
Deep Learning solutions for next generation
slicing-aware mobile networks

by

Dario Bega

A dissertation submitted by in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Telematics Engineering

Universidad Carlos III de Madrid

Advisor: Albert Banchs
Co-Advisor: Xavier Costa-Pérez

January 2020

iii

Deep Learning solutions for next generation slicing-aware mobile networks

Prepared by:

Dario Bega, IMDEA Networks Institute, Universidad Carlos III de Madrid

contact: dario.bega@imdea.org

Under the advice of:

Albert Banchs, IMDEA Networks Institute

Telematics Engineering Department, Universidad Carlos III de Madrid

Xavier Costa-Pérez, NEC Laboratories Europe

This work has been supported by:

Unless otherwise indicated, the content of is thesis is distributed under a

Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA).

“If we knew what it was we were doing, it

would not be called research, would it?”

Albert Einstein

“I have never met a man so ignorant that

I couldn’t learn something from him”

Galileo Galilei

“Che cosè il genio? È fantasia, intuizione,

decisione e velocità d’esecuzione”

Amici Miei

Acknowledgements

Before presenting this work, I would like to start by thanking everyone who have

helped me during this journey. First I would like to express my profound gratitude to my

Ph.D supervisor Prof. Albert Banchs for his sincere guidance and support. He gave me

the possibility to become his student when I was not expecting it anymore and thanks to

his patience, suggestions and teachings helped me to gain a scientific thinking. Without

him, all my modest research achievements wouldn’t have been possible.

Next, I would like to thank Dr. Marco Gramaglia. Even though he support AC Milan

(not the best period for that), he represented for me not only a great researcher with

whom discuss every doubt, challenge or idea I had in mind, but also a true friend always

ready to give me helpful advices. The works included in this thesis are as yours as mine.

I am very grateful to Dr. Marco Fiore and Dr. Xavier Costa-Peréz for their

collaboration and valuable comments. You drove me to achievements I could not imagine

at the beginning.

Moreover, I would like to thank Prof. Tommaso Melodia for hosting me for 6 months

at Northeastern University giving me the opportunity to work in a top-level research lab

and live a wonderful life experience. I cannot forget to thanks all the amazing people

working at WiNESLab that welcomed me and made my stay in Boston unforgettable.

Thanks to Lorenzo, Salvatore, Leonardo, Frank, Daniel, Jennie, Sara, Emrecan, Ludo

and Norbert for the 6 months of fun we had.

Furthermore, I would like to thank all my colleagues at IMDEA Networks. You made

my Ph.D an indelible experience. I would like to thank Roberto (yes I learned a lot from

you but remember that you are becoming a number 4), Mauri (also for sharing the early

morning gym), Chri (even if he hates Inter I always enjoy ours footbal discussions), Ev

(I miss a lot your daily craziness), Noelia (my murcian/spanish teacher with all your

stories and new trends to follow), Danilo (for our talks rigorously in italian), Hany (for

our jokes), Giulia (always with your positive mood) and Francesco (seriously man, it has

not been easy to watch your face all the mornings in the last months) for all the talks,

co� ees, dinners, beers, parties and all the breaks spent together. We met as colleagues but

you quickly became part of my Spanish family. I would like also to thank Paolo, Ander,

Dolores, Pablo, Adriana, Jesus and all the amazing people I met during these years at

vii

viii

IMDEA. You are definitely the soul of the institute. I would like to thank my all-life

friends in Italy Vincenzo, Romiz, Mazzo, Trovaz, Andrea, Bedo, Dario, Luca, Claudio

and Lisa for our light-hearted time.

Quindi voglio ringraziare mia madre e mio padre per aver fatto l’impossibile per darmi

tutto quello che ho e per avermi sempre sostenuto e incoraggiato in ogni passo della mia

vita. Siete il mio punto di riferimento e se oggi sono arrivato fino a qui è solo grazie a voi.

Vorrei inoltre ringraziare mia sorella, che nonostante le nostre innumerevoli discussioni

per i più futili motivi, è stata per me un esempio da seguire.

Finally, I would like to thank Alessia for being for half of my life at my side even when

no-one would have stayed. We met long time ago and from that moment you brought

your smiley, joyful and full of energy personality in my life. Thanks for your support and

to foster my willing to continuously move around the world. You are a pillar of my life

and without you I wouldn’t neither have begun this journey.

Published and
Submitted Content

This thesis is based on the following published papers:

[1] Dario Bega, Marco Gramaglia, Albert Banchs, Vincenzo Sciancalepore,

Konstantinos Samdanis, Xavier Costa-Perez. “Optimising 5G infrastructure markets:

The Business of Network Slicing”. Published inthe 36th IEEE International Conference

on Computer Communications (IEEE INFOCOM 2017), 1-4 May 2017, Atlanta, GA,

USA. https://doi.org/10.1109/INFOCOM.2017.8057045

¥This work is fully included and its content is reported in Chapter 3.

¥The author’s role in this work is focused on the design, implementation and

experimentation of a reinforcement learning algorithm with regarding of the concepts

proposed in the paper.

[2]Vincenzo Sciancalepore, Konstantinos Samdanis, Xavier Costa-Perez,Dario Bega,

Marco Gramaglia, Albert Banchs. “Mobile Tra� c Forecasting for Maximizing 5G

Network Slicing Resource Utilization”. Published in the 36th IEEE International

Conference on Computer Communications (IEEE INFOCOM 2017), 1-4 May 2017,

Atlanta, GA, USA. https://doi.org/10.1109/INFOCOM.2017.8057230

¥This work is partially included and its content is reported in Chapter 3.

¥The author’s role in this work is focused on participating in the discussion about

the development of the concepts proposed in the paper.

[3]Peter Rost, Christian Mannweiler, Diomidis Michalopoulos, Cinzia Sartori, Vincenzo

Sciancalepore, Nishanth Sastry, Oliver Holland, Shreya Tayade, Bin Han,Dario Bega,

Danish Aziz, Hajo Bakker. “Network Slicing to Enable Scalability and Flexibility in 5G

Mobile Networks”. Published in IEEE Communications Magazine, 55(5), pp. 72-79.

ISSN 0163-6804, May 2017. https://doi.org/10.1109/MCOM.2017.1600920

¥This work is partially included in this thesis and its content is reported in Chapter 5.

¥The author’s role in this work is focused on collaborating in the writing of network

slicing approaches for 5G mobile networks.

ix

x

[4] Dario Bega, Marco Gramaglia, Carlos Jesus Bernardos Cano, Albert Banchs, Xavier

Costa-Perez. “Toward the network of the future: From enabling technologies to 5G

concepts”. Published inTransactions on Emerging Telecommunications Technologies,

28(8), pp. 1-12., August 2017. https://doi.org/10.1002/ett.3205

¥This work is partially included in this thesis and its content is reported in Chapter 1.

¥The author’s role in this work is focused on the collection and writing of the paper’s

concepts.

[5]Diomidis S. Michalopoulos, Mark Doll, Vincenzo Sciancalepore,Dario Bega,Peter

Schneider, Peter Rost. “Network slicing via function decomposition and flexible network

design”. Published inthe 28th IEEE Annual International Symposium on Personal,

Indoor, and Mobile Radio Communications (PIMRC), 8-13 October 2017, Montreal, QC,

Canada. https://doi.org/10.1109/PIMRC.2017.8292661

¥This work is partially included in Chapter 2.

¥The author’s role in this work is focused on providing and writing contributions

regarding mobile network architecture to support network slicing.

[6]Pablo Serrano, Marco Gramaglia,Dario Bega,DavidGutierrez-Estevez, Gines

Garcia-Aviles, Albert Banchs. “The path toward a cloud-aware mobile network protocol

stack”. Published inTransactions on Emerging Telecommunications Technologies, 29(5),

pp. 1-10., May 2018. https://doi.org/10.1002/ett.3312

¥This work is partially included in Chapter 1.

¥The author’s role in this work is focused on contributing with performance

evaluation results.

[7] Dario Bega, Albert Banchs, Marco Gramaglia, Xavier Costa-Perez, Peter

Rost. “CARES: Computation-aware Scheduling in Virtualized Radio Access Networks”.

Published inIEEE Transactions on Wireless Communications, 17(12), pp. 7993-8006.

ISSN 1536-1276, December 2018. https://doi.org/10.1109/TWC.2018.2873324

¥This work is partially included and its content is reported in Chapter 1.

¥The author’s role in this work is focused on the design and experimentation of a

computational-aware scheduling algorithm.

[8] Dario Bega, Marco Gramaglia, Albert Banchs, Vincenzo Sciancalepore, Xavier

Costa-Perez. “A Machine Learning approach to 5G Infrastructure Market optimization”.

Published inIEEE Transactions on Mobile Computing, pp. 1-15. ISSN 1536-1233, 01

February 2019. https://doi.org/10.1109/TMC.2019.2896950

xi

¥This work is fully included and its content is reported in Section 3.4.4.

¥The author’s role in this work is focused on the design, implementation and

experimentation of a deep learning framework with regarding of the concepts proposed

in the paper.

[9] Dario Bega, Marco Gramaglia, Marco Fiore, Albert Banchs, Xavier Costa-Perez.

“DeepCog: Cognitive Network Management in Sliced 5G Networks with Deep Learning”.

Published inthe 38th IEEE International Conference on Computer Communications

(IEEE INFOCOM 2019), 29 April - 02 May 2019, Paris, France. https://doi.org/10.

1109/INFOCOM.2019.8737488

¥This work is fully included and its content is reported in Chapter 4.

¥The author’s role in this work is focused on the design, implementation and

experimentation of a Deep Learning framework for the proposed methodology.

[10] Dario Bega, Marco Gramaglia, Marco Fiore, Albert Banchs, Xavier Costa-

Perez. “–-OMC: Cost-Aware Deep Learning for Mobile Network Resource Orchestration”.

Published inthe 38th IEEE International Conference on Computer Communications

Workshops (IEEE INFOCOM WKSHPS 2019), 29 April - 02 May 2019, Paris, France.

https://doi.org/10.1109/INFCOMW.2019.8845178

¥This work is fully included and its content is reported in Section 4.4.

¥The author’s role in this work is focused on the design, implementation and

experimentation of the proposed loss function for Deep Learning framework.

[11] Dario Bega, Marco Gramaglia, Marco Fiore, Albert Banchs, Xavier Costa-

Perez. “DeepCog: Optimizing Resource Provisioning in Network Slicing with AI-based

Capacity Forecasting”. Accepted for publication inIEEE Journal on Selected Areas

in Communications special issue on Leveraging Machine Learning in SDN/NFV-based

Networks (IEEE JSAC SI-MLinSDNNFV). ISSN 0733-8716, December 2019. https:

//doi.org/10.1109/JSAC.2019.2959245

¥This work is fully included and its content is reported in Section 4.3 and Section 4.5.

¥The author’s role in this work is focused on the design, implementation and

experimentation of a Deep Learning approach with regarding of the concepts proposed in

the paper.

[12] Dario Bega, Marco Gramaglia, Marco Fiore, Albert Banchs, Xavier Costa-Perez.

“AZTEC: Anticipatory Capacity Allocation for Zero-Touch Network Slicing”. Accepted

for publication inthe 39th IEEE International Conference on Computer Communications

(IEEE INFOCOM 2020), 27 - 30 April 2020, Beijijng, China.

xii

¥This work is fully included and its content is reported in Chapter 5.

¥The author’s role in this work is focused on the design, implementation and

experimentation of a novel Deep Learning - Optimization framework for capacity

allocation.

[13] Dario Bega, Marco Gramaglia, Andres Garcia-Saavedra, Marco Fiore, Albert

Banchs, Xavier Costa-Perez. “Network Slicing Meets Artificial Intelligence: an AI-based

Framework for Slice Management”. This work has been submitted for publication.

¥This work is fully included and its content is reported in Chapter 1.

¥The author’s role in this work is focused on collaborating in the writing of the

magazine and providing some of the described use-cases.

[14] Dario Bega, Albert Banchs, Marco Gramaglia, Marco Fiore, Ramon Perez, Xavier

Costa-Perez. “AI-based Autonomous Control, Management, and Orchestration in 5G:

from Standards to Algorithms”. This work has been submitted for publication.

¥This work is not included in this thesis.

¥The author’s role in this work is focused on the design, implementation and

experimentation of the AI framework for 5G network management and orchestration.

Abstract

It is now commonly agreed that future 5G Networks will build upon the network

slicing concept. Network slicing is an emerging paradigm in mobile networks that

leverages Network Function Virtualization (NFV) to enable the instantiation of multiple

logically independent copies -namedslices- of a same physical network infrastructure.

The operator can allocate to each slice dedicated resources and customized functions that

allow meeting the highly heterogeneous and stringent requirements of modern mobile

services. Managing functions and resources under network slicing is a challenging task

that requires making e� cient decisions at all network levels and in real-time, which can

be achieved by integrating Artificial Intelligence (AI) in the network.

This thesis investigates the potential of AI for sliced mobile networks. In particular

it focuses on resource allocation and orchestration for network slices. This involves two

steps: (i)Admission Controlthat is responsible to decide which slices can be admitted

to the network, and (ii)Network resource orchestrationthat dynamically allots to the

admitted slices the necessary resources for their operation.

Network Slicing will have an impact on the models that sustain the business ecosystem

opening the door to new players: the Infrastructure Provider (InP), which is the owner of

the infrastructure, and the tenants, which may acquire a network slice from the InP

to deliver specific service to their customers. In this new context, how to correctly

handle resource allocation among tenants and how to maximize the monetization of

the infrastructure become fundamental problems that need to be solved. In this thesis

we address this issue by designing a network slice admission control algorithm that (i)

autonomously learns the best acceptance policy while (ii) it ensures that the service

guarantees provided to tenants are always satisfied. This includes (i) an analytical model

for the admissibility region of a network slicing-capable 5G Network, (ii) the analysis of

the system (modeled as a Semi-Markov Decision Process) and the optimization of the

infrastructure provider’s revenue, and (iii) the design of a machine learning algorithm

that can be deployed in practical settings and achieves close to optimal performance.

Dynamically orchestrate network resources is both a critical and challenging task in

upcoming multi-tenant mobile networks, which requires allocating capacity to individual

network slices so as to accommodate future time-varying service demands. Such an

xiii

xiv

anticipatory resource configuration process must be driven by suitable predictors that take

into account all the sources of monetary cost associated to network capacity orchestration.

Legacy models that aim at forecasting tra� c demands fail to capture these key economic

aspects of network operation. To close this gap in the second part of this thesis, we

first present DeepCog, a first generation deep neural network architecture inspired by

advances in image processing and trained via a dedicated loss function in order to

deal with monetary cost due to overprovisioning or underprovisioning of networking

capacity. Unlike traditional tra� c volume predictors, DeepCog returns a cost-aware

capacity forecast, which can be directly used by operators to take short- and long-term

reallocation decisions that maximize their revenues. Extensive performance evaluations

with real-world measurement data collected in a metropolitan-scale operational mobile

network demonstrate the e� ectiveness of our proposed solution, which can reduce

resource management costs by over 50% in practical case studies. Then we introduce

AZTEC, a second generation data-driven framework that e� ectively allocates capacity to

individual slices by adopting an original multi-timescale forecasting model. Hinging on

a combination of Deep Learning architectures and a traditional optimization algorithm,

AZTECanticipates resource assignments that minimize the comprehensive management

costs induced by resource overprovisioning, instantiation and reconfiguration, as well as

by denied tra� c demands. Experiments with real-world mobile data tra� c show that

AZTECdynamically adapts to tra� c fluctuations, and largely outperforms state-of-the-art

solutions for network resource orchestration.

At the time of writing DeepCog andAZTECare, to the best of our knowledge, the

only works where a deep learning architecture is explicitly tailored to the problem of

anticipatory resource orchestration in mobile networks.

Table of Contents

Acknowledgements VII

Published Content IX

Abstract XIII

Table of Contents XV

List of Tables XIX

List of Figures XXI

List of Acronyms XXIII

1. Introduction 1

1.1. AI-based Slice Management Framework 2

1.2. Challenges . 4

1.2.1. Admission Control . 5

1.2.2. Network Orchestration . 5

1.3. Contributions . 6

1.4. Outline of the thesis . 7

2. Trends and challenges in network slicing 9

2.1. Mobile Network Slicing Architecture . 9

2.2. Design Challenges . 10

3. Network Slice Admission Control 13

3.1. System Model . 14

3.2. Admissibility region . 18

3.2.1. Theoretical analysis . 18

3.2.2. Validation of the admissibility region 20

3.3. Optimising 5G Infrastructure Markets . 21

3.3.1. Markovian decision-making process analysis 22

xv

xvi TABLE OF CONTENTS

3.3.2. Optimal policy . 24

3.3.3. Optimality and convergence analysis 27

3.3.4. Optimal admission policy assessment 28

3.4. ML approach for 5G Market optimization 29

3.4.1. Q-Learning model . 29

3.4.2. Algorithm description . 30

3.4.3. Adaptive algorithm performance 31

3.4.4. N3AC: a Deep Reinforcement Learning approach 33

3.4.5. Deep Reinforcement Learning framework 35

3.4.6. Algorithm description . 38

3.5. Performance Evaluation . 40

3.5.1. Algorithm Optimality . 41

3.5.2. Learning time and adaptability . 41

3.5.3. Large-scale scenario . 42

3.5.4. Gain over random policies . 44

3.5.5. Memory and computational footprint 45

3.5.6. Di� erent tra� c types . 45

4. Resource Orchestration for Network Slicing 47

4.1. Network management and forecasting . 48

4.2. Related Works . 50

4.3. A DL Framework for Resource Orchestration 52

4.3.1. DeepCog Framework . 53

4.3.2. The Neural Network . 54

4.3.3. The training procedure . 56

4.3.4. Arrangement of input data . 57

4.3.5. The Output function . 58

4.4.–-OMC . 59

4.4.1. Loss function design . 59

4.4.2. Correctness and convergence . 62

4.5. Performance Evaluation . 63

4.5.1. Gain over state-of-the-art tra� c predictors 66

4.5.2. Comparison with overprovisioned tra� c prediction 67

4.5.3. Controlling resource allocation trade-o� s with– 69

4.5.4. Long-term capacity prediction with DeepCog 71

5. Network Slicing with shared resources providing hard guarantees 75

5.1. Capacity forecasting for resource management 76

5.2. Orchestration Model and Trade-o� s . 78

5.2.1. Sources of monetary cost . 79

TABLE OF CONTENTS xvii

5.2.2. Trade-o� s in capacity allocation 82

5.3. TheAZTECFramework . 83

5.3.1. AZTECin a nutshell . 83

5.4. Long-timescale orchestration . 85

5.4.1. Long-term dedicated capacity forecasting 85

5.4.2. Long-term total shared capacity forecasting 87

5.5. Short-timescale orchestration . 88

5.5.1. Short-term shared capacity allocation 88

5.6.AZTECPerformance Evaluation . 90

5.6.1. Harnessing the forecast uncertainty 91

5.6.2. Comparative evaluation . 92

5.6.3. Monetary cost breakdown . 94

5.6.4. Controlling resource instantiation costs 95

6. Conclusions 97

References 101

List of Tables

3.1. Computational load for di� erent network scenarios. 45

4.1. Mobile services retained for dedicate network slices. 64

xix

List of Figures

1.1. Network Slicing Framework. 2

3.1. Admissibility region: analysis vs. simulation. 20

3.2. Example of system model with the di� erent states. 23

3.3. Example of optimal policy for elastic and inelastic slices. 27

3.4. Optimal admission policy for elastic tra� c. 28

3.5. Revenue vs.fli/fle................................ 32

3.6. Performance vs. random smart policies . 33

3.7. Revenue in a perturbed scenario,fli/fle=5.................. 34

3.8. Neural networks internals. 36

3.9. High-level design of AI-based slice admission control. 38

3.10. Revenue vs.fli/fle................................ 41

3.11. Learning time for N3AC and Q-learning. 42

3.12. Performance under changing conditions. 43

3.13. Revenue vs.fli/fle................................ 43

3.14. N3AC algorithm vs. random smart policies 44

3.15. Revenue vs.fli/fle................................ 46

4.1. Tra� c and Capacity forecast comparison 50

4.2. Outline and interaction of the DeepCog components. 53

4.3. DeepCog neural network encoder-decoder structure. 54

4.4. Cost model . 59

4.5. Loss function correctness analysis . 62

4.6. Average cost vs. learning epochs . 63

4.7. DeepCog vs. SoA tra� c forecast benchmarks 66

4.8. Comparison between DeepCog and overprovisioned tra� c predictors . . . 68

4.9. Overprovisioning-SLA violation tradeo� varying–parameter 70

4.10. Monetary cost vs.Th.............................. 71

4.11. Monetary costs breakdown . 72

4.12. Capacity forecast examples under di� erentTh................ 73

xxi

xxii LIST OF FIGURES

5.1. Toy example illustrating the costs of resource allocation in network slicing 78

5.2.AZTECOrchestration model . 79

5.3.AZTECframework overview . 84

5.4. Time series of sample resource allocations 91

5.5. Normalized monetary cost ofAZTECvs. SoA benchmarks 92

5.6. Capacity breakdown . 93

5.7.AZTECmonetary cost breakdown . 94

5.8. Normalized monetary cost vsTl........................ 95

List of Acronyms

AI Artificial Intelligence

BBU baseband unit

CN Core Network

CNN Convolutional Neural Network

C-RAN Cloud Radio Access Networks

CSC Communication Service Client

CSP Communication Service Provider

DNN Deep Neural Network

DRL Deep Reinforcement Learning

DPI Deep Packet Inspection

eMBBEnhanced Mobile Broadband

EPCEvolved Packet Core

FCFully Connected

GTP GPRS Tunneling Protocol

IaaSInfrastructure as a Service

InPInfrastructure Provider

KPI Key Performance Indicator

MAC Medium Access Control

MAE Mean Absolute Error

MANO management and orchestration

xxiii

xxiv LIST OF ACRONYMS

mMTC massive Machine Type Communication

MNO Mobile Network Operator

MCS Modulation and Coding Scheme

MDS Multi-Dimensional Scaling

ML Machine Learning

MEC Mobile Edge Computing

MLP Multi-Layer Perceptron

MSE Mean Squared Error

N3AC Network-slicing Neural Network Admission Control

NN Neural Network

NFV Network Function Virtualization

NFVI Network Functions Virtualization Infrastructure

NF Network Function

OPEX operating expenses

OSS/BSS Operations and Business Support System

PHYphysical layer

PRBPhysical Resource Block

QoE Quality of Experience

QOS Quality of Service

RAN Radio Access Network

RAT Radio Access Technology

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

RW P Random Waypoint

SDNSoftware Defined Networking

LIST OF ACRONYMS xxv

SMDPSemi-Markov Decision Process

SLAService Level Agreement

SGDStochastic Gradient Descent

UE User Equipment

URLLC Ultra Reliable Low Latency Communication

UPF User Plane Function

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

JCRJournal Citation Reports

1 Introduction

The expectations that build around future 5G Networks are very high, as the

envisioned Key Performance Indicators (KPIs) represent a giant leap when compared

to legacy 4G/LTE networks. Very high data rates, extensive coverage, sub-ms delays

are just few of the performance metrics that 5G networks are expected to boost when

deployed.

This game changer relies on new technical enablers such as Software Defined

Networking (SDN) or Network Function Virtualization (NFV) that will bring the network

architecture from a purelyhardboxbased paradigm (e.g., a eNodeB or a Packet Gateway)

to a completelycloudifiedapproach, in which network functions that formerly were

hardware-based (e.g., baseband processing, mobility management) are implemented as

software NFVs running on a, possibly hierarichical, general purposetelco-cloud.

Building on these enablers, several novel key concepts have been proposed for next

generation 5G networks [4] (e.g.,virtualized Radio Access Network (RAN)orNetwork

Slicing) requiring a re-design of current network functionalities. Among them,Network

Slicing[14] is probably the most important one. Indeed, there is a wide consensus in that

accommodating the very diverse requirements demanded by 5G services using the same

infrastructure will not be possible with the current, relatively monolithic architecture in

a cost e� cient way. In contrast, with network slicing the infrastructure can be divided in

di� erent slices, each of which can be tailored to meet specific service requirements.

A network slice consists of a set of Virtual Network Functions (VNFs) that run

on a virtual network infrastructure and provide a specific telecommunication service.

The services provided are usually typified in macro-categories, depending on the most

important KPIs they target. Enhanced Mobile Broadband (eMBB), massive Machine

Type Communication (mMTC) or Ultra Reliable Low Latency Communication (URLLC)

are the type of services currently envisioned by,e.g., ITU [15]. Each of these services is

instantiated in a specific network slice, which has especially tailored management and

orchestration algorithms to perform the lifecycle management within the slice.

In this way, heterogeneous services may be provided using the same infrastructure, as

1

2 Introduction

Resource utilization
measurements

Tenants

AI-Based Admission
Control

AI-Based Resource
Orchestration

AI-Based Radio
Scheduling

Traffic
demands

Acceptance or
Rejection

Phase
and

Timescale

Su
b
Se
co
nd
s

Mi
nu
te
s

Ho
ur
s

Ru
n
-ti
me

Pr
ep
ar
ati
on

Figure 1.1: Comprehensive network slicing framework. The diagram outlines the
timescales and composition of the key slice management functions.

di� erent telecommunication services (that are mapped to a specific slice) can be configured

independently according to their specific requirements. Additionally, thecloudificationof

the network allows for the cost-e� cient customization of network slices, as the slices run

on a shared infrastructure.

1.1. AI-based Slice Management Framework

Much of the complexity in re-designing mobile networks for slicing relates to decision-

making towards an e� cient, dynamic management of resources in real-time. There,

Artificial Intelligence (AI) appears as a natural approach to design the various algorithms

employerd by di� erent network functions [16]. As a matter of fact, AI provides a powerful

tool to address highly complex problems that involve large amounts of data. This is

indeed the case with network slicing, where the presence of a large number of slices

each independently operated by a di� erent tenant, drastically increases the complexity

of the system with respect to legacy non-sliced networks controlled by a single entity,

i.e., the network operator. Also, the sheer amount of data flowing through the network

and potentially relevant to resource allocation decision-making, and the di� culties in

forecasting the overall behavior of a system involving many di� erent players, make

traditional tools for network management insu� cient.

Devising a network slicing framework requires novel algorithms to manage the

infrastructure resources, sharing them between the di� erent slices while guaranteeing

1.1 AI-based Slice Management Framework 3

the requirements of each slice will be met [13]. This applies throughout the following

network functions:

Admission Controlis in charge of deciding whether upcoming network slice

requests can be admitted or not in the system, and is enacted so as to ensure that

the requirements of the admitted slices are satisfied.

Network (re-)orchestrationis central to both slice instantiation and run-time

operation, since it allocates the available network resources to the admitted slices

in the most e� cient way possible, and then dynamically updates such an allocation

at run-time in order to fulfill the time-varying demands of each slice while avoiding

capacity outages.

Radio resource sharingis paramount at run-time, as it manages the sharing of

radio access resources among the network slices, ensuring that potentially stringent

requirements of all the slices (e.g., in terms of latency and throughput) are met over

the air interface.

Figure 1.1 shows the framework that we envisage in this thesis to support network

slicing. This framework gathers components to deal with each of the above functions.

These components involve di� erent phases of the ”Network Slice Lifecycle Management”

[17], consisting of four main steps that have to be addressed: (i) preparation; (ii)

instantiation, configuration and activation; (iii) run-time and (iv) de-commissioning.

Each of these phases involves di� erent timescales: (i) admission control runs at frequencies

that match those of arrivals of new network slices requests, which may be in the order of

hours; (ii) the orchestration of resources in softwarized networks occurs at frequencies that

depend on the time required to re-sizing virtual machines resources, typically in the order

of minutes; and, (iii) scheduling of radio resources applies at a finer granularity, down

to millisecond intervals in extreme cases. It is also worth highlighting that the di� erent

functions (and their associated algorithms) may benefit from mutual interactions. The

information on resource utilization gathered at the network orchestration level can be

leveraged for admission control, where it allows understanding whether admitting a new

slice may lead to problems in provisioning enough capacity for all admitted services.

Similarly, data collected by the resource management function can help an orchestrator

to produce more accurate forecasts of future slice demands for anticipatory resource

allocation.

All functions above need to make decisions to meet the requirements of the individual

slices while maximizing the overall system performance. To this end, they need to learn

the dynamics of per-slice data tra� c, and automatically react to their impact on the

network architecture, towards their respective management goals. Self-adapting network

function configurations were introduced over a decade ago [18], however the solutions

4 Introduction

designed so far typically apply control on limited sets of parameters that change slowly in

time (e.g., eNB transmission power). Also, current approaches produce outputs that then

need human intervention to be translated into modifications of the network configuration

(e.g., updating the transport network so as to optimize handovers in a given region).

These characteristics are not compatible with the novel requirements introduced by

network slicing. The parameters that may need reconfiguration are much more numerous,

as each virtual network functions may expose several of them in a programmatic way. The

timescale at which decisions must be made is drastically reduced, as one must be ideally

capable of acting at radio level timings or even at wire-speed. Decisions often need to take

into account metrics that go beyond pure network performance, such as energy e� ciency

or infrastructure monetization, which may hide complex cross-relationships.

This context provides a fertile ground for AI to become instrumental in mobile network

operation. All classes of AI may be useful to this end, including (i)supervisedsolutions

that require ground truth data for training, (ii)unsupervisedtechniques that work in

absence of ground truth, and (iii)reinforcementlearning approaches where di� erent

forms of interaction with the system that has to be controlled are possible [19]. The

most appropriate AI tools must be selected case by case, depending on the involved

algorithmic requirements and operation timescales.

For instance, reinforcement learning is particularly well suited when the time dynamics

of the problem can accommodate a learning curve, and the objective is to define a sequence

of actions that maximizes a certain reward: this is the case of admission control algorithm

as demonstrated by the practical implementations presented in Section 3.4.4. Conversely,

when the target is to provide decisions that are independent of those previously taken

and whose quality can be assessed during systems training, supervised learning solutions

are a strong option: this is precisely the settings where network resource orchestration

takes place, as illustrated by the applied solution in Section 4.3 and Section 5.3.

Before proceeding further, we remark that those presented next are examples of

successful integration of AI across the framework in Figure 1.1. They do not exhaust the

application space of AI for network operations; rather, they realize important components

in the comprehensive design of self-organizing sliced mobile networks.

1.2. Challenges

As described in the section above, the integration of the key novel concepts envisioned

for 5G networks will a� ect the current mobile network functions. In this thesis we

focus on Network Slicing and in particular on the re-design of two fundamental network

functions,i.e., Admission Control and Resource Orchestration. Each of them conveys

several challenges that need to be taken account of while designing viable implementations

of slice management functions. Following we provides more details about the research

1.2 Challenges 5

challenges of these works.

1.2.1. Admission Control

Network infrastructure resources are limited and network slice demand quality

guarantees, which calls for admission control on new slice requests. According to 3GPP

standardization on network slicing, the Communication Service Client (CSC) [17],i.e.,the

tenant, will request specific services to the Communication Service Provider (CSP),i.e.,

the network provider, among those available in the o� ered portfolio. Then, it will pay for

the service according to metrics like,e.g., the number of served users, the service coverage

area, or the duration of the slice instance. Such admission control decisions have profound

business implications: the choice of how many network slices to run simultaneously, and

how to share the network infrastructure among slices have an impact on the revenues of

the network provider.

The complexity and heterogeneity of the slice admission decision process deprecates

manual configuration, which is thede-factolegacy approach in 4G networks. To identify

the best operating point, slice admission control must learn the arrival dynamics of slices

and make decisions that maximize the revenue, based on the current system occupation

and its expected long-term evolution. This problem is highly dimensional (growing

linearly with the number of network slices) with a potential huge number of states

(increasing exponentially with the number of classes) and many variables (one for each

state). Furthermore, in many cases the behavior of the tenants that request slices is not

knownaprioriand may vary with time. For these reasons, traditional solutions building

on optimization techniques are not a� ordable (because of complexity reasons) or simply

impossible (when slice behavior is not known). Instead, AI provides a means to cope with

such complex problems.

1.2.2. Network Orchestration

Once admitted, slices must be allocated su� cient resources. Due to the prevailing

softwarization of mobile networks, such resources are increasingly of computational

nature. This holds both at the RAN where they map to,e.g., CPU time for containers

running baseband units (BBUs) in Cloud Radio Access Networks (C-RAN) datacenters,

and in the Core Network (CN) where,e.g., virtual machines run softwarized Evolved

Packet Core (EPC) entities in datacenters. In these case, ensuring strong KPI guarantees

often requires that computational resources are exclusively allocated to specific slices,

and cannot be shared across others. The dynamic allocation of network resources to the

di� erent admitted slices becomes then a chief management task in network slicing.

In this context, the network operator needs to decide in advance the amount of

resources that should be dedicated to the di� erent slices, so as to ensure that the

6 Introduction

available capacity is used in the most e� cient way possible and thus minimize operating

expenses (OPEX). Finding the correct operational point requires (i)predictingthefuture

demand in each slice, and (ii) deciding what amount of resources is needed to serve such

demand. These two problems are complex per-se: forecasting future demands at service

level requires designing dedicated, accurate predictors; instead, allocating resources in

a way that minimizes the OPEX of the operator requires estimating the expected error

of the prediction. Moreover, addressing (i) and (ii) above as separate problems risks

to lead to largely suboptimal solutions, since legacy predictors do not provide reliable

information about the expected error they will incur into. While the complexity of the

complete solution may be daunting with traditional techniques, AI can be leveraged to

address both aspects at once.

1.3. Contributions

This thesis investigates the application of deep learning solutions for next generation

sliced mobile networks. The main contributions of this doctoral thesis have been

published in 8 publications, of which 1 has been published inIEEE Communication

Magazine (indexed in Journal Citation Reports (JCR)), 1 inIEEE Transactions

on Mobile Computing (indexed in JCR), 1 inIEEE Transactions on Wireless

Communications (indexed in JCR), 1 inIEEE JSAC special issue on Leveraging

Machine Learning in SDN/NFV-based Networks (indexed in JCR), 2 inTransactions

on Emerging Telecommunications Technologies(indexed in JCR), and 2 submitted to

IEEE Communication MagazineandIEEE Network Magazinecurrently under revision.

Other 4 publications have been published in tier-1 conferenceIEEE INFOCOMaccording

to CORE20141or ERA20102datasets, 1 publication have been published inIEEE

INFOCOMworkshop. In details,

1.Admissibility region analytical formulation. An analytical model for the

admissibility region of a network slicing-capable 5G Network has been devised. It

provides to the Infrastructure Provider (InP) the information about the maximum

number of network slices can be admitted in the system to maximize his revenue

while guaranteeing that the Service Level Agreements (SLAs) are met for all tenants.

This is a fundamental information for the InP, indeed if admitting a new network

slice in the system would lead to violating the SLA of already admitted slices, then

such a request should be rejected.

2.Decision-making optimal and adaptive algorithms design. The decision-

making process on slice requests has been modeled as Semi-Markov Decision Process

1http://portal.core.edu.au/conf-ranks/
2http://www.conferenceranks.com/

1.4 Outline of the thesis 7

(SMDP), including the definition of the state space of the system, along with the

decisions that can be taken at each state and the resulting revenue. This is used

to derive the optimal admission control policy that maximizes the revenue of the

infrastructure provider, which serves as a benchmark for the performance evaluation,

and an adaptive algorithm that provides close to optimal performance.

3.Machine Learning based admission control algorithm. Admission control

represents a very complex task. This problem is highly dimensional with a

potential huge number of states and many variables. Optimal methods require

that all variables are known, and as adaptive algorithms do not scale to huge space

states. Machine Learning provides a mean to cope with such complex problems,

consequently we have designed a practicable Neural Networks (NNs) solution based

on deep reinforcement learning that provides close to optimal performance.

4.Capacity Forecast.Legacy techniques for the prediction of mobile network tra� c

aim at perfectly matching the temporal behavior of tra� c, independently of whether

the anticipated demand is above or below the target. As a result, they incur in

substantial SLA violations. Hence, we introduce the notion of capacity forecast,

i.e., the minimum provisioned capacity needed to cut down SLA violations. This

closes the gap between simple tra� c prediction and practical orchestration.

5.A Deep Learning Framework for Resource Orchestration. A new mobile

tra� c data analytics tool explicitly tailored to solve capacity forecast problem

has been designed. It hinges on a deep learning architecture that leverages a

customized loss function that targets capacity forecast rather than plain mobile

tra� c prediction. It also provides long-term forecasts over configurable prediction

horizons operating on a per-service base.

6.Two-time scale anticipatory capacity allocation for network slicing with

hard guarantees. An original model for the anticipatory allocation of capacity

to network slices, which is mindful of all operating costs is proposed. The new

model takes into account not only the orchestration costs associated with over-

and under-provisioning but also the ones linked with resource instantiation and

reconfiguration.AZTEC, a complete framework for capacity allocation to network

slices has been designed. It relies on a combination of deep learning architectures

and traditional optimizer.

1.4. Outline of the thesis

The rest of the thesis is organized as follows. Within each chapter, a list of relevant

state-of-the-art works are provided. We first describe in Chapter 2 how Network Slice

8 Introduction

will modify the current mobile network architecture in order to fully exploit its potential

benefits. Then, we investigate the impact of Network Slicing over Admission Control,

presenting in Section 3.2 our system model and the analytical formulation for the network

slice admissibility region. Building on this model, in Section 3.3 we address the problem of

designing an admission control algorithm that maximizes the InP revenue while satisfying

the desired service guarantees; to this end, we first analyze the revenue resulting from

a given admission control policy and then obtain the optimal policy that maximizes the

resulting revenue. Building on this analysis, we design a practical adaptive algorithm that

provides close to optimal performance. In Section 3.4.4 we present a NNs approach based

on deep reinforcement learning, which provides a practical and scalable solution with close

to optimal performance. Finally, in Section 3.5 we evaluate the proposed algorithms in

a number of scenario to assess their performance in terms of optimality, scalability and

adaptability to di� erent conditions.

Then, we study the impact of Network Slicing over Resource Orchestration. First,

the concept of capacity forecast is introduced in Section 4.1. Then, we outline the overall

framework of DeepCog and detail the design of its most critical component,i.e., the loss

function, in Section 4.3. The quality of the solution is then assessed in realistic scenario

in Section 4.5. To complete our analysis over Resource Orchestration, in Section 5.1

we motivate the need of including also the costs derived by resource instantiation and

reconfiguration. We present the new orchestration model, formalizing the di� erent costs

and trade-o� s in the resource management of sliced networks in Section 5.2. Building

on such a new model, we develop a complete framework for the anticipatory allocation

of capacity to network slices, namedAZTEC; the framework relies on a combination of

deep learning architecture and a traditional optimizer, as detailed in Section 5.3. We

demonstrated the quality of the solution with real-world measurements data collected in

a metropolitan-scale mobile network in Section 5.6.

Finally, Chapter 6 draws the most important conclusions of this research work.

2 Trends and challenges in
network slicing

Network Slicing represents an e� cient solution that addresses the diverse requirements

of 5G mobile networks, providing the necessary flexibility and scalability associated with

future network implementations.

To fully exploit the benefits provided by network slicing, for each slice should be

possible to design customized network operation or flexible Network Functions (NFs) each

optimized for the particular usage. Thus, employing network slicing in 5G networks results

into a number of challenges, in part due to di� culties in virtualizing and apportioning

the Radio Access Network (RAN) into di� erent slices.

In the following we first describe the realization options of a flexible mobile network

architecture with focus on network slicing and their impact on the design of 5G mobile

networks. Then the potential design challenges associated with the implementation of

network slicing in future networks are analyzed.

2.1. Mobile Network Slicing Architecture

To fully exploit the potential of network slicing, there is the need to design a new

more flexible mobile network architecture. Indeed, the current relatively monolithic and

static architecture, where network functions rely on dedicated hardware and are placed

in independent entities (e.g., eNB, S-GW or MME), is not able to accommodate in a

cost e� cient way such heterogeneous services with very diverse requirements as the ones

demanded by 5G.

There is a wide consensum [3, 5, 20, 21] that the new 5G architecture must support

softwarization for allowing the sharing of the network among multiple tenants. In this

new vision, a logical network would be implemented as a set of individual softwarized

network functions customized for each network slice. A slice then becomes a composition

of function blocks into a chain or more generally into a network of function blocks.

Decomposition into function blocks enables sharing of network functions among slices

for reuse and consistency, or where common resources must be shared. A slice may be

9

10 Trends and challenges in network slicing

partly composed of a set of common function blocks to be shared across slices and a set

of dedicated function blocks that implement customized and optimized functionality of

a slice. Furthermore, decomposition enables the function blocks of a slice to be placed

according to its service needs and the concrete deployment scenario,i.e., the available

execution environments such as distributed (edge) or centralized resources.

Network slices will then operate on top of a partially shared infrastructure, which

is composed of generic hardware resources such as Network Functions Virtualization

Infrastructure (NFVI) resources, as well as dedicated hardware such as network elements

in the RAN.

Generally, three solution groups are discussed with varying levels of common

functionality in 3GPP standards [22]:

Group A is characterized by a common RAN and completely dedicated

Core Network (CN) slices, that is, independent subscription, session, and mobility

management for each network slice handling the User Equipment (UE).

Group B also assumes a common RAN, where identity, subscription, and

mobility management are common across all network slices, while other functions

such as session management reside in individual network slices.

Group Cassumes a completely shared RAN and a common CN control plane,

while CN user planes belong to dedicated slices.

In line with the above grouping considered by 3GPP [22], in [3] we introduce new

dedicated network functions, which together form a dedicated sub-slice, to cope with NFs

sharing among slices. This represent a possible solution to manage shared NFs reflecting

the fact that these functions have to coordinate and, if necessary, prioritize the Quality

of Service (QOS) requirements of multiple slices.

Realize the above vision entails multiple challenges that are further discussed in the

following section.

2.2. Design Challenges

Network slicing allows multiple Mobile Network Operators (MNOs) to share the same

network infrastructure. To enable network slicing, the design of a new mobile network

architecture is required as detailed above. This entails facing multiple challenges:

In the concept envisioned by [14] no distinctions are made regarding the type of

resources shared. From the various type of resources, spectrum represents typically

the most limiting factor: despite of cloud resources which can be easily scaled up if

needed, spectrum is limited and increasing its capacity is more complex and more

expensive. Thus, RAN sharing quickly runs into aphysicalconstraint. For this

2.2 Design Challenges 11

reason, 5G sliced network calls for new mechanisms for managing slices admission

control in an optimized way as the one proposed in Chapter 3.

It is expected that 5G will incorporate several kinds of Radio Access

Technologys (RATs) and air interfaces, each with di� erent capabilities and needs.

General-purpose infrastructure providers will need to carefully plan and apply

di� erent technologies to serve diverse tenant needs. However, it may be infeasible

to satisfy the needs of each application at any location. For instance, tactile

Internet may require careful positioning of resources to minimize latency. In

another example, an industrial control network might have to use a certain

computational resource in a given location for security reasons. There is clearly

the need of automated tools, drove by network data analytic, that anticipate to

the Infrastructure Provider (InP) the information regarding the resources needed

by any slice at any location in the network as the ones proposed in Chapter 4 and

Chapter 5.

Depending on the extent of network elements that are shared among tenants,

di� erent flavors of network slices can be defined ranging from slices that share

only the physical layer (PHY), or even the Medium Access Control (MAC) or the

complete RAN. The more information that can be provided by the infrastructure

about the shared parts to the network slice, the more e� ciently the slice can

be operated. However, exposing information also creates new potential security

vulnerabilities between InP and tenants as well as between tenants themselves.

Security requirements of specific tenant applications, such as tra� c associated with

emergency services or machine control (e.g., remote surgery or vehicular control),

could put constraints on how the slices are partitioned, or even prevent network

slices coexisting and thus share the same hardware at all.

A major question is whether a slice can be extended all the way to the UE;

that is, whether the definition of the slice will be transparent to the UE, or whether

the UE will be aware of the network slice. A slicing-aware UE may open up new

possibilities (e.g., simplification of multi-slice connectivity). However, it also creates

new challenges for network slices; for example, UE mobility may need to be handled

by the slice provider as part of the slice setup and maintenance.

Network slicing in 5G networks enables a new ecosystem in which di� erent

tenants issue requests to an InP for acquiring network slices. Since spectrum is

a scarce resource for which overprovisioning is not possible, applying an “always

accept” strategy for all incoming requests is not feasible. This calls for novel

algorithms and solutions to allocate network resources among di� erent tenants,

allowing an InP to accept or reject network slice requests with the objective of

12 Trends and challenges in network slicing

maximizing the overall utility. We further investigate this problem in Chapter 3.

When a network supports multiple tenants by creating tenant specific network

slice instances, it is necessary to isolate these slice instances in a way that one

tenant is not aware of the other tenants and has no means to access or even modify

information in the other tenants’ slices. In Network Function Virtualization (NFV)

environments, this type of isolation is a basic feature that also includes the capability

to limit the resource usage of each tenant slice instance in a well-defined way.

This prevents a tenant from using so many resources that other tenants cannot

get resources anymore and thus experience a Denial of Service (DoS).

A likely scenario leveraged by network slicing is that a MNO provides

individual network slice instances for verticals. The MNO can provide isolation

between the tenant slices as described above. However, a vertical as a tenant

typically has no means to verify the e� ectiveness of the isolation, but must trust the

MNO to ensure it. Moreover, if the MNO controls the infrastructure, is also able to

access everything that is processed on this infrastructure. Consequently, the MNO

must be trusted to not illegally access a tenant’s tra� c. Trust in the MNO is also

required concerning the correct resource assignment, since a tenant has no practical

means to monitor the correct assignment of edge cloud infrastructure resources or

radio interface resources to the tenant’s slice.

Common functions that are operated by a MNO and used by several tenants

must be protected. Any internal interfaces of such functions must not be accessible

for tenant functions. Only dedicated, carefully secured interfaces must be available

to tenants. Such interfaces may need to be subject to access control, which includes

authenticating the slices accessing the common functions, as well as authorizing

their requests. An example could be a tenant requesting certain QOS parameters

for a radio bearer. In this case, a common function may check whether the request

is covered by the tenant’s Service Level Agreement (SLA). Moreover, tenants

may inadvertently misuse or even deliberately try to abuse interfaces exposed by

common functions. To mitigate this threat, such interfaces must be designed and

implemented with high care to minimize their vulnerability.

In the rest of this thesis, we further analyze the impact of network slicing over the

current mobile network functionalities and design new approaches to enable slicing for

future 5G networks.

3 Network Slice Admission
Control

As discussed in Chapter 1, Network Slicing is probably one of the most important key

concept for next generation 5G networks [4]. This novel approach does not just provide

better performing and more e� cient networks, but enables a new business model around

mobile networks, involving new entities and opening up new business opportunities.

Network slices allow for a role separation betweenInfrastructure Providers (InPs),who

provide computational and network resources used by di� erent network slice, andnetwork

slice tenants, the ones acquiring a slice to orchestrate and run network functions within

that slice to provide a certain service to their customer. In this new context, how to

correctly decide which slices can be admitted to the network and how to maximize the

monetization of the infrastructure become fundamental problems that need to be solved.

The above model is currently being successfully applied by Infrastructure as a Service

(IaaS) providers such as Amazon Web Services or Microsoft Azure, which sell their

computational resources such as CPU, disk or memory for Virtual Network Function

(VNF) purposes. While such an IaaS approach follows a very similar business model to the

network slicing one, providing network resources is an intrinsically di� erent problem, since

(i) spectrum is a scarce resource for which over-provisioning is not possible, (ii) the actual

capacity of the systems (i.e., the resources that can actually be sold) heavily depends

on the mobility patterns of the users, and (iii) the Service Level Agreements (SLAs)

with network slices tenants usually impose stringent requirements on the Quality of

Experience (QoE) perceived by their users. Therefore, in contrast to IaaS, in this case

applying a strategy where all the requests coming to the InP are admitted is simply not

possible.

While there is a body of work on the literature on spectrum sharing [23–26], these

proposal are not tailored to the specific requirements of the 5G ecosystem. Conversely,

most of the work has focused on architectural aspects [27,28] with only a limited focus on

resource allocation algorithms. In [2], we provide an analysis of network slicing admission

control and propose a learning algorithm; however, the proposed algorithm relies on an

o� ine approach, which is not suitable for a continuously varying environment such as

13

14 Network Slice Admission Control

the 5G Infrastructure market. Moreover, the aim is to maximize the overall network

utilization, in contrast to our goal here which is focused on maximizing InP revenues.

The need for new algorithms that specifically targets the monetization of the network

has been identified in [29]. However, there are still very few works on this topic. The

work in [30] analyzes the problem from an economical perspective, proposing a revenue

model for the InP. The authors of [31] build an economic model that describes the Mobile

Network Operator (MNO) profit when dealing with the network slice admission control

problem, and propose a decision strategy to maximize the expected overall network profit.

The proposed approach, however, is not on demand and requires the full knowledge of

arriving requests statistics, thus making it impracticable in real scenarios. Another work

in this field is the one of [30], with similar limitations.

In the above context, the new 5G ecosystem calls for novel algorithms and solutions

for the allocation of the (scarce) network resources among tenants; this is the so-called

spectrum market. In this chapter, a network capacity brokering solution is introduced.

In Section 3.2, we first introduce our system model and the analytical formulation for the

network slice admissibility region. In Section 3.3, we address the problem of designing an

admission control algorithm that maximizes the InP revenue while satisfying the desired

service guarantees. To this end, we first model the decision-making process by means

of a Markovian analysis, and derive the optimal policy and then design an adaptive

algorithm that provides close to optimal performance. Finally, in Section 3.4.4 we present

a Neural Networks (NNs) approach based on deep reinforcement learning, which provides

a practical and scalable solution with close to optimal performance.

3.1. System Model

The high customizability that 5G Networks introduce will enable a richer ecosystem

on both the portfolio of available services and the possible business relationships. New

players are expected to join the 5G market, leading to an ecosystem that is composed of

(i) users that are subscribed to a given service provided by a (ii) tenant that, in turn, uses

the resources (i.e., cloud, spectrum) provided by an (iii) Infrastructure Provider (InP).

The design of a network slice admission control policy that maximizes InPs revenues in

this spectrum market is still an open problem. The 5G Network Slice Broker [2] is a novel

element introduced in the network management system of the InP for advanced Radio

Access Network (RAN) sharing. It exploits 3GPP conventional monitoring procedures for

gathering global network load measurements, to map incoming Service Level Agreement

(SLA) requirements associated to network slice requests into physical resources. More

specifically, the network capacity broker algorithm has to decide on whether to admit or

reject new network slice requests simultaneously satisfying two di� erent goals:

meeting the service guarantees requested by the network slices admitted

3.1 System Model 15

maximizing the revenue of a network InP.

The goal of meeting the desired service guarantees needs to consider radio related

aspects, as a congested network will likely not be able to meet the service required by a

network slice. Conversely, the goal of maximizing the revenue obtained by the admission

control should be met by applying an on-demand algorithm that updates the policies as

long as new requests arrive.

In the rest of the section, we describe the various aspects related to our system model,

while the analytical formulation for the network admissibility region is provided in Section

3.2. In Section 3.3, we model the decision-making process by means of a Markovian

analysis, and derive the optimal policy which we use as a benchmark. Building on this

analysis, we first design an adaptive algorithm in Section 3.4.2, and then present a deep

reinforcement learning approach in Section 3.4.4 which provides a practical and scalable

solution with close to optimal performance.

Players. In our system model, there are the following players: (i)theInP,whoisthe

owner of the network and providesnetwork slicescorresponding to a certain fraction of

network resources to the tenants, (ii)thetenants,whichissuerequeststotheInPto

acquire network resources, and use these resources to serve their users, providing them a

specific telecommunication service, and finally (iii)theend-users, which are subscribers

of the service provided by a tenant which uses the resources of the InP.

Network model. The ecosystem described above does not make any distinction on

the kind of resources an InP may provide to the tenants. From the various types of

resources, spectrum will typically be the most important factor when taking a decision on

whether to accept a request from a tenant. Indeed, cloud resources are easier to provision,

while increasing the spectrum capacity is more complex and more expensive (involving an

increase on antenna densification). Based on this, we focus on the wireless access network

as the most limiting factor. In our model of the wireless access, the network has a set

of base stationsBowned by an InP. For each base stationbœB,weletCbdenote the

base station capacity. We further refer to the system capacity as the sum of the capacity

of all base stations,C=
q
BCb. WeletUdenote the set of end-users in the network,

each of them being served by one of the tenants. We consider that each useruœUin

the system is associated to one base stationbœB. We denote byfubthe fraction of

the resources of base stationbassigned to useru, leading to a throughput for useruof

ru=fubCb. We also assume that users are distributed among base stations according to a

given probability distribution; we denote byPu,bthe probability that useruis associated

with base stationb. We assume that these are independent probabilities, i.e., each user

behaves independently from the others.

Tra� c model.5G Networks provide diverse services which are mapped to three di� erent

usage scenarios or slice categories: Enhanced Mobile Broadband (eMBB), massive

Machine Type Communication (mMTC) and Ultra Reliable Low Latency Communication

16 Network Slice Admission Control

(URLLC) [15]. As the main bottleneck from a resource infrastructure market point of

view is spectrum, di� erent slice categories need to be matched based to their requirements

in terms of the spectrum usage. For instance eMBB-alike slices have a higher flexibility

with respect to resource usage, and can use the leftover capacity of URLLC services which

have more stringent requirements on the needed capacity.

Following the above, we focus on elastic and inelastic tra� c as it is the main

distinguishing factor for spectrum usage and thus provides a fairly large level of generality.

In line with previous work in the literature [32], we consider that inelastic end-users require

a certain fixed throughput demand which needs to be satisfiedat all times, in contrast to

elastic users which only need guarantees on theaveragethroughput, requiring that the

expected average throughput over long time scales is above a certain threshold. That is,

for inelastic users throughput needs to be always (or with a very high probability) above

the guaranteed rate, while the throughput for elastic users is allowed to fall below the

guaranteed rate during some periods as long as the average stays above this value.

We let Idenote the set of classes of inelastic users; each classiœIhas a di� erent

rate guaranteeRiwhich needs to be satisfied with a very high probability; we refer the

probability that this rate is not met as the outage probability, and impose that it cannot

exceedøPout, which is set to a very small value. We further letNidenote the number of

inelastic users of classiœI, andPi,bbe the probability that a user of classiis at base

stationb. Finally, we letNebe the number of elastic users in the network andRetheir

average rate guarantee.

At any given point in time, the resources of each base stations are distributed among

associated users as follows: inelastic usersuœIare provided su� cient resources to

guaranteeru=Ri, while the remaining resources are equally shared among the elastic

users. In case there are not su� cient resources to satisfy the requirements of inelastic

users, even when leaving elastic users with no throughput, we reject as many inelastic

users as needed to satisfy the required throughput guarantees of the remaining ones.

Note that the above tra� c types are well aligned with the slice categories defined in

3GPP, as the elastic tra� c behavior is in line with the eMBB and mMTC services, while

inelastic behavior matches the requirements of URLCC services.

Network slice model. The network is divided into di� erent logical slices, each of them

belonging to one tenant. A network slice is characterized by (i) its tra� c type (elastic or

inelastic), and (ii) its number of users (i.e., the subscribers of a given service) that have

to be served.

A network slice comes with certain guarantees provided by an SLA agreement between

the tenant and the InP. In our model, a tenant requests a network slice that comprises

a certain number of end-users and a tra� c type. Then, as long as the number of users

belonging to a network slice is less or equal than the one included in the SLA agreement,

each of them will be provided with the service guarantees corresponding to their tra� c

3.1 System Model 17

type.

A network slice may be limited to a certain geographical area, in which case the

corresponding guarantees only apply to the users residing in the region. In our model, we

focus on the general case and consider network slices that span over the entire network.

However, the model could be easily extended to consider restricted geographical areas.

Following state of the art approaches [28], network slicing onboarding is an automated

process that involves little or no human interaction between the InP. Based on these

approaches, we consider a bidding system in order to dynamically allocate network slices

to tenants. With this, tenants submit requests for network slices (i.e., a certain number

of users of a given service) to the InP, which accepts or rejects the request according to

an admission control algorithm such as the one proposed in this section. To that aim, we

characterize slices request by:

Network slice durationt: this is the length of the time interval for which the

network slice is requested.

Tra� c typeŸ: according to the tra� c model above, the tra� c type of a slice

can either be elastic or inelastic tra� c.

Network slice sizeN: the size of the network slice is given by the number of

users it should be able to accommodate.

Pricefl: the cost a tenant has to pay for acquiring resources for a network

slice. The price is per time unit, and hence the total revenue obtained by accepting

a network slice is given byr=flt.

Following the above characterization, an InP will have catalogs of network slice

blueprinted by predefined values for the tuple{Ÿ, N,fl}, which we refer to as network

slice classes. Tenants issue requests for one of the slice classes available in the catalogue,

indicating the total durationtof the network slice. When receiving a request, an InP has

two possible decisions: it can reject the network slice and the associate revenue to keep

the resources free or it can accept the network slice and charge the tenantrdollars. If

accepted, the InP grants resources to a tenant during at-window.

To compute the profit received by the tenant, we count the aggregated revenue

resulting from all the admitted slices. This reflects the net benefit of the InP as long as

(i) the costs of the InP are fixed, or (ii) they are proportional to the network utilization

(in the latter case,flreflects the di� erence between the revenue and cost of instantiating

a slice). We argue that this covers a wide range of cases of practical interest such as

spectrum resources or computational ones. Moreover, in the cases where costs are not

linear with the network usage, our analysis and algorithm could be extended to deal with

such cases by subtracting the cost at a given state from the revenue.

18 Network Slice Admission Control

3.2. Admissibility region

An online admission control algorithm has to decide whether to accept or reject a new

incoming network slice request issued by a tenant. Such a decision is driven by a number

of variables such as the expected income and the resources available. The objective of

an admission control algorithm is to maximize the overall profit while guaranteeing the

SLA committed to all tenants. A fundamental component of such an algorithm is the

admissibility region,i.e., the maximum number of network slices that can be admitted in

the system while guaranteeing that the SLAs are met for all tenants. Indeed, if admitting

a new network slice in the system would lead to violating the SLA of already admitted

slices, then such a request should be rejected.

In the following, we provide an analysis to determine the admissibility region, denoted

byA, as a first step towards the design of the optimal admission algorithm.

3.2.1. Theoretical analysis

We say that a given combination of inelastic users of the various classes and elastic

users belongs to the admissibility region,i.e.,{N1,...,N|I|,Ne}œA, when the guarantees

for elastic and inelastic tra� c are satisfied for this combination of users. In the following,

we compute the admissibility regionA.

In order to determine whether a given combination of users of di� erent types,

{N1,...,N|I|,Ne}, belongs toA, we proceed as follows. We first compute the outage

probability for an inelastic user of classiœI,Pout,i. LetRbbe the throughput consumed

by the inelastic users atb. The average value ofRbcan be computed as

E[Rb]=
ÿ

jœI

NjPj,bRj, (3.1)

and the typical deviation as

‡2b=
ÿ

jœI

Nj‡
2
j,b, (3.2)

where‡2j,bis the variance of the throughput consumed by one inelastic user of classj,

which is given by

‡2j,b=Pj,b(Rj≠Pj,bRj)
2+(1≠Pj,b)(Pj,bRj)

2

=Pj,b(1≠Pj,b)R
2
j. (3.3)

Our key assumption is to approximate the distribution of the committed throughput

at base stationbby a normal distribution of meanRband variance‡
2
b,i.e.,N(E[Rb],‡

2
b).

Note that, according to [33], this approximation is appropriate as long as the number

of users per base station in the boundary of the admissibility region is no lower than 5,

3.2 Admissibility region 19

which is generally satisfied by cellular networks (even in the extreme case of small cells).

The outage probability at base stationbis given by the probability that the committed

throughput exceeds the base station capacity,i.e.,

Pout,b=P(Rb>Cb), (3.4)

whereCbbe the capacity of base stationb.

To compute the above probability with the normal approximation, we proceed as

follows:

Pout,b¥1≠�

A
Cb+÷Cb≠E[Rb,i]

‡b,i

B

, (3.5)

where� (·)is the cumulative distribution function of the standard normal distribution

and÷Cbis a continuity correction factor that accounts for the factRbis not a continuous

variable. In line with [34], where this is applied to a binomial distribution and the

correction factor is one half of the step size, in our case we set the continuity correction

factor as one half of the average step size, which yields

÷Cb=
1

2

q
jœIPj,bNjRj
q
jœIPj,bNj

. (3.6)

Once we have obtainedPout,b, we compute the outage probability of an inelastic user

of classiwith the following expression:

Pout,i=
ÿ

bœB

Pi,bPout,b. (3.7)

Next, we compute the average throughput of an elastic user. To this end, we assume

that (i) in line with [32], elastic users consume all the capacity left over by inelastic tra� c,

(ii) there is always at least one elastic user in each base station, and (iii) all elastic users

receive the same throughput on average.

With the above assumptions, we proceed as follows. The average committed

throughput consumed by inelastic users at base stationbis given by

E[Rb]=
ÿ

iœI

NiPi,bRi, (3.8)

which gives an average capacity left over by inelastic users equal toCb≠E[Rb]. This

capacity is entirely used by elastic users as long as the base station is not empty. The

total capacity usage by elastic users is then given by the sum of this term over all base

stations. As this capacity is equally shared (on average) among all elastic users, this leads

20 Network Slice Admission Control

Figure 3.1: Admissibility region: analysis vs. simulation.

to the following expression for the average throughput of an elastic user:

re=

q
bœBCb≠E[Rb]

Ne
. (3.9)

Based on the above, we compute the admissibility regionAas follows. For a given

number of inelastic users in each class,Ni,iœI, and of elastic users,Ne, we compute the

outage probability of the inelastic classes,Pout,i, and the average throughput of the elastic

users,re. If the resulting values meet the requirements for all classes, i.e.,Pout,iÆøPout’i

andreØRe, then this point belongs to the admissibility region, and otherwise it does

not.

3.2.2. Validation of the admissibility region

In order to assess the accuracy of the above analysis, we compare the admissibility

region obtained theoretically against the one resulting from simulations. To this end, we

consider the reference scenario recommended by ITU-T [35], which consists of|B|= 19

base stations placed at a fixed distance of 200m. Following the system model of

Section 3.1, we have elastic and inelastic users. All inelastic users belong to the same

class, and all users (elastic and inelastic) move in the area covered by these base

stations following the Random Waypoint (RWP) mobility model, with a speed uniformly

distributed between 2 and 3 m/s.

The association procedure of elastic and inelastic users with base stations is as follows.

Inelastic users try to associate to the nearest base stationbœB, if it has at leastRi

capacity left. Otherwise they do not associate and generate an outage event, joining

again the network when their throughput guarantee can be satisfied. When associating,

they consume a capacityRifrom the base station. The probability of association to each

3.3 Optimising 5G Infrastructure Markets 21

base station (i.e., thePi,bvalues) are extracted from the simulations and fed into the

analysis.

Similarly to inelastic users, elastic users always associate to the nearest base station.

All the elastic users associated to a base station fairly share among them the capacity left

over by inelastic users. Upon any association event, the throughput received by the users

associated to the new and the old base station changes accordingly.

Following the above procedure, we have simulated all the possible combinations of

inelastic and elastic users,{Ni,Ne}. For each combination, we have evaluated the average

throughput received by elastic users, computed over samples of 10 seconds time windows,

and the outage probabilityPoutof inelastic users, computed as the fraction of time over

which they do not enjoy their guaranteed throughput. If these two metrics (average

elastic tra� c throughput and inelastic tra� c outage probability) are within the guarantees

defined for the two tra� c types, we place this combination inside the admissibility region,

and otherwise we place it outside.

Fig. 3.1 shows the boundaries of the admissibility region obtained analytically and

via simulation, respectively, for di� erent throughput guarantees for elastic and inelastic

users (A5:Ri=Re=Cb/5,A10:Ri=Re=Cb/10andA20:Ri=Re=Cb/20) and

øPout=0.01. We observe that simulation results follow the analytical ones fairly closely.

While in some cases the analysis is slightly conservative in the admission of inelastic users,

this serves to ensure that inelastic users’ requirements in terms of outage probability are

always met.

3.3. Optimising 5G Infrastructure Markets

While the admissibility region computed above provides the maximum number of

elastic and inelastic users that can be admitted, an optimal admission algorithm that

aims at maximizing the revenue of the InP may not always admit all the requests that fall

within the admissibility region. Indeed, when the network is close to congestion, admitting

a request that provides a low revenue may prevent the infrastructure provider from

admitting a future request with a higher revenue associated. Therefore, the infrastructure

provider may be better o� by rejecting the first request with the hope that a more

profitable one will arrive in the future.

The above leads to the need for devising an admission control strategy for incoming

slice requests. Note that the focus is on the admission of slices, in contrast to traditional

algorithms focusing on the admission of users; once a tenant gets its slice admitted and

instantiated, it can implement whatever algorithm it considers more appropriate to admit

users into the slice.

In the following, we model the decision-making process on slice requests as a Semi-

Markov Decision Process (SMDP). The proposed model includes the definition of the

22 Network Slice Admission Control

state space of the system, along with the decisions that can be taken at each state and

the resulting revenues. This is used as follows: (i) to derive the optimal admission

control policy that maximizes the revenue of the infrastructure provider, which serves as a

benchmark for the performance evaluation, and (ii) to lay the basis of the machine learning

algorithms proposed in Section 3.4, which implicitly rely on the states and decision space

of the SMDP model.

3.3.1. Markovian decision-making process analysis

SMDP is a widely used tool to model sequential decision-making problems in stochastic

systems such as the one considered in this paper, in which an agent (in our case the InP)

has to take decisions (in our case, whether to accept or reject a network slice request)

with the goal of maximizing the reward or minimizing the penalty. For simplicity, we

first model our system for the case in which there are only two classes of slice requests of

fixed sizeN=1, i.e., for one elastic user or for one inelastic user. Later on, we will show

how the model can be extended to include an arbitrary set of network slice requests of

di� erent sizes.

The Markov Decision Process theory [36] models a system as: (i) a set of statessœS,

(ii) a set of actionsaœA,(iii) a transition functionP(s, a, sÕ),(iv) a time transition

functionT(s, a), and (v) a reward functionR(s, a). Thesystemisdrivenbyevents,

which correspond to the arrival of a request for an elastic or an inelastic slice as well as

the departure of a slice (without loss of generality, we assume that arrivals and departures

never happen simultaneously, and treat each of them as a di� erent event). At each event,

the system can be influenced by taking one of the possible actionsaœA. According

to the chosen actions, the system earns the associated reward functionR(s, a),thenext

state is decided byP(s, a, sÕ)while the transition time is defined byT(s, a).

The inelastic and elastic network slices requests follow two Poisson processesPiand

Pewith associated rates of⁄iand⁄e, respectively. When admitted into the system, the

slices occupy the system resources during an exponentially distributed time of average
1
µi
and 1

µe
. Additionally, they generate a revenue per time unit for the infrastructure

provider offliandfle. That is, the total revenuergenerated by, e.g., an elastic request

with durationtistfle.

We define our space state Sas follows. A statesœ Sis a three-sized tuple

(ni,ne,k|ni,neœA)whereniandneare the number of inelastic and elastic slices in

the system at a given decision timet, andkœ{i, e, d}is the next event that triggers a

decision process. This can be either a new arrival of a network slice request for inelastic

and elastic slices (k=iandk=e, respectively), or a departure of a network slice of any

kind that left the system (k=d). In the latter case,niandnerepresent the number of

inelastic and elastic slices in the system after the departure. Fig. 3.2 shows how the space

stateSrelates to the admissibility regionA.

3.3 Optimising 5G Infrastructure Markets 23

!"#$%&'(&)*'+%$,&+*$,)

!"#$%&'(&$()*'+%$,&+*$,)

-).'/%0/)&12&'(&$()*'+%$,&+*$,)

-).'/%0/)&12&'(&)*'+%$,&+*$,)

!"#$++$3$*$%4&
5)6$1(

7898:

7878:

78;8:

78<8:

78=8:

9878: <878: ;878:

9898: <898: ;898:

<8<8:98<8:

98;8:

>(,/)'+$(6

>
(,
/
)'
+$
(6

Figure 3.2: Example of system model with the di� erent states.

The possible actionsaœAare the following:A=G, D. The actionGcorresponds

to admitting the new request of an elastic or inelastic slice; in this case, the resources

associated with the request are granted to the tenant and the revenuer= fli,etis

immediately earned by the infrastructure provider. In contrast, actionDcorresponds

to rejecting the new request; in this case, there is no immediate reward but the resources

remain free for future requests. Note that upon a departure (k=d), the system is forced

to a fictitious actionDthat involves no revenue. Furthermore, we force that upon reaching

a state in the boundary of the admissibility region computed in the previous section, the

only available action is to reject an incoming request (a=D) as otherwise we would not

be meeting the committed guarantees. Requests that are rejected are lost forever.

The transition rates between the states identified above are derived next. Transitions

to a new state withk= iandk= ehappen with a rate⁄iand⁄e,respectively.

Additionally, states withk=dare reached with a rateniµi+neµedepending the number

of slices already in the system. Thus, the average time the system stays at states,øT(s, a)

is given by

øT(s, a)=
1

‚(ni,ne)
, (3.10)

whereni, andneare the number of inelastic and elastic slices in statesand‚(ni,ne)=

⁄i+⁄e+niµi+neµe.

We define a policy fi(S),fi(s)œA, as a mapping from each statesto an actionA.

Thus, the policy determines whether, for a given number of elastic and inelastic slices in

the system, we should admit a new request of an elastic or an inelastic slice upon each

arrival. With the above analysis, given such a policy, we can compute the probability of

staying at each of the possible states. Then, the long-term average revenueRobtained

24 Network Slice Admission Control

by the infrastructure provider can be computed as

R=
ÿ

ni,ne,k

P(ni,ne,k)(nifli+nefle), (3.11)

wherefliandfleare the price per time unit paid by an inelastic and an elastic network

slice, respectively.

The ultimate goal is to find the policyfi(S)that maximizes the long term average

revenue, given the admissibility region and the network slices requests arrival process.

We next devise the Optimal Policy when the parameters of the arrival process are known

apriori, which provides a benchmark for the best possible performance. Later on, we

design in Section 3.4 an adaptive online algorithm that aims at maximizing revenue by

learning from the outcome resulting form the previous decisions, and a deep reinforcement

learning algorithm that further extends the adaptive algorithm in terms of convergence

speed and memory requirements.

3.3.2. Optimal policy

In order to derive the optimal policy, we build on Value Iteration [37], which is an

iterative approach to find the optimal policy that maximizes the average revenue of an

SMDP-based system. According to the model provided in the previous section, our system

has the transition probabilitiesP(s, a, sÕ)detailed below.

Let us start witha=D, which corresponds to the action where an incoming request

is rejected. In this case, we have that when there is an arrival, which happens with a rate

⁄iand⁄efor inelastic and elastic requests, respectively, the request is rejected and the

system remains in the same state. In case of a departure of an elastic or an inelastic slice,

which happens with a rate ofneµeorniµi, the number of slices in the system is reduced

by one unit (recall that no decision is needed when slices leave the system). Formally, for

a=Dands=(ni,ne,i),wehave:

P
!
s, a, sÕ

"
=

Y
_______]

_______[

⁄i
‚(ni,ne)

, sÕ=(ni,ne,i)

⁄e
‚(ni,ne)

, sÕ=(ni,ne,e)

niµi
‚(ni,ne)

, sÕ=(ni≠1,ne,d)

neµe
‚(ni,ne)

, sÕ=(ni,ne≠1,d)

(3.12)

When the chosen action is to accept the request (a=G) and the last arrival was an

inelastic slice (k=i), the transition probabilities are as follows. In case of an inelastic

slice arrival, which happens with a rate⁄i, the last arrival remainsk=i, and in case of

an elastic arrival it becomesk=e. The number of inelastic slices increases by one unit

in all cases except of an inelastic departure (rateniµi). In case of an elastic departure

(rateneµe), the number of elastic slices decreases by one. Formally, fora=Gand

3.3 Optimising 5G Infrastructure Markets 25

s=(ni,ne,i),wehave:

P
!
s, a, sÕ

"
=

Y
_______]

_______[

⁄i
‚(ni+1,ne)

, sÕ=(ni+1,ne,i)

⁄e
‚(ni+1,ne)

, sÕ=(ni+1,ne,e)

(ni+1)µi
‚(ni+1,ne)

, sÕ=(ni,ne,d)

neµe
‚(ni+1,ne)

, sÕ=(ni+1,ne≠1,d)

(3.13)

If the accepted slice is elastic (k=e), the system exhibits a similar behavior to the

one described above but increasing by one the number of elastic slices instead. Thus, for

a=G,s=(ni,ne,e),wehave:

P
!
s, a, sÕ

"
=

Y
_______]

_______[

⁄i
‚(ni,ne+1)

, sÕ=(ni,ne+1,i)

⁄e
‚(ni,ne+1)

, sÕ=(ni,ne+1,e)

niµi
‚(ni,ne+1)

, sÕ=(ni≠1,ne+1,d)

(ne+1)µe
‚(ni,ne+1)

, sÕ=(ni,ne,d)

(3.14)

A reward is obtained every time the system accepts a new slice, which leads to

R(s, a)=

Y
____]

____[

0, a=D

tfli, a=G, k=i

tfle, a=G, k=e

(3.15)

Applying the Value Iteration algorithm [37] for SMDP is not straightforward. The

standard algorithm cannot be applied to a continuous time problem as it does not consider

variable transition times between states. Therefore, in order to apply Value Iteration to

our system, an additional step is needed: all the transition times need to be normalized

to multiples of a faster, arbitrary, fixed transition time·[38]. The only constraint that

has to be satisfied by·is that it has to be faster than any other transition time in the

system, which leads to

·<minT(s, a), ’sœS,’aœA. (3.16)

With the above normalization, the continuous time SMDP corresponding to the

analysis of the previous section becomes a discrete time Markov Process and a modified

Value Iteration algorithm may be used to devise the best policyfi(S)(see Algorithm 1).

The discretized Markov Chain will hence perform one transition every·interval. Some of

these transitions correspond to transitions in continuous time system, while in the others

the system keeps in the same state (we call the latter fictitious transitions).

The normalization procedure a� ects the update rule of step 2 in Algorithm 1. All the

transition probabilitiesP(s, a, sÕ)are scaled by a factor ·
T(s,aÕ)to enforce that the system

26 Network Slice Admission Control

Algorithm 1Value Iteration
Initialization:
V(s)Ω0,’sœS ÛInitialize the long term expected revenue.
nΩ1 ÛInitialize the step number.
MnΩ0
mnΩ0

1:while(Mn≠mn)<0‚(Mn≠mn)>‘mndo
2: Update the expected reward at timen+1,Vn+1(s)using the rule

Vn+1(s) = max
aœA

C
R(s, a)

T(s, a)
·+

·

T(s, a)

ÿ

sÕ

P(s, a, sÕ)Vn(s
Õ)

+

3

1≠
·

T(s, a)

4

Vn(s)

D

’sœS

3: Compute the boundaries

Mn= max
sœS
(Vn+1(s)≠Vn(s))

mn=min
sœS
(Vn+1(s)≠Vn(s))

4:end while
Output: V(s),’sœS

stays in the corresponding state during an average timeT(s, aÕ). Also, the revenue

R(s, a)is scaled by a factor ofT(s, a)to take into account the fact that the reward

R(s, a)corresponds to a periodT(s, a)in the continuous system, while we only remain

in a state for a·duration in the discrete system. In some cases, transitions in the sampled

discrete time system may not correspond to any transition in the continuous time one:

this is taken into account in the last term of the equation, i.e., in case of a fictitious

transition, we keep in stateVn(s).

As proven in the next section, Algorithm 1 is guaranteed to find the optimal policy

fi(S). Such an optimal policy is illustrated in Fig. 3.3 for the case where the price of

inelastic slice is higher than that of elastic slice (fli>fle). The figure shows those states

for which the corresponding action is to admit the new request (straight line), and those

for which it is to reject it (dashed lines). It can be observed that while some of the states

with a certain number of elastic slices fall into the admissibility region, the system is better

o� rejecting those requests and waiting for future (more rewarding) requests of inelastic

slice. In contrast, inelastic slice requests are always admitted (within the admissibility

region).

The analysis performed so far has been limited to network slice requests of size one.

In order to extend the analysis to requests of an arbitrary size, we proceed as follows. We

set the space state to account for the number of slices of each di� erent class in the system

(where each class corresponds to a tra� c type and a given size). Similarly, we compute

the transition probabilitiesP(s, a, sÕ)corresponding to arrival and departures of di� erent

3.3 Optimising 5G Infrastructure Markets 27

!"#$%&'(&)*'+%$,&+*$,)

!"#$%&'(&$()*'+%$,&+*$,)

-).'/%0/)&12&'(&$()*'+%$,&+*$,)

-).'/%0/)&12&'(&)*'+%$,&+*$,)

!"#$++$3$*$%4&
5)6$1(

71*$,4&-)2$()"&5)6$1(

89:9;

8989;

89<9;

89=9;

89>9;

:989; =989; <989;

:9:9; =9:9; <9:9;

=9=9;:9=9;

:9<9;

?(,/)'+$(6

?
(,
/
)'
+$
(6
&

Figure 3.3: Example of optimal policy for elastic and inelastic slices.

classes. With this, we can simply apply the same procedure as above (over the extended

space state) to obtain the optimal policy.

3.3.3. Optimality and convergence analysis

In the following, we provide some insights on the optimality and convergence of

Algorithm 1, showing that: (i) the algorithm converges to a certain policy, and (ii)

the policy to which the algorithm converges performs arbitrarily close to the optimal

policy. Theorem 6.6.1 in [39] proves that the policyfi(S)obtained using Algorithm 1

provides a long-run average rewardgs(fi(S))that is arbitrarily bounded by an‘value

when compared to the optimal onegú.Thus,

0Æ
gú≠gs(fi(S))

gs(fi(S))
Æ
Mn≠mn
mn

Æ‘, ’sœS

The convergence of Algorithm 1 is guaranteed by the third term of the inequality

above, that acts as a decreasing envelope of the second term, as shown by Theorem 6.6.3

in [39]:

mn+1Ømn, Mn+1ÆMn, ’nØ1.

By applying step 3 of Algorithm 1, the obtainedfi(S)is‘-bounded to the optimal. While

the aforementioned Theorems in [39] solve a cost minimisation problem, we adapted them

to our revenue maximisation scenario. In our experiments, we set‘=0.001.

28 Network Slice Admission Control

0 10 20 30 40 50 60 70 80 90

|I|

0

50

100

150

200
|
E|

⇢i
⇢e
=1

⇢i
⇢e
=2,3,4,5

⇢i
⇢e
=10,15,20

Admissibility Region

Figure 3.4: Optimal admission policy for elastic tra� c.

3.3.4. Optimal admission policy assessment

In order to analyse the admission policy resulting from the optimal algorithm designed

in Section 3.3.2, we consider a scenario with four slice classes, two for elastic tra� c and

two for inelastic. We setµ=5for all network slices classes, and the arrival rates equal

to⁄i=2µand⁄e= 10⁄ifor the elastic and inelastic classes, respectively. Two network

slice sizes are considered, equal toC/10andC/20,whereCis the total network capacity.

Similarly, we set the throughput required guarantees for elastic and inelastic tra� c to

Ri=Re=Cb/10. We analyze the optimal admission policy for di� erent ratios between

fliandfle, the average revenue per time unit generated by inelastic and elastic slices,

respectively. Note that, given that inelastic tra� c is more demanding, it is reasonable to

assume that it pays a higher price than elastic tra� c,i.e.,fliØfle. As inelastic tra� c

provides a higher revenue, in order to maximise the total revenue, the InP will always

admit inelastic network slice requests. In contrast, it is to be expected that, while elastic

tra� c requests will be admitted when the utilisation is low, they may be rejected with

higher utilisation in order to avoid losing the opportunity to admit future (and more

rewarding) inelastic requests. Furthermore, it is to be expected that this behaviour will

be exacerbated as thefli/flegrows larger.

The optimal admission policy for elastic tra� c resulting from our algorithm is shown

in Fig. 3.4. As expected, we can observe that the region corresponding to the admission

of elastic network slices requests is smaller than the admissibility region, implying that

we are more restrictive in the admission of elastic tra� c. Furthermore, and also as

expected, this region becomes smaller for largerfli/fleratios. These results thus confirm

our intuitions on the optimal admission policy.

3.4 ML approach for 5G Market optimization 29

3.4. ML approach for 5G Market optimization

The Value Iteration algorithm described in Section 3.3.2 provides the optimal policy

for revenue maximisation under the framework described of Section 3.3.1. While this is

very useful in order to obtain a benchmark for comparison, the algorithm itself has a

very high computational cost, which makes it impractical for real scenarios. Indeed, as

the algorithm has to update all theVvaluesV(s),sœSat each step, the running

time grows steeply with the size of the state space, and may become too high for large

scenarios.

Building on the analysis of the previous section, in the following we design an adaptive

algorithm based on reinforcement learning that aims at maximising revenue by learning

from the outcome resulting from the previous decisions. In contrast the optimal policy

of the previous section, this algorithm is executed online while taking admission control

decisions, and hence does not require of high computational resources.

3.4.1. Q-Learning model

Our adaptive algorithm is based on the Q-Learning framework [40]. Before describing

the algorithm itself, we describe how we model the algorithm under the Q-Learning

framework.

Q-Learning is a machine learning framework for designing adaptive algorithms in

SMDP-based systems such as the one analysed in Section 3.3.1. It works taking decisions

that move the system to di� erent states within the SMDP state-space and observing the

outcome. Thus, it leverages the “exploration vs. exploitation” principle: the algorithm

learns by visiting unvisited states and takes the optimal decision when dealing with already

visited ones.

Q-Learning provides two key advantages as compared to Value Iteration framework

described in the previous section:

The resulting algorithm ismodel-free. Indeed, it makes no assumptions on the

underlying stochastic processes, but rather learns by observing the events that take

place in the system.

It is anonlinealgorithm that constantly learns the characteristics of the system

by exploring it and taking decisions.

Our Q-Learning framework builds on the SMDP-based system model of Section 3.3.1.

The Q-Learning space state is similar to the one of the SMDP model:

(nıi,n
ı
e,k|o(n

ı
i,n

ı
e)œA)

wherenıiandn
ı
eare defined as a n-dimension tuples(n1,n2,...,nc)describing the number

30 Network Slice Admission Control

of slices of di� erent sizes in the system for inelastic and elastic tra� c types. Analogously,

ois the occupation of the system, andkœ{iı,eı}whereiıandeıare the sets of events

associated to an arrival of an inelastic or elastic slice request of a given size.

With Q-Learning, we do not need to include departures in the space state, since no

decision is taken upon departures. Similarly, we do not need to include the states in the

boundary of the admissibility region; indeed, in such states we do not have any option

other than rejecting any incoming request, and hence no decisions need to be taken in

these states either. Furthermore, the system is not sampled anymore, as all transitions

are triggered by an arrival event and the subsequent decisionaœA.

The key idea behind the Q-Learning framework is as follows. We letQ(s, a)denote

the expected reward resulting from taking an actionaat a certain states.Thesystem

keeps memory for each state ofQ(s, a). It starts with emptyQ0(s, a)and at the decision

stepnit takes an actionabased on the past estimations ofQ(s, a). Hence, the system

experiences a transition from statesat the decision stepn, to statesÕat decision step

n+1. Then, once in stepn+1, the algorithm has observed both the reward obtained

during the transitionR(s, a)and a sampletnof the transition time. Then, the algorithm

updates theQ(s, a)involved in the decision process at stepnusing the newly gathered

reward and transition time information. After a learning phase, the optimal admission

policy at a certain state will be the one that maximises the resulting expected revenue,

i.e.,

V(s) = max
aœA
Q(s, a)

3.4.2. Algorithm description

Building on the above model, we describe our Q-Learning algorithm in the following.

The algorithm maintains the Q-values which are updated iteratively following a sample-

based approach as described in Algorithm 2, in which new events are evaluated at the

time when they happen. In addition to the procedure to update the Q-values described

in Algorithm 2, the Q-Learning algorithm also relies on two other procedures: theTD-

learningandexploration - exploitationprocedures.

TD-learningensures the convergence of the algorithm by employing the–parameter,

which is the learning rate. The requirements for setting–are two [41]: (i)
qŒ
n=0–n=Œ

and (ii)
qŒ
n=0–

2
n<Œ. The Q-values update process in step 3 of Algorithm 2 needs to

build a correct estimation of the expected revenue obtained by choosing an actionawhile

in states. On the one hand, new samplesÊ(with more updated information) should be

weighted by a larger weight than the estimation built on all the past samplesQ(s, a),

especially if the first exploration steps did not provide a good result. On the other hand,

–ncoe� cients have to decrease with time, in order to eventually converge to a fixed set of

Q(s, a)values. When setting–according to these requirements, we make the following

3.4 ML approach for 5G Market optimization 31

Algorithm 2Q-Learning update procedure

An event is characterized by:
s, a, sÕ,r,t[starting state, action taken, landing state, obtained reward, transition time].

Initialization:
Q(s, a)Ω0,’sœS, aœA.

1:procedureUpdate(–,Ê) ÛUpdate the oldQ(s, a)
2: Evaluate the new sample observation as follows:

Ê=R(s, a, sÕ)≠‡tn+ max
aÕ
Q(sÕ,aÕ)

Ûtnis the transition time between two subsequent statessands
Õafter actiona

3: Integrate the new sample in a running exponential average estimation ofQ(s, a):

Q(s, a)=(1≠–)Q(s, a)+–Ê

4:end procedure

additional considerations: too slowly descending–sequences will delay the convergence

of the algorithm, but too fast ones may make the algorithm unaware of new choices too

soon. Based on all these requirements and considerations, we set–= 0.5
÷(s,a),where÷(s, a)

is the number of times the actionawas selected, being in states.

Exploration - exploitationdrives the selection of the best action to be taken at each

time step. While choosing the actionathat maximises the revenue at each step contributes

to maximising the overall revenue (i.e.,exploitationstep), we also need to visit new (still

unknown) states even if this may lead to a suboptimal revenue (i.e.,explorationstep).

The reason for this is that the algorithm needs to explore all possible(s, a)options in

order to evaluate the impact of the di� erent decisions. The trade-o� between exploitation

and exploration is regulated by the“parameter; in this paper we take“=0.1in order to

force that sometimes the wrong decision is taken and thus we learn all possible options,

which ultimately improves the accuracy of the algorithm. The probability of taking

wrong choices decreases as the–nvalues become smaller, up to the point where no wrong

decisions are taken any more, once the algorithm already visited all statesa number of

times su� ciently large to learn the best Q-value.

3.4.3. Adaptive algorithm performance

We next evaluate the performance of our adaptive algorithm by comparing it in the

scenario described in Section 3.3.4 against: (i) the benchmark provided by the optimal

algorithm, and (ii) two naive policies that always admit elastic tra� c requests and always

reject them, respectively. Fig. 3.5 shows the relative average reward obtained by each of

this policies, taking as baseline the policy that always admit all network slice requests (as

this would be the most straightforward algorithm).

We observe from the figure that our adaptive algorithm performs very closely to the

32 Network Slice Admission Control

1 5 10 15 20

⇢i/⇢e

0

0.5

1

1.5

2

2.5
R
el
at
i
v
e
r
ev
e
n
u
e

Value Iteration

Q-Learning

Always Admit

Always Reject

Figure 3.5: Revenue vs.fli/fle.

optimal policy, which serves to validate the algorithm design proposed in this paper. We

further observe that the revenue improvements over the naive policies is very substantial,

up to 100% in some cases. As expected, for smallfli/flethe policy that always admits

all requests is optimal, as in this case both elastic and inelastic slices provide the same

revenue; in contrast, for very largefli/fleratios the performance of the “always reject”

policy improves, as in this case the revenue obtained from elastic tra� c is (comparatively)

much smaller.

While this result shows that the proposed algorithm performs close to optimal, it

is only compared against two naive policies and thus does not give an insight on the

revenue gains that could be achieved over smarter yet not optimal policies. To this end,

we compare the performance of our adaptive algorithm against a set of “smart” random

policies defined as: inelastic network slices requests are always accepted (k=i∆a=G),

while the decision of rejecting an elastic request (k=e∆a=D) is set randomly. Then,

by drawing a high number of random policies, it is to be expected that some of them

provide good performance.

Fig. 3.6 shows the comparison against 1000 di� erent random policies. The results

confirm that (i) none of the random policies outperforms our approach, further confirming

the optimality of the approach, and (ii) substantial gains (around 20%) are obtained

over the random policies. This result confirms that a smart heuristic is not e� ective in

optimizing revenue, and very substantial gains can be achieved by using a close to optimal

policy such as our adaptive algorithm.

The previous results have assumed that (i) arrivals and departures follow Poisson

process with exponential times, and (ii) the optimal algorithm has a perfect estimation

of the statistics of this process. In this section we address a more realistic case in which

neither of these assumption holds. We hence introduce two modifications: (i) arrivals and

3.4 ML approach for 5G Market optimization 33

0.6 0.7 0.8 0.9 1.0

Relative revenue

P
D
F

Value Iteration
Q-Learning

Random

(a)fli/fle=5

0.6 0.7 0.8 0.9 1.0

Relative revenue

P
D
F

Value Iteration

Q-Learning

Random

(b)fli/fle=10

0.6 0.7 0.8 0.9 1.0

Relative revenue

P
D
F

Value Iteration

Q-Learning

Random

(c)fli/fle=15

Figure 3.6: The distribution of the revenues obtained by random smart policies compared
to the proposed algorithms.

departures are Pareto-distributed, and (ii) we let the real arrival processö⁄deviate from

the estimated one⁄:ö⁄(j)=⁄
j+1as a function of a parameterj>≠1. That is, the optimal

policy obtained by Value Iteration under the original assumptions is computed o� ine,

with the estimated parameter, and applied to the real system. Note that for negativej

values, the system receives a number of request per time unit higher than the estimated

⁄, while positivejvalues indicate a lower requests arrival rate.The results, depicted in

Fig. 3.7, show that our adaptive algorithm, which automatically learns the network slice

behaviour on the fly and hence is not a� ected by possible estimation errors, substantially

outperforms the optimal policy built upon flawed assumptions and estimations.

3.4.4. N3AC: a Deep Reinforcement Learning approach

The Q-Learning algorithm described in Section 3.4.2 represents an adaptive algorithm

for practical usage that achieves close to optimal performance. While it represents a first

upgrade compared with the Value Iteration algorithm described in Section 3.3.2, it needs

to store and update the expected reward value (i.e., the Q-value) for each state-action pair.

As a result, learning the right action for every state becomes infeasible when the space

state grows, since this requires experiencing many times the same state-action pair before

having a reliable estimation of the Q-value. This leads to extremely long convergence

times that are unsuitable for most practical applications. Additionally, storing and

34 Network Slice Admission Control

-0
.8
-0
.5 0

0.
4 1 2 4 6

j

0

0.5

1

1.5

2
R
el
at
i
v
e
r
ev
e
n
u
e

Always Admit

Always Reject

Value Iteration

Q-Learning

Figure 3.7: Revenue in a perturbed scenario,fli/fle=5.

e� ciently visiting the large number of states poses strong requirements on the memory

and computational footprint of the algorithm as the state space grows. For the specific

case studied in this paper, the number of states in our model increases exponentially with

the number of network slicing classes. Hence, when the number of network slicing classes

grows, the computational resources required rapidly become excessive.

In the following, we present an alternative approach, theNetwork-slicing Neural

Network Admission Control (N3AC) algorithm [8], which has a low computational

complexity and can be applied to practical scenarios.

Learning algorithms are in the spotlight since Mnith et al. [42] designed a deep learning

algorithm called “deep Q-network” to deal with Atari games, and further improved it in

[43] making the algorithm able to learn successful policies directly from high-dimensional

sensory inputs and reach human-levels performance in most of Atari games.

The application of Reinforcement and Machine learning approaches to mobile networks

is also gaining popularity. Machine learning has been applied to a wide span of

applications in 5G networks, ranging from channel estimation/detection for massive

MIMO channel to user behavior analysis, location prediction or intrusion/anomaly

detection [44].

N3AC falls under category of the Deep Reinforcement Learning (DRL). With N3AC,

an agent (the InP) interacts with the environment and takes decisions at a given state,

which lead to a certain reward. These rewards are fed back into the agent, which “learns”

from the environment and the past decisions using a learning functionF. This learning

function serves to estimate the expected reward (in our case, the revenue).

Reinforcement Learning (RL) algorithms rely on an underlying Markovian system

such as the one described in Section 3.3.2. They provide the following features: (i) high

scalability, as they learn online on an event basis while exploring the system and thus

3.4 ML approach for 5G Market optimization 35

avoid a long learning initial phase, (ii) the ability to adapt to the underlying system

without requiring anyaprioriknowledge, as they learn by interacting with the system,

and (iii) the flexibility to accommodate di� erent learning functionsF,whichprovidethe

mapping from the input state to the expected reward when taking a specific action.

The main distinguishing factor between di� erent kinds of RL algorithms is the

structure of the learning functionF. Techniques such as Q-Learning [40] employ a

lookup table forF, which limits their applicability due to the lack of scalability to a

large space state [45]. A common technique to avoid the problems described above for

Q-learning is togeneralizethe experience learned from some states by applying this

knowledge to other similar states, which involves introducing a di� erentFfunction. The

key idea behind suchgeneralizationis to exploit the knowledge obtained from a fraction

of the space state to derive the right action for other states with similarfeatures.There

are di� erent generalization strategies that can be applied to RL algorithms. The most

straightforward technique is the linear function approximation [46]. With this technique,

each state is given as a linear combination of functions that are representative of the

system features. These functions are then updated using standard regression techniques.

While this approach is scalable and computationally e� cient, the right selection of the

feature functions is a very hard problem. In our scenario, the Q-values associated to states

with similar features (e.g., the number of inelastic users) are increasingly non linear as the

system becomes larger. As a result, linearization does not provide a good performance in

our case.

Neural Networks (NNs) are a more powerful and flexible tool for generalization. RL

algorithms that employ NNs are called DRL algorithms: N3AC belongs to this family.

One of the key features of such a NN-based approach is that it only requires storing a

very limited number of variables, corresponding to the weights and biases that compose

the network architecture; yet, it is able to accurately estimate theFfunction for a very

large number of state/action pairs.

In the rest of this section, we review the DRL design principles (Section 3.4.5) and

explain how these principles are applied to a practical learning algorithm for our system

(Section 3.4.6).

3.4.5. Deep Reinforcement Learning framework

The fundamental building blocks of DRL algorithms are the following ones [19]:

A set of labeled data (i.e., system inputs for which the corresponding outputs

are known) which is used to train the NN (i.e., teach the network to approximate

the features of the system).

A loss function that measures the neural network performance in terms of

training error (i.e., the error made when approximating the known output with the

36 Network Slice Admission Control

!"#$

!"#$

!"#$

!"#$

!"#%$

!"#%$

!"#%$

!"#%$

!"#%%$

!"#%%$

!
"
#
$%
&

!"#$%'()*+,

-
$%
#
$%
&

w0ij

w
00ij

./00+"'()*+,& -$%#$%'()*+,

wi
j

s=
X

ij

wijxi

12&3'4')5%/6)%/7"'1$"5%/7"

Figure 3.8: Neural networks internals.

given input).

An optimization procedure that reduces the loss functions at each iterations,

making the NN eventually converge.

There are many di� erent Machine Learning (ML) schemes that make use of NNs,

which are usually categorized as supervised, unsupervised and RL. A ML system is

supervised or unsupervised depending on whether the labeled data is available or not,

and it is a RL system when it interacts with the environment receiving feedback from

its experiences. N3AC falls under the latter category, and, within RL, it falls under the

category of DRL. Since the seminal work in [42], DRL techniques have gained momentum

and are nowadays one of the most popular approaches for RL. In spite of the bulk of

literature available for such techniques, devising the N3AC algorithm involves a number

of design decisions to address the specificities of our problem, which are summarized in

the following.

Neuron internal configuration. An exemplary NN is illustrated in Figure 3.8, where

we have multiple layers of interconnected neurons organized as: (i) an input, (ii) an

output and (iii) one or more hidden layers. As activation function N3AC employs the

Rectified Linear Unit (ReLU) [47].

Neural Network Structure. One of the design choices that needs to be taken when

devising a NN approach is the the way neurons are interconnected among them. The

most common setup isfeed-forward, where the neurons of a layer are fully interconnected

with the ones of the next. There are also other configurations, such as theconvolutional

or therecurrent(where the output is used as input in the next iteration). However, the

3.4 ML approach for 5G Market optimization 37

best choice for a system like the one studied in this paper is the feed-forward. Indeed

convolutional networks are usually employed for image recognition, while recurrent are

useful when the system input and the output have a certain degree of mutual relation.

None of these match our system, which is memoryless as it is based on a Markovian

approach. Furthermore, our NN design relies on a single hidden layer. Such a design

choice is driven by the following two observations: (i) it has been proven that is possible

to approximate any function using NN with a single hidden layer [48], and (ii)whilea

larger number of hidden layers may improve the accuracy of the NN, it also involves a

higher complexity and longer training period; as a result, one should employ the required

number of hidden layers but avoid building a larger network than strictly necessary.

Back-propagation algorithm selection. N3AC following classical ML applications,

adjusts weights using a Gradient Descent approach: the measured error at the output

layer is back-propagated to the input layer changing the weights values of each layer

accordingly [47]. More specifically, N3AC employs the RMSprop [49] Gradient Descent

algorithm.

Integration with the RL framework.One of the critical requirements for N3AC

is to operate without any previously known output, but rather interacting with the

environment to learn its characteristics. Indeed, in N3AC we do not have any “ground

truth” and thus we need to rely on estimations of the output, which will become more

accurate as we keep exploring the system. While this problem has been extensively

studied in the literature [19, 50], we need to devise a solution that is suitable for the

specific problem addressed. In N3AC, we take as the output of the NN the average

revenues expected at a given state when taking a specific decision. Once the decision

is taken, the system transitions to the new state and we measure the average revenue

resulting from the decision taken (0 in case of a rejection andfltin case of an acceptance).

Then, the error between the estimated revenue and the measured one is used to train

the NN, back-propagating this error into the weights. As depicted in Fig 3.9, N3AC uses

two di� erent NNs: one to estimate the revenue for each state when the selected action

is to accept the incoming request, and another one when we reject the request. Upon

receiving a request, N3AC polls the two NNs and selects the action with the highest

expected revenue; then, after the transition to the new state is performed, the selected

NN is trained. More details about the N3AC operation are provided in the next section.

Exploration vs exploitation trade-o� .N3AC drives the selection of the best action

to be taken at each time step. While choosing the action that maximizes the revenue

at each step contributes to maximizing the overall revenue (referred to asexploitation

step), in order to learn we also need to visit new (still unknown) states even if this may

eventually lead to a suboptimal revenue (referred to asexplorationstep). This procedure

is especially important during the initial interaction of the system, where estimates are

very inaccurate. In N3AC, the trade-o� between exploitation and exploration is regulated

38 Network Slice Admission Control

!"#$%
!"#$%&'()$*(+'+,(-'

.'
/%0'#+1)%'2%3*%#$

&''(#%)*($+,-)
"(%./+0
4%%-56,20(2-''

1(2('%)*($+,-)
"(%./+0
4%%-56,20(2-''

!"#$%&'()
('*'#+'

!" 345%(6

,#-&.#&/
0'*'#+'1%!

!

7/558$"'%9/"
7!8

!"#$%&'()
('*'#+'

!"#$%&'()
('*'#+'

&(.2#2#$

&(.2#2#$

Figure 3.9: High-level design of AI-based slice admission control.

Algorithm 3N3AC algorithm.

An event is characterized by:
s, a, sÕ,r,t[starting state, action taken, landing state, obtained reward, transition time].

Initialization:
Neural Network’s weightsΩ random values.

Procedure
1:EstimateQ(sÕ,aÕ) for each actionaÕavailable in statesÕthrough the NN.
2:Build the target value with the new sample observation as follows:

target=R(s, a, sÕ)≠‡tn+ max
aÕ
Q(sÕ,aÕ) (3.17)

Ûwheretnis the transition time between two subsequent statessands
Õafter actiona.

3:Train the NNs through RMSprop algorithm:
4:ifs”œadmissibility region boundarythen
train the NN with the error given by the di� erence between the target value (eq. 3.17) and
the measured one.

5:else
train the NN corresponding to accepted requests by applying a“penalty”and train the

NN corresponding to rejected requests as in step 4.
6:end if

by the“parameter, which indicates the probability of taking an exploration step. In the

setup used in this paper, we take“=0.1. Once the NNs are fully trained, the system

goes into exploitation only, completely omitting the exploration part.

3.4.6. Algorithm description

In the following, we describe the proposed N3AC algorithm. This algorithm builds

on the Neural Networks framework described above, exploiting RL to train the algorithm

without a ground truth sequence. The high-level algorithm design is illustrated in Fig 3.9

and it consists of the following high level steps (see Algorithm 3 for the pseudocode):

Step 1, acceptance decision:In order to decide whether to accept or reject

an incoming request, we look at the expected average revenues resulting from

3.4 ML approach for 5G Market optimization 39

accepting and rejecting a request in the two NNs, which we refer to as the Q-

values. Specifically, we defineQ(s, a)as the expected cumulative reward when

starting from a certain stateswith actiona, compared to a baseline‡given by the

optimal policy reward when starting from state 0, i.e.,

Q(s, a)=E

S

Ulim
tæŒ

D(t)ÿ

n=0

Rn≠‡t|s0=s, a0=a

T

V (3.18)

whereD(t)is the number of requests received in a periodt,Rnis the revenue

obtained with thenthrequest and‡= E[limtæŒ
1
t

qD(t)
n=0Rn|s0= 0]under the

optimal policy. Then, we take the decision that yields the highest Q-value. This

procedure is used for elastic slices only, as inelastic slices shall always be accepted

as long as there is su� cient room. When there is no room for an additional slice,

requests are rejected automatically, regardless of their type.

Step 2, evaluation:By taking a decision in Step 1, the system experiences a

transition from statesat stepn, to statesÕat stepn+1. Onceinstepn+1,

the algorithm has observed both the reward obtained during the transitionR(s, a)

and a sampletnof the transition time. The algorithm trains the weights of the

corresponding NN based on the error between the expected reward ofsestimated

at stepnand the target value. This step relies on two cornerstone procedures:

¥Step 2a, back-propagation:This procedure drives the weights update by

propagating the error measured back through all the NN layers, and updating

the weights according to their gradient. The convergence time is driven by a

learning rate parameter that is used in the weight updates.

¥Step 2b, target creation:This procedure is needed to measure the accuracy

of the NNs estimations during the learning phase. At each iteration our

algorithm computes the observed revenue as follows:

Ê=R
!
s, a, sÕ

"
≠‡tn+ max

aÕ
Q
!
sÕ,aÕ

"
, (3.19)

whereR(s, a, sÕ)is the revenue obtained in the transition to the new state.

As we do not have labeled data, we useÊto estimate the error, by taking the

di� erence betweenÊand the previous estimateQn+1(s, a)and using it to train

the NN. When the NN eventually converges,Êwill be close to the Q-values

estimates.

Step 3, penalization:When a state in the boundary of the admissibility region

is reached, the system is forced to reject the request. This should be avoided as

it may force the system to reject potentially high rewarding slices. To avoid such

40 Network Slice Admission Control

cases, N3AC introduces apenaltyon the Q-values every time the system reaches

the border of the admissibility region. With this approach, if the system is brought

to the boundary through a sequence of highly rewarding actions, the penalty will

have small e� ect as the Q-values will remain high even after applying the penalty.

Instead, if the system reaches the boundary following a chain of poorly rewarding

actions, the impact on the involved Q-values will be much higher, making it unlikely

that the same sequence of decisions is chosen in the future.

Step 4, learning finalization:Once the learning phase is over, the NN training

stops. At this point, at a given state we just take the the action that provides the

highest expected reward.

We remark that the learning phase of our algorithm does not require specific training

datasets. Instead, the algorithm learns from the real slice requests on the fly, during

the real operation of the system; this is the so-calledexploration phase. The training

corresponding to such an exploration phase terminates when the algorithm has converged

to a good learning status, and is triggered again when the system detects changes in the

system that require new training.

3.5. Performance Evaluation

In this section we evaluate the performance of NN via simulation. Unless otherwise

stated, we consider the scenario described in Section 3.3.4.

Following the N3AC algorithm proposed in the previous section, we employ two feed-

forward NNs, one for accepted requests and another one for rejected. Each neuron applies

a ReLU activation function, and we train them during the exploration phase using the NNs

RMSprop algorithm implementation available in Keras (https://keras.io/); the learning

parameter of the RMSprop Gradient Descent algorithm [49] is equal to 0.001. The number

of input nodes in the NN is equal to the size of the space state (i.e., the number of

considered classes plus one for the next requestk), the number of neurons in the hidden

layer equal to 40 for the scenario described in Sections 3.5.3 and 3.5.4 and 20 for the

others, and the output layer is composed of one neuron, applying a linear function. Note

that, while we are dealing with a specific NN structure, one of the key highlights of our

results is that the adopted structure works well for a wide range of di� erent 5G networks.

In the results given in this section, when relevant we provide the 99% confidence

intervals over an average of 100 experiments (note that in many cases the confidence

intervals are so small that they cannot be appreciated).

3.5 Performance Evaluation 41

Figure 3.10: Revenue vs.fli/fle.

3.5.1. Algorithm Optimality

We first evaluate the performance of the N3AC algorithm (which includes a hidden

layer of 20 neurons) by comparing it against: (i) the benchmark provided by the optimal

algorithm, (ii) the Q-learning algorithm proposed in Section 3.4.2, and (iii) two naive

policies that always admit elastic tra� c requests and always reject them, respectively.

In order to evaluate the optimal algorithm and the Q-learning one, which su� ers from

scalability limitations, we consider a relatively small scenario. Figure 3.10 shows the

relative average reward obtained by each of these policies, taking as baseline the policy

that always admit all network slice requests (which is the most straightforward algorithm).

We observe that N3AC performs very closely to the Q-learning and optimal policies,

which validates the proposed algorithm in terms of optimality. We further observe that

the revenue improvements over the naive policies is very substantial, up to 100% in some

cases. Again, as expected, for smallfli/flethe policy that always admits all requests is

optimal: in this case both elastic and inelastic slices provide the same revenue. In contrast,

for very largefli/fleratios the performance of the “always reject” policy improves, as in

this case the revenue obtained from elastic tra� c is (comparatively) much smaller.

3.5.2. Learning time and adaptability

One of the key advantages of the N3AC algorithm as compared with Q-learning is

that it requires a much shorter learning time. This is due to the fact that with N3AC

the knowledge acquired at each step is used to update the Q-values of all states, while

Q-learning just updates the Q-value of the lookup table for the state being visited. To

evaluate the gain provided by the NNs in terms of convergence time, we analyze the

evolution of the expected revenue over time for the N3AC and the Q-learning algorithms.

42 Network Slice Admission Control

Figure 3.11: Learning time for N3AC and Q-learning.

The results are shown in Figure 3.11 as a function of the number of iterations. We

observe that after few hundred iterations, N3AC has already learned the correct policy

and the revenue stabilizes. In contrast, Q-learning needs several thousands of iterations

to converge. We conclude that N3AC can be applied to much more dynamic scenarios

as it can adapt to changing environments. Instead, Q-learning just works for relatively

static scenarios, which limits its practical applicability. Furthermore, Q-learning cannot

scale to large scenarios, as the learning time (and memory requirements) would grow

unacceptably for such scenarios.

When the network conditions change, e.g., the arrival pattern of slice requests, this is

detected by the system, and a new training period is triggered. To evaluate the system

performance under such conditions, Figure 3.12 illustrates the behavior of N3AC and

Q-learning. In this experiment, the arrival rate of elastic network slices is reduced to

one half at a given point in time, and this is detected as the revenue drops beyond a

given threshold (which we set to 10%). We observe that N3AC rapidly moves to the

best point of operation, while Q-learning needs much more time to converge, leading to

a substantially lower revenue. We further observe that, even in the transients, N3AC

obtains a fairly good performance.

3.5.3. Large-scale scenario

The previous results have been obtained for a relatively small scenario where the

evaluation of the optimal and Q-learning algorithm was feasible. In this section, we

assess the performance of the N3AC algorithm in a large-scale scenario; indeed, one of

the design goals of this algorithm is its scalability to large scenarios. We consider a

scenario with eight slice classes, four for elastic tra� c and four for inelastic. For each

tra� c type, we allow four network slice sizes, linearly distributed amongC/10andC/20.

3.5 Performance Evaluation 43

Figure 3.12: Performance under changing conditions.

Figure 3.13: Revenue vs.fli/fle.

We have the same throughput guarantees for elastic and inelastic tra� c as in the previous

experiment (Ri=Re=Cb/10) and thus we have the same admissibility region (although

the space state is much larger now). We setµand⁄parameters in a way that the load

of the network is similar to the previous experiment.

In this larger scenario, the optimal and Q-learning algorithms are not feasible. Hence,

we evaluate the performance of N3AC and compare it against the naive policies only.

Figure 3.13 shows the relative average reward obtained by each of these policies, taking

as baseline the policy that always admits all network slice requests. Similarly to the

evaluation performed in the previous experiment, we observe that the N3AC algorithm

always substantially outperforms the naive policies. As expected, for smallfli/flethe

policy that always admits all requests is optimal, while for very largefli/fleratios the

performance of “always reject” policy improves since the revenue obtained from the elastic

44 Network Slice Admission Control

(a)fli/fle=5 (b)fli/fle=10

(c)fli/fle=15

Figure 3.14: The distribution of the revenues obtained by random smart policies compared
to the N3AC algorithm.

tra� c is much smaller.

3.5.4. Gain over random policies

While the result of the previous section shows that the proposed algorithm provides

high gains, it is only compared against two naive policies and thus does not give an insight

on the real revenue gains that could be achieved over smarter, yet not optimal policies.

To this end, we compare the performance of the N3AC algorithm against a set of “smart”

random policies which work as follows: (i) inelastic network slices requests are always

accepted, and (ii) the decision of rejecting an elastic request is chosen randomly upon

defining the policy for each di� erent state. Then, by drawing a high number of random

policies, it is to be expected that some of them provide good performance.

Figure 3.14 compares N3AC against the above approach with 1,000 and 10,000

di� erent random policies, respectively. We note that the improvement achieved with

10,000 random policies over 1,000 is very small, which shows the the chosen setting for

the random policies approach is appropriate and provides the best performance that can

be achieved with such an approach. From the figure, we can see that N3AC provides

substantial gains over the best performing random policy (around 20%). This confirms

that a smart heuristic is not e� ective in optimizing revenue; indeed, with such a large

space state it is very di� cult to calibrate the setting for the acceptance of elastic slices

3.5 Performance Evaluation 45

that maximizes the resulting revenue. Instead, by using a NN-based approach such as

N3AC, we are capable of accurately capturing such a large space state within a limited

range of parameters and thus drive acceptance decisions towards very high performance.

3.5.5. Memory and computational footprint

One of the key aspects of the proposed framework is the memory footprint, which

has a strong impact on scalability. By using NNs, N3AC does not need to keep track

of the expected reward for each individual state-actionQ(s, a), but it only stores the

weights of the NNs. Indeed, NNs capture the dynamics of the explored system based on a

small number of weights, which are used to estimate the Q-values for all the states of the

system. This contrasts with Q-learning, which requires to store data for each individual

state. As the number of weights, fixed by the NN layout, is much smaller than the total

number of states, this provides a much higher scalability, specially when the number of

states grows substantially. For example, the large scale scenario evaluated in Section 3.5.3

has an internal space state of around 500 thousand states, which makes the Q-learning

technique unfeasible for such a scenario. In contrast, N3AC only requires storing state

for around 400 parameters, which represents a huge improvement in terms of scalability.

In addition to memory, the computational footprint also has a strong impact on

scalability. In order to understand the computational load incurred by N3AC, we

measured the time elapsed in the computation for one iteration. Table 3.1 gives the

results obtained with a NVIDIA GTX 1080 GPU platform for di� erent system scenarios

in terms of neurons, number of base stations and number of users. Results show that

computational times are very low, and the di� erences between the various scenarios are

almost negligible, which further confirms the ability of N3AC to scale up to very large

network scenarios.

Number of Number of Number of Computational
neurons base stations users time (sec)

40 50 500 0.0181
40 100 1000 0.0194
40 250 1000 0.0195
100 250 2500 0.0192
100 500 2500 0.0197
100 500 5000 0.0199

Table 3.1: Computational load for di� erent network scenarios.

3.5.6. Di� erent tra� c types

Our analysis so far has focused on two tra� c types: elastic and inelastic tra� c. In this

section, we address a di� erent scenario that includes the tra� c types corresponding to the

46 Network Slice Admission Control

Figure 3.15: Revenue vs.fli/fle.

four service classes defined by 3GPP [51] (hereafter we refer to them as class 1 to class 4,

where class 1 is the one with most stringent delay requirements). In line with the analysis

of Section 3.2, for this scenario with 4 di� erent tra� c types we take the admissibility

regionAúgiven by (i)|T1|ÆT
max
1 ,(ii)|T1|+|T2|ÆT

max
2 ,(iii)|T1|+|T2|+|T3|ÆT

max
3 ,

and (iv)|T1|+|T2|+|T3|+|T4|ÆT
max
4 . For this scenario, we run the same experiment as in

Section 3.5.3, varying the price ratioflamong di� erent classes as follows:rk=fl·rk+1’k,

whererkis the revenue generated by classk. Figure 3.15 compares the performance

provided by the N3AC algorithm in this scenario against the one provided by naive

policies which only accept a subset of classes. We can observe that N3AC provides very

high gains when compared to all the naive policies, which confirms that our approach

can be successfully applied to scenarios with more tra� c types, such as, e.g., the 3GPP

service classes.

4 Resource Orchestration for
Network Slicing

Network Slicing will enables the sharing of the next mobile networks generation by

dividing the network infrastructure into logical slices devoted to di� erent services and

customized to their needs. In the first part of this thesis we analyzed the impact of

Network Slicing over the business model of the next mobile network generation. We

unveiled the network management complexity when the resource to be shared is spectrum.

In this scenario we identified the new players,i.e., the tenants and the Infrastructure

Provider (InP), and the need of a network capacity broker algorithm to decide on whether

admit or reject a new slice request to meet the Service Level Agreements (SLAs) and

maximizing the InP’s revenue.

An optimal and a heuristic algorithms have been designed to optimize the network

slicing market: the first provides a benchmark to evaluate the quality of the practical

algorithm based on Deep Reinforcement Learning (DRL) that provides flexibility and

scalability in order to be employed in large and complex real scenarios while providing

close to optimal performance.

The emergence of sliced networks also promises to skyrocket the complexity of

resource management and orchestration, moving from the rather limited reconfiguration

possibilities o� ered by current Operations and Business Support System (OSS/BSS) to

a rich, software-defined layer that manages thousands of slices belonging to hundreds of

tenants on the same infrastructure [52].

To cope with the new milieu, network operators are striving to make resource

management and orchestration (MANO) processes highly automated. To realize the

5G principle ofcognitive network management[53], two complementary technologies are

needed: (i) technical solutions that enable end-to-end Network Function Virtualization

(NFV), and provide the flexibility necessary for resource reallocation; and, (ii) data

analytics that operate on mobile tra� c measurement data, automatically identify demand

patterns, and anticipate their future evolution.

From a technical standpoint, solutions that implement NFV at di� erent network

levels are well established, and start to be tested and deployed. Examples include

47

48 Resource Orchestration for Network Slicing

current MANO platforms architectures like ETSI NFV [54], and implementations such

as OSM [55] or ONAP [56], which allow to reconfigure and reassign resources to Virtual

Network Functions (VNFs) on the fly. By contrast, the integration of data analytics

in cognitive mobile networks is still at an early stage. Nowadays, resource assignment

to VNFs is a reactive process, mostly based on hysteresis thresholding and aimed at

self-healing or fault tolerance. There is a need for proactive, data-driven, automated

solutions that enable cost-e� cient network resource utilization, by anticipating future

needs for capacity and timely reallocating resources just where and when they are

required. The focus of our work is precisely on the design of data analytics for the

anticipatory allocation of resources in cognitive mobile networks. Specifically, we seek a

machine learning solution that runs on tra� c measurements and provides operators with

information about the capacity needed to accommodate future demands at each network

slice – a critical knowledge for data-driven resource orchestration. In Section 4.1, we first

introducecapacityforecast, a new concept at the base of our solution, and then provide

a review of related works highlighting the novelty of our proposed method in Section 4.2.

We then describe the overall framework of DeepCog in Section 4.3 and detail the design

of its most critical component,i.e., the loss function, in Section 4.4. The quality of the

solution is then assessed in realistic scenarios in Section 4.5.

4.1. Network management and forecasting

In this section we introduce the concept of capacity forecast, a fundamental notion that

inspired the design of DeepCog. Indeed, a� ecting the resource orchestration decisions,

capacity forecast directly influences the monetary impact for the network operator in

terms of operating expenses.

We start identifying two macroscopic categories of operating cost, Overprovisioning

andService Level Agreement (SLA) violation. Then, the motivation behind the need of

capacity forecast instead of tra� c forecast is presented. We conclude the section with a

comparison to highlight the benefits obtained by employing capacity forecast.

In the context of network resource management and orchestration, an Infrastructure

Provider (InP) at the moment of select the amount of resources needed to accommodate

mobile tra� c load, can incur in two main cost categories:

Overprovisioning –when providing excess capacity with respect to the actual

resource demand, the operator incurs a cost due to the fact that it is reserving more

resources than those needed to a network entity (e.g., a network slice, a network

function, or a virtual machine). As resources are typically isolated across slices,

this seizes the excess resources from other network entities that may have possibly

used them. At a global system level, continued overprovisioning implies that the

operator will have to deploy more resources than those required to accommodate the

4.1 Network management and forecasting 49

user demand, limiting the advantage of a virtualized infrastructure and of cognitive

networking solutions in general.

SLA violation –if insu� cient resources are allocated to a network entity, users

will su� er low Quality of Service (QoS), or even discontinued service. This has an

indirect price for the operator, in terms of customer dissatisfaction and increased

churning rates, which is not simple to quantify. However, in emerging contexts such

as those promoted by network slicing, underprovisioning also entails a di� erent, more

direct and quantifiable economic penalty for the operator. Under slicing, operators

will sign SLAs with the mobile service providers, which need to be strictly enforced.

Underprovisioning means violating such SLAs, which results in substantial monetary

fees for the network operator.

Clearly, the cost is not the same in the two cases, and it may also vary depending on the

specific settings, including the nature of the concerned resources, the technologies deployed

in the network infrastructure, or the market strategies of the operator. In all cases, we

posit that, once suitably modeled, such costs shall be at the core of the orchestrating

decisions.

Legacy techniques for the prediction of mobile network tra� c, such as the one reviewed

in Section 4.2, fall short in this respect. Such models aim at perfectly matching the

temporal behavior of tra� c, independently of whether the anticipated demand is above

or below the target, and are thus agnostic of the aforementioned costs. As a result, they

return forecasts as that depicted in Fig. 4.1a, which refers to a real-world case study of

YouTube video streaming tra� c at a core network datacenter. Note that no distinction

is made between positive and negative errors, which leads to substantial SLA violations

covering roughly half of the observation time. The operator may then attempt to apply

overprovisioning to the output provided by such a tra� c predictor. Unfortunately, legacy

forecast models do not o� er any insight on how large the excess resource allocated on top

of the forecast demand should be.

We argue that a more e� ective anticipatory resource allocation can be achieved by

designing machine learning solutions that anticipate the minimum provisionedcapacity

needed to cut down SLA violations. This closes the present gap between simple tra� c

prediction and practical orchestration as it provides the operator with an explicitcapacity

forecastthat mitigates underprovisioning in Fig. 4.1b while minimizing unnecessary

resource reservation.

Once the resource allocation is determined according to the capacity forecast

provided by DeepCog, there is the need of lower level mechanisms to enforce the

envisioned allocation. As an example, we have designed CARES, a computational-

aware radio resources scheduler. The current Radio Access Network (RAN) protocol

stack has been designed under the assumption that required computational resources

50 Resource Orchestration for Network Slicing

0

0.5

1

N
or
m
ali
z
e
d
tr
af
Þ
c Service demand Tr a f Þ c p r e d i c t i o n

Mon Tue Wed Thu Fri Sat Sun
-0.25

0

0.25

Er
r
or

(a) Legacy tra� c predictor

0

0.5

1

N
or
m
ali
z
e
d
tr
af
Þ
c Service demand Capacity forecast

Mon Tue Wed Thu Fri Sat Sun
-0.25

0

0.25

Er
r
or

(b) DeepCog capacity forecast

Figure 4.1: Top: actual and predicted weekly demands for YouTube at a datacenter
controlling 470 4G eNodeBs. Bottom: levels of overprovisioning (blue) and capacity
violations (red) over time. (a) Output of a recent deep learning predictor of mobile
tra� c [57]. (b) Output of DeepCog, tailored to anticipatory network resource allocation.
The best view of this figure is in colors.

are always available, and RAN functions are not prepared to cope with computational

outages [58]. Indeed, when such computational outages occur, current virtualized RAN

implementations [59] just drop the frame being processed, and as a result they see their

performance severely degraded. To provide a more robust behavior against computational

outages at the process of enforcing radio resources to network slices, a re-design of the

RAN protocol stack is required. As a first step towards this end, in [6, 7] we propose

CARES, a mechanism thatjointlyoptimizes scheduling and Modulation and Coding

Scheme (MCS) selection making these functionscomputational ly aware.Inthisway,

our solution provides a graceful performance degradation in presence of computational

outages, in contrast to the severe degradation with the current stack, improving the

performance of a virtualized RAN system with temporarilylimitedcomputational

resources.

In the next section we introduce DeepCog, a machine learning solution that running

on tra� c measurements provides such a critical knowledge for data-driven resource

orchestration.

4.2. Related Works

Applications to networking problems of machine learning in general, and of deep

learning in particular, are starting to become popular. Artificial intelligence can indeed be

applied to solve many di� erent problems that emerge in computer networks, as highlighted

in recent comprehensive surveys on the topic [60, 61].

In the context of network management, emerging paradigms like slicing increase

4.2 Related Works 51

substantially the complexity of orchestrating network functions and resources, at all levels.

For instance, intelligence is needed for the admission control of new slices: as resources are

limited and slicing entails their strong isolation, this is critical to ensure that the system

operates e� ciently. With potentially hundreds of slices allocated simultaneously, and

a need to anticipate highly profitable future requests, the decision space for admission

control becomes so large that traditional approaches become impractical. Solutions

based on deep learning architectures represent here a viable approach [62]. Similar

considerations apply to other aspects of sliced network management,e.g., the allocation

of computational resources to slices at the radio access, based on transmission (e.g.,

modulation and coding scheme, channel load) and environmental (e.g., signal quality,

hardware technology) conditions [63], or the anticipatory reservation of Physical Resource

Blocks (PRBs) to user tra� c to be served in target network slices [64].

Our specific problem relates to the orchestration of generic resources (e.g.,CPUtime,

memory, storage, spectrum) to slices at di� erent network entities, which is tightly linked to

mobile tra� c prediction. The literature on forecasting network tra� c is in fact vast [60,

65]. Solutions to anticipate future o� ered loads in mobile networks have employed a

variety of tools, from autoregressive models [66–68] to information theoretical tools [69],

passing by Markovian models [70] and deep learning [57, 62, 64, 71, 72]. However, we

identify the following major limitations of current predictors when it comes to supporting

resource orchestration in mobile networks.

First, predictors of mobile tra� c invariably focus on providing forecasts of the future

demands that minimize some absolute error [60, 65]. As explained in Section 4.1,

this approach leads to predicted time series that deviate as little as possible from the

actual tra� c time series, as exemplified in Fig. 4.1a for a real-world case study. While

reasonable for many applications, such an output is not appropriate for network resource

orchestration. The operator aims at provisioning su� cient capacity to accommodate

the o� ered load atalltimes, since failing to do so implies high costs in terms of high

subscribers’ churn rates, as well as significant fees for violating SLAs signed with tenants.

Yet, if an operator decided to allocate resources based on a legacy prediction like that in

Fig. 4.1a, it would incur into capacity violations most of the time (as illustrated in the

bottom subplot).

Second, with the adoption of network slicing, forecasts must occur at the slice level,

i.e., for specific mobile services in isolation. However, most tra� c predictors, including

recent ones, are evaluated with demands aggregated over all services [57, 71, 72]. This

is an easier problem, since aggregate tra� c yields smoother and more regular dynamics,

hence previous solutions may not handle well the bursty, diversified tra� c exhibited by

each service. The only attempts at anticipating the demands generated by specific mobile

services have been made by using multiple-input single-output (MISO) autoregressive

models [73], and hybrid prediction methods that incorporate–-stable models and sparsity

52 Resource Orchestration for Network Slicing

with dictionary learning [69].

Third, existing machine learning predictors for mobile tra� c typically operate at base

station level [57,72]. However, Network Function Virtualization (NFV) operations mainly

occur at datacenters controlling tens (e.g., at the mobile edge) to thousands (e.g.,inthe

network core) of base stations. Here, prediction should be more e� cient when performed

on the aggregate tra� c at each datacenter, where orchestration decisions are taken, rather

than combining independent forecasts from each base station.

Our proposed solution, DeepCog, addresses all of the open problems above, by

implementing a first-of-its-kind predictor that anticipates the minimum provisioned

capacity needed to cut down SLA violations. This closes the present gap between tra� c

prediction and practical orchestration, as it provides the operator with an explicit capacity

forecast that mitigates underprovisioning in Fig. 4.1b while minimizing unnecessary

resource reservation.

4.3. A DL Framework for Resource Orchestration

In this section we introduce DeepCog [11], a new mobile tra� c data analytics tool that

is explicitly tailored to solve capacity forecast problem. The design of DeepCog yields

multiple novelties, summarized as follows:

It hinges on a deep learning architecture inspired by recent advances in image

and video processing, which exploits space- and time-independent correlations

typical of mobile tra� c and computes outputs at a datacenter level;

It leverages a customized loss function that targets capacity forecast rather

than plain mobile tra� c prediction, letting the operator tune the balance between

overprovisioning and demand violations;

It provides long-term forecasts over configurable prediction horizons, operating

on a per-service basis in accordance with network slicing requirements.

Overall, these design principles jointly solve the problem of capacity forecast in network

slicing. This is illustrated by Fig. 4.1b, which shows an example of the required capacity

forecast by DeepCog in a real-world case study. We remark that DeepCog is one of the

very first examples of rigorous integration of machine learning into a cognitive network

management process, and marks a di� erence from the common practice of embedding

vanilla deep learning structures into network operation [60].

The design of DeepCog is outlined in Fig. 4.2. Its organization is that typical of deep

learning systems, and it stems from (i) properly formattedinputdata used to build the

forecast, which, in our case, represents the current and past tra� c associated to a specific

network slice as a tensor. Such input is fed to (ii)adeep neural networkarchitecture that

4.3 A DL Framework for Resource Orchestration 53

Figure 4.2: Outline and interaction of the DeepCog components.

extrapolates and processes input features to provide (iii) anoutputvalue: the capacity

forecast. During the training phase, the output is used to evaluate (iv)aloss function

that quantifies the error with respect to the ground truth, and, in DeepCog, accounts for

the costs associated to resource overprovisioning and service request denial.

Below, we present each of the components of the framework, and discuss its mapping

to the elements of a 5G network architecture running cognitive resource management.

4.3.1. DeepCog Framework

In our network model, we consider that time is divided in slots, which we denote

byt. Let”is(t)be the tra� c associated with slicesthat is observed at base station

iœN and timet. Asnapshotof the demand of slicesœSat timetis given by a set

� s(t)={”
1
s(t),...,”

N
s(t)}, and provides a global view of the tra� c for that slice at timet

across the whole network. We letNdenote the set ofNbase stations in the network, and

M the set ofM<N datacenters. For each slicesœS, base stations are associated to

datacenters via a surjective mappingfs:Næ M, such that a datacenterjœM serves

the aggregated load of slicesfor all of the associated bases stations.1With this mapping,

the tra� c for slicesprocessed by datacenterjat timetis given bydjs(t)=
q
i|fs(i)=j”

i
s(t).

Then, the set of demands across all datacenters is given byds(t)={d
1
s(t),...,d

M
s(t)}.

Let us denote the allocated capacity for slicesat datacenterjand timetascjs(t), and

the set of capacities at alljœM ascs(t)={c
1
s(t),...,c

M
s(t)}. Then, the capacity forecast

problem is that of computing aconstantcapacityøcs(t, Th)={øc
1
s(t, Th),...,øc

M
s(t, Th)}

that is allocated in the network datacenters over a time horizonTh,i.e., through an

interval between the present timetand a future timet+Th. In practice, this models

the typical situation where the resource reconfiguration frequency is limited (e.g.,bythe

NFV technology), and the operator must decide in advance the amount of resources that

1We remark that DeepCog works for any arbitrary mapping, including, e.g., flows from a slice in the
same base station being split across datacenters, or associations among base stations and datacenters
varying over time. As a matter of fact, DeepCog’s learning process is based exclusively on the tra� c load
at each individual datacenter and is thus independent of the actual sources generating such tra� c.

54 Resource Orchestration for Network Slicing

Figure 4.3: DeepCog neural network encoder-decoder structure.

will stay assigned to a slice until the next reallocation takes place. The time horizonTh

thus corresponds to the reconfiguration period, and the allocated capacity is such that

cjs(t)=øc
j
s(t, Th)’jœM,tœ[t, t+Th].

The forecast builds on knowledge of the previous Tp tra� c snapshots� s(t≠

1),...,� s(t≠Tp). The quality of the capacity forecastøcs(t, Th)is measured by means of

a suitable loss function (̧øcs(t, Th),ds(t),...,ds(t+Th)). This functioņ(·)determines

the compound cost of overprovisioning and underprovisioning network resources at the

target datacenters, as produced by allocating a constant capacityøcs(t, Th)when the actual

time-varying demand is in factds(t),...,ds(t+Th).

4.3.2. The Neural Network

DeepCog leverages a deep neural network structure composed of suitably designed

encoding and decoding phases, performing a capacity forecasting prediction over a given

time horizon. The structure is general enough that it can be trained to solve the capacity

forecast problem for (i) network slices dedicated to di� erent services with significantly

diverse demand patterns, (ii) any datacenter configuration, and (iii) any time horizonTh.

The hyperparameters of the neural network have been tuned through extensive simulation

and testing.

The design of the neural network structure in DeepCog is inspired by recent

breakthroughs [74] in deep learning for image and video processing. As summarized

in Fig. 4.3, the network is composed of an encoder that receives an input representing

the mobile tra� c data� s(t≠1),...,� s(t≠Tp)and maps important spatial and temporal

patterns in such data onto a low-dimensional representation. Intuitively, the encoder

extracts the relevant features from the input tra� c tensors� s(t≠1),...,� s(t≠Tp)and

the decoder leverages such features to generate a capacity forecast that is tailored to a

given combination of slice, prediction time horizon, and datacenter class;e.g., datacenters

4.3 A DL Framework for Resource Orchestration 55

deployed close to the radio access will show di� erent features from those co-located with

the Internet gateways.

The result of the encoder undergoes a flattening process that converts the 3D (space

and time) tensor data into a unidimensional vector format. This is the input format

required by the fully connected layers that form the decoder, which then generates the

final capacity forecastøcs(t, Th)at the target set of datacentersM. Below, we detail the

encoder and decoder implementations, and discuss the training procedure.

The Encoder. It is composed by a stack of three three-dimensional Convolutional

Neural Network (CNN) layers [75]. Generic CNNs are a specialized kind of deep learning

structure that can infer local patterns in the feature space of a matrix input. In particular,

two-dimensional CNNs (2D-CNNs) have been extensively utilized in image processing,

where they can complete complex tasks on pixel matrices such as face recognition or

image quality assessment [76]. 3D-CNNs extend 2D-CNNs to the case where the features

to be learned are spatiotemporal in nature, which adds the time dimension to the problem

and transforms the input into a 3D-tensor. Since mobile network tra� c exhibits correlated

patterns in both space and time, our encoder employs 3D-CNN layers2.

Formally, the 3D-CNN layers receive a tensor inputT(� s(t≠1)),...,T(� s(t≠Tp)),

whereT(·)is a transformation of the argument snapshot into a matrix. This input

is processed by three subsequent 3D-CNN layers. Each neuron of these layers runs a

filterH(
q
·I(·)úK(·)+b)whereI(·)is the input matrix passed to the neuron (e.g.,

I(·)=T(� s(·))at the very first layer, for slicesand generic time·),údenotes the 3D

convolution operator,K(t)is the kernel of filters,H(·)is a non-linear activation function,

andbis a bias vector. We use two di� erent kernel configurationsK(·), as shown in

Fig. 4.3: a3◊3◊3kernel for the first 3D-CNN layer, and a6◊6◊6kernel for the

second and third layers. These settings allow limiting thereceptive field,i.e., the portion

of input analyzed by each neuron, to small regions: in presence of strong local correlation

of the input data, this approach is known to yield good performance with fairly limited

training, in particular compared to RNNs. As for the choice of the activation function,

many di� erent options have been proposed in the literature, spanning from linear functions

totanh, sigmoid or Rectified Linear Unit (ReLU). Among these, we select ReLU, and

setH(x) = max (0,x), which provides advantages in terms of discriminating performance

and faster learning [77]. Finally,bis randomly set at the beginning of each training phase.

The second and third 3D-CNN layers are interleaved with Dropout layers: such layers

regularize the neural network and reduce overfitting [77] by randomly setting to zero

a number of output features from the preceding layer during the training phase. The

dropout ratedefines the probability with which output features undergo this e� ect. During

2We have employed CNNs instead of Recurrent Neural Networks (RNNs) (typically used for forecasting
application) because the mobile load at a time instanttmainly depends on previousTpinstants and not
on all the past values (as confirmed by our analysis). For this reason, CNNs provide us enough temporal
memory while being cheaper to train in terms of computational cost compared with RNNs

56 Resource Orchestration for Network Slicing

training, we employ two Dropout layers with dropout rate equal to 0.3.

The Decoder.It uses Multi-Layer Perceptrons (MLPs) [78], a kind of fully-connected

neural layers, where every neuron of one layer is connected to every neuron of the next

layer. This provides the ability to solve complex function approximation problems. In

particular, MLPs are able to learn global patterns in their input feature space [47],

allowing the neural network structure to forecast the targeted load value leveraging the

local features extracted by the encoder. In our structure, each layer performs an operation

HÕ(x·W +b),wherexis the MLP layer input vector,W a weight matrix related to

the neurons of each layer, andbthe bias vector.W plays a similar role toK(t)in the

encoder part: its values drive the prediction through the layers of the decoding part.

As for the activation functionsH, we employ ReLU for all MLP layers except for

the last one, where a linear activation function is used since the desired output takes

real values. The last linear layer can be configured to produce multiple predictions in

parallel, each matching the aggregate capacity required by a subset of base stations, thus

allowing to forecast the needed capacity for di� erent datacenters comprising a subset of

base stations. Ultimately, this organization makes the DeepCog neural network capable

of predicting per-slice capacity requirements at datacenter level, in a way that can adapt

to any configuration ofM and to any time horizonTh.

4.3.3. The training procedure

We leverage the popular Adam optimizer, which is a Stochastic Gradient Descent

(SGD) method that provides faster convergence compared to other techniques [79]. SGD

trains the neural network model, evaluating at each iteration the loss functioņ(·)between

the forecast and the ground truth, and tuning the model parameters in order to minimize

(̧·). For the configuration of the Adam optimizer, we use the default configuration with

a learning rate of5◊10≠4.

An important element that concerns the training of the DeepCog architecture is that

the encoder and the decoder described in Section 4.3.2 have independent roles. Therefore,

while the decoder heavily depends on the forecast specifications, the encoder does not,

and is agnostic to the final usage of the extracted features. This fact allows adopting a

transfer learningapproach during training: instead of treating the two blocks as a whole

(and performing the training over the full system for all the possible slices, datacenter

classes and horizons), we can train them separately. Specifically, an horizon-independent

encoder can be trained on past tra� c tensors at maximum time granularity, and then

reused in combination with dedicated decoders tailored to eachThvalue. Beside reducing

the training time, this strategy reduces the need for neural-network-wide training to

di� erent settings of slice and datacenter only.

4.3 A DL Framework for Resource Orchestration 57

4.3.4. Arrangement of input data

The input is composed by measurement data generated in a specific network slice, and

recorded by dedicated probes deployed within the network infrastructure. Depending

on the type and location of the probe, the nature of the measurement data may vary,

describing the demands in terms of,e.g., signal quality, occupied resource blocks, bytes of

tra� c, or computational load on Virtual Network Functions (VNFs). DeepCog leverages

a set of transformations to map any type of slice tra� c measurements into a tensor format

that can be processed by the learning algorithm.

The 3D-CNN layer adopted as the first stage of the decoder requires a

multidimensional tensor input. We thus need to define the transformationT(·)of each

tra� c snapshot into a matrix. Note that 3D-CNN layers best perform in presence of a

tensor input that features a high level of local correlation, so that neurons operate on

similar values. In image processing, where close-by pixels typically have high correlation,

this is easily solved by treating the pixel grid as a matrix. In line with this strategy,

the current common practice in mobile network tra� c prediction is to leverage the

geographical locations of the base stations, and assign them to the matrix elements so that

their spatial proximity is preserved as much as possible [57, 60]. However, this approach

does not consider that correlations in mobile service demands at a base station level do

not depend on space, rather on land use [80]: base stations exhibiting strongly correlated

network slice tra� c may be far apart,e.g., covering the di� erent train stations within

a same large city. Thus, we aim at creating a tensor input whose neighboring elements

correspond to base stations with strongly correlated mobile service demands. To this end,

we construct the mapping of base stations into a matrix structure as follows.

For each base stationi, we define its historical time series of total tra� c as

⌧i= {”i(1),...,”i(t≠1)},where”i(t) =
q
s”
i
s(t). Then, for each pairiand

j, we determine the similarity of their recorded demands by computingsbdij=

fsbd(⌧
i,⌧j),wherefsbd(·)is the shape-based distance, a state-of-the-art similarity

measure for time series [81]. All pairwise distances are then stored in a distance

matrixD=(sbdij)œRM◊M.

We compute virtual bidimensional coordinatespifor each base stationiso that

the values in the distance matrixDare respected as much as possible. Formally,

this maps to an optimization problem whose objective isminx1,...,xM
q
i<j(Îpi≠

pjÎ≠sbd
ij)2, e� ciently solved via Multi-Dimensional Scaling (MDS) [82].

We match each point pito an elementeof the input matrixI, again

minimizing the total displacement. To this end, we: (i) quantize the virtual surface

encompassing all pointspiso that it results into a regular grid ofN cells; (ii)

assume that each cell is an element of the input matrix; (iii) compute the costkie

58 Resource Orchestration for Network Slicing

of assigning a pointpito elementeas the Euclidean distance between the point and

the cell corresponding toe. We then formalize an assignment problem with objective

mina
q
iœN

q
eœIkiexie,wherexieœ[0,1]is a decision variable that takes value 1 if

pointpiis assigned to elemente, and must fulfill
q
iœNxie=1and

q
eœIxie=1.

The problem is solved in polynomial time by the Hungarian algorithm [83].

The solution of the assignment problem is the transformationT(·)of the original base

stations into elements of the matrixI. The mapping functionT(·)allows translating a

tra� c snapshot� s(t)into matricial form. Applying this to snapshots at di� erent times,

� s(t≠1),...,� s(t≠T), we can thus build the tensor required by the entry encoder layer

in Fig. 4.3.

4.3.5. The Output function

DeepCog is designed for flexibility, and can be used for di� erent orchestration

scenarios. This is achieved thanks to an adaptable last layer of the deep neural network,

and a configurable loss function. In general, the learning algorithm returns a forecast of

the capacity required to accommodate the future demands for services associated to a

specific network slice. This generic definition of output can then be applied to di� erent

orchestration use cases that may di� er in the tra� c aggregation level at which the resource

configuration takes place, and/or in the frequency at which resource reallocation can be

realized.

For instance, the anticipatory assignment of baseband processing units to network

slices in a Cloud Radio Access Networks (C-RAN) datacenter requires a prediction of

the capacity needed to accommodate the tra� c of a few tens of base stations; instead,

reserving memory resources for a specific network slice at a core network datacenter

implies forecasting capacity for the data sessions of subscribers associated to hundreds of

base stations. The output format of DeepCog can accommodate any datacenter layout,

by tailoring the last linear layer of the neural networks to the specific requirements of the

layout (as discussed in Section 4.3.2).

Also, as discussed previously, the time horizon over which the forecast is performed

is another relevant system parameter, which depends on NFV technology limitations and

current trends incommoditizationof softwarized mobile network. When the technology

limitations do not allow frequent reconfiguration opportunities, resources need to be

allocated over long periods, e.g., of tens of minutes or even hours. In this case, forecasting

over long-term horizons provides the operator with information on the constant capacity

to be allocated during long intervals. To realize this, DeepCog operates on configurable

time horizons, thanks to the flexible loss function that we will discuss next.

4.4–-OMC 59

x⇤
Capacity Forecast

C
o
st

� j

� s

(a) Ideal Model

x⇤+✏↵sj x⇤+1 x⇤+(1+✏)↵sj
Capacity Forecast

1
�
✏
↵s
j

↵s
j

C
o
st

(b) Actual Implementation

Figure 4.4: Cost model Õ̧(cjs(t)≠d
j
s(t)). Left: ideal model. Right: actual implementation

in (4.1).

4.4. –-OMC

One of the key components of the system proposed in the previous section is theloss

function, denoted by̧(·). This function determines the penalty incurred when making

a prediction error. In this paper, we propose a novel loss function that is tailored to

the specific requirements of the capacity forecast problem. Our design of̧(·)accounts

for the costs resulting from (i) forecasting a lower value than the actual o� ered load,

which leads to anSLA violationdue to the provisioning of insu� cient resources, (ii)

predicting a higher value than the actual one, which leads tooverprovisioning, allocating

more resources than those needed to meet the demand. In order to ensure that we drive

the system towards an optimal trade-o� between overprovisioning and SLA violations,

over a generic time horizonTh,̧(·)must account for the penalty inflicted in each case.

In what follows, we describe the design of–-OMC (Operator Monetary Cost) [10], a loss

functions that provides DeepCog with the capability of optimizing the overall running

costs of the system.

4.4.1. Loss function design

In DeepCog, the loss function steers the behavior of the neural network by adjusting

the weights of the neurons according to the error between the estimated value and the

real one. To achieve the objective of minimizing the overall cost, a custom loss function

for the capacity forecasting problem is composed by a termf(x, xú)that deals with the

resource overprovisioning penalty, and a termg(x, xú)that models the cost of resource

violations. The variablexrepresents the allocated resources at a given time interval,

whilexúis the real demanded load for the same period. So the overall cost is due by the

discrepancy betweenxandxúin any time horizon.

The shape of overall cost functionf(x, xú)+g(x, xú)is depicted in Fig. 4.4a. A perfect

algorithm (i.e., anoracle) always keeps the system in the optimal operation pointx=xú

where no penalty is introduced,i.e.,f(xú,xú)=g(xú,xú)=0. Of course, errors are

inherent to predictions, and it is very unlikely that the forecast perfectly matches the real

60 Resource Orchestration for Network Slicing

demand: hence, a penalty value is back-propagated depending on whetherxis above or

below the target operation pointxú.

4.4.1.1. g(x, xú), a reactive approach to SLA violations.

When the orchestrated resources are less than those needed in reality (i.e.,x<xú)

the network operator pays a monetary compensation to the tenant. We assume an SLA

that enforces a proportional compensation depending on the number of time intervals

in which an operator fails to meet the requirements set by a tenant due to insu� cient

capacity allocated to the slice. Thus, SLA violations determine a fixed cost for the

operator at every time interval where the tenant demand is not satisfied. Accordingly,

we let the system learn that the operation pointxúis actually higher than the estimated

one by applying a penalty—sas soon as the estimation falls below the real value. The

parameter—scan be customized to the needs of the slicesœS: higher values may be

used for cases where reliability is paramount like,e.g., in Ultra Reliable Low Latency

Communication (URLLC) network slices; instead, lower values can be applied for slices

where Key Performance Indicator (KPI) commitments are provided over longer time

intervals. Note that higher—svalues are likely to bring the system towardx>x
ú,

incurring hence in higher deployment costs, as discussed next.

4.4.1.2. f(x, xú), a monotonically increasing cost for resource

overprovisioning.

While SLA violations depend on the agreements between the tenants and the operator,

the overprovisioning cost solely depends on the network operator, and more specifically

on the deployment costs associated with excess allocated capacity. We assume that such

a cost grows with the amount of unused capacity at each time interval, and model it

as a positive monotonic function that is only applied whenx >xú: the higher the

resource provisioning error, the more (unnecessarily) expensive is the deployment. The

exact expression off(x, xú)may vary, and one could consider,e.g., linear, super-linear,

or exponential shapes. For DeepCog, we design–-OMC to use a linear function, as

shown in Fig. 4.4a. The linear scaling factor“jis configurable by the operator, and

represents the monetary cost of the excess resource allocation. The cost depends on the

specific datacenterjœM at which the capacity forecasting takes place: for instance,

spectrum resources at the edge are typically scarcer and more expensive to deploy than

computational resources in a network core datacenter. In case of expensive resources

(characterized by a large“j), a positive forecasting error will have a higher impact,

favoring a capacity forecast with a lower level of overprovisioning.

4.4–-OMC 61

4.4.1.3. Balancing the two cost contributions.

Overall, the amount of resources that a network operator is willing to allocate depends

on the cost that it has to pay when failing to meet the demands for a given slice (given

by—s) and the cost associated with adding extra resources at a specific datacenter (given

by“j). These two parameters,—sand“j, push the capacity allocations towards opposite

directions, namely overdimensioning and underdimensioning, respectively. Rather than

their absolute values, what really matter for the resulting allocation is the ratio between

the two parameters, which determines the trade-o� between overdimensioning and

underdimensioning. Accordingly, in the following we express the custom loss as a function

of a single parameter–sj
.
=—s
“j
. We remark that–sjindicates the monetary costs of SLA

violations with respect to the overprovisioning: failing to meet the slice requirements once

costs as much as allocating–sjunits of excess capacity. Thus, a higher–sjimplies higher

SLA violation costs relative to the deployment (i.e., overprovisioning) cost. A mobile

network operator can easily set this parameter based on its deployment costs, SLA fees,

and market strategies.

Another important remark is that the SGD method used to train the neural network

does not work with constant or step functions, and requires that the loss function be

di� erentiable in all its domain. We solve this problem by introducing minimum slopes

of very small intensity‘forx<xúand atx=xú. We name the resulting loss function

Operator Monetary Cost, which has a single configurable parameter –sj. The final

expression of–-OMC is

–-OMC(x, xú)=

Y
____]

____[

–sj≠‘(x≠x
ú) ifxÆxú

–sj≠
1
‘(x≠x

ú) ifxú<xÆxú+‘–sj

x≠xú≠‘–sj ifx>xú+‘–sj.

(4.1)

Fig. 4.4b provides a sample illustration of (4.1) above.

The final loss function (̧·)then measures the quality of the forecast over the time

horizonTh, by applying the–-OMC expression over multiple time intervals as follows:

(̧øcs(t, Th),ds(t),...,ds(t+Th)) =

ÿ

jœM

Thÿ

·=0

–-OMC
1
øcjs(t, Th),d

j
s(t+·)

2
.

(4.2)

For the sake of readability and without loss of generality, in the remainder of the paper

we will employ a constant—s=—across slices and a constant“j=“across datacenter

deployment, leading to–sj=–for allsœS,jœM.

62 Resource Orchestration for Network Slicing

-0.2 -0.1 0 0.1 0.2
Offset

0

1

2

3

4

5

6

N
or
m
ali
z
e
d

m
o
n
et
ar
y
c
o
st

↵=0.5

↵=2

↵=3

103x

(a) Facebook, core datacenter

-0.2 -0.1 0 0.1 0.2
Offset

0

1

2

3

4

5

6

N
or
m
ali
z
e
d

m
o
n
et
ar
y
c
o
st

↵=0.5

↵=2

↵=3

103x

(b) Snapchat, MEC datacenter

-0.2 -0.1 0 0.1 0.2
Offset

0

1

2

3

4

5

6

N
or
m
ali
z
e
d

m
o
n
et
ar
y
c
o
st

↵=0.5

↵=2

↵=3

103x

(c) YouTube, C-RAN datacenter

-0.2 -0.1 0 0.1 0.2
Offset

0

2

4

6

8

10

12

N
or
m
ali
z
e
d

m
o
n
et
ar
y
c
o
st 103x

(d) Facebook, core datacenter

-0.2 -0.1 0 0.1 0.2
Offset

0

2

4

6

8

10

12

N
or
m
ali
z
e
d

m
o
n
et
ar
y
c
o
st 103x

(e) Snapchat, MEC datacenter

-0.2 -0.1 0 0.1 0.2
Offset

0

2

4

6

8

10

12

N
or
m
ali
z
e
d

m
o
n
et
ar
y
c
o
st 103x

(f) YouTube, C-RAN datacenter

Figure 4.5: Monetary cost (aggregated over time and normalized by the cost of one
capacity unit) incurred when the overprovisioning level is shifted from that selected by
DeepCog (at the abscissa origin). Each plot refers to one case study,i.e., a combination
of (i) mobile service associated to a dedicated slice and (ii) datacenter type. Top row:
Th=5minutes, bottom row:Th= 30minutes.

4.4.2. Correctness and convergence

We now analyze the proposed loss function in terms of (i) correctness,i.e.,its

capability of achieving a performance that is close to the optimal, and (ii) convergence,

i.e., the time it requires to learn such a correct strategy.

In Fig. 4.5, we run DeepCog in the representative network resource management case

studies that are later detailed in Section 4.5, where a slice is dedicated to one particular

mobile service and runs in a specific class of network datacenter. For each case study,

DeepCog forecasts a given level of capacity to be allocated which leads to an associated

monetary cost. In order to investigate the correctness of the solution, we vary the

provisioned capacity by adding to or subtracting a fixed o� set from the capacity indicated

by DeepCog.

The curves of Fig. 4.5 illustrate the variation of the monetary cost (in the y axis) as the

o� set is shifted (in the x axis), where increasingly positive (respectively, negative) values

on the x axis correspond to a higher (respectively, lower) level of capacity provisioning

with respect that suggested by our solution. The results prove that DeepCog always

identifies the capacity allocation that minimizes the monetary cost for the operator under

the inherently inaccurate prediction, as both a higher and a lower level of overprovisioning

leads to a greater cost. This holds under any combination.3 of target mobile service,

3Fig. 4.5 shows results for–in the range[0.5,3], and two exemplaryTh values,5and30minutes.

4.5 Performance Evaluation 63

1 20 40 60 80 100

Tr a i n i n g E p o c h s

0

0.1

0.2

0.3

0.4

N
or
m
ali
z
e
d
C
os
t ↵-OMC MAE MSE

(a) Facebook, Core,–=0.5

1 20 40 60 80 100

Tr a i n i n g E p o c h s

0

0.5

1

1.5

N
or
m
ali
z
e
d
C
os
t ↵-OMC MAE MSE

(b) Snapchat, MEC,–=2

1 20 40 60 80 100

Tr a i n i n g E p o c h s

0

0.5

1

1.5

2

N
or
m
ali
z
e
d
C
os
t ↵-OMC MAE MSE

(c) YouTube, C-RAN,–=3

Figure 4.6: Average cost versus the learning epochs, when the DeepCog neural network
architecture is trained with–-OMC, MSE and MAE loss functions.

datacenter class, and system settings–orTh, which demonstrates the high consistency

of our solution in balancing costs caused by SLA violations and overprovisioning.

We next assess the convergence properties of the loss function that drives DeepCog,

by observing its behavior over time. Specifically, we measure the normalized cost of the

solution identified by our learning algorithm, and compare it against that returned by the

same neural network trained with legacy loss functions.

Fig. 4.6 shows how the average normalized cost of network operation varies during

the training phase for di� erent–, services and datacenter classes. While the–-OMC

loss function minimizes the monetary cost of the operator in less than20epochs, both

Mean Absolute Error (MAE) and Mean Squared Error (MSE) converge to a fixed fee that

grows as–increases. This confirms that classical loss functions are not e� ective when

dealing with capacity forecasting, resulting in high penalties for operators. The results

are consistent across all of the di� erent configuration scenarios we tested.

4.5. Performance Evaluation

In this section we evaluate DeepCog performance in realistic settings. To this end, we

consider the mobile network infrastructure of a major operator in a large metropolitan

Similar curves characterize all–values and prediction horizons (up to8hours) we tested.

64 Resource Orchestration for Network Slicing

Table 4.1: Mobile services retained for dedicate network slices.

Service name Service class Tra� c % Service name Service class Tra� c %

YouTube streaming 27.3 iTunes streaming 20.0

Netflix streaming 1.8 Facebook social media 20.4

Instagram social media 3.4 Twitter social media 3.2

Snapchat messaging 8.9 Google Play online store 4.3

Apple Store online store 10.5 Pokemon Go mobile gaming 0.1

region. The area under study covers around 100 km2with a resident population of

more than 2 millions, and is surrounded by a conurbation of 11 millions inhabitants who

often commute to it. We run DeepCog on real-world measurement data of an operator

with a market share of 35% in the target region that captures the tra� c generated by

millions of users. The data were collected by monitoring the GPRS Tunneling Protocol

(GTP) via dedicated probes deployed at the network gateway and the classification of

IP flows into services was performed via Deep Packet Inspection (DPI) with proprietary

models developed by the network operator. The tra� c demands, expressed in bytes,

refer to individual mobile services; they are aggregated at the antenna sector level and

over intervals of 5 minutes. The demands capture the highly heterogeneous and time-

varying loads that characterize real-world mobile network deployments, with di� erences

in the o� ered tra� c volume of up to two orders of magnitude between antenna sectors.

Independent network slices are then assigned to a representative set of services, listed in

Tab. 4.1

We consider services that belong to di� erent categories, including video streaming,

messaging and social networks. These services impose a broad range of requirements into

the network. For instance, video streaming services are consumed ubiquitously, they have

significant bandwidth requirements (up to 6 Mbps for a 1080p video in YouTube [84])

as well as latency constraints to avoid interruptions in playing of the video (as shown

in [85]), and they also require significant data center resources from the server side [84].

Messaging services, instead, have a large component of uplink tra� c; overall, it has a

rather relaxed requirements in terms of bandwidth and latency, as it does not involve

any interactive communications. Social networks need considerable bandwidth and with

some latency requirements (according to [86], bandwidth of 8 Mbps and access delay not

exceeding 100 ms are required to achieve a high overall quality). Beyond the specific

requirements of each service, what really matters in the context of this paper is the fact

that these are services of a very di� erent nature with highly diverse requirements, and

therefore they are likely to be served by di� erent slices in a mobile network supporting

network slicing.

We employ the measurement data to design three case studies combining several

4.5 Performance Evaluation 65

popular mobile services and di� erent classes of network datacenters4. Each class is

defined by the network location and number of served eNodeBs, ranging from centralized

datacenters located in the core and serving many eNodeBs to more distributed ones

located in the edge and serving a smaller number of eNodeBs. By selecting a diverse

set of case studies, we can assess the DeepCog flexibility serving heterogeneous NFV

scenarios, comprising di� erent services and datacenter classes (C-RAN, Mobile Edge

Computing (MEC) and core). In a first case study, we consider that a slice is instantiated

for the incumbent video streaming service,i.e., YouTube, at C-RAN datacenters in the

target metropolitan area, each located in proximity of the radio access and performing

baseband processing and scheduling for around ten eNodeBs. In the second case study,

we look into MEC datacenters that handle the tra� c of around 70 eNodeBs each, where

a dedicated slice accommodates the tra� c generated by Snapchat, a favored messaging

app. The third case study focuses on a network slice dedicated to social network services

provided by Facebook that are run at a core network datacenter controlling all 470 4G

eNodeBs in the target metropolitan area.

The three case studies cover applications with diverse requirements in terms of

bandwidth and latency; also, they entail very di� erent spatiotemporal dynamics of the

mobile tra� c, as the considered services feature di� erent loads and activity peaks [88].

In addition, the datacenter classes we consider have dissimilar geographical coverage and

aggregated tra� c volumes, as they serve the demands associated to a variable number

of antennas, from ten to several hundreds. Overall, the three case studies considered for

the DeepCog’s performance evaluation are very useful to understand the e� ect of network

slicing on the network operation costs. In fact, our results illustrate for the first time

the impact of the slice isolation requirements –critical to future softwarized networks– on

services that have a dominant role in today’s tra� c and are expected to keep playing a

very relevant role in future mobile networks. In our tests, we do not parametrize di� erent

excess resource costs for each datacenter nor di� erent SLA violation penalties for diverse

services, leading to homogeneous–settings (i.e.,–sj=–for allsœS,jœM). However,

since DeepCog provisions resources for each slice and each datacenter independently, by

evaluating di� erent–values our results provide insights on the behavior of heterogeneous

–settings as well.

As discussed in Section 4.3.5, DeepCog outputs a capacity forecast within a variable

time-horizonTh. We measure this time in the number of steps it comprises, where each

step corresponds to the 5 mins granularity of our measurement data. In our evaluation

Thranges from 5 minutes (which maps to a next-step prediction) to 8 hours (which

corresponds to a forecast with a 96 time steps look-ahead). These are reasonable values

in our context, since resource reallocation updates in the order of minutes are typical

4The internal organization of the mobile network – hence the demand recorded at each datacenter –
is inferred by adopting the methodology proposed in [87].

66 Resource Orchestration for Network Slicing

N aive I nf o co m17 M o b iho c18 M A E Deep C o g

O verp ro visi o ning SL A vio latio ns

Y ou tu b e/ C - R A N Snap chat/ M EC F aceb o o k / C o re
0

0.8

1.6

2.4

3.2

4

N
o
r
m
aliz

e
d

M
o
n
et
ary
C
o
s
t

103x

Y ou tu b e/ C - R A N Snap chat/ M EC F aceb o o k / C o re
0

0.2

0.4

0.6

0.8

1

N
o
r
m
aliz

e
d

M
o
n
et
ary
C
o
s
t

103x

Figure 4.7: Comparative evaluation of DeepCog with four benchmarks in three
representative case studies. The monetary cost (normalized by the cost of one capacity
unit) incurred by the operator is split into costs due to overprovisioning (dark) and SLA
violations (light). Left:–=2. Right:–=0.5.

for computational and memory resources in architectures implementing NFV [2], and

are in line with those supported by any state-of-the-art Virtual Infrastructure Manager

(VIM) [89]. Conversely, larger intervals are more suitable for operations involving manual

intervention,e.g., spectrum leasing.

In all cases, we use the previous 30 minutes of tra� c(i.e.,Tp=6) as the DeepCog

input, arranged in a 47◊10 matrix. This configuration proved to yield the best results

when confronted to a number of other design strategies for the input that we explored,

including longer, shorter, or non-continuous historical data time intervals. Capacity is

predicted in terms of bytes of tra� c, which is a reasonable metric to capture for resource

utilization in actual virtual network functions [90], and is independent of the exact type of

resources relevant for the mobile operator in each case study. We employ two months of

mobile tra� c data for training, two weeks of data for validation and another two for the

actual experiments. This setting is also used for all benchmark approaches. All results

are derived with a high level of confidence and low standard deviation.

4.5.1. Gain over state-of-the-art tra� c predictors

We first focus on the particular case of next-step prediction, i.e.,Th=5minutes,

as this benchmark lets us compare our framework against state-of-the-art solutions that

can only perform a forecast for the following time interval. As discussed before, DeepCog

is designed as a building block within a network resource orchestration framework. A

4.5 Performance Evaluation 67

fundamental advantage over existing solutions in the literature is that it targets capacity

forecast, avoiding SLA violations, rather than a mere prediction of tra� c load which

may incur into frequent violations. We compare DeepCog against four benchmarks: (i)a

naivetechnique that forecasts the future o� ered load by replicating the demand recorded

at the same time during the previous week; (ii) the first approach proposed to predict

mobile tra� c based on a deep learning structure, referred to asInfocom17[57]; (iii)a

recent solution for mobile network demand prediction that leverages a more complex

deep neural network, referred to asMobiHoc18[72]; (iv) a reduced version of DeepCog,

which replaces–-OMC with a legacy MAE loss function5.

The results achieved in our three reference case studies by DeepCog and by the four

benchmarks above are shown in Fig. 4.7. The plots report the normalized monetary cost

for the operator, broken down into the expenses for unnecessary resource allocation (i.e.,

overprovisioning) and fees for unserviced demands (i.e., SLA violations). We observe that

DeepCog yields substantially lower costs than all other solutions. Indeed, the cost incurred

by DeepCog for–=2ranges between 15% (Facebook/Core) and 27% (Youtube/C-RAN)

of the cost provided by thebestcompetitor, depending on the case study.Infocom17,

as all other benchmarks, targets mobile network tra� c prediction, whereas DeepCog

aims at forecasting capacity. As a result, DeepCog balances overprovisioning and SLA

violations so as to minimize operation expenses, whileInfocom17is oblivious to such

practical resource management considerations. In other words, legacy predictors follow

as closely as possible the general trend of the time series and allocate resources based on

their prediction, which leads to systematic SLA violations that are not acceptable from a

market viewpoint and determine huge fees for the operator. Instead, DeepCog selects the

appropriate level of overprovisioning that, by suitably overestimating the o� ered load,

minimizes monetary penalties (see Fig. 4.5). Indeed, even when choosing a low value

such as–=0.5, which inflicts a small penalty for a SLA violation, the cost incurred by

DeepCog is 64% of that incurred by the best performing benchmark.

4.5.2. Comparison with overprovisioned tra� c prediction

In the light of the above results, a more reasonable approach to resource allocation

could be to consider a traditional mobile tra� c prediction as a basis, and adding some

overprovisioning o� seton top of it. In order to explore the e� ectiveness of such an

approach, we design and implement several variants toMAE, as follows.

A first variant adds ana-posterioriconstant overprovisioning o� set to theMAEoutput.

This strategy, referred to asMAE-post, requires selecting a value of the static o� set, which

is then added to the predicted tra� c. We dimension the o� set as a certain percentage

of the peak tra� c activity observed in the whole historical data, and set it at 5%, which

5We also experimented with other popular loss functions, e.g., MSE, with comparable results, omitted
for space reasons.

68 Resource Orchestration for Network Slicing

Y ou tu b e/ C - R A N Snap chat/ M EC F aceb o o k / C o re

- 100

0

100

200

300

R
el.
 O

v
erp

ro
vis
io
ni
ng
(%
)

Th= 5 mins

- 1000

- 5 00

0

5 00

1000

15 00

2000

R
el.
 V
io
l
atio

ns
(%
)

Y ou tu b e/ C - R A N Snap chat/ M EC F aceb o o k / C o re

- 100

0

100

200

300

R
el.
 O

v
erp

ro
vis
io
ni
ng
(%
)

Th= 45 mins

- 1000

- 5 00

0

5 00

1000

15 00

2000

R
el.
 V
io
l
atio

ns
(%
)

Y ou tu b e/ C - R A N Snap chat/ M EC F aceb o o k / C o re
- 100

0

100

200

300

400

5 00

R
el.
 N
o
r
m.
M
o
n
et
ary
C
o
s
t
(%
)

17 9 .6165 .7

0.4 2.0

145 .6139 .5

21.129 .1

443.3

331.1

11.6
62.9

(a)–=2,Th=5minutes

Y ou tu b e/ C - R A N Snap chat/ M EC F aceb o o k / C o re
- 100

0

100

200

300

400

5 00

R
el.
 N
o
r
m.
M
o
n
et
ary
C
o
s
t
(%
)

188.417 9 .6

4.8 9 .2

188.4
15 8.0

24.9 5 1.6

236.0228.6

- 30.8- 19 .6

(b)–=2,Th= 45 minutes

M A E- p o s t M A E- p re M A E- p o s t- b es t M A E- p re- b es t
O verp ro vis io ning V io latio ns

Figure 4.8: Relative performance of overprovisioned tra� c predictors, expressed as a
percent of the cost attained by DeepCog. Top: relative overprovisioning and SLA
violations. Bottom: relative monetary cost. Results refer to–=2and prediction horizons
of 5 (left) and 45 (right) minutes.

we deem a reasonable value in presence of a decently accurate prediction. Alternatively,

we also consider a best-case version of this solution, namedMAE-post-best, where an a-

posteriori overprovisioning is chosen by performing an exhaustive search over all possible

o� set values and selecting the one that minimizes the loss functioņ(·).

A second variant accounts for some level of overprovisioning in apreemptivefashion,

by introducing the o� set during the deep neural network training. To this end, theMAE-pre

solution replaces the MAE loss function with a new loss functionO+ 1
M

q
jœM |c

j
s(t)≠

djs(t)|, whereOdenotes the a-priori overprovisioning o� set. Also in this case, we setO

equal to 5% of the peak tra� c in the historical data. To compare against the best possible

operation of this scheme, we also consider aMAE-pre-bestvariant whereOis set equal to

the average overprovisioning level provided by DeepCog for the test period.

We remark that the MAE-post-bestandMAE-pre-bestapproaches are oracles and not

feasible in practice, since they require knowledge of the future to determine the best

a-posteriori values for the o� set and the value ofO, respectively. Yet, they provide a

benchmark for comparing the performance of DeepCog against optimal solutions that

rely on traditional mobile network tra� c prediction.

Fig. 4.8 shows the relative performance of the four variants above with respect to that

attained by DeepCog, forTh= 5 min (left) andTh= 45 min (right). The figure shows

the oveprovisioned capacity, unserviced tra� c, and total economic cost incurred by the

operator relative to the performance o� ered by DeepCog (in percentage). ForTh= 5 min,

the results highlight how using a static overprovisioning in combination with a traditional

4.5 Performance Evaluation 69

tra� c prediction is largely suboptimal, both when the additional o� set is considered

preemptively or a-posteriori. Indeed, the two practical solutions considered,i.e.,MAE-post

andMAE-pre, cause SLA violations that are two- to three-fold more frequent than that

incurred into by DeepCog, resulting in an economic cost that is 140% to 400% higher.

Interestingly, even when parametrized with the best possible o� sets, the approaches based

on legacy tra� c prediction cannot match the performance of DeepCog:MAE-post-best

andMAE-pre-bestdramatically reduce the penalties of their viable counterparts, yet lead

to monetary costs that are up to 60% higher than those of DeepCog.

The results for Th = 45 min
6, show that the above considerations hold across

di� erent values of the prediction horizon.The advantage over feasible overprovisioned

tra� c predictors such asMAE-preorMAE-postis aligned with that observed under a next-

step prediction, as such solutions increase the overall cost by 188% to 236%. When

considering a long horizon of45minutes, oracle methods based on overprovisioning like

(i.e.,MAE-pre-bestandMAE-post-best) can outperform DeepCog, further reducing the

operator cost by 19% to 30%. This is due to the fact that, when prediction must be

performed with significant time advance, the accuracy of DeepCog cannot be as high as

an oracle that knows future demand and has hence a significant advantage. However,

even under such conditions DeepCog performs almost as good as the oracles or better.

We conclude that tra� c predictors – no matter how they are enhanced – are not

appropriate for the capacity forecast problem, for the simple reason that they are designed

for a di� erent purpose. Indeed, they ignore the economic penalties incurred by SLA

violations, and this limits drastically their ability to address this problem. Strategies that

rely on integrating such costs into the solution after the tra� c prediction is performed

are largely suboptimal.

4.5.3. Controlling resource allocation trade-o� s with–

As discussed in Section 4.4, DeepCog addresses a fundamental trade-o� between

overprovisioning and SLA violations, aiming to find the best possible compromise between

the two. An operator is given the flexibility of choosing the desired operation point within

this trade-o� , by suitably setting the–parameter. In the following, we carry out an

extensive analysis of the trade-o� between overprovisioning of resources and failing to meet

service demands. This study is conducted for a large number of practical scenarios that

extend the original three case studies considered in the comparative analysis. Specifically,

we select five di� erent network slices, dedicated to the same number of popular mobile

services: the three we already studied,i.e., YouTube, Facebook, and Snapchat, plus

iTunes and Instagram. We then investigate the performance of DeepCog when such slices

are deployed at the three classes of datacenters introduced before,i.e., at the C-RAN,

6Note that, in order to perform a fair comparison, we had to extended the MAE policy to compute
the average absolute error on each time slot in the[t, . . . , t+Th]interval.

70 Resource Orchestration for Network Slicing

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

3
6
9
12
15
18
21

a) Y o u tu b e, C o re datacenter b) iT u nes , C o re datacenter c) F aceb o o k , C o re datacenter d) I ns tag ram, C o re datacenter e) Snap chat, C o re datacenter

3
6
9
12
15
18
21

f) Y o u tu b e, M EC datacenter g) iT u nes , M EC datacenter h) F aceb o o k , M EC datacenter i) I ns tag ram, M EC datacenter j) Snap chat, M EC datacenter

0.5 1 1.5 2 3 5
3
6
9
12
15
18
21

k) Y o u tu b e, C - R A N datacenter

0.5 1 1.5 2 3 5

l) iT u nes , C - R A N datacenter

0.5 1 1.5 2 3 5

m) F aceb o o k , C - R A N datacenter

0.5 1 1.5 2 3 5

n) I ns tag ram, C - R A N datacenter

0.5 1 1.5 2 3 5

o) Snap chat, C - R A N datacenter

↵

SL
A
vio
l
atio

ns
[%
]

O
v
erp

ro
vis
io
ni
ng
[%
]

O verp ro vis io ning SL A vio latio ns

(a)Th=5minutes

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

3
6
9
12
15
18
21

a) Y o u tu b e, C o re datacenter b) iT u nes , C o re datacenter c) F aceb o o k , C o re datacenter d) I ns tag ram, C o re datacenter e) Snap chat, C o re datacenter

3
6
9
12
15
18
21

f) Y o u tu b e, M EC datacenter g) iT u nes , M EC datacenter h) F aceb o o k , M EC datacenter i) I ns tag ram, M EC datacenter j) Snap chat, M EC datacenter

0.5 1 1.5 2 3 5
3
6
9
12
15
18
21

k) Y o u tu b e, C - R A N datacenter

0.5 1 1.5 2 3 5

l) iT u nes , C - R A N datacenter

0.5 1 1.5 2 3 5

m) F aceb o o k , C - R A N datacenter

0.5 1 1.5 2 3 5

n) I ns tag ram, C - R A N datacenter

0.5 1 1.5 2 3 5

o) Snap chat, C - R A N datacenter

O
v
erp

ro
vis
io
ni
ng
[%
]

SL
A
vio
l
atio

ns
[%
]

↵ O verp ro vis io ning SL A vio latio ns

(b)Th= 120 minutes

Figure 4.9: Tradeo� between resource overprovisioning (expressed as a percentage of the
actual demand) and SLA violation (expressed as a percentage of time slots), as a function
of the–parameter. Results refer to 15 di� erent scenarios, and two values of the prediction
horizonTh,i.e., 5 minutes (a) and 120 minutes (b).

MEC, and network core. Overall, this leads to 15 distinct scenarios.

Fig. 4.9a shows results in all of the above settings under di� erent economic strategies

that are reflected by the–parameter of the loss function (̧·). Configurations range

from policies that prioritize minimizing overprovisioning over avoiding SLA violations

(–=0.5) to others that strictly enforce the SLAs at the price of allocating additional

resources (–=5). The plots tell apart the contribution of the two components that

contribute to the total monetary cost: overprovisioning is expressed as a percentage of

the actual demand, and SLA violations are measured as a percentage of the time slots

in the test period. As expected, higher–values reduce the number SLA violations,

as they become increasingly expensive; this occurs at the cost of provisioning additional

capacity, which becomes instead cheaper in proportion7. The trend is consistent across all

scenarios, confirming that–e� ectively drives resource orchestration towards the desired

operation point.

Our analysis also reveals that the level of overprovisioning grows in most cases as one

moves from datacenters in the network core outwards. This trend applies across slices,

7Sporadic disruptions in the monotonicity of the cost curves are due to the inherent randomness of
the measurement data; indeed, the data correspond to a specific time period and it may show some biases
that would not be observed over di� erent (or longer) time periods.

4.5 Performance Evaluation 71

0

0.5

1

1.5

2
a) Y o u tu b e, C o re datacenter A lp ha = 0.5 b) Y o u tu b e, C o re datacenter A lp ha = 2 c) Y o u tu b e, C o re datacenter A lp ha = 5

0

0.5

1

1.5

2
d) Y o u tu b e, M EC datacenter A lp ha = 0.5 e) Y o u tu b e, M EC datacenter A lp ha = 2 f) Y o u tu b e, M EC datacenter A lp ha = 5

53060 12
0

24
0

48
0

0

0.5

1

1.5

2
g) Y o u tu b e, C - R A N datacenter A lp ha = 0.5

53060 12
0

24
0

48
0

h) Y o u tu b e, C - R A N datacenter A lp ha = 2

53060 12
0

24
0

48
0

i) Y o u tu b e, C - R A N datacenter A lp ha = 5

N
o
r
m
aliz

e
d M
o
n
et
ary
C
o
s
t [
 x1
03
]

Th[mins] O verp ro vis io ning SL A vio latio ns

Figure 4.10: Monetary cost (normalized by the cost of one capacity unit) incurred by the
operator, versus the prediction time horizonTh. The plots refer to di� erent combinations
of datacenter class and economic strategies modeled by–, for a slice dedicated to the
YouTube mobile service.

and is due to the fact that more centralized datacenters serve an increasingly aggregate

tra� c that is generally less noisy and easier to predict.

Under such conditions, DeepCog needs a reduced additional capacity to limit

unserviced demands: as a result, SLA violations are often lower at core datacenters.

Fig. 4.9a refers to a short-term prediction forTh=5minutes, however the same trends

discussed above are confirmed for larger prediction horizons. For instance, Fig. 4.9b

reports the same results forTh= 120 minutes. The only remarkable di� erence is that

overprovisioning and SLA violations are higher than in the case of a 5-minute prediction,

as forecasting on larger time horizons is obviously harder. Yet, the impact of–is

equivalent to that observed forTh=5minutes. We analyze in more detail DeepCog’s

performance as a function ofThin the next section.

Overall, the results presented above show that DeepCog finds good trade-o� s between

resource overprovisioning and SLA violations in very di� erent cost settings across slices

and datacenter types. Since each DeepCog instance for a slice at a datacenter runs

independently, this shows that DeepCog will grant good performance also in scenarios

where resource costs may di� er across datacenters,e.g., due to diverse operation and

management costs in urban and rural facilities.

4.5.4. Long-term capacity prediction with DeepCog

DeepCog aims at forecasting the (constant) capacity that should be allocated over a

long-term horizon, so as to minimize the monetary cost incurred by the operator. As

discussed in Section 4.3.1, this is particularly useful in practical settings where the NFV

technology imposes limits on the frequency upon which resources can be reallocated. In

the following, we thoroughly study how the performance of DeepCog varies with the

prediction horizon.

72 Resource Orchestration for Network Slicing

Fig. 4.10 summarizes the overall trend of the monetary cost incurred by DeepCog,

as the periodicity of the reconfiguration opportunities ranges from 5 minutes to 8 hours.

The plots outline a diversity of scenarios, combining di� erent datacenter classes (C-RAN,

MEC, and core) and relative expenses of overprovisioning and SLA violations (–equal to

0.5, 2, and 5). The results correspond to the case where one slice is dedicated to the tra� c

generated by YouTube, but equivalent behaviors were observed for the other services. In

all settings, the cost grows with the prediction horizon, which, as already mentioned, is

largely expected. What is less expected, however, is the quasi-linear relationship between

the cost andTh. This is a very important result, as it shows that even if we increase

the intervals for resource reallocation (i.e., the time horizon), the economic expenses of

the operator remain bounded and do not skyrocket (as they would if the growth was,

e.g., exponential). The result thus demonstrates the e� ciency of DeepCog in limiting

the unavoidable increased penalty associated to forecasting long-term capacity: as an

indicative figure, the cost is roughly increased by two when moving from a 5-minute

prediction to one that spans the following 8 hours which is a very reasonable factor.

The impact of the other system parameters is in line with our previous analysis:

higher monetary fees for SLA violations (i.e., higher–values) lead to increased costs,

whereas the performance is comparable across resource allocations over di� erent classes

of datacenter (C-RAN, MEC and core), each corresponding to di� erent tra� c volumes.

It is nonetheless interesting to note that the property of a linear growth of the cost over

This preserved under any combination of such parameters.

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

3
6
9
12
15
18
21

a) Y o u tu b e, C o re datacenter A lp ha = 0.5 b) Y o u tu b e, C o re datacenter A lp ha = 2 c) Y o u tu b e, C o re datacenter A lp ha = 5

3
6
9
12
15
18
21

d) Y o u tu b e, M EC datacenter A lp ha = 0.5 e) Y o u tu b e, M EC datacenter A lp ha = 2 f) Y o u tu b e, M EC datacenter A lp ha = 5

5 10 15 30 45 60 9 0120 240 480
3
6
9
12
15
18
21

g) Y o u tu b e, C - R A N datacenter A lp ha = 0.5

5 10 15 30 45 60 9 0120 240 480

h) Y o u tu b e, C - R A N datacenter A lp ha = 2

5 10 15 30 45 60 9 0120 240 480

i) Y o u tu b e, C - R A N datacenter A lp ha = 5

O
v
erp

ro
vis
io
ni
ng
[%
]

SL
A
vio
l
atio

ns
[%
]

Th[s lo ts] O verp ro vis io ning SL A vio latio ns

Figure 4.11: Breakdown of monetary costs into two contributions: (i) overprovisioning
(expressed as a percentage of the actual demand) and (ii) SLA violations (expressed as
a percentage of time slots), in the scenarios of Fig. 4.10.

Fig. 4.10 also o� ers a breakdown of the overall monetary costs into the two

contributions (overprovisioning and SLA violations). Violations of SLAs yield

substantially higher absolute costs and dominate the increase of total cost withTh; the

e� ect is clearly stronger for higher values of–. A more detailed view that highlights the

exact evolution of the two cost components as a function ofThis provided in Fig. 4.11,

4.5 Performance Evaluation 73

00: 30 05 : 30 10: 30 15 : 30 20: 30 01: 30
0

0.5

1

N
o
r
m
aliz

e
d
tr
af fi

c

Service demand T h= 5

(a)–=0.5

00: 30 05 : 30 10: 30 15 : 30 20: 30 01: 30
0

0.5

1

N
o
r
m
aliz

e
d
tr
af fi

c

Service demand T h = 30

(b)–=2

00: 30 05 : 30 10: 30 15 : 30 20: 30 01: 30
0

0.5

1

N
o
r
m
aliz

e
d
tr
af fi

c

Service demand T h = 60

(c)–=5

00: 30 05 : 30 10: 30 15 : 30 20: 30 01: 30
0

0.5

1

N
o
r
m
aliz

e
d
tr
af fi

c

Service demand T h = 120

(d)–=0.5

00: 30 05 : 30 10: 30 15 : 30 20: 30 01: 30
0

0.5

1

N
o
r
m
aliz

e
d
tr
af fi

c

Service demand T h = 240

(e)–=2

00: 30 05 : 30 10: 30 15 : 30 20: 30 01: 30
0

0.5

1

N
o
r
m
aliz

e
d
tr
af fi

c

Service demand T h = 480

(f)–=5

Figure 4.12: Illustrative examples of the capacity forecast returned by DeepCog behavior
under di� erent prediction time horizons. he scenario refers to a network slice dedicated
to the YouTube mobile service that is deployed at a core datacenter, under–=2.

showing that both contribute to increasing costs over longer-term forecasts. However, and

interestingly, the dynamics of the two components withThare diverse depending on the

system settings such as the datacenter class and the value of–. The common trend here is

that the penalty associated with both overprovisioning and SLA violations is fairly stable

when the horizon is increased from 5 minutes up to two hours. For forecasts beyond two

hours, however, these fees (one of the two or both) tend to increase substantially withTh.

We ascribe these behaviors to (i) the relationship betweenThand the timescale of

temporal fluctuations in the input demand, and (ii) the way DeepCog reacts to the

problem of devising a capacity forecast, which becomes harder for largerThvalues. The

first point relates to the characteristics of the input data (see Fig. 4.12 for illustrative

examples of the temporal oscillation of the service demand). For very largeTh(above

120 minutes) the prediction task performed by DeepCog resorts to an “envelope” of the

demand that accommodates the peak over theThperiod. This means that for those times

where demand is below the peak, we incur a high level of overprovisioning that increases

the resulting cost. In contrast, smallerThallow to adapt the capacity forecasting to the

actual demand at each point in time, providing an advantage in terms of cost. The second

point relates to the behavior and performance of DeepCog under largeThvalues. DeepCog

aims at providing a similar level of overprovisioning over time, as exemplified by the top

three plots of Fig. 4.12. For largeThvalues this yields increased SLA violations, since

the oscillations make it more likely that the constant capacity falls below the demand

curve at some point duringTh. Additionally, largerThvalues make the prediction task

inherently harder, which further contributes to increasing the SLA violations costs.

5 Network Slicing with shared
resources providing hard

guarantees

In Chapter 4 we have investigated the impact of Network Slicing in next mobile

network generation resource orchestration. To cope with the need for proactive, data-

driven, automated solutions that enable cost-e� cient network resource orchestration,

we have designed DeepCog, a Deep Learning solution for the anticipatory allocation of

resources in cognitive mobile networks. Running on tra� c measurements, we have shown

how DeepCog is e� cient in providing operators with information about the capacity

needed to accommodate future demands at each network slice. We demonstrated that

leveraging on the information provided by DeepCog, a Infrastructure Provider (InP) is

able to reduce his monetary cost of more than 200% compared with state of the art tra� c

predictor algorithms.

DeepCog represents to the best of our knowledge the only work to date where a

deep learning architecture is explicitly tailored to the problem of anticipatory resource

orchestration in mobile networks, it takes into account the costs derived by (i)the

allocation of unnecessary resources that go unused (i.e., overprovisioning), and (ii)

the insu� cient provisioning of resources that lead to Service Level Agreement (SLA)

violations. Hence, DeepCog has been designed to aim at minimizing overprovisioning

while avoiding SLA violations.

However, limiting the problem to this simple trade-o� implicitly assumes that resource

instantiation and reconfiguration occurs at no cost. In the following sections, we propose

an original model for the anticipatory allocation of capacity to network slices, which is

mindful of all operating costs linked to (i) unnecessary resource overprovisioning, (ii)

non-serviced demands, (iii) resource instantiation, and (iv) resource reconfiguration. In

Section 5.1 we first motivate the need to include in our analysis the costs deriving by

resource instantiation and reconfiguration. In Section 5.2 we present our orchestration

model, formalizing the di� erent costs and trade-o� s in the resource management of sliced

networks. Building on such a new model, we develop a complete framework for the

anticipatory allocation of capacity to network slices, namedAZTEC[12]; the framework

relies on a combination of deep learning architectures and a traditional optimizer, as

75

76 Network Slicing with shared resources providing hard guarantees

detailed in Section 5.3, 5.4 and 5.5. When informed of the economic penalty associated

to each source of cost,AZTECanticipates the dedicated and shared capacity to be allotted

to each network slice in a way to cut down monetary losses due to instantiation and

reconfiguration, while keeping fees entailed by resource provisioning and non-serviced

demands under control. We demonstrate the quality of the solution with real-world

measurement data collected in a metropolitan-scale mobile network, in Section 5.6; in

typical settings,AZTECoutperforms state-of-the-art tra� c [57] and capacity [9] predictors

by at least a factor of 1.7.

5.1. Capacity forecasting for resource management

Network slicing enables the desired strong service di� erentiation by capitalizing on

recent developments in Network Function Virtualization (NFV). It creates multiple

logical instances of the physical network, the so-callednetwork slices, ensuring strict tra� c

isolation among them [3], and tailoring the network resources of each slice to a specific

(class of) application [91]. Network slicing has the potential to enable the coexistence of

a wide range of mobile services in the same network infrastructure; however, it also poses

several of technical challenges.

A prominent di� culty is resource management. By running dedicated Artificial

Intelligence solutions, network orchestrators are expected to enable the vision ofzero-

touch networks[92],i.e., fully self-operating communication infrastructures whose

standardization is currently under consideration [93].

For some types of resource (e.g., CPU time within the same bare metal machine)

resource instantiation and reconfiguration represent a negligible cost. This is not generally

valid for slice resource management scenarios. Instantiation and reconfiguration costs are

capital in NFV technologies that enable thecloudificationof the access and core networks

by entrusting many network functions to Virtual Machines (VMs) running in datacenters.

Examples include baseband processing in Cloud Radio Access Networks (C-RAN) [94],

interconnection functionalities towards the external packet networks through the User

Plane Function (UPF) [95], or central o� ce operations [96].

In all the above cases, resource instantiation is not for free: VM boot times in

prominent public cloud services like Amazon AWS or Microsoft Azure consistently exceed

40 seconds, topping at 400 seconds in worst-case scenarios [97]; even in very recent tests,

booting a lightweight VM containing an Alpine Linux takes around 30 seconds in a local

deployment [98]. Reconfiguring already allocated resources has also a non-negligible cost:

modern software architectures such as Kubernetes need several seconds to execute new

pods,e.g., on VMs that are already running [98]. In addition, re-orchestration often

implies recomputing paths on the transport networks and implementing them via,e.g.,

Software Defined Networking (SDN) architectures: the latency is in the order of hundreds

5.2 Orchestration Model and Trade-o� s 77

of milliseconds in a small five-switch topology and with precomputed routing [99], and

this figure has to be scaled to thousands of switches with on-the-fly path re-calculation.

All unavoidable delays above entail monetary fees for the operator, in terms of

both violations of the Service Level Agreement (SLA) with the tenants (e.g.,dueto

infringement of guarantees on end-to-end latency), and user dissatisfaction (with ensuing

high churn rates). By neglecting these sources of cost, present capacity forecast solutions

risk to introduce uncontrolled data flow latency once deployed in operational networks,

ultimately causing economic losses to the operator.

In the following section, we propose an original model for the anticipatory allocation of

capacity to network slices, which is mindful of all operating costs linked to (i) unnecessary

resource overprovisioning, (ii) non-serviced demands, (iii) resource instantiation, and

(iv) resource reconfiguration. Our approach is based on the concept ofmulti-timescale

orchestrationillustrated in Figure 5.1.

On the left, Deepcog, the algorithm introduced in Section 4.3, tries to

accommodate the demand and to limit overprovisioning, by reconfiguring resources

at every re-orchestration opportunity at disposal (top plot); by doing so, it minimizes

costs (i) and (ii) above (second plot). However, it also ceaselessly instantiates or

de-commissions capacity, and reallocates available resources in a sustained way.

This incurs in substantial instantiation and reconfiguration fees (third plot) that

ultimately lead to a high overall economic cost (bottom plot).

On the right, our model performs the orchestration at two timescales, and by

telling apart two classes of resources. Along-timescale orchestratoroperates over

extended intervals that span multiple re-orchestration opportunities; it allocates

adedicated capacityto each slice and also reserves an additionalshared capacity

accessible by any slice. Both capacities remain constant across the extended

interval, limiting the frequency of instantiation and thus cost (iii). Only the

shared capacity is then reallocated at every re-orchestration opportunity by ashort-

timescale orchestrator, while the configuration of the dedicated capacity is preserved

throughout the extended interval, thus reducing cost (iv). Both long- and short-

timescale orchestrators decide on the amount of (dedicated and shared) resources

to be allocated to each slice to also minimize the usual costs (i) and (ii). This

comprehensive strategy results in a47% reduction of the total cost.

Figure 5.1 exemplifies how reducing instantiation and reconfiguration costs has a

price in terms of increased overprovisioning; a multi-timescale orchestration model allows

exploring this and more trade-o� s for the first time.

78 Network Slicing with shared resources providing hard guarantees

Shared res o u rces
co ntinu o u s ly reco nfi g u red

Dedicated res o u rces
reco nfi g u red o ver extended interval

Slice traf fi c demand

A
llo

c
atio

n

(i
)+
(i
i)

(i
ii
)+
(i
v)

1 2 3 4 5 6 7 8 9 10

R e- o rches tratio n o p p o rtu nities

C
u

mu
l
ati
v
e

A
llo

c
atio

n

(i
)+
(i
i)

(i
ii
)+
(i
v)

1 2 3 4 5 6 7 8 9 10

Extended re- o rches tratio n intervals

C
u

mu
l
ati
v
e

- 47 %

Figure 5.1: Toy example illustrating the costs of resource allocation in network slicing.
Top: tra� c demand generated by the slice (black solid line), along with the capacity
allocated based on the prediction, and reconfigured at all available re-orchestration
opportunities (i.e., shared, in red) or only periodically over extended intervals (i.e.,
dedicated, in blue). Second row: Monetary costs due to (i) overprovisioning and (ii)
non-serviced slice tra� c. Third row: Monetary costs of resource (iii) instantiation
and (iv) reconfiguration. The costs are obtained withŸo = Ÿs = Ÿi =1 and
Ÿr =0.5; the meaning of these parameters is explained in Section 5.2. Bottom:
cumulative overall cost over time, for components (i)-(iv). Left: DeepCog [9] updates the
prediction at the fastest rate possible, following well the demand fluctuations, but forcing
continuous reconfigurations. Right: our proposed multi-timescale capacity forecasting
trades slightly increased overprovisioning for reduced instantiation costs (only incurred
once per extended interval) and reconfiguration fees (absent for dedicated resources).

5.2. Orchestration Model and Trade-o� s

Our orchestration model is outlined in Figure 5.2, which also serves the purpose of

illustrating the notation used in the remainder of the paper. Let us denote by⁄i(t) the

tra� c demand generated by services running in sliceiœSat timet. The long-timescale

orchestrator operates on extended intervals of durationTl. At the beginning of each such

interval, it takes decisions on the dedicated capacityxdi(t) allotted to slicei,’iœS, and

on the additional shared capacityxs(t) available to all slices; all capacities are conserved

throughout the followingTl. The bottom plot (A) in Figure 5.2 depicts an example of

allocation resulting from a long-timescale orchestration.

Within an extended interval, the short-timescale orchestrator assigns resources to each

5.2 Orchestration Model and Trade-o� s 79

!i(t)

t

Tl

xi(t)
d

xi(t)
s

Ts

xi(t)
s

!"#$%$&"'('&)#*+,-%-,'./ 0&)1(#$"',#*+*#2-)*

"i(t)

!"#

!$#

#i(t)

xi(t)
d

t

xi(t)
s

3#1&$,4#(.$-.'&)+&%%&$.5)'.'#(

67.#)*#*+$#1&$,4#(.$-.'&)+').#$"-8(

!i(t)

Figure 5.2: Orchestration model. (A) Long-timescale orchestration. The background
time series represents the tra� c demand generated by slicei(grey). The curves portray
the time evolution of the dedicated capacityxdi(t) allocated to slicei(blue), and of the
shared capacityxs(t) (red) over extended intervals of durationTl. Note thatx

s(t) is
added to the dedicated resources to determine the total available capacity, and, unlike
xdi(t), is not reserved for sliceibut available to all slices. (B) Short-timescale orchestration
during one extended interval. At everyTs<Tl, a portionx

s
i(t) (black solid curve) of the

(fixed) shared capacityxs(t) is allocated to slicei, based on the residual demandfli(t) not
satisfied by the (fixed) dedicated resourcesxdi(t). The plot also highlights the volume of
overprovisioned capacity and non-serviced demand (pattern regions), and the slice tra� c
below dedicated capacity”i(t).

sliceiat all re-orchestration opportunities, occurring at everyTs. Decisions are based

on the (estimated) future residual demandfli(t) = max{0,⁄i(t)≠x
d
i(t)}, and lead to the

allocation of an additional capacityxsi(t), for each slicei. The resourcesx
s
i(t)may be

re-configured at everyTs, and are provisioned on top of the dedicatedx
d
i(t). The top plot

(B) in Figure 5.2 illustrates these definitions for a sample short-timescale orchestration

during one extended interval.

5.2.1. Sources of monetary cost

Building on the notation above, we can formally introduce the di� erent costs

associated to the management of resources in sliced networks. As anticipated in

Section 5.1, there are four sources of economic penalty for the operator, as follows.

(i) Unnecessary resource provisioning: the operator incurs a monetary cost in

terms of both Capital Expenditure (CAPEX) and Operating Expenses (OPEX) that is

80 Network Slicing with shared resources providing hard guarantees

directly proportional to the amount of unused resources it allocates to a slice. Such

capacity it is instantiated and configured to no purpose and could be allotted,e.g.,to

other slices to increase the global system e� ciency. This cost at timetis

ÿ

iœS

f1
1
max{0,xdi(t)≠”i(t)}

2
+

ÿ

iœS

f1(max{0,x
s
i(t)≠fli(t)})+

f1
!
xs(t)≠

ÿ

iœS

xsi(t)
"
, (5.1)

where”i(t)=min{⁄i(t),x
d
i(t)}denotes the portion of the demand of sliceiserved by the

dedicated capacity at timet, as shown in plot (B) of Figure 5.2. The first two terms in (5.1)

denote the cost of overprovisioning at sliceiand timet, due to the unneeded allocation

of dedicated and shared capacity, respectively; again, we refer the reader to plot (B) of

Figure 5.2 for an exemplification. The third term captures instead the overprovisioned

shared capacity that is not allocated to any slice by the short-term orchestrator. Function

f1(·)describes the scaling of cost with capacity overprovisioning. As for DeepCog in

Section 4.4.1, here we assume a linear increase of the penalty,i.e.,f1(x)=Ÿox,whereŸo

is the monetary cost of one unit of capacity and is expressed in $/Mbps. However, our

model can easily accommodate di� erent definitions of the scaling law, which may apply

to specific network functions.

(ii) Non-serviced demand: every time the operator does not allocate su� cient

resources to serve the tra� c demand of a slice, it violates the SLA with the tenant, which

triggers a monetary compensation. The associated cost at timetis

ÿ

iœS

Ÿs·1<fli(t)(x
s
i(t)), (5.2)

where1A(x)is an indicator function that takes a value1if the argument satisfies

conditionA, and0otherwise. Thus,1<fli(t)(x
s
i(t))activates when the portion of shared

capacity assigned toidoes not su� ce to meet the service demand; this corresponds to an

underprovisioning situation, as depicted in Figure 5.2. In these cases, the operator has

to indemnify the tenant for a valueŸs, in $, per SLA violation. This definition is also in

line with those used in DeepCog.

(iii) Resource instantiation: in presence of substantial variations of the total tra� c

demand, the operator needs to instantiate new resources to serve the demand of the slice.

In these cases, as discussed in Section 5.1, there exists a cost associated to enabling such

new resources. As an example, if additional VMs Virtual Machines (VMs) have to be

instantiated or migrated to serve the slice, the operator has increased expenses in terms

of power consumption and CPU cycles. In addition, there may be an indirect penalty in

5.2 Orchestration Model and Trade-o� s 81

terms of perceived Quality of Service (QOS), as this operation may take minutes [98] and

disrupt the end user experience. The cost, triggered at everyTlin our multi-timescale

model, can be modeled as

ÿ

iœS

f2(”i(t))·1>xdi(t≠1)

1
xdi(t)

2
+

f2(min{fli(t),x
s
i(t)})·1>xs(t≠1)(x

s(t)). (5.3)

The first term in (5.3) represents the penalty incurred when new dedicated resources must

be instantiated, which occurs whenxdi(t)>x
d
i(t≠1). The second term is equivalent to

the first one, but refers to the shared capacity instantiated to all slices inS. Note that the

costs induced by both terms are functionsf2(·)of the a� ected tra� c that may experience

disruption,i.e.,”i(t)andmin{fli(t),x
s
i(t)},respectively.

1In our performance evaluation,

we consider the cost to be directly proportional to the a� ected tra� c,i.e.,f2(x)=Ÿix,

where the parameterŸicaptures the estimated fee for delaying one unit of capacity due

to resource instantiation, expressed in $/Mbps.

(iv) Resource reconfiguration: while resources are only instantiated at every

Tl, a short-timescale orchestration of the shared capacity within each extended interval

allows accommodating faster fluctuations of the slice demand. Every time the operator

reconfigures the shared capacity, it incurs a cost; as mentioned in Section 5.1, this is

the case with the reconfiguration of the SDN transport networks, or the setup of load

balancers, or the creation of new instances of a Virtual Network Function (VNF) on

a VM previously used by another slice. All these operations have a price in terms of

management delay [98], expressed as

ÿ

iœS

f3(min{fli(t),x
s
i(t)})·1”=xsi(t≠1)(x

s
i(t)). (5.4)

The above cost is present whenever the shared resources must be reconfigured for a slice

i,i.e.,xsi(t)”=x
s
i(t≠1). In such situations, the cost is dependent on the amount of

tra� c a� ected by the reconfiguration process,i.e.,fli(t)bounded byx
s
i(t). In our study,

we assume that the economic penalty is the same for any bit of tra� c using reconfigured

resources, hencef3(x)=Ÿrx,whereŸris in $/Mbps. Also in this case, other functions

can be easily embedded in the overall framework to represent distinctive cost models

available to the operator.

1Accounting for instantiation and reconfiguration costs proportional to the full amount of impacted
demand (rather than,e.g., to the increment of demand with respect to the previous re-orchestration
opportunity) is a safe choice when considering real network operation. Without guarantees on the stability
of the assigned resources in a multi-slice environment, finding a stable and optimal configuration easily
entails the reconfiguration of resources allocated to a large portion of the network, or even to all slices [100].

82 Network Slicing with shared resources providing hard guarantees

5.2.2. Trade-o� s in capacity allocation

The basic trade-o� in anticipatory resource assignment is that between

overprovisioning and non-serviced demands.

Trade-o� A.Increasing the amount of resources makes overprovisioning more

likely, but reduces the probability that the allocated capacity is not su� cient to serve

the future demand. This results in opposing costs (i) and (ii).

Current capacity forecasting models aim at identifying the optimal compromise that

minimizes the joint penalty of the costs in trade-o� A above [9]. However, these models

do not o� er any control over instantiation and reconfiguration. By adopting a multi-

timescale approach, now we are instead capable of factoring such variables in. Specifically,

the model presented in Section 5.2.1 tells apart the capacity allocated to each slice into

a dedicated capacity, re-orchestrated over long timescales with periodTl, and a shared

capacity, re-orchestrated over short timescales with periodTs. This unlocks additional

degrees of freedom: the orchestrator can decide not only how many resources to assign to

a slice, but also which portion of those shall be of each type, and for how long they stay

unaltered.

As in DeepCog,AZTECstill allows addressing trade-o� A above, by controlling the total

allocated capacity during each extended intervalTl,i.e.,x
s(t)+

q
iœSx

d
i(t), and modulate

the costs of overprovisioning and non-serviced demands. Yet, its flexibility enables the

exploration of the following additional trade-o� s.

Trade-o� B.By increasing the dedicated capacityxdi(t)allocated to slicei

during an extended interval, the orchestrator can serve a larger fraction of the slice

tra� c with resources that do not need reconfiguration. However, such resources

cannot be reused by other slices duringTlwhenever they are not needed by slicei.

For instance, in plot (B) of Figure 5.2, increasingxdi(t)would reduce the residual

demandfli(t)that is served with reconfiguration-heavy shared capacity; but it would

also generate additional overprovisioning,e.g., in the fourth and second to last re-

orchestration opportunities. This leads to a trade-o� between costs (i) and (iv).

Trade-o� C.Allocating a larger shared capacityxsi(t)to sliceiduring an

intervalTsreduces the risk that the resources will not be su� cient to serve the future

slice demand. Nevertheless, it also causes the reconfiguration of more resources. As

an example, in plot (B) of Figure 5.2, increasingxsi(t)in the thirdTsslot could

remove the non-serviced demand, but would also grow the reconfiguration penalty.

A trade-o� exists between costs (ii) and (iv).

Trade-o� D. Increasing the durationTlof the extended interval reduces

the cost of resource instantiation, which only occurs once per extended interval.

5.3 TheAZTECFramework 83

However, a higherTlalso forces the dedicated capacitiesx
d
i(t)and the total shared

capacityxs(t)to remain constant for a longer time. With a reduced capability to

tailor the network resources to the fluctuations of the slice tra� c demands, the

orchestrator may incur in increased overprovisioning or underprovisioning. For

instance, extending the timespan of plot (B) in Figure 5.2 to cover a prolonged

demand⁄i(t)may create additional situations wherex
d
i(t)>⁄i(t),i.e., dedicated

resources go wasted, as in the second to lastTsinterval; it can also generate new

cases wherexsi(t)<fli(t), and tra� c peaks are not serviced, as in the central part

of the example. This results in a trade-o� between cost (iii) and joint costs (i) and

(ii).

In the next section, we present a framework that takes automated, anticipatory

decisions on capacity allocation by addressing all trade-o� s outlined above, thanks to

the multi-timescale model.

5.3. TheAZTECFramework

Our framework, named AZTEC(i.e., capacity Allocation for Zero-Touch nEtwork

sliCing), automatically solves trade-o� s A, B and C above by finding an e� ective

compromise among the opposing goals of reducing the operator’s costs in terms of (i)

overprovisioning, (ii) non-serviced slice demands, and (iv) resource reconfiguration. In

addition,AZTECo� ers the operator a handle to control, via a single system parameter,

the penalty associated with (iii) capacity instantiation, to address trade-o� D. Next,

we first provide an overview of the framework in Section 5.3.1, and then discuss the

implementation of its di� erent components for long- and short-timescale orchestration, in

Sections 5.4 and 5.5, respectively.

5.3.1. AZTECin a nutshell

To solve the complex problem of finding an adequate balance of all fees, we adopt

adivide-et-imperaapproach. We separate the di� erent trade-o� s between pairs of cost

sources and sequentially solve them in isolation. The overall organization of our proposed

framework is outlined in Figure 5.3.

AZTECperforms both long- and short-timescale orchestration. As explained in

Section 5.1, the long-timescale orchestrator triggers at the beginning of each extended

interval, and is in charge of allocating the dedicated capacitiesxdi(t)and the total shared

capacityxs(t), which will then be preserved over the followingTlinterval. This function

is realized in our framework by blocks (I) and (II), which operate as follows.

(I)This block performs the forecasting of the long-term dedicated capacity for

each network slicexdi(t), using as input information about the actual tra� c

84 Network Slicing with shared resources providing hard guarantees

!"#$%&'()*+,-.%/(&*011-2(3+40#3/

!i,x(t-1),…,!i,x(t-N)

!i

!x

t-1

t-N5

t-1

t-N5

5

5

!"#$%%

"&'(')* +),,-./'001/*12

5

3)*()*

0kr ko

5

!"#$%%

"&'(')* +),,-./'001/*12

5

3)*()*

0 2
"

2
"

+),,-./'001/*12

3)*()*

5 5

"&'(')*

!"'(6.#78&+*4(3+3-20&+3(20$02-&9(1.*+20/&-#7

!:+;$+*'(<=.*&8&+*4(3+40#3($*+3-2&-.#

!""'(6.#78&+*4(&.&0;(/=0*+3(20$02-&9(1.*+20/&-#7

xi(t)
d

!i(t)
~

!"""'(<=.*&8&+*4(/=0*+3(20$02-&9(0;;.20&-.#

xi(t)
s

xi(t)
s

xi(t)
d

0
ks

ko

#i(t)
~

>

$i

4

4 4

Figure 5.3: Overview of theAZTECframework. The learning flow proceeds from left to
right. The input mobile tra� c data is processed by deep neural networks that return,
for each sliceiœS, the long-term dedicated capacityxdi(t) and the short-term estimated
demand⁄̃i(t), respectively. These values are combined to obtain the estimated residual
demands ̃fli(t). The aggregate residual demand over all slices is input to a further deep
neural network to determine the long-term shared capacityxs(t). Such capacity is then
fed, along with per-slice residuals, to an optimization module that allocates the shared
resourcesxsi(t).

generated by each slice during the precedingNre-orchestration opportunities. As

discussed for trade-o� B in Section 5.2.2, the capacityxdi(t) modulates the impact

of (i) provisioning unnecessary dedicated resources versus (iv) re-configuring the

shared resources needed to serve the residual demand beyondxdi(t). Thus, block (I)

identifies thexdi(t) that minimizes the joint costs (i) and (iv).

(II)This block is in charge of determining the long-term shared capacityxs(t)

available to any slice during the subsequent time intervalTl. The shared capacity

is used to serve the residual demands of all slices, hencexs(t) shall be dimensioned

on the aggregate residual tra� c
q
iœSfli(t). To determine this, block (II) receives

as input an estimate of such aggregate during the previous extended interval,i.e.,
q
iœSfl̃i(t),tœ[t≠(Tl/Ts),t≠1]. The approximate ̃fli(t) = max{0,̃⁄i(t)≠x

d
i(t)}

come from a forecast⁄̃i(t) returned by a legacy tra� c predictor
2that forecasts

per-slice demands over the next re-orchestration opportunityt. Based on such

residual demands, block (II) computesxs(t) such that (i) overprovisioning of shared

resources is reduced as much as possible, and (ii) all residual demands can be

accommodated withinxs(t). In this way, block (II) addresses trade-o� A, jointly

minimizing costs (i) and (ii).

Once the long-term capacitiesxdi(t),’iœS, andx
s(t) are set, the short-timescale

2Note that we could have employed the real tra� c demand⁄i(t) observed during the previous interval
Tlto determine the actual residualsfli(t). However, the short-timescale orchestrator (presented next) needs
to operate on the predicted demand̃⁄i(t) over the futureTsinterval. Considering the same estimates in
the long-timescale module allows allocating the shared capacityxs(t) in a way that is conscious of the
inaccuracy of the information available during the following short-term resource assignment phase of the
framework.

5.4 Long-timescale orchestration 85

orchestrator assigns portionsxsi(t)of the total shared resources to each slice. This

allocation occurs at every re-orchestration opportunity, spaced byTs, and is carried out

by block (III) of theAZTECframework as follows.

(III)This block receives as input the long-term shared capacityxs(t), and the

future residual demand÷fli(t)expected for each sliceiduring the followingTs.The

available total capacity then is allotted to each slice in a way to solve trade-o� C in

Section 5.2.2. Therefore, block (III) computesxsi(t)for eachiœS,byminimizingthe

combination of costs (ii) and (iv), corresponding to insu� cient allocated capacity

and additional shared resource reconfiguration, respectively.

Overall, blocks (I)-(III) return a forecast of all capacitiesxdi(t),x
s(t)andxsi(t)that

the operator shall allocate over both long and short intervals of durationTlandTs,

respectively. The resulting anticipatory allotment reduces the network management

costs associated with the provisioning of exceeding or inadequate resources, and of their

reconfiguration over time.

We remark that the penalty of network resource instantiation is not included in this

picture. As explained in Section 5.2.2, control on instantiation costs can be achieved by

acting on the duration of the extended re-orchestration interval,i.e.,Tl: the larger this

duration, the lower the costs resulting from resource instantiation in (5.3).AZTECdoes not

take automated decisions on the value ofTl; instead, it provides via such a parameter an

explicit knob that allows the operator to implement any strategy for coping with trade-o�

D. The rationale is thatTlis a system parameter that is best set by the operator, based

on expert knowledge of the underlying virtualization technology.

The implementation of the blocks (I)-(III) above leverages a combination of deep

learning architectures and numerical optimization methods, which we detail next.

5.4. Long-timescale orchestration

The long-timescale orchestration is carried out by blocks (I) and (II) of theAZTEC

framework, as follows.

5.4.1. Long-term dedicated capacity forecasting

Block (I) is implemented by a Deep Neural Network (DNN) whose structure is

inspired by recent breakthroughs in machine learning for image processing [74]. Indeed,

block (I) operates on data about the tra� c recorded at each base station in the target

area over several past time intervals, which can be assimilated to pixels in a time

sequence of still images that compose a video. As described in Section 4.3.4, this first

requires pre-processing the mobile data tra� c, so as to map base station positions into

86 Network Slicing with shared resources providing hard guarantees

the matrix form required by DNN, which we do by means of the same correlation-

preserving transformation explained in Section 4.3.4. The resulting input is a 4D tensor

⁄i,øx(t≠1),...,⁄i,øx(t≠N),where⁄i,øx(t)is the o� ered load at the base station associated

with matrix elementøx={m, n}, for services running in sliceiœSand at timet. Following

recent advances in machine learning for mobile network tra� c analysis, we treat each slice

iœSin the same way of a color channel in DNN for imaging [101]. This approach lets

us process the input along the{øx, t}dimensions via 3D Convolutional Neural Network

(3D-CNN) layers, which are very e� cient in extracting spatiotemporal features; at the

same time, di� erent slicesiare examined in parallel as multiple levels of the same data.

The DNN architecture, illustrated in Figure 5.3, consists of three 3D-CNN layers

with32,32and16neurons each, and(3,3,3),(6,6,6)and(6,6,6)kernels, respectively.

The second and third 3D-CNN layers are followed by dropout layers with probability

0.3, which are known to regularize the network and limit overfitting during the training

phase [77]. The convolutional layers constitute the encoder, in charge of extracting

meaningful complex features from the data. They are followed by a decoder whose

objective is learning global patterns from the feature space. Fully Connected (FC) layers

are especially well suited to that purpose, and we leverage three in our implementation,

with64,32, andÎSÎneurons, respectively, where operatorÎ·Îdenotes the cardinality of

the argument set. Note that the last layer outputs one value per channel, resulting in one

value for each sliceiœS. All layers employ Rectified Linear Unit (ReLU) as the neuron

activation function, except for the last FC layer, which uses a linear activation function

to provide the actual capacity forecast value.

The loss function that drives the DNN training is a custom expression designed to

account for the actual management costs incurred by the operator in case of errors in the

orchestration of the dedicated capacity. If the operator were able to allocate to a slicei

a constant capacityxdi(t)that perfectly matched the actual demand⁄i(t)over the next

Tl, the error and cost would be nil: this is the ideal scenario where all the demand is

serviced, without any overprovisioning or re-configuration. However, in practical cases,

it is impossible to perfectly predict⁄i(t), which is also very unlikely to be constant over

the wholeTl. In this case, positive errorsx
d
i(t)≠⁄i(t)lead to overprovisioning, with a

cost set by the first term of (5.1) in Section 5.2.1, and negative errors imply that the

demand in excess ofxdi(t)needs to be served by the shared capacity, with (5.4) setting

the re-configuration penalty3.

Positive errors yield”i(t)=⁄i(t),whilefli(t)=⁄i(t)≠x
d
i(t)for negative ones. Then,

the loss function forxdi(t)allocated attis
q
tœT¸

(I)
i(t),whereTis the set of concerned

3We remark that the long-term orchestrator is agnostic of the short-timescale resource assignment, and
thus cannot takexsi(t)into account when computing the cost of negative errors. To deal with this, block (I)
assumes a perfect management of shared capacity that always accommodate the residual demand; also,
it considers that the residual demand always varies across re-orchestration opportunities. This simplifies
(5.4) to

q
iœS.
f3(fli(t)).

5.4 Long-timescale orchestration 87

re-orchestration opportunities{t, . . . , t+(Tl/Ts)≠1}, and

¸
(I)
i(t)=

Y
_]

_[

f3
1
⁄i(t)≠x

d
i(t)
2
ifxdi(t)Æ⁄i(t)

f1
1
xdi(t)≠⁄i(t)

2
otherwise.

(5.5)

We stress that (5.5) satisfies the desirable property of having partial derivatives that

form a piece-wise constant function, which guarantees robust and fast convergence under

popular first-order optimizers like Adam [79].

In order to further improve the quality of the allocation of dedicated resources, we

leverage a recent result in neural network design, which allows estimating the uncertainty

of the learning outcome. Specifically, adding dropout layers during model testing is

mathematically equivalent to generating an approximation of the probabilistic deep

Gaussian process [102]. This observation, which holds for DNNs with arbitrary depth and

non-linearities, provides a way to return a distribution instead of a single output value.

Following this, we activate the dropout layers, adopt a Monte Carlo strategy and perform

the forward passLtimes for each test input, obtaining outputs{xd,1i (t),...,x
d,L
i (t)}for,

sliceiat timet. We then compute the meanµdi(t)=1/L·
qL
l=1x

d,l
i(t)as well as the

variance‡di(t)=1/L·
qL
l=1(µ

d
i(t)≠x

d,l
i(t))

2, and approximate the model uncertainty as

N(µdi(t),‡
d
i(t)).

The knowledge of the model uncertainty can be then leveraged to add a safety margin

to the standard DNN outcome. Since the whole support ofN(µdi(t),‡
d
i(t))represents

potentially correct values of the dedicated capacity, block (I) returns the99thpercentile

of the distribution; this makes it very unlikely to output axdi(t)that is lower than the

best one. Thus, when the DNN is confident about the quality of the result, it returns a

value close to the mean; vice versa, it adds a substantial safety margin. We provide an

example of the advantage of this approach in Section 5.6.1.

5.4.2. Long-term total shared capacity forecasting

Block (II) is also implemented using a dedicated DNN. The structure, in this case,

is simpler, as the network operates on a sensibly less rich input than that of Block (I).

Specifically, the input is a single time series of the total residual demand in the past

extended interval,i.e.,
q
iœS÷fli(t),tœ[t≠(Tl/Ts),t≠1].Thetimeseriesisprocessedby

three FC layers with128,64and1neurons, respectively; the first two use ReLU activation

functions, while the last uses a linear function to produce the final output. A dropout

layer with probability0.2is present between the first and second FC layers.

The DNN is trained with a di� erent custom loss function that accounts for the

correct sources of monetary penalty in case of errors. As with the previous DNN, an

ideal case where a fixed long-term shared capacityxs(t)perfectly matches a constant

aggregate residual demand is unrealistic, and errors are unavoidable. Positive errors yield

88 Network Slicing with shared resources providing hard guarantees

overprovisioning ofxs(t), whereas negative ones have a cost in terms of denied tra� c.

The former corresponds to the second and third terms4in (5.1), while the latter to the

monetary fee5for SLA violations in (5.2). By writing these costs jointly for the extended

interval starting att, we obtain a loss function
q
tœT¸

(II)
i (t),where

¸
(II)
i (t)=

Y
]

[

Ÿs ifxs(t)<
q
iœS÷fli(t)

f1(x
s(t)≠

q
iœS÷fli(t))otherwise.

(5.6)

The expression in (5.6) needs to be slightly modified by adding minimum slopes that make

the function di� erentiable overR. With this, the loss function has the same desirable

properties as the ones mentioned for (5.5). Finally, we take advantage of the dropout

layer also in this case: we thus approximate the model uncertainty, and return the99th

percentile of the distribution as a safety margin on the correct value ofxs(t).

5.5. Short-timescale orchestration

The short-timescale orchestration consists of block (III) supported by a helper short-

term demand predictor, as outlined in Figure 5.3. The predictor uses a DNN architecture

that is very similar to that adopted by block (I); indeed, the two DNNs operate on

the same input, and produce per-slice forecasts. The main di� erences between them

is in the frequency of operation and, most notably, in the loss function. The helper

predictor outputs a prediction at everyTsinstead of at everyTl. Furthermore, it uses a

traditional Mean Absolute Error (MAE) instead of the cost-aware loss function in (5.5):

Mean Absolute Error (MAE) considers identical contributions by the positive and negative

errors, thus producing an output÷⁄i(t)that tries to follow as closely as possible the

upcoming slice tra� c demands.

5.5.1. Short-term shared capacity allocation

Given the total shared capacityxs(t), and the estimated residual demands÷fli(t),AZTEC

has to decide how to distributexs(t)across the requesting slices at everyTs. Thisis

implemented in block (III) with a numerical optimization method.

The primary objective of the shared resource assignment performed by block (III) is

avoiding SLA violations due to insu� cient available capacity, which would induce a cost

4Note that, as per the remark in footnote 3, the shared capacity allotted to individual slicesxsi(t)used
in the original expression in (5.1) has not yet been determined at this stage. The safest option is hence to
assume that the whole residual demands will be correctly assigned by the short-term orchestrator. This
leads to approximating the allocated shared resourcesxsi(t)by÷fli(t). Under this hypothesis, the second
and third terms in (5.1) reduce to0andf1

!
xs(t)≠

q
iœS
÷fli(t)
"
, respectively.

5The same observation as in footnote 4 applies here. Under an identical assumption of a perfect
short-term assignment ofxsi(t)=÷fli(t), the only case where some demand can be denied is that of an
insu� cient total shared capacityxs(t). Then, (5.2) translates intoŸs·1<

q
iœS

÷fli(t)
(xs(t)).

5.5 Short-timescale orchestration 89

modelled in (5.2). At the same time, issuing non-essential resources has a penalty in

terms of unnecessary reconfiguration cost, as captured by the expression in (5.4). This

corresponds to trade-o� C in Section 5.2.2 and can be formulated as

min
xsi(t)

ÿ

iœS

ŸsP(÷fli(t)>x
s
i(t)) (5.7)

subject to
ÿ

iœS

xsi(t)Æx
s(t),

The above minimizes the expected value of the expenditure for non-serviced slice demands

in (5.2). Note that, by squeezing as many slices as possible within the total capacity,

the solution to (5.7) implicitly addresses the challenge of minimizing reconfiguration

costs. Also, the formulation in (5.7) deals with probabilities: this is consistent with

the probabilistic nature of÷fli(t)granted by uncertainty approximation via dropout layers.

Due to the empirical nature of the probability distribution÷fli(t), (5.7) has no closed

form and thus we cannot employ classical optimization methods. Furthermore, as we do

not have a di� erentiable objective function, we cannot employ approaches that depend

on gradients. Hence, we apply numerical methods that search for the optimal solution

within the feasible set of[xsi(t)]. To simplify this search, we apply the following variable

change:

pi(t)=

Y
]

[

xsi(t)/
!
xsi(t)+x

s
i+1(t)

"
ifiœ[1,ÎSÎ≠1]

q
ix
s
i(t)/x

s(t) ifi=S
(5.8)

which yieldspi(t)œ[0,1],’iœS.

The above allows us to search in the N-dimensional variable space with fixed bounds

[0,1]on all variables. Note that the firstÎSÎ≠1variablespi(t)represent the relative

amount of shared capacity assigned to sliceiwith respect to the slicei+1, while the last

pÎSÎ(t)represents the overall amount of shared capacity assigned to the services. This

variable change serves the following purposes: first, the constraint on the sum of the

variables is now enforced through a constraint on each variable; second, we avoid ties

between variables, allowing a safe exploration of the solution space where we can focus

one variable, and changing itspi(t)value within the entire range without impacting any

of the other variablespj(t)forj”=i.

Algorithm 4 detailsAZTECassignment algorithm for shared resources. The algorithm

is composed by a main function, which takes as input the total available shared capacity

xs(t)and the empirical distribution of the capacity needed by each service in the next time

interval÷fli(t), and two helper functions:COSTandTRANSFORM. The former computes the

cost expected value for a given assignmentp1(t),...,pÎSÎ(t), while the latter transforms

pi(t)back tox
s
i(t). By using the variable change described above, we can use a gradient-

free algorithm which works with constrained input variable for the minimization of (5.7).

In particular, we chose as numerical optimizer the BOBYQA Algorithm [103], which is a

90 Network Slicing with shared resources providing hard guarantees

Algorithm 4Shared resource assignment algorithm

1:FunctionTRANSFORM(p1,...,pÎSÎ):

2: xsÎSÎ=
pÎSÎx

s

1qÎSÎ≠1

i=1

rÎSÎ≠1
j=i

pj
1≠pj

2
+1

3: xsi=
1rÎSÎ≠1
j=i

pj
1≠pj

2
xsÎSÎ,iœ[1,ÎSÎ≠1]

4:returnxs1,...,x
s
ÎSÎ

5:FunctionCOST(p1,...,pÎSÎ):
6: xs1,...,x

s
ÎSÎΩTRANSFORM(p1,...,pÎSÎ)

7: XΩ
q
iŸsP(÷fli>x

s
i)

8:returnX
9:FunctionMAIN(xs,÷fli):
10: Setp1...pÎSÎ≠1=0.5
11: LetcΩ BOBYQA(COST(p1,...,pÎSÎ))Fixedp1,...,pÎSÎ≠1,
12: p01,...,p

0
ÎSÎΩ GOLDEN(c(pÎSÎ));

13: p1,...,pÎSÎΩ BOBYQA(p
0
1,...,p

0
ÎSÎ)

14: xs1,...,x
s
ÎSÎΩTRANSFORM(p1,...,pÎSÎ)

15:returnxs1,...,x
s
ÎSÎ

gradient-free optimizer that allows constrained variables.

When running the above numerical method, we have to set a starting point. We

set the relative ratios of shared capacity across services as 0.5,i.e., all services receive

the same amount of resources (see line 10). Given the possibly high number of services

that can be included in the system, there may be di� erent local minima and there exists

the chance of getting stuck in a local minima that does not deliver a good performance.

To reduce the probability that this happens, we perform a search for the best starting

pÎSÎ(t). In particular, we run the Golden Section method [104] consideringpÎSÎ(t)as

the only variable for the cost. After this step, the initial value ofpÎSÎ(t)is set to the

value resulting from the Golden Section search. With this, we obtain the startingp0set

p01(t),...,p
0
ÎSÎ(t). Then, we perform a BOBYQA minimization using it as the starting

point. This provides the values that minimize the overall expected cost.

5.6. AZTECPerformance Evaluation

In this section we evaluate the performance ofAZTECwhich framework has been

detailed in Section 5.3. We evaluateAZTECwith an extensive dataset of mobile data tra� c

collected at 470 eNodeBs of a real-world network serving a large metropolitan region in

Europe, the same utilized to assess DeepCog’s performance in Section 4.5. Similarly,

the measurement data concerns a set of five popular and heterogeneous mobile services,

namely Youtube, Facebook, Instagram, Snapchat, and iTunes, whose tra� c flows were

classified by the operator using proprietary Deep Packet Inspection (DPI) techniques.

We assume that each mobile service is associated to one dedicated slice in S, and

5.6AZTECPerformance Evaluation 91

Overall monetary cost0.35

xdi(t) xsi(t) xs(t) � i(t)

0AM 4AM 8AM 12 PM 4PM 8PM 0AM

Overall monetary cost0.71

Figure 5.4: Time series of sample resource allocations. Top:AZTECframework. Bottom:
equivalent framework where no uncertainty estimates are used.

investigate the anticipatory allocation of resources at a single datacenter that runs

virtualized core network functions over the mobile data tra� c generated in the city

under study. To this end, we train theAZTECframework on eight weeks of data, use

two additional weeks for validation, and finally run experiments on another two weeks.

The three time periods do not overlap, and all results refer to the test phase only. Upon

extensive appraisal of the system performance, we have observed that the DNNs inAZTEC

best operate with data from the previousN =6intervals of durationTs,hencewe

employ a[6◊47◊10◊5]4D tensor input. Unless stated otherwise, our default settings

areŸo=Ÿs=Ÿi=1andŸr=0.5, so as to account for the typically relatively lower cost

per Mbps of resource reconfiguration; also, we setTs=5minutes andTl= 30minutes

to align with the capabilities of current Virtual Infrastructure Manager (VIM) [89]. In

all our tests,AZTECreturned capacity allocations within one second, which is suitable for

real-time operation in practical systems.

5.6.1. Harnessing the forecast uncertainty

As presented in Section 5.3, we leverage a recent result on the approximation of

uncertainty in DNN to include a safety margin in the model forecast. In a preliminary

step for our evaluation ofAZTEC, we investigate the impact of including the knowledge of

the estimated uncertainty in the forecast produced by the di� erent DNNs that are part

of the framework.

Figure 5.4 visually shows the benefit of this design choice, by comparing theAZTEC

with and without uncertainty; in the second case, dropout layers are deactivated during

test, and all DNNs produce a legacy single-value output. In each plot, we report the

anticipatory allocation of capacitiesxdi(t)andx
s
i(t)to the target slicei, as well as that

of the total shared capacityxs(t); the actual demand is on the background. The top plot

92 Network Slicing with shared resources providing hard guarantees

0.05 0.5 5
ReconÞguration penalty,�r

0

1

2

3

4
N
or
m
ali
z
e
d

m
o
n
et
ar
y
c
os
t

�
1.
8
4

�
2.
8
0

�
1
0.
1
5

�
4.
6
4

�
5.
7
8

�
1
3.
3
8

0.
3
7

0.
3
5

0.
4
1

AZTEC

DEEPCOG

INFOCOM17

Figure 5.5: Normalized monetary cost of AZTEC and two benchmarks versus the
reconfiguration cost scaling factorŸr. Numbers denote the exact cost forAZTEC, and
the added cost factor for the benchmarks.

provides in fact an illustrative example of the typical time-varying resource allocation

achieved byAZTEC, where capacities follow the fluctuations of the slice tra� c.

More interestingly, AZTECachieves a more reliable assignment of slice resources by

accounting for the level of uncertainty of the predictions. The total capacityxdi(t)+x
s
i(t)

is smoother and avoids situations where the demand cannot be serviced. Conversely,

the framework not accounting for uncertainties yields a capacity allocation that is noisy

and incurs in substantial SLA violations due to unsatisfied demands. In addition,AZTEC

achieves such a result while saving on the amount of allocated resources (note the lower

xs(t)curve), which ultimately results in an overall monetary cost that is half of that

incurred by the framework without uncertainties. While this is an excerpt from a specific

test, we recorded similar gains for all di� erent settings explored in our analysis.

5.6.2. Comparative evaluation

We next assess the performance of AZTECagainst two recent benchmarks:INFOCOM17,

a state-of-the-art mobile network tra� c predictor [57], andDeepCog, the capacity

forecasting model for network resource allocation described in Section 4.3; both solutions

are based on custom-built DNNs.INFOCOM17is a traditional demand predictor, agnostic of

all resource management costs, whereasDeepCogtakes anticipatory decisions on capacity

allocation that aim exclusively at minimizing the trade-o� A of overprovisioning and

5.6AZTECPerformance Evaluation 93

0.05 0.5 5
ReconÞguration penalty,�r

0.6

0.8

1

All
oc
at
e
d
C
a
p
ac
it
y

1.21% 0.89% 0.70%

Nonserviceddemandfraction

� ix
d
i xs

Figure 5.6: Total dedicated capacity
q
iœSx

d
i(t)and shared capacityx

s(t)allocated by
AZTECversusŸr. Numbers denote the fraction of re-orchestration opportunities with
insu� cient allocated resources.

non-serviced demands.

Figure 5.5 summarizes the result of the comparative evaluation, showing the

overall normalized6monetary cost of the anticipatory resource management against

reconfiguration prices spanning two orders of magnitude. The gain ofAZTECover

the benchmarks is clear, as even a state-of-the-art capacity predictor likeINFOCOM19

increments the cost for the operator by a factor that ranges from 1.7 to beyond 10.

As expected, the benchmark solutions inherently su� er more when reconfiguration costs

–which they neglect– grow; however, even in a situation favorable to reconfiguration-

agnostic approaches where such costs are small (e.g., forŸr=0.05),AZTECstill yields a

lower economic fee.

Finally, not only the relative performance is promising, but also the absolute

(normalized) values show the potential advantage of a zero-touch network slicing

paradigm. Indeed, by automatically and dynamically allocating capacity in advance,

AZTECcan cut management costs down to35-41% of those incurred with an optimal

6Due to confidentiality reasons, we cannot make the actual economic cost explicit, as it would reveal
the operator’s mobile data tra� c volumes. We thus normalize all results by the cost of an optimal but
completely static resource allocation that dimensions the dedicated capacity to the tra� c peak of each
slice during the test period. This optimal allocation only incurs into overprovisioning costs, computed asq
iœS

q
t
f1(maxt{⁄i(t)}≠⁄i(t)), which represents the normalization term.

94 Network Slicing with shared resources providing hard guarantees

0.05 0.5 5
ReconÞguration penalty,�r

0

0.1

0.2

0.3

N
or
m
ali
z
e
d

M
o
n
et
ar
y
C
os
t

(i) Dedicated

(i)Shared

(ii)

(iii)

(iv)

Figure 5.7: Breakdown of the normalized monetary cost by penalty type. Tags refer to
cost definitions in Section 5.2.1, with overprovisioning cost (i) separated into contributions
of the dedicated capacity,i.e., the first term of (5.1), and of the shared capacity,i.e.,the
second and third terms of (5.1).

static provisioning of resources7.

5.6.3. Monetary cost breakdown

The above results prove that AZTECmaintains the combined costs described in

Section 5.2.1 under control across a wide range of reconfiguration penalties, by properly

adapting the portion of capacity allocated as dedicated,i.e.,xdi(t), and as shared,i.e.,

xs(i)t, to each slicei. To gain further insights on this, Figure 5.6 illustrates the capacity

breakdown for tests in Figure 5.5: a wider fraction of tra� c is allocated to the more

flexible shared capacity when the reconfiguration fee is low; instead, moving tra� c to

the dedicated capacity becomes more cost-e� cient asŸrgrows. An important remark is

that in all casesAZTECincurs into SLA violations due to insu� cient available resources in

0.7-1.21% of the re-orchestration opportunities: as a term of comparison,DeepCogcauses

violations in at least5.80% of the system observation time.

The ductility of theAZTECorchestration results in a relative contribution of each

cost source that stays fairly constant for di� erent values ofŸr, as shown in Figure 5.7.

Here, the most notable trend is in the split of the overprovisioning cost, which grows for

the dedicated capacity and decreases for the shared capacity. Indeed, and consistently

7See footnote 6.

5.6AZTECPerformance Evaluation 95

30m 1h 2h
Extended interval,Tl

0

0.2

0.4

0.6

0.8

1
�i=1

�i=5

�i=10

30m 1h 2h
Extended interval,Tl

0

0.2

0.4

0.6

0.8

(i) Dedicated

(i)Shared

(ii)

(iii)

(iv)

(a) (b)

Figure 5.8: (a) Normalized monetary cost vs the duration of the extended re-orchestration
intervalTl, for di� erent scaling factorsŸiof the resource instantiation cost. (b) Breakdown
of the normalized monetary cost by penalty type, forŸi= 10.

with Figure 5.6, provisioning dedicated resources in excess becomes more convenient than

reconfiguring shared resources asŸrbecomes larger.

Overall, these results demonstrate the capability of AZTECto properly solve the

multiple trade-o� s among resource management costs outlined in Section 5.2.2, helping

the operator to drastically reduce operation expenses in an automated way.

5.6.4. Controlling resource instantiation costs

Although AZTECdoes not take autonomous decisions on trade-o� s involving the

instantiation of resources, it still o� ers direct control on the associated cost (iii) by means

of theTlparameter. Indeed, as operators incur into this type of fee once every extended

re-orchestration interval, making this longer allows limiting the penalty. In Figure 5.8a

we investigate the e� ectiveness of such a lever to control the instantiation cost, whereTl

varies from30minutes to2hours.

The results show thatTlhas an impact on the total cost when it is actually needed. In

other words, when the scaling factorŸiis small, the influence of the resource instantiation

penalty on the total cost is negligible, and varyingTlhas little e� ect. However, asŸi

grows, the duration of the extended interval becomes a functional handle to control the

(now substantial) resource instantiation fee: increasingTlfrom30minutes to2hours can

reduce the overall cost by40%whenŸi= 10.

96 Network Slicing with shared resources providing hard guarantees

Further detail is provided in Figure 5.8b, where the contribution of the di� erent

management costs are told apart, forŸi= 10. We observe that, as expected, the cost of (i)

overprovisioning and (ii) non-serviced demands grow withTl. Indeed, if capacitiesx
d
i(t)

andxs(t)remain fixed over a longer interval, this limits the flexibility of the orchestrator

to follow fluctuations in the demand, and forces a more challenging forecast over a longer

time horizon. However, and more importantly, longerTlhave a clear positive impact on

the instantiation cost, which they can reduce by a factor 4 in this specific case study.

Ultimately, these results demonstrate the e� ectiveness ofAZTECin o� ering the operator

with a means to control resource instantiation costs.

6 Conclusions

Network slicing will be one of the pillars of future 5G networks. In this thesis, we

investigated the problems for Admission Control and Resource Orchestration in Network

Slicing, two critical functions of the next mobile network generation. We have identified

the main research problems and by integrating Artificial Intelligence (AI) in the network,

designed novel algorithms and solutions to enable sliced 5G networks.

Network Slicing will bring new players to the 5G business model: the Infrastructure

Providers (InPs) will sell their resources to tenants which, in turn, provide a service to

their users. An open problem within this model is how to admit requests from the tenants,

ensuring that the corresponding SLAs will be satisfied while maximizing the monetization

of the InP. There is the need of new resource allocation mechanisms that take into account

the relationship between the various players.

In the first part of this thesis, we have addressed this issue by designing an admission

control algorithm to be executed by the InP when receiving slice requests from the

tenants. We first present a model based on Semi-Markov Decision Process (SMDP) for

the decision-making process and formulate the optimal revenue problem built on Value

Iteration. While this is very useful in order to obtain a benchmark for comparison, the

algorithm itself has a very high computational cost, which makes it impracticable for real

scenarios. Building on this model, we have first designed an adaptive online algorithm

based on Q-learning that aims at maximizing revenue by learning from the outcome

resulting from the previous decisions. Even though the Q-learning algorithm provides

close to optimal performance and reduces the computational cost compared with Value

Iteration, it becomes infeasible when the state space grows. In Section 3.4.4, we have

then designed an algorithm based on Neural Network (NN): the Network-slicing Neural

Network Admission Control (N3AC) algorithm. The performed evaluation shows that

N3AC (i) performs close to optimal performance, (ii) substantially outperforms naive

approaches as well as smart heuristics, and (iii) only requires few hundreds iterations to

converge to optimal performance. Furthermore, the proposed AI solution scales to large

scenarios and it is flexible enough to adapt to real scenarios.

97

98 Conclusions

In Section 4.3, we have presented DeepCog, an original data analytics tool for the

cognitive management of resources in sliced 5G networks. DeepCog tackles the novel

problem of capacity forecasting, whose solution is key to the sustainable operation of

future multi-tenant mobile networks. Indeed, once slices are admitted into the network,

the InP has to allocate them enough resources for their services delivering with a

predefined quality while minimizing its operational costs. Inspired by recent advances

in deep learning for image and video processing, DeepCog hinges upon a deep neural

network structure, which analyzes antenna-level demand snapshots for di� erent services

in order to provide a prediction of the resources that the operator has to allocate to

accommodate the future load. The operation is performed for individual mobile services

separately, and over a configurable time horizon. At the core of DeepCog there is–-

OMC, a new and customized loss function that drives the deep neural network training

so as to minimize the monetary cost contributed by two main deployment fees,i.e.,

overprovisioning and SLA violation. Ours is, to the best of our knowledge, the only

work to date where a deep learning architecture is explicitly tailored to the problem

of anticipatory resource orchestration in mobile networks. The solution presented in this

thesis thus represents a first attempt to integrate data analytics based on machine learning

into an overall cognitive management framework. Thorough empirical evaluations with

real-world metropolitan-scale data show the substantial advantages granted by DeepCog

over state-of-the-art predictors and other automated orchestration strategies, providing a

first analysis of the practical costs of heterogeneous network slice management across a

variety of case studies.

Assuming that resource instantiation and reconfiguration occur at no costs in a sliced

network is not generally valid. For this reason in Chapter 5 we have designedAZTEC,

a practical multi-timescale orchestration approach for slicing-capable networks. This

approach combines deep learning tools with classic optimization algorithms to provide

a zero-touch anticipatory capacity forecasting for slices. By separating the long-term

assignment of slice-dedicated resources from the short-term re-orchestration of shared

resources, it manages to (i) minimize resource instantiation costs, while (ii) ensuring that

the service demands of all slices always are met, by timely reconfiguring the assignment

of shared resources. InAZTECthe long-term slice-dedicated resources and the short-

term orchestration of shared resources are performed for all the slices at the same

time. Moreover, leveraging on recent result on the approximation of uncertainty in

DNN,AZTECincludes in the forecast process a safety margin that further reduces the

monetary cost. The evaluation results, performed on extensive real-world data show that

AZTECsignificantly improves the performance of state-of-the-art solutions, while providing

operators with a fine-level control on the underlying system.

In summary, in this thesis we have discussed the potentially critical role of AI for the

management and operation of mobile networks that implement network slicing. AI-based

99

solutions can address the di� erent and very complex problems that emerge at multiple

levels, including admission control of new network slices and resource allocation to slices in

the Radio Access Network (RAN), Mobile Edge Computing (MEC) and network core. We

outlined practical deep learning architectures that can solve such problems and designed

three di� erent AI-based approaches, illustrating the high typical gain that one can expect

from integrating AI in network slicing.

The research conducted in this thesis sets a first step through the integration of AI in

the next mobile network generation. Two main outcomes from this work that could drive

future research directions are briefly described next.

1. We have demonstrated that AI-based approaches can be very e� ective for di� erent

problems around network slicing as this involves large tra� c volumes and relatively

relaxed timescales. Future extensions of the proposed approaches can look at the

trade-o� between the complexity required by applying these algorithms and QOS

requirements in case of reduced timescales.

2. In this thesis, we have carefully described a methodology to apply AI to networking

problems. Detailed reasoning behind all the choices involving the input/output

arrangement and architectural aspects have been provided. This methodology could

potentially be leveraged to design algorithms for other networking problems.

References

[1] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and X. Costa-

Perez, “Optimising 5G Infrastructure Markets: The Business of Network Slicing,”

inProc. IEEE INFOCOM’17, Atlanta, USA, May 2017, pp. 910–918.

[2] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,

and A. Banchs, “Mobile tra� c forecasting for maximizing 5G network slicing

resource utilization,” inIEEE INFOCOM 2017-IEEE Conference on Computer

Communications, 2017, pp. 1–9.

[3] P. Rostet al., “Network Slicing to Enable Scalability and Flexibility in 5G Mobile

Networks,”IEEE Communications Magazine, vol. 55, no. 5, pp. 72–79, May 2017.

[4] D. Bega, M. Gramaglia, C. J. Bernardos Cano, A. Banchs, and X. Costa-Perez,

“Toward the network of the future: From enabling technologies to 5G concepts,”

Transactions on Emerging Telecommunications Technologies, vol. 28, no. 8, 2017.

[5] D. S. Michalopoulos, M. Doll, V. Sciancalepore, D. Bega, P. Schneider, and P. Rost,

“Network slicing via function decomposition and flexible network design,” inin Proc.

of IEEE PIMRC, 2017, pp. 1–6.

[6] P. Serrano, M. Gramaglia, D. Bega, D. Gutierrez-Estevez, G. Garcia-Aviles, and

A. Banchs, “The path toward a cloud-aware mobile network protocol stack,”

Transactions on Emerging Telecommunications Technologies, vol. 29, no. 5, p.

e3312, 2018.

[7] D. Bega, A. Banchs, M. Gramaglia, X. Costa-Pérez, and P. Rost, “CARES:

Computation-Aware Scheduling in Virtualized Radio Access Networks,” IEEE

Transactions on Wireless Communications, vol. 17, no. 12, pp. 7993–8006, Oct.

2018.

[8] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, and X. Costa-Perez, “A

machine learning approach to 5G infrastructure market optimization,” IEEE

Transactions on Mobile Computing, 2019.

101

102 REFERENCES

[9] D. Begaet al., “Deepcog: Cognitive network management in sliced 5g networks

with deep learning,” inIEEE INFOCOM 2019, Apr. 2019.

[10] D. Begaet al., “Alfa-OMC: cost-aware deep learning for mobile network resource

orchestration,” inProc. of IEEE INFOCOM NI Workshop, Paris, France, May 2019,

pp. 1–9.

[11] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “DeepCog:

Optimizing Resource Provisioning in Network Slicing with AI-based Capacity

Forecasting,”IEEE JSAC SI-MLinSDNNFV, Dec. 2019.

[12] ——, “AZTEC: Anticipatory Capacity Allocation for Zero-Touch Network Slicing.”

[13] D. Bega, M. Gramaglia, A. Garcia-Saavedra, M. Fiore, A. Banchs, and X. Costa-

Perez, “Network Slicing Meets Artificial Intelligence: an AI-based Framework for

Slice Management.”

[14] NGMN Alliance, “Description of Network Slicing Concept,” Public Deliverable,

2016.

[15] ITU-R, “Minimum requirements related to technical performance for imt-2020 radio

interface(s),” Technical Report, 2017.

[16] C. Zhanget al., “Deep learning in mobile and wireless networking: A survey,”IEEE

Communications Surveys & Tutorials, Mar. 2019.

[17] 3GPP, “Telecommunication management;Study on management and orchestration

of network slicing for next generation network,” 3rd Generation Partnership

Project (3GPP), Technical Report (TR) 28.801, 2018. [Online]. Available:

http://www.3gpp.org/DynaReport/28801.htm

[18] NGMN Alliance, “NGMN Use Cases related to Self Organising Network, Overall

Description,” White Paper, May 2007.

[19] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio,Deep learning. MITpress

Cambridge, 2016, vol. 1.

[20] NGMN Alliance, “5G White Paper,” Public Deliverable, Feb. 2015.

[21] 5G-PPP Architecture Working Group, “View on 5G Architecture,” Public

Deliverable, Jul. 2016.

[22] 3GPP, “Technical Specification Group Services and System Aspects; Study on

Architecture for Next Generation System,” TR 23.799, v0.7.0, Aug. 2016.

REFERENCES 103

[23] A. Gudipati, L. Li, and S. Katti, “RadioVisor: A Slicing Plane for Radio Access

Networks,” inProc. of ACM HotSDN, Chicago, Illinois, Aug. 2014, pp. 237–238.

[24] I. Malanchini, S. Valentin, and O. Aydin, “Generalized resource sharing for multiple

operators in cellular wireless networks,” inProc. IEEE IWCMC, Nicosia, Cyprus,

Aug. 2014, pp. 803–808.

[25] R. Mahindra, M. A. Khojastepour, H. Zhang, and S. Rangarajan, “Radio Access

Network sharing in cellular networks,” inProc. IEEE ICNP, Göttingen, Germany,

Oct. 2013, pp. 1–10.

[26] S. Rathinakumar and M. Marina, “GAVEL: Strategy-proof Ascending Bid Auction

for Dynamic Licensed Shared Access,” inProc. ACM MobiHoc, Paderborn,

Germany, Jul. 2016, pp. 121–130.

[27] X. Zhou, R. Li, T. Chen, and H. Zhang, “Network slicing as a service: enabling

enterprises’ own software-defined cellular networks,”IEEE Commun. Mag., vol. 54,

no. 7, pp. 146–153, Jul. 2016.

[28] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From network sharing to

multi-tenancy: The 5G network slice broker,”IEEE Commun. Mag., vol. 54, no. 7,

pp. 32–39, Jul. 2016.

[29] M. A. Habibi, B. Han, and H. D. Schotten, “Network Slicing in 5G Mobile

Communication Architecture, Profit Modeling, and Challenges,”arXiv:1707.00852,

2017.

[30] B. Han, S. Tayade, and H. D. Schotten, “Modeling profit of sliced 5G networks

for advanced network resource management and slice implementation,” inProc. of

IEEE ISCC, Heraklion, Greece, Jul. 2017, pp. 576–581.

[31] B. Han, D. Feng, L. Ji, and H. D. Schotten, “A Profit-Maximizing Strategy of

Network Resource Management for 5G Tenant Slices,”a arXiv:1709.09229, 2017.

[32] S. Shenker, “Fundamental design issues for the future Internet,”IEEE J. Sel. Areas

Commun., vol. 13, no. 7, pp. 1176–1188, 1995.

[33] M. Berenson, D. Levine, K. A. Szabat, and T. C. Krehbiel,Basic business statistics:

Concepts and applications. Pearson higher education AU, 2014.

[34] J. L. Devore,Probability and Statistics for Engineering and the Sciences. Cengage

learning, 2011.

[35] ITU-R, “Guidelines for evaluation of radio interface technologies for imt-advanced,”

Report ITU-R M.2135-1, 2016.

104 REFERENCES

[36] R. Bellman, “A Markovian decision process,” DTIC, Tech. Rep., 1957.

[37] R. Howard,Dynamic Programming and Markov Processes. Technology Press-

Wiley, 1960.

[38] S. Lippman, “Applying a New Device in the Optimization of Exponential Queuing

Systems,”Operation Research, vol. 23, no. 4, pp. 687–710, Aug. 1975.

[39] H. Tijms,A First Course in Stochastic Models. J. Wiley & Sons, 2003.

[40] C. Watkins and P. Dayan, “Q-learning,”Machine learning, vol. 8, no. 3-4, pp.

279–292, 1992.

[41] E. Even-Dar and Y. Mansour, “Learning rates for Q-learning,”Journal of Machine

Learning Research, vol. 5, pp. 1–25, Dec. 2003.

[42] V. Mnihet al., “Playing atari with deep reinforcement learning,”arXiv:1312.5602,

2013.

[43] ——, “Human-level control through deep reinforcement learning,”Nature, vol. 518,

no. 7540, p. 529, Feb. 2015.

[44] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, “Machine Learning

Paradigms for Next-Generation Wireless Networks,”IEEE Wireless Commun.,

vol. 24, no. 2, pp. 98–105, Dec. 2017.

[45] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards,Artificial

Intelligence: a Modern Approach. Prentice hall Upper Saddle River, 2003, vol. 2,

no. 9.

[46] F. S. Melo and M. I. Ribeiro, “Q-learning with linear function approximation,” in

Proc. COLT, San Diego, USA, Jun. 2007, pp. 308–322.

[47] F. Chollet,Deep learning with Python. Manning Publications Co, 2018.

[48] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal approximators,”Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[49] Tieleman, Tijmen and Hinton, Geo� ery, “RMSprop gradient optimization,” http:

//www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf, 2014.

[50] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”Nature, vol. 521, no. 7553,

p. 436, May 2015.

[51] 3GPP, “Technical Specification Group Services ans System Aspects; Policy and

charging control architecture,” TS 23.203, v15.1.0, Dec. 2017.

REFERENCES 105

[52] A. de la Olivaet al., “5G-TRANSFORMER: Slicing and Orchestrating Transport

Networks for Industry Verticals,”IEEE Communications Magazine, vol. 56, no. 8,

pp. 78–84, Aug. 2018.

[53] 5G-PPP, “The 5G Infrastructure Association. Pre-structuring Model, version 2.0,”

Nov. 2017.

[54] ETSI, NFVGS, “Network Function Virtualization (NFV) Management and

Orchestration,”NFV-MAN, vol. 1, Dec. 2014.

[55] ETSI, “OSM release FOUR technical overview,” May 2018.

[56] The Linux Foundation, “ONAP, Open Network Automation Framework.” [Online].

Available: https://www.onap.org

[57] J. Wanget al., “Spatiotemporal modeling and prediction in cellular networks: A

big data enabled deep learning approach,” inProc. of IEEE INFOCOM, May 2017,

pp. 1–9.

[58] M. C. Valenti, S. Talarico, and P. Rost, “The role of computational outage in dense

cloud-based centralized radio access networks,” inProc. of IEEE GLOBECOM,

Dec. 2014, pp. 1466–1472.

[59] N. Nikaeinet al., “OpenAirInterface: A Flexible Platform for 5G Research,”ACM

SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 33–38, Oct. 2014.

[60] C. Zhanget al., “Deep Learning in Mobile and Wireless Networking: A Survey,”

arXiv:1803.04311 [cs.NI], Mar. 2018.

[61] M. Wanget al., “Machine learning for networking: Workflow, advances and

opportunities,”IEEE Network, vol. 32, no. 2, pp. 92–99, March 2018.

[62] J. X. Salvatet al., “Overbooking Network Slices Through Yield-driven End-to-end

Orchestration,” inProc. ACM CoNEXT, 2018, pp. 353–365.

[63] J. J. Ayalaet al., “vrAIn: A Deep Learning Approach Tailoring Computing and

Radio Resources in Virtualized RANs.” Los Cabos, Mexico: ACM MobiCom, Nov.

2019.

[64] C. Guttermanet al., “RAN resource usage prediction for a 5G slice broker,” inProc.

of ACM MOBIHOC, New York, NY, USA, 2019.

[65] M. Joshi and T. H. Hadi, “A Review of Network Tra� c Analysis and Prediction

Techniques,”arXiv:1507.05722 [cs.NI], Jul. 2015.

106 REFERENCES

[66] F. Xuet al., “Big Data Driven Mobile Tra� c Understanding and Forecasting: A

Time Series Approach,”IEEE Transactions on Services Computing, vol. 9, no. 5,

pp. 796–805, Sep. 2016.

[67] M. Zhanget al., “Understanding Urban Dynamics From Massive Mobile Tra� c

Data,”IEEE Transactions on Big Data, pp. 1–1, 2017.

[68]S. T. Auet al., “Automatic forecasting of double seasonal time series with

applications on mobility network tra� c prediction,”JSM Proceedings, Business

and Economic Statistics Section, Jul. 2011.

[69] R. Liet al., “The prediction analysis of cellular radio access network tra� c: From

entropy theory to networking practice,”IEEE Communications Magazine, vol. 52,

no. 6, pp. 234–240, Jun. 2014.

[70] M. Z. Shafiqet al., “Characterizing and modeling internet tra� c dynamics of cellular

devices,” inACM SIGMETRICS, San Jose, California, USA, Jun. 2011, p. 305.

[71] A. Y. Nikraveshet al., “An Experimental Investigation of Mobile Network Tra� c

Prediction Accuracy,”Services Transactions on Big Data, vol. 3, no. 1, pp. 1–16,

Jan. 2016.

[72] C. Zhang and P. Patras, “Long-Term Mobile Tra� c Forecasting Using Deep Spatio-

Temporal Neural Networks,” inACM MobiHoc, Los Angeles, CA, USA, Jun. 2018,

pp. 231–240.

[73] S. Ntalampiras and M. Fiore, “Forecasting mobile service demands for anticipatory

MEC,” inIEEE WoWMoM, Chania, Greece, Jun. 2018, pp. 14–19.

[74] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,”arXiv:1409.1556, Sep. 2014.

[75] Y. LeCun, “Generalization and network design strategies,”Connectionism in

perspective, pp. 143–155, Jun. 1989.

[76] C. Szegedyet al., “Going deeper with convolutions,” inIEEE CVPR, Jun. 2015,

pp. 1–9.

[77] G. E. Dahlet al., “Improving deep neural networks for LVCSR using rectified linear

units and dropout,” inIEEE ICASSP, May 2013.

[78] M. W. Gardner and S. Dorling, “Artificial neural networks (the multilayer

perceptron) - A review of applications in the atmospheric sciences,”Atmospheric

environment, vol. 32, no. 14-15, pp. 2627–2636, Aug. 1998.

REFERENCES 107

[79] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv:1412.6980, Dec. 2014.

[80] A. Furnoet al., “A Tale of Ten Cities: Characterizing Signatures of Mobile Tra� c

in Urban Areas,”IEEE Transactions on Mobile Computing, vol. 16, no. 10, pp.

2682–2696, Oct. 2017.

[81] J. Paparrizos and L. Gravano, “k-Shape: E� cient and Accurate Clustering of Time

Series,” inACM SIGMOD, Jun. 2015, pp. 1855–1870.

[82] I. Borg and P. Groenen, “Modern Multidimensional Scaling: Theory and

Applications,”Journal of Educational Measurement, vol. 40, no. 3, pp. 277–280,

Sep. 2003.

[83] H. W. Kuhn, “The Hungarian method for the assignment problem,”Naval Research

Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, Mar. 1955.

[84] D. K. Krishnappaet al., “DASHing YouTube: An analysis of using DASH in

YouTube video service,” inProc. of IEEE LCN. Sydney, NSW, Australia: IEEE,

2013, pp. 407–415.

[85] G. Dimopouloset al., “Measuring video QoE from encrypted tra� c,” inProc. of

ACM IMC. Santa Monica, CA, USA: ACM, 2016, pp. 513–526.

[86] P. Casaset al., “Qomosn-on the analysis of tra� c and quality of experience in

mobile online social networks,” inProc. of IEEE EuCNC, Paris, France, 2015, pp.

471–475.

[87] C. Marquezet al., “How Should I Slice My Network?: A Multi-Service Empirical

Evaluation of Resource Sharing E� ciency.” New Delhi, India: ACM MobiCom,

Nov. 2018, pp. 191–206.

[88] ——, “Not All Apps Are Created Equal: Analysis of Spatiotemporal Heterogeneity

in Nationwide Mobile Service Usage,” inACM CoNEXT. ACM, 2017, pp. 180–186.

[89] J. Gil Herreraet al., “Resource Allocation in NFV: A Comprehensive Survey,”IEEE

Transactions on Network and Service Management, vol. 13, no. 3, pp. 518–532, Sep.

2016.

[90]J.-J. Kuoet al., “Service chain embedding with maximum flow in software defined

network and application to the next-generation cellular network architecture,” in

IEEE INFOCOM, Atlanta, GA, USA, May 2017, pp. 1–9.

[91] P. Caballeroet al., “Network slicing games: Enabling customization in multi-tenant

networks,” inIEEE INFOCOM 2017, May 2017.

108 REFERENCES

[92] B. Koley, “The zero touch network,” inIEEE CNSM, 2016.

[93] European Telecommunications Standards Institute (ETSI), “ZSM Scenarios and

key requirements,” ETSI ISG ZSM 001, Oct. 2018.

[94] A. Garcia-Saavedra and others, “FluidRAN: Optimized vRAN/MEC

Orchestration,” inIEEE INFOCOM 2018, Apr. 2018.

[95]J. Kimet al., “3GPP SA2 architecture and functions for 5G mobile communication

system,”ICT Express, vol. 3, no. 1, pp. 1–8, 2017.

[96] L. Peterson, “Cord: Central o� ce re-architected as a datacenter,” inIEEE Softw.

Defined Netw. Newslett., 2015.

[97] M. Mao and M. Humphrey, “A Performance Study on the VM Startup Time in the

Cloud,” inIEEE CLOUD 2012, Jun. 2012.

[98] 5G-CORAL, “Refined design of 5G-CORAL orchestration and control system and

future directions,” D3.2, May 2019.

[99] S. Gonzalezet al., “Towards a Resilient Openflow Channel Through MPTCP,” in

IEEE BSMB 2018, Jun. 2018.

[100] L. Zanzi and others, “OVNES: Demonstrating 5G network slicing overbooking on

real deployments,” inProc. of IEEE INFOCOM WKSHPS, Honolulu, HI, USA,

Apr. 2018, pp. 1–2.

[101] C. Zhang and others, “Multi-Service Mobile Tra� c Forecasting via Convolutional

Long Short-Term Memories,” inProc. of IEEE M&N 2019, Catania, Italy, Jun.

2019, pp. 1–6.

[102] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation: Representing

Model Uncertainty in Deep Learning,” inProc. of ICML, New York, NY, USA, Jun.

2016, pp. 1050–1059.

[103] M. J. Powell, “The BOBYQA algorithm for bound constrained optimization without

derivatives,”Technical report, 2009.

[104] W. H. Press and others,Numerical Recipes in FORTRAN; The Art of Scientific

Computing. New York, NY, USA: Cambridge University Press, 1993.

