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NEW STOCHASTIC PROCESSES TO MODEL INTEREST RATES:
LIBOR ADDITIVE PROCESSES

JESÚS PÉREZ COLINO

(WORKING PAPER)

Abstract. In this paper, a new kind of additive process is proposed. Our main goal is to de�ne,
characterize and prove the existence of the LIBOR additive process as a new stochastic process. This
process will be de�ned as a piecewise stationary process with independent increments, continuous in
probability but with discontinuous trajectories, and having "càdlàg" sample paths. The proposed process
is speci�cally designed to derive interest-rates modelling because it allows us to introduce a jump-term
structure as an increasing sequence of Lévy measures. In this paper we characterize this process as
a Markovian process with an in�nitely divisible, selfsimilar, stable and self-decomposable distribution.
Also, we prove that the Lévy-Khintchine characteristic function and Lévy-Itô decomposition apply to
this process. Additionally we develop a basic framework for density transformations. Finally, we show
some examples of LIBOR additive processes.

1. Preliminaries

1.1. Introduction. The story of modelling �nancial markets with stochastic processes began in 1900
with the study of Louis Bachelier (1900). He modelled stocks as a Brownian motion with drift.
However, the model had many imperfections, including, for example, negative stock prices. It was 65
years before another, more appropriate, model was suggested by Samuelson (1965): geometric Brownian
motion. Eight years later Black and Scholes (1973) and Merton (1973) demonstrated how to price
European options based on the geometric Brownian motion. This stock-price model is now called Black-
Scholes model, for which Scholes and Merton received the Nobel Prize for Economics in 1997.

However, it has become clear that this option-pricing model is inconsistent with option data. Implied
volatility models can do better, but fundamentally, these consist of the wrong building blocks. To
improve on the performance of the Black-Scholes model, Lévy models were proposed in the late 1980s
and in the early 1990s, when there was some need for models taking into account of di¤erent stylized
features of the market.

On the other hand, traditionally, interest rates models for Treasury bonds or Corporate bonds, in
the literature, are mainly models based on Brownian motion although it is known that real-life �nancial
markets provide a di¤erent structural and statistical behavior than that implied by these models. Some
of these interest rates models have been created thinking in Black-Scholes framework, but they found a
great number of inconveniences. Also in this �eld, Lévy processes are proposed as an appropriate tool to
increase the accuracy of interest rates models. However, the nature of random sources in bond markets
is di¤erent from equity markets:
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2 JESÚS PÉREZ COLINO

(1) Modelling a term structure is completely di¤erent from modelling a simple equity. There exists
a collection of �correlated�bonds that generate a �multifactorial�term structure. In other words,
we have a stochastic surface that is strongly linked to some no arbitrage conditions, completely
di¤erent to the no-arbitrage conditions that appear in equity markets.

(2) Derivative markets for interest rates (caps/�oors and swaptions markets) quote di¤erently �at-
the-money� volatilities according to the di¤erent maturities inside of the term structure (forward
volatilities). While Brownian or Lévy processes o¤er nice features in terms of analytical tractabil-
ity, the constraints of independence and stationarity of their increments prove to be very restrictive
for this market.

(3) Also, these derivative markets quote, for each maturity, a di¤erent volatility for every strike
(�in-the-money� or �out-of-the-money� options). Lévy models allow for calibration to implied
volatility patterns for a single maturity but fail to reproduce option prices correctly over a range
of di¤erent maturities. In addition, the existence of this term structure of �volatility smiles�have
a huge impact in order to price not only plain vanilla interest rate options but also exotic options.

In this paper, we present a stochastic process that is speci�cally designed to represent the random
sources that appear in this market, and we develop some basic tools that any interest rate model needs
in order to reproduce the risk neutral dynamics. This paper is organized as follows.

- In Section 2 we introduce the stochastic processes of interest together with their main distribu-
tional properties (in�nite divisibility, self-similarity, stability and self-decomposability).

- Section 3 is mainly devoted to the existence of this new process, mainly under the framework
for Markovian processes.

- In Section 4 introduces the characterization of these processes, using or adapting the well-known
Lévy-Khintchine formula to this framework.

- Section 5 is dedicated to show the Libor additive in�nitesimal generator.
- In Section 6 we adapt the Lévy-Itô decomposition, and we deduce some interesting applications
that appear in Section 7 .

- Probably, Section 8 is the most important section in order to build models using this process.
Here, we expose the main tool that any �nancial engineering has in order to �nd the risk-neutral
measures: the change of measure.

- Finally Section 9 is devoted to expose di¤erent examples of non-homogeneous processes that can
be used as a LIBOR additive process.

1.2. Some frequently used notation and terminology. A probability space (
;F ;P) is a triplet of
a set 
; a family F of subsets of 
; and a mapping P from F into R+ satisfying the following conditions:

(1) 
 2 F ; ; 2 F (; is the empty set)

(2) If An 2 F for n = 1; 2; :::; then
S1
n=1An and

T1
n=1An are in F

(3) If A 2 F then Ac 2 F (Ac is 
 nA; the complement of A)

(4) 0 � P [A] � 1; P [
] = 1 and P [;] = 0

(5) If An 2 F for n = 1; 2; ::: and they are disjoint (that is An \Am = ; for n 6= m) then

P
� 1S
n=1

An

�
=

1P
n=1

P [An]

In terminology of measure theory, a probability space is a measure space with total measure 1. In
general, if F is a family of subsets of 
 satisfying (1), (2), and (3) then F is called a �-algebra on 
:
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The pair (
;F) is called a measurable space. Very often in this work, we have F = F1 = _t�0Ft
where (Ft)t�0 is a non-decreasing and right-continuous family of �-algebras (in other words, Fs � Ft for
s � t; and Ft = \s>tFs). In such a situation a �ltered probability space (
;F ;P) is called a stochastic
basis : During the whole work we denote by B

�
Rd
�
the collection of all Borel subsets of Rd, called the

Borel �-algebra. It is the �-algebra generated by the open sets in Rd (that is, the smallest �-algebra
that contains all open sets in Rd). A real-valued function f (x) on Rd is called measurable if it is B

�
Rd
�

measurable.

A mapping X from 
 into Rd is an Rd-valued random variable (or random variable on Rd) if it is
F-measurable, that is f! : X (!) 2 Bg is in F for each B 2 B

�
Rd
�
: The distribution of an Rd-valued

random variable X is denoted by � = PX or L (X). Furthermore, �̂ (z) is the characteristic function of
a distribution � de�ned as

�̂ (z) =
R
Rd exp fi hz; xig� (dx) ; z 2 Rd

and  � (z) is the cumulant of �, that is, the continuous function with  � (0) = 0 such that �̂ (z) =
exp

�
 � (z)

�
: The characteristic function of the distribution PX of a random variable X on Rd is denoted

by P̂X (z) and given as

P̂X (z) =

Z
Rd
exp fi hz; xigPX (dx)

= E [exp fi hz;Xig] ; with z 2 Rd

A sequence of probability measures �n; n = 1; 2; ::: converges to a probability measure �; written as

�n ! � as n!1;
if for every bounded continuous function f

R
Rd f (x)�n (dx)!

R
Rd f (x)� (dx) as n!1

When � and �n are bounded measures, the convergence �n ! � is de�ned in the same way. When
f�tg are probability measures, we say that

�s ! �t as s! t

if for every bounded continuous function f (x)

R
Rd f (x)�s (dx)!

R
Rd f (x)�t (dx) as s! t:

This is equivalent to saying that �s ! �t for every sequence s that tends to t:

We say that B is a �-continuity set if the boundary of B has �-measure 0: The convergence �n ! �
is equivalent to the condition that �n (B)! � (B) for every �-continuity set B 2 B

�
Rd
�
:

The convolution � of two distributions �1 and �2 on Rd denoted by � = �1��2 is a distribution de�ned
by

� (B) =

Z Z
Rd�Rd

1B (x+ y)�1 (dx)�2 (dy)

The convolution operation is commutative and associative. If X1 and X2 are independent random
variables on Rd with distributions �1 and �2; respectively, then X1 + X2 has distribution �1 � �2: The
n-fold convolution of � is denoted by �n�: A probability measure � on Rd is in�nitely divisible if, for any
positive integer n, there is a probability measure �(n) on Rd such that � = �n�(n):
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A family fXt : t � 0g of random variables on Rd with parameter t 2 [0;1) de�ned on a common
probability space is called a stochastic process. For any �xed 0 � t1 < t2 < ::: < tn,

P [X (t1) 2 B1; :::; X (tn) 2 Bn]

determines a probability measure on B
��
Rd
�n�

: The family of probability measures over all choices of
n and t1; t2; :::; tn is called the system of �nite dimensional distributions of fXtg : Given two stochastic
processes fXt; t � 0g and fYt; t � 0g ; fXtg

d
= fYtg means that X and Y are identical in law or have a

common system of �nite-dimensional marginals. A stochastic process fYtg is called a modi�cation of a
stochastic process fXtg if P [Xt = Yt] = 1 for t 2 [0;1) :

We say that X is a semimartingale if it is an adapted process (Ft-measurable for every t 2 [0;1))
such that Xt = X0 +Mt + Vt for each t � 0; where X0 is �nite-valued and F0-measurable, fMt; t � 0g
is a local martingale (an adapted process, integrable for each t � 0 and Ms = E (Mt/Fs) for s � t) and
where fVt; t � 0g is an adapted process of �nite variation.

Sometimes it will be necessary to work on the path space of "càdlàg" (i.e. right-continuous with left
limits) semimartingales. For I = [0; T ?] � [0;1) with T ? > 0; we denote by D = D

�
Rd; I

�
the Skorohod

space of all càdlàg functions � : I ! Rd: For I = R+ = [0;1) we denote by D0t
�
Rd
�
the �-�eld generated

by all mappings � 7! � (s) for s � t, and Dt
�
Rd
�
= \s>tD0s

�
Rd
�
: If X is a semimartingale on (
;F ;P)

such that X 2 D
�
Rd; I

�
we denote by X (t) the value of X at time t, and by X (t�) its left-hand limit

at time t (with X (0�) = X (0) by convention) and 4X (t) = X (t)�X (t�) :

We will use, during the whole work, the de�nitions as outlined in Sato (1999) of in�nite divisibility of
processes, self-decomposability (of distributions), self-similarity and stability of processes, Lévy processes,
additive processes, increasing or decreasing processes. We use �:=�to mean �is de�ned to be equal to�.
In particular we set R+ := [0;1) ; Rd+ := [0;1)

d
; Z+ := Z \ R+; Q+ := Q \ R+: Elements of Rd are

column vectors. If f and g are real numbers or real-valued functions, we de�ne f _ g := max (f; g) ;
f ^ g := min (f; g) ; f+ := f _ 0; f� := (�f)_ 0: In particular, we have f = f+ � f� and jf j = f+ + f�:

For x = (xj)1�j�d and y = (yj)1�j�d in C
d we write hx; yi =

Pd
j=1 xjyj .

1.3. Basics about Lévy Processes. The aim of this preliminary section is to give a brief introduction
to the theory of Lévy processes. Inclusion of this material is justi�ed not only because Brownian motion
or Poisson processes are Lévy processes, but also because an additive process will be de�ned later as
a nonhomogeneous Lévy process. Additionally, Lévy processes also provide one of the most important
examples of Markov processes and semimartingales.

This preliminary section is an attempt to gather some basic and typical results to describe several
main directions of this paper. It is not intended to give a systematic presentation of the most important
results or to explain how to prove them; for these purposes one would need many more pages. A more
comprehensive picture of the present knowledge can be obtained from the two books Bertoin (1996) and
Sato (1999).

De�nition 1. An Rd-valued stochastic process X = fXt : t � 0g is a family of Rd-valued random
variables Xt (!) with parameter t 2 [0;1) de�ned on a probability space (
;F ;P).

De�nition 2. An Rd-valued stochastic process X = fXt : t � 0g is called a Lévy process in law on
Rd or d-dimensional Lévy process, if the following four properties are satis�ed:

(L1) X starts at the origin, X0 = 0 a.s. (almost surely)
(L2) X has independent increments, that is, for any n � 1 and 0 � t0 < t1 < ::: < tn; the random

variables Xt0 ; Xt1 �Xt0 ; Xt2 �Xt1 ; :::; Xtn �Xtn�1 are independent.
(L3) X is stochastically continuous, that is, for any " > 0; P [jXt+s �Xtj > "]! 0 as s! 0:
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(L4) X is time homogeneous (or stationary), that is, the distribution of fXt+s �Xt : t � 0g does
not depend on s

Notice that if X is a stochastically continuous process with independent and stationary increments (a
Lévy process in law), there exists a càdlàg version of X with the same properties called Lévy process
(cf. He, Wang and Yan (1992), Theorem 2:68). Therefore a Lévy process can be de�ned as a d-
dimensional stochastic process starting in 0 with càdlàg paths and independent and stationary increments
under P (if there is no ambiguity about the measure involved) (cf. Bertoin (1996)).

Proposition 1. If X is a Lévy process, then X(t) is in�nitely divisible for each t � 0:

Proof. To see this, let ti = it=m with i = 0; 1; :::;m and some t � 0: Let � = PXt
and �m = P

(m)
Xti

�Xti�1
which is independent of i by temporal homogeneity. Then � = �m�(m), since

Xt =
�
X
(m)
t1 �X(m)

t0

�
+ :::+

�
X
(m)
tm �X(m)

tm�1

�
is a sum of m independent identically distributed random variables. �

Recall that the characteristic function of a distribution � on Rd is de�ned by �̂ (z) =
R
Rd e

ihz;xi� (dx) ;

z 2 Rd: Also remember that here hz; xi =
Pd
j=1 zjxj ; the Euclidean inner product of z = (zj) and x = (xj)

in Rd: Thus jxj = hx; xi1=2 :

Proposition 2. If X is a Lévy process, then �̂Xt
(z) = exp ft �	(z)g for each z 2 Rd; t � 0 and where

	(z) is the Lévy exponent.

Proof. For the sake of clarity, de�ne �̂z (t) = �̂Xt
(z) : Then for all s � 0

�̂z (t+ s) = E
�
eihz;Xt+si

�
= E

�
eihz;Xt+s�Xsieihz;Xsi

�
= E

�
eihz;Xt+s�Xsi

�
E
�
eihz;Xsi

�
= �̂z (t) �̂z (s)

Notice that using (L1) in De�nition 2 (about Lévy processes) we have �̂z (0) = 1 and by (L3) the map
t! �̂z (t) is continuous.

However the unique solution for �̂z (t+ s) = �̂z (t) �̂z (s) and �̂z (0) = 1 is given by �̂z (t) = exp ft �	(z)g
where 	 : Rd ! C (see e.g. Bingham et al. (1987) pp.4-6). Notice that X (1) is in�nitely divisible and
	 is the Lévy exponent. The result follows. �

The following three theorems are fundamental. For their proofs see the monographs Doob (1953),
Loève (1955), Breiman (1968), Gihman and Skorohod (1975), Kallenberg (1997) or Sato (1999).

Theorem 1. If � is an in�nitely divisible distribution on Rd; then there exists, uniquely in law, a
Lévy process in law fXtg such that L (X1) = �:

Theorem 2. If fXtg is a Lévy process in law on Rd; then there is a Lévy process fX 0
tg on Rd such

that fX 0
tg is a modi�cation of fXtg ; that is X 0

t = Xt a.s. for every t � 0:
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Theorem 3 (Lévy-Khintchine representation). If � is in�nitely divisible, then

�̂ (z) = exp

�
i h
; zi � 1

2
hz;Azi+

Z
Rd

�
eihz;xi � 1� i hz; xi 1fjxj�1g (x)

�
� (dx)

�
(1.1)

where A is a symmetric nonnegative-de�nite d � d matrix, 
 2 Rd; � is a measure on Rd satisfying
� (f0g) = 0 and

R
Rd

�
jxj2 ^ 1

�
� (dx) <1 .

The representation (1:1) by A; 
 and � is unique. Conversely, for any choice of A; 
 and � satisfying
the conditions above, there exists an in�nitely divisible distribution � having characteristic function (1:1).

It follows that the Lévy process fXtg corresponding to �; by Proposition 1 and Theorem 3; has
characteristic function

E
h
eihz;Xti

i
= exp

�
t �
�
i h
; zi � 1

2
hz;Azi+

Z
Rd

�
eihz;xi � 1� i hz; xi 1fjxj�1g (x)

�
� (dx)

��

Notice that we can de�ne �̂t (z) = exp ft �	(z)g for each t � 0; where	(z) is the Lévy exponent. We
call (
;A; �) the generating triplet, A theGaussian covariance matrix, and � the Lévy measure of �.
However, 
 does not have any intrinsic meaning, since its value depends on the choice of i hz; xi 1fjxj�1g (x)
of the integrand in (1:1) as a term to make it �-integrable.

If � = 0 then � is Gaussian. If A = 0 then we say that � is purely non-Gaussian. If d = 1 then
A is a nonnegative real number called Gaussian variance. If � satis�es

R
jxj�1 jxj � (dx) <1 then (1:1)

may be written as

�̂ (z) = exp

�
i h
0; zi �

1

2
hz;Azi+

Z
Rd

�
eihz;xi � 1

�
� (dx)

�
with some 
0 2 Rd: This 
0 is called the drift. If � satis�es

R
jxj>1 jxj � (dx) < 1 then (1:1) can be

written as

�̂ (z) = exp

�
i h
1; zi �

1

2
hz;Azi+

Z
Rd

�
eihz;xi � 1� i hz; xi 1fjxj�1g (x)

�
� (dx)

�
with some 
1 2 Rd; called the center.

Brownian motion is a Lévy process with A = identity matrix, � = 0 and 
 = 0; and a Poisson
process with intensity � > 0 is a Lévy process on R with A = 0; 
 = 0 and � = ��1; where we denote
by �a the distribution concentrated at a: A Lévy process on Rd with A = 0; 
 = 0 and �

�
Rd
�
< 1

is called compound Poisson process. The �-process with parameter q > 0 is a Lévy process on
R corresponding to the exponential distribution � with mean 1=q; that is A = 0; 
 = 0 and � (dx) =
1(0;1) (x)x

�1e�qxdx: This � is not a compound Poisson distribution, because � has total mass 1:

Any Lévy process fXtg is a Markov process and allows for a càdlàg version. Let us de�ne two
other processes: X� = (Xt�)t2R+ and �X = (Xt �Xt�)t2R+ .

Theorem 4. If X is a Lévy process, then for �xed t > 0; �Xt = 0 (a.s).

Proof. Let
�
t(m);m 2 N+

�
be a sequence in R+ with t(m) " t as m!1. Then since X has càdlàg paths,

limm!1X(t(m)) = X(t�): However by stochastic continuity the sequence
�
X(t(m));m 2 N+

�
converges

in probability to X (t) and so has a subsequence that converges almost surely to X (t) : The result follows
by uniqueness of limits. �
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Notice that Theorem 4 is equivalent to the fact that any process with càdlàg paths and stationary and
independent increments has no �xed times of discontinuity1 (cf. Jacod and Shiryaev (1987), II:4:3).

The probabilistic meaning of the Lévy-Khintchine representation is explained by the following
result.

Theorem 5 (Lévy-Itô decomposition of sample functions). Let fXtg be a Lévy process on Rd with the
characteristic triplet (
;A; �). For any G 2 B(0;1)�Rd let J (G) = J (G;!) be the number of jumps at
time s with height Xs (!) � Xs� (!) such that (s;Xs (!)�Xs� (!)) 2 G: Then J (G) has a Poisson
distribution with mean � (G) : If G1; :::; Gn are disjoint, then J (G1) ; :::; J (Gn) are independent. We can
de�ne a.s.,

X1
t (!) = lim

"#0

Z
(0;t]�f"<jxj�1g

fxJ (d (s; x) ; !)� x� (d (s; x))g

+

Z
(0;t]�fjxj>1g

xJ (d (s; x) ; !)

where the convergence on the right-hand side is uniform in t in any �nite time interval a.s. The process�
X1
t

	
is a Lévy process with the triplet (0; 0; �) : Let

X2
t (!) = Xt (!)�X1

t (!)

Then
�
X2
t

	
is a Lévy process continuous in t a.s. with the characteristic triplet (A; 
; 0) : The two

processes
�
X1
t

	
and

�
X2
t

	
are independent.

In general, we may call
�
X1
t

	
and

�
X2
t

	
the jump part and the continuous part of fXtg ; respec-

tively, but the sum of the jumps actually diverges a.s. if
R
jxj�1 jxj � (dx) =1 and we need the centering

term �x� (d (x)) ; the so-called compensator, in order to achieve the convergence. Notice also that an
important result from the Lévy-Itô decomposition is the relationship between Lévy processes and semi-
martingales. Using directly the Lévy-Itô decomposition we can conclude that every Lévy process is a
semimartingale (cf. Jacod and Shiryaev (1987), Corollary II.4.19.).

2. Definition and Properties of LIBOR Additive Processes

2.1. The LIBOR additive process. In this section we de�ne a stochastic process, the LIBOR addi-
tive process, that will drive the risk-neutral dynamics of instantaneous forward rates with independent
but piecewise stationary increments (this means that it is stationary inside of each time interval, usually
6 or 12 months, de�ned by the tenor of the LIBOR rate). We will see that this generalization allows
taking into account deterministic time inhomogeneities: the parameters describing the local behavior will
now be time-dependent but non-random. Therefore, all de�nitions below will be applied to the time
interval t 2 I = [0; T ?] � R+, where T ? is a �xed time horizon with T ? > 0: Also, let T be the family of
all �nite subsets of I � R+: For a predetermined collection of dates J = fT0; T1; :::; Tng 2 T , such that
0 = T0 < T1 < ::: < Tn = T ? with J � I; let �j = Tj+1 � Tj denote the length or "tenor" of the j-th
interval.

De�nition 3. A stochastic process G = fGt : 0 � t � T ?g on Rd is a LIBOR additive process in
law if the following conditions are satis�ed:

(LAP1) G0 = 0 a.s.
(LAP2) G is a process with the independent increment property, i.e., for any choice of m 2 N+ and

0 � t1 � ::: � tm � T ?; the variables G (t1) ; G (t2)�G (t1) ; :::; G (tm)�G (tm�1) are independent.
(LAP3) G is stochastically continuous or continuous in probability (but it may have discontinuous

trajectories).

1Recall that t is called �xed time of discontinuity of a process X if P [4Xt 6= 0] > 0
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(LAP4) There exist 0 = T0 < T1::: < Tn = T ?; such that G is a process with piecewise stationary
increments, or homogeneous in time, inside each [Tj ; Tj+1] ; for any j = 0; 1; :::; n� 1:

De�nition 4. A stochastic process fGt : 0 � t � T ?g on Rd is a LIBOR additive process if it satis�es
(LAP1) to (LAP4) and if, additionally, there is 
0 2 F with P [
0] = 1 such that, for every ! 2

0; Gt (!) is right-continuous in t � 0 and has left-limits in t > 0 ("càdlàg" process).

Notice that, according to Section 1:3, a Lévy process is de�ned as a stochastic process with stationary
independent increments which is continuous in probability (but may have discontinuous trajectories).
While Lévy processes o¤er nice features in terms of analytical tractability, the constraints of stationarity
of their increments prove to be rather restrictive.

� The �rst advantage of our approach is that it allows for preserving the tractability of Lévy
processes while enabling us to model the whole range of cap/�oors or swaptions volatilities across
strikes and maturities.

� A second advantage is that the property of piecewise stationarity is the usual performance that
we suppose in the discretised version of the LIBOR market model where the tenor structure plays
a relevant role, and it will be a key issue in our calibration procedure and credit risk modelling.

2.2. Properties of LIBOR additive processes. In this section, our aim is to brie�y describe some
relevant probabilistic properties2 of this stochastic process, and speci�cally, some properties related with
the in�nite divisibility of its distribution, self-similarity, stability and self-decomposability.

2.2.1. In�nite divisibility of LIBOR additive processes. Recall that, for any n 2 N+; we denoted by �n�
or �n the n-fold convolution of a probability measure � with itself, that is

�n = �n� = � � ::: � �| {z }
n times

(2.1)

� on Rd is an in�nitely divisible probability measure if, for any positive integer n, there is a
probability measure �(n) on Rd such that � = �n�(n); or in other words, � can be expressed as the n-th
convolution power of �(n). Equivalently, in terms of random variables, we say that X is in�nitely

divisible if for all n 2 N+; there exist i.i.d. random variables X(n)
1 ; :::; X

(n)
n such that

X
d
= X

(n)
1 + :::+X(n)

n (2.2)

Proposition 3. The following statements are equivalent:

(1) X is in�nitely divisible
(2) �X has a convolution n-th root that is itself the law of a random variable for each n 2 N
(3) �̂X (z) has an n-th root that is itself a characteristic function of a random variable for each n 2 N.

Proof. (1) =) (2) The common law of the X(n)
j is the required convolution n-th root

(2) =) (3) Let X(n) be a random variable with law (�X)
1/n then we have for each z 2 Rd :

�̂X (z) =

Z
:::

Z
ei(z;x1+:::+xn) (�X)

1/n
(dx1) ::: (�X)

1/n
(dxn)

=
�
�̂X (z)

( 1/n)
�n

2Theoretical and empirical justi�cation of the �nancial relevance for these properties can be found in Carr, Geman,
Madan and Yor (2002).
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where �̂X (z)
( 1/n)

=
R
Rd e

i(z;xj) (�X)
1/n

(dxj) and the required result follows.

(3) =) (1) Choose X(n)
1 ; :::; X

(n)
n to be independent copies of the given random variable, then we have

E
�
ei(z;X)

�
= E

�
e
i
�
z;X

(n)
1

��
� ::: � E

�
ei(z;X

(n)
n )
�
= E

�
e
i
�
z;X

(n)
1 +:::+X(n)

n

��
�

Now, let us extend the concept of in�nite divisibility to stochastic processes.

De�nition 5. A stochastic process X = fXt : t � 0g on Rd is in�nitely divisible if all �nite-
dimensional marginals of X are in�nitely divisible, that is, for any choice of distinct t1; :::; tm 2 [0; T ?]
with m 2 N+;

�
Xtj

�
1�j�m is in�nitely divisible. Here

�
Xtj

�
1�j�m is an Rmd-valued random variable.

Notice that it is not di¢ cult to check that a Lévy process is an in�nitely divisible process (see
Proposition 1 in Section 1:3) due to the homogeneity property.

The LIBOR additive process does not preserve the homogeneity property anymore (see (LAP4) in
De�nition 3) as in the Lévy case. Actually, it is only a piecewise stationary process. However, we can
attempt to prove the in�nite divisibility property using independent increments (see (LAP2) in De�nition
3) and stochastic-continuity property (LAP3), following a similar reasoning as in Sato (1999). It is based
on one of the fundamental limit theorems on sums of independent random variables, conjectured by
Kolmogorov and proved by Khintchine.

De�nition 6. A double sequence of random variables
n
Z
(n)
i : i = 1; 2; :::; rn;n = 1; 2; :::

o
in Rd is called

a null array if for each �xed n, Z(n)1 ; Z
(n)
2 ; :::; Z

(n)
rn are independent and if, for any " > 0;

lim
n!1

max
1�i�rn

P
h���Z(n)i

��� > "
i
= 0 (2.3)

The sums Sn =
Prn
i=1 Z

(n)
i ; n = 1; 2; :::; are called the row sums.

Theorem 6. ( Khintchine (1937) ) Let
n
Z
(n)
i

o
be a null array in Rd with row sums Sn: If, for

some bn 2 Rd, n = 1; 2; :::; the distributions of Sn � bn converge to a distribution �; then � is in�nitely
divisible (id).

Proof. cf. Khintchine (1937) �
Lemma 1. The LIBOR additive process in law G = fGt : t � 0g is uniformly stochastically
continuous on any �nite interval [0; T ?] ; that is, for every " > 0 and � > 0;there is � > 0 such that, if
s and t are in [0; T ?] and satisfy js� tj < �; then P [jGs �Gtj > "] < �:

Proof. Fix " > 0 and � > 0. From property (LAP3) in De�nition 3; we have that for any t there is �t > 0
such that

P [jGs �Gtj > "=2] < �=2 for js� tj < �t

Let It = (t� �t=2; t+ �t=2), then fIt : t 2 [0; T ?]g covers the interval [0; T ?].

Hence there is a �nite subcovering
�
Itj : j = 1; :::; n

	
of [0; T ?].

Let � be the minimum of �tj=2; j = 1; :::; n. If js� tj < � and s; t 2 [0; T ?] then t 2 Itj for some j:
Hence js� tj j < �tj ; and

P [jGs �Gtj > "] � P
���Gs �Gtj �� > "=2

�
+ P

���Gt �Gtj �� > "=2
�
< �
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�

And �nally, we can state the result that we look for.

Theorem 7. If G = fGt : t > 0g is a LIBOR additive process in law on Rd; then for every t the
distribution of Gt is in�nitely divisible.

Proof. Fix a time interval [0; t] with t > 0: Let t(n)i = it=n for i = 0; 1; 2; :::; n and n = 1; 2; ::: Set

Z
(n)
i = G

�
t
(n)
i

�
�G

�
t
(n)
i�1

�
for i = 1; 2; :::; n

Let us recall that Khintchine�s theorem shows that G (t) is in�nitely divisible if
nn

Z
(n)
i

on
i=1

o1
n=1

is null-array. To prove that Z(n)i is a null array (with rn = n) we use the uniform stochastic
continuity from Lemma 1 when n!1

max
1�i�n

P
n���Z(n)i

��� > "
o
� sup

1�i�n
P
h���G�t(n)i

�
�G

�
t
(n)
i�1

���� > "
i
!

n!1
0

Therefore
nn

Z
(n)
i

on
i=1

o1
n=1

is a null-array. Hence we can apply Theorem 6 orKhintchine�s Theorem

with � = PGt
and bn = 0: �

Remark 1. Notice the strong relationship that exists between the concepts of independent increments
and stochastic continuity with in�nitely divisible distributions. These concepts will be helpful to
work not only with the concept of e¢ cient �nancial markets, but also with limit law distributions
class (see Theorem 8).

2.2.2. Stability and self-decomposability of LIBOR additive process. If fWt : t � 0g is the Brown-
ian motion on Rd then for any a > 0 the process fWat : t � 0g is identical in law with the process�
a1=2Wt : t � 0

	
: This means that any change of the time scale for the Brownian motion has the same

e¤ect as some change of the spatial scale. This property is usually called self-similarity. There are
many self-similar Lévy processes other than the Brownian motion. They constitute an important class
called strictly stable processes.

Roughly speaking, stable processes are Lévy processes for which a change of time scale has the same
e¤ect as a change of spatial plus a linear drift. In other words, they are invariant in distribution under
an appropriate scaling of time and space. They are important in probability because of their connection
to limit theorems (see Lamperti (1962)) and they are of great interest in �nancial modelling.

In this subsection, we de�ne both concepts and some extensions, and we determine the conditions for
the self-similarity of LIBOR additive processes.

De�nition 7. Let � be an in�nitely divisible probability measure on Rd: It is called stable if, for any
a > 0; there are b > 0 and c 2 Rd such that

�̂ (z)
a
= �̂ (bz) eihc;zi (2.4)

It is strictly stable if, for any a > 0; there is b > 0 such that

�̂ (z)
a
= �̂ (bz) (2.5)

De�nition 8. Let fGt : t � 0g be a LIBOR additive process on Rd: It is called a stable or strictly
stable process if the distribution of Gt at t = 1 is stable or strictly stable, respectively.

De�nition 9. Let fXt : t � 0g be a stochastic process on Rd: It is called self-similar if, for any a > 0;
there is b > 0 such that

fXat : t � 0g
d
= fbXt : t � 0g (2.6)
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It is called broad-sense self-similar if, for any a > 0 there is b > 0 and a function c(t) from [0;1) to
Rd such that

fXat : t � 0g
d
= fbXt + c (t) : t � 0g (2.7)

Now let us consider the Generalized Central Limit problem. Let Z1; Z2; ::: be an independent,
identically distributed sequence of random variables. Let S(m) be de�ned as the sum of m of these
independent identically distributed random variables. We are interested in the case where there exists
the following relationship

lim
m!1

P
�
b(m)S(m) + c(m) � x

�
= P (X � x) for all x 2 Rd (2.8)

Theorem 8. A probability measure � on Rd is stable if and only if there is a random walk
�
S(m)

	
; b(m) >

0 and c(m) 2 Rd such that Pb(m)S(m)+c(m) ! � as m!1: And in particular, it is strictly stable if each
c(m) = 0:

Proof. cf. Sato (1999) Theorem 15:7. �

It is immediate to see that it is only possible to talk about stability of the LIBOR additive process inside
of the interval [Tj ; Tj+1] with j = 0; :::;m; where the increments are identically distributed. But we can
generalize the de�nition of a stable process if we weaken the conditions on the process in the central limit
theorem by requiring these to be independent but no longer necessarily identically distributed. This is the
case of the LIBOR additive process, in which case the limiting process is called self-decomposable.

De�nition 10. Let � be a probability measure on Rd. It is called self-decomposable if for any c 2 (0; 1)
there is a probability measure �(c) on Rd such that

�̂ (z) = �̂ (cz) �̂(c) (z) (2.9)

It is called semi-selfdecomposable if there are some c 2 (0; 1) and some in�nitely divisible probability
measure �(c) satisfying (2:9).

De�nition 11. A stochastic process X = fXt : t � 0g on Rd is self-decomposable if all �nite-dimensional
marginals of X are self-decomposable that is, for any choice of distinct t1; :::; tm 2 [0; T ?] ;

�
Xtj

�
1�j�m

is self-decomposable. Here
�
Xtj

�
1�j�m is an Rmd-valued random variable.

The class of self-decomposable distributions is obtained as a class of limit distributions described below.

Theorem 9. (i) Let
n
X
(m)
i : i = 1; 2; :::;m

o
be independent random variables on Rd and S(m) =

Pm
i=1X

(m)
i .

Let � be a probability measure on Rd. Suppose that there are b(m) > 0 and c(m) 2 Rd for m = 1; 2; :::
such that

P
b(m)S(m)+c(m)

!
m"1

� (2.10)

and that n
b(m)X

(m)
i : i = 1; :::;m;m = 1; 2; :::

o
is a null array3 (2.11)

or equivalently

lim
m"1

max
1�i�m

P
n���b(m)X(m)

i

��� > "
o
= 0

Then � is self-decomposable.

(ii) For any self-decomposable distribution � on Rd we can �nd
n
X
(m)
i

o
independent, b(m) > 0 and

c(m) 2 Rd satisfying (2:10) and (2:11).
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Proof. cf. Sato (1999) Theorem 15:3 �

Remark 2. Limit laws are probably the best explanation for the wide-spread use of the Gaussian law in the
study of �nancial markets. The self-decomposable laws are limit laws and this is also their appeal. Notice
the relationship that appears between the concepts of independent increments and stochastic continuity
with self-decomposable distributions.

Theorem 10. If G = fGt : t > 0g is a LIBOR additive process in law on Rd then for every t, the
distribution of Gt is self-decomposable.

Proof. Fix a time interval [0; t] with t > 0: Let t(n)i = it=n for i = 1; 2; :::; n and n = 1; 2; ::: Let us de�ne
Z
(n)
i as

Z
(n)
i = G

�
t
(n)
i

�
�G

�
t
(n)
i�1

�
for i = 1; 2; :::; n

Let us recall that
nn

Z
(n)
i

on
i=1

o1
n=1

is a null-array, by De�nition 6 and uniform stochastic continuity

property given in Lemma 1. The assertion follows as in the proof of Theorem 7. Therefore, by direct appli-
cation of Theorem 9; we conclude that the LIBOR additive process in law has a self-decomposable
distribution. �

Theorem 11. A stochastic process X = fXt : t � 0g on Rd is self-decomposable if and only if for
every c 2 (0; 1) ;

X
d
= cX 0 + U (c) (2.12)

where X 0 = fX 0
t : t � 0g is a version of X, and U (c) =

n
U
(c)
t : t � 0

o
is a stochastic process on Rd and

X 0 and U (c) are independent. The law of U (c) is uniquely determined by c and the law of X, and U (c) is
an in�nitely divisible process.

Proof. cf. Barndor¤-Nielsen, Maejima and Sato (2006). �

Theorem 12. Let G be a self-decomposable LIBOR additive process on Rd; then for every c 2 (0; 1)
the process U (c) can be chosen to be a LIBOR additive process.

Proof. Notice that the LIBOR additive process G is a self-decomposable, according with Theorem 10:
Let us denote �t = L (Gt) and �s;t = L (Gt �Gs) for 0 � s � t. According to Theorem 11; �x c 2 (0; 1)
and denote Ut = U

(c)
t , �t = L (Ut) ; and �s;t = L (Ut � Us) for 0 � s � t:

Then

�̂t (z) = �̂s (z) �̂s;t (z) (2.13)

where

�̂t (z) = �̂t (cz) �̂t (z)

�̂s;t (z) = �̂s;t (cz) �̂s;t (z)

Notice that �̂s;t ! 1 when s # t or t " s: It follows that U = U (c) is stochastically continuous
(property (LAP3) in De�nition 3). Obviously U0 = 0 a.s (LAP1).

In order to prove that U is a LIBOR additive process in law, according to De�nition 3, additionally
we need the independent increments (LAP2) and piecewise stationary property (LAP4).
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Let 0 = t0 < t1 < ::: < tn = T ? and z1; :::; zn 2 Rd and zn+1 = 0, then

E

24exp
0@i nX

j=1



zj ; Utj � Utj�1

�1A35 = E

24exp
0@i nX

j=1



zj � zj+1; Utj

�1A35
= E

24exp
0@i nX

j=1



zj � zj+1; Gtj

�1A35,E

24exp
0@i nX

j=1

D
zj � zj+1; cG0tj

E1A35
= E

24exp
0@i nX

j=1



zj ; Gtj �Gtj�1

�1A35,E

24exp
0@i nX

j=1

D
zj ; cG

0
tj � cG

0
tj�1

E1A35
=

nY
j=1

E
�
exp

�
i


zj ; Gtj �Gtj�1

���� nY
j=1

E
h
exp

�
i
D
zj ; cG

0
tj � cG

0
tj�1

E�i
=

nY
j=1

E
�
exp

�
i


zj ; Utj � Utj�1

���
This shows (LAP2) and (LAP4) ; therefore U is a LIBOR additive process in law. �

3. Existence of LIBOR additive processes

The aim of this section is to provide a simple proof of the existence of the LIBOR additive process
according to the de�nition given in Section 2:1 (De�nition 3). A direct construction in the Skorohod
space is described in the current section, and it is based directly on the fact that the LIBOR additive
process, in terms of trajectories, can be observed as a piecewise stationary Lévy process. Therefore
the existence of the Lévy process guarantees the existence of LIBOR additive process in the Skorohod
space.

Recall that we are given a time interval [0; T ?] with T ? �xed. Also, notice that, given n 2 N+;
we have a predetermined collection of �xed dates 0 = T0 < T1 < ::: < Tn = T ?. Let us de�ne � as a
right-continuous function � : [0; Tn]! f0; 1; :::; ng by taking � (t) to be � (t) = sup f0 � i � n : Ti � tg :

Let G(j); with 0 � j � n; be a family of n + 1 independent Lévy processes such that G(j) has the
triplet

�

j ; Aj ; �j

�
: Set for 0 � t � T ?

G (t) =

�(t)X
j=0

�
G(j) (Tj+1 ^ t)�G(j) (Tj)

�
(3.1)

Then G(t) has characteristic function, due to the independence of the G(j)�s:

eT1 1(z)+(T2�T1) 2(z)+:::+(t�T�(t)) �(t)(z) = e
P

j��(t)((Tj+1^t)�Tj) j(z)

where  j (z) is the Lévy exponent of G
(j) (see Theorem 14 for further details): Since G(j) has sample

paths in the Skorohod space, it immediately follows from the above construction that the same is true
for G. Let us prove that G is a LIBOR additive process.

Theorem 13. Let fGt; t � 0g be a stochastic process on Rd; de�ned by (1:15): Then Gt is a LIBOR additive
process.

Proof. Notice that to prove that G is a LIBOR additive process, we just need to prove properties
(LAP1) to (LAP4) in De�nition 3 as properties of G. (LAP1) is obvious taking into account property
(L1) in De�nition 2 of Lévy process in law. To prove (LAP2) in De�nition 3; notice that using the



14 JESÚS PÉREZ COLINO

property (L2) in De�nition 2; we have that for any s; t 2 [0; T ?] belonging to the same sub-interval
Tj � s � t < Tj+1:

Gt �Gs = G
(j)
t �G(j)s

is identical with the increment of G(j) that has independent increments by (L2) in De�nition 2 of Lévy
process in law. If s < Tj � t < Tj+1 are in adjacent intervals, then

Gt �Gs = Gt �G(j)Tj +G
(j)
Tj
�Gs

= G
(j+1)
t �G(j+1)Tj

+
�
G
(j)
Tj
�G(j)Tj�1

�
�
�
G(j)s �G(j)Tj�1

�
=

�
G
(j+1)
t �G(j+1)Tj

�
+
�
G
(j)
Tj
�G(j)s

�
Hence this increment may be decomposed into two independent increments over adjacent intervals.

These two facts �nally lead to the independence property of the adjacent increments and hence to incre-
ments in general.

Since each G has no �xed discontinuities (Theorem 4), the stochastic continuity (LAP3) is guaranteed,
and �nally (LAP4) is obvious using (1:15). �

4. Characterization of LIBOR additive processes

The following results recall the representation of characteristic functions of in�nitely divisible distribu-
tions, brie�y shown in Section 1:3. The Lévy-Khintchine formula was obtained on R around 1930 by
De Finetti and Kolmogorov in special cases, and then mentioned by Lévy (1934) in the general case.
It was immediately extended to Rd. This theorem is essential to the whole theory, and a simpler proof
was given by Khintchine (1937) and Gnedenko and Kolmogorov (1954). Here we show a detailed
version, however, the proof is omitted.

Theorem 14 (Lévy-Khintchine). (i) If � is an in�nitely divisible distribution on Rd, then its char-
acteristic function �̂(z) has the form

�̂(z) = exp [ (z)] (4.1)

where the Lévy exponent  (z) with z 2 Rd equals

 (z) = i h
; zi � 1
2
hz;Azi+

Z
Rd

�
eihz;gi � 1� i hz; gi 1fjgj�1g

�
� (dg) (4.2)

and where A is a symmetric nonnegative-de�nite d � d matrix, 
 2 Rd; � is a Radon measure
on Rdn f0g and g 2 Rd satisfying

� (f0g) = 0 and
Z
Rd

�
jgj2 ^ 1

�
� (dg) <1 (4.3)

(ii) The representation of �̂(z) in (i) by A, �; and 
 is unique.

(iii) Conversely, if A is a symmetric nonnegative-de�nite d�d matrix, � is ameasure satisfying
(1:22) and 
 2 Rd, then there exists an in�nitely divisible distribution � whose characteristic function
is given by (1:20).

Proof. cf. Sato (1999) Theorem 8.1. �

De�nition 12. We call (A; �; 
) in Theorem 31 the generating triplet of �: The A and the � are
called, respectively, the Gaussian covariance matrix and the Lévy measure of �: When A = 0, � is
called purely non-gaussian.
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Corollary 1. If � has the generating triplet (A; �; 
) ; then �t has the generating triplet (tA; t�; t
) :

Now, let G = fGt; t � 0g be the LIBOR additive process with a given tenor structure 0 = T0 <
T1 < ::: < Tn = T ? with T ? �xed. Let us recall that, given a set of n-Lévy processes, the LIBOR
additive process can be constructed as Gt =

P�(t)
j=0

�
G(j) (Tj+1 ^ t)�G(j) (Tj)

�
: Let us call �(j) as

the distribution (or law) associated to the Lévy process G(j), and additionally, let us de�ne �(j)Tj ;Tj+1
and �̂

(j)
Tj ;Tj+1

as the distribution and characteristic function respectively associated to the increment�
G(j) (Tj+1)�G(j) (Tj)

�
: The next theorem shows how the distribution function of Gt; is characterized

by the sequence of triplets
��
Aj ; �j ; 
j

�	
j��(t).

Theorem 15. A d-dimensional process G = fGt; t � 0g is a LIBOR additive process if and only if it
is a semimartingale admitting a sequence of triplets

��
Aj ; �j ; 
j

�	
j��(t) such that for all t 2 R

+ and

z 2 Rd we have
�̂t (z) =

Y
j��(t)

�̂
(j)
Tj ;t^Tj+1 (z) (4.4)

where
�
Aj ; �j ; 
j

�
is the triplet associated with the characteristic function of �Tj ;Tj+1 ; for any j =

0; 1; :::; � (t) :

Proof. For any t 2 [0; T ?] and given a tenor structure 0 = T0 < T1::: < Tn = T ?; then with Gt =P
j��(t)

�
G(j) (Tj+1 ^ t)�G(j) (Tj)

�
and using the independent increments property we have

E
�
f
�
GT0 ; :::; GT�(t) ; Gt

��
=

Z
:::

Z
f
�
g0; g0 + g1; :::; g0 + :::+ g�(t)

�
�(0) (dg0)� �(1) (dg1)� :::� �(�(t))

�
dg�(t)

�
for any bounded measurable function f . Let z1; :::; zn 2 Rd and

f
�
g0; g1; :::; g�(t)

�
= exp

0@i �(t)X
j=0

hzj ; gj+1 � gji

1A
Therefore

�̂t (z) = E

24exp
0@i �(t)X

j=0

hzj ; gj+1 � gji

1A35
=

Z
:::

Z 24exp
0@i �(t)X

j=0

hzj ; gj+1 � gji

1A35�(0)0 (dg0)� �(1)T0;T1 (dg1)� :::� �
(�(t))
T�(t);t

�
dg�(t)

�
=

Y
j��(t)

Z
:::

Z
exp (i hzj ; gj+1 � gji)�(j)Tj ;Tj+1^t (dgj)

=
Y

j��(t)

E
�
exp

h
iz
�
G
(j)
t^Tj+1 �G

(j)
Tj

�i�
and using Lévy-Khintchine Theorem 14:i) we have

�̂t (z) = exp

24 X
j��(t)

(t ^ Tj+1 � Tj)	j (z)

35
=

Y
j��(t)

�̂
(j)
Tj ;t^Tj+1 (z) (4.5)
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where

�̂
(j)
Tj ;Tj+1

(z) = E
h
exp

�
iz
�
G
(j)
Tj+1

�G(j)Tj
��i

= exp
�
(Tj+1 � Tj) j (z)

�
(4.6)

and

 j (z) = i



j ; z

�
� 1
2
hz;Ajzi+

Z
Rd

�
eihz;gi � 1� i hz; gi 1fjgj�1g

�
�j (dg)

The su¢ cient condition came as a direct consequence of (iii) in the Lévy-Khintchine theorem. �

Remark 3. Let G = fGt : t > 0g be a LIBOR additive process. Notice that, given a tenor structure
0 = T0 < T1 < ::: < Tn = T ? with T ? �xed, and a set of n in�nitely divisible measures f�0; �1; :::; �ng
associated to this tenor structure, then, for any s; t 2 [0; T ?] with s < t, �s;t; the distribution of Gt �Gs;
is uniquely determined in law by its sequence of triplets

��
Aj ; �j ; 
j

�	
�(s)�j��(t) (as a direct

consequence from Theorem 14, ii) and Theorem 15).

5. Infinitesimal generators of LIBOR additive processes

Here we turn our attention to the in�nitesimal generator of the LIBOR additive process which
will play an essential role to show the markovianity and martinagle characteristic of this process. This
section is an attempt to gather some basic and typical results that will necesary later. It is not intended
to give a systematic presentation of the most important results or to explain how to prove them; for these
purposes the reader can �nd a more comprehensive picture in Ethier and Kurtz (1986) or Sato (1999).

This section has been divided in two subsections:

- In the �rst, we review a number of basic de�nitions and theorems related with the in�nitesimal
generator of its transition semigroup. Basically, the aim of this preliminary section is to give a
brief introduction to the theory of semigroups of linear operators.

- In the second subsection, we apply directly these de�nitions to the LIBOR additive process.
Further developments can be found in Colino (2008).

5.1. Strongly continuous contraction semigroup and in�nitesimal generator. Let B be a real
(or complex) Banach space. That is, B is a vector space over the real (or complex) scalar �eld equipped
with a mapping kfk from B into R, called the norm, satisfying

(1) kafk = jaj kfk for f 2 B, a 2 R (or a 2 C)
(2) kf + gk � kfk+ kgk for f; g 2 B
(3) kfk = 0 if and only if f = 0

such that if a sequence ffng in B satis�es limn;m!1 kfn � fmk = 0; then there is f 2 B with limn!1 kfn � fk =
0:

A linear operator P in B is a mapping from a linear subspace D(P ) of B into B such that
P (af + bg) = aPf + bPg for f; g 2 D(P ) a; b 2 R (or a; b 2 C)

The set D(P ) is called the domain of P .

A linear operator P is called bounded if D(P ) = B and supkfk�1 kPfk called the norm of P and
denoted by kPk ; is �nite. A linear operator P with D(P ) = B is bounded if and only if P is continuous
in the sense that fn ! f implies Pfn ! Pf .
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A linear operator P is said to be closed if fn 2 D(P ); fn ! f and Pfn ! g imply f 2 D(P )
and Pf = g, in other words, if the graph of P , f(f; Pf) : f 2 D(P )g is a closed set in B� B: The set
fPf : f 2 D(P )g called the range of P , is denoted by R(P ). The identity operator on B is denoted
by I. A subset D1 of B is said to be dense in B if, for any f 2 B; there is a sequence ffng in D1 such
that fn ! f .

De�nition 13. A family fPt : t � 0g of bounded linear operator on B is called a strongly continuous
semigroup if

(1) PtPs = Pt+s for t; s 2 [0;1)
(2) P0 = I
(3) limt#0 Ptf = f for any f 2 B

It is called a strongly continuous contraction semigroup if, moreover,

kPtk � 1

De�nition 14. The in�nitesimal generator L of a strongly continuous contraction semigroup
fPtg is de�ned by

Lf = lim
t#0

1

t
(Ptf � f) (5.1)

with D(L) being the set of f such that the right-hand side of (5:1) exists.

One of the major theorem of the theory of semigroups of operators is as follows. It was independently
proved by Hille (1948) and Yosida (1948), and the proof can be found in Ethier and Kurtz (1986).

Theorem 16. (i) If L is the in�nitesimal generator of a strongly continuous semigroup fPtg ; then L is
closed, D(L) is dense and, for any q > 0; R(qI � L) = B, qI � L is one-to-one,




(qI � L)�1


 � 1/ q;

and

(qI � L)�1 f =
R1
0
e�qtPtfdt for f 2 B

(ii) The in�nitesimal generator determines the semigroup. That is, two strongly continuous contraction
semigroups coincide if their in�nitesimal generators coincide.

(iii) If a linear operator L in B has a dense domain D(L) and, for any q > 0; R(qI�L) = B, qI�L is
one-to-one,




(qI � L)�1


 � 1/ q; then L is the in�nitesimal generator of a strongly continuous semigroup

on B.

Proof. cf. Ethier and Kurtz (1986) �

5.2. In�nitesimal generators of LIBOR additive processes. Let C0 = C0
�
Rd
�
be the real Ba-

nach space of continuous functions f from Rd into R satisfying limjxj!1 f (x) = 0 with norm kfk =
supx jf (x)j : Let Cn0 be the set of f 2 C0 such that f is n times di¤erentiable and the partial derivatives
of f with order � n belong to C0.

Suppose now that fGtg is a LIBOR additive process on Rd and the transition function P0;t (g0; B)
is de�ned by

P0;t (g0; B) := �t (B � g0)

for t � 0; g0 2 Rd and B 2 B
�
Rd
�
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De�ne, for f 2 C0;

(Ptf) (g0) =

Z
Rd
f (g)Pt (g0; dg)

=

Z
Rd
f (g0 + g)�t (dg)

= E [f (g0 +Gt)]

Theorem 17. The family of operators fPt : t � 0g de�ned above from a LIBOR additive process fGtg
on Rd is a strongly continuous semigroup on C0

�
Rd
�
with norm kPtk = 1: Let L be its in�nitesimal

generator.

Then

Lf (g) =
1

2

dX
n;m=1

�
a�(t) (n;m)

� @2f

@gn@gm
(g) +

dX
n=1

�

�(t) (n)

� @f

@gn
(g)

+

Z
Rd

 
f (g + x)� f (g)�

dX
n=1

xn
@f

@gn
(g) 1jxj�1 (x)

!
��(t) (dx) (5.2)

for f 2 C20 ; where
��


�(t); A�(t); ��(t)

�
t�0

�
is the generating triplet of fGtg with t � 0 and A�(t) =�

a�(t) (n;m)
�
n;m�d ; 
�(t) =

�

�(t) (n)

�
n�d

Proof. Notice that, according with De�nition 14; the in�nitesimal generator of the LIBOR additive
process is the Lévy in�nitesimal generator and the proof in. Sato (1999) Theorem 31.5 applies here (see
also in Barles, Buckdahn and Pardoux (1997) Theorem 3.4. or Nualart and Schoutens (2001) for
Lévy processes, or Pardoux, Pradeilles and Rao (1997) in the no-homogenous case). �

6. The Lévy-Itô decomposition of LIBOR additive processes

In the present subsection we exhibit the canonical representation for multidimensional semimartin-
gales, and for practical purposes, we introduce here the Lévy-Itô decomposition of sample functions.
This decomposition expresses sample functions of a LIBOR additive process as a sum of two independent
parts; a continuous part and a part expressible as a compensated sum of independent sums.
This decomposition was conceived by Paul Lévy (1934) using a direct analysis of the paths of Lévy
processes, and formulated and proved by Kiyosi Itô (1942) using many pages. However there are many
proofs available in the literature.

Let us recall that we assume a stochastic basis (
;G;P) equipped with the "usual" �ltration
G =(Gt)t2[0;T?] which satis�es the "usual conditions". Additionally, let us consider an auxiliary mea-
surable space (E; E) which we assume to be a Blackwell4 space. Further

E = [0;1)�
�
Rdn f0g

�
= [0;1)�D0;1 (6.1)

where D0;1 = Rdn f0g : Recall that we de�ned a time interval [0; T ?] with T ? �xed: Also, notice that
we have a predetermined collection of �xed dates 0 = T0 < T1 < ::: < Tn = T ?. Recall also that � is a
right-continuous function � : [0; Tn]! f0; 1; :::; ng by taking � (t) to be � (t) = sup fi � 0 : Ti � tg :

A marked point " in E (usually E = Rd) is denoted by " = (s; x) with s 2 (0;1) and x 2 D0;1: The
Borel �-algebra of E is denoted by E = B (E) : Let us de�ne a random measure on R+�E as a family

4In all the sequel, E will actually be Rd+ or Rd, or at most a Polish spaces with its Borel ���elds
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� = (� (!; dt; dg) : ! 2 
) of nonnegative measures on (R+ � E;R+ � E) satisfying � (!; f0g � E) = 0
identically. Hence, the integral of � (") with respect to a measure � on E is written asZ

E

� (") �(d") =

Z
(0;1)�D(0;1)

� (s; x) �(ds; dx) (6.2)

Now we formulate the Lévy-Itô decomposition for the LIBOR additive process as the main
theorem of this subsection5.

Theorem 18 (Lévy-Itô 1). Let G = fGt : t � 0g be a LIBOR additive process on Rd de�ned on a

stochastic basis (
;G;P) with the system of generating triplets
��


�(t)(t); A�(t); ��(t)

�
t�0

�
and de�ne

the measure ��(t) on E by � ((0; t]�B) = ��(t) (B) for B 2 B
�
Rd
�
: Using 
0 from De�nition 11 of

LIBOR additive process, for B 2 B (E)

��(t) (B;!) =

�
] ft : (t; Gt (!)�Gt� (!)) 2 Bg for ! 2 
0

0 for ! =2 
0
(6.3)

Then the following holds:

(i)
n
��(t) (B) : B 2 B (E)

o
is an integer-valued random measure (Poisson) on E and ��(t) is a

predictable random measure namely the compensator of the random measure ��(t) (B) associated to
the jumps of G:

(ii) There is 
̂ 2 F with P
h

̂
i
= 1 such that, for any ! 2 
̂

Ĝt (!) = lim
"#0

Z
s2(0;t];x2D(";1]

n
x ��(t) (d (s; x) ; !)� x ��(t) (d (s; x))

o
(6.4)

+

Z
s2(0;t];x2D(1;1)

x ��(t) (d (s; x) ; !)

is de�ned for all t 2 [0;1) and the convergence is uniform in t on any bounded interval. The process�
G1t
	
is a LIBOR additive process on Rd with

��
0; ��(t); 0

�	
as the system of generating triplets.

(iii) De�ne
~Gt (!) = Gt (!)� Ĝt (!) for ! 2 
1 (6.5)

There is ~
 2 F with P
h
~

i
= 1 such that, for any ! 2 ~
; ~G2t (!) is continuous in t. The process

n
~G2t

o
is a LIBOR additive process on Rd with

��

�(t)(t); A�(t); 0

�
t�0

�
as a system of generating triplets

(iv) The two processes
n
Ĝt

o
(jump part) and

n
~Gt

o
(continuous part) are independent.

Proof. cf. Sato (1999) Section 20 �

Theorem 19 (Lévy-Itô 2). Suppose that the LIBOR additive process G = fGt : t � 0g in the last
Theorem satis�es

R
jxj�1 jxj ��(t) (dx) <1 for all t > 0. Let 
0(t) be the drift of Gt: Then, there is 
̂ 2 F

with P
h

̂
i
= 1 such that, for any ! 2 
̂

Ĝt (!) =

Z
(0;t]�D(0;1)

x��(t) (d (s; x) ; !) (6.6)

5For the sake of simplicity, let us de�ne Da;b = D (a; b] =
�
x 2 Rd : a < jxj � b

	
and Da;1 = D (a;1] =�

x 2 Rd : a < jxj <1
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is de�ned for all t � 0. The process
n
Ĝt

o
is a LIBOR additive process on Rd such that

E
h
eihz;Ĝti

i
= exp

�Z
Rd

�
eihz;xi � 1

�
��(t) (dx)

�
(6.7)

De�ne
~Gt (!) = Gt (!)� Ĝt (!) for ! 2 
3 (6.8)

Then, for any ! 2 ~
\ 
̂; ~Gt (!) is continuous in t and
n
~Gt

o
is an LIBOR additive process on Rd

such that

E
h
eihz; ~Gti

i
= exp

�
�1
2



z;A�(t)z

�
+ i
D

�(t)(t); z

E�
(6.9)

The two processes
n
Ĝt

o
(jump part) and

n
~Gt

o
(continuous part) are independent.

Proof. cf. Sato (1999) Section 20 �

Theorems 18 and 19 are called the Lévy-Itô decomposition for the LIBOR additive process.

As we have already mentioned, several proofs of the Lévy-Itô theorem exist and they are very well
known in the literature, even for additive processes (Sato (1999)). The simplest proof begins, �rst, with
the construction of the Poisson random measures. Second, given any LIBOR additive process fGtgt�0
we use its system of generating triplets

��

�(t)(t); A�(t); ��(t)

�
t�0

�
in order to construct an additive

process fYtgt�0 such that fYtgt�0
d
= fGtgt�0 and fYtgt�0 has the Lévy-Itô decomposition. Third, using

the facts that fGtgt�0 and fYtgt�0 induce an identical probability measure on the Skorohod space
D = D

�
[0;1) ;Rd

�
of right continuous paths with left limits with the �-algebra FD generated by the

Borel cylinder sets and that all relevant quantities are FD� measurable, we can prove that fGtgt�0 also
has the Lévy-Itô decomposition.

7. Applications to sample-function properties: continuity, jumping times and
increasingness

From the Lévy-Itô decomposition we can deduce many sample function properties of LIBOR
additive processes. Following Sato (1999), we devote this subsection to studying fundamental prop-
erties of sample functions of processes with independent increments and piecewise stationarity, such as
continuity, jumping times, and increasingness.

Theorem 20 (Continuity). Sample functions of fGtgt�0 are continuous a.s. if and only if ��(t) = 0
for every t 2 [0; T ?]

Proof. By Theorem 18 (Lévy-Itô 1) the number of jumping times satisfying
��Gt �Gt� �� 2 D";1 has mean

t
R
jgj>" ��(t) (dg). Hence the number of jumps is 0 a.s. if and only if ��(s) = 0 for every s 2 [0; t] : �

Theorem 21 (Jumping times). If ��(t)
�
Rd
�
= 1 for every t 2 [0; T ?] ; then, almost surely, jumping

times are countable and dense in [0;1) : If 0 < ��(t)
�
Rd
�
<1 for every t 2 [0; T ?] then, almost surely,

jumping times are in�nitely many and countable in increasing order, and the �rst jumping time T (!) has
exponential distribution with mean 1/ ��(t)

�
Rd
�
:
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Proof. Countability of jumps is a consequence of right-continuity with left-limits. For " > 0 and ! 2 
0
let T"(!) be the �rst time that Gt (!) jumps with size > ": Let T"(!) = 1 if Gt (!) does not have any
jump with size > ": Since T"(!) � t is equivalent to if

R
(0;t]�(";1)

��(t) (d (s; z) ; !) � 1;

P [T" � t] = 1� exp
"
�t
Z
D";1

��(t) (dg)

#

by Theorem 18 (Lévy-Itô 1). Hence, if
R
D";1

��(t) (dg) = c > 0; then T" has exponential distribution with
mean 1=c.

Suppose that ��(t)
�
Rd
�
=1 for every t 2 [0; T ?] ; then lim"#0 P [T" � t] = 1 for any t > 0; and hence

lim"#0 T" = 0 a.s. Hence there is E0 2 F with P [E0] = 1 such that for any ! 2 E0 the time 0 is a limiting
point of jumping times of Gt (!) ; and for any s > 0 there is Es 2 F with P [Es] = 1 such that for any
! 2 Es the set of jumping times s as a limiting point from the right. Consider E = \s2Q+Es: Jumping
times are dense in [0;1) for any ! 2 E:

Now, suppose that 0 < ��(t)
�
Rd
�
<1 for every t 2 [0; T ?]. By Theorem 18 (Lévy-Itô 1), ��(t) has a

Poisson distribution with mean t��(t)
�
Rd
�
and ��(t) <1 a.s. Hence the jumping times are enumerable in

increasing order. The �rst jumping time T has exponential distribution with mean 1/ ��(t)
�
Rd
�
because

P [T � t] = P [� (t) � 1] = 1� e�t��(t)(R
d). It follows that T (!) <1 a.s. Let T (s) be the �rst jumping

time after s, hence T (s) <1 a.s. Hence there are in�nitely many jumps, a.s. �

Notice that in the case of 0 < ��(t)
�
Rd
�
<1 we can actually say more: if we denote the nth jumping

time by Un (!) and U0 (!) = 0; then fUn � Un�1 : n 2 Ng constitutes independent identically distributed
random variables, each distributed with mean 1/ ��(t)

�
Rd
�
and limn�!1 Un (!) = 1 a.s. To see this

note that
n
��(t)

o
is a Poisson process with parameter ��(t)

�
Rd
�
:

De�nition 15. A LIBOR additive process fZtgt�0 is said to be increasing if Zt (!) is increasing
as a function of t, a.s.

Theorem 22 (Increasingness). Let d = 1. A LIBOR additive process fZtgt�0 on R is increasing if
and only if A�(t) = 0;

R
(�1;0)

��(t) (dz) = 0;
R
(0;1)

z ���(t) (dz) <1 and 
�(t) � 0; for every t 2 [0; T ?] :

Proof. The �only if�part follows from the fact that
R
(�1;0)

��(t) (dz) = 0 implies ��(t) ((0; t]� (�1; 0)) =
0 and therefore fZtgt�0 does not have negative jumps. Hence, by the last theorem we have that

Zt = t � 
�(t) +
Z
(0;t]�(0;1)

z � ��(t) (d (s; z)) a.s. for every t 2 [0; T ?]

because the continuous part ~Zt = t � 
�(t) and this shows that fZtgt�0 is increasing.

And the �if� part follows from the fact that since fZtgt�0 has no negative jumps, we have that
��(t) ((�1; 0)) = 0 for every t 2 [0; T ?] : Since an increasing function remains increasing after a �nite
number of its jumps are deleted, we have Z (t)� Z" (t) � 0; hence

Z 0 (t) = lim
"#0

Z" (t)

=

Z
(0;t]�(0;1)

z � ��(t) (d (s; z))

exists and is bounded above by Z (t) :
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Hence, we have that the generating function or Laplace transform of its distribution is

E
h
e�uZ"(t)

i
= exp

"
t

Z
(";1)

�
e�uz � 1

�
� ��(t) (dz)

#

= exp

"
t

Z
(";1)

�
e�uz � 1 + uz1(0;1] (z)

�
� ��(t) (dz)� tu

Z
(";1]

z � ��(t) (dz)
#

for u > 0:

As " # 0; E
�
e�uZ"(t)

�
tends to E

h
e�uZ

0(t)
i
which is positive, andZ

(";1)

�
e�uz � 1 + uz1(0;1] (z)

�
� ��(t) (dz)

tends to the integral over (0;1) which is �nite.

Hence, we have that
R
(0;1)

z � ��(t) (dz) <1, and directly by application of Theorem 19 (Lévy-Itô 2)

we have that Z (t) = Ẑ (t) + ~Z (t) ; where the jump part Ẑ (t) = Z 0 (t) and the continuous part ~Z (t) has

the generating system of triplets
�
A�(t); 0; 
�(t)

�
: But ~Z (t) = Z (t)� Z 0 (t) � 0 and therefore A�(t) = 0

and 
�(t) � 0 for every t 2 [0; T ?]. �

According to the last theorem, notice that a LIBOR additive process on R generated by
n�

�(t)(t); A�(t); ��(t)

�o
with A�(t) = 0; ��(t) ((�1; 0)) = 0 and

R
(0;1]

z � ��(t) (dz) =1 for every t 2 [0; T ?], has positive jumps
only, does not have Brownian-like part, but it is �uctuating, not increasing, no matter how large 
 is.
An explanation is that such a process can exist only with in�nitely strong drift in the negative direction,
which cancels the divergence of the sum of jumps; but it causes a random continuous motion in the
negative direction. It is clear that an increasing LIBOR additive process will not have negative
jumps, but also the drift has to be positive or zero, for every interval in I.

8. Density Transformations of LIBOR additive processes

In this subsection we cite the most important results from Jacod and Shiryaev (1987) Chapter
III, Bjork, Kabanov and Runggaldier (1997) and Sato (1999) Chapter 6, concerning Girsanov�s
theorem and the explicit computation of density processes of absolutely continuous probability measures.
This subsection mainly serves the purpose of preparation for the usual change of measure for �nancial
models driven by LIBOR additive processes.

Roughly speaking, the basic idea is the following. Let G be a semimartingale on some stochastic basis
(
;F ;P) : Then it is well known that the class of semimartingales is invariant with respect to equivalent
transformation of measure, or in other words, G remains a semimartingale on (
;F ;Q) (see Rogers
and Williams (1987) IV.38) where Q is locally absolutely continuous to P. This change of measure
can be described by two sequences �i and Yi (we will give an explicit expression later) called Girsanov
quantities, in the sense that the density process Z of Q with respect to P can be expressed via �i and
Yi.

As usual, we assume that two measures P and Q on a common measurable space (
;G) are called mutu-
ally absolutely continuous or equivalent measures, written P � Q if the collection fB 2 Gt : P (B) = 0g
is identical with fB 2 Gt : Q (B) = 0g : The Radon-Nikodym derivative of Q with respect to P is de-
noted by dQ

dP : If P � Q then
dQ
dP is positive and �nite P-almost everywhere.
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Let us start with the following useful theorems about stochastic exponentials, and nice-versions
of triplets characteristics for the LIBOR additive process.

Theorem 23. Let G = fGt : t � 0g be a LIBOR additive process and consider the stochastic di¤er-
ential equation

dZ = Z�dG; Z0 = 1

This equation has a unique (up to indistinguishability) "càdlàg" adapted solution, called the stochastic
exponential of G, which is a semimartingale and is denoted by E (G) : Explicitly

E (G)t = exp
�
Gt �

1

2

D
~G
E
t

�Y
s�t

�
1 + Ĝs

�
e�Ĝs

where ~Gt is the continuous part in t; and Ĝt is the jump part of Gt: If we de�ne � := inf
n
t � 0 : Ĝt = �1

o
then E (G) 6= 0 on [0; �) ; and E (G) = 0 on [� ;1) :

Proof. cf. Jacod and Shiryaev (1987) Theorem I.4.61 �
Theorem 24. Let G = fGt : t � 0g be a LIBOR additive process on Rd: Then there exist a "nice-
version" of the triplet characteristics for G which is of the form8>><>>:

A�(t) =
�
A�(t); (i; j)

�
i;j�d

=
P
j��(t)

R Tj^t
Tj�1

â�(t) (i; j) � dH�(t) (!; t)

��(t) (!; dt; dg) = K!;t (dg) � dH�(t) (!)


�(t);(i) =
P
j��(t)

R Tj^t
Tj�1

b�(t); (i) � dH�(t) (!; t)

where H�(t) is a real-valued predictable, increasing and locally integrable process, 
̂�(t)(t) =
�
b�(t) (i)

�
1�i�d

is an Rd-valued predictable process, Â�(t) =
�
â�(t) (i; j)

�
1�i;j�d

is a predictable process with values in

the set of all symmetric nonnegative de�nite d � d matrices, and K!;t (dg) is a transition kernel from
(
� R+;P) into

�
Rd;Bd

�
which satis�es for any t 2 [0; T ?]

K!;t (f0g) = 0 and
Z
Rd

�
jgj2 ^ 1

�
K!;t (dg) � 1

Proof. cf. Jacod and Shiryaev (1987) Proposition II:2:9: �
Theorem 25 (Girsanov�s theorem for semimartingales). Assume that P and Q are (locally) equiv-
alent measures, and let G = fGt : t � 0g be a LIBOR additive process (piecewise homogeneous semi-
martingale) with P-characteristics

�
A�(t) ; ��(t) ; 
�(t)(t)

����
P
. Let â�(t) and H�(t) be the processes of the

"nice-version" from Theorem 47 for every �(t) = 0; 1; :::; n and t 2 [0; T ?] ; and let P � Q. Then there ex-
ists a sequence

�
Y�(t) ; ��(t)

�
where Y�(t)j is a P-measurable nonnegative function and ��(t) =

�
��(t) (i)

�
i�d

is a sequence of predictable processes, for any t 2 [0; T ?] satisfyingR �
Y�(t) � 1

�
c (g) d�P�(t) <1P

j��(t)
R Tj^t
Tj�1

���â�(t)��(t)��� dH�(t) <1P
j��(t)

R Tj^t
Tj�1

�
�0�(t) â�(t)��(t)

�
dH�(t) <1

Q-a.s. for any t 2 [0; T ?] and such that a version of the characteristics of G relative to Q are
�
AQ�(t) ; �

Q
�(t)

; 
Q�(t)(t)
�
;

such that 8><>:
AQ�(t) = AP�(t)
�Q�(t) = Y�(t) � �P�(t)

Q�(t)(t) = 
P�(t) +

P
j��(t)

R Tj^t
Tj�1

��âj�j�� dHj +
R
R

�
Y�(t) � 1

�
c (g) �P�(t)(dg)
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Proof. cf. Jacod and Shiryaev (1987) Theorem III:3:24 �

De�nition 16. The quantities �j and Yj for any j = 0; :::; � (t) from Theorem 25 are called Girsanov
quantities of Q with respect to P relative to G; or simply Girsanov quantities of Q.

Remark 4. Notice that the Y�(t) describe how the jump distribution of G change when we pass from P
to Q, and ��(t) together with Y�(t) determines the changes in drift. On the other hand, notice that the
Girsanov quantities are not unique: from the uniqueness of �P�(t) and �

Q
�(t)

we only get uniqueness of

Y�(t) on supp �
P
�(t)

: And with the uniqueness of 
Q�(t)(t) and 

P
�(t)

we only get the uniqueness of â�(t)��(t)
for �xed â�(t) ; for any t 2 [0; T ?] :

Example 1. Let W be a standard Rd-valued P-Brownian motion and let A be a d � d matrix. Set
G := A�W and take P � Q with Girsanov quantities � and Y relative to G. Then ~G = G; so hGit = AA0t;
and the P-characteristic triplet of G are given by

APt = at

�Pt = 0


P(t) = 0

where a := AA0 is the covariance matrix of G. By Theorem 25 we get the Q-characteristic triplet of G by

AQt = at

�Qt = 0


Q(t) =

Z t

0

(a�s) ds

Note that G remains a Lévy process under Q if and only if � is deterministic and independent of time.
In this case, G is a linear transformation of a standard Brownian motion with constant drift, i.e. Gt =
AWQ

t + a�t:

9. Examples of LIBOR additive processes

In the following sections we brie�y list a number of popular processes that can be studied as special
cases of the LIBOR additive processes or non-homogeneous Lévy processes. We pay special attention
to their density function, their characteristic function, their characteristic triplet together with some
other properties.

9.1. The non-homogeneous Poisson Process. Given a tenor structure 0 = T0 < T1::: < Tn = T ?;
the non-homogeneous Poisson process is the simplest LIBOR additive process we can think of. It is
based on the Poisson (�j)j=1:::n distribution which has

�̂j (z) = exp [�j (exp [iz]� 1)]

as a characteristic function for any j = 0; 1; :::; n.

Like an ordinary Poisson process it has independent increments and these increments are Poisson
distributed, but increments over di¤erent intervals of equal length can have di¤erent means. In particular,
the number of jumps in an interval (Tj ; Tj+1] has a Poisson distribution with mean � (Tj+1) � � (Tj)
where

� (t) =
X
j��(t)

Z t^Tj+1

Tj

�j (s) ds
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Therefore, the Poisson distribution lives on the nonnegative integers f0; 1; 2; :::g ; such that

P (Gt = g) =
e��(t)� (t)

g

g!

Since the in-homogeneous Poisson
�
�j
�
j=1:::n

distribution is in�nitely divisible we can de�ne an in-
homogeneous Poisson process as the process that starts at zero, has independent increments property, is
stochastically continuous and has piecewise stationary increments. The in-homogeneous Poisson process
turns out to be an increasing pure jump process, with jump sizes always equal to 1. This means that the
additive process triplet is given by �

0; 0; ��(t)� (1)
�

where � (1) denotes the Dirac measure at point 1.

9.2. The non-homogeneous Compound Poisson Process. LetN = fNt; t � 0g be a non-homogeneous
Poisson process with intensity parameters (�j)j=1:::n and let Jk be independent and identically distrib-
uted (i.i.d.) random variables independent of N and following a law, �J say, with characteristic function
�̂J (z). Then we say that G = fGt : t � 0g is a non-homogeneous Compound Poisson process if

Gt =

NtX
k=1

Jk; t � 0

The value of the process at time t, Gt; is a sum of Nt random numbers with law �J . Notice that the
ordinary non-homogeneous Poisson process corresponds to the case where Jk; k = 1; 2; ::: i.e. have law
�J degenerate at the point 1.

Let us write, for a Borel set A, the distribution function of the law �J as follows

P (Jk 2 A)t =
��(t) (A)

��(t)

where ��(t) (R) = ��(t) <1 with ��(t) (f0g) = 0: Then the characteristic function of Gt is given by

E [exp (izGt)] =
Y

j��(t)

E
�
exp

�
iz
�
Gt^Tj+1 �GTj

���
=

Y
j��(t)

exp

�
(t ^ Tj+1 � Tj)

Z
R

�
eizg � 1

�
�j (dg)

�
=

Y
j��(t)

exp ((t ^ Tj+1 � Tj)�j (�J (z)� 1))

From this we can easily obtain the characteristic triplet

�Z +1

�1
g��(t) (dg) ; 0; ��(t) (dg)

�
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Figure (1): Sample-path of a jump-di¤usion process, with the Lévy-Itò decomposition

The non-homogeneous compound Poisson process is usually introduced in the simulation of jump-
di¤usion sample paths on a �xed grid is shown in Figure (1). On the left side, the �gure shows us two
independent sample paths, the usual continuous-part given by a Brownian motion, and the jump-part
simulated using a compound Poisson process. Both together, by application of Lévy-Itô Theorem 18,
form the jump-di¤usion sample-path that appear in the right part of Figure (1). E¢ cient algorithms to
simulate Poisson, exponential and Gaussian processes can be found in Press et al. (1992). Di¤erent
methods of approximation of the small jumps are discussed in Schoutens (2003).

9.3. The non-homogeneous Gamma Process. Here the non-homogeneous Gamma process G =
fGt : t � 0g with parameters aj ; bj > 0 for every j = 0; 1; :::; n, is de�ned as the stochastic process which
starts at zero and has independent increments, is stochastically continuous and has independent Gamma
distributed increments inside of each interval for every j = 0; 1; :::; n.

The density function of the non-homogeneous Gamma distribution (aj ; bj) with aj > 0 and
bj > 0 for every j = 0; 1; :::; n is given by

�j (g; aj ; bj) =
b
aj
j

� (aj)
gaj�1 exp (�gbj) ; with g > 0

Notice that this function has a semi-heavy (right) tail.

The characteristic function is given by

�̂j (z; aj ; bj) =

�
1� iz

bj

��aj
and obviously, it is in�nitely divisible. The characteristic triplet of a non-homogeneous Gamma process
is given by �

aj (1� exp (bj))
bj

; 0; aj
exp (�bjg) 1fg>0gdg

g

�
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The most common method of simulation for Gamma processes can be found inMarsaglia and Tsang
(2000).

9.4. The non-homogeneous Inverse Gaussian Process. Let T (a;b) be the �rst time a standard
Brownian motion with drift b > 0 reaches the positive level a > 0: It is well known that this random time
follows the so-called Inverse Gaussian IG (a; b) law. The IG distribution is in�nitely divisible. Hence
we can de�ne the IG process G = fGt : t � 0g with parameters aj ; bj > 0 for any j = 0; 1; :::; n as the
process which starts at zero, is stochastically continuous and has independent IG distributed increments,
homogeneous only inside of each interval for every j = 0; 1; :::; n such that for any t 2 [0; T ?]

E (exp [izGt]) =
Y

j��(t)

E
�
exp

�
iz
�
Gt^Tj+1 �GTj

���
=

Y
j��(t)

exp
h
�aj (t ^ Tj+1 � Tj)

�q
�2iz + b2j � bj

�i
The density function of the IG (aj ; bj) ; for any j = 0; 1; :::; n is explicitly known:

�j (g; aj ; bj) =
ajp
2�
exp (ajbj) g

�3=2 exp

 
�1
2

 
a2j
g
+ b2jg

!!
and the Lévy measure associated to the IG (aj ; bj) law is given by

�j (dg) =
ajp
2�
g�3=2 exp

�
�1
2
b2jg

�
1fg>0gdg

The �rst component of the characteristic triplet equals


j =
aj
bj
(2� (bj)� 1)

where � (x) is the Normal distribution function.
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Figure (2): Non-homogeneous IG process with parameters (aj ; 0) :

Figure (2) represents a non-homogeneous inverse Gaussian process with parameters (aj ; 0) where aj
goes from a0 = 1 to a1000 = 2. Simulation algorithm can be found in Prause (1997).
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9.5. The non-homogeneous Generalized Inverse Gaussian Process. The Inverse Gaussian
IG (a; b) law can be generalized to what is called the Generalized Inverse Gaussian distribution
GIG (a; b) : This distribution on the positive half-line is given in terms of its density function

� (g;�; a; b) =
(b=a)

�

2K� (ab)
g��1 exp

�
�1
2

�
a2

g
+ b2g

��
The parameters �; a and b are such that � 2 R while a and b are both nonnegative and not simultaneously
0.

The characteristic function is given by

�̂ (k;�; a; b) =
1

K� (ab)

�
1� 2ik=b2

��=2
K�

�
ab
p
1� 2ik=b�2

�
where K� (g) denotes the modi�ed Bessel function with the index �:

Hence we can de�ne the non-homogeneous GIG process as a stochastic process that starts at zero, is
continuous in probability with independent increments, and is piecewise stationary or stationary inside
each interval [Tj ; Tj+1] for j = 0; 1; :::; n. According to Barndor¤-Nielsen and Shephard (2001), it
has an in�nitely divisible distribution with the following Lévy measure

�j (dg) =
exp

�
� 1
2bjg

�
g

�
a2j

Z 1

0

exp (�gz)hj(z)dz +max f0; �jg
�
dg

where

hj(z) =
�
�2ajz

�
J2j�j

�
aj
p
2z
�
+N2

j�j

�
aj
p
2z
����1

and where J and N are Bessel functions. Simulation algorithm can be found in Prause (1997).

9.6. The non-homogeneous �-Stable Process. Since Mandelbrot (1963) introduced the �-stable
distribution to model the empirical distribution of asset prices, the �-stable distribution became a popular
alternative to the normal distribution which has been rejected by numerous empirical studies that have
found �nancial return series to be heavy-tailed and possibly skewed.

More explicitly, we can de�ne the non-homogeneous �-stable process as a stochastic process that
starts at zero, is continuous in probability with independent increments, and is piecewise stationary or
stationary inside each interval [Tj ; Tj+1] for j = 0; 1; :::; n with a Lévy measure of the form

�j (dg) =
A

g�j+1
1fg>0gdg +

B

g�j+1
1fg<0gdg

for some positive constants A and B6. The characteristic function of a real-valued non-homogeneous
stable random variable G has the form

�̂j (z) =

�
exp

�
���jj jzj�j

�
1� i�j sgn z tan

��j
2

�
+ i�z

	
; if � 6= 1

exp
�
��j jzj

�
1 + i�j

2
� sgn z log jzj

�
+ i�z

	
; if � = 1

where �j 2 (0; 2] ; �j � 0; �j 2 [�1; 1] and � 2 R,

6Note the link between between �-stable processes and TS processes. A tempered stable process (TS) is usually obtained
by taking a one-dimensional stable process and multiplying the Lévy measure with a decreasing exponential on each half
of the real axis.



LIBOR ADDITIVE PROCESSES 29

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
­300

­200

­100

0

100

200

300

400

500

600

700
Non­homogeneous alfa­stable process

Figure(3): Non-homogeneous �-stable process, where � goes from 1 to 2 (Brownian case)

Chambers, Mallows and Stuck (1976) describe a simulation method for generating �-stable
processes with a set of admissible parameters, and also provide a list of Fortran programs to simu-
late this process. Figure (3) shows us a sample path of a non-homogeneous �-stable process where �
moves uniformly with the time from 1 to 2 (Brownian case).

9.7. The non-homogeneous Tempered Stable Process. The class of the Tempered Stable (TS)
distributions was proposed by Tweedie (1984) and Koponen (1995), but this class of distributions
may be generalized to the so called class of Modi�ed Stable distributions due to Barndor¤-Nielsen
and Shephard (2003) and Rosinski (2006). The distribution function is not available in closed form
but the characteristic function of the Tempered Stable (TS) distribution law TS(�; a; b) with a > 0;
b � 0 and 0 > � > 1; is given by

�̂ (z;�; a; b) = exp

�
ab� a

�
b1=� � 2iz

���
We can de�ne the non-homogeneous Tempered Stable (TS) process G = fGt : t � 0g as the process
which starts at zero, has independent increments and is stochastically continuous with piecewise stationary
increments. It has an in�nitely divisible distribution and, from the characteristic function, we can derive
the Lévy measure of the non-homogeneous TS process

�j (dg) = aj2
� �

� (1� �)g
���1 exp

�
�1
2
b
1=�
j g

�
1fg>0gdg

The process is a subordinator and has in�nite activity. The �rst term of the characteristic triplet is
given by


j = aj2
� �

� (1� �)

Z 1

0

g�� exp

�
�1
2
b
1=�
j g

�
dg

As we have mentioned in the case of the �-stable case, neither the density function nor speci�c random
number generators are available. In order to simulate other techniques are available in the literature.
The most common method is based on the so-called rejection-method by Rosinski (2002).
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9.8. The non-homogeneous Variance Gamma Process. The class of Variance Gamma (V G)
distributions was introduced byMadan and Seneta (1990) andMadan and Milne (1991) as a model
for stock returns, and it generates a �nite variation process with in�nite but relatively low activity of
small jumps. The V G process proposed in Madan et al. (1998) is obtained by evaluating arithmetic
Brownian motion with drift � and volatility � at a random time given by a gamma process having a mean
rate per unit time of 1 and a variance rate of �: Speci�cally, we have

GV Gt (�; v; �) = �Gvt + �WGv
t

where Gvt is the gamma process with mean rate 1 and variance rate v; independent of W .
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Figure (4): Simulation of a VG Process as a Time-Changed Brownian Motion

Figure (4) shows this composition of processes on the right side, and the resulting process Gt (�; v; �)
(on the left side) is a pure jump process with in�nite activity that has two additional parameters, providing
control over skewness and kurtosis, respectively.

The characteristic function of the V G (�; v; �) law is easily evaluated as

�̂ (z;�; v; �) =

�
1� iz�v + 1

2
�2vz2

��1=v
� Hence, we can de�ne the non-homogeneous Variance Gamma (V G) process fGt : t � 0g
as the process that starts at zero, has independent and piecewise stationary increments, with the
following characteristic function

E (exp [izGt]) =
Y

j��(t)

E
�
exp

�
iz
�
Gt^Tj+1 �GTj

���
=

Y
j��(t)

�
1� iz�jvj +

1

2
�2jvjz

2

��(t^Tj+1�Tj)=vj



LIBOR ADDITIVE PROCESSES 31

The Lévy density for the variance gamma process may be derived directly from the Lévy-Khintchine
theorem. Alternatively, one may exploit the representation of the variance gamma process as the di¤erence
of two independent gamma processes. It is shown in Carr et al. (2002) that this characterization leads
to the following Lévy measure

�j (dg) =

�
Cj exp (Gjg) jgj�1 dg
Cj exp (Gjg) jgj�1 dg

g < 0
g > 0

for any j = 0; 1; :::; n where

Cj = 1=vj > 0

Gj =
�q

1
4�
2
jv
2
j +

1
2�

2
jvj � 1

2�jvj

��1
> 0

Mj =
�q

1
4�
2
jv
2
j +

1
2�

2
jvj +

1
2�jvj

��1
> 0

With this parametrization, we are implicitly assuming that the non-homogeneous VG process is ex-
pressed as the di¤erence of two independent non-homogeneous Gamma processes, where G(1) is a Gamma
processes with parameters aj = Cj and bj = Mj , whereas G(2) is an independent Gamma process with
a0j = C 0j and b

0
j = G0j . Figure (5) shows how these two mentioned gamma processes (right side) can

generated the sample-path for the variance gamma process (left side).
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Figure (5): Simulation of a VG Process as the Di¤erence of Two Gamma Processes

On the other hand, the Lévy measure has in�nite mass, and hence a VG process has in�nitely many
jumps in any �nite interval. Since Z 1

�1
jgj �j (dg) <1

a VG process has paths of �nite variation. A VG process has no Brownian motion component and its
characteristic triplet is given by

�

j ; 0; �j (dg)

�
where


j =
�Cj (Gj (exp (�Mj)� 1)�Mj (exp (�Gj)� 1))

MjGj
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Figure (6): Non-homogeneous Variance Gamma Process.

9.9. The non-homogeneous Normal Inverse Gaussian Process. Following Barndor¤-Nielsen
(1995), the Normal Inverse Gaussian (NIG) distribution with parameters � > 0;�� < � < � and
� > 0; NIG (�; �; �) has characteristic function

�̂ (z;�; �; �) = exp

�
��
�q

�2 � (� + iz)2 �
q
�2 � �2

��

and we can de�ne the non-homogeneous NIG process fGt : t � 0g as a process with Gf0g = 0 a.s. with
independent NIG distributed increments, continuous in probability and piecewise stationary.

The Lévy measure for the NIG process is given by

�j (dg) =
�j�j
�

exp
�
�jg
�
K1 (�j jgj)
jgj dg

where K� (g) denotes the modi�ed Bessel function of the third kind with index �:

A NIG process has no Brownian component and its Lévy triplet is given by
�
0; 
j ; �j (dg)

�
where


j =
2�j�j
�

Z 1

0

sinh
�
�jg
�
K1 (�jg) dg
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Figure (7): Simulation of a NIG process as a Time-Changed Brownian Motion

As in the VG case, we can also simulate an NIG process as a time-changed Brownian motion. Figure
(7) shows a path of an NIG process (left side) obtained by sampling a standard Brownian motion and
an IG process (right graph).

9.10. The non-homogeneous CGMY Process. In order to obtain a more �exible process than the
Variance Gamma process, that has �nite or in�nite activity and in�nite variation, the additional para-
meter Y was introduced by Carr, Madan, Geman and Yor (2002). Later, in Carr et al. (2003), this
four-parameter distribution was generalized to a six-parameter case, however we present here the �rst
case, the CGMY (C;G;M; Y ) distribution, with characteristic function

�̂ (z;C;G;M; Y ) = exp
�
C� (�Y )

�
(M � iz)Y �MY + (G+ iz)

Y �GY
��
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Figure (8): Simulation of a CGMY process

Based on this distribution, we can de�ne a non-homogeneous CGMY process fGt : t � 0g as the
process that starts at zero, has independent and piecewise stationary increments, with the following
characteristic function

E (exp [izGt]) =
Y

j��(t)

E
�
exp

�
iz
�
Gt^Tj+1 �GTj

���
=

Y
j��(t)

�̂ (k;Cj ; Gj ;Mj ; Yj)
(t^Tj+1�Tj)

=
Y

j��(t)

�̂ (k; (t ^ Tj+1 � Tj)Cj ; Gj ;Mj ; Yj)

=
Y

j��(t)

exp
�
Cj (t ^ Tj+1 � Tj) � (�Yj)

�
(Mj � iz)Yj �MYj

j + (Gj + iz)
Yj �GYjj

��

The CGMY process is a pure jump process with triplet
�

j ; 0; �j (dg)

�
, that is, it contains no Brownian

part. The path behavior is determined by the Yj parameter, which has a value restricted to Yj < 2 for
every j = 0; 1; :::; n. If Yj < 0 the paths have �nite jumps in any �nite interval; if not, the paths have
in�nitely many jumps in any �nite time interval, i.e. the process has in�nite activity. Moreover, if the
Yj 2 [1; 2) ; the process is of in�nite variation.

The Lévy measure for the nonhomogeneous CGMY process is given by

�j (dg) =

(
Cj exp (Gjg) j�gj�1�Y dg
Cj exp (�Gjg) jgj�1�Y dg

g < 0
g > 0

and the �rst parameter of the characteristic triplet equals


j = Cj

�Z 1

0

exp (�Mjg) g
�Yjdg �

Z 0

�1
exp (Gjg) g

�Yjdg

�

9.11. The non-homogeneous Meixner Process. The Meixner process was introduced in Schoutens
and Teugels (1998), Schoutens (2000) and Grigelionis (1999) later suggested that it may serve for
�tting stock returns. This application to �nance was worked out in Schoutens (2001, 2002). The density
of the Meixner distribution (Meixner(�; �; �)) is given by

� (g;�; �; �) =
(2 cos (�=2))

2�

2��� (2d)
exp

�
�g

�

� ������� + ig

�

�����2
where � > 0;�� < � < �; � > 0: The characteristic function of the Meixner (�; �; �) distribution is given
by

�̂(z;�; �; �) =

�
cos (�=2)

cosh ((�z � i�) =2)

�2�
Hence we can de�ne the Meixner process fGt : t � 0g as the process that starts at zero, has in-

dependent and piecewise stationary increments, with a distribution given by the Meixner distribution
function Meixner(�j ; �j ; �jt):

According to Grigelionis (1999), this non-homogeneous Meixner process has no Brownian part while
the pure jump part is governed by the Lévy measure

�j (dg) = �j
exp

�
�jg=�j

�
g sinh (�g=�j)

dg
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The �rst parameter in the characteristic triplet equals


j = �j�j tan
�
�j=2

�
� 2�j

Z 1

1

sinh
�
�jg=�j

�
sinh (�g=�j)

dg

This process has in�nite variation due to
R +1
�1 jgj �j (dg) =1; for any j = 0; 1; :::; n:

9.12. The non-homogeneous Generalized Hyperbolic Process. The Generalized Hyperbolic
(GH) distributions were introduced by Barndor¤-Nielsen (1977) as a model for the grain-size distrib-
ution of wind-blown sand. In order to use this distribution in �nancial modelling, two subclasses of the
GH distribution appear in 1995. Eberlein and Keller (1995) used the Hyperbolic distribution and in
the same year Barndor¤-Nielsen (1995) proposed the NIG as a special case of a GH distribution.

FollowingBarndor¤-Nielsen (1977) theGeneralized Hyperbolic (GH) distributionGH (�; �; �; v)
is de�ned through its characteristic function

�̂ (k;�; �; �; v) =

 
�2 � �2

�2 � (� + iz)2

!v=2 Kv

�
�

q
�2 � (� + iz)2

�
Kv

�
�
p
�2 � �2

�
where Kv is the modi�ed Bessel function, � and � determine the shape of the distribution and � is the
scale of the parameter.

The density of the GH (�; �; �; v) distribution is given by

� (g;�; �; �; v) = a (�; �; �; v)
�
�2 + g2

� v
2�

1
4 Kv� 1

2

�
�

q
�2 + g2

�
exp (�g)

with

a (�; �; �; v) =

�
�2 � �2

�v=2
p
2��v�1=2�vKv

�
�
p
�2 � �2

�
where

� � 0; j�j < � if v > 0
� > 0; j�j < � if v = 0
� > 0; j�j � � if v < 0

and using this distribution and characteristic function, we can de�ne a non-homogeneous GH process
fGt : t � 0g as the process that starts at zero, has independent and piecewise stationary increments, and
where the distribution of Gt has characteristic function

E (exp [izGt]) =
Y

j��(t)

E
�
exp

�
iz
�
Gt^Tj+1 �GTj

���
=

Y
j��(t)

�̂j
�
g;�j ; �j ; �j ; vj

�(t^Tj+1�Tj+1)
It is an in�nite variation process without Gaussian part (in the general case). The Lévy measure �j (dg)
is known, but the expression is rather complicate as it involves integrals of special functions.
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