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Abstract

It is now commonly agreed that future 5G Networks will build upon the network
slicing concept. Network slicing is an emerging paradigm in mobile networks that
leverages Network Funection Virtualization (NFV) to enable the instantiation of multiple
logically independent copies -named slices- of a same physieal network infrastructure.
The operator can allocate to each slice dedicated resources and customized functions that
allow meeting the highly heterogeneous and stringent requirements of modern mobile
services. Managing functions and resources under network slicing is a challenging task
that requires making efficient decisions at all network levels and in real-time, which can
be achieved by integrating Artificial Intelligence (AI) in the network.

This thesis investigates the potential of Al for sliced mobile networks. In partieular
it focuses on resource allocation and orchestration for network slices. This involves two
steps: (i)Admission Control that is responsible to decide which slices can be admitted
to the network, and (ii) Network resource orchestration that dynamieally allots to the
admitted slices the necessary resources for their operation.

Network Slicing will have an impact on the models that sustain the business ecosystem
opening the door to new players: the Infrastructure Provider (InP), which is the owner of
the infrastructure, and the tenants, which may acquire a network slice from the InP
to deliver specific service to their customers. In this new context, how to correctly
handle resource allocation among tenants and how to maximize the monetization of
the infrastructure become fundamental problems that need to be solved. In this thesis
we address this issue by designing a network slice admission control algorithm that (i)
autonomously learns the best acceptance policy while (i) it ensures that the service
guarantees provided to tenants are always satisfied. This includes (i) an analytical model
for the admissibility region of a network slicing-capable 5G Network, (ii) the analysis of
the system (modeled as a Semi-Markov Decision Process) and the optimization of the
infrastructure provider’s revenue, and (iii) the design of a machine learning algorithm
that can be deployed in practical settings and achieves close to optimal performance.

Dynamieally orchestrate network resources is both a eritical and challenging task in
upcoming multi-tenant mobile networks, which requires alloeating capacity to individual
network slices so as to accommodate future time-varying service demands. Such an
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anticipatory resource confipuration process must be driven by suitable predictors that take
into account all the sources of monetary cost associated to network capacity orchestration.
Legacy models that aim at forecasting traffic demands fail to eapture these key economic
aspects of network operation. To close this gap in the second part of this thesis, we
first present DeepCog, a first generation deep neural network architecture inspired by
advances in image processing and trained via a dedicated loss function in order to
deal with monetary cost due to overprovisioning or underprovisioning of networking
capacity. Unlike traditional traffic volume predictors, DeepCog returns a cost-aware
capacity forecast, which can be directly used by operators to take short- and long-term
reallocation decisions that maximize their revenues. Extensive performance evaluations
with real-world measurement data collected in a metropolitan-scale operational mobile
network demonstrate the effectiveness of our proposed solution, which ean reduce
resource management costs by over 50% in practical ecase studies. Then we introduce
AZTEC, a second generation data-driven framework that effectively allocates eapacity to
individual slices by adopting an original multi-timeseale forecasting model. Hinging on
a combination of Deep Learning architectures and a traditional optimization algorithm,
AZTEC anticipates resource assipnments that minimize the comprehensive management
costs induced by resource overprovisioning, instantiation and reconfiguration, as well as
by denied traffic demands. Experiments with real-world mobile data traffic show that
AZTEC dynamically adapts to traffic luctuations, and largely outperforms state-of-the-art
solutions for network resource orchestration.

At the time of writing DeepCog and AZTEC are, to the best of our knowledge, the
only works where a deep learning architecture is explicitly tailored to the problem of

anticipatory resource orchestration in mobile networks.
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Introduction

The expectations that build around future 5G Networks are very high, as the
envisioned Key Performance Indicators (KPIs) represent a giant leap when compared
to legacy 4G/LTE networks. Very high data rates, extensive coverage, sub-ms delays
are just few of the performance metries that 5G networks are expected to boost when
deployed.

This game changer relies on new technical enablers such as Software Defined
Networking (SDN) or Network Funetion Virtualization (NFV) that will bring the network
architecture from a purely hardbor based paradigm (e.g., a eNodeB or a Packet Gateway)
to a completely cloudified approach, in which network functions that formerly were
hardware-based (e.g., baseband processing, mobility management) are implemented as
software NFVs running on a, possibly hierarichical, general purpose feleo-cloud.

Building on these enablers, several novel key concepts have been proposed for next
generation 5G networks [4] (e.g., virtualized Radio Aecess Network (RAN) or Network
Slicing) requiring a re-design of current network functionalities. Among them, Network
Slicing [14] is probably the most important one. Indeed, there is a wide consensus in that
accommodating the very diverse requirements demanded by 5G services using the same
infrastrueture will not be possible with the current, relatively monolithic architecture in
a cost efficient way. In contrast, with network slicing the infrastructure can be divided in
different slices, each of which can be tailored to meet specific service requirements.

A network slice consists of a set of Virtual Network Functions (VNFs) that run
on a virtual network infrastructure and provide a specific telecommunication service.
The services provided are usually typified in macro-categories, depending on the most
important KPIs they target. Enhanced Mobile Broadband (eMBB), massive Machine
Type Communication (mMTC) or Ultra Reliable Low Latency Communieation (URLLC)
are the type of services currently envisioned by, e.g., ITU [15]. Each of these services is
instantiated in a specific network slice, which has especially tailored management and
orchestration algorithms to perform the lifecyele management within the slice.

In this way, heterogeneous services may be provided using the same infrastructure, as



2 Introduction

Al-Based Resource
Orchestration

Minuies
Run-time

Scheduling

e o

Al-Based Radio E

Figure 1.1: Comprehensive network slicing framework. The diagram outlines the
timescales and composition of the key slice management funections.

different telecommunication services (that are mapped to a specific slice) can be configured
independently according to their specific requirements. Additionally, the cloudification of
the network allows for the cost-efficient customization of network slices, as the slices run
on a shared infrastruecture.

1.1. Al-based Slice Management Framework

Much of the complexity in re-designing mobile networks for slicing relates to decision-
making towards an efficient, dynamic management of resources in real-time. There,
Artificial Intelligence (AT) appears as a natural approach to design the various algorithms
employerd by different network functions [16]. As a matter of fact, AI provides a powerful
tool to address highly complex problems that involve large amounts of data. This is
indeed the case with network slicing, where the presence of a large number of slices
each independently operated by a different tenant, drastieally increases the complexity
of the system with respect to legacy non-sliced networks controlled by a single entity,
i.e., the network operator. Also, the sheer amount of data flowing through the network
and potentially relevant to resource allocation decision-making, and the difficulties in
forecasting the overall behavior of a system involving many different players, make
traditional tools for network management insufficient.

Devising a network slicing framework requires novel algorithms to manage the
infrastructure resources, sharing them between the different slices while guaranteeing



1.1 Al-based Slice Management Framework 3

the requirements of each slice will be met [13|. This applies throughout the following
network functions:

m Admission Control is in charge of deciding whether upecoming network slice
requests can be admitted or not in the system, and is enacted so as to ensure that
the requirements of the admitted slices are satisfied.

m Network (re-)orchestration is central to both slice instantiation and run-time
operation, since it allocates the available network resources to the admitted slices
in the most efficient way possible, and then dynamieally updates such an alloeation
at run-time in order to fulfill the time-varying demands of each slice while avoiding
capacity outages.

m Radio resource sharing is paramount at run-time, as it manages the sharing of
radio aceess resources among the network slices, ensuring that potentially stringent
requirements of all the slices (e.g., in terms of latency and throughput) are met over
the air interface.

Figure 1.1 shows the framework that we envisage in this thesis to support network
slicing. This framework gathers components to deal with each of the above functions.
These components involve different phases of the "Network Slice Lifecyele Management”
[17], consisting of four main steps that have to be addressed: (i) preparation; (ii)
instantiation, configuration and activation; (iii) run-time and (iv) de-commissioning.
Each of these phases involves different timeseales: (i) admission control runs at frequencies
that match those of arrivals of new network slices requests, which may be in the order of
hours; (ii) the orchestration of resources in softwarized networks occurs at frequencies that
depend on the time required to re-sizing virtual machines resources, typically in the order
of minutes; and, (iii) scheduling of radio resources applies at a finer granularity, down
to millisecond intervals in extreme cases. It is also worth highlighting that the different
functions (and their associated algorithms) may benefit from mutual interactions. The
information on resource utilization gathered at the network orchestration level can be
leveraged for admission control, where it allows understanding whether admitting a new
slice may lead to problems in provisioning enough capacity for all admitted services.
Similarly, data collected by the resource management function can help an orchestrator
to produce more accurate forecasts of future slice demands for anticipatory resource
allocation.

All functions above need to make decisions to meet the requirements of the individual
slices while maximizing the overall system performance. To this end, they need to learn
the dynamics of per-slice data traffic, and automatically react to their impact on the
network architecture, towards their respective management goals. Self-adapting network
function configurations were introduced over a decade ago [18], however the solutions
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designed so far typically apply control on limited sets of parameters that change slowly in
time (e.g., eNB transmission power). Also, current approaches produce outputs that then
need human intervention to be translated into modifications of the network configuration
(e.g., updating the transport network so as to optimize handovers in a given region).

These characteristics are not compatible with the novel requirements introduced by
network slicing. The parameters that may need reconfipuration are much more numerous,
as each virtual network funetions may expose several of them in a programmatic way. The
timescale at which decisions must be made is drastieally reduced, as one must be ideally
capable of acting at radio level timings or even at wire-speed. Decisions often need to take
into account metrics that go beyond pure network performance, such as energy efficiency
or infrastructure monetization, which may hide complex eross-relationships.

This context provides a fertile ground for Al to become instrumental in mobile network
operation. All classes of AI may be useful to this end, including (i) supervised solutions
that require ground truth data for training, (if) unsupervised techniques that work in
absence of ground truth, and (iii) reinforcement learning approaches where different
forms of interaction with the system that has to be controlled are possible [19]. The
most appropriate Al tools must be selected case by case, depending on the involved
alporithmic requirements and operation timescales.

For instance, reinforcement learning is particularly well snited when the time dynamics
of the problem can accommodate a learning curve, and the objective is to define a sequence
of actions that maximizes a certain reward: this is the case of admission control algorithm
as demonstrated by the practical implementations presented in Section 3.4.4. Conversely,
when the target is to provide decisions that are independent of those previously taken
and whose quality can be assessed during systems training, supervised learning solutions
are a strong option: this is precisely the settings where network resource orchestration
takes place, as illustrated by the applied solution in Section 4.3 and Section 5.3.

Before proceeding further, we remark that those presented next are examples of
suceessful integration of Al across the framework in Figure 1.1. They do not exhanst the
application space of Al for network operations; rather, they realize important components
in the comprehensive design of self-organizing sliced mobile networks.

1.2. Challenges

As deseribed in the section above, the integration of the key novel concepts envisioned
for 5G networks will affect the current mobile network funections. In this thesis we
focus on Network Slicing and in particular on the re-design of two fundamental network
functions, i.e., Admission Control and Resource Orchestration. Each of them conveys
several challenges that need to be taken account of while designing viable implementations
of slice management functions. Following we provides more details about the research
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challenges of these works.

1.2.1. Admission Control

Network infrastructure resources are limited and network slice demand quality
puarantees, which ealls for admission control on new slice requests. According to 3GPP
standardization on network slicing, the Communication Serviee Client (CSC) [17], i.e., the
tenant, will request specific services to the Communication Service Provider (CSP), i.e.,
the network provider, among those available in the offered portfolio. Then, it will pay for
the serviee according to metries like, e.g., the number of served users, the service coverage
area, or the duration of the slice instance. Such admission control deeisions have profound
business implications: the choice of how many network slices to run simultaneously, and
how to share the network infrastructure among slices have an impact on the revenues of
the network provider.

The complexity and heterogeneity of the slice admission decision process deprecates
manual confipuration, which is the de-faeto legacy approach in 4G networks. To identify
the best operating point, slice admission control must learn the arrival dynamics of slices
and make decisions that maximize the revenue, based on the current system occupation
and its expected long-term evolution. This problem is highly dimensional (growing
linearly with the number of network slices) with a potential huge number of states
(increasing exponentially with the number of classes) and many variables (one for each
state). Furthermore, in many cases the behavior of the tenants that request slices is not
known a priori and may vary with time. For these reasons, traditional solutions building
on optimization techniques are not affordable (because of complexity reasons) or simply
impossible (when slice behavior is not known). Instead, AT provides a means to cope with

such complex problems.

1.2.2. Network Orchestration

Once admitted, slices must be alloeated sufficient resources. Due to the prevailing
softwarization of mobile networks, such resources are inereasingly of computational
nature. This holds both at the RAN where they map to, e.g., CPU time for containers
running baseband units (BBUs) in Cloud Radio Access Networks (C-RAN) datacenters,
and in the Core Network (CN) where, e.g., virtual machines run softwarized Evolved
Packet Core (EPC) entities in datacenters. In these case, ensuring strong KPI guarantees
often requires that computational resources are exclusively alloecated to specific slices,
and cannot be shared across others. The dynamic alloeation of network resources to the
different admitted slices becomes then a chief management task in network slicing.

In this context, the network operator needs to decide in advance the amount of
resources that should be dedicated to the different slices, so as to ensure that the
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available capacity is used in the most efficient way possible and thus minimize operating
expenses (OPEX). Finding the correct operational point requires (i) predicting the future
demand in each slice, and (ii) deciding what amount of resources is needed to serve such
demand. These two problems are complex per-se: forecasting future demands at serviee
level requires designing dedicated, accurate predictors; instead, allocating resources in
a way that minimizes the OPEX of the operator requires estimating the expected error
of the prediction. Moreover, addressing (i) and (ii) above as separate problems risks
to lead to largely suboptimal solutions, since legacy predictors do not provide reliable
information about the expected error they will incur into. While the complexity of the
complete solution may be daunting with traditional techniques, Al can be leveraged to

address both aspects at once.

1.3. Contributions

This thesis investigates the application of deep learning solutions for next generation
sliced mobile networks. The main contributions of this doetoral thesis have been
published in & publications, of which 1 has been published in IEEE Communication
Magazine (indexed in Journal Citation Reports (JCR)), 1 in IEEE Transactions
on Mobile Computing (indexed in JCR), 1 in IEEE Transactions on Wireless
Communications (indexed in JCR), 1 in IEEE JSAC special issue on Leveraging
Machine Learning in SDN/NFV-based Networks (indexed in JCR), 2 in Transactions
on Emerging Telecommunications Technologies (indexed in JCR), and 2 submitted to
IEEE Communication Magazine and IEEE Network Magazine currently under revision.
Other 4 publications have been published in tier-1 conference IEEE INFOCOM according
to CORE2014! or ERA2010? datasets, 1 publication have been published in IEEE
INFOCOM workshop. In details,

1. Admissibility region analytical formulation. An analytical model for the
admissibility region of a network slicing-capable 5G Network has been devised. It
provides to the Infrastructure Provider (InP) the information about the maximum
number of network slices can be admitted in the system to maximize his revenue
while guaranteeing that the Service Level Agreements (SLAs) are met for all tenants.
This is a fundamental information for the InP, indeed if admitting 8 new network
slice in the system would lead to violating the SLA of already admitted slices, then
such a request should be rejected.

2. Decision-making optimal and adaptive algorithms design. The decision-

making process on slice requests has been modeled as Semi-Markov Decision Process

'http://portal.core_edw.an/conf-ranks /
2http:/ fwww.conferenceranks.com,
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(SMDP), including the definition of the state space of the system, along with the
decisions that can be taken at each state and the resulting revenue. This is used
to derive the optimal admission control policy that maximizes the revenue of the
infrastructure provider, which serves as a benchmark for the performance evaluation,
and an adaptive algorithm that provides close to optimal performance.

3. Machine Learning based admission control algorithm. Admission control
represents a very complex task. This problem is highly dimensional with a
potential huge number of states and many wvariables. Optimal methods require
that all variables are known, and as adaptive algorithms do not scale to huge space
states. Machine Learning provides a mean to cope with such complex problems,
consequently we have designed a practicable Neural Networks (NNs) solution based

on deep reinforcement learning that provides close to optimal performance.

4. Capacity Forecast. Legacy techniques for the prediction of mobile network traffic
aim at perfectly matching the temporal behavior of traffic, independently of whether
the anticipated demand is above or below the target. As a result, they ineur in
substantial SLA viclations. Hence, we introduce the notion of eapacity forecast,
i.e., the minimum provisioned capacity needed to cut down SLA violations. This

closes the gap between simple traffic prediction and practical orchestration.

5. A Deep Learning Framework for Resource Orchestration. A new maobile
traffic data analytics tool explicitly tailored to solve capacity forecast problem
has been designed. It hinges on a deep learning architecture that leverages a
customized loss function that targets capacity forecast rather than plain mobile
traffic prediction. It also provides long-term foreeasts over confipurable prediction

horizons operating on a per-service base.

6. Two-time scale anticipatory capacity allocation for network slicing with
hard guarantees. An original model for the anticipatory alloeation of capacity
to network slices, which is mindful of all operating costs is proposed. The new
model takes into account not only the orchestration costs associated with over-
and under-provisioning but also the ones linked with resource instantiation and
reconfipuration. AZTEC, a complete framework for capacity allocation to network
slices has been designed. It relies on a combination of deep learning architectures
and traditional optimizer.

1.4. Outline of the thesis

The rest of the thesis is organized as follows. Within each chapter, a list of relevant
state-of-the-art works are provided. We first deseribe in Chapter 2 how Network Slice
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will modify the current mobile network architecture in order to fully exploit its potential
benefits. Then, we investigate the impact of Network Slicing over Admission Control,
presenting in Section 3.2 our system model and the analytieal formulation for the network
slice admissibility region. Building on this model, in Section 3.3 we address the problem of
designing an admission control algorithm that maximizes the InP revenue while satisfying
the desired service guarantees; to this end, we first analyze the revenue resulting from
a given admission control policy and then obtain the optimal policy that maximizes the
resulting revenue. Building on this analysis, we design a practical adaptive algorithm that
provides close to optimal performance. In Section 3.4.4 we present a NNs approach based
on deep reinforecement learning, which provides a practical and sealable solution with close
to optimal performance. Finally, in Section 3.5 we evaluate the proposed algorithms in
a number of scenario to assess their performance in terms of optimality, scalability and
adaptability to different conditions.

Then, we study the impact of Network Slicing over Resource Orchestration. First,
the conecept of eapacity foreecast is introduced in Section 4.1. Then, we outline the overall
framework of DeepCog and detail the design of its most eritical component, i.e., the loss
funetion, in Section 4.3. The quality of the solution is then assessed in realistic scenario
in Section 4.5. To complete our analysis over Resource Orchestration, in Section 5.1
we motivate the need of including also the costs derived by resource instantiation and
reconfipuration. We present the new orchestration model, formalizing the different costs
and trade-offs in the resource management of sliced networks in Section 5.2. Building
on such a new model, we develop a complete framework for the anticipatory allocation
of capacity to network slices, named AZTEC; the framework relies on a combination of
deep learning architecture and a traditional optimizer, as detailed in Section 5.3. We
demonstrated the quality of the solution with real-world measurements data collected in
a metropolitan-scale mobile network in Section 5.6.

Finally, Chapter 6 draws the most important conclusions of this research work.



Trends and challenges in
network slicing

Network Slicing represents an efficient solution that addresses the diverse requirements
of 5G mobile networks, providing the necessary flexibility and sealability associated with
future network implementations.

To fully exploit the benefits provided by network slicing, for each slice should be
possible to design customized network operation or flexible Network Funetions (NFs) each
optimized for the particular usage. Thus, employing network slicing in 5G networks results
into a number of challenges, in part due to difficulties in virtualizing and apportioning
the Radio Access Network (RAN) into different slices.

In the following we first deseribe the realization options of a flexible mobile network
architecture with foeus on network slicing and their impact on the design of 5G mobile
networks. Then the potential design challenges associated with the implementation of
network slicing in future networks are analyzed.

2.1. Mobhile Network Slicing Architecture

To fully exploit the potential of network slicing, there is the need to design a new
more flexible mobile network architecture. Indeed, the current relatively monolithic and
static architecture, where network functions rely on dedicated hardware and are placed
in independent entities (e.g., eNB, 5-GW or MME), is not able to accommodate in a
cost efficient way such heterogeneous services with very diverse requirements as the ones
demanded by 5G.

There is a wide consensum [3,5,20,21] that the new 5G architecture must support
softwarization for allowing the sharing of the network among multiple tenants. In this
new vision, a logieal network would be implemented as a set of individual softwarized
network functions customized for each network slice. A slice then becomes a composition
of function blocks into a chain or more generally into a network of function blocks.
Decomposition into function blocks enables sharing of network funetions among slices

for reuse and consistency, or where common resources must be shared. A slice may be
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partly composed of a set of common function blocks to be shared across slices and a set
of dedicated function blocks that implement customized and optimized functionality of
a slice. Furthermore, decomposition enables the funetion blocks of a slice to be placed
according to its service needs and the concrete deployment scenario, i.e., the available
execution environments such as distributed (edge) or centralized resources.

Network slices will then operate on top of a partially shared infrastructure, which
is composed of generic hardware resources such as Network Functions Virtualization
Infrastructure (NFVI) resources, as well as dedicated hardware such as network elements
in the RAN.

Generally, three solution groups are discussed with wvarying levels of common
funetionality in 3GPP standards [22]:

s Group A is characterized by a common BRAN and completely dedicated
Core Network (CN) slices, that is, independent subseription, session, and mobility
management for each network slice handling the User Equipment (UE).

s Group B also assumes a common RAN, where identity, subscription, and
mobility management are common across all network slices, while other funections

such as session management reside in individual network slices.

s Group C assumes a completely shared RAN and a common CN control plane,
while CN user planes belong to dedicated slices.

In line with the above grouping considered by 3GPP [22], in [3] we introduce new
dedicated network funections, which together form a dedieated sub-slice, to cope with NF's
sharing among slices. This represent a possible solution to manage shared NFs reflecting
the fact that these functions have to coordinate and, if necessary, prioritize the Cuality
of Service (QOS) requirements of multiple slices.

Realize the above vision entails multiple challenges that are further discussed in the

following section.

2.2. Design Challenges

Network slicing allows multiple Mobile Network Operators (MNOs) to share the same
network infrastructure. To enable network slicing, the design of a new mobile network
architecture is required as detailed above. This entails facing multiple challenges:

s In the concept envisioned by [14] no distinctions are made regarding the type of
resources shared. From the various type of resources, spectrum represents typically
the most limiting factor: despite of cloud resources which ean be easily sealed up if
needed, spectrum is limited and increasing its eapacity is more complex and more

expensive. Thus, RAN sharing quickly runs into a physical constraint. For this
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reason, 5G sliced network calls for new mechanisms for managing slices admission

control in an optimized way as the one proposed in Chapter 3.

m It is expected that 5G will incorporate several kinds of HRadio Access
Technologys (RATs) and air interfaces, each with different capabilities and needs.
General-purpose infrastructure providers will need to carefully plan and apply
different technologies to serve diverse tenant needs. However, it may be infeasible
to satisfy the needs of each application at any location. For instance, tactile
Internet may require careful positioning of resources to minimize latency. In
another example, an industrial control network might have to use a certain
computational resource in a given loecation for security reasons. There is clearly
the need of automated tools, drove by network data analytic, that anticipate to
the Infrastructure Provider (InP) the information regarding the resources needed
by any slice at any location in the network as the ones proposed in Chapter 4 and
Chapter 5.

m Depending on the extent of network elements that are shared among tenants,
different flavors of network slices can be defined ranging from slices that share
only the physical layer (PHY), or even the Medium Aeccess Control (MAC) or the
complete RAN. The more information that can be provided by the infrastructure
about the shared parts to the network slice, the more efficiently the slice ecan
be operated. However, exposing information also creates new potential security
vulnerabilities between InP and tenants as well as between tenants themselves.
Security requirements of specific tenant applications, such as traffic associated with
emergency services or machine control (e.g., remote surgery or vehicular control),
could put constraints on how the slices are partitioned, or even prevent network
slices coexisting and thus share the same hardware at all.

m A major question is whether a slice can be extended all the way to the UE;
that is, whether the definition of the slice will be transparent to the UE, or whether
the UE will be aware of the network slice. A slicing-aware UE may open up new
possibilities (e.g., simplification of multi-slice connectivity). However, it also creates
new challenges for network slices; for example, UE mobility may need to be handled
by the slice provider as part of the slice setup and maintenance.

m Network slicing in 5G networks enables a new ecosystem in which different
tenants issue requests to an InP for acquiring network slices. Since spectrum is
a searce resource for which overprovisioning is not possible, applying an “always
accept” strategy for all incoming requests is not feasible. This ecalls for novel
alporithms and solutions to allocate network resources among different tenants,
allowing an InP to aceept or reject network slice requests with the objective of
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maximizing the overall utility. We further investigate this problem in Chapter 3.

8 When a network supports multiple tenants by creating tenant specific network
slice instances, it is necessary to isolate these slice instances in a way that one
tenant is not aware of the other tenants and has no means to access or even modify
information in the other tenants’ slices. In Network Funection Virtualization (NFV)
environments, this type of isolation is a basic feature that also includes the capability
to limit the resource usage of each tenant slice instance in a well-defined way.
This prevents a tenant from using so many resources that other tenants cannot

get resources anymore and thus experience a Denial of Service (DoS).

m A likely scenario leveraged by network slicing is that a MNO provides
individual network slice instances for verticals. The MNO ecan provide isolation
between the tenant slices as described above. However, a vertical as a fenant
typically has no means to verify the effectiveness of the isolation, but must trust the
MNO to ensure it. Moreover, if the MNO controls the infrastructure, is also able to
access everyvthing that is processed on this infrastrueture. Consequently, the MNO
must be trusted to not illegally access a tenant’s traffic. Trust in the MNO is also
required concerning the correct resource assipnment, since a tenant has no practical
means to monitor the correct assignment of edge cloud infrastructure resources or

radio interface resources to the tenant’s slice.

s Common functions that are operated by a MNO and used by several tenants
must be protected. Any internal interfaces of such functions must not be aceessible
for tenant funetions. Only dedicated, carefully secured interfaces must be available
to tenants. Such interfaces may need to be subject to access control, which includes
authenticating the slices accessing the common functions, as well as authorizing
their requests. An example could be a tenant requesting certain QOS parameters
for a radio bearer. In this case, a common function may check whether the request
is covered by the tenant's Serviee Level Agreement (SLA). Moreover, tenants
may inadvertently misuse or even deliberately try to abuse interfaces exposed by
common functions. To mitigate this threat, such interfaces must be designed and
implemented with high care to minimize their vulnerahility.

In the rest of this thesis, we further analyze the impaect of network slicing over the
current mobile network functionalities and design new approaches to enable slicing for
future 5G networks.



Network Slice Admission
Control

As discussed in Chapter 1, Network Slicing is probably one of the most important key
concept for next generation 5G networks [4]. This novel approach does not just provide
better performing and more efficient networks, but enables a new business model around
mobile networks, involving new entities and opening up new business opportunities.
Network slices allow for a role separation between Infrastructure Providers (InPs), who
provide computational and network resources used by different network slice, and network
slice tenants, the ones acquiring a slice to orchestrate and run network funections within
that slice to provide a certain service to their eustomer. In this new context, how to
correctly decide which slices can be admitted to the network and how to maximize the
monetization of the infrastructure become fundamental problems that need to be solved.

The above model is currently being successfully applied by Infrastructure as a Service
(IaaS) providers such as Amazon Web Services or Microsoft Azure, which sell their
computational resources such as CPU, disk or memory for Virtual Network Function
(VNF) purposes. While such an IaaS approach follows a very similar business model to the
network slicing one, providing network resources is an intrinsically different problem, since
(i) spectrum is a scarce resource for which over-provisioning is not possible, (ii) the actual
capacity of the systems (i.e., the resources that can actually be sold) heavily depends
on the mobility patterns of the users, and (iii) the Service Level Agreements (SLAs)
with network slices tenants usually impose stringent requirements on the Quality of
Experience (QQoE) perceived by their users. Therefore, in contrast to IaaS, in this case
applying a strategy where all the requests coming to the InP are admitted is simply not
possible.

While there is a body of work on the literature on spectrum sharing [23-26], these
proposal are not tailored to the specific requirements of the 5G ecosystem. Conversely,
most of the work has focused on architectural aspects [27,28] with only a limited focus on
resource allocation algorithms. In [2], we provide an analysis of network slicing admission
control and propose a learning algorithm; however, the proposed algorithm relies on an

offline approach, which is not suitable for a continuously varying environment such as

13
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the 5G Infrastructure market. Moreover, the aim is to maximize the overall network
utilization, in contrast to our goal here which is focused on maximizing InP revenues.

The need for new algorithms that specifieally targets the monetization of the network
has been identified in [29]. However, there are still very few works on this topic. The
work in [30] analyzes the problem from an economical perspective, proposing a revenue
model for the InP. The authors of [31] build an economic model that deseribes the Mobile
Network Operator (MNO) profit when dealing with the network slice admission control
problem, and propose a decision strategy to maximize the expected overall network profit.
The proposed approach, however, is not on demand and requires the full knowledge of
arriving requests statistics, thus making it impracticable in real scenarios. Another work
in this field is the one of [30], with similar limitations.

In the above context, the new 5G ecosystem ealls for novel algorithms and scolutions
for the allocation of the (scarce) network resources among tenants; this is the so-called
spectrum market. In this chapter, a network capacity brokering solution is introduced.
In Section 3.2, we first introduce our system model and the analytical formulation for the
network slice admissibility region. In Section 3.3, we address the problem of designing an
admission eontrol algorithm that maximizes the InP revenue while satisfying the desired
service guarantees. To this end, we first model the decision-making process by means
of a Markovian analysis, and derive the optimal policy and then design an adaptive
alporithm that provides close to optimal performance. Finally, in Section 3.4.4 we present
a Neural Networks (NNs) approach based on deep reinforcement learning, which provides
a practical and sealable solution with close to optimal performance.

3.1. System Model

The high customizability that 5G Networks introduce will enable a richer ecosystem
on both the portfolio of available services and the possible business relationships. New
players are expected to join the 5G market, leading to an ecosystem that is composed of
(i) users that are subsecribed to a given service provided by a (ii) tenant that, in turn, uses
the resources (i.e., cloud, spectrum) provided by an (iii) Infrastructure Provider (InP).
The design of a network slice admission control policy that maximizes InPs revenues in
this spectrum market is still an open problem. The 5G Network Slice Broker [2] is a novel
element introduced in the network management system of the InP for advanced Radio
Access Network (RAN) sharing. It exploits 3GPP conventional monitoring procedures for
gathering global network load measurements, to map incoming Service Level A preement
(SLA) requirements associated to network slice requests into physieal resources. More
specifically, the network capacity broker algorithm has to decide on whether to admit or

reject new network slice requests simultaneously satisfyving two different goals:

s meeting the service puarantees requested by the network slices admitted
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= maximizing the revenue of a network InP.

The goal of meeting the desired service guarantees needs to consider radio related
aspects, as a congested network will likely not be able to meet the service required by a
network slice. Conversely, the poal of maximizing the revenue obtained by the admission
control should be met by applying an on-demand algorithm that updates the policies as
long as new requests arrive.

In the rest of the section, we describe the various aspects related to our system model,
while the analytieal formulation for the network admissibility region is provided in Section
3.2. In Section 3.3, we model the decision-making process by means of a Markovian
analysis, and derive the optimal policy which we use as a benchmark. Building on this
analysis, we first design an adaptive algorithm in Section 3.4.2, and then present a deep
reinforcement learning approach in Section 3.4.4 which provides a practieal and secalable
solution with close to optimal performance.

Players. In our system model, there are the following players: (i) the InP, who is the
owner of the network and provides nefwork slices corresponding to a certain fraction of
network resources to the tenants, (ii) the temants, which issue requests to the InP to
acquire network resources, and use these resources to serve their users, providing them a
specific telecommunication service, and finally (iii) the end-users, which are subseribers
of the service provided by a tenant which uses the resources of the InP.

Network model. The ecosystem described above does not make any distinetion on
the kind of resources an InP may provide to the tenants. From the various types of
resources, spectrum will typically be the most important factor when taking a decision on
whether to accept a request from a tenant. Indeed, cloud resources are easier to provision,
while increasing the spectrum capacity is more complex and more expensive (involving an
increase on antenna densification). Based on this, we focus on the wireless aceess network
as the most limiting factor. In our model of the wireless access, the network has a set
of base stations B owned by an InP. For each base station b € B, we let Cj denote the
base station eapacity. We further refer to the system capacity as the sum of the capacity
of all base stations, € = 3 gCy. We let I denote the set of end-users in the network,
each of them being served by one of the tenants. We consider that each user u € I in
the system is associated to one base station b € B. We denote by f,; the fraction of
the resources of base station b assigned to user u, leading to a throughput for user u of
ry = fupCp. We also assume that users are distributed among base stations according to a
given probability distribution; we denote by Py the probability that user u is associated
with base station b. We assume that these are independent probabilities, i.e., each user
behaves independently from the others.

Traffic model. 5G Networks provide diverse services which are mapped to three different
usage scenarios or slice categories: Enhanced Mobile Broadband (eMBB), massive
Machine Type Communication (mMTC) and Ultra Reliable Low Latency Communication
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(URLLC) [15]. As the main bottleneck from a resource infrastructure market point of
view is spectrum, different slice categories need to be matched based to their requirements
in terms of the spectrum usage. For instance eMBB-alike slices have a higher flexibility
with respect to resource usage, and can use the leftover capacity of URLLC services which
have more stringent requirements on the needed capacity.

Following the above, we focus on elastic and inelastic traffic as it is the main
distinguishing factor for spectrum usage and thus provides a fairly large level of generality.
In line with previous work in the literature [32], we consider that inelastic end-users require
a certain fived throughput demand which needs to be satisfied at all times, in contrast to
elastic users which only need guarantees on the average throughput, requiring that the
expected average throughput over long time scales is above a certain threshold. That is,
for inelastic users throughput needs to be always (or with a very high probability) above
the guaranteed rate, while the throughput for elastic users is allowed to fall below the
guaranteed rate during some periods as long as the average stays above this value.

We let T denote the set of classes of inelastic users; each class i € T has a different
rate guarantee i; which needs to be satisfied with a very high probability; we refer the
probability that this rate is not met as the outage probability, and impose that it cannot
exceed Fgy;, which is set to a very small value. We further let N; denote the number of
inelastic users of class i € T, and P;p be the probability that a user of class i is at base
station b. Finally, we let N, be the number of elastic users in the network and R, their
average rate guarantee.

At any given point in time, the resources of each base stations are distributed among
associated users as follows: inelastic users u € I are provided sufficient resources to
guarantee vy, = K;, while the remaining resources are equally shared among the elastic
users. In case there are not sufficient resources to satisfy the requirements of inelastic
users, even when leaving elastic users with no throughput, we reject as many inelastic
users as needed to satisfy the required throughput guarantees of the remaining ones.

Note that the above traffic types are well aligned with the slice categories defined in

3GPP, as the elastic traffic behavior is in line with the eMBB and mMTC services, while
inelastic behavior matches the requirements of URLCC services.
Network slice model. The network is divided into different logical slices, each of them
belonging to one tenant. A network slice is characterized by (i) its traffie type (elastic or
inelastic), and (ii) its number of users (i.e., the subseribers of a given service) that have
to be served.

A network slice comes with certain guarantees provided by an SLA agreement between
the tenant and the InP. In our model, a tenant requests a network slice that comprises
a certain number of end-users and a traffic type. Then, as long as the number of users
belonging to a network slice is less or equal than the one included in the SLA apreement,
each of them will be provided with the service puarantees corresponding to their traffic
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type.

A network slice may be limited to a certain geographical area, in which case the
corresponding puarantees only apply to the users residing in the region. In our model, we
foecus on the general case and consider network slices that span over the entire network.
However, the model eould be easily extended to consider restricted geographical areas.

Following state of the art approaches 28], network slicing onboarding is an automated
process that involves little or no human interaction between the InP. Based on these
approaches, we consider a bidding system in order to dynamically alloeate network slices
to tenants. With this, tenants submit requests for network slices (i.e., a certain number
of users of a given serviee) to the InP, which accepts or rejects the request according to
an admission control alporithm such as the one proposed in this section. To that aim, we
characterize slices request by:

m Network slice duration ¢: this is the length of the time interval for which the

network slice is requested.

m Traffic type &: according to the traffic model above, the traffic type of a slice
can either be elastic or inelastic traffic.

m Network slice size N: the size of the network slice is given by the number of
users it should be able to accommodate.

m Price p: the cost a tenant has to pay for acquiring resources for a network
slice. The price is per time unit, and hence the total revenue obtained by accepting
a network slice is given by r = pt.

Following the above characterization, an InP will have eatalogs of network slice
blueprinted by predefined values for the tuple {k, N, p}, which we refer to as network
slice classes. Tenants issue requests for one of the slice classes available in the catalogue,
indicating the total duration ¢ of the network slice. When receiving a request, an InP has
two possible decisions: it can reject the network slice and the associate revenue to keep
the resources free or it can accept the network slice and charge the tenant r dollars. If
accepted, the InP grants resources to a tenant during a f-window.

To compute the profit received by the tenant, we count the agpregated revenue
resulting from all the admitted slices. This reflects the net benefit of the InP as long as
(i) the costs of the InP are fixed, or (ii) they are proportional to the network utilization
(in the latter case, p reflects the difference between the revenue and cost of instantiating
a slice). We argue that this covers a wide range of cases of practical interest such as
spectrum resources or computational ones. Moreover, in the cases where costs are not
linear with the network usage, our analysis and algorithm could be extended to deal with

such cases by subtracting the cost at a given state from the revenue.
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3.2. Admissibility region

An online admission control algorithm has to decide whether to accept or reject a new
incoming network slice request issued by a tenant. Such a deeision is driven by a number
of variables such as the expected income and the resources available. The objective of
an admission control algorithm is to maximize the overall profit while guaranteeing the
SLA committed to all tenants. A fundamental component of such an algorithm is the
admissibility region, i.e., the maximum number of network slices that can be admitted in
the system while guaranteeing that the SLAs are met for all tenants. Indeed, if admitting
a new network slice in the system would lead to violating the SLA of already admitted
slices, then such a request should be rejected.

In the following, we provide an analysis to determine the admissibility region, denoted
by .A, as a first step towards the design of the optimal admission algorithm.

3.2.1. Theoretical analysis

We say that a given combination of inelastic users of the various classes and elastic
users belongs to the admissibility region, i.e., {N1,..., Niz|, Ne} € A, when the guarantees
for elastic and inelastic traffic are satisfied for this combination of users. In the following,
we compute the admissibility region .A.

In order to determine whether a given combination of users of different types,
{N1,..., N, N}, belongs to A, we proceed as follows. We first compute the outage
probability for an inelastic user of class i € T, Poy . Let Fp be the throughput consumed
by the inelastic users at b. The average value of Hj can be computed as

E[Ry] =) N;P;sR;, (3.1)
jeT
and the typical deviation as
ay =Y _ Njoss, (3.2)
jeT

where cr? p 1s the variance of the throughput consumed by one inelastic user of class j,
which is given by

~ Pali- P @

Our key assumption is to approximate the distribution of the committed throughput
at base station b by a normal distribution of mean Ry and variance o, i.e., N(E[Rs], o2).
Note that, according to [33], this approximation is appropriate as long as the number
of users per base station in the boundary of the admissibility region is no lower than 35,
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which is generally satisfied by cellular networks (even in the extreme case of small cells).
The outage probability at base station b is given by the probability that the committed
throughput exceeds the base station eapacity, i.e.,

Poutp = P(Ry > Cy), (3.4)

where C} be the capacity of base station b.
To compute the above probability with the normal approximation, we proceed as
follows:

Cy+Cp— E[Rb,i-])

O

tl

Pwt,,,m1_~:-( (3.5)

where @(-) is the cumulative distribution funetion of the standard normal distribution
and C is a continuity correction factor that accounts for the fact Hy is not a continuous
variable. In line with [34], where this is applied to a binomial distribution and the
correction factor is one half of the step size, in our case we set the continnity correction
factor as one half of the average step size, which yields

_ 13 e PipN;R; (3.6)

Cp= .
2 ¥jez PjpNj

Once we have obtained Py p, we compute the outage probahility of an inelastic user
of class i with the following expression:

Pm,i. = Z P:',&Pm,&- |:3'?)
kB
Next, we compute the average throughput of an elastic user. To this end, we assume
that (i) in line with [32], elastic users consume all the capacity left over by inelastic traffic,
(ii) there is always at least one elastic user in each base station, and (iii) all elastic users
receive the same throughput on average.
With the above assumptions, we proceed as follows. The average committed
throughput consumed by inelastic users at base station b is given by

E[R] = Y NiPisRi, (3.8)

icl
which gives an average capacity left over by inelastic users equal to Cp — E[R]. This
capacity is entirely used by elastic users as long as the base station is not empty. The
total capacity usage by elastic users is then given by the sum of this term over all base
stations. As this capacity is equally shared (on average) among all elastic users, this leads
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Figure 3.1: Admissibility region: analysis vs. simulation.

to the following expression for the average throughput of an elastic user:

_ LuenCo— E[Ry]

Te
N

(3.9)

Based on the above, we compute the admissibility region .4 as follows. For a given
number of inelastic users in each class, Nj, i € T, and of elastic users, V., we compute the
outage probability of the inelastic classes, F,; ;, and the average throughput of the elastic
users, r.. If the resulting values meet the requirements for all classes, i.e., Pout i < FPowt Vi
and r. > H., then this point belongs to the admissibility region, and otherwise it does
not.

3.2.2. Validation of the admissibility region

In order to assess the accuracy of the above analysis, we compare the admissibility
region obtained theoretically against the one resulting from simulations. To this end, we
consider the reference seenario recommended by ITU-T [35], which consists of |B| = 19
base stations placed at a fixed distance of 200m. Following the system model of
Section 3.1, we have elastic and inelastic users. All inelastic users belong to the same
class, and all users (elastic and inelastic) move in the area covered by these base
stations following the Random Waypoint (RWP) mobility model, with a speed uniformly
distributed between 2 and 3 m/s.

The association procedure of elastic and inelastic wsers with base stations is as follows.
Inelastic users try to associate to the nearest base station b € B, if it has at least R;
capacity left. Otherwise they do not associate and generate an outage event, joining
again the network when their throughput guarantee ean be satisfied. When associating,
they consume a capacity I; from the base station. The probahbility of association to each
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base station (i.e., the F;p values) are extracted from the simulations and fed into the
analysis.

Similarly to inelastic users, elastic users always associate to the nearest base station.
All the elastic users associated to a base station fairly share among them the capacity left
over by inelastic users. Upon any association event, the throughput received by the users
associated to the new and the old base station changes accordingly.

Following the above procedure, we have simmulated all the possible combinations of
inelastic and elastic users, {N;, N.}. For each combination, we have evaluated the average
throughput received by elastic users, computed over samples of 10 seconds time windows,
and the outage probability Fi,; of inelastic users, computed as the fraction of time over
which they do not enjoy their guaranteed throughput. If these two metrics (average
elastic traffic throughput and inelastic traffic outage probability) are within the guarantees
defined for the two traffic types, we place this combination inside the admissibility region,
and otherwise we place it outside.

Fig. 3.1 shows the boundaries of the admissibility region obtained analytically and
via simulation, respectively, for different throughput guarantees for elastic and inelastic
users (A5 : B = R, = Cy/5, A : Bi = R, = Cy/10 and Ay : By = R, = C3/20) and
Py = 0.01. We observe that simulation results follow the analytieal ones fairly closely.
While in some cases the analysis is slightly conservative in the admission of inelastic users,
this serves to ensure that inelastic users’ requirements in terms of outage probability are

always met.

3.3. Optimising 5G Infrastructure Markets

While the admissibility region computed above provides the mazimum number of
elastic and inelastic users that can be admitted, an optimal admission alporithm that
aims at maximizing the revenue of the InP may not always admit all the requests that fall
within the admissibility region. Indeed, when the network is close to congestion, admitting
a request that provides a low revenue may prevent the infrastructure provider from
admitting a future request with a higher revenue associated. Therefore, the infrastructure
provider may be better off by rejecting the first request with the hope that a more
profitable one will arrive in the future.

The above leads to the need for devising an admission control strategy for incoming
slice requests. Note that the focus is on the admission of slices, in contrast to traditional
algorithms focusing on the admission of users; once a tenant gets its slice admitted and
instantiated, it ean implement whatever alporithm it considers more appropriate to admit
users into the slice.

In the following, we model the decision-making process on slice requests as a Semi-
Markov Decision Process (SMDP). The proposed model includes the definition of the
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state space of the system, along with the decisions that ean be taken at each state and
the resulting revenues. This is used as follows: (i) to derive the optimal admission
control policy that maximizes the revenue of the infrastructure provider, which serves as a
benchmark for the performance evaluation, and (ii) to lay the basis of the machine learning
alporithms proposed in Section 3.4, which implicitly rely on the states and decision space
of the SMDP model.

3.3.1. Markovian decision-making process analysis

SMDP is a widely used tool to model sequential decision-making problems in stochastic
systems such as the one considered in this paper, in which an agent (in our case the InP)
has to take decisions (in our case, whether to accept or reject a network slice request)
with the goal of maximizing the reward or minimizing the penalty. For simplicity, we
first model our system for the case in which there are only two classes of slice requests of
fixed size N = 1, i.e., for one elastic user or for one inelastic user. Later on, we will show
how the model can be extended to include an arbitrary set of network slice requests of
different sizes.

The Markov Decision Process theory [36] models a system as: (i) a set of states s € 5,
(ii) a set of actions a € A, (iii) a transition function P (s,a,s’), (iv) a time transition
funetion T (s,a), and (v) a reward function R(s,a). The system is driven by events,
which correspond to the arrival of a request for an elastic or an inelastic slice as well as
the departure of a slice (without loss of generality, we assume that arrivals and departures
never happen simultaneously, and treat each of them as a different event). At each event,
the system can be influenced by taking one of the possible actions a € A. According
to the chosen actions, the system earns the associated reward function R (s,a), the next
state is decided by P (s,a,<') while the transition time is defined by T (s, a).

The inelastic and elastic network slices requests follow two Poisson processes P; and
P with associated rates of A; and A, respectively. When admitted into the system, the

slices occupy the system resources during an exponentially distributed time of average
1
e
provider of p; and p.. That is, the total revenue r generated by, e.g., an elastic request

and i Additionally, they generate a revenue per time unit for the infrastructure

with duration ¢ is £ ..

We define our space state § as follows. A state & € § is a three-sized tuple
(ni,ne, k | ng,ne € A) where n; and n. are the number of inelastic and elastic slices in
the system at a given decision time ¢, and k € {i,e,d} is the next event that triggers a
decision process. This can be either a new arrival of a network slice request for inelastic
and elastic slices (k = i and k = e, respectively), or a departure of a network slice of any
kind that left the system (k = d). In the latter case, n; and n. represent the number of
inelastic and elastic slices in the system after the departure. Fig. 3.2 shows how the space
state S relates to the admissibility region .4.
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Figure 3.2: Example of system model with the different states.

The possible actions a € A are the following: 4 = &, D). The action & corresponds
to admitting the new request of an elastic or inelastic slice; in this case, the resources
associated with the request are granted to the tenant and the revenue r = p;.f is
immediately earned by the infrastructure provider. In contrast, action I} corresponds
to rejecting the new request; in this ease, there is no immediate reward but the resources
remain free for future requests. Note that upon a departure (k = d), the system is forced
to a fictitious action I that involves no revenue. Furthermore, we foree that upon reaching
a state in the boundary of the admissibility region computed in the previous section, the
only available action is to reject an incoming request (a = D) as otherwise we would not
be meeting the committed guarantees. Requests that are rejected are lost forever.

The transition rates between the states identified above are derived next. Transitions
to a new state with ¥ = i and &k = e happen with a rate A; and A;, respectively.
Additionally, states with k = d are reached with a rate n;p; + nep. depending the number
of slices already in the system. Thus, the average time the system stays at state s, T (s, a)

is given by )

T (3,a) = Py (e’

(3.10)

where n;, and n. are the number of inelastic and elastic slices in state s and v (n;, ne) =
Ai + Ae + i + Nefle.

We define a policy 7 (5), 7(s) € A, as a mapping from each state g to an action A.
Thus, the policy determines whether, for a given number of elastic and inelastic slices in
the system, we should admit a new request of an elastic or an inelastic slice upon each
arrival. With the above analysis, given such a policy, we can compute the probability of
staying at each of the possible states. Then, the long-term average revenue R obtained
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by the infrastructure provider can be computed as

R= Y P(nyne,k) (np+nep.), (3.11)
Ty Mg ke

where p; and p, are the price per time unit paid by an inelastic and an elastic network
slice, respectively.

The ultimate goal is to find the policy 7 (S) that maximizes the long term average
revenue, given the admissibility region and the network slices requests arrival process.
We next devise the Optimal Policy when the parameters of the arrival process are known
a priori, which provides a benchmark for the best possible performance. Later on, we
design in Section 3.4 an adaptive online algorithm that aims at maximizing revenue by
learning from the outcome resulting form the previous decisions, and a deep reinforcement
learning algorithm that further extends the adaptive algorithm in terms of convergence

speed and memory requirements.

3.3.2. Optimal policy

In order to derive the optimal policy, we build on Value Iteration [37], which is an
iterative approach to find the optimal policy that maximizes the average revenue of an
SMDP-based system. According to the model provided in the previous section, our system
has the transition probabilities P (s, a, &') detailed below.

Let us start with ¢ = I), which corresponds to the action where an incoming request
is rejected. In this case, we have that when there is an arrival, which happens with a rate
A; and A; for inelastic and elastic requests, respectively, the request is rejected and the
system remains in the same state. In case of a departure of an elastic or an inelastie slice,
which happens with a rate of n.u. or n;u;, the number of slices in the system is reduced
by one unit (recall that no decision is needed when slices leave the system). Formally, for
a =D and z = (n4,ne, 1), we have:

i ).‘

vin,ne)?
A

P(s,a,¢) = { *me)’

¢ =

7= (3.12)
— ¢ = (n; — 1,n,,d)

¢ =

v(ngmne)?
Nglie

\ vinne)?
When the chosen action is to accept the request (a = G) and the last arrival was an

inelastic slice (k = i), the transition probabilities are as follows. In case of an inelastic

slice arrival, which happens with a rate A;, the last arrival remains k = i, and in case of
an elastic arrival it becomes & = e. The number of inelastic slices increases by one unit
in all cases except of an inelastic departure (rate n;j;). In case of an elastic departure
(rate mep.), the number of elastic slices decreases by one. Formally, for a = G and
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8 = (ny, M, 1), we have:

A

m: & =(n; +1,n,,i)

A f— .
P{S?E:5’}= m’ 3’_{”"'_'_1?“&':&:]

e, & = (nine,d)
ﬁ_‘f—mp g =(m+1n.—1,d)
If the accepted slice is elastic (k = €), the system exhibits a similar behavior to the
one described above but increasing by one the number of elastic slices instead. Thus, for

(3.13)

a =G, 8 = (n;,n,, e), we have:

Ufﬂ:ig+lii & = (ng,ne + 1,1)
—(—H‘ g =(ngn,+1,e
P (s,a,8/) = { Venett) (me:me + 1) (3.14)
m:il—l-_l}’ ¢ =(ni—1,n.+1,d)
[stemerty & = (mime,d)

A reward is obtained every time the system accepts a new slice, which leads to

0, a=2D0
R(s,a)=tp, a=C, k=i (3.15)
toe, a=G,k=¢

Applying the Value Iteration algorithm [37] for SMDP is not straightforward. The
standard algorithm cannot be applied to a continuous time problem as it does not consider
variable transition times between states. Therefore, in order to apply Value Iteration to
our system, an additional step is needed: all the transition times need to be normalized
to multiples of a faster, arbitrary, fixed transition time 7 [38]. The only constraint that
has to be satisfied by 7 is that it has to be faster than any other transition time in the
system, which leads to

T <minT (s,a), Vee S, Vae A (3.16)

With the above normalization, the continnous time SMDP corresponding to the
analysis of the previous section becomes a discrete time Markov Process and a modified
Value Iteration algorithm may be used to devise the best policy 7 (S) (see Algorithm 1).
The diseretized Markov Chain will hence perform one transition every 7 interval. Some of
these transitions correspond to transitions in continuous time system, while in the others
the system keeps in the same state (we call the latter fictitious transitions).

The normalization procedure affects the update rule of step 2 in Algorithm 1. All the
transition probabilities P (s, a, ) are scaled by a factor T'[';r?"j to enforce that the system
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Algorithm 1 Value Iteration

Initialization:

Vis)+0,%¥se 8 t= Initialize the long term expected revenue.
ne1 t= Initialize the step number.
M, +0

my, +— 0

(==

: while (M,, —m,) < 0v (M, —m,) > em, do

b Update the expected reward at time n + 1, V11 (s) using the rule
_ H(s,a) T '
Vat1(s) = max [T (s,a)" * T (s,a) g Pee, ) Va(s)
t(1—m ) Va(s)| VsesS
Tea) " €

3 Compute the boundaries

Mo = max (Vs (5) = Va (5)

My = Eé%l {Vn+1 {S} - Vn {S}}
4: end while

Output: V (s) Vs §

stays in the corresponding state during an average time T (s,a’). Also, the revenue
R (s,a) is scaled by a factor of T'(s,a) to take into account the fact that the reward
R (s,a) corresponds to a period T (s,a) in the continuous system, while we only remain
in a state for a T duration in the diserete system. In some cases, transitions in the sampled
discrete time system may not correspond to any transition in the continuous time one:
this is taken into account in the last term of the equation, ie., in case of a fictitious
transition, we keep in state V ().

As proven in the next section, Algorithm 1 is guaranteed to find the optimal policy
m(S). Such an optimal policy is illustrated in Fig. 3.3 for the case where the price of
inelastic slice is higher than that of elastic slice (p; > p.). The figure shows those states
for which the corresponding action is to admit the new request (straight line), and those
for which it is to reject it (dashed lines). It can be observed that while some of the states
with a certain number of elastic slices fall into the admissibility region, the system is better
off rejecting those requests and waiting for future (more rewarding) requests of inelastic
slice. In contrast, inelastic slice requests are always admitted (within the admissibility
region).

The analysis performed so far has been limited to network slice requests of size one.
In order to extend the analysis to requests of an arbitrary size, we proceed as follows. We
set the space state to account for the number of slices of each different class in the system
(where each class corresponds to a traffic type and a given size). Similarly, we compute

the transition probabilities P (s, a, &) corresponding to arrival and departures of different
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Figure 3.3: Example of optimal policy for elastic and inelastic slices.

classes. With this, we can simply apply the same procedure as above (over the extended
space state) to obtain the optimal policy.

3.3.3. Optimality and convergence analysis

In the following, we provide some insights on the optimality and convergence of
Algorithm 1, showing that: (i) the algorithm converges to a certain policy, and (ii)
the poliecy to which the algorithm converges performs arbitrarily close to the optimal
policy. Theorem 6.6.1 in [39] proves that the policy 7 (5) obtained using Algorithm 1
provides a long-run average reward g, (w(S)) that is arbitrarily bounded by an € value
when compared to the optimal one g*. Thus,

Q‘_ga(ﬂ(s}} My —my
=T =E) = m

<&, Yec S

The convergence of Algorithm 1 is guaranteed by the third term of the inequality
above, that acts as a decreasing envelope of the second term, as shown by Theorem 6.6.3
in [39):

Mpyy = My, My < Mg, Vn > 1

By applying step 3 of Algorithm 1, the obtained 7 (S) is e-bounded to the optimal. While
the aforementioned Theorems in [39] solve a cost minimisation problem, we adapted them
to our revenue maximisation scenario. In our experiments, we set € = 0.001.
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€]

Figure 3.4: Optimal admission policy for elastic traffic.

3.3.4. Optimal admission policy assessment

In order to analyse the admission policy resulting from the optimal alporithm designed
in Section 3.3.2, we consider a secenario with four slice classes, two for elastic traffic and
two for inelastic. We set p = 5 for all network slices classes, and the arrival rates equal
to A; = 2p and A, = 10); for the elastic and inelastic classes, respectively. Two network
slice sizes are considered, equal to €'/10 and /20, where ' is the total network capacity.
Similarly, we set the throughput required guarantees for elastic and inelastic traffic to
R; = R. = Cp/10. We analyze the optimal admission policy for different ratios between
p; and p., the average revenue per time unit generated by inelastic and elastic slices,
respectively. Note that, given that inelastie traffic is more demanding, it is reasonable to
assume that it pays a higher price than elastic traffic, i.e., p; = pe. As inelastic traffic
provides a higher revenue, in order to maximise the total revenue, the InP will always
admit inelastic network slice requests. In contrast, it is to be expected that, while elastic
traffic requests will be admitted when the utilisation is low, they may be rejected with
higher utilisation in order to avoid losing the opportunity to admit future (and more
rewarding) inelastic requests. Furthermore, it is to be expected that this behaviour will
be exacerbated as the p;/p. grows larger.

The optimal admission poliey for elastic traffic resulting from our algorithm is shown
in Fig. 3.4. As expected, we can observe that the region corresponding to the admission
of elastic network slices requests is smaller than the admissibility region, implyving that
we are more restrictive in the admission of elastic traffic. Furthermore, and also as
expected, this region becomes smaller for larger p;/p, ratios. These results thus confirm
our intuitions on the optimal admission policy.
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3.4. ML approach for 5G Market optimization

The Value Iteration algorithm deseribed in Section 3.3.2 provides the optimal policy
for revenue maximisation under the framework described of Section 3.3.1. While this is
very useful in order to obtain a benchmark for comparison, the algorithm itself has a
very high computational cost, which makes it impractical for real scenarios. Indeed, as
the algorithm has to update all the V values V (s), & € S at each step, the running
time grows steeply with the size of the state space, and may become too high for large
SCenarios.

Building on the analysis of the previous section, in the following we design an adaptive
algorithm based on reinforcement learning that aims at maximising revenue by learning
from the outcome resulting from the previous decisions. In contrast the optimal policy
of the previous section, this alporithm is executed online while taking admission control

decisions, and hence does not require of high computational resources.

3.4.1. Q-Learning model

Our adaptive algorithm is based on the ()-Learning framework [40]. Before describing
the algorithm itself, we describe how we model the algorithm under the (-Learning
framework.

()-Learning is a machine learning framework for designing adaptive algorithms in
SMDP-based systems such as the one analysed in Section 3.3.1. It works taking decisions
that move the system to different states within the SMDP state-space and observing the
outcome. Thus, it leverages the “exploration vs. exploitation™ prineciple: the algorithm
learns by visiting unvisited states and takes the optimal decision when dealing with already
visited ones.

()-Learning provides two key advantages as compared to Value Iteration framework
described in the previous section:

m The resulting algorithm is model-free. Indeed, it makes no assumptions on the
underlying stochastic processes, but rather learns by observing the events that take
place in the system.

m It is an online algorithm that constantly learns the characteristics of the system
by exploring it and taking decisions.

Our ()-Learning framework builds on the SMDP-based system model of Section 3.3.1.
The )-Learning space state is similar to the one of the SMDP model:

I:TILRLR‘ | Gl:ﬂ:?ﬂ::] € ‘A:]

where n} and n} are defined as a n-dimension tuples (n, ns, ..., n.) describing the number



30 MNetwork Slice Admission Control

of slices of different sizes in the system for inelastic and elastic traffic types. Analogously,
o is the occupation of the system, and k € {i*,e*} where i* and e* are the sets of events
associated to an arrival of an inelastic or elastic slice request of a given size.

With -Learning, we do not need to include departures in the space state, since no
decision is taken upon departures. Similarly, we do not need to include the states in the
boundary of the admissibility region; indeed, in such states we do not have any option
other than rejecting any incoming request, and hence no decisions need to be taken in
these states either. Furthermore, the system is not sampled anymore, as all transitions
are triggered by an arrival event and the subsequent decision a € A.

The key idea behind the ()-Learning framework is as follows. We let ) (s, a) denote
the expected reward resulting from taking an action a at a certain state s. The system
keeps memory for each state of @ (s, a). It starts with empty Qo (5, a) and at the decision
step n it takes an action a based on the past estimations of ¢} (s,a). Hence, the system
experiences a transition from state s at the decision step n, to state &' at decision step
n + 1. Then, once in step n + 1, the algorithm has observed both the reward obtained
during the transition R (s,a) and a sample £, of the transition time. Then, the algorithm
updates the @ (s, a) involved in the decision process at step n using the newly gathered
reward and transition time information. After a learning phase, the optimal admission
policy at a certain state will be the one that maximises the resulting expected revenue,
ie.,

V () = maxQ (s,a)

3.4.2. Algorithm description

Building on the above model, we describe our ()-Learning algorithm in the following.
The algorithm maintains the ()-values which are updated iteratively following a sample-
based approach as deseribed in Algorithm 2, in which new events are evaluated at the
time when they happen. In addition to the procedure to update the (Q-values described
in Algorithm 2, the ()-Learning algorithm also relies on two other procedures: the TD-
learning and erploration - erploitation procedures.

TD-learning ensures the convergence of the algorithm by employing the o parameter,
which is the learning rate. The requirements for setting o are two [41]: (i) 3%, 0n = 00
and (i) X224 02 < co. The Q-values update process in step 3 of Algorithm 2 needs to
build a correct estimation of the expected revenue obtained by choosing an action a while
in state 5. On the one hand, new samples w (with more updated information) should be
weighted by a larger weight than the estimation built on all the past samples @ (s, a),
especially if the first exploration steps did not provide a good result. On the other hand,
oy, coefficients have to decrease with time, in order to eventually converge to a fized set of

() (3,a) values. When setting o according to these requirements, we make the following
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Algorithm 2 ()-Learning update procedure

An event is characterized by:
s,a, 8,7t [starting state, action taken, landing state, obtained reward, transition time].
Initialization:
(Jis,a) —0,%¥se 8 aec A
1: procedure UPDATE(w,w) = Update the old Q) (s, a)

Evaluate the new sample observation as follows:

M

w=R(s,a,s)—ot, + qﬁxQ{s’,u’}

t> £, is the transition time between two subsequent states s and s after action a

3 Integrate the new sample in a running exponential average estimation of @ (s, a):

Q(s,a) = (1-a)Q(s,a) + aw
4: end procedure

additional considerations: too slowly descending o sequences will delay the convergence
of the algorithm, but too fast ones may make the algorithm unaware of new choices too
soon. Based on all these requirements and considerations, we set o = ﬂ%? where 17 (s, a)
is the number of times the action a was selected, being in state s.

Exploration - exploitation drives the selection of the best action to be taken at each
time step. While choosing the action a that maximises the revenue at each step contributes
to maximising the overall revenue (i.e., exploitation step), we also need to visit new (still
unknown) states even if this may lead to a suboptimal revenue (ie., erploration step).
The reason for this is that the algorithm needs to explore all possible (s, a) options in
order to evaluate the impact of the different decisions. The trade-off between exploitation
and exploration is regulated by the -« parameter; in this paper we take v = 0.1 in order to
force that sometimes the wrong deeision is taken and thus we learn all possible options,
which ultimately improves the accuracy of the algorithm. The probability of taking
wrong choices decreases as the o, values become smaller, up to the point where no wrong
decisions are taken any more, once the alporithm already visited all state & a number of

times sufficiently large to learn the best (-value.

3.4.3. Adaptive algorithm performance

We next evaluate the performance of our adaptive algorithm by comparing it in the
scenario deseribed in Seetion 3.3.4 against: (i) the benchmark provided by the optimal
algorithm, and (ii) two naive policies that always admit elastic traffic requests and always
reject them, respectively. Fig. 3.5 shows the relative average reward obtained by each of
this policies, taking as baseline the policy that always admit all network slice requests (as
this would be the most straightforward algorithm).

We observe from the fipure that our adaptive algorithm performs very closely to the
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Figure 3.5: Revenue vs. p;/ pe.

optimal policy, which serves to validate the algorithm design proposed in this paper. We
further observe that the revenue improvements over the naive policies is very substantial,
up to 100% in some cases. As expected, for small p;/p. the policy that always admits
all requests is optimal, as in this case both elastic and inelastic slices provide the same
revenue; in contrast, for very large p;/p. ratios the performance of the “always reject”
policy improves, as in this case the revenue obtained from elastic traffic is (comparatively)
much smaller.

While this result shows that the proposed alporithm performs close to optimal, it
is only compared against two naive policies and thus does not give an insight on the
revenue gains that could be achieved over smarter yet not optimal policies. To this end,
we compare the performance of our adaptive algorithm against a set of “smart” random
policies defined as: inelastic network slices requests are always accepted (k=1 = a =G},
while the decision of rejecting an elastic request (k = € = a = D) is set randomly. Then,
by drawing a high number of random policies, it is to be expected that some of them
provide good performance.

Fig. 3.6 shows the comparison against 1000 different random policies. The results
confirm that (i) none of the random policies outperforms our approach, further confirming
the optimality of the approach, and (ii) substantial gains (around 20%) are obtained
over the random policies. This result confirms that a smart heuristic is not effective in
optimizing revenue, and very substantial gains can be achieved by using a close to optimal
policy such as our adaptive algorithm.

The previous results have assumed that (i) arrivals and departures follow Poisson
process with exponential times, and (i) the optimal algorithm has a perfect estimation
of the statistics of this process. In this section we address a more realistic case in which

neither of these assumption holds. We hence introduce two modifications: (i) arrivals and
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Figure 3.6: The distribution of the revenues obtained by random smart policies compared
to the proposed algorithms.

departures are Pareto-distributed, and (i7) we let the real arrival process & deviate from
the estimated one A: & ()= j-+1 as a function of a parameter j > —1. That is, the optimal
policy obtained by Value Iteration under the original assumptions is computed offline,
with the estimated parameter, and applied to the real system. Note that for negative j
values, the system receives a number of request per time unit higher than the estimated
A, while positive j values indicate a lower requests arrival rate.The results, depicted in
Fig. 3.7, show that our adaptive algorithm, which automatically learns the network slice
behaviour on the fly and hence is not affected by possible estimation errors, substantially

outperforms the optimal policy built upon flawed assumptions and estimations.

3.4.4. N3AC: a Deep Reinforcement Learning approach

The O)-Learning algorithm described in Seetion 3.4.2 represents an adaptive algorithm
for practical usage that achieves close to optimal performance. While it represents a first
upgrade compared with the Value Iteration algorithm desecribed in Section 3.3.2, it needs
to store and update the expected reward value (i.e., the Q-value) for each state-action pair.
As a result, learning the right action for every state becomes infeasible when the space
state grows, since this requires experiencing many times the same state-action pair before
having a reliable estimation of the ()-value. This leads to extremely long convergence
times that are unsuitable for most practical applications. Additionally, storing and
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efficiently visiting the large number of states poses strong requirements on the memory
and computational footprint of the algorithm as the state space grows. For the specific
case studied in this paper, the number of states in our model inereases exponentially with
the number of network slicing classes. Hence, when the number of network slicing classes
grows, the computational resources required rapidly become excessive.

In the following, we present an alternative approach, the Network-slicing Neural
Network Admission Control (NJAC) algorithm [8], which has a low computational
complexity and can be applied to practical scenarios.

Learning algorithms are in the spotlight since Mnith et al. [42] designed a deep learning
alporithm ealled *deep Q-network” to deal with Atari games, and further improved it in
[43] making the algorithm able to learn successful policies directly from high-dimensional
sensory inputs and reach human-levels performance in most of Atari games.

The application of Reinforcement and Machine learning approaches to mobile networks
is also pgaining popularity. Machine learning has been applied to a wide span of
applications in 5G networks, ranging from channel estimation/detection for massive
MIMO channel to user behavior analysis, location prediction or intrusion/anomaly
detection [44].

N3AC falls under category of the Deep Reinforcement Learning (DRL). With N3AC,
an agent (the InP) interacts with the environment and takes decisions at a given state,
which lead to a certain reward. These rewards are fed back into the agent, which “learns”
from the environment and the past decisions using a learning function J. This learning
funetion serves to estimate the expected reward (in our case, the revenue).

Reinforcement Learning (RL) algorithms rely on an underlying Markovian system
such as the one described in Section 3.3.2. They provide the following features: (i) high

scalability, as they learn online on an event basis while exploring the system and thus
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avoid a long learning initial phase, (ii) the ability to adapt to the underlying system
without requiring any a priori knowledge, as they learn by interacting with the system,
and (iii) the flexibility to accommodate different learning functions J, which provide the
mapping from the input state to the expected reward when taking a specific action.

The main distingnishing factor between different kinds of RL algorithms is the
structure of the learning function J. Techniques such as (-Learning [40] employ a
lookup table for J, which limits their applicability due to the lack of scalability to a
large space state [45]. A common technique to avoid the problems deseribed above for
(J-learning is to generalize the experience learned from some states by applying this
knowledge to other similar states, which involves introducing a different J function. The
key idea behind such generalization is to exploit the knowledge obtained from a fraction
of the space state to derive the right action for other states with similar features. There
are different generalization strategies that can be applied to KL algorithms. The most
straightforward technique is the linear function approximation [46]. With this technique,
each state is given as a linear combination of functions that are representative of the
system features. These functions are then updated using standard regression techniques.
While this approach is sealable and computationally efficient, the right selection of the
feature functions is a very hard problem. In our scenario, the ()-values associated to states
with similar features (e.g., the number of inelastic users) are increasingly non linear as the
system becomes larger. As a result, linearization does not provide a good performance in
Our case.

Neural Networks (NNs) are a more powerful and flexible tool for generalization. RL
algorithms that employ NNs are called DRL algorithms: N3AC belongs to this family.
One of the key features of such a NN-based approach is that it only requires storing a
very limited number of variables, corresponding to the weights and biases that compose
the network architecture; yet, it is able to accurately estimate the J function for a very
large number of state/action pairs.

In the rest of this section, we review the DRL design prineiples (Section 3.4.5) and
explain how these principles are applied to a practical learning algorithm for our system
(Section 3.4.6).

3.4.5. Deep Reinforcement Learning framework

The fundamental building blocks of DRL algorithms are the following ones [19]:

m A set of labeled data (i.e., system inputs for which the corresponding outputs
are known) which is used to train the NN (i.e., teach the network to approximate
the features of the system).

m A loss function that measures the neural network performance in terms of
training error (i.e., the error made when approximating the known output with the
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given input).

s An optimization procedure that reduces the loss functions at each iterations,
making the NN eventually converge.

There are many different Machine Learning (ML) schemes that make use of NNs,
which are usually categorized as supervised, unsupervised and RL. A ML system is
supervised or unsupervised depending on whether the labeled data is available or not,
and it is a RL system when it interacts with the environment receiving feedback from
its experiences. N3AC falls under the latter category, and, within RL, it falls under the
category of DRL. Since the seminal work in [42], DRL techniques have gained momentum
and are nowadays one of the most popular approaches for RL. In spite of the bulk of
literature available for such techniques, devising the N3AC algorithm involves a number
of design decisions to address the specificities of our problem, which are summarized in
the following.

Neuron internal configuration. An exemplary NN is illustrated in Figure 3.8, where
we have multiple layers of interconnected neurons organized as: (i) an input, (ii) an
output and (iii) one or more hidden layers. As activation funection N3AC employs the
Rectified Linear Unit (ReLU) [47].

Neural Network Structure. One of the design choices that needs to be taken when
devising a NN approach is the the way neurons are interconnected among them. The
most common setup is feed-forward, where the neurons of a layer are fully interconnected
with the ones of the next. There are also other configurations, such as the convolutional

or the recurrent (where the output is used as input in the next iteration). However, the
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best choice for a system like the one studied in this paper is the feed-forward. Indeed
convolutional networks are usually employved for image recognition, while recurrent are
useful when the system input and the output have a certain degree of mutual relation.
None of these mateh our system, which is memoryless as it is based on a Markovian
approach. Furthermore, our NN design relies on a single hidden layer. Such a design
choice is driven by the following two observations: (i) it has been proven that is possible
to approximate any funetion using NN with a single hidden layer [48], and (ii) while a
larger number of hidden layers may improve the accuracy of the NN, it also involves a
higher complexity and longer training period; as a result, one should employ the required
number of hidden layers but avoid building a larger network than strictly necessary.
Back-propagation algorithm selection. N3AC following classical ML applications,
adjusts weights using a Gradient Descent approach: the measured error at the output
layer is back-propagated to the input layer changing the weights values of each layer
accordingly [47]. More specifically, N3AC employs the RMSprop [49] Gradient Descent
alporithm.

Integration with the RL framework. One of the critical requirements for N3AC
is to operate without any previously known output, but rather interacting with the
environment to learn its characteristics. Indeed, in N3AC we do not have any “ground
truth” and thus we need to rely on estimations of the output, which will become more
accurate as we keep exploring the system. While this problem has been extensively
studied in the literature [19, 50|, we need to devise a solution that is suitable for the
specific problem addressed. In N3AC, we take as the output of the NN the average
revenues expected at a given state when taking a specific deeision. Once the decision
is taken, the system transitions to the new state and we measure the average revenue
resulting from the decision taken (0 in case of a rejection and pt in case of an acceptance).
Then, the error between the estimated revenue and the measured one is used to train
the NN, back-propagating this error into the weights. As depicted in Fig 3.9, N3AC uses
two different NNs: one to estimate the revenue for each state when the selected action
is to accept the incoming request, and another one when we reject the request. Upon
receiving a request, N3AC polls the two NNs and selects the action with the highest
expected revenue; then, after the transition to the new state is performed, the selected
NN is trained. More details about the N3AC operation are provided in the next section.
Exploration vs exploitation trade-off. N3AC drives the selection of the best action
to be taken at each time step. While choosing the action that maximizes the revenue
at each step contributes to maximizing the overall revenue (referred to as erploitation
step), in order to learn we also need to visit new (still unknown) states even if this may
eventually lead to a suboptimal revenue (referred to as erploration step). This procedure
is especially important during the initial interaction of the system, where estimates are

very inaccurate. In N3AC, the trade-off between exploitation and exploration is regulated
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Algorithm 3 N3AC algorithm.

An event is characterized by:

s,a,s, 7t [starting state, action taken, landing state, obtained reward, transition time].
Initialization:

Neural Network's weights + random values.

Procedure

: Estimate () (s, a') for each action a’ available in state s through the NN.
: Build the target value with the new sample observation as follows:

target = R(s,a.5) — oty +mu§.xQ{s’,a.’} (3.17)

t- where £, is the transition time between two subsequent states s and ' after action a.
Train the NNs through BEMSprop algorithm:
if s ¢ admissibility region boundary then
train the NN with the error given by the difference between the target value (eq. 3.17) and
the measured one.

: else

train the NN corresponding to accepted requests by applying a “penalty” and train the
NN corresponding to rejected requests as in step 4.

: end if

by the v parameter, which indicates the probability of taking an exploration step. In the

setup used in this paper, we take v = 0.1. Once the NNs are fully trained, the system

goes into exploitation only, completely omitting the exploration part.

3.4.6. Algorithm description

In the following, we describe the proposed N3AC algorithm. This algorithm builds

on the Neural Networks framework deseribed above, exploiting RL to train the algorithm
without a ground truth sequence. The high-level alporithm design is illustrated in Fig 3.9
and it consists of the following high level steps (see Algorithm 3 for the pseudocode):

m Step 1, acreptance decision: In order to decide whether to accept or reject

an incoming request, we look at the expected average revenues resulting from
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accepting and rejecting a request in the two NNs, which we refer to as the Q-
values. Specifically, we define @ (s,a) as the expected cumulative reward when
starting from a certain state £ with action a, compared to a baseline o given by the
optimal policy reward when starting from state 0, ie.,

Dit)
Q(s,a)=E t].im Y R,—otlsg=s,a0=a (3.18)
—}CIC‘-"=D

where D(t) is the number of requests received in a period t, R, is the revenue
obtained with the nt® request and o = E[lim; oo 2 Y2 Rp|so = 0] under the
optimal policy. Then, we take the decision that yields the highest (J-value. This
procedure is used for elastic slices only, as inelastic slices shall always be accepted
as long as there is sufficient room. When there is no room for an additional slice,

requests are rejected automatically, regardless of their type.

m Step 2, evaluation: By taking a decision in Step 1, the system experiences a
transition from state s at step n, to state & at step n + 1. Onece in step n + 1,
the algorithm has observed both the reward obtained during the transition R (s,a)
and a sample &, of the transition time. The algorithm trains the weights of the
corresponding NN based on the error between the expected reward of = estimated

at step n and the target value. This step relies on two cornerstone procedures:

Step 2a, back-propagation: This procedure drives the weights update by
propagating the error measured back through all the NN layers, and updating
the weights according to their gradient. The convergence time is driven by a
learning rate parameter that is used in the weight updates.

Step 2b, target ereation: This procedure is needed to measure the aceuracy
of the NNs estimations during the learning phase. At each iteration our
algorithm computes the observed revenue as follows:

sz[s?a?s’}—Utn+m31Q{s’,a’}, (3.19)

where R (s,a,d) is the revenue obtained in the transition to the new state.
As we do not have labeled data, we use w to estimate the error, by taking the
difference between w and the previous estimate Qn1 (5, a) and using it to train
the NN. When the NN eventually converges, w will be close to the (-values
estimates.

m Step 3, penalization: When a state in the boundary of the admissibility region
is reached, the system is forced to reject the request. This should be avoided as
it may force the system to reject potentially high rewarding slices. To awvoid such
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cases, N3AC introduces a penalty on the Q-values every time the system reaches
the border of the admissibility region. With this approach, if the system is brought
to the boundary through a sequence of highly rewarding actions, the penalty will
have small effect as the (J-values will remain high even after applying the penalty.
Instead, if the system reaches the boundary following a chain of poorly rewarding
actions, the impact on the involved (-values will be much higher, making it unlikely

that the same sequence of decisions is chosen in the future.

n Step 4, learning finalization: Once the learning phase is over, the NN training
stops. At this point, at a given state we just take the the action that provides the
highest expected reward.

We remark that the learning phase of our algorithm does not require specific training
datasets. Instead, the algorithm learns from the real slice requests on the fly, during
the real operation of the system; this is the so-called erploration phase. The training
corresponding to such an exploration phase terminates when the algorithm has converged
to a good learning status, and is trigpered again when the system detects changes in the

system that require new training.

3.5. Performance Evaluation

In this section we evaluate the performance of NN via simulation. Unless otherwise
stated, we consider the scenario described in Seetion 3.3.4.

Following the N3AC algorithm proposed in the previous section, we employ two feed-
forward NNs, one for accepted requests and another one for rejected. Each neuron applies
a Rel.U activation function, and we train them during the exploration phase using the NNs
RMSprop algorithm implementation available in Keras (https://keras.io/); the learning
parameter of the RMSprop Gradient Descent algorithm [49] is equal to 0.001. The number
of input nodes in the NN is equal to the size of the space state (i.e., the number of
considered classes plus one for the next request k), the number of neurons in the hidden
layer equal to 40 for the scenario described in Seetions 3.5.3 and 3.5.4 and 20 for the
others, and the output layer is composed of one neuron, applying a linear funetion. Note
that, while we are dealing with a specific NN structure, one of the key highlights of our
results is that the adopted structure works well for a wide range of different 5G networks.

In the results given in this section, when relevant we provide the 99% confidence
intervals over an average of 100 experiments (note that in many cases the confidence
intervals are so small that they cannot be appreciated).
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Figure 3.10: Revenue vs. p;/ pe.

3.5.1. Algorithm Optimality

We first evaluate the performance of the N3AC algorithm (which includes a hidden
layer of 20 neurons) by comparing it against: (i) the benchmark provided by the optimal
algorithm, (ii) the Q-learning algorithm proposed in Section 3.4.2, and (iii) two naive
policies that always admit elastic traffic requests and always reject them, respectively.
In order to evaluate the optimal alporithm and the (J-learning one, which suffers from
scalability limitations, we consider a relatively small scenario. Figure 3.10 shows the
relative average reward obtained by each of these policies, taking as baseline the policy
that always admit all network slice requests (which is the most straightforward algorithm).

We observe that N3AC performs very closely to the O-learning and optimal policies,
which validates the proposed algorithm in terms of optimality. We further observe that
the revenue improvements over the naive policies is very substantial, up to 100% in some
cases. Apain, as expected, for small p;/p, the policy that always admits all requests is
optimal: in this case both elastie and inelastic slices provide the same revenue. In contrast,
for very large p;/p. ratios the performance of the “always reject” policy improves, as in
this case the revenue obtained from elastic traffic is (comparatively) much smaller.

3.5.2. Learning time and adaptability

One of the key advantages of the N3AC algorithm as compared with (-learning is
that it requires a much shorter learning time. This is due to the fact that with N3AC
the knowledge acquired at each step is used to update the -values of all states, while
(J-learning just updates the ()-value of the lookup table for the state being visited. To
evaluate the gain provided by the NNs in terms of convergence time, we analyze the
evolution of the expected revenue over time for the N3AC and the (Q-learning alporithms.
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Figure 3.11: Learning time for N3AC and Q-learning.

The results are shown in Figure 3.11 as a function of the number of iterations. We
observe that after few hundred iterations, N3AC has already learned the correct policy
and the revenue stabilizes. In contrast, (-learning needs several thousands of iterations
to converge. We conclude that N3AC can be applied to much more dynamic seenarios
as it can adapt to changing environments. Instead, -learning just works for relatively
static scenarios, which limits its practical applicability. Furthermore, (J-learning cannot
scale to large scenarios, as the learning time (and memory requirements) would grow
unacceptably for such seenarios.

When the network conditions change, e.g., the arrival pattern of slice requests, this is
detected by the system, and a new training period is triggered. To evaluate the system
performance under such conditions, Figure 3.12 illustrates the behavior of N3AC and
()-learning. In this experiment, the arrival rate of elastic network slices is reduced to
one half at a given point in time, and this is detected as the revenue drops beyond a
given threshold (which we set to 10%). We observe that N3AC rapidly moves to the
best point of operation, while ()-learning needs much more time to converge, leading to
a substantially lower revenue. We further observe that, even in the transients, N3AC
obtains a fairly good performance.

3.5.3. Large-scale scenario

The previous results have been obtained for a relatively small scenario where the
evaluation of the optimal and -learning algorithm was feasible. In this section, we
assess the performance of the N3AC alporithm in a large-scale scenario; indeed, one of
the design goals of this algorithm is its sealability to large scenarios. We consider a
scenario with eight slice classes, four for elastic traffic and four for inelastic. For each
traffic type, we allow four network slice sizes, linearly distributed among € /10 and C/20.
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Figure 3.13: Revenue vs. p;/pe.

We have the same thronghput guarantees for elastic and inelastic traffic as in the previous
experiment (R; = R, = C},/10) and thus we have the same admissibility region (although
the space state is much larger now). We set g and A parameters in a way that the load
of the network is similar to the previous experiment.

In this larger scenario, the optimal and ()-learning algorithms are not feasible. Hence,
we evaluate the performance of N3AC and compare it against the naive policies only.
Figure 3.13 shows the relative average reward obtained by each of these policies, taking
as baseline the policy that always admits all network slice requests. Similarly to the
evaluation performed in the previous experiment, we observe that the N3AC algorithm
always substantially outperforms the naive policies. As expected, for small p;/p. the
policy that always admits all requests is optimal, while for very large p;/p. ratios the
performance of “always reject” policy improves since the revenue obtained from the elastic
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Figure 3.14: The distribution of the revenues obtained by random smart policies compared
to the N3AC alporithm.

traffic is much smaller.

3.5.4. Gain over random policies

While the result of the previous section shows that the proposed algorithm provides
high gains, it is only compared against two naive policies and thus does not give an insight
on the real revenue gains that could be achieved over smarter, yet not optimal policies.
To this end, we compare the performance of the N3AC algorithm against a set of “smart”
random policies which work as follows: (i) inelastic network slices requests are always
accepted, and (ii) the decision of rejecting an elastic request is chosen randomly upon
defining the policy for each different state. Then, by drawing a high number of random
policies, it is to be expected that some of them provide good performance.

Figure 3.14 compares N3AC against the above approach with 1,000 and 10,000
different random policies, respectively. We note that the improvement achieved with
10,000 random policies over 1,000 is very small, which shows the the chosen setting for
the random policies approach is appropriate and provides the best performance that can
be achieved with such an approach. From the fipure, we can see that N3AC provides
substantial gains over the best performing random poliey (around 20%). This confirms
that a smart heuristic is not effective in optimizing revenue; indeed, with such a large
space state it is very difficult to calibrate the setting for the acceptance of elastic slices
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that maximizes the resulting revenue. Instead, by using a NN-based approach such as
N3AC, we are capable of accurately capturing such a large space state within a limited

range of parameters and thus drive acceptance decisions towards very high performance.

3.5.5. Memory and computational footprint

One of the key aspects of the proposed framework is the memory footprint, which
has a strong impact on scalability. By using NNs, N3AC does not need to keep track
of the expected reward for each individual state-action @) (s, a), but it only stores the
weights of the NNs. Indeed, NNs capture the dynamics of the explored system based on a
small number of weights, which are used to estimate the ()-values for all the states of the
system. This contrasts with (-learning, which requires to store data for each individual
state. As the number of weights, fixed by the NN layout, is much smaller than the total
number of states, this provides a much higher scalability, specially when the number of
states grows substantially. For example, the large seale scenario evaluated in Section 3.5.3
has an internal space state of around 500 thousand states, which makes the C-learning
technique unfeasible for such a scenario. In contrast, N3AC only requires storing state
for around 400 parameters, which represents a huge improvement in terms of sealability.

In addition to memory, the computational footprint also has a strong impact on
scalability. In order to understand the computational load ineurred by N3AC, we
measured the time elapsed in the computation for one iteration. Table 3.1 gives the
results obtained with a NVIDIA GTX 1080 GPU platform for different system scenarios
in terms of neurons, number of base stations and number of users. Results show that
computational times are very low, and the differences between the various scenarios are
almost negligible, which further confirms the ability of N3AC to scale up to very large
network scenarios.

Number of Number of Number of | Computational
neurons  base stations 1SETs time (sec)
40 50 500 0.0181
40 100 1000 0.0194
40 250 1000 0.0195
100 250 2500 0.0192
100 500 2500 0.0197
100 500 5000 0.0199

Table 3.1: Computational load for different network scenarios.

3.5.6. Different traffic types

Our analysis so far has foeused on two traffic types: elastic and inelastie traffic. In this
section, we address a different scenario that includes the traffic types corresponding to the
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four service classes defined by 3GPP [51] (hereafter we refer to them as class 1 to class 4,
where class 1 is the one with most stringent delay requirements). In line with the analysis
of Section 3.2, for this scenario with 4 different traffic types we take the admissibility
region A* given by (i) [To| < Ty, (id) [Th|+|Te| < T3m%, (iid) [Ta| + [To| + |Ta| < T,
and (iv) [T1|+|Tz|+|Ts|+|Ta| < T;/™2=. For this scenario, we run the same experiment as in
Section 3.5.3, varying the price ratio p among different classes as follows: . = p-re Yk,
where v i3 the revenue generated by class k. Figure 3.15 compares the performance
provided by the N3AC algorithm in this scenario against the one provided by naive
policies which only accept a subset of classes. We can observe that N3AC provides very
high gains when compared to all the naive policies, which confirms that our approach
can be suceessfully applied to scenarios with more traffic types, such as, e.g., the 3GPP
service classes.



Resource Orchestration for
Network Slicing

Network Slicing will enables the sharing of the next mobile networks generation by
dividing the network infrastructure into logical slices devoted to different services and
customized to their needs. In the first part of this thesis we analyzed the impact of
Network Slicing over the business model of the next mobile network generation. We
unveiled the network management complexity when the resource to be shared is spectrum.
In this scenario we identified the new players, i.e., the tenants and the Infrastructure
Provider (InP), and the need of a network capacity broker algorithm to decide on whether
admit or reject a new slice request to meet the Service Level Agreements (SLAs) and
maximizing the InP’s revenue.

An optimal and a heuristic algorithms have been designed to optimize the network
slicing market: the first provides a benchmark to evaluate the quality of the practical
algorithm based on Deep Reinforcement Learning (DRL) that provides flexibility and
scalability in order to be employed in large and complex real scenarios while providing
close to optimal performance.

The emergence of sliced networks also promises to skyrocket the complexity of
resource management and orchestration, moving from the rather limited reconfipuration
possibilities offered by current Operations and Business Support System (OSS/BSS) to
a rich, software-defined layer that manages thousands of slices belonging to hundreds of
tenants on the same infrastructure [52].

To cope with the new milien, network operators are striving to make resource
management and orchestration (MANO) processes highly automated. To realize the
5G principle of cognitive network management [53], two complementary technologies are
needed: (i) technical solutions that enable end-to-end Network Funetion Virtualization
(NFV), and provide the flexibility necessary for resource reallocation; and, (ii) data
analytics that operate on mobile traffic measurement data, automatieally identify demand
patterns, and anticipate their future evolution.

From a technical standpoint, solutions that implement NFV at different network
levels are well established, and start to be tested and deployved. Ezxamples include

47
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current MANO platforms architectures like ETSI NFV [54], and implementations such
as OSM [55] or ONAP [56], which allow to reconfigure and reassign resources to Virtual
Network Functions (VNFs) on the fly. By contrast, the integration of data analyties
in cognitive mobile networks is still at an early stage. Nowadays, resource assignment
to VINFs is a reactive process, mostly based on hysteresis thresholding and aimed at
self-healing or fault tolerance. There is a need for proactive, data-driven, automated
solutions that enable cost-efficient network resource utilization, by anticipating future
needs for capacity and timely reallocating resources just where and when they are
required. The foeus of our work is precisely on the design of data analyties for the
anticipatory allocation of resources in cognitive mobile networks. Specifically, we seek a
machine learning solution that runs on traffic measurements and provides operators with
information about the capacity needed to accommodate future demands at each network
slice — a critical knowledge for data-driven resource orchestration. In Section 4.1, we first
introduce eapacity forecast, a new concept at the base of our solution, and then provide
a review of related works highlighting the novelty of our proposed method in Section 4.2.
We then describe the overall framework of DeepCog in Section 4.3 and detail the design
of its most critical component, i.e., the loss function, in Section 4.4. The quality of the
solution is then assessed in realistic scenarios in Section 4.5.

4.1. Network management and forecasting

In this section we introduce the concept of capacity forecast, a fundamental notion that
inspired the design of DeepCog. Indeed, affecting the resource orchestration decisions,
capacity forecast directly influences the monetary impaect for the network operator in
terms of operating expenses.

We start identifying two maecroscopic categories of operating cost, Overprovisioning
and Service Level Agreement (SLA) violation. Then, the motivation behind the need of
capacity forecast instead of traffic forecast is presented. We conclude the section with a
comparison to highlight the benefits obtained by employing capacity forecast.

In the context of network resource management and orchestration, an Infrastructure
Provider (InP') at the moment of select the amount of resources needed to accommodate

mobile traffic load, can incur in two main cost categories:

s Overprovisioning — when providing excess capacity with respect to the actual
resource demand, the operator incurs a cost due to the fact that it is reserving more
resources than those needed to a network entity (e.g., a network slice, a network
function, or a virtual machine). As resources are typically isolated across slices,
this seizes the excess resources from other network entities that may have possibly
used them. At a global system level, continued overprovisioning implies that the

operator will have to deploy more resources than those required to accommodate the
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user demand, limiting the advantage of a virtualized infrastructure and of cognitive

networking solutions in general.

m SLA violation — if insufficient resources are allocated to a network entity, users
will suffer low Quality of Service (QoS), or even discontinued service. This has an
indirect price for the operator, in terms of customer dissatisfaction and increased
churning rates, which is not simple to quantify. However, in emerging contexts such
as those promoted by network slicing, underprovisioning also entails a different, more
direct and quantifiable economic penalty for the operator. Under slicing, operators
will sign SLAs with the mobile serviee providers, which need to be strictly enforced.
Underprovisioning means violating such SLAs, which results in substantial monetary

fees for the network operator.

Clearly, the cost is not the same in the two cases, and it may also vary depending on the
specific settings, including the nature of the concerned resources, the technologies deployed
in the network infrastructure, or the market strategies of the operator. In all cases, we
posit that, once suitably modeled, such costs shall be at the core of the orchestrating
decisions.

Legacy techniques for the prediction of mobile network traffic, such as the one reviewed
in Section 4.2, fall short in this respect. Such models aim at perfectly matching the
temporal behavior of traffic, independently of whether the anticipated demand is above
or below the target, and are thus agnostic of the aforementioned costs. As a result, they
return forecasts as that depicted in Fig.4.1a, which refers to a real-world case study of
YouTube video streaming traffic at a core network datacenter. Note that no distinetion
is made between positive and negative errors, which leads to substantial SLA violations
covering roughly half of the observation time. The operator may then attempt to apply
overprovisioning to the output provided by such a traffic predictor. Unfortunately, legacy
forecast models do not offer any insight on how large the execess resource allocated on top
of the forecast demand should be.

We argue that a more effective anticipatory resource allocation can be achieved by
designing machine learning solutions that anticipate the minimum provisioned ecapacity
needed to eut down SLA violations. This closes the present gap between simple traffie
prediction and practical orchestration as it provides the operator with an explicit capacity
forecast that mitipates underprovisioning in Fig.4.1b while minimizing unnecessary
resource reservation.

Once the resource allocation is determined according to the capacity forecast
provided by DeepCog, there is the need of lower level mechanisms to enforee the
envisioned allocation. As an example, we have designed CARES, a computational-
aware radio resources scheduler. The current Radio Access Network (RAN) protocol
stack has been desipned under the assumption that required computational resources
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Figure 4.1: Top: actual and predicted weekly demands for YouTube at a datacenter
controlling 470 4G eNodeBs. Bottom: levels of overprovisioning (blue) and capaecity
violations (red) over time. (a) Output of a recent deep learning predictor of mobile
traffic [57]. (b) Output of DeepCog, tailored to anticipatory network resource allocation.
The best view of this figure is in colors.

are always available, and RAN functions are not prepared to cope with computational
outages [58]. Indeed, when such computational outages occur, current virtualized RAN
implementations [59] just drop the frame being processed, and as a result they see their
performance severely degraded. To provide a more robust behavior against computational
outages at the process of enforcing radio resources to network slices, a re-design of the
RAN protocol stack is required. As a first step towards this end, in [6,7] we propose
CARES, a mechanism that jointly optimizes scheduling and Modulation and Coding
Scheme (MCS) selection making these functions computationally aware. In this way,
our solution provides a graceful performance degradation in presence of computational
outages, in contrast to the severe degradation with the current stack, improving the
performance of a virtualized BAN system with temporarily limited computational
Tes0OUrces.

In the next section we introduce DeepCog, a machine learning solution that running
on traffic measurements provides such a eritical knowledge for data-driven resource

orchestration.

4.2. Related Works

Applications to networking problems of machine learning in general, and of deep
learning in particular, are starting to become popular. Artificial intellipence can indeed be
applied to solve many different problems that emerge in computer networks, as highlighted
in recent comprehensive surveys on the topic [60,61].

In the context of network management, emerging paradigms like slicing increase
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substantially the complexity of orchestrating network functions and resources, at all levels.
For instanece, intellipence is needed for the admission control of new slices: as resources are
limited and slicing entails their strong isolation, this is critical to ensure that the system
operates efficiently. With potentially hundreds of slices allocated simultaneously, and
a need to anticipate highly profitable future requests, the decision space for admission
control becomes so large that traditional approaches become impractical. Solutions
based on deep learning architectures represent here a viable approach [62]. Similar
considerations apply to other aspects of sliced network management, e.g., the allocation
of computational resources to slices at the radio access, based on transmission (e.g.,
modulation and coding scheme, channel load) and environmental (e.g., signal quality,
hardware technology) conditions [63], or the anticipatory reservation of Physical Resource
Blocks (PRBs) to user traffic to be served in target network slices [64].

Our specific problem relates to the orchestration of generic resources (e.g., CPU time,
memory, storage, spectrum) to slices at different network entities, which is tightly linked to
mobile traffic prediction. The literature on forecasting network traffic is in fact vast [60,
65]. Solutions to anticipate future offered loads in mobile networks have employed a
variety of tools, from autoregressive models [66-68] to information theoretieal tools [69],
passing by Markovian models [70] and deep learning [57,62,64, 71, 72]. However, we
identify the following major limitations of current predictors when it comes to supporting
resource orchestration in mobile networks.

First, predictors of mobile traffic invariably focus on providing forecasts of the future
demands that minimize some absolute error [60, 65]. As explained in Section 4.1,
this approach leads to predicted time series that deviate as little as possible from the
actual traffic time series, as exemplified in Fig.4.1a for a real-world case study. While
reasonable for many applications, such an output is not appropriate for network resource
orchestration. The operator aims at provisioning sufficient capacity to accommodate
the offered load at all times, since failing to do so implies high costs in terms of high
subscribers’ churn rates, as well as significant fees for violating SLAs sipned with tenants.
Yet, if an operator decided to allocate resources based on a legacy prediction like that in
Fig.4.1a, it would incur into capacity violations most of the time (as illustrated in the
bottom subplot).

Second, with the adoption of network slicing, forecasts must oceur at the slice level,
i.e., for specific mobile services in isolation. However, most traffic predictors, including
recent ones, are evaluated with demands aggregated over all services [57,71,72]. This
is an easier problem, since aggregate traffic yields smoother and more regular dynamies,
hence previous solutions may not handle well the bursty, diversified traffic exhibited by
each service. The only attempts at anticipating the demands generated by specific mobile
services have been made by using multiple-input single-output (MISO) autoregressive
models [73], and hybrid prediction methods that incorporate a-stable models and sparsity
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with dictionary learning [69].

Third, existing machine learning predictors for mobile traffie typically operate at base
station level [57,72]. However, Network Function Virtualization (NFV) operations mainly
occur at datacenters controlling tens (e.g., at the mobile edge) to thousands (e.g., in the
network core) of base stations. Here, prediction should be more efficient when performed
on the agpregate traffic at each datacenter, where orchestration decisions are taken, rather
than combining independent forecasts from each base station.

Our proposed solution, DeepCog, addresses all of the open problems above, by
implementing a first-of-its-kind predictor that anticipates the minimum provisioned
capacity needed to cut down SLA violations. This closes the present gap between traffic
prediction and practical orchestration, as it provides the operator with an explicit capacity
forecast that mitipates underprovisioning in Fig.4.1b while minimizing unnecessary
resource reservation.

4.3. A DL Framework for Resource Orchestration

In this section we introduce DeepCog [11], a new mobile traffic data analytics tool that
is explicitly tailored to solve capacity forecast problem. The design of DeepCog vields

multiple novelties, summarized as follows:

» It hinges on a deep learning architecture inspired by recent advances in image
and video processing, which exploits space- and time-independent correlations
typical of mobile traffic and computes outputs at a datacenter level;

n It leverages a customized loss function that targets capacity forecast rather
than plain mobile traffic prediction, letting the operator tune the balanee between

overprovisioning and demand violations;

n It provides long-term forecasts over configurable prediction horizons, operating

on a per-service basis in accordance with network slicing requirements.

Owerall, these design principles jointly solve the problem of capacity forecast in network
slicing. This is illustrated by Fig. 4.1b, which shows an example of the required capacity
forecast by DeepCog in a real-world case study. We remark that DeepCog is one of the
very first examples of rigorous integration of machine learning into a cognitive network
management process, and marks a difference from the common practice of embedding
vanilla deep learning structures into network operation [60].

The design of DeepCog is outlined in Fig. 4.2, Its organization is that typical of deep
learning systems, and it stems from (i) properly formatted inpuf data used to build the
forecast, which, in our ease, represents the current and past traffic associated to a specific
network slice as a tensor. Such input is fed to (ii) a deep neural network architecture that
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Figure 4.2: Outline and interaction of the DeepCog components.

extrapolates and processes input features to provide (iii) an output value: the capacity
forecast. During the training phase, the output is used to evaluate (iv) a loss function
that quantifies the error with respect to the ground truth, and, in DeepCog, accounts for
the costs associated to resource overprovisioning and service request denial.

Below, we present each of the components of the framework, and discuss its mapping

to the elements of a 5G network architecture running cognitive resource management.

4.3.1. DeepCog Framework

In our network model, we consider that time is divided in slots, which we denote
by t. Let di(t) be the traffic associated with slice ¢ that is observed at base station
i € N and time t. A snapshot of the demand of slice s £ § at time t is given by a set
8:(t) = {81(t),...,8Y(t)}, and provides a global view of the traffic for that slice at time ¢
across the whole network. We let A denote the set of N base stations in the network, and
M the set of M < N datacenters. For each slice 5 € &, base stations are associated to
datacenters via a surjective mapping f; : N — M, such that a datacenter j € M serves
the aggregated load of slice s for all of the associated bases stations.! With this mapping,
the traffic for slice s processed by datacenter j at time  is given by d](t) = 3z, 1), 0:()-
Then, the set of demands across all datacenters is given by d,(t) = {d}(t),...,dM(¢)}.

Let us denote the allocated capacity for slice = at datacenter j and time t as ¢l(t), and
the set of capacities at all j € M as ¢,(t) = {el(t),...,eM(t)}. Then, the capacity forecast
problem is that of computing a constant capacity cs(t,Th) = {cl(t,Th),...,eM(t,Th)}
that is allocated in the network datacenters over a time horizon Ty, i.e., through an
interval between the present time ¢ and a future time £ + T}. In practice, this models
the typical situation where the resource reconfiguration frequeney is limited (e.g., by the
NFV technology), and the operator must decide in advance the amount of resources that

'"We remark that DeepCog works for any arbitrary mapping, including, e.g., flows from a slice in the
same base station being split across datacenters, or associations among base stations and datacenters
varying over time. As a matter of fact, DeepCog's learning process is based exclusively on the traffic load
at each individual datacenter and is thus independent of the actual sources generating such traffic.
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Figure 4.3: DeepCog neural network encoder-decoder structure.

will stay assigned to a slice until the next reallocation takes place. The time horizon T}
thus corresponds to the reconfizuration period, and the allocated capacity is such that
al(t) =l (t,Ty) Vi € M,t € [t, T+ T}

The forecast builds on knowledge of the previous T traffic snapshots d.(t —
1),...,8:(t — Tp). The quality of the capacity forecast c,(t,T}) is measured by means of
a suitable loss function £ (cs(t,Th),ds(t),...,ds(t +Tr)). This function £(-) determines
the compound cost of overprovisioning and underprovisioning network resources at the
target datacenters, as produced by allocating a constant eapacity c,(t,Th) when the actual
time-varying demand is in fact d,(t),...,da(t +Th).

4.3.2. The Neural Network

DeepCog leverages a deep neural network structure composed of suitably designed
encoding and decoding phases, performing a capacity forecasting prediction over a given
time horizon. The structure is general enough that it can be trained to solve the capacity
forecast problem for (i) network slices dedicated to different services with significantly
diverse demand patterns, (if) any datacenter configuration, and (#i{) any time horizon T},.
The hyperparameters of the neural network have been tuned through extensive simulation
and testing.

The design of the neural network structure in DeepCog is inspired by recent
breakthroughs [74] in deep learning for image and video processing. As summarized
in Fig 4.3, the network is composed of an encoder that receives an input representing
the mobile traffic data d,(t—1),...,8:(t — Tp) and maps important spatial and temporal
patterns in such data onto a low-dimensional representation. Intuitively, the encoder
extracts the relevant features from the input traffic tensors 8,(t — 1),...,d,(t — T'p) and
the decoder leverages such features to generate a capacity forecast that is tailored to a

given combination of slice, prediction time horizon, and datacenter class; e.g., datacenters
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deployed close to the radio access will show different features from those co-located with
the Internet gatewsays.

The result of the encoder undergoes a flattening process that converts the 3D (space
and time) tensor data into a unidimensional vector format. This is the input format
required by the fully connected layers that form the decoder, which then generates the
final capacity forecast c,(t,T,) at the target set of datacenters M. Below, we detail the
encoder and decoder implementations, and discuss the training procedure.

The Encoder. It is composed by a stack of three three-dimensional Convolutional
Neural Network (CNN) layers [75]. Generic CNNs are a specialized kind of deep learning
structure that can infer loeal patterns in the feature space of a matrix input. In particular,
two-dimensional CNNs (2D-CNNs) have been extensively utilized in image processing,
where they can complete complex tasks on pixel matrices such as face recognition or
image quality assessment [76]. 3D-CNNs extend 2D-CNNs to the case where the features
to be learned are spatiotemporal in nature, which adds the time dimension to the problem
and transforms the input into a 3D-tensor. Sinece mobile network traffic exhibits correlated
patterns in both space and time, our encoder employs 3D-CNN layers®.

Formally, the 3D-CNN layers receive a tensor input T (8a(t — 1)),..., T (8a(t — Tp)),
where T(-) is a transformation of the argument snapshot into a matrix. This input
is processed by three subsequent 3D-CNN layers. Each neuron of these layers runs a
filter H (2, I(7) # K(7) + b) where I(7) is the input matrix passed to the neuron (e.g.,
I(T) =T (8s(7)) at the very first layer, for slice £ and generic time 7), + denotes the 3D
convolution operator, K(t) is the kernel of filters, H(-) is a non-linear activation function,
and b is a bias vector. We use two different kernel configurations K(7), as shown in
Fig.4.3: a 3 x 3 x 3 kernel for the first 3D-CNN layer, and a 6 x 6 x 6 kernel for the
second and third layers. These settings allow limiting the receptive field, i.e., the portion
of input analyzed by each neuron, to small regions: in presence of strong local correlation
of the input data, this approach is known to yield good performance with fairly limited
training, in particular compared to RNNs. As for the choice of the activation function,
many different options have been proposed in the literature, spanning from linear functions
to tanh, sigmoid or Rectified Linear Unit (ReLU). Among these, we select ReLU, and
set H(x) = max (0, x), which provides advantages in terms of diseriminating performance
and faster learning [77]. Finally, b is randomly set at the beginning of each training phase.

The second and third 3D-CNN layers are interleaved with Dropout layers: such layers
regularize the neural network and reduce overfitting [77] by randomly setting to zero
a number of output features from the preceding layer during the training phase. The
dropout rate defines the probahbility with which output features undergo this effect. During

We have employed CNNs instead of Recurrent Neural Networks (RNNs) (typically used for forecasting
application) because the mobile load at a time instant ¢ mainly depends on previous Ty instants and not
on all the past values (as confirmed by our analysis). For this reason, CNNs provide us enough temporal
memory while being cheaper to train in terms of computational cost compared with RNNs
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training, we employ two Dropout layers with dropout rate equal to 0.3.

The Decoder. It uses Multi-Layer Perceptrons (MLPs) [78], a kind of fully-connected
neural layers, where every neuron of one layer is connected to every neuron of the next
layer. This provides the ability to solve complex function approximation problems. In
particular, MLPs are able to learn global patterns in their input feature space [47],
allowing the neural network structure to forecast the targeted load value leveraging the
loeal features extracted by the encoder. In our structure, each layer performs an operation
H'(x - W + b), where x is the MLP layer input vector, W a weight matrix related to
the neurons of each layer, and b the bias vector. W plays a similar role to K(t) in the
encoder part: its values drive the prediction through the layers of the decoding part.

As for the activation functions H, we employ ReLU for all MLP layers except for
the last one, where a linear activation function is used since the desired output takes
real values. The last linear layer can be confipured to produce multiple predictions in
parallel, each matching the aggregate capacity required by a subset of base stations, thus
allowing to forecast the needed ecapacity for different datacenters comprising a subset of
base stations. Ultimately, this organization makes the DeepCog neural network capable
of predicting per-slice capacity requirements at datacenter level, in a way that can adapt

to any confipuration of M and to any time horizon T}.

4.3.3. The training procedure

We leverage the popular Adam optimizer, which is a Stochastic Gradient Descent
(SGD) method that provides faster convergence compared to other techniques [79]. SGD
trains the neural network model, evaluating at each iteration the loss funetion £(-) between
the forecast and the ground truth, and tuning the model parameters in order to minimize
£(-). For the configuration of the Adam optimizer, we use the default configuration with
a learning rate of 5 x 10~

An important element that coneerns the training of the DeepCog architecture is that
the encoder and the decoder deseribed in Section 4.3.2 have independent roles. Therefore,
while the decoder heavily depends on the forecast specifications, the encoder does not,
and is agnostic to the final usage of the extracted features. This fact allows adopting a
transfer learning approach during training: instead of treating the two blocks as a whole
(and performing the training over the full system for all the possible slices, datacenter
classes and horizons), we can train them separately. Specifically, an horizon-independent
encoder can be trained on past traffic tensors at maximum time granularity, and then
reused in combination with dedicated decoders tailored to each T}, value. Beside reducing
the training time, this strategy reduces the need for neural-network-wide training to
different settings of slice and datacenter only.
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4.3.4. Arrangement of input data

The input is composed by measurement data generated in a specific network slice, and
recorded by dedicated probes deployved within the network infrastructure. Depending
on the type and loeation of the probe, the nature of the measurement data may vary,
describing the demands in terms of, e.g., signal quality, occupied resource blocks, bytes of
traffic, or computational load on Virtual Network Functions (VNFs). DeepCog leverages
a set of transformations to map any type of slice traffic measurements into a tensor format
that can be processed by the learning algorithm.

The 3D-CNN laver adopted as the first stagpe of the decoder requires a
multidimensional tensor input. We thus need to define the transformation 7(-) of each
traffic snapshot into a matrix. Note that 3D-CNN layers best perform in presence of a
tensor input that features a high level of loeal correlation, so that neurons operate on
similar values. In image processing, where close-by pixels typically have high correlation,
this is easily solved by treating the pizel grid as a matrix. In line with this strategy,
the current common practice in mobile network traffic prediction is to leverage the
geographical locations of the base stations, and assign them to the matrix elements so that
their spatial proximity is preserved as much as possible [57,60]. However, this approach
does not consider that correlations in mobile service demands at a base station level do
not depend on space, rather on land use [80]: base stations exhibiting strongly correlated
network slice traffic may be far apart, e.g., covering the different train stations within
a same large city. Thus, we aim at creating a tensor input whose neighboring elements
correspond to base stations with strongly correlated mobile service demands. To this end,

we construct the mapping of base stations into a matrix structure as follows.

m For each base station i, we define its historical time series of total traffic as
™ = {§(1),...,8(t — 1)}, where §(t) = 3, 8i(t). Then, for each pair i and
j, we determine the similarity of their recorded demands by computing SBDY =
fenn (7%, 77), where fepn(-) is the shape-based distance, a state-of-the-art similarity
measure for time series [81]. All pairwise distances are then stored in a distance
matrix D = (SBDY) € RM*M,

» We compute virtual bidimensional coordinates p; for each base station i so that
the values in the distance matrix D are respected as much as possible. Formally,
this maps to an optimization problem whose objective is ming, .z 2 ic;i([|Pi —
pj|| — sBDY)?, efficiently solved via Multi-Dimensional Sealing (MDS) [82].

m We match each point p; to an element e of the input matrix I, again
minimizing the total displacement. To this end, we: (i) quantize the virtual surface
encompassing all points p; so that it results into a regular grid of N cells; (ii)
assume that each cell is an element of the input matrix; (iii) compute the cost ki
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of assipning a point p; to element e as the Euclidean distance between the point and
the cell corresponding to e. We then formalize an assignment problem with objective
MiNg ;e n 2 el KieTie, Where T3 € [0, 1] is a decision variable that takes value 1 if
point p; is assigned to element e, and must fulfill 3\ 75 =1 and 3 g7 = 1.
The problem is solved in polynomial time by the Hungarian algorithm [83].

The solution of the assignment problem is the transformation 7 (-) of the original base
stations into elements of the matrix I. The mapping function 7 (-) allows translating a
traffic snapshot 8,(t) into matricial form. Applying this to snapshots at different times,
d.(t—1),...,8:(t —T), we can thus build the tensor required by the entry encoder layer
in Fig.4.3.

4.3.5. The Output function

DeepCog is designed for flexibility, and can be used for different orchestration
scenarios. This is achieved thanks to an adaptable last layer of the deep neural network,
and a configurable loss function. In general, the learning algorithm returns a forecast of
the capacity required to accommodate the future demands for services associated to a
specific network slice. This generic definition of output can then be applied to different
orchestration use cases that may differ in the traffic apgrepation level at which the resource
configuration takes place, and/or in the frequency at which resource reallocation can be
realized.

For instance, the anticipatory assipnment of baseband processing units to network
slices in a Cloud Radio Access Networks (C-RAN) datacenter requires a prediction of
the capacity needed to accommodate the traffic of a few tens of base stations; instead,
reserving memory resources for a specific network slice at a core network datacenter
implies forecasting capacity for the data sessions of subseribers associated to hundreds of
base stations. The output format of DeepCog can accommodate any datacenter layout,
by tailoring the last linear layer of the neural networks to the specific requirements of the
layout (as discussed in Section4.3.2).

Also, as discussed previously, the time horizon over which the forecast is performed
is another relevant system parameter, which depends on NFV technology limitations and
current trends in commoditization of softwarized mobile network. When the technology
limitations do not allow frequent reconfipuration opportunities, resources need to be
allocated over long periods, e.g., of tens of minutes or even hours. In this case, forecasting
over long-term horizons provides the operator with information on the constant capacity
to be allocated during long intervals. To realize this, DeepCog operates on configurable
time horizons, thanks to the flexible loss funetion that we will discuss next.
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4.4. o-OMC

Omne of the key components of the system proposed in the previous section is the loss
funetion, denoted by £(-). This function determines the penalty incurred when making
a prediction error. In this paper, we propose a novel loss function that is tailored to
the specific requirements of the capacity forecast problem. Our design of £(-) accounts
for the costs resulting from (i) forecasting a lower value than the actual offered load,
which leads to an SLA wiolation due to the provisioning of insufficient resources, (if)
predicting a higher value than the actual one, which leads to overprovisioning, allocating
more resources than those needed to meet the demand. In order to ensure that we drive
the system towards an optimal trade-off between overprovisioning and SLA violations,
over a generic time horizon T}, #(-) must account for the penalty inflicted in each case.
In what follows, we describe the design of a-OMC (Operator Monetary Cost) [10], a loss
functions that provides DeepCog with the capability of optimizing the overall running

costs of the system.

4.4.1. Loss function design

In DeepCog, the loss function steers the behavior of the neural network by adjusting
the weights of the neurons according to the error between the estimated value and the
real one. To achieve the objective of minimizing the overall cost, a custom loss function
for the eapacity forecasting problem is composed by a term f(z,r*) that deals with the
resource overprovisioning penalty, and a term g(z,z*) that models the cost of resource
violations. The wvariable r represents the allocated resources at a given time interval,
while r* is the real demanded load for the same period. So the overall cost is due by the
discrepancy between r and r* in any time horizon.

The shape of overall cost function f(z, z*)+g(z, z*) is depicted in Fig. 4.4a. A perfect
algorithm (i.e., an oracle) always keeps the system in the optimal operation point r = z*
where no penalty is introduced, i.e., f(r*,r*) = g(z*,r*) = 0. Of course, errors are
inherent to predictions, and it is very unlikely that the forecast perfectly matches the real
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demand: hence, a penalty value is back-propagated depending on whether z is above or
below the target operation point =*.

4.4.1.1. g(z,z*), a reactive approach to SLA violations.

When the orchestrated resources are less than those needed in reality (i.e., = < z*)
the network operator pays a monetary compensation to the tenant. We assume an SLA
that enforces a proportional compensation depending on the number of time intervals
in which an operator fails to meet the requirements set by a tenant due to insufficient
capacity allocated to the slice. Thus, SLA violations determine a fixed cost for the
operator at every time interval where the tenant demand is not satisfied. Accordingly,
we let the system learn that the operation point x* is actually higher than the estimated
one by applying a penalty £, as soon as the estimation falls below the real value. The
parameter F. can be customized to the needs of the slice # € §: higher values may be
used for cases where reliability is paramount like, e.g., in Ultra Reliable Low Latency
Communication (URLLC) network slices; instead, lower values can be applied for slices
where Key Performance Indicator (KPI) commitments are provided over longer time
intervals. Note that higher 5, values are likely to bring the system toward = > =%,

incurring hence in higher deployment costs, as discussed next.

4.4.1.2. f(z,z*), a monotonically increasing cost for resource

overprovisioning.

While SLA violations depend on the agreements between the tenants and the operator,
the overprovisioning cost solely depends on the network operator, and more specifically
on the deployment costs associated with excess allocated capacity. We assume that such
a cost grows with the amount of unused eapacity at each time interval, and model it
as a positive monotonic function that is only applied when = > z*: the higher the
resource provisioning error, the more (unnecessarily) expensive is the deployment. The
exact expression of f(r,r*) may vary, and one could consider, e.g., linear, super-linear,
or exponential shapes. For DeepCog, we design o-OMC to use a linear function, as
shown in Fig.44a. The linear scaling factor +; is configurable by the operator, and
represents the monetary cost of the excess resource allocation. The cost depends on the
specific datacenter j € M at which the capacity forecasting takes place: for instance,
spectrum resources at the edge are typically scarcer and more expensive to deploy than
computational resources in a network core datacenter. In case of expensive resources
(characterized by a large 7;), a positive forecasting error will have a higher impact,
favoring a capacity forecast with a lower level of overprovisioning.
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4.4.1.3. Balancing the two cost coniributions.

Owerall, the amount of resources that a network operator is willing to allocate depends
on the cost that it has to pay when failing to meet the demands for a given slice (given
by As) and the cost associated with adding extra resources at a specific datacenter (given
by ')fj}. These two parameters, [, and 7;» push the capacity allocations towards opposite
directions, namely overdimensioning and underdimensioning, respectively. Hather than
their absolute values, what really matter for the resulting alloeation is the ratio between
the two parameters, which determines the trade-off between overdimensioning and
underdimensioning. Accordingly, in the following we express the custom loss as a function
of a single parameter ov,; = f—: We remark that a5 indicates the monetary costs of SLA
violations with respect to the overprovisioning: failing to meet the slice requirements once
costs as much as allocating a,; units of excess capaecity. Thus, a higher a;; implies higher
SLA violation costs relative to the deployment (i.e., overprovisioning) cost. A mobile
network operator can easily set this parameter based on its deployment costs, SLA fees,
and market strategies.

Another important remark is that the SGD method used to train the neural network
does not work with constant or step functions, and requires that the loss function be
differentiable in all its domain. We solve this problem by introducing minimum slopes
of very small intensity € for ¥ < r* and at = = r*. We name the resulting loss function
Operator Monetary Cost, which has a single configurable parameter a,;. The final

expression of a-OMC is

o —€(r—1x") ifr<z®
a-OMC(z,2%) = {a,j — L (z—z*) ifr* < T < 2% + €a,; (4.1)
T — T% — €0y if £ > 7* + envgj.
Fig. 4.4b provides a sample illustration of (4.1) above.
The final loss function £(-) then measures the quality of the forecast over the time

horizon T}, by applying the a-OMC expression over multiple time intervals as follows:

£(cs(t,Th),da(t), ..., ds(t +Th)) =
L] i : (4.2)
> > a-OMC (d(t, Ty), di(t +7)) -
jeMT=0
For the sake of readability and without loss of generality, in the remainder of the paper
we will employ a constant , = f across slices and a constant -; = -y across datacenter
deployment, leading to a,; = a forall s € §,j € M.
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Figure 4.5: Monetary cost (aggregated over time and normalized by the cost of one
capacity unit) incurred when the overprovisioning level is shifted from that selected by
DeepCog (at the abscissa origin). Each plot refers to one case study, i.e., a combination
of (i) mobile service associated to a dedicated slice and (ii) datacenter type. Top row:
Th = 5 minutes, bottom row: Ty = 30 minutes.

4.4.2. Correctness and convergence

We now analyze the proposed loss function in terms of (i) correctness, ie., its
capability of achieving a performance that is close to the optimal, and (ii) convergence,
i.e., the time it requires to learn such a correct strategy.

In Fig. 4.5, we run DeepCog in the representative network resource management case
studies that are later detailed in Section 4.5, where a slice is dedicated to one particular
mobile service and runs in a specific class of network datacenter. For each case study,
DeepCog forecasts a given level of capacity to be allocated which leads to an associated
monetary cost. In order to investigate the correctness of the solution, we vary the
provisioned eapacity by adding to or subtracting a fixed offset from the eapacity indicated
by DeepCog.

The curves of Fig. 4.5 illustrate the variation of the monetary cost (in the y axis) as the
offset is shifted (in the x axis), where increasingly positive (respectively, negative) values
on the x axis correspond to a higher (respectively, lower) level of eapacity provisioning
with respect that suggested by our solution. The results prove that DeepCog always
identifies the capacity allocation that minimizes the monetary cost for the operator under
the inherently inaceurate prediction, as both a higher and a lower level of overprovisioning

3

leads to a greater cost. This holds under any combination.” of target mobile service,

3Fig. 4.5 shows results for o in the range [0.5,3], and two exemplary Ty values, 5 and 30 minutes.
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Figure 4.6: Average cost versus the learning epochs, when the DeepCog neural network
architecture is trained with o-OMC, MSE and MAF loss funetions.

datacenter class, and system settings o or T}, which demonstrates the high consistency
of our solution in balancing costs caused by SLA violations and overprovisioning.

We next assess the convergence properties of the loss funetion that drives DeepCog,
by observing its behavior over time. Specifically, we measure the normalized cost of the
solution identified by our learning alporithm, and compare it against that returned by the
same neural network trained with legacy loss functions.

Fig. 4.6 shows how the averape normalized cost of network operation varies during
the training phase for different o, services and datacenter classes. While the o-OMC
loss function minimizes the monetary cost of the operator in less than 20 epochs, both
Mean Absolute Error (MAE) and Mean Squared Error (MSE) converge to a fixed fee that
grows as « increases. This confirms that classical loss functions are not effective when
dealing with capacity forecasting, resulting in high penalties for operators. The results
are consistent across all of the different confizuration scenarios we tested.

4.5. Performance Evaluation

In this section we evaluate DeepCog performance in realistic settings. To this end, we
consider the mobile network infrastructure of a major operator in a large metropolitan

Similar curves characterize all o values and prediction horizons (up to 8 hours) we tested.
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Table 4.1: Mohile services retained for dedicate network slices.

Service name | Service class | Traffic & Service name | Service class Traffic %
YouTube streaming 7.3 iTunes streaming 20,0
Netfix streaming 1.8 Facchook social media 20.4
Instagram social media 34 Twitter social media 32
Snapchat messaging 89 Google Play | online store 4.3
Apple Store online store 10.5 Pokemon Go | mobile gaming 0.1

region. The area under study covers around 100 km? with a resident population of
more than 2 millions, and is surrounded by a conurbation of 11 millions inhabitants who
often commute to it. We run DeepCog on real-world measurement data of an operator
with a market share of 35% in the target region that captures the traffic penerated by
millions of users. The data were collected by monitoring the GPRS Tunneling Protocol
(GTP) via dedicated probes deployed at the network gateway and the classifieation of
IP flows into services was performed via Deep Packet Inspection (DPI) with proprietary
models developed by the network operator. The traffic demands, expressed in bytes,
refer to individual mobile services; they are aggregated at the antenna sector level and
over intervals of 5 minutes. The demands capture the highly heterogeneous and time-
varying loads that characterize real-world mobile network deployments, with differences
in the offered traffic volume of up to two orders of magnitude between antenna sectors.
Independent network slices are then assipned to a representative set of services, listed in
Tab. 4.1

We consider services that belong to different categories, including video streaming,
messaging and social networks. These services impose a broad range of requirements into
the network. For instance, video streaming services are consumed ubiquitously, they have
significant bandwidth requirements (up to 6 Mbps for a 1080p video in YouTube [84])
as well as latency constraints to avoid interruptions in playing of the video (as shown
in [85]), and they also require significant data center resources from the server side [84].
Messaging services, instead, have a large component of uplink traffie; overall, it has a
rather relaxed requirements in terms of bandwidth and latency, as it does not involve
any interactive communications. Social networks need considerable bandwidth and with
some latency requirements (according to [86], bandwidth of 8 Mbps and access delay not
exceeding 100 ms are required to achieve a high overall quality). Beyond the specific
requirements of each service, what really matters in the context of this paper is the fact
that these are services of a very different nature with highly diverse requirements, and
therefore they are likely to be served by different slices in a mobile network supporting
network slicing.

We employ the measurement data to design three case studies combining several



4.5 Performance Evaluation 65

popular mobile services and different classes of network datacenters®. Each class is
defined by the network location and number of served eNodeBs, ranging from centralized
datacenters located in the core and serving many eNodeBs to more distributed ones
located in the edge and serving a smaller number of eNodeBs. By selecting a diverse
set of case studies, we can assess the DeepCog flexibility serving heterogeneous NFV
scenarios, comprising different services and datacenter classes (C-RAN, Mobile Edge
Computing (MEC) and core). In a first case study, we consider that a slice is instantiated
for the incumbent video streaming service, i.e., YouTube, at C-RAN datacenters in the
target metropolitan area, each located in proximity of the radio access and performing
baseband processing and scheduling for around ten eNodeBs. In the second case study,
we look into MEC datacenters that handle the traffic of around 70 eNodeBs each, where
a dedicated slice accommodates the traffic generated by Snapchat, a favored messaging
app. The third case study focuses on a network slice dedieated to social network services
provided by Facebook that are run at a core network datacenter controlling all 470 4G
eNodeBs in the target metropolitan area.

The three case studies cover applications with diverse requirements in terms of
bandwidth and latency; also, they entail very different spatiotemporal dynamics of the
mobile traffic, as the considered services feature different loads and activity peaks [88].
In addition, the datacenter classes we consider have dissimilar geographical coverage and
agpregated traffic volumes, as they serve the demands associated to a variable number
of antennas, from ten to several hundreds. Owerall, the three case studies considered for
the DeepCog’s performance evaluation are very useful to understand the effect of network
slicing on the network operation costs. In fact, our results illustrate for the first time
the impact of the slice isolation requirements —eritical to future softwarized networks— on
services that have a dominant role in today’s traffic and are expected to keep playing a
very relevant role in future mobile networks. In our tests, we do not parametrize different
excess resource costs for each datacenter nor different SLA viclation penalties for diverse
services, leading to homogeneous o settings (i.e., a,; = a for all s € 8, j € M). However,
since DeepCog provisions resources for each slice and each datacenter independently, by
evaluating different o values our results provide insights on the behavior of heterogeneonus
o settings as well.

As discussed in Section 4.3.5, DeepCog outputs a capacity forecast within a variable
time-horizon T},. We measure this time in the number of steps it comprises, where each
step corresponds to the 5 mins gramlarity of our measurement data. In our evaluation
Th ranges from 5 minutes (which maps to a next-step prediction) to 8 hours (which
corresponds to a forecast with a 96 time steps look-ahead). These are reasonable values

in our context, since resource reallocation updates in the order of minutes are typical

4The internal organization of the mobile network — hence the demand recorded at each datacenter —
is inferred by adopting the methodology proposed in [37].
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Figure 4.7: Comparative evaluation of DeepCog with four benchmarks in three
representative case studies. The monetary cost (normalized by the cost of one capacity
unit) incurred by the operator is split into costs due to overprovisioning (dark) and SLA
violations (light). Left: a = 2. Right: a = 0.5.

for computational and memory resources in architectures implementing NFV [2], and
are in line with those supported by any state-of-the-art Virtual Infrastructure Manager
(VIM) [89]. Conversely, larger intervals are more suitable for operations involving manual
intervention, e.g., spectrum leasing.

In all cases, we use the previous 30 minutes of traffic (i.e., T, = 6) as the DeepCog
input, arranged in a 47 x 10 matrix. This confisuration proved to yield the best results
when confronted to a number of other design strategies for the input that we explored,
including longer, shorter, or non-continnous historical data time intervals. Capacity is
predicted in terms of bytes of traffic, which is a reasonable metric to capture for resource
utilization in actual virtual network functions [90], and is independent of the exact type of
resources relevant for the mobile operator in each case study. We employ two months of
mobile traffic data for training, two weeks of data for validation and another two for the
actual experiments. This setting is also used for all benchmark approaches. All results
are derived with a high level of confidence and low standard deviation.

4.5.1. Gain over state-of-the-art traffic predictors

We first focus on the particular case of next-step prediction, ie., T = 5 minutes,
as this benchmark lets us compare our framework against state-of-the-art solutions that
can only perform a foreeast for the following time interval. As discussed before, DeepCog
is designed as a building block within a network resource orchestration framework. A
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fundamental advantage over existing solutions in the literature is that it tarpgets capacity
foreeast, avoiding SLA violations, rather than a mere prediction of traffic load which
may incur into frequent violations. We compare DeepCog against four benchmarks: (i) a
naive technique that forecasts the future offered load by replicating the demand recorded
at the same time during the previous week; (ii) the first approach proposed to predict
mobile traffic based on a deep learning structure, referred to as Infocomi7 [57]; (iii) a
recent solution for mobile network demand prediction that leverages a more complex
deep neural network, referred to as MobiHoc18 [72]; (iv) a reduced version of DeepCog,
which replaces a-OMC with a legacy MAE loss function®.

The results achieved in our three reference case studies by DeepCog and by the four
benchmarks above are shown in Fig. 4.7. The plots report the normalized monetary cost
for the operator, broken down into the expenses for unnecessary resource allocation (i.e.,
overprovisioning) and fees for unserviced demands (i.e., SLA violations). We observe that
DeepCog yields substantially lower costs than all other solutions. Indeed, the cost incurred
by DeepCog for o = 2 ranges between 15% (Facebook/Core) and 27% (Youtube/C-RAN)
of the cost provided by the best competitor, depending on the case study. InfocomiT,
as all other benchmarks, targets mobile network traffic prediction, whereas DeepCog
aims at forecasting eapacity. As a result, DeepCog balances overprovisioning and SLA
violations so as to minimize operation expenses, while Infocomi7 is oblivious to such
practical resource management considerations. In other words, legacy predictors follow
as closely as possible the general trend of the time series and allocate resources based on
their predietion, which leads to systematic SLA violations that are not acceptable from a
market viewpoint and determine huge fees for the operator. Instead, DeepCog selects the
appropriate level of overprovisioning that, by suitably overestimating the offered load,
minimizes monetary penalties (see Fig.4.5). Indeed, even when choosing a low value
such as o = 0.5, which inflicts a small penalty for a SLA violation, the cost incurred by
DeepCog is 64% of that incurred by the best performing benchmark.

4.5.2. Comparison with overprovisioned traffic prediction

In the light of the above results, a more reasonable approach to resource allocation
could be to consider a traditional mobile traffic prediction as a basis, and adding some
overprovigioning offset on top of it. In order to explore the effectiveness of such an
approach, we design and implement several variants to MAE, as follows.

A first variant adds an a-posteriori constant overprovisioning offset to the MAE output.
This strategy, referred to as MAE-post, requires selecting a value of the static offset, which
is then added to the predicted traffic. We dimension the offset as a certain percentage
of the peak traffic activity observed in the whole historical data, and set it at 5%, which

"We also experimented with other popular loss functions, e.g., MSE, with comparable results, omitted
for space reasons.
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Figure 4.8: HRelative performance of overprovisioned traffic predictors, expressed as a
percent of the cost attained by DeepCog. Top: relative overprovisioning and SLA
violations. Bottom: relative monetary cost. Results refer to o« = 2 and prediction horizons
of 5 (left) and 45 (right) minutes.

we deem a reasonable value in presence of a decently accurate prediction. Alternatively,
we also consider a best-case version of this solution, named MAE-post-best, where an a-
posteriori overprovisioning is chosen by performing an exhaustive search over all possible
offset values and selecting the one that minimizes the loss function £(-).

A second variant accounts for some level of overprovisioning in a preemptive fashion,
by introducing the offset during the deep neural network training. To this end, the MAE-pra
solution replaces the MAE loss function with a new loss function © + 7 3= ;-0 led(t) —
di(t)|, where @ denotes the a-priori overprovisioning offset. Also in this case, we set O
equal to 5% of the peak traffic in the historical data. To compare against the best possible
operation of this scheme, we also consider a MAE-pre-best variant where (0 is set equal to
the average overprovisioning level provided by DeepCog for the test period.

We remark that the MAE-post-best and MAE-pre-best approaches are oracles and not
feasible in practice, since they require knowledge of the future to determine the best
a-posteriori values for the offset and the value of O, respectively. Yet, they provide a
benchmark for comparing the performance of DeepCog against optimal solutions that
rely on traditional mobile network traffic prediction.

Fig. 4.8 shows the relative performance of the four variants above with respect to that
attained by DeepCog, for T, = 5 min (left) and T;, = 45 min (right). The figure shows
the oveprovisioned ecapacity, unserviced traffic, and total economic cost incurred by the
operator relative to the performance offered by DeepCog (in percentage). For Ty = 5 min,

the results highlight how using a static overprovisioning in combination with a traditional
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traffic prediction is largely suboptimal, both when the additional offset is considered
preemptively or a-posteriori. Indeed, the two practical solutions considered, i.e., MAE-post
and MAE-pre, cause SLA violations that are two- to three-fold more frequent than that
incurred into by DeepCog, resulting in an economic cost that is 140% to 400% higher.
Interestingly, even when parametrized with the best possible offsets, the approaches based
on legacy traffic prediction cannot match the performance of DeepCog: MAE-post-best
and MAE-pre-best dramatically reduce the penalties of their viable counterparts, vet lead
to monetary costs that are up to 60% higher than those of DeepCog.

The results for T, = 45 min®, show that the above considerations hold across
different values of the prediction horizon.The advantape over feasible overprovisioned
traffic predictors such as MAE-pre or MAE-post is aligned with that observed under a next-
step prediction, as such solutions increase the overall cost by 188% to 236%. When
considering a long horizon of 45 minutes, oracle methods based on overprovisioning like
(i.e., MAE-pre-best and MAE-post-best) can outperform DeepCog, further reducing the
operator cost by 19% to 30%. This is due to the fact that, when prediction must be
performed with significant time advance, the accuracy of DeepCog cannot be as high as
an oracle that knows future demand and has hence a significant advantage. However,
even under such conditions DeepCog performs almost as good as the oracles or better.

We conclude that traffic predictors — no matter how they are enhanced — are not
appropriate for the capacity forecast problem, for the simple reason that they are designed
for a different purpose. Indeed, they ignore the economic penalties ineurred by SLA
violations, and this limits drastically their ability to address this problem. Strategies that
rely on integrating such costs into the solution after the traffic prediction is performed
are largely suboptimal.

4.5.3. Controlling resource allocation trade-offs with o

As discussed in Sectiond.d, DeepCog addresses a fundamental trade-off between
overprovisioning and SLA violations, aiming to find the best possible compromise between
the two. An operator is given the flexibility of choosing the desired operation point within
this trade-off, by suitably setting the o parameter. In the following, we carry out an
extensive analysis of the trade-off between overprovisioning of resources and failing to meet
service demands. This study is conducted for a large number of practical scenarios that
extend the original three case studies considered in the comparative analysis. Specifically,
we select five different network slices, dedicated to the same number of popular mohile
services: the three we already studied, i.e., YouTube, Facebook, and Snapchat, plus
iTunes and Instagram. We then investigate the performance of DeepCog when such slices
are deploved at the three classes of datacenters introduced before, i.e., at the C-RAN,

ENote that, in order to perform a fair comparison, we had to extended the MAE policy to compute
the average absolute error on each time slot in the [t, ...t + T}] interval.
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Figure 4.9: Tradeoff between resource overprovisioning (expressed as a percentage of the
actual demand) and SLA violation (expressed as a percentage of time slots), as a function
of the o parameter. Results refer to 15 different scenarios, and two values of the prediction
horizon T}, i.e., 5 minutes (a) and 120 minutes (b).

MEC, and network core. Owverall, this leads to 15 distinet scenarios.

Fig. 4.9a shows results in all of the above settings under different economic strategies
that are reflected by the o parameter of the loss function £(-). Configurations range
from policies that prioritize minimizing overprovisioning over avoiding SLA wviolations
(x = 0.3) to others that strictly enforce the SLAs at the price of allocating additional
resources (& = 5). The plots tell apart the contribution of the two components that
contribute to the total monetary cost: overprovisioning is expressed as a percentage of
the actual demand, and SLA wviolations are measured as a percentage of the time slots
in the test period. As expected, higher o wvalues reduce the number SLA violations,
as they become increasingly expensive; this oecurs at the cost of provisioning additional
capacity, which becomes instead cheaper in proportion”. The trend is consistent across all
scenarios, confirming that o effectively drives resource orchestration towards the desired
operation point.

Our analysis also reveals that the level of overprovisioning grows in most cases as one
moves from datacenters in the network core outwards. This trend applies across slices,

"Sporadic disruptions in the monotonicity of the cost curves are due to the inherent randomness of
the measurement data; indeed, the data correspond to a specific time period and it may show some biases
that would not be observed over different (or longer) time periods.
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Figure 4.10: Monetary cost (normalized by the cost of one eapacity unit) incurred by the
operator, versus the prediction time horizon Tj. The plots refer to different combinations
of datacenter class and economic strategies modeled by o, for a slice dedicated to the
YouTube mobile service.

and is due to the fact that more centralized datacenters serve an increasingly aggregate
traffic that is generally less noisy and easier to predict.

Under such conditions, DeepCog needs a reduced additional capacity to limit
unserviced demands: as a result, SLA violations are often lower at core datacenters.

Fig. 4.9a refers to a short-term prediction for Ty, = 5 minutes, however the same trends
discussed above are confirmed for larger prediction horizons. For instance, Fig. 4.9b
reports the same results for T, = 120 minutes. The only remarkable difference is that
overprovisioning and SLA violations are higher than in the case of a 5-minute prediction,
as forecasting on larger time horizons is cobviously harder. Yet, the impact of o is
equivalent to that observed for T, = 5 minutes. We analyze in more detail DeepCog’s
performance as a function of Ty in the next section.

Owerall, the results presented above show that DeepCog finds good trade-offs between
resource overprovisioning and SLA violations in very different cost settings across slices
and datacenter types. Since each DeepCog instance for a slice at a datacenter runs
independently, this shows that DeepCog will grant good performance also in scenarios
where resource costs may differ across datacenters, e.g., due to diverse operation and

management costs in urban and rural facilities.

4.5.4. Long-term capacity prediction with DeepCog

DeepCog aims at forecasting the (constant) capacity that should be allocated over a
long-term horizon, so as to minimize the monetary cost incurred by the operator. As
discussed in Section 4.3.1, this is particularly useful in practieal settings where the NFV
technology imposes limits on the frequency upon which resources can be reallocated. In
the following, we thoroughly study how the performance of DeepCog varies with the

prediction horizon.
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Fig. 4.10 summarizes the overall trend of the monetary cost incurred by DeepCog,
as the periodicity of the reconfipuration opportunities ranges from 5 minutes to 8 hours.
The plots outline a diversity of scenarios, combining different datacenter classes (C-RAN,
MEC, and core) and relative expenses of overprovisioning and SLA violations (o equal to
0.5, 2, and 5). The results correspond to the case where one slice is dedicated to the traffic
generated by YouTube, but equivalent behaviors were observed for the other services. In
all settings, the cost grows with the prediction horizon, which, as already mentioned, is
largely expected. What is less expected, however, is the quasi-linear relationship between
the cost and Ty. This is a very important result, as it shows that even if we inecrease
the intervals for resource reallocation (i.e., the time horizon), the economic expenses of
the operator remain bounded and do not skyrocket (as they would if the growth was,
e.g., exponential). The result thus demonstrates the efficiency of DeepCog in limiting
the unavoidable increased penalty associated to forecasting long-term eapacity: as an
indieative fipure, the cost is roughly increased by two when moving from a 5-minute
prediction to one that spans the following 8 hours which is a very reasonable factor.

The impact of the other system parameters is in line with our previous analysis:
higher monetary fees for SLA violations (i.e., higher & values) lead to increased costs,
whereas the performance is comparable across resource allocations over different classes
of datacenter (C-RAN, MEC and core), each corresponding to different traffic volumes.
It is nonetheless interesting to note that the property of a linear growth of the cost over
T}, is preserved under any combination of such parameters.
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Figure 4.11: Breakdown of monetary costs into two contributions: (i) overprovisioning
(expressed as a percentage of the actual demand) and (ii) SLA violations (expressed as
a percentage of time slots), in the scenarios of Fig. 4.10.

Fig. 410 also offers a breakdown of the owverall monetary costs into the two
contributions (overprovisioning and SLA violations).  Violations of SLAs yield
substantially higher absolute costs and dominate the increase of total cost with Tj; the
effect is clearly stronger for higher values of . A more detailed view that highlights the
exact evolution of the two cost components as a function of T}, is provided in Fig. 4.11,
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Figure 4.12: Iustrative examples of the capacity forecast returned by DeepCog behavior
under different prediction time horizons. he scenario refers to a network slice dedicated
to the YouTube mobile service that is deployed at a core datacenter, under o = 2.

showing that both contribute to increasing costs over longer-term forecasts. However, and
interestingly, the dynamics of the two components with T, are diverse depending on the
system settings such as the datacenter class and the value of . The common trend here is
that the penalty associated with both overprovisioning and SLA violations is fairly stable
when the horizon is increased from 5 minutes up to two hours. For forecasts beyond two
hours, however, these fees (one of the two or both) tend to increase substantially with T},.
We ascribe these behaviors to (i) the relationship between T3 and the timeseale of
temporal fluctuations in the input demand, and (if) the way DeepCog reacts to the
problem of devising a capacity forecast, which becomes harder for larger T}, values. The
first point relates to the characteristics of the input data (see Fig. 4.12 for illustrative
examples of the temporal oscillation of the service demand). For very large T} (above
120 minutes) the prediction task performed by DeepCog resorts to an “envelope” of the
demand that accommodates the peak over the Ty, period. This means that for those times
where demand is below the peak, we incur a high level of overprovisioning that increases
the resulting cost. In contrast, smaller T}, allow to adapt the capacity forecasting to the
actual demand at each point in time, providing an advantage in terms of cost. The second
point relates to the behavior and performance of DeepCog under large Ty, values. DeepCog
aims at providing a similar level of overprovisioning over time, as exemplified by the top
three plots of Fig. 4.12. For large T}, wvalues this yields increased SLA violations, since
the oscillations make it more likely that the constant capacity falls below the demand
curve at some point during T},. Additionally, larger Ty values make the prediction task
inherently harder, which further contributes to increasing the SLA violations costs.
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In Chapter 4 we have investigated the impact of Network Slicing in next mobile
network generation resource orchestration. To cope with the need for proactive, data-
driven, automated solutions that enable cost-efficient network resource orchestration,
we have designed DeepCog, a Deep Learning solution for the anticipatory allocation of
resources in cognitive mobile networks. Running on traffic measurements, we have shown
how DeepCog is efficient in providing operators with information about the capacity
needed to accommodate future demands at each network slice. We demonstrated that
leveraging on the information provided by DeepCog, a Infrastructure Provider (InP) is
able to reduce his monetary cost of more than 200% compared with state of the art traffic
predictor alporithms.

DeepCog represents to the best of our knowledge the only work to date where a
deep learning architecture is explicitly tailored to the problem of anticipatory resource
orchestration in mobile networks, it takes into account the costs derived by (i) the
allocation of unnecessary resources that go unused (i.e., overprovisioning), and (if)
the insufficient provisioning of resources that lead to Service Level Agreement (SLA)
violations. Hence, DeepCog has been designed to aim at minimizing overprovisioning
while avoiding SLA violations.

However, limiting the problem to this simple trade-off implicitly assumes that resource
instantiation and reconfipuration oceurs at no cost. In the following sections, we propose
an original model for the anticipatory allocation of capaecity to network slices, which is
mindful of all operating costs linked to (i) unnecessary resource overprovisioning, (i)
non-serviced demands, (#if) resource instantiation, and (iv) resource reconfiguration. In
Section 5.1 we first motivate the need to include in our analysis the costs deriving by
resource instantiation and reconfiguration. In Section 5.2 we present our orchestration
model, formalizing the different costs and trade-offs in the resource management of sliced
networks. Building on such a new model, we develop a complete framework for the
anticipatory allocation of capacity to network slices, named AZTEC [12]; the framework

relies on a combination of deep learning architectures and a traditional optimizer, as

5
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detailed in Seetion 5.3, 5.4 and 5.5. When informed of the economic penalty associated
to each source of cost, AZTEC anticipates the dedicated and shared capacity to be allotted
to each network slice in a way to cut down monetary losses due to instantiation and
reconfipuration, while keeping fees entailed by resource provisioning and non-servieced
demands under control. We demonstrate the quality of the solution with real-world
measurement data collected in a metropolitan-seale mobile network, in Section 5.6; in
typical settings, AZTEC outperforms state-of-the-art traffic [57] and capacity [9] predictors
by at least a factor of 1.7.

5.1. Capacity forecasting for resource management

Network slicing enables the desired strong service differentiation by capitalizing on
recent developments in Network Function Virtualization (NFV). It creates multiple
logical instances of the physical network, the so-called network slices, ensuring strict traffic
isolation among them [3], and tailoring the network resources of each slice to a specific
(class of) application [91]. Network slicing has the potential to enable the coexistence of
a wide range of mobile services in the same network infrastructure; however, it also poses
several of technical challenges.

A prominent difficulty is resource management. By running dedicated Artificial
Intelligence solutions, network orchestrators are expected to enable the vision of zero-
touch networks [92], ie., fully self-operating communication infrastructures whose
standardization is eurrently under consideration [93].

For some types of resource (e.g., CPU time within the same bare metal machine)
resource instantiation and reconfipuration represent a negligible cost. This is not generally
valid for slice resource management scenarios. Instantiation and reconfiguration costs are
capital in NFV technologies that enable the eloudification of the access and core networks
by entrusting many network functions to Virtual Machines (VMs) running in datacenters.
Examples include baseband processing in Cloud Radio Access Networks (C-RAN) [94],
interconnection functionalities towards the external packet networks through the User
Plane Function (UPF) [95], or central office operations [96].

In all the above cases, resource instantiation is not for free: VM boot times in
prominent public cloud services like Amazon AWS or Microsoft Azure consistently exceed
40 seconds, topping at 400 seconds in worst-case scenarios [97]; even in very recent tests,
booting a lightweight VM containing an Alpine Linux takes around 30 seconds in a loeal
deployment [98]. Reconfiguring already allocated resources has also a non-negligible cost:
modern software architectures such as Kubernetes need several seconds to execute new
pods, e.g., on VMs that are already running [98]. In addition, re-orchestration often
implies recomputing paths on the transport networks and implementing them via, e.g.,
Software Defined Networking (SDN) architectures: the latency is in the order of hundreds
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of milliseconds in a small five-switch topology and with precomputed routing [99], and
this figure has to be scaled to thousands of switches with on-the-fly path re-caleulation.

All unavoidable delays above entail monetary fees for the operator, in terms of
both violations of the Service Level Agreement (SLA) with the tenants (e.g., due to
infringement of guarantees on end-to-end latency), and user dissatisfaction (with ensuing
high churn rates). By neglecting these sources of cost, present capacity forecast solutions
risk to introduce uncontrolled data flow latency once deployed in operational networks,
ultimately causing economic losses to the operator.

In the following section, we propose an original model for the anticipatory alloecation of
capacity to network slices, which is mindful of all operating costs linked to (i) unnecessary
resource overprovisioning, (ii) non-serviced demands, (iii) resource instantiation, and
(iv) resource reconfiguration. Our approach is based on the concept of multi-timescale
orchestration illustrated in Figure 5.1.

m On the left, Deepcog, the algorithm introduced in Section 4.3, tries to
accommodate the demand and to limit overprovisioning, by reconfipuring resources
at every re-orchestration opportunity at disposal (top plot); by doing so, it minimizes
costs (i) and (ii) above (second plot). However, it also ceaselessly instantiates or
de-commissions capacity, and reallocates available resources in a sustained way.
This incurs in substantial instantiation and reconfiguration fees (third plot) that
ultimately lead to a high overall economie cost (bottom plot).

m On the right, our model performs the orchestration at two timescales, and by
telling apart two classes of resources. A long-fimescale orchestrator operates over
extended intervals that span multiple re-orchestration opportunities; it allocates
a dedicated ecapacity to each slice and also reserves an additional shared capacity
accessible by any slice. Both capacities remain constant across the extended
interval, limiting the frequency of instantiation and thus cost (iii). Only the
shared capacity is then reallocated at every re-orchestration opportunity by a short-
timescale orchestrator, while the confipuration of the dedicated capacity is preserved
throughout the extended interval, thus reducing cost (iv). Both long- and short-
timescale orchestrators decide on the amount of (dedicated and shared) resources
to be allocated to each slice to also minimize the usual costs (i) and (ii). This
comprehensive strategy results in a 47% reduection of the total cost.

Figure 5.1 exemplifies how reducing instantiation and reconfiguration costs has a
price in terms of increased overprovisioning; a multi-timeseale orchestration model allows
exploring this and more trade-offs for the first time.
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Figure 5.1: Toy example illustrating the costs of resource alloeation in network slicing.
Top: traffic demand generated by the slice (black solid line), along with the capaecity
allocated based on the prediction, and reconfipured at all available re-orchestration
opportunities (i.e., shared, in red) or only periodically over extended intervals (i.e.,
dedicated, in blue). Second row: Monetary costs due to (i) overprovisioning and (ii)
non-serviced slice traffie. Third row: Monetary costs of resource (iii) instantiation
and (iv) reconfiguration. The costs are obtained with K, = k; = & = 1 and
ky = 0.5; the meaning of these parameters is explained in Section 5.2. Bottom:
cumulative overall cost over time, for components (i)-(iv). Left: DeepCog [9] updates the
prediction at the fastest rate possible, following well the demand uectuations, but forcing
continuous reconfigurations. Right: our proposed multi-timeseale capacity forecasting
trades slightly increased overprovisioning for reduced instantiation costs (only inecurred
onece per extended interval) and reconfiguration fees (absent for dedicated resources).

5.2. Orchestration Model and Trade-offs

Our orchestration model is outlined in Figure 5.2, which also serves the purpose of
illustrating the notation used in the remainder of the paper. Let us denote by Ai(t) the
traffic demand generated by services running in slice i € § at time . The long-timeseale
orchestrator operates on extended intervals of duration Tj. At the beginning of each such
interval, it takes decisions on the dedicated capacity =2(t) allotted to slice i, ¥i € 8, and
on the additional shared eapacity z*(t) available to all slices; all capacities are conserved
throughout the following Tj. The bottom plot (A) in Figure 5.2 depicts an example of
allocation resulting from a long-timeseale orchestration.

Within an extended interval, the short-timeseale orchestrator assigns resources to each
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Figure 5.2: Orchestration model. (A) Long-timeseale orchestration. The background
time series represents the traffic demand generated by slice i (grey). The curves portray
the time evolution of the dedicated capacity z2(t) allocated to slice i (blue), and of the
shared eapacity x°(t) (red) over extended intervals of duration T;. Note that r*(t) is
added to the dedicated resources to determine the total available capacity, and, unlike
x3(t), is not reserved for slice i but available to all slices. (B) Short-timeseale orchestration
during one extended interval. At every T, < Tj, a portion zf(t) (black solid curve) of the
(fixed) shared capacity =#(t) is allocated to slice i, based on the residual demand p;(t) not
satisfied by the (fixed) dedicated resources x%(t). The plot also highlights the volume of
overprovisioned capacity and non-serviced demand (pattern regions), and the slice traffic
below dedicated capacity 8;(t).

slice i at all re-orchestration opportunities, oceurring at every Ty. Decisions are based
on the (estimated) future residual demand p;(t) = max{0, A;(t) — 22(¢)}, and lead to the
allocation of an additional eapacity z2(t), for each slice i. The resources r?(t) may be
re-confipured at every T, and are provisioned on top of the dedicated If{t]l. The top plot
(B) in Figure 5.2 illustrates these definitions for a sample short-timesecale orchestration
during one extended interval.

5.2.1. Sources of monetary cost

Building on the notation above, we can formally introduce the different costs
associated to the manapement of resources in sliced networks. As anticipated in
Section 5.1, there are four sources of economic penalty for the operator, as follows.

(i) Unnecessary resource provisioning: the operator incurs a monetary cost in
terms of both Capital Expenditure (CAPEX) and Operating Expenses (OPEX) that is
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directly proportional to the amount of unused resources it allocates to a slice. Such
capacity it is instantiated and confipured to no purpose and could be allotted, e.g., to
other slices to increase the global system efficiency. This cost at time £ is

>~ i (max{o, 24(t) - (1)}) +

el

> fi (max{0, 25(t) - ps(t)}) +

el

Al () =Y =(0), (5.1)

ich

where 4;(t) = min{A;(t), z3(t)} denotes the portion of the demand of slice i served by the
dedicated capacity at time t, as shown in plot (B) of Figure 5.2. The first two terms in (5.1)
denote the cost of overprovisioning at slice ¢ and time ¢, due to the unneeded allocation
of dedicated and shared capacity, respectively; again, we refer the reader to plot (B) of
Figure 5.2 for an exemplification. The third term captures instead the overprovisioned
shared eapacity that is not allocated to any slice by the short-term orchestrator. Funetion
fi(+) desecribes the scaling of cost with capacity overprovisioning. As for DeepCog in
Section 4.4.1, here we assume a linear increase of the penalty, i.e., fi(x) = Koz, where K,
is the monetary cost of one unit of capacity and is expressed in $/Mbps. However, our
model can easily accommodate different definitions of the sealing law, which may apply
to specific network funections.

(ii) Non-serviced demand: every time the operator does not allocate sufficient
resources to serve the traffic demand of a slice, it violates the SLA with the tenant, which

triggpers a monetary compensation. The associated cost at time f is

> ks Ly (i) (5.2)

ich
where 14(z) is an indicator function that takes a value 1 if the argument satisfies
condition A, and 0 otherwise. Thus, 1,4 (z7(t)) activates when the portion of shared
capacity assigned to i does not suffice to meet the service demand; this corresponds to an
underprovisioning situation, as depicted in Figure 5.2. In these cases, the operator has
to indemnify the tenant for a value &, in §, per SLA violation. This definition is also in
line with those used in DeepCog.

(iii) Resource instantiation: in presence of substantial variations of the total traffic
demand, the operator needs to instantiate new resources to serve the demand of the slice.
In these cases, as discussed in Section 5.1, there exists a cost associated to enabling such
new resources. As an example, if additional VMs Virtual Machines (VMs) have to be
instantiated or migrated to serve the slice, the operator has increased expenses in terms

of power consumption and CPU cycles. In addition, there may be an indireet penalty in
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terms of perceived Quality of Service (QOS), as this operation may take minutes [98] and
disrupt the end user experience. The cost, triggered at every 1) in our multi-timesecale
model, can be modeled as

> f2(8:(0) - Lymseny (2800)) +
=5
fo (min{pi(£), 23(6)}) - Lyzee) (2°(2)) - (5.3)

The first term in (5.3) represents the penalty incurred when new dedicated resources must
be instantiated, which oceurs when z2(2) > z2(t — 1). The second term is equivalent to
the first one, but refers to the shared capacity instantiated to all slices in 5. Note that the
costs induced by both terms are functions f3(-) of the affected traffic that may experience
disruption, i.e., §;(t) and min{p;(t), z2(t)}, respectively.! In our performance evaluation,
we consider the cost to be directly proportional to the affected traffie, i.e., fa(z) = Kz,
where the parameter x; captures the estimated fee for delaying one unit of capacity due
to resource instantiation, expressed in §/Mbps.

(iv) Resource reconfiguration: while resources are only instantiated at every
T}, a short-timeseale orchestration of the shared eapacity within each extended interval
allows accommodating faster fluetuations of the slice demand. Every time the operator
reconfipures the shared capacity, it ineurs a cost; as mentioned in Section 5.1, this is
the case with the reconfipuration of the SDN transport networks, or the setup of load
balancers, or the creation of new instances of a Virtual Network Function (VNF) on
a VM previously used by another slice. All these operations have a price in terms of
management delay [98], expressed as

%fa (min{pi(t), i (t)}) - Lezze—1) (22 (1)) - (5-4)

The above cost is present whenever the shared resources must be reconfigured for a slice
i, i.e., TI(t) # zi(t — 1). In such situations, the cost is dependent on the amount of
traffic affected by the reconfiguration process, i.e., p;(t) bounded by zi(f). In our study,
we assume that the economic penalty is the same for any bit of traffic using reconfizured
resources, hence fi(zr) = K.z, where &, is in $/Mbps. Also in this ease, other functions
can be easily embedded in the overall framework to represent distinctive cost models
available to the operator.

! Accounting for instantiation and reconfiguration costs proportional to the full amount of impacted
demand (rather than, e.g., to the increment of demand with respect to the previous re-orchestration
opportunity) is a safe choice when considering real network operation. Without guarantees on the stability
of the assigned resources in a multi-slice environment, finding a stable and optimal configuration easily
entails the reconfiguration of resources allocated to a large portion of the network, or even to all slices [100].
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5.2.2. Trade-offs in capacity allocation

The basic trade-off in anticipatory resource assignment is that between

overprovisioning and non-serviced demands.

n Trade-off A. Increasing the amount of resources makes overprovisioning more
likely, but reduces the probability that the allocated capacity is not sufficient to serve
the future demand. This results in opposing costs (i) and (i4).

Current capacity forecasting models aim at identifying the optimal compromise that
minimizes the joint penalty of the costs in trade-off A above [9]. However, these models
do not offer any control over instantiation and reconfipuration. By adopting a multi-
timesecale approach, now we are instead capable of factoring such variables in. Specifically,
the model presented in Section 5.2.1 tells apart the capacity alloeated to each slice into
a dedicated eapacity, re-orchestrated over long timesecales with period Tj, and a shared
capacity, re-orchestrated over short timescales with period T:;. This unlocks additional
degrees of freedom: the orchestrator can decide not only how many resources to assign to
a slice, but also which portion of those shall be of each type, and for how long they stay
unaltered.

As in DeepCog, AZTEC still allows addressing trade-off A above, by controlling the total
allocated capacity during each extended interval Tj, i.e., 2°(t) + 3,5 r(t), and modulate
the costs of overprovisioning and non-serviced demands. Yet, its flexibility enables the
exploration of the following additional trade-offs.

» Trade-off B. By increasing the dedicated capacity =2(t) allocated to slice i
during an extended interval, the orchestrator can serve a larger fraction of the slice
traffic with resources that do not need reconfipuration. However, such resources
cannot be reused by other slices during T} whenever they are not needed by slice i.
For instance, in plot (B) of Figure 5.2, increasing x2(t) would reduce the residual
demand p;(t) that is served with reconfiguration-heavy shared capaeity; but it would
also generate additional overprovisioning, e.g., in the fourth and second to last re-
orchestration opportunities. This leads to a trade-off between costs (i) and (iv).

» Trade-off C. Allocating a larger shared capacity zI(t) to slice i during an
interval T, reduces the risk that the resources will not be sufficient to serve the future
slice demand. Nevertheless, it also causes the reconfiguration of more resources. As
an example, in plot (B) of Figure 5.2, increasing zf(t) in the third T, slot could
remove the non-serviced demand, but would also grow the reconfiguration penalty.
A trade-off exists between costs (ii) and (iv).

s Trade-off D. Increasing the duration T} of the extended interval reduces

the cost of resource instantiation, which only oceurs once per extended interval.
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However, a higher T} also forces the dedicated capacities z2(t) and the total shared
capacity z*(t) to remain constant for a longer time. With a reduced capability to
tailor the network resources to the fuectuations of the slice traffic demands, the
orchestrator may ineur in increased overprovisioning or underprovisioning. For
instance, extending the timespan of plot (B) in Figure 5.2 to cover a prolonged
demand );(t) may create additional situations where z9(t) > A;(t), i.e., dedicated
respurces go wasted, as in the second to last T, interval; it can also generate new
cases where x7(t) < p;(t), and traffic peaks are not serviced, as in the central part
of the example. This results in a trade-off between cost (iii) and joint costs (i) and

(it).
In the next section, we present a framework that takes automated, anticipatory

decisions on capacity allocation by addressing all trade-offs outlined above, thanks to
the multi-timescale model.

5.3. The AZTEC Framework

Our framework, named AZTEC (i.e., capacity Allocation for Zero-Touch nEtwork
sliCing), automatically solves trade-offs A, B and C above by finding an effective
compromise among the opposing goals of reducing the operator’s costs in terms of (i)
overprovisioning, (ii) non-serviced slice demands, and (iv) resource reconfiguration. In
addition, AZTEC offers the operator a handle to control, via a single system parameter,
the penalty associated with (i#i) capacity instantiation, to address trade-off D. Next,
we first provide an overview of the framework in Section 5.3.1, and then discuss the
implementation of its different components for long- and short-timeseale orchestration, in
Sections 5.4 and 5.5, respectively.

5.3.1. AZTEC in a nutshell

To solve the complex problem of finding an adequate balance of all fees, we adopt
a divide-et-impera approach. We separate the different trade-offs between pairs of cost
sources and sequentially solve them in isolation. The overall organization of our proposed
framework is outlined in Figure 5.3.

AZTEC performs both long- and short-timeseale orchestration. As explained in
Section 5.1, the long-timescale orchestrator triggers at the beginning of each extended
interval, and is in charge of allocating the dedicated capacities 79(t) and the total shared
capacity r*(t), which will then be preserved over the following 7} interval. This funetion
is realized in our framework by blocks (I} and (IT), which operate as follows.

(I) This block performs the forecasting of the long-term dedicated capaecity for
each network slice xf[t), using as input information about the actual traffic
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Figure 5.3: Overview of the AZTEC framework. The learning flow proceeds from left to
right. The input mobile traffic data is processed by deep neural networks that return,
for each slice i € S, the long-term dedicated capacity r2(t) and the short-term estimated
demand L,l:t), respectively. These values are combined to obtain the estimated residual
demands 5;(t). The aggregate residual demand over all slices is input to a further deep
neural network to determine the long-term shared eapacity x°(t). Such capacity is then
fed, along with per-slice residuals, to an optimization module that allocates the shared
resources ().

penerated by each slice during the preceding V re-orchestration opportunities. As
discussed for trade-off B in Section 5.2.2, the capacity If{t] modulates the impact
of (i) provisioning unnecessary dedicated resources versus (iv) re-configuring the
shared resources needed to serve the residual demand beyond z%(t). Thus, block (I)
identifies the =%(¢) that minimizes the joint costs (i) and (iv).

(II) This block is in charge of determining the long-term shared capacity z*(t)
available to any slice during the subsequent time interval Tj. The shared capacity
is used to serve the residual demands of all slices, hence x*(t) shall be dimensioned
on the agpregate residual traffic 3 ;. pi(t). To determine this, block (II) receives
as input an estimate of such agpregate during the previous extended interval, i.e.,
Yies Ailt), t € [t — (T1/Ts),t — 1]. The approximate fi(t) = max{0, \i(t) — =§(t)}
come from a forecast l[t} returned by a legacy traffic predictor? that forecasts
per-slice demands over the next re-orchestration opportunity £. Based on such
residual demands, block (II) computes =°(t) such that (i) overprovisioning of shared
resources is reduced as much as possible, and (ii) all residual demands can be
accommodated within z#(t). In this way, block (II) addresses trade-off A, jointly

minimizing costs (i) and ().

Onee the long-term capacities z2(t), ¥i € S, and z°(t) are set, the short-timescale

?Note that we could have emploved the real traffic demand Aq(t) observed during the previous interval
Ti to determine the actual residuals p;(t). However, the short-timescale orchestrator (presented next) needs
to operate on the predicted demand A;(t) over the future T, interval. Considering the same estimates in
the long-timescale module allows allocating the shared capacity =°(t) in a way that is conscious of the
inaccuracy of the information available during the following short-term resource assignment phase of the
framework.
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orchestrator assigns portions z;(f) of the total shared resources to each slice. This
allocation oceurs at every re-orchestration opportunity, spaced by T, and is carried out
by block (IIT) of the AZTEC framework as follows.

(III) This block receives as input the long-term shared ecapacity z°(t), and the
future residual demand p;(t) expected for each slice i during the following T.. The
available total capacity then is allotted to each slice in a way to solve trade-off C in
Section 5.2.2. Therefore, block (III) computes =2 (t) for each i £ 8, by minimizing the
combination of costs (ii) and (iv), corresponding to insufficient allocated capacity

and additional shared resource reconfiguration, respectively.

Overall, blocks (I)-(IIT) return a forecast of all capacities xZ(t), £°(t) and z$(t) that
the operator shall allocate over both long and short intervals of duration T} and T%,
respectively. The resulting anticipatory allotment reduces the network management
costs associated with the provisioning of exceeding or inadequate resources, and of their
reconfipuration over time.

We remark that the penalty of network resource instantiation is not included in this
picture. As explained in Section 5.2.2, control on instantiation costs can be achieved by
acting on the duration of the extended re-orchestration interval, i.e., Tj: the larger this
duration, the lower the costs resulting from resource instantiation in (5.3). AZTEC does not
take automated decisions on the value of T]; instead, it provides via such a parameter an
explicit knob that allows the operator to implement any strategy for coping with trade-off
D. The rationale is that T} is a system parameter that is best set by the operator, based
on expert knowledge of the underlying virtualization technology.

The implementation of the blocks (I)-(III) above leverages a combination of deep
learning architectures and numerical optimization methods, which we detail next.

5.4. Long-timescale orchestration

The long-timescale orchestration is carried out by blocks (I) and (II) of the AZTEC

framework, as follows.

5.4.1. Long-term dedicated capacity forecasting

Block (I) is implemented by a Deep Neural Network (DNN) whose structure is
inspired by recent breakthroughs in machine learning for image processing [74]. Indeed,
block (I) operates on data about the traffic recorded at each base station in the target
area over several past time intervals, which can be assimilated to pixels in a time
sequence of still images that compose a video. As deseribed in Section 4.3.4, this first
requires pre-processing the mobile data traffic, so as to map base station positions into
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the matriz form required by DNN, which we do by means of the same correlation-
preserving transformation explained in Section 4.3.4. The resulting input is a 4D tensor
Aiz(t—1),...,Aiz(t — N), where \; -(t) is the offered load at the base station associated
with matrix element = {m,n}, for services running in slice i € § and at time ¢. Following
recent advances in machine learning for mobile network traffic analysis, we treat each slice
i € § in the same way of a color channel in DNN for imaging [101]. This approach lets
us process the input along the {z,t} dimensions via 3D Convolutional Neural Network
(3D-CNN) layers, which are very efficient in extracting spatiotemporal features; at the
same time, different slices i are examined in parallel as multiple levels of the same data.

The DNN architecture, illustrated in Figure 5.3, consists of three 3D-CNN layers
with 32, 32 and 16 neurons each, and (3,3,3), (6,6,6) and (6,6, 6) kernels, respectively.
The second and third 3D-CNN layers are followed by dropout layers with probability
0.3, which are known to regularize the network and limit overfitting during the training
phase [77]. The convolutional layers constitute the encoder, in charge of extracting
meaningful complex features from the data. They are followed by a decoder whose
objective is learning global patterns from the feature space. Fully Connected (FC) layers
are especially well suited to that purpose, and we leverage three in our implementation,
with 64, 32, and ||S|| neurons, respectively, where operator || - | denotes the cardinality of
the arpument set. Note that the last layer outputs one value per channel, resulting in one
value for each slice i € 5. All layers employ Rectified Linear Unit (ReLU) as the neuron
activation funetion, execept for the last FC layer, which uses a linear activation function
to provide the actual capacity forecast value.

The loss function that drives the DNN training is a custom expression designed to
account for the actual management costs incurred by the operator in ease of errors in the
orchestration of the dedicated capacity. If the operator were able to allocate to a slice i
a constant capacity r%(t) that perfectly matched the actual demand );(t) over the next
T}, the error and cost would be nil: this is the ideal seenario where all the demand is
serviced, without any overprovisioning or re-configuration. However, in practical cases,
it is impossible to perfectly prediet A;(t), which is also very unlikely to be constant over
the whole T}. In this ease, positive errors r%(t) — A\;(t) lead to overprovisioning, with a
cost set by the first term of (5.1) in Section 5.2.1, and negative errors imply that the
demand in excess of x%(t) needs to be served by the shared capacity, with (5.4) setting
the re-configuration penalty®.

Positive errors yield 8;(t) = Ai(t), while p;(t) = Ai(t) — z2(t) for negative ones. Then,
the loss function for z4(t) allocated at t is Y,cp £L” (t), where T is the set of concerned

3We remark that the long-term orchestrator is agnostic of the short-timescale resource assignment, and
thus cannot take =7 (t) into account when computing the cost of negative errors. To deal with this, block (T)
assumes a perfect management of shared capacity that always accommodate the residual demand; also,
it considers that the residual demand always varies across re-orchestration opportunities. This simplifies

(5.4) 0 3, 5 fa(p(t))-
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re-orchestration opportunities {t,...,¢ + (Ty/Ts) — 1}, and

fs (M(e) — =8(0))  if 28(e) < Au(0)

éD(e) =
S0 fi (z4(t) — X)) otherwise.

(5.5)

We stress that (5.5) satisfies the desirable property of having partial derivatives that
form a piece-wise constant function, which guarantees robust and fast convergence under
popular first-order optimizers like Adam [79].

In order to further improve the quality of the allocation of dedicated resources, we
leverage a recent result in neural network design, which allows estimating the uncertainty
of the learning outcome. Specifically, adding dropout layers during model testing is
mathematically equivalent to generating an approximation of the probabilistic deep
Gaussian process [102]. This observation, which holds for DNNs with arbitrary depth and
non-linearities, provides a way to return a distribution instead of a single output value.
Following this, we activate the dropout layers, adopt a Monte Carlo strategy and perform
the forward pass L times for each test input, obtaining outputs {If’l (t),.. .,mf'ﬂ (t)} for,
slice i at time t. We then compute the mean pd(t) = 1/L- YF, mf’i{t) as well as the
variance a¥(t) = 1/L - S, (ud(t) — xf'l{t}}z, and approximate the model uncertainty as
N (1), 02(0)).

The knowledge of the model uncertainty can be then leveraged to add a safety margin
to the standard DNN outcome. Since the whole support of N(ug(t),c¥(t)) represents
potentially correct values of the dedieated capacity, block (I) returns the 00t percentile
of the distribution; this makes it very unlikely to output a xZ(t) that is lower than the
best one. Thus, when the DNN is confident about the quality of the result, it returns a
value close to the mean; vice versa, it adds a substantial safety margin. We provide an

example of the advantage of this approach in Section 5.6.1.

5.4.2. Long-term total shared capacity forecasting

Block (II) is also implemented using a dedicated DNN. The structure, in this case,
is simpler, as the network operates on a sensibly less rich input than that of Block (I).
Specifically, the input is a single time series of the total residual demand in the past
extended interval, i.e., 3 ;g pi(t), t € [t — (T1/Ts),t — 1]. The time series is processed by
three FC layers with 128, 64 and 1 neurons, respectively; the first two use RelL.U activation
functions, while the last uses a linear function to produce the final output. A dropout
layer with probability 0.2 is present between the first and second FC layers.

The DNN is trained with a different custom loss function that accounts for the
correct sources of monetary penalty in case of errors. As with the previous DNN, an
ideal case where a fixed long-term shared capacity x°(t) perfectly matches a constant
agprepate residual demand is unrealistie, and errors are unavoidable. Positive errors yield
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overprovisioning of z*(t), whereas negative ones have a cost in terms of denied traffic.
The former corresponds to the second and third terms? in (5.1), while the latter to the
monetary fee® for SLA violations in (5.2). By writing these costs jointly for the extended
interval starting at ¢, we obtain a loss function ¥,y £ (t), where
() { if 2°(t) < Ties lt) 59)
f1(2(t)— Zies pi(t)) otherwise.

The expression in (5.6) needs to be slightly modified by adding minimum slopes that make
the function differentiable over B. With this, the loss function has the same desirable
properties as the ones mentioned for (5.5). Finally, we take advantage of the dropout
layer also in this case: we thus approximate the model uncertainty, and return the 99th
percentile of the distribution as a safety margin on the correct value of x*(t).

5.5. Short-timescale orchestration

The short-timeseale orchestration consists of block (III) supported by a helper short-
term demand predictor, as outlined in Figure 5.3. The predictor uses a DNN architecture
that is very similar to that adopted by block (I); indeed, the two DNNs operate on
the same input, and produce per-slice forecasts. The main differences between them
is in the frequency of operation and, most notably, in the loss funetion. The helper
predictor outputs a prediction at every T, instead of at every T;. Furthermore, it uses a
traditional Mean Absolute Error (MAE) instead of the cost-aware loss function in (5.5):
Mean Absolute Error (MAE) considers identical contributions by the positive and negative
errors, thus producing an output A;(t) that tries to follow as closely as possible the

upcoming slice traffic demands.

5.5.1. Short-term shared capacity allocation

Given the total shared capacity x*(t), and the estimated residual demands p;(t), AZTEC
has to decide how to distribute °(t) across the requesting slices at every T,. This is
implemented in block (IIT} with a numerieal optimization method.

The primary objective of the shared resource assignment performed by block (III) is
avoiding SLA violations due to insufficient available capacity, which would induce a cost

“Note that, as per the remark in footnote 3, the shared capacity allotted to individual slices 2 (t) used
in the original expression in (5.1) has not yet been determined at this stage. The safest option is hence to
assume that the whole residual demands will be correctly assigned by the short-term orchestrator. This
leads to approximating the allocated shared resources =7(t) by m(t). Under this hypothesis, the second
and third terms in (5.1) reduce to 0 and f; [:.'r'{t}— 3 ies ult)), respectively.

5The same ohservation as in footnote 4 applies here. Under an identical assumption of a perfect
short-term assignment of =J{t) = p,(t), the only case where some demand can be denied is that of an
insufficient total shared capacity =°(t). Then, (5.2) translates into Ks - I{E. e {z*(t)).

B
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modelled in (5.2). At the same time, issuing non-essential resources has a penalty in
terms of unnecessary reconfiguration cost, as captured by the expression in (5.4). This
corresponds to trade-off C in Section 5.2.2 and can be formulated as

min 3 K.P (pi(t) > 21(0)) (5.7)
i 'B-ES

subject to Y zi(t) < 2°(t),
icE

The above minimizes the expected value of the expenditure for non-servieced slice demands
in (5.2). Note that, by squeezing as many slices as possible within the total capacity,
the solution to (5.7) implicitly addresses the challenge of minimizing reconfiguration
costs. Also, the formulation in (5.7) deals with probabilities: this is consistent with
the probabilistic nature of p;(t) granted by uncertainty approximation via dropout layers.

Due to the empirical nature of the probability distribution p;(t), (5.7) has no closed
form and thus we cannot employ classical optimization methods. Furthermore, as we do
not have a differentiable objective function, we cannot employ approaches that depend
on gradients. Hence, we apply numerical methods that search for the optimal solution
within the feasible set of [z{(t)]. To simplify this search, we apply the following variable
change:

(5.8)

pi(t) = iwftﬂf{xﬂm 22(0) i€ [L,[S]— 1]
L2H(0)/°() ifi=s

which yields p;(t) € [0,1], Vi € 5.

The above allows us to search in the N-dimensional variable space with fixed bounds
[0,1] on all variables. Note that the first |S|| — 1 variables p;(f) represent the relative
amount of shared capacity assigned to slice i with respect to the slice i + 1, while the last
ps)|(t) represents the overall amount of shared capacity assigned to the services. This
variable change serves the following purposes: first, the constraint on the sum of the
variables is now enforced through a constraint on each variable; second, we avoid ties
between variables, allowing a safe exploration of the solution space where we can focus
one variable, and changing its p;(t) value within the entire range without impacting any
of the other variables p;(t) for j # i.

Alporithm 4 details AZTEC assignment algorithm for shared resources. The algorithm
is composed by a main funetion, which takes as input the total available shared capacity
z*(t) and the empirical distribution of the capacity needed by each service in the next time
interval p;(t), and two helper functions: COST and TRANSFORM. The former computes the
cost expected value for a given assignment p,(t),...,pyg)(t), while the latter transforms
p;(t) back to x(t). By using the variable change described above, we can use a gradient-
free algorithm which works with constrained input variable for the minimization of (5.7).
In particular, we chose as numerical optimizer the BOBYQA Algorithm [103], which is a
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Algorithm 4 Shared resource assipnment algorithm
1: Function TRANSFORM (p1, ..., p|s)):
Tis) = e
lisll— I=1—
(E:EI 1H3i: ' —PJ)+1
Sll-1 .
x5 = (T2 22 ) =iy, i € [L,[18] - 1]
: return 17, . .., Tig
Function COST(p,...,pys)):
1, ..., T +TRANSFORM (p1, .. ., pjs|)
X « Y kP (pi > 1)
: return X
: Function MAIN(z°, p;):
10: Set py ... pyg|—1 = 0.5
11: Let ¢ «+ BOBYRA {C.‘RSTI:FI? e .l,j:i||5||}:] Fired pq, ... s P|IS[l—15
12: Pl -, Pjs) + GOLDEN(c(pjs))) ;
13 Pry...,P|s| + BOBYQA(p},... .,j:iﬁs"}
14:  1j,...,Tjg + TRANSFORM(p1,...,P)s|)
15 return rj,... ,Iﬂsll

B2

L O O

gradient-free optimizer that allows constrained variables.

When running the above numerical method, we have to set a starting point. We
set the relative ratios of shared capaecity across services as 0.5, i.e., all services receive
the same amount of resources (see line 10). Given the possibly high number of services
that can be included in the system, there may be different local minima and there exists
the chance of getting stuck in a local minima that does not deliver a good performance.
To reduce the probability that this happens, we perform a search for the best starting
pys)(t)- In particular, we run the Golden Section method [104] considering pyg)(t) as
the only variable for the cost. After this step, the initial value of pyg)(f) is set to the
value resulting from the Golden Section search. With this, we obtain the starting p® set
pi(t),.. “pﬁﬂll (t). Then, we perform a BOBYQA minimization using it as the starting

point. This provides the values that minimize the overall expected cost.

5.6. AZTEC Performance Evaluation

In this section we evaluate the performance of AZTEC which framework has been
detailed in Section 5.3. We evaluate AZTEC with an extensive dataset of mobile data traffic
collected at 470 eNodeBs of a real-world network serving a large metropolitan region in
Europe, the same utilized to assess DeepCog’s performance in Section 4.5. Similarly,
the measurement data concerns a set of five popular and heterogeneous mobile services,
namely Youtube, Facebook, Instagram, Snapchat, and iTunes, whose traffic lows were
classified by the operator using proprietary Deep Packet Inspection (DPI) techniques.

We assume that each mobile service is associated to one dedicated slice in 8§, and
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Figure 5.4: Time series of sample resource allocations. Top: AZTEC framework. Bottom:
equivalent framework where no uncertainty estimates are used.

investigate the anticipatory allocation of resources at a single datacenter that runs
virtualized core network funetions over the mobile data traffic generated in the city
under study. To this end, we train the AZTEC framework on eight weeks of data, use
two additional weeks for validation, and finally run experiments on another two weeks.
The three time periods do not overlap, and all results refer to the test phase only. Upon
extensive appraisal of the system performance, we have observed that the DNNs in AZTEC
best operate with data from the previous N = 6 intervals of duration T, hence we
employ a [6 x 47 x 10 x 5] 4D tensor input. Unless stated otherwise, our default settings
are K, = Kz = #; = 1 and kK, = 0.5, s0 as to account for the typically relatively lower cost
per Mbps of resource reconfipuration; also, we set T; = 5 minutes and 7] = 30 minutes
to align with the capabilities of current Virtual Infrastructure Manager (VIM) [89]. In
all our tests, AZTEC returned capacity allocations within one second, which is suitable for

real-time operation in practical systems.

5.6.1. Harnessing the forecast uncertainty

As presented in Section 5.3, we leverage a recent result on the approximation of
uncertainty in DNN to include a safety margin in the model forecast. In a preliminary
step for our evaluation of AZTEC, we investigate the impact of including the knowledge of
the estimated uncertainty in the forecast produced by the different DNNs that are part
of the framework.

Figure 5.4 visually shows the benefit of this design choice, by comparing the AZTEC
with and without uncertainty; in the second case, dropout layers are deactivated during
test, and all DNNs produce a legacy single-value output. In each plot, we report the
anticipatory allocation of capacities x%(t) and z3(t) to the target slice i, as well as that
of the total shared capacity z*(t); the actual demand is on the background. The top plot
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Figure 5.5: Normalized monetary cost of AZTEC and two benchmarks wversus the
reconfipuration cost sealing factor k.. Numbers denote the exact cost for AZTEC, and
the added cost factor for the benchmarks.

provides in fact an illustrative example of the typical time-varying resource allocation
achieved by AZTEC, where capacities follow the fluctuations of the slice traffic.

More interestingly, AZTEC achieves a more reliable assipnment of slice resources by
accounting for the level of uncertainty of the predictions. The total capaeity z2(t) + z2(t)
is smoother and avoids situations where the demand eannot be serviced. Conversely,
the framework not accounting for uncertainties vields a capacity alloeation that is noisy
and incurs in substantial SLA violations due to unsatisfied demands. In addition, AZTEC
achieves such a result while saving on the amount of allocated resources (note the lower
°(t) curve), which ultimately results in an overall monetary cost that is half of that
incurred by the framework without uncertainties. While this is an excerpt from a specific
test, we recorded similar gains for all different settings explored in our analysis.

5.6.2. Comparative evaluation

We next assess the performance of AZTEC against two recent benchmarks: INFOCOM17,
a state-of-the-art mobile network traffic predictor [57], and DeepCog, the capacity
forecasting model for network resource allocation described in Section 4.3; both solutions
are based on custom-built DNNs. INFOCOM17 is a traditional demand predictor, agnostic of
all resource management costs, whereas DeepCog takes anticipatory decisions on capacity

allocation that aim exclusively at minimizing the trade-off A of overprovisioning and
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Figure 5.6: Total dedicated capacity 3 ;.5 z(t) and shared capacity r*(t) allocated by
ATTEC Versus K,. Numbers denote the fraction of re-orchestration opportunities with
insufficient allocated resources.

non-serviced demands.

Figure 5.5 summarizes the result of the comparative evaluation, showing the
overall normalized® monetary cost of the anticipatory resource management against
reconfipuration prices spanning two orders of magnitude. The gain of AZTEC owver
the benchmarks is clear, as even a state-of-the-art eapacity predictor like TNFOCOM19
increments the cost for the operator by a factor that ranges from 1.7 to beyond 10.
As expected, the benchmark solutions inherently suffer more when reconfiguration costs
—which they neglect— grow; however, even in a situation favorable to reconfipuration-
agnostic approaches where such costs are small (e.g., for k. = 0.05), AZTEC still yields a
lower economic fee.

Finally, not only the relative performance is promising, but also the absolute
(normalized) wvalues show the potential advantage of a zero-touch network slicing
paradigm. Indeed, by automatically and dynamically alloeating capacity in advance,
AZTEC can cut management costs down to 35-41% of those incurred with an optimal

fDue to confidentiality reasons, we cannot make the actual economic cost explicit, as it would reveal
the operator's mobile data traffic volumes. We thus normalize all results by the cost of an optimal but
completely static resource allocation that dimensions the dedicated capacity to the traffic peak of each
slice during the test period. This optimal allocation only incurs into overprovisioning costs, computed as
¥ ies 2o Jo(maxe{Ai(t)} — Aq(t)), which represents the normalization term.
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Figure 5.7: Breakdown of the normalized monetary cost by penalty type. Tags refer to
cost definitions in Section 5.2.1, with overprovisioning cost (i) separated into contributions
of the dedicated capacity, i.e., the first term of (5.1), and of the shared capaeity, i.e., the
second and third terms of (5.1).

static provisioning of resources’.

5.6.3. Monetary cost breakdown

The above results prove that AZTEC maintains the combined costs described in
Section 5.2.1 under control across a wide range of reconfipuration penalties, by properly
adapting the portion of capacity allocated as dedicated, i.e., z¥(t), and as shared, i.e.,
1%(i);, to each slice i. To gain further insights on this, Figure 5.6 illustrates the capacity
breakdown for tests in Figure 5.5: a wider fraction of traffic is allocated to the more
flexible shared capacity when the reconfipuration fee is low; instead, moving traffic to
the dedicated capacity becomes more cost-efficient as k., grows. An important remark is
that in all cases AZTEC incurs into SLA violations due to insufficient available resources in
0.7-1.21% of the re-orchestration opportunities: as a term of comparison, DeepCog causes
violations in at least 5.80% of the system observation time.

The ductility of the AZTEC orchestration results in a relative contribution of each
cost source that stays fairly constant for different values of &, as shown in Figure 5.7.
Here, the most notable trend is in the split of the overprovisioning cost, which grows for
the dedicated capacity and decreases for the shared capacity. Indeed, and consistently

"See footnote 6.
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Figure 5.8: (a) Normalized monetary cost vs the duration of the extended re-orchestration
interval T}, for different sealing factors k; of the resource instantiation cost. (b) Breakdown
of the normalized monetary cost by penalty type, for &; = 10.

with Figure 5.6, provisioning dedicated resources in excess becomes more convenient than
reconfipuring shared resources as Kk, becomes larger.

Owerall, these results demonstrate the capability of AZTEC to properly solve the
multiple trade-offs among resource management costs outlined in Section 5.2.2, helping
the operator to drastically reduce operation expenses in an automated way.

5.6.4. Controlling resource instantiation costs

Although AZTEC does not take autonomous decisions on trade-offs involving the
instantiation of resources, it still offers direct control on the associated cost (iii) by means
of the T} parameter. Indeed, as operators incur into this type of fee once every extended
re-orchestration interval, making this longer allows limiting the penalty. In Figure 5.8a
we investigate the effectiveness of such a lever to control the instantiation cost, where Tj
varies from 30 minutes to 2 hours.

The results show that 7} has an impact on the total cost when it is actually needed. In
other words, when the scaling factor &; is small, the influence of the resource instantiation
penalty on the total cost is negligible, and varying T} has little effect. However, as &;
grows, the duration of the extended interval becomes a functional handle to control the
(now substantial) resource instantiation fee: inereasing T; from 30 minutes to 2 hours can
reduce the overall cost by 40% when x; = 10.
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Further detail is provided in Figure 5.8b, where the contribution of the different
management costs are told apart, for K; = 10. We observe that, as expected, the cost of (i)
overprovisioning and (ii) non-serviced demands grow with Tj. Indeed, if capacities mf{t}
and r°(t) remain fixed over a longer interval, this limits the flexibility of the orchestrator
to follow fluctuations in the demand, and forees a more challenging forecast over a longer
time horizon. However, and more importantly, longer T} have a clear positive impact on
the instantiation cost, which they can reduce by a factor 4 in this specific case study.
Ultimately, these results demonstrate the effectiveness of AZTEC in offering the operator

with a means to control resource instantiation costs.



Conclusions

Network slicing will be one of the pillars of future 5G networks. In this thesis, we
investigated the problems for Admission Control and Resource Orchestration in Network
Slicing, two critieal functions of the next mobile network generation. We have identified
the main research problems and by integrating Artificial Intelligence (AI) in the network,
designed novel algorithms and solutions to enable sliced 5G networks.

Network Slicing will bring new players to the 5G business model: the Infrastructure
Providers (InPs) will sell their resources to tenants which, in turn, provide a service to
their users. An open problem within this model is how to admit requests from the tenants,
ensuring that the corresponding SLAs will be satisfied while maximizing the monetization
of the InP. There is the need of new resource allocation mechanisms that take into account
the relationship between the various players.

In the first part of this thesis, we have addressed this issue by designing an admission
control alporithm to be executed by the InP when receiving slice requests from the
tenants. We first present a model based on Semi-Markov Decision Process (SMDP) for
the decision-making process and formulate the optimal revenue problem built on Value
Iteration. While this is very useful in order to obtain a benchmark for comparison, the
algorithm itself has a very high computational cost, which makes it impracticable for real
scenarios. Building on this model, we have first designed an adaptive online algorithm
based on ()-learning that aims at maximizing revenue by learning from the outcome
resulting from the previous decisions. Ewven though the ()-learning alporithm provides
close to optimal performance and reduces the computational cost compared with Value
Iteration, it becomes infeasible when the state space grows. In Section 3.4.4, we have
then designed an algorithm based on Neural Network (NN): the Network-slicing Neural
Network Admission Control (N3AC) algorithm. The performed evaluation shows that
N3AC (i) performs close to optimal performance, (ii) substantially outperforms naive
approaches as well as smart heuristies, and (iii) only requires few hundreds iterations to
converge to optimal performance. Furthermore, the proposed Al solution seales to large

scenarios and it is flexible enough to adapt to real scenarios.

a7
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In Section 4.3, we have presented DeepCog, an original data analytics tool for the
cognitive manapement of resources in sliced 5G networks. DeepCog tackles the nowvel
problem of capacity forecasting, whose solution is key to the sustainable operation of
future multi-tenant mobile networks. Indeed, once slices are admitted into the network,
the InP has to allocate them enough resources for their services delivering with a
predefined quality while minimizing its operational costs. Inspired by recent advances
in deep learning for image and video processing, DeepCog hinges upon a deep neural
network structure, which analyzes antenna-level demand snapshots for different services
in order to provide a prediction of the resources that the operator has to alloecate to
accommodate the future load. The operation is performed for individual mobile services
separately, and over a confipurable time horizon. At the core of DeepCog there is a-
OMC, a new and customized loss funetion that drives the deep neural network training
s0 as to minimize the monetary cost contributed by two main deployment fees, i.e.,
overprovisioning and SLA wviolation. Ours is, to the best of our knowledge, the only
work to date where a deep learning architecture is explicitly tailored to the problem
of anticipatory resource orchestration in mobile networks. The solution presented in this
thesis thus represents a first attempt to integrate data analytics based on machine learning
into an overall cognitive management framework. Thorough empirieal evaluations with
real-world metropolitan-seale data show the substantial advantages granted by DeepCog
over state-of-the-art predictors and other automated orchestration strategies, providing a
first analysis of the practical costs of heterogeneous network slice management across a
variety of case studies.

Assuming that resource instantiation and reconfipuration oceur at no costs in a sliced
network is not generally valid. For this reason in Chapter 5 we have designed AZTEC,
a practical multi-timescale orchestration approach for slicing-capable networks. This
approach combines deep learning tools with classic optimization algorithms to provide
a zero-touch anticipatory capacity forecasting for slices. By separating the long-term
assignment of slice-dedicated resources from the short-term re-orchestration of shared
resources, it manages to (i) minimize resource instantiation costs, while (ii) ensuring that
the service demands of all slices always are met, by timely reconfiguring the assignment
of shared resources. In AZTEC the long-term slice-dedicated resources and the short-
term orchestration of shared resources are performed for all the slices at the same
time. Moreover, leveraging on recent result on the approximation of uncertainty in
DNN, AZTEC includes in the forecast process a safety margin that further reduces the
monetary cost. The evaluation results, performed on extensive real-world data show that
AZTEC significantly improves the performance of state-of-the-art solutions, while providing
operators with a fine-level control on the underlying system.

In summary, in this thesis we have discussed the potentially eritical role of Al for the
management and operation of mobile networks that implement network slicing. Al-based
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solutions can address the different and very complex problems that emerge at multiple
levels, including admission control of new network slices and resource alloeation to slices in
the Radio Access Network (RAN), Mobile Edge Computing (MEC) and network core. We
outlined practical deep learning architectures that can solve such problems and designed
three different Al-based approaches, illustrating the high typical gain that one can expect
from integrating Al in network slicing.

The research conducted in this thesis sets a first step through the integration of Al in
the next mobile network generation. Two main outcomes from this work that could drive

future research directions are briefly described next.

1. We have demonstrated that Al-based approaches can be very effective for different
problems around network slicing as this involves large traffic volumes and relatively
relaxed timescales. Future extensions of the proposed approaches can look at the
trade-off between the complexity required by applying these alporithms and QOS

requirements in case of reduced timescales.

2. In this thesis, we have carefully deseribed a methodology to apply Al to networking
problems. Detailed reasoning behind all the choices involving the input/output
arrangement and architectural aspects have been provided. This methodology could
potentially be leveraged to design algorithms for other networking problems.
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