CALIBRATION TO SWAPTIONS MARKETS

JESÚS PÉREZ COLINO, FRANCISCO J. NOGALES, AND WINFRIED STUTE

(WORKING PAPER)

Abstract. In the current paper, we introduce a new calibration methodology for the LIBOR market
model driven by LIBOR additive processes based in an inverse problem. This problem can be splitted in
the calibration of the continuous and discontinuous part, linking each part of the problem with at-the-
money and in/out -of -the-money swaption volatilies. The continuous part is based on a semide�nite
programming (convex) problem, with constraints in terms of variability or robustnest, and the calibration
of the Lévy measure is proposed to calibrate inverting the Fourier Transform.

1. Introduction

To have a robust and e¢ cient algorithm is a central topic in the successful implementation of a model.
The amount of reality that the model can collect is not only related with the sort of process that drives
the model but also with the calibration methodology that you use to substract the information from
the market prices. Therefore the calibration of the �nancial models has become an important topic in
�nancial engineering because of the need to price increasingly complex options in a consistent way with
prices of standard instruments liquidly traded in the market.

It is clear that a robust and e¢ cient calibration algorithm is a central element in the successful
implementation of a derivatives pricing model, independently if the model is driven by semimartingales
or directly by a Brownian motion. Recent developments in interest rates modelling have led to a form
of technological asymmetry on this topic. The theoretical performance of the usual continuous models
such as the Heath, Jarrow and Morton (HJM) (1992) model for the instantaneous forward rates,
or the LIBOR Market Model of Interest Rates by Brace, Gaterek and Musiela (BGM)(1997) allows
a very �exible modelling and pricing of the basic interest rate options (caps and swaptions) at-the-
money. However, due to the ine¢ ciency and instability of the calibration procedures, not only a small
part of the market information but also the smile-skew of volatilities, is actually exploited. On the
other hand, many authors have proposed model the forward rates using semimartingales (Björk et al.
(1997), Jamshidian (1999)) or directly using non-homogeneous Lévy processes (Eberlein et al. (2005))
but again, the calibration procedures associated to these models are not able to collect all the market
complexity re�ected, for example, in the smile-skew that appears in the swaption market..

On the other hand, the most common techniques to calibrate the continuous part of the model (see for
example Longsta¤, Santa-Clara and Schwartz (2000), Rebonato (2000) or Brigo and Mercurio
(2002)) are limited methods. Usually it is necessary to substitute a statistical estimate to the market
information on the forward LIBOR correlation matrix because the numerical complexity and instability
of the calibration process makes it impossible to calibrate a full market covariance matrix. As a direct
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consequence, these calibration algorithms fail in one of their primary mission: they are very poor market
risk visualization tools.

But independently of the category of the process that drives our model, the practitioner has to guar-
antee two properties in the calibration process:

- �rst, the calibration solution has to be unique and global and this sort of results are only
possible if the calibration problem is a convex problem,

- and second, the calibration process has to provide an indication of the sensitiveness of our
calibration against market movements (robustness). It is usually given as the dual solution
of the convex problem.

Basically, the main goal in this paper is to propose a methodology to calibrate and work with the any
category of market models (using piecewise stationay Lévy processes or LIBOR additive process) using
convex programming methods. Notice that as a direct implication of the Lévy-Itô decomposition,
every Lévy process is a combination of a Brownian motion with drift and a possibly in�nite sum of
independent compound Poisson process (see Colino (2008), Theorem 9). This also means that every
LIBOR additive process can be approximated with arbitrary precision by a sequence of jump-di¤usion
processes (see Colino (2008), Theorems 40 and 41), that is by a sum of a sequence of Brownian motions
with drifts and a sequence of compound Poisson process, a point which is useful not only in theory but
also from the practitioner point of view.

Therefore this paper is structured in three di¤erent parts:

- The �rst part (Section 2) gives basically a brief introduction about what we called two-steps
calibration

- The second part (Section 3) is devoted to the �rst-step calibration or calibration to the continuous
part of the model. Using the at-the-money swaption volatilities, we propose a convex methodology
to obtain the term structure of instantaneous volatilities and covariances from the market data.

- In the third part (Section 4), our aim is to propose the second-step calibration as an inverse
problem to calibrate the sequence of Lévy measures according to the information given by the
smile/skew in the swaption market.

1.1. Basic assumption for the LIBOR additive model. In this section, we mainly focus on forward
LIBOR rates assuming, �rst, that the dynamics of instantaneous forward rates are speci�ed through
the Heath, Jarrow and Morton (1992) model, driven by LIBOR additive processes (piecewise
homogeneous Lévy process) as in Colino (2008). And second, we additionally assume that the LIBOR
rates can be derived from the bond prices of forward prices. In order to achieve this aim, we have to
establish some assumptions that will be applied during the whole work.

1.1.1. Assumptions related with the forward rates.

(1) Let us de�ne f (t; T ) as the instantaneous forward rates at time t 2 [0; T ] for any T < T ?: It
corresponds to the rate that one can contract for a time t; on a loan that begins at date T and
is returned an instant later. It is usually de�ned by

f (t; T ) = �@ logB(t; T )
@T

(1.1)

where B(t; T ) is the value in t of a zero-coupon bond until maturity T; or in other words

B(t; T ) = exp

(
�
Z T

t

f (t; s) ds

)
(1.2)
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(2) We assume that the evolution of this forward rate is driven by a d-dimensional LIBOR additive
process (Colino (2008)) that admits the Lévy-Itô decomposition, such that the dynamics of
the instantaneous forward rate f (t; T ) in t � T 2 I; under the real-world probability P,
which we assume as follows1:

df (t; T ) = ��(t) (t; T ) dt+ ��(t) (t; T ) dWt +

Z
E

� (t; T; x)
�
��(t) � ��(t)

�
(dt; dx)

(1.3)

when t � T 2 I where � (t) = sup fj � 0 : Tj � tg with j = 0; 1; :::; n (for the sake of clarity, we
will denote this by the generic index j), Wt is a d-dimensional standardWiener process in Rd
and ��(t) is a random measure such that � 2 N+ with the compensator ��(t) (dt; dx).

1.1.2. Assumptions related with the forward LIBOR rates.

(1) Assume that for a predetermined collection of dates 0 < T0 < T1 < ::: < Tn with a �xed accrual
period or tenor � and any t � Ti 2 [0; T ?] ; we denote by L (t; Ti) the forward rate for the interval
from Ti to Ti+1 as

1 + �L (t; Ti) : = FB (t; Ti; Ti+1) (1.4)

: =
B (t; Ti)

B (t; Ti+1)

= exp

(Z Ti+1

Ti

f (t; s) ds

)
= B (Ti; Ti+1)

�1 (1.5)

where B (t; Ti) represents value of a corporate bond.

(2) Hence these simple forward rates should be contrasted with the instantaneous, continuously
compounded defaultable forward rates (and short rates) in the framework of Heath, Jarrow
and Morton (1992) which satisfy

L (t; Ti) =
1

�

 
exp

(Z Ti+1

Ti

f (t; s) ds

)
� 1
!

(1.6)

Now we can de�ne for any 0 � t � Ti the forward LIBOR spread

S (t; Ti) := L (t; Ti)� L (t; Ti) (1.7)

1.1.3. Assumptions related with the Swap rates and Swaptions.

(1) As usually, let us de�ne a predetermined collection of dates 0 < T1 < ::: < Tn = T ? with a
�xed accrual period or tenor �j , and any t < T1 2 [0; T ?] with T ? �xed. We �rst consider a
�xed-for-�oating forward start swap settled in arrears with notional principal N , usually equals
to 1, without loss of generality. We shall frequently refer to such a contract as the forward start
payer swap. A long position in a forward start payer swap corresponds to the situation when
an investor , between T� and T� with 0 < � < � � n; will make periodic payments determined
by �xed interest rates K�;� , and will receive in exchange payments speci�ed by some �oating
rate, usually L (t; Tj�1). A short position in a forward start payer swap de�nes a closely related
contract known as the forward start receiver swap.

1Notice that if c = 0 we are considering the risk-free or default-free case.
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(2) Let us place ourselves within a framework of some arbitrage-free, or equivalently risk-neutral
term structure model (under P?). Then, the value at time t of the forward start payer
swap denoted by FSt or FSt(K�;�) equals

FSt (K�;�) = EP?

8<:
�X
j=�

B(t; Tj) (L (t; Tj�1)�K�;�) �j

9=;
=

�X
j=�

EP?
�
B (t; Tj)

�
B(Tj�1;Tj)

�1 � (1 +K�;��j)
���Ft	 (1.8)

where writing cj = 1 + k�j and rearranging we obtain the following important result:

FSt (K�;�) =

�X
j=�

(B (t; Tj�1)� cjB(t; Tj))

= B(t; T��1)�
�X
j=�

cjB(t; Tj) (1.9)

(3) Alternatively, assume that under the forward measure PTj the process L (t; Tj�1) is a martin-
gale. Then

FSt (K�;�) =

�X
j=�

B(t; Tj)EPTj f(L (t; Tj�1)�K�;�) �jg

=

�X
j=�

B(t; Tj)�j (L (t; Tj�1)�K�;�)

=

�X
j=�

(B(t; Tj�1)�B(t; Tj)�K�;��jB(t; Tj))

= B(t; T��1)�
�X
j=�

cjB(t; Tj) (1.10)

where again cj = 1 +K�j and we used the fact that

L (t; Tj�1) =
B(t; Tj�1)�B(t; Tj)

�jB(t; Tj)

Therefore, as we can observe in (1:5) and (1:6) a forward swap is essentially a contract to
deliver a speci�c coupon-bearing bond and to receive at the same time a zero-coupon bond, and
this relationship provides a simple method for the replication of a swap contract.

(4) The forward swap rate K�;� at time t for the date T� is that value of the �xed rate K that
makes the value of the n-period forward swap zero, i.e. that value of K for which FSt(K) = 0

(5) Let us de�ne the payer (respectively, receiver) swaption with strike rate K�;� as the �nancial
derivative that gives to the owner the right to enter at time T� the underlying forward payer
(respectively, receiver) swap settled in arrears with maturity T� ; with 0 < � < � � n. Because
FST� (K�;�) is the value at time t of the forward payer swap with the �xed interest rate K�;� ,
it is clear that the price of the payer swaption at time t equals

PS
�
t; T�; T� ; �

?
�;� ;K�;�

�
= EP?

n
B(t; T�) (FST� (K�;�))

+
���Fto (1.11)

where t is the moment of valuation, T� is the moment where the forward start swap begins and
T� is the swap maturity, �?�;� is the implied volatility quoted in the swaption market for the
strike K�;� . Therefore it is apparent that the option, in the payer swaption, is exercised at time
T� if and only if the value of the underlying forward swap with maturity T� ; is positive.
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And for the receiver swaption we have

RS
�
t; T�; T� ; �

?
�;� ;K�;�

�
= EP?

n
B(t; T�) (�FST� (K�;�))

+
���Fto (1.12)

2. The two-steps calibration for the LIBOR additive process as an inverse problem

From the beginning of the present paper, the reader would wonder to know the advantages of this
new stochastic process, the LIBOR additive process, in the interest rates modelling. This subsection will
show brie�y the main reason: the double-calibration of this process against a non-homogeneous swaption
market with volatility smiles. Basically the idea is simple: according to the Lévy-Itô decomposition
of the LIBOR additive process (Theorems 40 and 41 in Colino (2008)), we can de�ne the calibration
problem as an inverse problem of a sequence of triplets that completely characterize the entire process.

Let us consider the following discretization in [0; T ?] ; 0 < T1 < ::: < Tn = T ?: Let us de�ne the price
of a payer swaption at time t as PS(t; T�; T� ; �?i;j ;K

h
�;�) as a call-option to get into a swap that begins

in T� and �nish in T� with the swap rate S (t; T�; T�) (underlying of the option) with strike K�;� and
0 < � � � � n; and where �?�;� is the Black (1976) cumulative variance of swaption on S (t; T�; T�) for
the mentioned strike K�;� quoted in the swaption market.

Proposition 1. The general calibration problem at the moment t can be written as an inverse problem
de�ned as

(
i; Ai; �i)i2f1;:::;ng = arg inf

mX
h=�m

nX
j=i

�
!hij


PS�(t; T�; T� ; Ai; �i;Kh

�;�)� PSM (t; T�; T� ; �?i;n;Kh
�;�)



�
(2.1)

where, on the right part of the equality, we have denoted as PS�(t; T�; T� ; Ai; �i;Kh
�;�) the theoretical

payer swaption price in t, given by our model, and de�ned as the value of an option with maturity T�
that gives to the holder the right to get into a forward payer swap between T� and T� settled in arrears,
with 0 < � � � � n, and PSM (t; T�; T� ; �?i;n;Kh

�;�) as the market value of a payer swaption in t;

priced using Black-76 model, with strike Kh
�;� ; where h 2 N such that if h = 0 then FSt

�
K0
�;�

�
= 0

(at-the-money case), and market volatility �?�;� such that8<: PS�(t; T�; T� ; Ai; �i;K
h
�;�) = EP?

�
B(t; T�)

�
FST�

�
Kh
�;�

��+����Ft�
PSM (t; T�; T� ; �

?
�;� ;K

h
�;�) = Black(t; T�; T� ; �

?
�;� ;K

h
�;�)

Pn
j=1B (t; Tj) �j

and (
i; Ai; �i)i=1;:::;n is the sequence of triplets consisting of8><>:

i 2 Rd
Ai = (�ij) ; a d� d symmetric non-negative matrix, with d = n� i+ 1
�i a positive measure on Rdn f0g with

R
Rd

�
jgj2 ^ 1

�
� (dg) <1

Proof. Notice that the basic underlying that is moved by the LIBOR additive process is the forward
LIBOR rates, according to the model speci�ed in this paper. Let us consider the usual payer swaption
de�nition that we have to price it using our model is

PS�(t; T�; T� ; �
?
�;� ;K

h
�;�) = EP?

n
B(t; T�)

�
FST�

�
Kh
�;�

��+���Fto
= EP?

8<:B(t; T�)
0@EP?

0@ �X
j=�

B (T�; Tj)
�
L (t; Tj�1)�Kh

�;�

�
�j

������FT�
1A1A+������Ft

9=;
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that after simple manipulations and using assumptions in 1:1:2 related with swaps and swaptions, then
this yields, as expected

PS�(t; T�; T� ; �
?
�;� ;K

h
�;�) = EP?

8<:B (t; T�)
0@1� �X

j=�+1

cjB(T�; Tj)

1A+������Ft
9=;

or in other words, the payer swaption may also be seen as a put option on a coupon-bearing bond, where
cj = K

h
�;��j when j = �; :::; � � 1 and cj = 1 +Kh

�;��j with j = �.

Additionally, notice that using the same approximation that has already been employed by Brace,
Gatarek and Musiela (1997) we can write the payer swaption value as a function of the LIBOR rates
as

PS�(t; T�; T� ; �
?
�;� ;K�;�) = B (t; T�)EPT?

8<:
0@1� �X

j=�+1

cjB(T�; Tj)

1A+������Ft
9=;

= B (t; T�)EPT?

8<:
0@1� �X

j=�+1

cj

j�1Y
l=�+1

(1 + �jL (T�; Tl))
�1

1A+������Ft
9=;

= B (t; T ?)EPT?

8<:
n�1Y
l=�+1

(1 + �jL (T�; Tl))

0@1� �X
j=�+1

cj

j�1Y
l=�

(1 + �jL (T�; Tl))
�1

1A+������Ft
9=;

= B (t; T ?)EPT?

8<:
0@� �X

j=�

0@cj n�1Y
l=j

(1 + �jL (T�; Tl))

1A1A+������Ft
9=;

where the dynamics of the forward LIBOR rates driven by a LIBOR additive process, is speci�ed as

L (t; Tk) = L (0; Tk) exp

�Z t

0

�j (s; Tk) dG
T?

s

�

We have proved in Colino (2008) (Section 1:3) that this process is uniquely determined in law by its
sequence of triplets (
i; Ai; �i)i2f1;:::;ng consisting of8><>:


i 2 Rd
Ai = (�ij) ; a d� d symmetric non-negative matrix, with d = n� i+ 1
�i a positive measure on Rdn f0g with

R
Rd

�
jgj2 ^ 1

�
� (dg) <1

�

Notice that using directly the independence property between the continuous and the jump part,
implicit in the Lévy-Itô theorem (theorems 40 and 41 in Colino (2008)), we can prove directly the
following proposition,

Proposition 2. The inverse problem (2:1) can be split in two di¤erent and independent inverse problems

(1) Ai = arg inf
Pn

j=i

h
!0ij




PS�(t; T�; T� ; Ai; �i;K0
�;�)� PSM (t; T�; T� ; �?i;n;K0

�;�)



i

(2) �i = arg inf
Pm

h=�m
Pn

j=i+1

h
!hij




PS�(t; T�; T� ; Ai; �i;Kh
�;�)� PSM (t; T�; T� ; �?i;n;Kh

�;�)



i

Therefore we can calibrate this sequence of triplets against the market separately: on one hand, the
continuous part calibration will be achieved using at-the-money swaption volatilities, and on the other
hand, the sequence of Lévy measures will be estimated using in/out -of -the-money swaption smiles for
di¤erent maturities.
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The main goal of this two-step calibration is to collect as much information as we can from the market
prices, in order to simulate the most realistic possible scenarios, but also provide robust and global
solutions to the calibration problem. The methodology behind this calibration procedure is not new,
several authors have introduced these ideas in the continuous process framework or in stock market.
However, our approach has two improvements.

- In the �rst-step, we introduce some relevant changes in the SDP problem that guarantee not only
the convexity but also the stability of the solution, something essential to achieve the correct
simulation in the full-rank LIBOR additive model.

- And with the second-step of the calibration, we introduce the information given by the smile in
the swaption market directly in the sequence of the Lévy measures, creating a direct link between
jumps and smile.

3. First-step: semidefinite-programming to calibrate the continuous Market model

The forward rates covariance matrix plays an increasingly important role in exotic interest rate deriv-
atives modelling and there is a need for a calibration algorithm that allows the retrieval of a maximum
amount of covariance information from the market. As far as we know, Brace and Womersley (2000)
and d�Aspremont (2003) are the only that propose a methodology to calibrate a multivariate LIBOR
market model without assuming any �a priory�structure to the covariance matrix, based on semide�nite
programming, allowing at the same time robust and global solutions. They showed how semide�nite pro-
gramming based calibration methods provide integrated calibration and risk-management results with
guaranteed numerical performance, the dual program having a very natural interpretation in terms of
hedging instruments and sensitivity.

Our main goal in this subsection, is to provide an extension of Brace and Womersley (2000)
or d�Aspremont (2003) methodologies that has the goal of solving the calibration problem for the
continuous part of our model, improving the stability and robustness of the Brace and Womersley
(2000) or d�Aspremont (2003) solutions. Basically, our proposal is based on a relevant change in the
objective function that allows us to skip the dependence of the solutions with respect to how to formulate
the objective function.

3.1. Introduction to the swaption calibration problem. Let us study the swaption market under
the Brace, Gaterek and Musiela model. Let us de�ne the swap rate as the �xed rate that zeroes the
present value of a set of periodical exchanges of �xed against �oating coupons on a LIBOR rate of given
maturity at futures dates. Denoting by S(t; T1; Tn) a forward swap rate at time t for an interest rate swap
with �rst reset at T1 and exchanging payments at T1; :::; Tn. It is clear that it is stochastic and under the
appropriate measure swap measure Q1;n we can assume a lognormal dynamics for the continuous part of
the swap dynamics

d ~S(t; T1; Tn) = S(t; T1; Tn)�1;n (t) dW
Q1;n
t

However, analytical approximations are available for swaptions in the LIBORMarket model framework.
Indeed, Brace, Dun and Barton (1999) suggest to adopt the LIBOR forward market as the central
model for the two markets, mainly for its mathematical tractability. We will stick to their suggestion, also
because of the fact that forward rates are somehow more natural and more representative coordinates of
the yield-curve than swap rates.
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To introduce the formula we will use in the following, note that a crucial role in the swap market model
is played by the Black swap volatility �?1;n(T1) entering Black�s formula for swaptions, expressed by

�?1;n(T1) : =
1

T1

Z T1

0

(�1;n (t))
2
dt

=
1

T1

Z T1

0

�
d ln ~S(t; T1; Tn)

��
d ln ~S(t; T1; Tn)

�
Notice that if we choose the LIBOR Market Model as a central model, we must resort to di¤erent

pricing techniques. It is possible to price swaptions with a Monte Carlo simulation, by simulating the
forward rates involved in the payo¤ through a discretization of the dynamics presented above, so as to
obtain the relevant zero coupon bonds and the forward swap rate. In fact, recall that we can write the
forward-swap as a basket of forwards (see Rebonato (1998))

S(t; T1; Tn) =
nX
i=1

!i (t)F (t; Ti) (3.1)

where !i are the weights (with an explicit expression) such that 0 � !i � 1 (in fact, they are always
positive, monotone and sum to one) such that

!i (t) =
� iB(t; T1; Ti)Pn
i=2 � iB(t; T1; Ti)

=

� i

iY
j=2

1
1+�jF (t;Tj)

Pn
i=2 � i

iY
j=2

1
1+�jF (t;Tj)

One can compute, under a number of approximations, based on �partially freezing the drift� and on
�collapsing all measures�in the original dynamics, an analogous quantity �?1;n(T1) in the LMM.

We present here one of the simplest ways to deduce this formula based on a similar setting, appeared
earlier for example inRebonato (1998), and tested against Monte Carlo simulations for instance inBrigo
and Mercurio (2001). Such approximated formulae, are easily obtained, �rst, freezing the weight�s at
time 0, so as to obtain

S(t; T1; Tn) =
nX
i=1

!i (0)F (t; Ti) :

Notice that this approximation is justi�ed by the fact that the variability of the !�s is much smaller
than the variability of the forward rates. This can be tested both historically and through simulations of
the forward rates via Monte Carlo methods (see Brigo and Mercurio (2001)).

Then, let us di¤erentiate both sides and we obtain

d ~S(t; T1; Tn) �
nX
i=1

!i (0) dF (t; Ti)

= (:::) dt+
nX
i=1

!i (0)�i (t)F (t; Ti) dWi (t)

under any of the forward-adjusted measures, and compute the quadratic variation

d ~S(t; T1; Tn)d ~S(t; T1; Tn) �
nX

i;j=1

!i (0)!j (0)F (t; Ti)F (t; Tj) �i;j�i (t)�j (t) dt
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and the percentage quadratic variation is

 
d ~S(t; T1; Tn)

S(t; T1; Tn)

! 
d ~S(t; T1; Tn)

S(t; T1; Tn)

!
=

�
d ln ~S(t; T1; Tn)

��
d ln ~S(t; T1; Tn)

�
� 1

T1

Pn
i;j=1 !i (0)!j (0)F (t; Ti)F (t; Tj) �i;j�i (t)�j (t)

S(t; T1; Tn)2
dt

Now we can assume that freezing all forward rates in the above formula to their time-zero value

�
d ln ~S(t; T1; Tn)

��
d ln ~S(t; T1; Tn)

�
� 1

T1

nX
i;j=1

!i (0)!j (0)FB (0; Ti)FB (0; Tj)

S(t; T1; Tn)2
�i;j�i (t)�j (t) dt

and �nally we can obtain the expression for
�
�?1;n(T1)

�2
such that

Z T1

0

�
d ln ~S(t; T1; Tn)

��
d ln ~S(t; T1; Tn)

�
� 1

T1

nX
i;j=1

!i (0)!j (0)F (0; Ti)F (0; Tj)

S(t; T1; Tn)2
�i;j

Z T1

0

�i (t)�j (t) dt :=
�
�?1;n(T1)

�2

and this result proves the following proposition, given by Rebonato (1998)

Proposition 3. The LIBOR market model (squared) swaption volatility can be approximated by

�
�?1;n(T1)

�2
T1 =

nX
i;j=1

!i (0)!j (0)F (0; Ti)F (0; Tj)

S(t; T1; Tn)2
�i;j

Z T1

0

�i (t)�j (t) dt (3.2)

The quantity �?1;n(T1) can be used as a proxy for the Black volatility of the swap rate S(t; T1; Tn):
Putting this quantity in Black�s formula for swaption allows one to compute approximated swaptions
prices with the LIBOR market model (continuous part). Notice this result is obtained under a number
of assumptions, and at �rst one would imagine its quality to be rather poor. However, it turns out that
the approximation is very accurate as also pointed out by Brace, Dun and Barton (1998) and Brigo
and Mercurio (2001).

3.2. The calibration problem. In this subsection we introduce the practical implementation of the
calibration program using the swaption pricing approximation detailed above. Now, for the sake of
reality, let us introduce a change of the notation.

We suppose that the calibration data set is made of m swaptions with option maturity T� written on
swaps of maturity T� � T� for � < �; where �; � 2 N+; and T�; T� 2 fT1; :::; Tng with n 2 N+, with
market volatility given by �?�;�(T�). Notice that in our non-homogeneous case where �i (t) is of the form
� (t; Ti; Ti+1) for any i = 1; :::; n; with t < Ti and piecewise constant on intervals of size � = Ti+1 � Ti:
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Therefore, the expression of the market cumulative variance, according to Rebonato�s formula (3:14),
can be expressed as

�
�?�;�(T�)

�2
T� =

Z T�

0

�X
i;j=�

!i (0)F (0; Ti)

S(0; T�; T�)

!j (0)F (0; Tj)

S(0; T�; T�)
�i;j�i (s)�j (s) ds

=

Z T�

0

�X
i;j=�

!̂i (0) !̂j (0) � �i;j (s) � ds

=

Z T�

0

Tr (
�;�As) ds

= Tr

 

�;�

Z T�

0

Asds

!
(3.3)

where As = (�i;j (s))i;j2[�;�] =
�
�i;j�i (s)�j (s)

�
i;j2[�;�] and 
�;� = !̂ (0) !̂ (0)

0
= (!̂i (0) !̂j (0))i;j2[�;�] :

These conditions show that the cumulative market variance of a particular swaption can be written
as the linear function of the forward covariance matrix, or equivalently we can say that here swaptions
are priced as basket options with constant coe¢ cients. As detailed in Brace and Womersley (2000) or
d�Aspremont (2003), this simple approximation creates a relative error on swaption prices of 1 � 2%,
which is well within bid-ask spreads.

On the other hand, if we want to formulate the calibration problem, this conditions has to be extended
for every � = 1; :::; n in order to capture all the swaptions volatilities that the market quotes. Therefore
the calibration problem becomes, using the approximate swaption variance formula in (3:16):

Find A

subject to Tr (
i;nA) =
�
�?i;n(Ti)

�2
Ti with i = 1; :::; n

A � 0

which is a semide�nite feasible problem in the covariance matrixA 2 SN and 
i;n 2 SN ; and
�
�?i;n(Ti)

�2
Ti 2

R+ is given by the swaption market as the Black (1976) cumulative variance of swaption on S (0; Ti; Tn) :
Notice that A and 
 are block diagonal matrices that represent how the di¤erent factors disappear with
the time (see Brigo and Mercurio (2001) section 7.1) such that N = n(n� 1)=2 and Ai 2 Sn�(i�1) in
the following sense

A =

26664
A1 0 � � � 0
0 A2 � � � 0
...

...
. . .

...
0 0 � � � An

37775
where (Ai)i=1;:::;n represents the sequence of semide�nite covariance matrices that characterize the con-
tinuous part of the LIBOR additive process.

The general form of the problem proposed by Brace and Womersley (2000) or d�Aspremont (2003)
is the following:

minimize Tr (CA)

subject to Tr (
iA) =
�
�?i;n(Ti)

�2
Ti with i = 1; :::; n

A � 0

however the calibration problem gives an entire set of solutions, extremely sensible to the matrix in the
objective function C 2 SN : That is clearly the biggest drawback in this framework. The general form of
the problem that we propose to solve is the following:
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Proposition 4. The general calibration problem can be written as an in�nite-dimensional linear matrix
inequality with the following objective function:

�nd k;A

subject to Tr (
iA) =
�
�?i;n(Ti)

�2
Ti with i = 1; :::; n

kA�AhistkFr � kIN
A � 0

(3.4)

or equivalently,
minimize kA�AhistkFr
subject to Tr (
iA) =

�
�?i;n(Ti)

�2
Ti with i = 1; :::; n

A � 0
(3.5)

which is a semide�nite feasibility problem in the covariance matrix A 2 SN where Ahist 2 SN is the
historical covariance matrix, k 2 R+;
i;n 2 SN ; and

�
�?i;n(Ti)

�2
Ti 2 R+ is given by the swaption market

as the Black (1976) cumulative variance of swaption on S (0; Ti; Tn) where Ti is the maturity of the
option over a swap rate at time 0 for an interest rate swap with �rst reset at Ti and exchanging payments
at Ti; :::; Tn:

3.3. Primal-Dual SDP problem and Algorithm Implementation. According to the last proposi-
tion the general form of the problem to be solved is given by:

minimize kA�AhistkFr
subject to Tr (
iA) =

�
�?i;n(Ti)

�2
Ti with i = 1; :::; n

A � 0

Because their feasible set is the intersection of an a¢ ne subspace with the convex cone of nonnegative
vectors, the objective being linear, these programs are convex. Or in other words, their solution set is
convex as the intersection of an a¢ ne subspace with the (convex) cone of positive semide�nite matrices
and a particular solution can be found by choosing Ahist and solving the corresponding semide�nite
program. If the program is feasible, convexity guarantees the existence of a unique (up to degeneracy or
unboundedness) optimal solution.

The �rst method used to solve these programs in practice was the simplex method. This algorithm
works well in most cases but is known to have an exponential worst case complexity. In practice, this
means that convergence of the simplex method cannot be guaranteed. Since the work of Nemirovskii
and Yudin (1979) and Karmarkar (1984) however, we know that these programs can be solved in
polynomial time by interior point methods and most modern solver implement both techniques. More
importantly for our purposes here, the interior point methods used to prove polynomial time solvability
of linear programs have been generalized to a larger class of convex problems. One of these extensions is
called semide�nite programming. Nesterov and Nemirovskii (1994) showed that these programs can
be solved in polynomial time. A number of e¢ cient solvers are available to solve them, the one used in
this work is called SEDUMI by Sturm (1999). In practice, a program with n = 50 will be solved in
less than a second.

Now, let us show how the dual solution to the calibration program provides a complete description of
the sensitivity to changes in market condition. In fact, because the mentioned algorithms used to solve
the calibration problem jointly solve the problem and its dual, the sensitivity of the calibrated covariance
matrix is readily available from the dual solution to the calibration program. Notice that according to
the standard form of the primal semide�nite program, we can write the following Lagrangian

L(A; �) = �kA�AhistkFr +
nX
i=1

�i

��
�?i;n(Ti)

�2
Ti � Tr (
iA)

�
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and because the semide�nite cone is self-dual, we �nd that L(A; �) is bounded below in A � 0; hence the
dual semide�nite problem becomes:

maximize �
Pn

i=1 �i
�
�?i;n(Ti)

�2
Ti

s.t. �kA�AhistkFr �
Pn

i=1 �iTr (
iA) � 0

For a general overview of semi-de�nite programming algorithms seeVandenberghe and Boyd (1996),
Nesterov and Nemirovskii (1994) or Alizadeh, Haeberly and Overton (1998). We followed the
implementation structure given in Toh, Todd and Tütüncü (1996), having adapted in C the Mathe-
matica algorithm by Brixius, Potra and Sheng (1996). Some more recent libraries including a more
e¢ cient formulation of the SOCP (quadratic, smoothness, euclidean distance ...) and L.P. constraints
are available. These include the SEDUMI 1.1 library package by Sturm (1999) for symmetric cone
programming, which we have extensively used here. One of the most e¢ cient ways to use this library
of function in Matlab is using CVX programming. CVX is a Matlab-based modeling system for convex
optimization developed by Grant, Boyd and Ye (2005).

All modern solvers as SEDUMI 1.1 in Sturm (1999) or SDPT3 in Toh, Todd and Tütüncü (1998)
can produce both primal and dual solutions to this problem. It is clear that this dual solution can be
used for risk-management purposes, and it is shown here as a indicator of sensibility of our calibration
problem.

3.4. Numerical Results. As a �rst attempt of calibration, let us use the well-known data from Brigo
and Morini (2005). It will allow the reader to compare the results. Therefore, we have introduced the
following inputs to the problem:

(1) Initial curve of annual forward rates, as a vector with the following components (February 1, 2002
from Brigo and Morini (2005))

F (0; 0; 1) 0:036712
F (0; 1; 2) 0:04632
F (0; 2; 3) 0:050171
F (0; 3; 4) 0:05222
F (0; 4; 5) 0:054595
F (0; 5; 6) 0:056231
F (0; 6; 7) 0:057006
F (0; 7; 8) 0:057699
F (0; 8; 9) 0:05691
F (0; 9; 10) 0:057746

(2) Swaption Black volatilities (February 1, 2002 from Brigo and Morini (2005)), where we sub-
stract just the following annual data, from 1 to 10 years,

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y 0:179 0:165 0:153 0:144 0:137 0:132 0:128 0:125 0:123 0:12
2y 0:154 0:142 0:136 0:13 0:126 0:122 0:12 0:117 0:115 0:113
3y 0:143 0:133 0:127 0:122 0:119 0:117 0:115 0:113 0:111 0:109
4y 0:136 0:127 0:121 0:117 0:114 0:113 0:111 0:109 0:108 0:107
5y 0:129 0:121 0:117 0:113 0:111 0:109 0:108 0:106 0:105 0:104
6y 0:125 0:118 0:114 0:1095 0:1075 0:106 0:105 0:104 0:1035 0:1025
7y 0:121 0:115 0:111 0:106 0:104 0:103 0:102 0:102 0:102 0:101
8y 0:118 0:112 0:1083 0:104 0:1023 0:1017 0:101 0:101 0:1007 0:1
9y 0:115 0:109 0:1057 0:102 0:1007 0:1003 0:1 0:1 0:0993 0:099
10y 0:112 0:106 0:103 0:1 0:099 0:099 0:099 0:099 0:098 0:098
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(3) Historical forward rate correlations (February 1, 2002 from Brigo and Morini (2005)),

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y 1 0:82 0:69 0:65 0:58 0:47 0:29 0:23 0:43 0:47
2y 0:82 1 0:8 0:73 0:68 0:55 0:45 0:4 0:53 0:57
3y 0:69 0:8 1 0:76 0:72 0:63 0:47 0:56 0:67 0:61
4y 0:65 0:73 0:76 1 0:78 0:67 0:58 0:56 0:68 0:7
5y 0:58 0:68 0:72 0:78 1 0:84 0:66 0:67 0:71 0:73
6y 0:47 0:55 0:63 0:67 0:84 1 0:77 0:68 0:73 0:69
7y 0:29 0:45 0:47 0:58 0:66 0:77 1 0:72 0:71 0:65
8y 0:23 0:4 0:56 0:56 0:67 0:68 0:72 1 0:73 0:66
9y 0:43 0:53 0:67 0:68 0:71 0:73 0:71 0:73 1 0:75
10y 0:47 0:57 0:61 0:7 0:73 0:69 0:65 0:66 0:75 1

The following �gures compare some of the most relevant results, in terms of variance-covariance and
correlation matrices:
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Figure (1) Covariance Matrix: Historical estimation vs. risk-neutral calibration

The solution of the primal SDP problem proposed here, is the following calibrated instantaneous
forward volatility structure:
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0:2264 0:2369 0:2346 0:2351 0:2398 0:2445 0:2495 0:2625 0:2788 0:3099
0:2350 0:2394 0:2487 0:2565 0:2655 0:2734 0:2831 0:3011 0:3206 0
0:2208 0:233 0:2469 0:2563 0:2662 0:2766 0:2878 0:3055 0 0
0:2091 0:2251 0:2398 0:2492 0:2611 0:2724 0:2826 0 0 0
0:2011 0:218 0:2327 0:2441 0:2570 0:2672 0 0 0 0
0:1927 0:2091 0:2256 0:2379 0:2492 0 0 0 0 0
0:1834 0:2014 0:2183 0:2288 0 0 0 0 0 0
0:1770 0:1954 0:2100 0 0 0 0 0 0 0
0:1717 0:1871 0 0 0 0 0 0 0 0
0:1663 0 0 0 0 0 0 0 0 0
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Figure (2) Correlation Matrices: Historical estimation vs. Risk-neutral calibration
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Figure (3) Implied Term Structure in the Correlation Matrix (�rst row:1y-2y-3y and second row:
4y-6y-8y)

Figures (1) and (2) show two interesting properties: First, how the shape of the implied covari-
ance matrix and historical covariance matrix look quite similar. That is an expected consequence of the
objective function. Second, the implied covariance matrix has higher value in absolute terms than the
historical covariance matrix. This characteristic is usual in many di¤erent derivatives markets. Addi-
tionally, Figure (3) shows us the future dynamics of the variance-covariance matrix where the number
of factors decrease with time. It is easy to see the e¤ect of interpolations in the long term part of the
volatility structure, basically because of the low liquidity of the 6, 8 and 9 years swaptions.

The reader can compare that the numerical results from the original Brigo and Morini (2005) (after
rank reduction to enforce positive forward volatilities). Let us brie�y summarize here some di¤erences:

- It is clear that a �rst relevant improvement is that the procedure here exposed guarantee a
semide�nite positive covariance matrix, something essential to achieve a correct simulation in the
full-rank LIBOR additive model.

- The second relevant property is that our procedure always guarantees a unique global solution.
In some of the other cited methodologies, usually one has multiplicity of possible solutions, some
of them with negative volatilities.

- And �nally, this procedure does not require any rank reduction, and allows us the retrieval of a
maximum amount of covariance information from the market.
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3.5. Computing sensitivity and risk-model management. In this subsection, following d�Aspremont
(2005), we investigate how the dual optimal solution can be exploited to manage the sensibility of the
primal solution to movements in the market. Let us suppose that we have solved both the primal and
the dual calibration problems above with market constraints �?i;n(Ti) and let us denote with X and Y
the optimal primal and dual solutions, respectively. Suppose also that the market price constraints in
the original calibration problem are modi�ed by a small amount � 2 Rn. The new calibration problem
becomes the following semide�nite program:

minimize kA�AhistkFr
subject to Tr (
iA) =

�
�?i;n(Ti)

�2
Ti +�i with i = 1; :::; n

A � 0
(3.6)

where A 2 SN is the covariance matrix that we look for, and Ahist 2 SN is the historical covariance
matrix, k 2 R+;
i;n 2 SN ; and

�
�?i;n(Ti)

�2
Ti 2 R+ is given by the swaption market as the Black (1976)

cumulative variance of swaption on S (0; Ti; Tn) : If we note A(�) the primal optimal solution to the
revised problem, we get the sensitivity of the solution to a change in market condition as:

@A(�)

@�i
= ��i (3.7)

where � is the optimal solution to the dual problem (see Boyd and Vandenberghe (2004) for details).
More speci�cally, the dual solution for the calibration problem proposed in 3.1.4 is (x 1.0e-007)

0:15590 0:01058 0:06334 0:03071 0:17700 0:11090 0:55298 0:01178 0:07040 0
0:23461 0:01677 0:09225 0:06832 0:16764 0:12237 0:55440 0:04306 0:05752 0
0:26118 0:02001 0:16164 0:07118 0:21080 0:11018 0:24672 0:02131 0 0
0:25988 0:03141 0:16433 0:04552 0:24894 0:14307 0:37939 0 0 0
0:43288 0:03126 0:12174 0:04007 0:32598 0:11148 0 0 0 0
0:44196 0:02360 0:10298 0:05126 0:26754 0 0 0 0 0
0:35816 0:02253 0:14567 0:04492 0 0 0 0 0 0
0:32410 0:02378 0:11929 0 0 0 0 0 0 0
0:36771 0:02268 0 0 0 0 0 0 0 0
0:30537 0 0 0 0 0 0 0 0 0

This result, represented in Figure (4), shows the degree of stability of our primal solution, providing
a direct indicator of robustness, but also it illustrates how a semide�nite programming based calibration
allows to test various realistic scenarios at a minimum numerical cost and improves on the classical non-
convex methods that either had to �bump the market data and recalibrate�the model for every scenario
with the risk of jumping from one local optimum to the next, or simulate unrealistic market movements
by directly adjusting the covariance matrix.
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Figure (4) Sensibility of the primal solution (optimal dual solution)

3.5.1. Robust dynamic calibration. The previous sections were focused on how to compute the impact of a
change in market conditions. Here we propose two di¤erent dynamic calibration solutions to dynamically
provide a robust matrix for a certain period of market sessions (10 days). Let us assume that the initial
problem (3:6) for t = 0, therefore, in order to improve dynamically the robustness of our calibration, we
solve the following sequence of problems

minimize


A(t) �A(t�1)



Fr

subject to Tr
�

iA

(t)
�
=
�
�
?(t)
i;n (Ti)

�2
Ti with i = 1; :::; n

A(t) � 0
(3.8)

or, alternatively

minimize


A(t) �A(t�1)



Fr
+ '



A(t) �Ahist

Fr
subject to Tr

�

iA

(t)
�
=
�
�
?(t)
i;n (Ti)

�2
Ti with i = 1; :::; n

A(t) � 0
(3.9)

for every t = 1; :::; n; where A(t) 2 SN is the covariance matrix that we look for, and A(t�1) 2 SN
is the previous optimal covariance matrix solved in t � 1; i; n 2 R+ and 1 � i � n; 
i;n 2 SN ; and�
�
?(t)
i;n (Ti)

�2
Ti 2 R+ is given by the swaption market as theBlack (1976) cumulative variance of swaption

with underlying S (t; Ti; Tn) ; and '; in problem (3:9), in a regularization constant:

Here, we have three examples of calibration of LIBOR market model proposed. In all cases, we have
used the same forward term structure and swaptions volatilities, that the market quoted from March
12th to April, 2007 23th2. In the �rst example (Case 1 ), we solve the calibration related with the SDP
problem (3:6), and the second example (Case 2 ) is related with the proposed robust dynamic calibration
as the SDP problem (3:8) for the 10 consecutive mentioned market sessions. Additionally, we solve the
third calibration problem, regularized for a ' = 0:1; proposed as SDP problem in (3:9) as (Case 3 ).

2Data courtesy of Caja Madrid, Fixed Income Derivatives desk.
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Figure(5) (Case 1 ) Dynamic solution from (3:6): Forward volatility structure calibrated using
correlation (from initial period (10 factors) to fourth period (7 factors))
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Figure(6) (Case 2 ) Dynamic solution from (3:8): Forward volatility structure calibrated using robust
dynamic calibration (from initial period (10 factors) to fourth period (7 factors))
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Figure (7) (Case 3 with ' = 0:1) Dynamic solution from (3:9): Forward volatility structure calibrated
using robust dynamic calibration (from initial period (10 factors) to fourth period (7 factors))

It is not surprising to see in Figure (5) and Figure (6) how the second case produces more stable
or robust results than the �rst case. Because of that, the usual daily variation in the market prices
will not a¤ect the derivatives valuation and it will minimize the variability in the hedging and greeks
computation. Figure (7) shows us an intermediate situation basically because we have introduced a
regularization term in the objective function. This third case is useful if the trader wants to introduce
any personal or historical view related with the covariance matrix but without loosing robustness.

4. Second-step: the jump-part calibration

In the previous section, we proposed a new method to obtain the calibration of the di¤usion or continu-
ous part, against the at-the-money swaption prices. However, during the whole thesis, we have introduced
the jump framework in order to �t the implied forward volatility structure for in-the-money and out-of-
the-money swaptions implied volatility. In order to obtain a practical solution to the calibration problem
and �t the smile, many authors have resorted to minimizing the in-sample quadratic pricing error (see, for
example, Andersen and Andreasen (2000), Bates(1996)) or Cont and Tankov (2004) but always
in the equity framework. Here, we extend some of these ideas to the Lévy-calibration problem in the
swaptions market.

Basically the idea that we expose here is related with the calibration of a sequence of Lévy-measures
under the jump-di¤usion framework. As we have shown previously, the calibration of the di¤usion part
can be made just for the at-the-money swaption prices. It guarantees the compatibility with Black at-
the-money prices. However, if the trader or practitioner wants to introduce the e¤ect of the smile in the
pricing of exotic derivatives, then we need to introduce a sequence of jump measures that adjust every
of the maturities of the option, and for the di¤erent strikes.
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For a predetermined collection of dates 0 < T0 < T1 < ::: < Tn with a �xed accrual period or tenor �,
and for any t � Ti 2 [0; T ?] ; let us denote by L (t; Ti) the forward rate for the interval from Ti to Ti+1,
and PS�(t; T�; T� ; (xi;j) ; �i;K�;�) and PSM (t; T�; T� ; �?i;n;K�;�) are respectively the payer-swaption
price given by our model and payer-swaption price given by the swaption market (according to Black
(1976) model).

Following the similar idea in Andersen and Andreasen (2000) or Bates(1996) for equity markets,
notice that we can formulate the following sequence of calibration problems, for every i = 1; :::; n, we
calibrate the Lévy measures minimizing the in-sample quadratic pricing error as

(�i) = arg inf
mX

h=�m

�X
j=�+1

h
!hij
��PS�(t; T�; T� ; Ai; �i;Kh

�;�)� PSM (t; T�; T� ; �?i;n;Kh
�;�)

��2i (4.1)

where �; � 2 f1; :::; ng ; and Kh
�;� 2

n
K�m
�;� ; :::;K

m
�;�

o
are the di¤erent strikes that the swaption market

quotes, with h 2 N such that if h = 0 then FSt
�
K0
�;�

�
= 0 (at-the-money case), or in other words if

K0
�;� = FS�;� then we have introduced at-the-money swaption, and no relevant information is added to

the calibration problem because PS�(t; T�; T� ; (xi;j) ; �i; FS�;�) = PSM (t; T�; T� ; �?i;n; FS�;�):

Let us recall that an European payer swaption is an option giving the right (and no obligation) to
enter in a IRS at a given future time, the swaption maturity T�. Usually the swaption maturity coincides
with the �rst reset date of the underlying interest rates swap (IRS). The underlying IRS length (T��T�)
is called the tenor of the swaption. As we have previously mentioned, it is the market practice to value
swaptions with a Black (1976) formula.

Precisely let us de�ne the price of a payer swaption at time t as PSM (t; T�; T� ; �?i;j ;K
h
�;�) given by the

swaption market, as a call-option to get into a swap that begins in T� and �nish in T� with the swap rate
S (t; T�; T�) (underlying of the option) with strike K�;� ; and where �?�;� is the Black (1976) cumulative
variance of swaption on S (t; T�; T�) for the mentioned strike K�;� quoted in the swaption market, such
that

PSM (t; T�; T� ; �
?
�;� ;K�;�) = Black(t; T�; T� ; �

?
�;� ;K�;�)

�X
j=�+1

B (t; Tj) �j

On the other hand, the usual swaption de�nition that we have to price it using our model is

PS�(t; T�; T� ; �
?
�;� ;K�;�) = EP?

8<:B (t; T�) (FSt (K�;�))
+

�X
j=�+1

B (t; Tj) �j

9=;
= EP�;�

8<:
�X

j=�+1

B (t; Tj) �j ((S (t; T�; T�)�K�;�))
+

9=;
= EP�;�

n
((S (t; T�; T�)�K�;�))

+
o �X
j=�+1

B (t; Tj) �j

= EP�;�

8<:
  

��1X
i=�

!i (t)L (t; Ti)�K�;�

!!+9=;
�X

j=�+1

B (t; Tj) �j
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where

L (t; Ti) =

�(t)X
j=1

(L (t ^ Tj ; Ti)� L (Tj�1; Ti))

= L (0; Ti)

�(t)X
j=1

exp

��
�j (Tj ; Ti)�

1

2
�j (Tj ; Ti)

2

�
(t ^ Tj � Tj�1)

+�j (Tj ; Ti)
�
Wt^Tj �WTj�1

�	 Nj(t^Tj)Y
l=Nj�1(Tj�1)

eYl

4.1. An example of calibration under the double exponential jump-di¤usion model. Let us
assume that our LIBOR additive process follows a jump-di¤usion scheme or more speci�cally, a double
exponential jump-di¤usion orKou (2003) model, which has two components, a continuous part mod-
eled as Brownian motion, and a jump-part with jumps having a double exponential distribution
and jump times driven by a Poisson process, assuming that

GT
?

t :=
X
j��(t)

Z t^Tj+1

Tj

�j (s; Tl) ds+
X
j��(t)

Z t^Tj+1

Tj

�j (s; Tl) dWs +
X
j��(t)

Nj(t)X
l=1

Yl

where �j under risk neutral measure has an speci�c form, Wt is the standard Brownian motion, Nj is
a Poisson process with rate �j and Yi is a sequence of independent and identically distributed of jumps
with double exponential distribution i.e. the common density of Y is given by

fY (dy) = p � �1e��1y1fy�0g + q � �2e�2y1fy<0g
where p; q � 0; p+ q = 1; �j � 0 for every j = 0; 1; :::; n; and �1 > 1; �2 > 0: Note that the means of the
two exponential distribution are 1=�1 and 1=�2 respectively.

It is clear that the Fourier transform (or characteristic function) of GT
?

t admits the (unique) repre-
sentation given by the Lévy-Khintchine Theorem (Theorem 31 in Colino (2008)), in this case

�̂t(z) = E
h
ehiz;Gti

i
=

Y
j��(t)

E
�
exp

�
iz
�
Gt^Tj+1 �GTj

���

= exp

24 X
j��(t)

(t ^ Tj+1 � Tj) �	j (z)

35
where the characteristic exponent 	j (z) equals

	j (z) = i h�j ; zi � 1
2 hz;Ajzi+

R
Rd
�
eihz;yi � 1� i hz; yi 1fjyj�1g

�
�j (dy) with z 2 Rd

where Aj is a symmetric nonnegative-de�nite (n� j + 1)� (n� j + 1) matrix given as a solution by the
�rst calibration problem, with j = 0; 1; :::; n, and �j under risk-neutral measure follows (seeGlasserman
and Kou (2003) and Kou and Wang (2004))

�j (t; Ti) =
iX

k=�(t)

��j (t; Tk)�j (t; Ti)L (t�; Tk)
1 + �L (t�; Tk)

+

Z
Rr
y

0@1� iY
k=�(t)

1 + �L (t�; Tk)
1 + �L (t�; Tk) (1 + y)

1A�j �p � �1e��1y1fy�0g + q � �2e�2y1fy<0g� dy
and the Lévy measure can be de�ned as

�j (dy) = �j
�
p � �1e��1y1fy�0g + q � �2e�2y1fy<0g

�
dy
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where p; q � 0; p + q = 1; �2 > 0 and additionally the condition that �1 > 1 is imposed to ensured that
L (t�; Ti) has �nite expectations.

Therefore, the forward LIBOR rate can be described with the following SDE

dL (t; Ti)

L (t�; Ti)
= �j (t; Ti) dt+ �j (t; Ti) dWt + d

0@Nj(t)X
l=1

eYl � 1

1A
Let us recall that we interpret the swap rate as a linear combination of forward rates, and in our case
forward LIBOR rates, such that the payer swaption PS�(t; T�; T� ; �?�;� ;K�;�) may also be seen as

PS�(t; T�; T� ; �
?
�;� ;K�;�) = EP�;�

8<:
�X

j=�+1

B (t; Tj) �j (S (t; T�; T�)�K�;�)
+

9=;
= EP�;�

8<:
0@��1X
j=�

!j (t)L (t; Tj)�K�;�

1A+9=;
�X

j=�+1

B (t; Tj) �j

Let us de�ne the following two auxiliary variables

�j := ln!j (0)L (0; Tj)

and

Xt := ln

�(t)X
j=1

exp

��
�j (s; Ti) +

1

2
�j (s; Ti)

2

�
(t ^ Tj � Tj) + �j (s; Ti)

�
Wt^Tj �WTj

�� Nj(t^Tj)Y
l=Nj(Tj�1)

eYl

then we have

S (t; T�; T�) =

��1X
j=�

e�j+Xj

will allows us to rede�ne the value of a payer swaption in t as

PS�(t; T�; T� ; �i;K�;�) = EP�;�

8<:
0@��1X
j=�

e�j+Xj �K�;�

1A+9=;
�X

j=�+1

B (t; Tj) �j

We consider the modi�ed payo¤� (x;K�;�) =
�P��1

j=� e
xj �K�;�

�+
and, for the sake of clarity, setting

� =
�
�j
�
��j�� ; X = (Xj)��j�� andK�;� for T�; T� given inside the tenor structure fT1; :::; Tng 2 [0; T ?],

PS�(�;K�;�) = EP�;� f� (� +X;K�;�)g
�X

j=�+1

B (t; Tj) �j

=

�X
j=�+1

B (t; Tj) �j �
Z
R
� (� +X;K�;�)� (x) dx

where � is the �unknown�density of X (however, we know the Fourier transform or Lévy-Khitchine
characteristic function �̂X (z) =

Y
�+1�j��

�̂Xj
(z)).
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The expectation under P�;� can be computed inverting the Fourier transform, according with Raible
(2000), in the following way

PS�(�;K�;�) =
1

2�i

Z R+i1

R�i1
e�z�̂X (z) dz

=
1

2�

Z +1

�1
e�i(R+iu)�̂X (R+ iu) du

=
e�iR

2�
lim

N;M!1

Z N

�M
e�iiu�̂X (R+ iu) du

=
e�iR

2�
lim

N;M!1

Z N

�M
e�iiu

Y
�+1�j��

�̂Xj
(R+ iu) du

that can be solved numerically, after some additional transformations, using FFT3.

Fourier transforms have been widely used in valuing �nancial derivatives. For example, Carr and
Madan (1998) propose Fourier transforms with respect to the log-strikes prices; Geman and Yor
(1993), Fu, Madan and Wang (1999) use Fourier transform to price Asian options in the Black
Scholes setting; Fourier transforms for the double-barrier and lookback options under the CEV model
are given in Davydov and Linetsky (2001); Petrella and Kou (2004) use a recursion and Fourier
transforms to price discretely monitored barrier and lookback options. Raible (2000) proposed a method
for the evaluation of European stock options in a Lévy setting by using bilateral (or, two-sided) Fourier
transforms. This approach is based on the observation that the pricing formula for European options
can be represented as a convolution. Then one can use the fact that the bilateral Laplace transform of
a convolution is the product of the bilateral Laplace transforms of the factors (the latter transforms are
usually known explicitly).

Therefore, the second step calibration problem can be formulated in the following way

(�i; �1; �2; p) = arg inf
Pm

h=�m
Pn

j=i+1

h
!hij




PS�(t; T�; T� ; Ai; �i;Kh
�;�)� PSM (t; T�; T� ; �?i;n;Kh

�;�)



i

s:t: p+ q = 1
p; q � 0

�1 > 1; �2 > 0

where the weights !hij are positive and sum to one and they re�ect the pricing error tolerance for the
swaption with maturity T� and swap ends at T� with strike Kh

�;� ; PS
M (t; T�; T� ; �

?
i;n;K

h
�;�) is directly

given by the market price of a payer swaption, Kh
�;� 2

n
K�m
�;� ; :::;K

m
�;�

o
are the di¤erent strikes that the

swaption market quotes, with h 2 N such that if h = 0 then FSt
�
K0
�;�

�
= 0 (at-the-money case).

5. Numerical Performance

The reliability of the two steps swaptions calibration depends mainly on the accuracy of the underly-
ing approximation (3:1) and (3:2) in the �rst calibration step. This formula has already been tested, for
instance by Brigo and Mercurio (2001) and Jackel and Rebonato (2000). Here we extend similar
tests, based onMonte Carlo simulation of the LMM dynamics calibrated using semide�nite program-
ming, and we compare, for payer and receivers European swaptions at-the-money, the estimated prices
using the Monte Carlo versus the theoretical Black-76 swaption value.

As we have mentioned before, let us de�ne a predetermined collection of dates 0 < T0 < T1 < ::: < Tn
with a �xed accrual period or tenor �, and for any t � Ti 2 [0; T ?] ; and by L (t; Ti) we de�ne the forward

3See Carr and Madan (1998)
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rate for the interval from Ti to Ti+1, and PS�(t; T�; T� ; (xi;j) ; �i;K�;�) and PSM (t; T�; T� ; �?i;n;K�;�)
are respectively the payer-swaption price given by our model and payer-swaption price given by the
swaption market (according to Black (1976) model). Let us, �rst of all, discretize the continuous dynam-
ics (see Section 3.1.3 in Colino (2008)). Taking logs in order to get the stronger convergence of Milstein
scheme, one obtains for every � � j � � � n with

logL (t+�t; Tj) = logL (t; Tj) + �j (t)

jX
i=�+1

�i;j�i (t) �iL (t; Ti)

1 + �iL (t; Ti)
�t

��j (t)
2

2
�t+ �j (t) (W (t+�t)�W (t)) (5.1)

where the instantaneous volatility �i (t) and correlations �i;j (t) between the n-factors has been estimated
solving the SDP problem (see Proposition 4) and they are piecewise stationary. The base scenario we
use for most of our results sets � = 1 year, n = 10 years corresponding to a ten-years term structure of
annual rates, and generating 10 points of data per year. Therefore � will take values between 1 and 5,
and � between 1 and 10 (with � < � � 10) where T� indicates the expiry date of the option and T� is the
maturity of the swaption. We generate 10.000 simulations under the terminal measure in order to reach a
two-side 98% window, according to the standard error of Monte Carlo method4. All the swaptions priced
here using this methodology, are at-the-money swaptions, and the data set used in this simulation are
real market data (quoted March 12th; 2007)5.

Figure (8) compares the prices between both methodologies and estimated relative errors (in per-
centage) between the prices generated using Monte Carlo with a LMM and Black-76. In the x-axis, the
swap maturity in years is represented as the market used to quoted swaptions, without the option term
(� � a); and in the z-axis, the option expiry (payer in the left and receiver in the right side) in years.

Figure (8): Relative error (in percentage) in the payer-swaption (left) and receiver-swaption
(right) price using LMM-valuation (Monte Carlo) calibrated using SDP versus Black-76.

Not surprisingly, considering the structure of the SDP problem, Figure (8) shows that all swaptions
seem to �t reasonably well, except for the longest underlying, in line with the d�Aspremont (2003) or
Longsta¤et al. (2000). With the exception of the payer-swaption with longest option expiry, in the rest
of the cases, the price approximation appears good enough, and it con�rms the accuracy of a full-rank
calibration using SDP for at-the-money swaptions market (with 10 factors). It helps us to con�rms the

4See Glasserman and Zhao (2000) for a complete description and implementation methodology.
5Market volatilities kindly provided by Caja Madrid Capital Markets (Fixed Income Derivatives Desk) using reliable

market sources. All errors are my own.
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advantages of this methodology to price and hedge more sophisticated exotic swaptions, that usually have
a great price dependence of the covariance structure.
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