
This document is published at:

Cominardi, L., Gonzalez-Diaz, S., Oliva, A. de la, y
Bernardos, C. J. (2020). Adaptive Telemetry for Software-
Defined Mobile Networks. Journal of Network and Systems
Management, 28, pp. 660–692 .

DOI: https://doi.org/10.1007/s10922-020-09524-1

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This work is licensed
under a Creative Commons Attribution 4.0 International License.

© Springer Science + Business Media, LLC, part of Springer Nature
2020

Vol:.(1234567890)

Journal of Network and Systems Management (2020) 28:660–692
https://doi.org/10.1007/s10922-020-09524-1

1 3

Adaptive Telemetry for Software‑Defined Mobile Networks

Luca Cominardi1 · Sergio Gonzalez‑Diaz2 · Antonio de la Oliva2 ·
Carlos J. Bernardos2

Received: 24 May 2019 / Revised: 19 December 2019 / Accepted: 5 March 2020 /
Published online: 19 March 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The forthcoming set of 5G standards will bring programmability and flexibility to
levels never seen before. This has required introducing changes in the architecture
of mobile networks, enabling different features such as the split of control and data
planes, as required to support the rapid programming of heterogeneous data planes.
Software Defined Networking (SDN) has emerged as a basic toolset for operators to
manage their infrastructure, as it opens up the possibility of running a multitude of
intelligent and advanced applications for network optimization purposes in a cen-
tralized network controller. However, the very basic nature that makes possible this
efficient management and operation in a flexible way—the logical centralization—
poses important challenges due to the lack of proper monitoring tools, suited for
SDN-based architectures. In order to take timely and right decisions while operat-
ing a network, centralized intelligence applications need to be fed with a continuous
stream of up-to-date network statistics. However, this is not feasible with current
SDN solutions due to scalability and accuracy issues. This article first analyzes the
monitoring issues in current SDN solutions and then proposes a telemetry frame-
work for software defined mobile networks capable of adapting to the various 5G
services. Finally, it presents an experimental validation that shows the benefits of
the proposed solution at alleviating the load on the control and data planes, improv-
ing the reactiveness to network events, and providing better accuracy for network
measurements.

Keywords 5G · Mobile · Network · SDN · OpenFlow · Monitoring · Telemetry ·
OAM · Experimental

 * Luca Cominardi
luca.cominardi@adlinktech.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-020-09524-1&domain=pdf

661

1 3

Journal of Network and Systems Management (2020) 28:660–692

1 Introduction

The fifth-generation of mobile networks demands high flexibility and adaptability
from the infrastructure so as to allow operators to quickly provision and operate
a wide spectrum of services with very distinct requirements [1]. This demands
levels of programmability and flexibility not yet seen, triggering the adoption of
architectures based on virtualization and separation of control and data planes.
Software Defined Networking (SDN) [24], notably in the form of OpenFlow pro-
tocol [28], is one of the main approaches adopted by mobile operators towards
achieving the desired flexibility in the network.

OpenFlow-based SDN architectures potentially enable optimal management of
the network, as long as the applications operating it are timely provided with a
rich set of statistics collected from the underlying infrastructure. These statistics
have to be available at the network controller, which is a (logically) centralized
entity. However, OpenFlow was originally conceived for campus and data center
networks, therefore having a different set of requirements compared to mobile
networks. Although the initially limited set of functionalities has been gradually
extended to cover new protocols (e.g., Multiprotocol Label Switching—MPLS,
Provider Backbone Bridges—PBB) and more sophisticated forwarding behaviors
(e.g., packet encapsulation), monitoring support in OpenFlow is still limited com-
pared to what is required in mobile networks [15, 18]. Considering the applicabil-
ity to mobile networks, one of the areas where OpenFlow lags behind is monitor-
ing and fault-detection [4].

To effectively and timely react to changes in the infrastructure and/or the service
needs, operators need to put in place a set of constantly-active critical routines in
their networks. These procedures are traditionally referred to as Operation, Adminis-
tration, and Maintenance (OAM). Specifically, operation activities are undertaken to
keep the network and its services up and running. Administration activities involve
keeping track of resources in the network and how they are used. Maintenance activ-
ities are focused on facilitating repairs and upgrades in addition to corrective and
preventive measures to make the managed network run more effectively. In the last
decade, considerable effort was devoted to enrich existing transport technologies,
such as MPLS by the Internet Engineering Task Force (IETF) and PBB by the Insti-
tute of Electrical and Electronics Engineers (IEEE), with a comprehensive set of
OAM tools with the ultimate goal of providing a carrier grade packet-based network
to operators. This effort eventually yielded to the release of two competing stand-
ards: MPLS-Transport Profile (MPLS-TP) and PBB-Traffic Engineering (PBB-TE).
However, these protocols do not offer the necessary adaptability required in 5G net-
works because of the rigid implementation of the OAM functionalities.

OpenFlow, as currently defined, does not really support the rapid and scal-
able monitoring of resources. As a matter of fact, OpenFlow only permits the
network controller to poll the switches for gathering simple statistics (e.g., num-
ber of packets, transmitted/received bytes, etc.) and requires any additional meas-
urements to be directly implemented on top of the network controller. This is
because of the contrasting design principles adopted by OAM and SDN:

662 Journal of Network and Systems Management (2020) 28:660–692

1 3

• OAM defines stateful mechanisms that must be executed on the switch.
• OpenFlow defines a stateless forwarding model for the switch and delegates

stateful logic to the controller.

As a consequence, realizing SDN-based monitoring presents significant chal-
lenges both in terms of scalability and accuracy in mobile networks. Indeed, the net-
work controller needs to directly perform the necessary measurements on each of
the numerous (up to tens of thousands) and distant (up to hundreds of kms) network
nodes and links with the required precision and granularity (up to microseconds) in
order to provide the necessary reliability (up to 99.9999%) to the very distinct ser-
vices in 5G. To overcome those issues, current SDN-based monitoring approaches
needs to be augmented with an automated communication process, namely telem-
etry, by which measurements and other data are: (i) generated and collected locally
at network nodes subject to different service requirements, and (ii) transmitted to the
controller for enabling an optimal network management.

The goal of this article is therefore to: (i) analyze the mismatch between current
OAM tools and SDN solutions in mobile networks, and to (ii) propose a telemetry
solution for software-defined mobile networks capable of adapting to the various
service requirements expected in 5G. The remainder of the article is structured as
follows: Sect. 2 provides an overview of SDN/OpenFlow, OAM and 5G networks
for those readers not familiar with these concepts.1 Afterward, Sect. 3 reports the
analysis of the various issues in building an SDN-based monitoring in mobile net-
works. Next, Sect. 4 presents our solution which is experimentally evaluated in
Sect. 5. Finally, Sect. 6 draws the conclusions.

2 Background and Overview

This section first briefly introduces the concept of SDN and explains how Open-
Flow works. Then, it reports on the current state-of-the-art on SDN-based manage-
ment and provides an overview of current OAM and OpenFlow protocols. Finally, it
reports on 5G service requirements and 5G mobile network architecture, as defined
by the 3GPP and the ITU-T, respectively.

2.1 SDN and OpenFlow in a Glimpse

Figure 1 shows a logical view of the SDN architecture, where the intelligence and
control of SDN switches are centralized in SDN controllers. An SDN controller has
the global view of the network and is capable of controlling, in a vendor-independ-
ent way, the network devices, namely SDN switches. These network devices are no
longer required to implement and understand many different network protocol stand-
ards; instead, they can provide such functionality by accepting instructions from

1 Section 2 could be skipped by the expert readers.

663

1 3

Journal of Network and Systems Management (2020) 28:660–692

SDN controllers through the southbound interface. This yields to a significant sav-
ing in time and resources, as the network behavior can be easily controlled by pro-
gramming it in the centralized controllers rather than using custom configurations in
many different devices scattered across the network. The SDN controller is respon-
sible for the maintenance of an abstract resource model of the underlying network
which is then exposed to applications via the northbound interface, which is com-
monly implemented through Rest APIs.2 Applications define the network behavior
and may belong either to the network operator or to clients, the former usually hav-
ing a broader scope and higher privileges than the latter.

The most widely adopted protocol for the southbound interface to control the net-
work devices is OpenFlow,3 which defines a stateless switch abstraction for packet
forwarding. This means that the switch does not retain any information or state4
about the received/transmitted packets. Therefore, the forwarding is solely based on
the information contained in the packets and not on the past history. The main com-
ponents of an OpenFlow-capable switch are:

Data plane

Control plane

SDN
Controller

App #1

SDN
Switch

User traffic

Control traffic

App #2 App #n

Northbound Interface

…

Global network view
Remote configura�on

Rou�ng decisions
Network op�miza�on

Forwarding of user traffic

Network infrastructure

Southbound Interface

Fig. 1 SDN architecture

2 Note that there is no standard protocol defined for the northbound interface.
3 This paper uses as a baseline the latest OpenFlow version, now at 1.5.1 [28].
4 From here the term stateless.

664 Journal of Network and Systems Management (2020) 28:660–692

1 3

• At least one physical and/or logical port.
• At least one flow table containing multiple flow entries.
• A pipeline that interconnects the ports and defines the interaction of matching

packets with the flow tables.

OpenFlow also defines a communication protocol that gives access to the forward-
ing plane of a switch to an external controller over the network. Using this protocol,
the controller can interact with the OpenFlow agent running on the switch to con-
figure the flow tables, both proactively and reactively. Each flow table in the switch
contains a set of flow entries that can be dynamically added, updated, or deleted by
the controller. The main components of each flow entry are:

• Matching fields for matching against packet headers.
• Instructions allow to dynamically modify the actions applied to matching pack-

ets.

An example of action is the forwarding of the matching packets to a specific port.
This is usually a physical port, but it may also be a logical or a reserved port. Logi-
cal ports are higher-level abstractions that may be defined in the switch using non-
OpenFlow methods, e.g., link aggregation, tunnels, or loopback interfaces. Reserved
ports may particularize generic forwarding actions like sending a message to the
controller. This abstraction allows performing a stateless forwarding of packets.

2.2 Passive and Active Monitoring in a Glimpse

In order to take timely and right decisions while operating a network, centralized
intelligence applications need to be fed with a continuous stream of up-to-date net-
work statistics. Two approaches exist in the literature for retrieving the necessary
data from the network: passive monitoring and active monitoring. Passive monitor-
ing is based on the observation and sampling of the traffic flowing through the net-
work. The network nodes (e.g., switches, routers) sample the incoming traffic, then
they sent these samples to a central controller for being analyzed and infer the actual
status of the network.

Traditional tools to implement passive monitoring for IP networks are sFlow
[29], netFlow [10] and IPFIX [11]. Modern approaches overcoming the limitations
of traditional tools are proposed by Sonchack et al. [31, 32], Tilmans et al. [33], and
Gupta et al. [14]. These define various techniques for configuring and performing
packet sampling, traffic mirroring and statistics aggregation in the network as well
as the protocol for transmitting the samples to the central controller (i.e., the packet
format) for further processing. By similarity, we can see the OpenFlow capability
of sending packets from the data plane to the SDN controller as a building block for
implementing passive monitoring in OpenFlow networks.

Examples of applications performing passive monitoring in OpenFlow are
reported later in Sect. 2.3. On the other hand, active monitoring is based on the
on-demand generation and transmission of probes over the network with the

665

1 3

Journal of Network and Systems Management (2020) 28:660–692

goal of measuring specific metrics, e.g., bandwidth, latency, packet losses, etc.
This kind of monitoring is commonly enabled by Operation, Administration, and
Maintenance (OAM) protocols in operator networks. An overview of these proto-
cols is provided later in Sect. 2.4.

By comparing passive and active monitoring, the former allows a simpler
data plane since it does not require to maintain any state in the network. Indeed,
in passive monitoring, all the information is stored and analyzed in the central
controller. As a drawback, passive monitoring requires higher bandwidth on the
control plane compared to active monitoring, which in contrast demands the data
plane to store some state. Moreover, passive monitoring only allows detecting
events that have already occurred in the network while active monitoring allows
to pro-actively measure and predict potential problems in the network. A deeper
analysis on this matter is presented later in Sect. 3.

2.3 SDN‑based Management in a Glimpse

Many works in literature have shown the benefits of applying the SDN paradigm
to network management, resulting in a better QoS for various applications and
services. Particular attention has been given to the routing algorithms capable
of selecting the best path for different types of services. In the works presented
next, the routing decision is based on the traffic information passively collected
by the switches as enabled, e.g., by OpenFlow. For instance Tomovic et al. [34],
consider two classes of traffic: priority traffic, with strict bandwidth require-
ments, and best-effort traffic. The proposed frameworks calculate the optimal
route as the shortest route having sufficient bandwidth available while minimiz-
ing the degradation of best-effort traffic. Egilmez et al. [12] propose instead an
analytical framework for optimizing the forwarding of QoS-enabled streaming
of scalable encoded videos. The optimal routes are calculated by solving a con-
strained shortest path problem where the jitter of the available paths is provided
as input. Moreover, a variant of the proposed algorithm is proposed for interac-
tive multimedia applications where the total delay is considered instead of the
jitter. Tomovic et al. [35] analyze the suitability of different routing algorithms
for performance-guaranteed traffic tunnels in backbone SDN networks subject to
two constraints: bandwidth and path delay. The analysis considered both the com-
putational time on the SDN controller and the bandwidth rejection ratio, which is
commonly used as a performance indicator for QoS routing algorithms. Similarly,
Guck et al. [13] provide a comprehensive evaluation framework and quantitative
comparison of centralized QoS routing algorithms in SDN networks subject to
bandwidth, delay, and jitter constraints. Finally, Bari et al. [3] propose Policy-
Cop, a vendor-agnostic QoS policy management framework for OpenFlow-based
SDN. The framework provides an interface for specifying QoS-based Service
Level Agreements (SLAs) for bandwidth, latency, and reliability guarantees, and
enforces them using OpenFlow capabilities.

666 Journal of Network and Systems Management (2020) 28:660–692

1 3

2.4 Current OAM Protocols in a Glimpse

The most widely-employed transport protocols nowadays are MPLS-TP and PBB-
TE. The OAM tool-sets of those protocols (i.e., providing tools for active monitor-
ing) are based on ITU-T Y.1731 [18] and IEEE 802.1ag [15] standards, respectively,
and they present largely identical characteristics, being the former a superset of the
latter. Both protocols define Connectivity Fault Management (CFM) mechanisms for
path discovery, fault detection, fault notification, fault recovery, fault verification,
and isolation. In addition, Y.1731 defines OAM functions for Performance Monitor-
ing, such as frame loss, frame delay, and throughput measurements. These functions
are typically implemented through the following set of protocols:

2.4.1 Continuity Check

Continuity Check protocol comprises the periodical transmission of heartbeat
messages, namely Continuity Check Messages (CCM), to detect connectivity fail-
ures. These messages do not solicit a response and their transmission rate can be
configured according to 7 standard values, spanning from 300 messages/s to 6
messages/h.5 A sequence number can be optionally used to count CCM losses and
detect any eventual link degradation. A burst of Continuity Check messages can be
used for measuring one-way bandwidth, i.e., on asymmetric links. When the clock
of the switches is synchronized, CCM messages can be timestamped and used for
measuring the one-way delay.

2.4.2 Loopback

Loopback protocol is used for fault verification and isolation. Loopback messages
are similar in concept to the ping tool. By sending Loopback messages to successive
network nodes, an operator can determine the location of a fault as well as measure
the two-way frame delay and jitter in a given network segment. Measuring the two-
way delay with Loopback messages does not require the clocks of the switches to be
synchronized. A burst of Loopback messages can be used for measuring two-way
bandwidth on symmetric links.

2.4.3 Link Trace

Link Trace protocol is used for on-demand path discovery and verification between
a pair of network nodes. Linktrace Request messages traverse hop-by-hop every
node along the path between a source and a target node, the time-to-live (TTL) of
each message is increased until it reaches the destination node (this is similar in
concept to the traceroute tool). Each hop responds the request messages with an

5 This paper focuses on the 3 highest transmission rates, which result in an inter-message interval of 3.3
ms, 10 ms, and 100 ms, respectively.

667

1 3

Journal of Network and Systems Management (2020) 28:660–692

Linktrace Reply back to the originating node, thus allowing the operator to track the
path followed by the initial message.

2.5 5G Network and Services in a Glimpse

5G services are key to understanding the changes being introduced in the new
mobile network architectures. The 3GPP has defined a set of services with the cor-
responding requirements in [1, 2]. Those services are grouped into three categories,
namely network slices: (i) enhanced Mobile Broadband—eMBB, (ii) Ultra-Relia-
ble Low Latency Communications—URLLC, and (iii) Massive Internet of Things
– MIoT. eMBB services are characterized by high bandwidth requirements, span-
ning from few Mbps to 1 Gbps per user, and by moderate-latency requirements, with
the most stringent one being 2–4 ms for virtual meetings. Instead, URLLC services
are characterized by low latency and high-reliability requirements. Tactile interac-
tion and remote motion control for robots require a maximum end-to-end delay of
0.5–1 ms with a jitter of 100 μs. Moreover, URLLC defines a survival time6 for the
services, ranging from 10 to 100 ms, with a service availability up to 99.9999% .
Finally, MIoT metrics relate more to the capability of the network system to handle
millions of active connections generating sporadic traffic.

In order to provide these 5G services, the network architectures have to also go
through some transformations as compared to current deployments. Figure 2 illus-
trates the 5G transport network reference architecture as recently proposed in [22].
The transport architecture comprises three segments: (i) access, (ii) aggregation, and
(iii) core. The access comprises on average 6 antenna sites for each node M1 con-
nected via a point-to-point link, and ~ 6 M1 nodes connected in a ring topology.
Thus, each access ring connects a total of 36 antennas on average. Next, each aggre-
gation ring comprises ~ 6 M2 nodes, each of which serves as the gateway to 4 access
rings on average. Each aggregation ring is served by two M3 nodes for redundancy
reasons, while each M3 node provides gateway capabilities to 2 aggregation rings.
The mobile packet core network comprises two M4 nodes for each core ring and a
variable number of other M4 nodes connected in a mesh fashion. The amount of M4
nodes highly depends on the physical deployment of the mobile network at country
level. For the sake of example [8], reports 12 nodes M4 in the case of Germany.

3 Challenges in Actively Monitoring an OpenFlow Mobile Network
at Scale

Monitoring support is very limited in OpenFlow. Current network controllers per-
form network monitoring by keeping track of the status of the OpenFlow ports by
periodically collecting port statistics from the switches [12, 13, 34, 35]. These sta-
tistics provide information regarding the number of packets sent/received or dropped

6 The survival time is the time that an application consuming a communication service may continue to
operate without receiving any messages.

668 Journal of Network and Systems Management (2020) 28:660–692

1 3

by the port, and whether the port is alive or not. Collecting those statistics involves
a message exchange between the network controller and the switch that weights
~ 600 bytes for a single port.

According to the reference architecture shown in Fig. 2, there are ∼ 200, 000
ports for the network segment spanning from the antenna sites to the core ring. This
results in a ∼ 1Gbps of monitoring traffic in case of polling the port statistics every
second in those network segments. In the example cited in Sect. 2.5 for Germany
[8], there are 12 of those segments, resulting in a total of ∼ 12Gbps . Nonetheless,
this is only the bandwidth required to collect the port statistics which do not include
any information related to the traffic flows configured in the network. To retrieve
these statistics, the SDN controller needs to periodically poll the switches with a
message exchange of ∼ 500 bytes for each flow and switch. In case of having various
flows configured in the network, the bandwidth required for monitoring can easily
grow up to tenths of Gbps.

The periodic polling of statistics presents three main drawbacks in mobile net-
works: (i) a huge amount of bandwidth is required in the control infrastructure, (ii)
the network controller should be able to process this huge amount of monitoring
information in time, and (iii) the granularity offered to applications is bound to the
polling interval, therefore an application would not be able to react quicker than the
configured polling time. Additionally, current OpenFlow statistics do not provide
the network controller with sufficient information for knowing the current status of
the ports and links (e.g., delay, jitter, available vs advertised bandwidth, congestion
level, etc.). For instance, a port may be considered alive but may not have link layer
connectivity because of misconfiguration (e.g., wrong VLAN). Indeed, an Open-
Flow port is considered alive if the carrier at the physical level is detected while no
information is available on the status of the link itself. To overcome such limitations,
a set of active measurements is required to enable a fine-grain view of the network
status.

3.1 Active Monitoring with OpenFlow Switches

Active monitoring relies on the capability to inject test packets into the network, fol-
lowing them, measuring the relevant metrics, and store the results for future network
optimization or data analytics. A key feature of being active is hence the capabil-
ity of controlling the nature of the traffic generation, such as the timing, frequency,
scheduling, packet sizes and types (e.g., to emulate various services), location, etc.
This enables the emulation of distinct scenarios to check if Quality of Service (QoS)
or Service Level Agreements (SLAs) are met. As a result, active monitoring permits
to measure target metrics only when and where they are needed.

Because of the stateless forwarding performed by OpenFlow switches, as well
as their incapability of generating and injecting any packets in the network, active
measurements need to be entirely initiated and performed by the network controller.
To that end, the logic of these measurements needs to be implemented as an applica-
tion running on top of the controller. In the following, we analyze the challenges of
implementing current OAM procedures as applications on the network controller.

669

1 3

Journal of Network and Systems Management (2020) 28:660–692

Particularly, we select Connectivity Check, Loopback, and Link Trace protocols as
reference procedures because of their large deployment in today’s operator networks.

3.1.1 Connectivity Check

Connectivity Check requires the switch to generate, timestamp, and send specific
messages over the data plane to measure the unidirectional bandwidth and delay of
a link (see Fig. 3a). However, OpenFlow does not provide any support for packet
generation and injection. Therefore, the network controller needs to overcome such
shortcoming and implement the CCM mechanisms as shown in Fig. 3a. Please note
that the numbers (#) appearing in the following text refer to the distinct messages
illustrated in Fig. 3. The controller first generates and timestamps a CCM message
for each CCM-enabled switch port and then forwards it to the switch over the con-
trol plane (A.1). Next, the switch forwards the CCM message over the data plane
(A.2). The receiving switch finally notifies the network controller of the successful
CCM reception by forwarding on the control plane the frame received over the data
plane (A.3).

In this way, the network controller supervises the connectivity status by keep-
ing track of the CCM messages being sent and received. However, the measurement
of the one-way delay is inaccurate because (i) the timestamping occurs before the
packets are actually transmitted over the data plane, and (ii) the comparison between
the transmission and reception time is done in the controller and not on the target
switch. Moreover, the measurement of the one-way bandwidth is inaccurate because
the control plane bandwidth becomes a limiting factor for the data plane bandwidth.
Clearly, such an approach unnecessarily overloads the controller and the control
plane. Indeed, adopting the most stringent connectivity checking configuration, that
is to transmit a CCM message every 3.3ms [18] on every port, generates a total of
∼ 340Gbps over the control plane from the antenna sites to M4 nodes (see Fig. 2),
and several Tbps when considering 12 of those segments.

3.1.2 Loopback

Loopback requires the switch to generate, timestamp, and send specific messages
over the data plane to measure the bidirectional bandwidth and delay of a link (see

M1

Antenna

~6x Antenna
per M1 node

~6x M1 nodes

M2

~4x access rings
per M2 node M3

~6x M2 nodes

2x aggrega�on
rings per M3 node

M4

Core (~80+ Km)Access (~10-20 Km) Aggrega�on (~40-80 Km)

Internet

2x M4 nodes per
core ring

M4

Access ring Aggrega�on ring
Core ring and mesh

Fig. 2 Proposed reference architecture of a 5G transport network [22]

670 Journal of Network and Systems Management (2020) 28:660–692

1 3

Fig. 3b). The network controller needs to create the Loopback message (LBM),
timestamp it, and send it over the control plane to the switch (A.1), which in turn
forwards the message on the data plane (A.2). This is then intercepted and sent back
to the controller (A.3), thus triggering a timestamped Loopback Reply message
(LBR). This is sent to the switch (B.1) and then forwarded on the data plane (B.2).
The switch originating the initial message receives the Reply frame and forwards it
back to the network controller (B.3). SDN-based implementation of the Loopback
message suffers from the same limitations as the Connectivity Check, both in terms
of accuracy and overload of the control plane.

3.1.3 Link Trace

Link Trace enables the hop-by-hop tracking of a certain path by sending a series
of Link Trace Messages (LTM) with incremental Time To Live (TTL) values7 as
shown in Fig. 3c. The network controller generates an LTM message (TTL = 2) and
sends it over the control plane to the switch (A.1). Such a message is then forwarded
over the data plane (A.2) and back to the controller (A.3). Next, the controller gener-
ates a Link Trace Reply message (LTR) with a TTL value equal to TTL(LTM) − 1
as the response (B.1). Simultaneously, the controller decreases the TTL of the LTM
message8 and sends it back to the data plane (C.1). LTM and LTR messages are then
forwarded on the data plane (B.2, C.2) and to the controller (B.3, C.3). Upon (C.3)
reception, the controller generates an LTR (D.1) which is then transmitted on the
data plane (D.2, D.3) and finally back to the controller (D.4). Link Trace potentially
presents the same scalability issues9 of Connectivity Check and Loopback. How-
ever, Link Trace is used for verifying the correct configuration of network paths and

Control
Plane

Data
Plane

A.2

OF Switch OF Switch

OF Controller

CCM
A

(a) Continuity Check

OF Controller

OF Switch OF Switch

LBR

A.2

LBM

B.2

A B

(b) Loopback

OF Controller

OF Switch OF Switch

LTRLTM
A,C

OF Switch
A.2 C.2

A.3

D.2B.2,D.3

B,D

A
C

B
D

TTL=2
TTL=1

TTL=1
TTL=0

(c) Linktrace

Fig. 3 Legacy OpenFlow-based operation of current OAM protocols

7 An LTM with a TTL equal to 0 is discarded by the network. An LTM message with TTL = n serves at
determining the nth hop.
8 OpenFlow does not support CFM headers, thus the TTL cannot be decreased by the switch itself as
e.g. in the IP protocol.
9 Accuracy issues are not present because packets are not timestamped.

671

1 3

Journal of Network and Systems Management (2020) 28:660–692

it is activated on-demand, presenting different scales of operation compared to CCM
and LBM.

3.2 Towards a Stateful OpenFlow?

The several issues of OpenFlow in performing active monitoring can be traced down
to two factors: (i) the incapability of OpenFlow to keep information on the for-
warded traffic, and (ii) the impossibility of generating and injecting packets. In the
recent years several works have been proposed, fostering the debate on stateless vs
stateful OpenFlow. Bianchi et al. [5] propose OpenState, an OpenFlow-compatible
abstraction to formally describe stateful processing of flows inside the switch itself.
Such abstraction relies on eXtended Finite State Machines (FSM) and an API that
can be implemented on the switch by largely reusing existing OpenFlow features.
OpenState allows implementing reactive applications on the switches, such as port
knocking which is commonly used for opening a port on a firewall. While this capa-
bility would be enough to keep track of incoming CCM messages for connectivity
check, OpenState does not provide any support for packet generation on the switch.

Moshref et al. [27] propose FAST, which enables the controller to pre-install a
state machine on the switch, thus allowing the switch to automatically record flow
state transitions by matching incoming packets to installed filters. FAST defines an
abstraction for state machines, a compiler for translating the state machines to the
data plane API, and a data plane that includes a pipeline to support state machines
with commodity switch components. Similarly to OpenState, FAST does not pro-
vide any support for packet generation.

Pontarelli et al. [30] propose FlowBlaze to fill two gaps of [5, 27]: (i) not defining
a state access model that allows for both per-flow and global consistency, and (ii) not
dealing with issues related to the integration of their proposed state machines in the
machine model designed in [7] for fast programmable match-action processing in
hardware. Although FlowBaze fills the above gaps, like OpenState and FAST, Flow-
Blaze still does not provide any support for packet generation.

Bifulco et al. [6] address such shortcoming by proposing an API that enables
programmers to define in-switch packet generation operations, which include the
specification of triggering conditions, packet’s content and forwarding actions. The
authors provide application examples for the delegation and implementation of
ARP and ICMP handling from the controller to the switch. However, the proposed
API can trigger the packet generation only in reaction to the reception of a packet
at the switch and not as a reaction of some timed events. As a result, the proposed
approach would be sufficient to generate Loopback Reply messages but not for the
periodical generation of CCM messages.

Cascone et al. [9] propose SPIDER, a packet processing pipeline design for state-
ful SDN data plane that allows the implementation of failure recovery policies with
fully programmable detection and rerouting mechanisms directly in the switches’
fast-path. While SPIDER provides an OpenFlow-compatible way for fast-rerouting
based on heartbeat messages (like CCM), other monitoring features are not con-
sidered. For instance, link degradation and delay can not be measured in SPIDER,

672 Journal of Network and Systems Management (2020) 28:660–692

1 3

thus limiting the rerouting to hard-connectivity failures only, that is no messages are
received. Therefore, rerouting based on the link delay or degradation is not possible.
Moreover, SPIDER does not support the periodical reporting of the status of the
links (e.g., quality) to the controller.

Summarizing, the works available in the literature propose different solutions for
enabling stateful processing in the data plane mainly tailored to user traffic. How-
ever, active monitoring only requires stateful processing of the packets involved in
some measurements (e.g., CCM). The amount of such traffic is expected to be neg-
ligible compared to user traffic. As a result, only a little portion of the traffic needs
to be actively processed by the switch for telemetry purposes. For that reason, we
advocate that extending OpenFlow processing from stateless to stateful processing
for active monitoring purposes is not ideal. Indeed, such an approach would bring
considerably large complexity in the switch fabric compared to the small amount
of monitoring traffic that requires stateful processing. Therefore, a lighter solution
is required in terms of switch complexity. Nowadays OpenFlow switches are com-
monly equipped with general-purpose processors10 which mainly interact with the
switch fabric only for configuration and management purposes. In our view, such
processors could be leveraged as well to implement the stateful processing required
for the telemetry procedures. In this way, OpenFlow performs the stateless pro-
cessing of user traffic as usual while monitoring traffic is processed locally on the
CPU switch. This allows staying compatible with the current OpenFlow solution as
detailed in the next section.

4 Design of an Adaptive Telemetry System

This section presents the design of our adaptive telemetry system, namely ATS, for
enabling stateful data plane processing tailored to active monitoring. Specifically,
ATS aims at providing operators with a set of SDN-compliant tools for defining and
configuring telemetry procedures on the switches. While the state-of-the-art solu-
tions add extra features directly into OpenFlow protocol, we adopt a hybrid approach
where the telemetry system interacts with the legacy OpenFlow pipeline, i.e., no
extension is proposed to the current OpenFlow specifications. Therefore, such a
hybrid approach does not envision any change on the switch backplane, which is
the part internal to a switch implementing the OpenFlow pipeline and in charge of
forwarding packets between ports. Figure 4 shows the ATS design which envisages
three main components:

ATS application it runs on the controller and it is in charge of taking the decision
of what, when, and where to measure. Since it runs on the controller, the application
has a global view on the status of the network, and based on the active traffic flows,
path configuration requests, and offered network services, the application decides
what the parameters to be monitored in the underlying network are (e.g., delay, link

10 For instance, the NoviSwitch 21100 is equipped with an Intel Core i7 and the Advantech ESP-9230
with an Intel Xeon.

673

1 3

Journal of Network and Systems Management (2020) 28:660–692

quality, etc.), either periodically or on-demand. The active execution of those meas-
urements is then delegated to the switches which follow the instructions received by
the controller.

ATS plugin it runs on the controller and it is in charge of implementing the com-
munication with the switches via a southbound interface. This interface exposes
a RESTful API that provides a uniform and predefined set of operations to allow
the network controller to dynamically configure the telemetry procedures on
the switches and to receive notifications and alarms. Table 1 reports the Uniform
Resource Identifier (URI) exposed by (i) the network controller via the ATS plugin
and by (ii) the switch via the ATS agent (see next paragraph). Specifically, the con-
figuration of the telemetry procedures is based on Finite State Machines (FSM),
which are then executed locally on the switch. The API is exemplified in Sect. 4.1
while the FSM representation is further detailed in Sect. 4.2.

ATS agent it runs on the switches and it is in charge of: (i) locally executing the
FSMs configured by the network controller and (ii) sending the appropriate noti-
fications and alarms via the common API. As described in Sect. 2, in addition to
physical ports, OpenFlow defines logical and reserved ports internal to the switch
that can be used by external applications/components to interact with the OpenFlow
pipeline. For instance, the reserved port CONTROLLER is used to send a packet
from the switch to the network controller and vice versa. Similarly, the reserved
port LOCAL enables components running on the switch to directly interact with the
OpenFlow network. As a result, the ATS agent uses the LOCAL port to send/receive
packets over/from the data plane through the standard OpenFlow pipeline.

4.1 Exemplary Scenario

In this section, we provide an example of ATS operation, i.e., measuring the one-
way delay between two switches directly connected in an access ring.11 The exem-
plary scenario, including the network topology and the high-level message flow, is
reported in Fig. 4. Please note that the numbers (#) appearing in the following text
refer to the distinct steps illustrated in the right-hand side of Fig. 4. The correspond-
ing API of these steps is also highlighted in Table 1.

At some point in time, an ATS application running on the network controller
decides that it needs to measure the one-way delay between the switch M1 and the
switch M2. For instance, such a decision could be made in response to a path config-
uration request received by the network controller for time-sensitive traffic. Next, the
ATS application selects the most appropriate measurement procedure (e.g., CCM
with timestamp) and verifies that the ATS plugin and agents support the expected
capabilities, e.g., by checking the supported ATS version retrieved by querying
the plugin information via the /ats/ GET interface. Concurrently, the ATS applica-
tion may verify that the same measurement procedure is not already running in the
network by querying the ATS plugin via the /ats/report/ GET interface. In order to

11 The clocks of two switches are assumed to be synchronized. See Sect. 5.4 for additional considera-
tions on clock synchronization.

674 Journal of Network and Systems Management (2020) 28:660–692

1 3

answer to the above queries, the ATS plugin may gather up-to-date information from
the network switches via the /ats/ and /ats/fsm/ GET interfaces exposed by the ATS
agents.

At this point, the ATS application asks the network controller to perform such
measurement via the northbound interface (1), i.e., /ats/report/id POST interface. In
turn, the network controller configures the necessary OpenFlow rules for forwarding
the traffic to and from the ATS agent (2), (3)12 for such type of traffic. Let’s assume
that the port 0 of M1 switch is directly connected to the port 1 of M2 switch. In this
case, the OpenFlow pipeline of M1 switch is instructed to forward the CCM mes-
sages generated by the ATS agent over the port LOCAL to the port 0. Similarly, the
M2 switch is configured to forward the CCM messages received over the port 1 to
the port LOCAL for being processed by the ATS agent.

Then, the ATS plugin configures on the switches the measurement procedures
in the form of finite state machines (see Sect. 4.2 for further details). Specifically,
the CCM reception and delay calculation are configured on the M2 switch (4)
and the CCM generation on the M1 switch (5), both via the /ats/fsm/id POST API
exposed by the ATS agent. For instance, the M1 switch is configured to generate a
total of 100 CCM messages with an interval of 10 ms between subsequent packets
(6). After having transmitted all the CCM messages, the ATS agent is configured
to report a trace of the generated messages (7). Similarly, the M2 switch is config-
ured to compute the delay of each CCM message received and to report the trace
of all computed values to the network controller once the last CCM is received (8).
These reports are communicated from the ATS agents to the ATS plugin via the /
ats/fsm/id/event POST interface. Additionally, a timeout is configured for dealing
with the case of the last CCM going lost. Finally, the network controller informs the

Fig. 4 Adaptive Telemetry System components and exemplary scenario with message flow

12 These operations are standard OpenFlow operations and they not involve the ATS API.

675

1 3

Journal of Network and Systems Management (2020) 28:660–692

Ta
bl

e
1

 A
TS

 R
ES

Tf
ul

 A
PI

 a
nd

 m
ap

pi
ng

 o
n

th
e

ex
em

pl
ar

y
sc

en
ar

io

U
R

I
M

et
ho

d
D

es
cr

ip
tio

n
#m

sg
 in

 F
ig

. 4

A
TS

 p
lu

gi
n

on
 th

e
ne

tw
or

k
co

nt
ro

lle
r

 /a
ts

/
G

ET
In

fo
rm

at
io

n
ab

ou
t t

he
 A

TS
 p

lu
gi

n
N

.A
.,

se
e

Se
ct

. 4
.1

 /a
ts

/re
po

rt/
G

ET
Re

po
rts

 av
ai

la
bl

e
on

 th
e

ne
tw

or
k

co
nt

ro
lle

r
N

.A
.,

se
e

Se
ct

. 4
.1

 /a
ts

/re
po

rt/
id

G
ET

, P
O

ST
 P

U
T,

 D
EL

ET
E

Re
ad

, c
re

at
e,

 u
pd

at
e,

 d
el

et
e

a
re

po
rt

on
 th

e
ne

tw
or

k
co

nt
ro

lle
r

(1
),(

9)
A

TS
 a

ge
nt

 o
n

th
e

sw
itc

h
 /a

ts
/

G
ET

In
fo

rm
at

io
n

ab
ou

t t
he

 A
TS

 a
ge

nt
N

.A
.,

se
e

Se
ct

. 4
.1

 /a
ts

/fs
m

/
G

ET
Te

le
m

et
ry

 p
ro

ce
du

re
s a

va
ila

bl
e

on
 th

e
sw

itc
h

N
.A

.,
se

e
Se

ct
. 4

.1
 /a

ts
/fs

m
/id

G
ET

, P
O

ST
, P

U
T,

 D
EL

ET
E

Re
ad

, c
re

at
e,

 u
pd

at
e,

 d
el

et
e

a
te

le
m

et
ry

 p
ro

ce
du

re
 o

n
th

e
sw

itc
h

(4
),(

5)
 /a

ts
/fs

m
/id

/e
ve

nt
PO

ST
Se

nd
 e

ve
nt

s t
o

th
e

te
le

m
et

ry
 p

ro
ce

du
re

(7
),(

8)

676 Journal of Network and Systems Management (2020) 28:660–692

1 3

ATS application via the northbound interface on the measured delay (9) via the /ats/
report/id PUT interface

4.2 ATS Procedures Modeling

The previous paragraphs briefly introduced that the telemetry procedures are speci-
fied via finite state machines. This decision is based on our analysis of the standard
OAM operations as defined in ITU-T Y.1341 [20] (ITU-T Y.1371 corollary stand-
ard), which is reported in the following.

ITU-T Y.1341 formally describes the OAM procedures as finite state machines
by using the Specification and Description Language (SDL) [21]. SDL is a language
targeted at the unambiguous description of the behavior of reactive and distributed
systems. While SDL provides a rich set of functional blocks for behavior descrip-
tion, only a limited set is required for fully describing the behavior of the OAM
procedures under consideration. Specifically, they can be described by exclusively
using the following five SDL blocks:

1. State describes the status of the FSM that is currently waiting to execute a transi-
tion. Two special states define the entry and exit points of the FSM respectively.

2. Task defines a series of internal steps to be executed by the switch. Variable
declaration and assignment, packet forging, and timer configuration are common
tasks.

3. Decision is equivalent to an if-then-else statement. Local variables, header fields
of the incoming packets, and timestamps are the usual comparison terms.

4. Input is the actual trigger of the transition and an event is its common representa-
tion. The events leveraged in the OAM operations are: (i) incoming packet, (ii)
external signal, and (iii) timer expiration.

5. Output specifies a set of actions to be executed upon condition fulfillment or event
reception. Packet transmission and signal firing are common outputs.

Figure 5a shows the SDL finite state machine (FSM) for describing the CCM
generation procedure at the switch [20]. It is worth highlighting that this FSM
implements the expected behavior of our exemplary scenario as illustrated in Fig. 4
and detailed in Sect. 4.1. While SDL can comprehensively describe the OAM proto-
cols behavior, it only provides a basic model for describing the supported data types
(e.g., integer, real, char, etc.). A more comprehensive data model is hence required
by the network controller to unequivocally instruct the switch. Therefore, we pro-
pose a comprehensive data model for telemetry procedures based on the combina-
tion of IETF RFC 7223, IEEE 802.1Qcp [17], and Metro Ethernet Forum (MEF)
documents [25, 26]. By combining and extending them, our proposal takes the form
of a YANG model specifying the telemetry procedures and the port and packet data
types for enabling the generation, transmission, and reception of packets, which are
of paramount importance for the telemetry procedures.

With this data model, the next step is to design a generic FSM-representation
for telemetry procedures that can be exchanged between the controller and the

677

1 3

Journal of Network and Systems Management (2020) 28:660–692

switches. To that end, we define the following basic concepts for ATS FSM rep-
resentation: state, transition, event, and datamodel. Each state contains a set of
transitions that define how the FSM reacts to events, which can be generated by
the state machine itself or by external entities (e.g., packet reception). The data
model defines how the data internal to the state machine is stored, read, and mod-
ified as well as its interpretation in conditional expressions. In the following we
report the main ATS elements expressed as XML elements:

<xml version=” ats ”>
<datamodel>
<data id=”port ” type=”port ” expr=” l o c a l ”/>
<data id=”ccm” type=”packet ”>
<expr id=” e th e r d s t ”>00 : 1 1 : 2 2 : 0 0 : 0 0 : 2 2</ expr>
<expr id=” e t h e r s r c ”>00 : 1 1 : 2 2 : 0 0 : 0 0 : 1 1</ expr>
<expr id=” e the r type ”>89 :02</ expr>
. . . a dd i t i ona l header f i e l d s . . .
<expr id=”sn”>00 : 0 0 : 0 0 : 0 0</ expr>
<expr id=”tstamp”>00 : 0 0 : 0 0 : 0 0</ expr>

</data>
<data id=” repor t ” type=” l i s t ” expr=” [] ”/>

</datamodel>
<s t a t e id=” d i s ab l ed ”>
<onex i t>

<send event=” timer ” de lay=” 0 .01 s ”/>
</ onex i t>
<t r a n s i t i o n event=” enable ” t a r g e t=” enabled ”/>

</ s t a t e>
<s t a t e id=” enabled ”>
<onex i t event=” timer ”>
<a s s i gn ta r g e t=”ccm . sn” expr=”ccm . sn + 1”/>
<a s s i gn ta r g e t=”ccm . tstamp” expr=”time . now”/>
<a s s i gn ta r g e t=” repor t ” expr=” repor t + [ccm .

tstamp] ”/>
<send ta rg e t=”port ” type=”packet ” data=”ccm”/>
< i f expr=”ccm . sn < 100”>
<send event=” timer ” de lay=” 0 .01 s ”/>

</ i f><e l s e>
<send ta rg e t=” c t r l ” type=” l i s t ” data=” repor t ”/
>

<send event=” d i s ab l e ”/>
</ e l s e>

</ onex i t>
<t r a n s i t i o n event=” timer ” ta r g e t=” enabled ”/>
<t r a n s i t i o n event=” d i s ab l e ” t a r g e t=” d i s ab l ed ”/>

</ s t a t e>
</xml>

Code 1 ATS code implementing the state machine for CCMgeneration illus-
trated in Fig. 5a.

<state>: this element holds the representation of a state and it can be used to
express the SDL State block.

<data>, <assign>: the <data> element is used to declare and populate por-
tions of the data model whilst the <assign> element is used to modify the data
entries. These ATS elements combined can represent the SDL Task block.

678 Journal of Network and Systems Management (2020) 28:660–692

1 3

<if>, <elseif>, <else>: allow describing conditional code execution and con-
sequently the SDL Decision block. Conditional expressions are supported on local
variables as well as on header fields and timestamps.

<transition>: defines the available transitions between states and the events that
trigger them. The <onexit> and <onenter> elements are used to define whether the
instructions need to be executed when leaving or entering a given state. Addition-
ally, Event I/O Processor is used for emitting input and output events that result in
state transition. To that end, a dedicated I/O processor is required to notify about
incoming packets and trigger the transitions. This, along with port and packet data
types, can be jointly used with the <transition> element to express the SDL Input
block.

CCM genera�on

Disabled

SetTimer(CCM int.)

Enabled

Generate CCM

Enable CCM

Disable CCMTimer

Send CCM

SetTimer(CCM int.)

StopTimer

State Input

Task Output

SDL blocks:

Decision

(a) SDL Finite State Machine for CCM generation

CCM reception

Disabled

Enabled

Calc. delay

Enable CCM

Dis. CCMTimer

Send report

SetTimer(timeout)

StopTimer

Wait for CCM msg

c == 100

Upd count (c)

Pkt in

Store delay

(b) SDL Finite State Machine for CCM reception

Fig. 5 SDL Finite State Machines [20] required for implementing the one-way delay measurement based
on CCM as illustrated in the exemplary scenario of Fig. 4

679

1 3

Journal of Network and Systems Management (2020) 28:660–692

<xml version=” ats ”>
<datamodel>
<data id=”port ” type=”port ” expr=” l o c a l ”/>
<data id=”ccm” type=”packet ”>
<expr id=” e th e r d s t ”>00 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0</ expr>
<expr id=” e t h e r s r c ”>00 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0</ expr>
<expr id=” e the r type ”>00 :00</ expr>
. . . a dd i t i ona l header f i e l d s . . .
<expr id=”sn”>0</ expr>
<expr id=”tstamp”>0</ expr>

</data>
<data id=” repor t ” type=” l i s t ” expr=” [] ”/>

</datamodel>
<s t a t e id=” d i s ab l ed ”>
<onex i t>
<send event=” timeout ” de lay=”1 s ”/>

</ onex i t>
<t r a n s i t i o n event=” enable ” t a r g e t=” enabled ”/>

</ s t a t e>
<s t a t e id=” enabled ”>
<onenter event=” pkt in ” type=”packet ” data=”ccm”

>
< i f expr=”ccm . e t h e r s r c == 00 : 1 1 : 2 2 : 0 0 : 0 0 : 1 1 &&

ccm . e th e r d s t == 00 : 1 1 : 2 2 : 0 0 : 0 0 : 2 2 ”>
<a s s i gn ta r g e t=” repor t ” expr=” repor t + [time .

now − ccm . tstamp] ”/>
<send ta rg e t=”port ” type=”packet ” data=”ccm”/>
< i f expr=”ccm . sn == 100”>

<send ta rg e t=” c t r l ” type=” l i s t ” data=” repor t ”
/>

</ i f>
</ i f>

</ onenter>
<onex i t event=” timeout ”>
<send ta rg e t=” c t r l ” type=” l i s t ” data=” repor t ”/>
<send event=” d i s ab l e ”/>

</ onex i t>
<t r a n s i t i o n event=” pkt in ” ta r g e t=” enabled ”/>
<t r a n s i t i o n event=” d i s ab l e ” t a r g e t=” d i s ab l ed ”/>
<t r a n s i t i o n event=” timeout ” ta r g e t=” d i s ab l ed ”/>

</ s t a t e>
</xml>

Code 2 ATS code implementing the state machine for CCMreception illustrated
in Fig. 5b.

<send>: this element is used to send events and data to external systems (e.g.,
to the network controller or to the data plane) and to raise events in the current sys-
tem (e.g., raise a timer). This element can be used to express the SDL Output block
and be leveraged, e.g., to fire an alarm from the switch to the network controller.
Moreover, in conjunction with the port and packet data types, <send> can be used
to transmit packets.

Code 1 and Code 2 show the ATS state machines implementing the one-way
delay measurement described in Sect. 4.1. Particularly, Code 1 depicts the ATS
state machine (flowchart shown in Fig. 5a) configured by the network controller on
the M1 switch for generating CCM messages. This is the FSM sent by the network

680 Journal of Network and Systems Management (2020) 28:660–692

1 3

controller to the M1 switch in step (5) of Fig. 4. Similarly, Code 2 presents the ATS
state machine (flowchart shown in Fig. 5b) for computing the one delay based on
received CCM messages on the M2 switch. This is the FSM sent by the network
controller to the M2 switch in step (4) of Fig. 4. As it can be noticed, the <data>
element in the data model allows defining custom packets by concatenating multiple
<expr> elements which represent the header and the payload structure. This is use-
ful to create and manipulate packets to be transmitted (e.g., increment the sequence
number) and to decode the received packets according to a defined structure. These
packets can be then transmitted or received over the LOCAL port defined in the data
model. Additionally, the reserved port ctrl is provided by the ATS agent to allow
communication to and from the network controller (e.g., to send the delay report).
Moreover, the ATS agent provides the data type time to access the clock on the
switch (i.e., current time available via time.now). Finally, the Event I/O Process pro-
vides the event pkt_in to trigger a state transition when a packet is received.

5 Experimental Evaluation

This section presents the experimental evaluation of ATS performance against leg-
acy OpenFlow-based implementations. Figure 6 shows an overview of the testbed
used, comprising two machines equipped with an Intel Xeon E5-2620 processor,
128GB of RAM, and running Ubuntu 18.04 Server. One machine is used as net-
work controller while the other is used to emulate the topology of one access ring
(see Fig. 2), which comprises one M2 node, six M1 nodes, and thirty-six antenna
sites. The M1 nodes are assumed to be configured in a ring topology only at opti-
cal level. At logical level instead, they are connected point-to-point to their corre-
sponding gateway (M2 node). This means that packets are enqueued only at gateway
level, thus forming a logical tree topology (see Fig. 6), which comprises a total of 43
nodes and 84 ports. Each node is then implemented as an LXD13 container, which
runs inside the ATS agent and Open vSwitch14 as OpenFlow agent implementation.

The legacy-SDN implementation of the OAM protocols (see Sect. 3.1) is based
on the OpenFlow controller Ryu.15 Regarding the ATS implementation, the ATS
agent translates the XML-based finite state machine into a JavaScript representa-
tion. We then used SCION-CORE16 as interpreter for these procedures, which are
executed on nodejs,17 a lightweight event-driven environment. PCAP18 and nano-
timer19 nodejs modules are used as packet-event I/O processor and high-precision

13 https ://linux conta iners .org/lxd/intro ducti on/.
14 https ://www.openv switc h.org/.
15 https ://osrg.githu b.io/ryu/.
16 https ://githu b.com/jbear d4/SCION -CORE.
17 https ://nodej s.org/.
18 https ://githu b.com/node-pcap/node_pcap.
19 https ://githu b.com/Krb68 6/nanot imer.

https://linuxcontainers.org/lxd/introduction/
https://www.openvswitch.org/
https://osrg.github.io/ryu/
https://github.com/jbeard4/SCION-CORE
https://nodejs.org/
https://github.com/node-pcap/node_pcap
https://github.com/Krb686/nanotimer

681

1 3

Journal of Network and Systems Management (2020) 28:660–692

timer, respectively. The results reported in the following are obtained by averaging
100 runs of each experiment.

5.1 Delay Measurement

The first objective is to evaluate the legacy-SDN and ATS accuracy in measuring the
one-way and two-way link delay. To that end, we implemented the CCM and LBM
mechanisms on both systems and compared them against the baseline measurement
obtained with the ping tool. It is worth highlighting that the ping is a network layer
mechanism (i.e., IP) that is not usually available on the traditional switches operat-
ing at the data-link layer (e.g., Ethernet). Nevertheless, such a tool is available on
our testbed because the nodes of the network are implemented on LXD, which pro-
vides a full-fledged operating system environment. Moreover, we used tc,20 which
is a traffic control tool for Linux systems, to configure a fixed delay of 1ms on the
virtual links connecting the various switch instances.

The delay is then measured for an increasing number of simultaneously active
ports and message generation interval. While the number of ports provides an esti-
mation of how well the network controller scales with respect to the number of
switches under its management, the message generation interval provides an esti-
mation of how well the network controller scales with respect to the freshness of
the measurements (e.g., the values are updated every 100ms). To assess the first
scalability aspect, we gradually activated a growing number of ports, starting from
1, with an incremental step of 4 ports until reaching 84 ports being simultaneously
active. That is, we tested the systems under the scenarios of 1 active port, 4 ports,
8 ports, etc., until 84 ports. Regarding the second scalability aspect, we selected the
three highest transmission rates defined in [18], which result in a generation inter-
vals of 3.3ms , 10ms , 100ms , respectively (see Sect. 2.4). Finally, we performed 100
runs for each of the scenarios obtained by combining the number of active ports and
the message interval.

Figure 7a, b show the results for the one-way and two-way delay measurement,
respectively. Noticeably, Fig. 7b shows that the round-trip delays measured via ATS
and ping are comparable and they do not depend on the number of active ports nor
on the message interval. This is also highlighted in Table 2 which reports the sta-
tistical characteristics of the delay measurements. More precisely, ping reports an
average two-way delay of 2.10ms which matches the value reported by our LBM
implementation on ATS. For what concerns the one-way delay, we consider ping/2
as a baseline since our testbed is characterized by symmetric links. Moreover, since
all the switches are running on the same physical machine, we can safely compute
the one-way delay with CCM messages because all the containers share the same
CPU clock (see Sect. 5.4 for additional considerations). According to these consid-
erations, the one-way delay obtained with ping/2 is 1.05ms . As expected, the CCM
implementation on ATS reports an average one-way delay of 1.05ms , matching the

20 http://tldp.org/HOWTO /Traffi c-Contr ol-HOWTO /intro .html.

http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

682 Journal of Network and Systems Management (2020) 28:660–692

1 3

ping/2 value. Therefore, ping and our ATS implementation provide similar accuracy
in measuring the one-way and two-way delay. It is worth highlighting that Fig. 7a, b
do not show the confidence intervals for the ping and ATS data because they are not
graphically appreciable.

Regarding the legacy-SDN solution, the measured delay depends on the number
of active ports and on the configured message interval. More precisely, the delay
measurement closest to ping and ATS occurs in case of 1 active port and a message
interval of 10ms for both CCM and LBM messages. In the case of CCM, the net-
work controller reports an average of one-way delay of 2.96ms . In the case of LBM
instead, the network controller reports an average of two-way delay of 5.74ms . In
both cases, the reported value is ∼ 300% higher than the delay measured by ATS
and ping because every message sent over the data plane requires two additional
messages on the control plane. As it can be evinced in Fig. 7a, b, the delay meas-
ured by the network controller significantly increases with the number of ports and
with smaller message generation intervals. The highest values for the one-way delay
is obtained in case of 84 ports and a message interval of 10ms (similar results are
obtained in case of 3.3ms). The average delay with CCM is 313.77ms . Similarly,
the highest values for the two-way delay are obtained in case of 84 ports and a mes-
sage interval of 3.3ms with an average measured delay of 4679.80ms . It is clear that
the delay measured by the controller is far from the reality, being several orders of
magnitude larger than the reference value.

By comparing the above results with the performance requirements for low-
latency and high-reliability scenarios defined by 3GPP [1], we can see that measur-
ing the delay with legacy-SDN does not provide the necessary accuracy for criti-
cal services. For instance, 3GPP defines that discrete automation traffic requires a
maximum end-to-end latency of 10ms and a jitter of 100 μs. Electricity distribution
instead requires an end-to-end latency of 5ms and a jitter of 1ms . Even in the most
favorable case in legacy-SDN of measuring the one-way delay on 1 port at a time,
the jitter on a single link is reported as 0.37ms , which is above the maximum admis-
sible value for discrete automation. Similarly, with 4 simultaneously active ports in
legacy-SDN, the one-way measured delay is 4.61ms with a jitter of 0.77ms . This
makes difficult to assess, i.e., whether the 5ms end-to-end requirement is met for the
electricity distribution service. On the contrary, with our implementation of ATS we
can safely measure the delay with a very limited jitter (e.g., 30 μs in case of CCM

Fig. 6 Testbed overview and components

683

1 3

Journal of Network and Systems Management (2020) 28:660–692

over one link). By reporting the measurements obtained by ATS, the network con-
troller can hence safely decide whether a link is suitable for a given set of services,
even the strictest ones requiring a maximum jitter of 100 μs.

5.2 Connectivity Status

The second objective is to evaluate how effectively the CCM and LBM messages
can be used to detect the link status. Also, in this case, the evaluation is performed
for an increasing number of simultaneously active ports (i.e., from 4 to 84 with a
step of 4) and message generation interval (i.e., 3.3ms , 10ms , 100ms). As it can
be evinced from the previous evaluation, the overload suffered by the legacy-SDN
controller produces an over-estimation of the link delay as a side effect. Since the
network controller is not capable of generating and processing the CCM and LBM
messages in time for all the ports, the network controller starts queuing the mes-
sages. This produces a gradual increment of the time gap between two subsequent
messages, thus deviating from the configured interval. Figure 8a, b highlight the
diverging trend for CCM and LBM, respectively, by depicting the time difference

(a) One-way delay measurement with CCM messages (b) Two-way delay measurement with LBM messages

Fig. 7 Scalability of delay measurement with ping, legacy-SDN controller, and ATS

Table 2 Statistical characteristics of the delay (in ms) measured with ping, legacy-SDN controller, and
ATS

Scenario Solution #Ports Tx interval Mean 5th pctl 95th pctl Mode Median Std

One-way
(CCM)

Ping/2 Any Any 1.05 1.02 1.08 1.05 1.05 0.02
ATS Any Any 1.05 1.01 1.10 1.05 1.05 0.03
SDN 1 10 2.96 2.66 3.46 2.81 2.90 0.37
SDN 84 10 313.77 260.98 531.49 298.43 295.40 88.23

Two-way
(LBM)

Ping Any Any 2.10 2.04 2.16 2.10 2.10 0.04
ATS Any Any 2.10 2.06 2.14 2.06 2.10 0.03
SDN 1 10 5.74 5.10 6.36 5.44 5.48 0.43
SDN 84 3.3 4679.80 667.61 8852.62 622.69 4806.67 2640.45

684 Journal of Network and Systems Management (2020) 28:660–692

1 3

measured between subsequent messages for an increasing number of ports and dif-
ferent message generation intervals. The results show that ATS is capable of gen-
erating the messages in compliance with the configured interval regardless of the
protocol and the number of active ports as reported in Table 3.

Regarding the legacy-SDN solution, in case of 1 active port, the network control-
ler generates CCM and LBM messages with an interval quite close to the target one
as shown in Table 3. In the case of 84 ports instead, the average message interval
significantly diverges from the target one. For instance, CCM messages are gener-
ated with an average interval of 73.85ms for the 3.3ms case, 71.13ms for the 10ms
case, and 101.62ms for the 100ms case. LBM messages instead are generated with
an average interval of 440.20ms for the 3.3ms case, 426.76ms for the 10ms case,
and 124.54ms for the 100ms case. Additional statistical characteristics are reported
in Table 3 for the extreme cases of CCM and LBM generated every 3.3ms on 84
ports.

By comparing the above results with [1], we can see that supervising the con-
nectivity status with legacy-SDN does not provide the necessary responsiveness for
critical services. For instance, the electricity distribution the process automation
services are characterized by a survival time of 10ms and 100ms , respectively. The
survival time indicates the admissible maximum time for restoring the connectiv-
ity in case of a link failure or in case the delay requirement is no longer met (see
Sect. 5.1). According to the CCM protocol [18], a connectivity failure is detected
if no heartbeat messages are received within 3.5 times the configured interval (e.g.,
11.55ms in 3.3ms case). Given the precision of ATS in periodically generating the
messages, it is easy to detect whether no heartbeat messages are received before the
timeout expiration. However, this is not the case for legacy-SDN since the increas-
ing gap between two subsequent messages yields to a considerable amount of false-
positive failure detection. For instance, in the extreme case of 84 ports and 3.3ms
target interval, CCM messages are generated every 73.85ms , which is considerably
higher than the timeout of 11.55ms for detecting link failure. In our setup, this does
not occur for the 100ms case, thus allowing legacy-SDN to detect a connectivity

(a) Average time gap between two
subsequent CCM messages

(b) Average time gap between two
subsequent LBM messages

Fig. 8 Scalability of message generation for legacy-SDN controller and ATS

685

1 3

Journal of Network and Systems Management (2020) 28:660–692

failure within 350ms . Still, this provides a measurement granularity of 100ms which
is not sufficient to comply with the survival time requirements (Table 4).

As it can be noticed, the survival time for the electricity distribution flow is
10ms , which is smaller than the timeout of 11.55ms when generating messages
every 3.3ms . Therefore, a smaller message interval is required to comply with that
requirement. While this is easily achievable with ATS by simply updating the ATS
state machine, it is undeniably harder in the legacy-SDN solution because of the
scalability issues already appreciable with higher intervals. Moreover, the control
plane delay may be taken into account to select the most appropriate message inter-
val for the data plane. For example, in case of a control plane delay of 2ms , a mes-
sage interval of 1ms would allow the network controller to receive a notification
(e.g., link failure, maximum delay exceeded, etc.) within 5.5ms , thus leaving 4.5ms
to restore the connectivity in case of a survival time of 10ms . Finally, with this noti-
fication mechanism, ATS allows offloading the control plane by only transmitting
information upon initial configuration and when certain conditions occur in the
data plane. For instance, the message exchange for configuring the ATS procedure
weights 7710 bytes while the notification weights 394 bytes, both including the pro-
tocols overhead: HTTP, TCP, IP, and Ethernet.

5.3 Bandwidth Measurement

The last objective is to evaluate the legacy-SDN and ATS accuracy in measuring
the bandwidth available on a link. Similar to the previous cases, the evaluation is
performed for an increasing number of simultaneously active ports (i.e., from 4
to 84 with a step of 4). In this case, messages are generated as fast as possible in
order to saturate the available bandwidth. Figure 9a shows the control plane load
and the bandwidth measured on the data plane by the network controller in case of
legacy-SDN solution. Notably, the control plane load remains constant regardless
of the protocol (i.e., CCM or LBM) and the number of active ports. This is because
the network controller is capable of generating only a fixed amount of packets per

Table 3 Statistical characteristics of the message generation interval (in ms) with legacy-SDN controller
and ATS

Solution Message #Ports Target int Mean 5th pctl 95th pctl Mode Median Std

ATS CCM/LBM Any 3.3 3.30 3.27 3.33 3.30 3.30 0.16
CCM/LBM Any 10 10.00 9.97 10.03 10.00 10.00 0.12
CCM/LBM Any 100 100.00 99.96 100.04 100.00 100.00 0.24

SDN CCM/LBM 1 3.3 3.52 3.13 3.96 3.47 3.50 0.88
CCM/LBM 1 10 10.24 9.73 10.80 10.24 10.23 0.44
CCM/LBM 1 100 100.33 99.70 101.01 100.46 100.31 2.14
CCM 84 3.3 73.85 54.79 85.79 72.59 69.47 58.17
LBM 84 3.3 440.20 48.94 976.95 449.40 395.59 341.98

686 Journal of Network and Systems Management (2020) 28:660–692

1 3

second. Particularly, the network controller generates an average of 708 packets per
second, which results in an average control-plane load of 12.21 Mbps.

Because of the overhead introduced by the encapsulation of CCM and LBM mes-
sages in OpenFlow messages between the network controller and the switches, only
an average of 8.25 Mbps is then forwarded on the data plane. Since the number of
generated packets is constant, these are spread over all the active ports resulting in
a measured bandwidth inversely proportional to the number of ports as shown in
Fig. 9a. In the case of 84 ports, the average bandwidth measured per port is 0.146
Mbps with CCM, while it is 0.022 Mbps with LBM. As it can be noticed, the band-
width values provided by CCM are higher than LBM because CCM involves the
generation of fewer packets compared to LBM (see Fig. 3a, b). This is further high-
lighted in the case of LBM by the controller saturation starting with 64 ports.

Moreover, we compare the obtained measurements with the maximum theoreti-
cal bandwidth measurable on the data plane by carrying the CCM and LBM mes-
sages as a payload over the TCP-based OpenFlow control channel. The achievable
throughput for data transmitted over TCP is ∼ 75% of the available link bandwidth.21
In our scenario, the control plane bandwidth is shared among all the connected
switches. Figure 9a) shows that the experimental results follow the same trend as the
theoretical value (gray line). This implies that even if the network controller is capa-
ble of generating messages at the desired rate, the bandwidth measurement would
always be distorted by the TCP connection used in the OpenFlow control channel.

Figure 9b shows the one-way bandwidth measurement over one link performed
with legacy-SDN and ATS. It is worth noticing that the virtual links in our testbed
have no fixed speed, meaning that the available bandwidth is determined by how
fast the physical machine can send a message from one virtual switch to another.
To that end, we also measure the bandwidth with Iperf,22 which is a software-
based tool widely used for active bandwidth measurement.23 The results obtained
with Iperf are hence used as our comparison baseline. Consequently, we configured
Iperf to generate UDP packets to be comparable with CCM where messages are not

Table 4 Statistical characteristics of the bandwidth (in Mbps) measured with Iperf, legacy-SDN control-
ler, and ATS with 1 active port

Solution Message #CPU Mean 5th pctl 95th pctl Mode Median Std

Iperf UDP 1 1543 1487 1595 1526 1544 33
ATS CCM 1 677 587 758 622 682 59

CCM 2 1186 1032 1347 1210 1178 99
CCM 4 2186 1946 2434 2168 2167 156
CCM 8 3970 3614 4334 3955 3499 234

SDN CCM 1 8.25 4.72 12.33 8.45 7.69 2.87

21 https ://www.netcr aftsm en.com/tcpip -perfo rmanc e-facto rs/.
22 https ://iperf .fr/.
23 Iperf measurements are based on UDP or TCP sessions.

https://www.netcraftsmen.com/tcpip-performance-factors/
https://iperf.fr/

687

1 3

Journal of Network and Systems Management (2020) 28:660–692

acknowledged. On our platform, Iperf is capable of generating an average of 1.543
Gbps, while ATS running on a single CPU core is capable of generating an average
of 0.677 Gbps. By increasing the number of CPU cores simultaneously generating
the messages, ATS linearly increases the measured bandwidth. This is because each
CPU core is capable of generating an average of ∼ 50 000 packets per second on our
system.

By comparing the above results with the performance requirements for high data
rate and traffic density scenarios defined by 3GPP [1], we can see that legacy-SDN
is not capable of measuring whether there is enough bandwidth even for the least
demanding service (15 Mbps of experienced data rate). On the contrary, ATS is
capable of generating more than 1 Gbps with 2 CPU cores, which is the expected
data rate experienced per user in indoor scenarios. Such measurements are expected
to be performed on-demand upon a path configuration request to verify the fulfill-
ment of the bandwidth SLAs. Finally, it is worth highlighting that our ATS imple-
mentation is based on JavaScript for prototyping reasons, while Iperf is written in C,
a language that provides considerably higher performance. Even though we matched
and surpassed the performance of Iperf in generating traffic, this came at the cost of
using more CPU cores.

5.4 Implementation and Deployment Considerations

In addition to the comparative tests previously described, we performed some exper-
iments to obtain deeper insight into ATS, especially in the CCM case. Special atten-
tion is paid to the CPU load and to the scalability with regard to the total number
of ports. Particularly, we addressed the periodic generation of messages over mul-
tiple ports which is causing a computational outage on the legacy-SDN controller.
To avoid such an issue in ATS, we opted for using a packet template stored in a tem-
plate buffer associated with each port. Such an approach allows us to pre-load a tem-
plate of the message on each port and to trigger its transmission every interval. Each
transmission only requires the modification of few bytes in the buffer (e.g., sequence

(a) Legacy-SDN data plane bandwidth
measurement and control plane load

(b) One-way bandwidth
measurement with CCM messages

Fig. 9 Bandwidth measurement with legacy-SDN controller, ATS, and Iperf

688 Journal of Network and Systems Management (2020) 28:660–692

1 3

number) thus reducing the total number of instructions to be executed. We tested our
ATS implementation with a CCM interval of 3.3ms on an emulated switch compris-
ing 256 ports and we observed that the CPU load is: (i) mainly due to the interrupts
generated by the high-precision timer, and (ii) almost independent of the number
of active ports. As a result, our implementation is able to transmit a CCM message
every 3.5ms on each of the 256 ports whilst running on a single core.

A second additional test is performed to understand whether the CPU load gen-
erated by the ATS procedures introduces significant performance variations in the
OpenFlow control plane, negatively affecting the network behavior. To that end, we
analyzed the ATS impact on the time required by the OpenFlow agent to install or
delete rules. The test puts under stress the system by running the ATS bandwidth
measurement procedure (see Sect. 5.3) in all ports, resulting in a CPU load of 100%.
Two distinct configurations are evaluated: (i) a lower processing priority is assigned
to the ATS agent, and (ii) the same processing priority is assigned to the ATS agent
and the OpenFlow agent. To stress even more the system, we assume a flow arrival
of 1000 OpenFlow rules/s. Figure 10a, b illustrate the results and show that in the
case of no active measurement, the OpenFlow agent process requires an average of
74.13 μs and 65.63 μs to install and delete an OpenFlow rule, respectively. In the
case of running the CPU-intensive ATS procedures (e.g., bandwidth measurement),
the switch respectively requires an average of 90.07 μs and 78.61 μs for respectively
installing and deleting an OpenFlow rule in the case of the ATS process running at
a lower priority. Likewise, the switch requires an average of 108.48 μs and 92.90 μs
when the ATS process runs with the same priority as the OpenFlow agent.

At the light of these results, we can conclude that although the use of ATS (when
performing CPU-intensive operations) impacts the performance of the OpenFlow
control plane, this impact does not prevent the switch to install and delete rules
within a delay of ∼ 108 μs. It is worth highlighting that while the use of the ATS
process with the same priority (i.e., the worst case) introduces an additional delay

(a) (b)

Fig. 10 Time required by the SDN controller to install and delete flows on a switch subject to an average
arrival rate of 1000 flows/s when the CPU is put under load by the ATS agent. Three scenarios are con-
sidered: (i) 0% CPU load, and 100% CPU load when the ATS agent process runs with (ii) a lower prior-
ity and (iii) same priority with regards to the OpenFlow process

689

1 3

Journal of Network and Systems Management (2020) 28:660–692

of ∼ 34 μs, this does not represent a significant variation in the context of the Open-
Flow control plane, which is based on TCP and operates at a longer timescale. To
alleviate this problem, we therefore advise assigning a lower CPU priority to the
ATS process, resulting in a higher reactiveness of the OpenFlow process and in a
mitigation counter-measure against a potential ATS misconfiguration.

To conclude, time synchronization between all the network switches is required
to measure i.e. the one-way delay and to have a common reference time for monitor-
ing. In carrier grade networks there are two widely-adopted options for distribut-
ing the clock (a.k.a. frequency synchronization): IEEE 1588 [16] and Synchronous
Ethernet [19]. The former defines a cost-effective packet-based clock distribution
mechanism capable of providing a timestamp resolution of 8 ns with an accuracy 25
ns. The latter, instead, incorporates in the clock signal in the Ethernet physical layer,
that is no ad-hoc messages for synchronization are sent, and it is capable of provid-
ing sub-nanosecond accuracy. While the former option still provides good accuracy
for monitoring whilst being cheaper than the latter, it may occur that the clock distri-
bution messages interfere with the network measurements and vice-versa.

Therefore, it is important to configure appropriate QoS policies on the switches
so as to avoid the disruption of the clock distribution eventually caused by the net-
work measurements. One possible solution is to assign a higher priority to the pack-
ets essential for clock synchronization and a lower priority to the packets required
for network measurement. A comprehensive analysis of the available solutions for
achieving clock synchronization over a packet-based network can be found in [23].

6 Conclusions

This article has identified a gap between current SDN solutions and carrier grade
network requirements under OAM point of view. An analysis of widely-deployed
OAM and SDN technologies has been hence performed showing that the stateless
nature of OpenFlow poses significant scalability and accuracy problems in moni-
toring and managing the network. To overcome these issues, this paper proposes
an Adaptive Telemetry System, namely ATS, to enable locally on the switches
active measurements (e.g., delay, bandwidth, etc.) and their reporting (e.g., alarms).
The design approach chosen for ATS showed to provide compatibility with stand-
ard OpenFlow switches and controllers. An Application Programming Interface
(API) has been defined for enabling the remote configuration of telemetry proce-
dures, which adopt a Finite State Machine (FSM) implementation. This enables the
switches to locally execute the stateful procedures required for active monitoring.

Finally, an experimental evaluation has been presented, showing the benefits
of ATS compared to legacy-SDN solutions. Particularly, ATS proved to bring sig-
nificant benefits in terms of offloading the control plane (and network controller)
and higher accuracy in the performed measurements, which comply with the per-
formance requirements defined by 3GPP for 5G networks. To that end, the delay
and bandwidth measurements obtained with ATS have proven to match the ones
obtained with reference non-SDN tools, while providing higher flexibility in the

690 Journal of Network and Systems Management (2020) 28:660–692

1 3

type of measurements that could be performed. Furthermore, ATS proved to be able
to manage the periodical generation of messages over a large number of ports (up
to 256) while running on a single CPU core. Finally, we provided some implemen-
tation insights on ATS and some deployment considerations regarding the process
scheduler on the switch and the clock distribution in the network.

Acknowledgements This work has been partially funded by the H2020 Framework Programme Europe/
Taiwan joint action 5G-DIVE Project (Grant No. 859881), by the H2020 Framework Programme EU
5G-Transformer Project (Grant No. 761586), and by the H2020 Framework Programme EU 5Growth
Project (Grant No. 856709).

References

 1. 3GPP: Service requirements for next generation new services and markets. TS 22.261, 3rd Genera-
tion Partnership Project (3GPP) (2018)

 2. 3GPP: System Architecture for the 5G System. TS 23.501, 3rd Generation Partnership Project
(3GPP) (2018)

 3. Bari, M.F., Chowdhury, S.R., Ahmed, R., Boutaba, R.: Policycop: An autonomic qos policy
enforcement framework for software defined networks. In: 2013 IEEE SDN for Future Networks
and Services (SDN4FNS), pp. 1–7 (2013). https ://doi.org/10.1109/SDN4F NS.2013.67025 48

 4. Bernardos, C.J., de la Oliva, A., Serrano, P., Banchs, A., Contreras, L.M., Jin, H., Zuniga, J.C.:
An architecture for software defined wireless networking. IEEE Wirel. Commun. 21(3), 52–61
(2014). https ://doi.org/10.1109/MWC.2014.68450 49

 5. Bianchi, G., Bonola, M., Capone, A., Cascone, C.: Openstate: Programming platform-independ-
ent stateful openflow applications inside the switch. SIGCOMM Comput. Commun. Rev. 44(2),
44–51 (2014). https ://doi.org/10.1145/26022 04.26022 11

 6. Bifulco, R., Boite, J., Bouet, M., Schneider, F.: Improving sdn with inspired switches. In: Pro-
ceedings of the Symposium on SDN Research, SOSR ’16, pp. 11:1–11:12. ACM, New York
(2016). https ://doi.org/10.1145/28909 55.28909 62

 7. Bosshart, P., Gibb, G., Kim, H.S., Varghese, G., McKeown, N., Izzard, M., Mujica, F., Horow-
itz, M.: Forwarding metamorphosis: Fast programmable match-action processing in hardware for
sdn. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13,
pp. 99–110. ACM, New York (2013). https ://doi.org/10.1145/24860 01.24860 11

 8. Bram, N., Mario, K., Sofie, V., Didier, C., Mario, P.: How can a mobile service provider reduce
costs with software-defined networking? Int. J.Netw. Manag. 26(1), 56–72 (2015). https ://doi.
org/10.1002/nem.1919

 9. Cascone, C., Sanvito, D., Pollini, L., Capone, A., Sansò, B.: Fast failure detection and recov-
ery in SDN with stateful data plane. Int. J. Netw. Manag. 27(2), e1957 (2017). https ://doi.
org/10.1002/nem.1957

 10. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954, Internet Engineering
Task Force (IETF) (2004)

 11. Claise, B., Trammell, B., Aitken, P.: Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of Flow Information. RFC 7011, Internet Engineering Task Force
(IETF) (2013)

 12. Egilmez, H.E., Civanlar, S., Tekalp, A.M.: An optimization framework for qos-enabled adaptive
video streaming over openflow networks. IEEE Trans. Multimed. 15(3), 710–715 (2013). https ://
doi.org/10.1109/TMM.2012.22326 45

 13. Guck, J.W., Bemten, A.V., Reisslein, M., Kellerer, W.: Unicast qos routing algorithms for SDN:
a comprehensive survey and performance evaluation. IEEE Commun. Surv. Tutor. 20(1), 388–
415 (2018). https ://doi.org/10.1109/COMST .2017.27497 60

 14. Gupta, A., Harrison, R., Canini, M., Feamster, N., Rexford, J., Willinger, W.: Sonata: Query-
driven streaming network telemetry. In: Proceedings of the 2018 Conference of the ACM Special

https://doi.org/10.1109/SDN4FNS.2013.6702548
https://doi.org/10.1109/MWC.2014.6845049
https://doi.org/10.1145/2602204.2602211
https://doi.org/10.1145/2890955.2890962
https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1002/nem.1919
https://doi.org/10.1002/nem.1919
https://doi.org/10.1002/nem.1957
https://doi.org/10.1002/nem.1957
https://doi.org/10.1109/TMM.2012.2232645
https://doi.org/10.1109/TMM.2012.2232645
https://doi.org/10.1109/COMST.2017.2749760

691

1 3

Journal of Network and Systems Management (2020) 28:660–692

Interest Group on Data Communication, SIGCOMM’18, pp. 357–371. ACM, New York (2018).
https ://doi.org/10.1145/32305 43.32305 55

 15. IEEE: Connectivity Fault Management. Standards for Local and metropolitan area networks
8021.ag. Piscataway, Institute of Electrical and Electronics Engineers (2007)

 16. IEEE: Precision Clock Synchronization Protocol. Standard for Networked Measurement and
Control Systems 1588. Piscataway, Institute of Electrical and Electronics Engineers (2008)

 17. IEEE: Bridges and Bridged Networks Amendment: YANG Data Model. Standards for Local and
metropolitan area networks 802.1Qcp. Piscataway, Institute of Electrical and Electronics Engi-
neers (2017)

 18. ITU-T: Operations, administration and maintenance (OAM) functions and mechanisms for Eth-
ernet-based networks. Reccomendation G.8013/Y.1731. ITU Telecommunication Standardiza-
tion Sector, Geneva (2015)

 19. ITU-T: Timing characteristics of a synchronous Ethernet equipment slave clock. Reccomenda-
tion G.8262. ITU Telecommunication Standardization Sector, Geneva (2015)

 20. ITU-T: Characteristics of Ethernet transport network equipment functional blocks. Reccomenda-
tion G.8021/Y.1341. ITU Telecommunication Standardization Sector, Geneva (2016)

 21. ITU-T: Specification and Description Language—Comprehensive SDL-2010. Reccomendation
Z.102. ITU Telecommunication Standardization Sector, Genava (2016)

 22. ITU-T: Consideration on 5G transport network reference architecture and bandwidth require-
ments. Contribution 0462. ITU Telecommunication Standardization Sector, Study Group 15,
Genava (2018)

 23. Lévesque, M., Tipper, D.: A survey of clock synchronization over packet-switched networks.
IEEE Commun. Surv. Tutor. 18(4), 2926–2947 (2016). https ://doi.org/10.1109/COMST
.2016.25904 38

 24. McKeown, N.: Software-defined networking. INFOCOM Keynote Talk 17(2), 30–32 (2009)
 25. MEF: Service OAM Fault Management YANG Module. Specification MEF 38. Metro Ethernet

Forum, Los Angeles (2012)
 26. MEF: Service OAM Performance Monitoring YANG Module. Specification MEF 39. Metro Eth-

ernet Forum, Los Angeles (2012)
 27. Moshref, M., Bhargava, A., Gupta, A., Yu, M., Govindan, R.: Flow-level state transition as a

new switch primitive for sdn. In: Proceedings of the Third Workshop on Hot Topics in Soft-
ware Defined Networking, HotSDN ’14, pp. 61–66. ACM, New York (2014). https ://doi.
org/10.1145/26207 28.26207 29

 28. ONF: OpenFlow switch specification. Version 1.5.1, Open Networking Foundation (2015)
 29. Phaal, P., Panchen, S., McKee, N.: InMon Corporation’s sFlow: A Method for Monitoring Traffic

in Switched and Routed Networks. RFC 3176. Internet Engineering Task Force, Fremont (2001)
 30. Pontarelli, S., Bifulco, R., Bonola, M., Cascone, C., Spaziani, M., Bruschi, V., Sanvito, D., Sira-

cusano, G., Capone, A., Honda, M., Huici, F., Siracusano, G.: Flowblaze: stateful packet pro-
cessing in hardware. In: 16th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pp. 531–548. USENIX Association, Boston, MA (2019)

 31. Sonchack, J., Aviv, A.J., Keller, E., Smith, J.M.: Turboflow: Information rich flow record gen-
eration on commodity switches. In: Proceedings of the Thirteenth EuroSys Conference, Euro-
Sys’18, pp. 11:1–11:16. ACM, New York (2018). https ://doi.org/10.1145/31905 08.31905 58

 32. Sonchack, J., Michel, O., Aviv, A.J., Keller, E., Smith, J.M.: Scaling hardware accelerated net-
work monitoring to concurrent and dynamic queries with flow. In: 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18), pp. 823–835. USENIX Association, Boston, MA (2018)

 33. Tilmans, O., Bühler, T., Poese, I., Vissicchio, S., Vanbever, L.: Stroboscope: Declarative net-
work monitoring on a budget. In: 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pp. 467–482. USENIX Association, Renton, WA (2018)

 34. Tomovic, S., Prasad, N., Radusinovic, I.: Sdn control framework for qos provisioning. In:
2014 22nd Telecommunications Forum Telfor (TELFOR), pp. 111–114 (2014). https ://doi.
org/10.1109/TELFO R.2014.70343 69

 35. Tomovic, S., Radusinovic, I., Prasad, N.: Performance comparison of qos routing algorithms
applicable to large-scale sdn networks. In: IEEE EUROCON 2015-International Confer-
ence on Computer as a Tool (EUROCON), pp. 1–6 (2015). https ://doi.org/10.1109/EUROC
ON.2015.73136 98

https://doi.org/10.1145/3230543.3230555
https://doi.org/10.1109/COMST.2016.2590438
https://doi.org/10.1109/COMST.2016.2590438
https://doi.org/10.1145/2620728.2620729
https://doi.org/10.1145/2620728.2620729
https://doi.org/10.1145/3190508.3190558
https://doi.org/10.1109/TELFOR.2014.7034369
https://doi.org/10.1109/TELFOR.2014.7034369
https://doi.org/10.1109/EUROCON.2015.7313698
https://doi.org/10.1109/EUROCON.2015.7313698

692 Journal of Network and Systems Management (2020) 28:660–692

1 3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Luca Cominardi received his Bachelor’s and Master’s degrees in Computer Science at the University of
Brescia, Italy, in 2010 and 2013, respectively. He received his Master’s degree and Ph.D. in Telematics
Engineering from the University Carlos III of Madrid (UC3M), Spain, in 2014 and 2019, respectively.
Starting from 2019 he is a Senior Technologist at ADLINK Technology working on edge and fog com-
puting as well as distributed systems. He is an active contributor to the Eclipse Edge Native Working
Group and ETSI MEC Working Group, serving also as rapporteur in the latter. He has published more
than 15 papers in international journals and issued 5 patents.

Sergio Gonzalez‑Diaz received his Bachelor’s and Master’s degrees in telematics engineering from the
University Carlos III of Madrid (UC3M) in 2015 and 2017 respectively. Currently he is working at
UC3M, where he is also pursuing his Ph.D. in the same field, focusing his research on programmable
networks and network virtualization, on which he has published several papers in international confer-
ences and journals.

Antonio De La Oliva received his telecommunications engineering degree in 2004 and his Ph.D. in 2008
from the Universidad Carlos III Madrid (UC3M), Spain, where he has been an associate professor since
then. He is an active contributor to IEEE 802 where he has served as Vice-Chair of IEEE 802.21b and
Technical Editor of IEEE 802.21d. He has also served as a Guest Editor of IEEE Communications Maga-
zine. He has published more than 30 papers on different networking areas.

Carlos J. Bernardos received the degree in telecommunication engineering and the Ph.D. degree in tele-
matics from the University Carlos III of Madrid (UC3M), in 2003 and 2006, respectively. From 2003 to
2008, he was a Research and Teaching Assistant with UC3M, where he has been an Associate Professor,
since 2008. He has published over 100 scientific papers in prestigious international journals and confer-
ences. He is an active contributor to IETF since 2005, e.g. to AUTOCONF, MEXT, NETEXT, DMM,
MULTIMOB, SDNRG and NFVRG working/research groups, being co-author of more than 30 contribu-
tions, 10 RFCs, has co-chaired the IETF P2PSIP WG, and currently co-chairs the IPWAVE WG and the
Internet Area Directorate (INTDIR). He visited the Computer Laboratory of University of Cambridge
in 2004 and the University of Coimbra in 2005. He has worked in several EU funded projects, being the
technical manager of the FP7 MEDIEVAL and H2020 5G-Exchange projects, and the Project Coordina-
tor of the 5G-TRANSFORMER and 5Growth projects. His current work focuses on virtualization applied
to 5G networks.

Affiliations

Luca Cominardi1 · Sergio Gonzalez‑Diaz2 · Antonio de la Oliva2 ·
Carlos J. Bernardos2

 Sergio Gonzalez-Diaz
 serggonz@pa.uc3m.es

 Antonio de la Oliva
 aoliva@it.uc3m.es

 Carlos J. Bernardos
 cjbc@it.uc3m.es

1 ADLINK Technology, Saint-Aubin, France
2 University Carlos III of Madrid, Madrid, Spain

	Adaptive Telemetry for Software-Defined Mobile Networks
	Abstract
	1 Introduction
	2 Background and Overview
	2.1 SDN and OpenFlow in a Glimpse
	2.2 Passive and Active Monitoring in a Glimpse
	2.3 SDN-based Management in a Glimpse
	2.4 Current OAM Protocols in a Glimpse
	2.4.1 Continuity Check
	2.4.2 Loopback
	2.4.3 Link Trace

	2.5 5G Network and Services in a Glimpse

	3 Challenges in Actively Monitoring an OpenFlow Mobile Network at Scale
	3.1 Active Monitoring with OpenFlow Switches
	3.1.1 Connectivity Check
	3.1.2 Loopback
	3.1.3 Link Trace

	3.2 Towards a Stateful OpenFlow?

	4 Design of an Adaptive Telemetry System
	4.1 Exemplary Scenario
	4.2 ATS Procedures Modeling

	5 Experimental Evaluation
	5.1 Delay Measurement
	5.2 Connectivity Status
	5.3 Bandwidth Measurement
	5.4 Implementation and Deployment Considerations

	6 Conclusions
	Acknowledgements
	References

	Página en blanco

