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Abstract—In this paper, we investigate the existence and
prevalence of comparable dynamics in the temporal fluctuations
for the traffic demands generated by mobile applications. To
this end, we hinge upon a spectral analysis framework, by
computing Discrete Fourier Transforms of the typical demands
for tens of popular mobile services observed in an operational
metropolitan-scale network. We filter, cluster, and analyse hun-
dreds of frequency components, and identify a substantial set of
regular patterns that are common across most service demands.
We also unveil how several mobile services defy classification,
and have instead highly distinguishing temporal dynamics.

I. INTRODUCTION

Mobile services permeate today our lives, by providing
seamless access to all kinds of information (e.g., local and
global news, messages of friends, or updates on acquain-
tances) and continuously assisting our decisions and actions
(e.g., in taking specific transportation means or trip routes
or planning a daily schedule). In order to greatly facilitate
many such daily tasks, mobile services generate a substantial
amount of data traffic that flows from and to mobile devices.
These traffic demands undergo complex fluctuations in both
space and time, which are driven by the mobility and diverse
endeavours of a vast user population.

Understanding the dynamics of the demands for mobile
services is an important objective that helps to unveil the
interactions between human activities and modern commu-
nication tools. Models explaining and possibly anticipating
mobile service consumption in space-time have significant
applications in both social sciences and technology. In social
sciences, they can help drawing causal links between land use
and the way mobile apps are used [1], highlighting cultural
factors in apps adoption [2], or even detecting psychiatric
disorder states at scale [3]. From an engineering and technol-
ogy viewpoint, the knowledge of large-scale traffic volumes
generated by each mobile service can enable a more efficient
dimensioning and management of the communication infras-
tructure [4], the optimized caching of apps data at mobile
devices [5], or the improved planning of urban transport
systems based on app user flows [6].

However, disentangling mobile service demand patterns is
a challenging exercise. The many and varied apps running
on mobile devices entail strongly heterogeneous dynamics
over a space that is high-dimensional along both its temporal
(where measurement data can encompass long periods of
months with a fine granularity of minutes) and geographical
(with traffic information concurrently recorded at hundreds
of locations within, e.g., a single metropolitan area) facets.
In addition, measurements are often noisy, due to inherent
randomness in user access to apps [7], oscillations in device
associations to the radio access infrastructure caused by
signal strength fluctuations, or load balancing policies [8],

or positioning accuracy limitations of the mobile network
technology [9].

Previous studies aiming at characterizing consumption mo-
tifs of mobile services have typically adopted an aggregate
perspective, by considering the cumulative mobile data traffic
of all apps [10]–[12], or have investigated whole service
categories, by considering the total network activity of, e.g.,
video streaming, social network, or dating apps [13]–[17].
These works have revealed important properties of combined
app demands, such as their locality or predictability; however,
they could not unravel features that are specific to individ-
ual services. When focusing on single service-level demand
analysis, the literature is much thinner. The peculiarities of a
few popular services have been studied in isolation [18], [19]
of for multiple apps within the same class [20], [21]. These
works highlighted, for instance, the severe burst that underpin
WeChat data traffic, or the uplink load that dominated mobile
cloud storage services. To the best of our knowledge, only
a couple of works analyzed a large set of heterogeneous
individual mobile services to date. They focus on quantifying
the statistical diversity of apps in terms of network-level
performance indicators [22], and forecasting future demands
for each app separately [23], respectively.

Unlike the studies above, we are interested in comparing
the demand patterns of different mobile services, exploring
eventual common behaviors. Previous research on this topic
unveiled that mobile apps tend to yield fairly comparable
geographical pattern of consumption at national or regional
scales [24], [25]. However, the same does not hold for tem-
poral dynamics: apps have very diverse time series and even
apps belonging to the same class feature unique combinations
of activity peaks. This makes any attempt at clustering mobile
services along a time dimension vain [24].

In this paper, we show that a spectral approach can in
fact reveal significant common properties in the time series
of data traffic generated by many diverse mobile services.
Such shared traits emerge in the form of periodicity in the
demand fluctuations: we find that most apps have activity
peaks occurring at similar frequencies. Therefore, our results
indicate the existence of temporal regularities in the consump-
tion of mobile services, which are most likely driven by the
frequency of the same underlying human routines. As such,
they are a first step towards a comprehensive classification of
mobile service based on how they are used in time.

The paper is organized as follows. We introduce the
measurement data that underpin our study in Section II.
The methods and outcome of the spectral analysis on time
series inferred from such data are in Section III. We then
propose an algorithm to cluster the harmonics returned by
the spectral analysis and discuss its results in Section IV.



Finally, conclusions and open research directions are outlined
in Section V.

II. MEASUREMENT DATA

We perform our study with a metropolitan-scale dataset of
mobile service demands collected by a major network oper-
ator in Europe. Below, we present the data in Section II-A,
and detail preliminary denoising steps in Section II-B.

A. Dataset

Our analysis relies on measurement data collected in the
mobile network of Orange, one of the leading operators
in Europe. Specifically, the data was recorded during three
consecutive months in Fall 2016 by probes monitoring the
Gn interfaces of Gateway GPRS Support Nodes (GGSN) as
well as the S5 and S8 interfaces of Packet Data Network
Gateways (P-GW), so as to capture all traffic flowing through
the 3G and 4G infrastructures. The probes perform Deep
Packet Inspection (DPI) of the IP traffic on the GPRS
Tunneling Protocol user plane (GTP-U), and run proprietary
fingerprinting algorithms that allow associating around of
90% of the IP sessions to specific mobile services.

The dataset employed in our study describes mobile service
traffic generated in the metropolitan area of Paris, France.
This is one of the largest conurbations in Europe, covering
an area of over 100 km2 and more than 2 million inhabitants.
Orange had a 2016 market penetration of around 34% in the
region, hence our data are representative of a large fraction
of the local population. In order to bound traffic originated
in Paris, IP sessions are geo-references at the antenna sector
level, using information available on the GPRS Tunneling
Protocol control plane (GTP-C), within the User Location
Information (ULI) field of the 3G Packet Data Protocol (PDP)
Contexts and 4G Evolved Packet System (EPS) Bearers. The
localization accuracy of ULI is known to be limited due to
irregular updates to the field; however, the typical precision,
in the order of km [9], is sufficient to correctly locate the
traffic produced within a large city such as Paris. The data
have a temporal granularity of 5 minutes.

We focus our study on 37 mobile services. The rationale
for this choice is that traffic volumes generated by mobile
apps follow a well-studied power law [24], [26], hence only
a very limited set of services yield considerable demands
that are worth investigating. Our choice of mobile services
includes heterogeneous applications that rank among the
top 50 in terms of traffic load, and encompass video and
audio streaming (e.g., YouTube and iTunes), social media
(e.g., Facebook and Instagram), messaging (e.g., Snapchat
and WhatsApp), stores (e.g., Apple Store and Google Play),
gaming (e.g., Pokemon Go and Supercell), as well as traffic
generated by generic digital activities (e.g., web browsing and
electronic mail).

We remark that our study abides by high ethical stan-
dards. All data collection, processing, and storage procedures
at Orange were carried out in compliance with applicable
regulations, including the European Commission General
Data Protection Regulation (GDPR). These activities were
supervised by the Orange Data Privacy Officer as well
as by the Commission Nationale de l’Informatique et des
Libertés (CNIL), the French national body ensuring privacy
in personal data use. Researchers outside the Orange premises
only had access to traffic volumes aggregated at the antenna

level over hundreds of users, which do not qualify as personal
data and do not entail privacy risks.

B. Preprocessing

Our analysis focuses on understanding typical patterns of
mobile service demands. The raw time series of app traffic
recorded over three months definitely capture such patterns,
yet they also feature fast-varying noise (due to the inherent
randomness of user access), and long-timescale trends (due
to, e.g., holiday periods or diverse daylight intervals). In order
to filter out such phenomena, and work with cleaner time
series, we preprocess the data, by computing a median week
traffic demand for each mobile service [27].

Let the demand for a given mobile service s be described
by a three-month time series ds(t), where t > 0 has a res-
olution matching some time unit, e.g., minutes. The median
week is an ordered vector ws = (wsn), n ∈ [0, N − 1 =
bW/T c) ⊂ Z, where W is the duration of one week in the
considered time unit, e.g., 10,080 in minutes, and T is the
duration of one time slot in the same unit. In our analysis we
consider five-minute time slots, hence T = 5. Each element
of ws is expressed as:

wsn = µ1/2

{
τ+T−1∑
t=τ

ds(t)
∣∣∣ τ modW

T
= n

}
, (1)

where the operator µ1/2 denotes the median of the value set
in the argument. Equation (1) divides each week into slots
spanning T , and computes the overall traffic observed for
service s within each such slot; then, slot n of the median
week ws is assigned a single value wsn equal to the median
of (sum) values associated with the n-th slot of each week.

The preprocessing above has the effect of eliminating
noise and seasonal effects and returning a more accurate
representation of the ordinary demand generated by each
mobile service. Note that we use the median instead of other
statistical measures since it is more robust to strong outliers
that risk for instance to bias averages. Figure 1 shows an
example of a three-month time series compressed into a
median week representation.

III. SPECTRAL ANALYSIS

We employ Fourier decomposition on the time series pre-
sented before. We remark that spectral methods have already
been applied to mobile data traffic time series [1]; however,
they were only used for data denoising and not for interpreta-
tion, and considering aggregate traffic instead of service-level
demands. Our approach allows deriving the frequency spectra
of mobile service demands, as outlined in Section III-A,
and discuss how they decompose into harmonics of different
importance, as set forth in Section III-B.

A. Service demand spectra

Fourier decomposition allows approximating complex time
series as sums of simple trigonometric functions. Specifically,
since our median week representations describe a discrete-
time process over a finite interval, we apply a Discrete Fourier
Transform (DFT). Given the signal ws for service s, its DFT
is a complex-valued function of discrete frequency, Xs =
(Xs

k), k ∈ [0, N) ⊂ Z. The granularity of the DFT in the
frequency space is the reciprocal of the duration of the time
signal, hence 1/(NT ) in our case. Then, the k-th component



(a) Five-week traffic time series (b) Median week time series

Fig. 1. Traffic time series generated by YouTube during five consecutive weeks in the target metropolitan area (left). Corresponding median week (right).

of the DFT describes the value of the function at frequency
k/(NT ), as:

Xs
k =

N−1∑
n=0

ws
n exp

(
−i

2π

NT
kn

)
. (2)

The DFT is a linear and invertible operation, and the
inverse DFT allows reconstructing the time series from its
DFT. Formally, the value of the median week demand for
service s at each time slot n can be derived from Xs as:

ws
n =

1

N

N−1∑
k=0

Xs
k exp

(
i
2π

NT
kn

)
. (3)

Intuitively, upon inversion, each DFT component translates
to a sinusoidal function of time with frequency k/NT , and
amplitude and phase described by the phasor Xs

k . The time
series of s is expressed in Equation (3) as the sum of such
sinusoidal functions.

We compute the DFT of all mobile service demands, so as
to reveal their underlying frequency components. The DFT
returns N components for any given service s, where N is
typically large; however, these components have very differ-
ent Xs

k values. As mentioned above, these values embed the
amplitude of the inverted sinusoidal function for component
k, and only components with sufficiently high amplitude
contribute in a significant manner to the original signal.
In order to understand the importance of each component
for mobile service demand, we resort to the DFT power
spectrum, which is computed as |Xs|2 and describes the
distribution of power across frequency components.

Figure 2 shows a representative subset of the power spectra
for a selection of services. The spectra are centered at
zero frequency, and the central value |Xs

0 |2 is the power1

associated with the constant mean of the time series ws.
As one moves away from the central value, the spectra
portray the power of increasingly higher frequencies, up to
(N − 1)/NT ∼ 1/T for large N . All plots in Figure 2
have very similar shapes that highlight how the power spectra
of median week traffic demands are dominated by low-
frequency components for all services: as highlighted by the
logarithmic ordinate, central frequencies have much higher
|Xs

k|2 values. This implies that the traffic demand for any
service is strongly characterized by regular patterns with
periods in the order of hours and days.

Faster dynamics with periods in the order of tens of
minutes or less have a much reduced power. However, we
also remark that the spectra flatten around the central peak,
indicating that the original signals are also fairly noisy,

1Note that power values in all figures are normalized with respect to the
total signal power, so as to make them more easily understood.

Services # Components Retained Power
WhatsApp 3 99.34 %

MMS 4 99.51 %
iCloud 5 98.87 %

Youtube 5 99.37 %
Generic messaging 5 99.42 %

Instagram 5 99.49 %
Instagram video 5 99.57 %

News 6 98.79 %
Generic video 6 99.32 %

Facebook 6 99.42 %
Google Services 6 99.42 %

Ads 6 99.43 %
DailyMotion video 7 98.50 %

E-commerce 7 98.74 %
iTunes 7 99.26 %

Facebook video 7 99.38 %
Generic web 7 99.51 %

NetFlix 8 98.97 %
Encrypted web 8 99.38 %

Twitter 8 99.40 %
Apple Store 8 99.43 %

VoIP 9 95.25 %
Google Drive 9 98.98 %
Generic cloud 9 99.29 %
Google Play 9 99.39 %

Snapchat 9 99.44 %
Supercell 9 99.47 %

Generic gaming 9 96.63 %
Gameloft 10 85.15%

Mail 10 99.37%
Adult 11 98.67%
P2P 15 96.31%

Gaming platforms 17 88.83 %
Audio streaming 17 98.72 %

King 17 98.85 %
Updates 18 96.72 %

Pokemon Go 19 99.09 %
Total number of components 326

Average retained power 98.24 %

TABLE I
MINIMUM NUMBER OF COMPONENTS RETAINING AT LEAST 99% OF THE
TOTAL SIGNAL POWER, FOR ALL MOBILE SERVICES. THE ACTUAL POWER
IS INDICATED IN THE RIGHTMOST COLUMN, WHILE TOTAL FIGURES ARE

REPORTED AT THE BOTTOM OF THE TABLE.

and all high-frequency components are needed to perfectly
reconstruct the time series.

B. Component filtering

In order to provide better insights on the most important
components, Figure 3 offers a detailed view of the central
frequencies of the spectra in Figure 2, for k ∈ [0, 50]. This
is equivalent to looking at periodicities NT/k of roughly 4
hours or longer, as marked on the abscissa. These plots make
it clear that diversity exists even among central components:
for each service, specific frequencies have peaking |Xs

k|2
values, i.e., are especially critical to the temporal dynamics
of the demand.

Given that components have heterogeneous power, and
the vast majority only marginally contributes to the original
signal, it makes sense to limit our analysis to a subset
of relevant components for each service. To this end, we



Fig. 2. Power spectra of the DFT of selected mobile services.

Fig. 3. Low-frequency components (k ∈ [0, 50]) of the power spectra of the DFT of the selected mobile services in Figure 2.

Fig. 4. The cumulative sum of the power associated to ranked components, for the selected mobile services in Figure 2.

Component number Power Phase (degrees) Period
1 7.13% 126.81 24h
2 1.51% -132.97 12h
3 0.29% 43.95 4.8h
4 0.17% -85.98 8h

TABLE II
EXAMPLE OF RETAINED COMPONENTS FOR THE YOUTUBE SERVICE.

retain the minimum number of components whose summed
|Xs

k|2 values preserve at least 99% of the total signal power,
excluding all components whose contribution is below 0.1%.
This is equivalent to ranking components for each service
based on their associated power, in descending order, and
then computing the cumulative sum of such power following
the ranking. Figure 4 illustrates the result for the services
in Figure 2. The component ranking first is invariably that
associated with the mean of the time series and accounts for
the vast majority of the signal power. More importantly, the
number of additional components needed to attain the 99%
threshold is small in the vast majority of cases.

Table I summarizes the number of components needed to
reach the target cumulative power, for all mobile services.
Less than 10 components are sufficient to attain the 99%

threshold in almost all cases, and the traffic demands of
many popular applications such as YouTube, Instagram or
Facebook are mostly influenced by recurring patterns at five
or six different frequencies. In light of these results, in
the remainder of our analysis, we focus on the high-power
frequencies listed in the table only and discard all other noisy
components. Also, we do not consider the zero-frequency
components in subsequent discussions, since the mean is a
service-specific constant value that only captures the volume
of traffic associated to each service, and is irrelevant to the
temporal dynamics we are interested in. Ultimately, we retain
326 components across all service traffic demands for further
analysis.

A detailed view of the retained components is provided
in Table II for the specific case of the YouTube median
week demand. The consumption of YouTube follows four
main periodicities in time, namely every day, half-day, 8 and
approximately 5 hours. The daily pattern, which is in fact
determined by the circadian rhythm of human activities, has
a clearly higher impact than the other dynamics in this case.

Figure 5 offers an intuitive illustration of the quality of the
component filtering process above. Each plot refers to one



Fig. 5. Reconstructed traffic demands via the inverse DFT on retained components in Table I, compared with the original time series (top), and residual
traffic associated to discarded components (bottom), for the selected mobile services in Figure 2.

representative service, and reports: (i) the original median
week demand and the inverse DFT computed using only the
components in Table I; and, (ii) the residual traffic that is
not captured by the inverse DFT. In all cases, the inverse
DFT allows reproducing the main temporal fluctuations of
the original demand, and residuals are limited to low-volume
noise. Remarkably, such a good approximation of the traffic
time series is obtained with just a few components per service,
as detailed in Table I.

IV. COMPONENT ANALYSIS

By looking at the power spectra in Figure 3, it is apparent
that many peaks are common to different services. This hints
at the fact that the time dynamics of the demands for diverse
services may yield patterns that recur at similar periodic-
ity. Next, we design a systematic approach to explore this
phenomenon, by developing a simple but efficient clustering
algorithm for DFT components in Section IV-A, and applying
it to our reference service demands in Section IV-B.

A. Clustering components

As explained in Section III-A, each component is char-
acterized by a frequency, an amplitude, and a phase. We
implicitly used the amplitude to filter relevant components
above, since the power |Xs

k|2 associated to each component
is proportional to the square of its amplitude. However, the
amplitude is not relevant to the clustering problem; indeed,
the amplitude is a measure of the magnitude of a given
repetitive pattern, while our objective is to identify similar
temporal periodicities across service demands, independently
of their magnitude. In other words, if two services feature
regular traffic peaks at, e.g., noon every day, we would like
to cluster together the components responsible for the peaks,
no matter whether they have dissimilar amplitudes because
the two services generate different traffic volumes.

Therefore, our clustering algorithm considers only the
frequency and phase of each component. The two attributes
are in fact processed in two separate steps: in a first step,
we group components that have identical frequencies; in
the second step, components in the same group are further
clustered based on their phase. The rationale for this design is
that even slightly different frequencies lead to an increasing
misalignment of the components in time, no matter what their
phases are: during one week, misaligned components can
determine peaks at very different times, which should not
be assimilated in our analysis. As a result, we do not want

to cluster components with non-identical frequency, even if
they have phases that perfectly match. The constraint on equal
frequency makes a clustering based on the joint frequency
and phase inappropriate, and let us favor a simpler two-step
approach instead.

In the first step, we cluster components on their fre-
quency. For the reasons explained above, we require that
only identical frequencies are grouped together. Therefore,
the clustering operation is straightforward, and we simply
gather components based on frequency identity.

The second step focuses on components within each fre-
quency category. In this case, phases that are close but not
perfectly matching may be clustered together, since recurring
patterns with the same periodicity and small constant shifts
in time capture semantically equivalent activity peaks during
the whole observation time. Also, the distance measure for
phases should be maximum in opposition of phase (i.e., when
the value difference is Kπ,K ∈ Z), and null for phases that
are K2π apart, K ∈ Z. To fulfill these specifications, we
first map phases to a Cartesian plan; let us denote by φs

k the
phase of the k-th DFT component for the demand of service
s, then the Cartesian coordinates are

x = cosφs
k

y = sinφs
k.

(4)

The transformation above places components along a circle
of unity radius, at an angle that it is proportional to their
phase.

We then run DBSCAN, a well-known density-based clus-
tering algorithm [28], on the bi-dimensional points that
represent the components. We parametrize the algorithm so
that at least 3 points shall be grouped to form a cluster, and
the maximum distance between the two closest points in the
same cluster is ε = 0.1, which maps to a phase difference of
roughly 5◦.

B. Commonalities and outliers in mobile service demands
Figure 6 illustrates the 16 clusters obtained with the two-

step algorithm above. In order to show the quality of the
result jointly for the frequency and phase attributes, we map
the frequency to the distance from the origin, and the phase
to the angle as per (4). Colors denote points, i.e., components,
labelled in the same cluster. This representation outlines clear
groups of points, which are well identified by the algorithm,
which thus assimilates components with the same frequency
(i.e., along the same circle) and close phases as desired.



Cluster period 24h 12h 1w 4.8h 1w 28h 84h 8h 21h 21h 8h 84h 8 84h 33.6h 42h none
Cluster phase 115◦ 50◦ -137◦ 62◦ -162◦ -67◦ -87◦ 17◦ 8◦ 21◦ -31◦ -71◦ -55◦ -115◦ -107◦ -150◦

Ads 84.27 9.18 3.40 2.29 0 0.86 0 0 0 0 0 0 0 0 0 0 0
Adult 19.86 0 12.02 0 0 0 0 0 0 0 0 2.51 0 0 0 0 65.61
Apple Store 61.40 11.62 0 1.01 22 1.76 0 0 0 0 0 0 0 0 0 0 2.21
Audio streaming 54.60 0 0 4.87 2.84 1.48 0 0 0 0 0 0 0 1.32 1.07 0 33.81
DailyMotion video 62.20 1.34 22.71 4.01 0 0 4.06 0 0 0 0 0 0 0 0 1.34
E-commerce 65.32 25.49 2.36 2.95 0 0 1.07 0 0 0 0 0 0 0 0 0 2.82
Encrypted web 75.97 9.55 8.29 2.35 0 1.91 0 0 1.06 0 0 0 0.88 0 0 0 0
Facebook 82.10 12.99 1.76 2.13 0 1.01 0 0 0 0 0 0 0 0 0 0 0
Facebook video 79.40 13.26 0 2.68 2.46 0 1.20 0 0 0 0.99 0 0 0 0 0 0
Gameloft 88.69 2.02 0 1.11 0 0 0 0 0 0 0 0 0 0 0 0 8.18
Gaming platforms 80.70 4.58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14.72
Generic cloud 76.37 9.65 7.47 0 0 1.50 1.74 0 0 1 0 0 1.34 0 0.94 0 0
Generic gaming 86.76 3.51 0 1.51 3.56 1.60 0 0 0 0 0 0 0 0.90 0 0.86 1.31
Generic messaging 96.14 2.27 0 0 0.97 0.61 0 0 0 0 0 0 0 0 0 0 0
Generic video 66.62 22.25 4.34 3.19 0 0 0 3.60 0 0 0 0 0 0 0 0 0
Generic web 82.97 8.47 4.78 1.92 0 1.03 0 0 0 0 0.84 0 0 0 0 0 0
Google Drive 80.31 10.13 0 0 2.61 1.81 0 0 0 0 0 0 0 1.08 1.24 0 2.84
Google Play 61.78 8.45 0 0 20.38 3.58 0 0 1.23 0 0 0 1.43 0 0 0 3.14
Google+ 93.27 4.06 0 0.83 0 0.81 0 0 0 0 0 0 0 0 0 0 1.04
Instagram 88.14 9.10 0.84 1.93 0 0 0 0 0 0 0 0 0 0 0 0 0
Instagram video 82.16 14.71 0 1.56 0 0 0 0 0 0 0 0 0 0 0 0 1.57
King 57.82 0 9.12 3.54 0 0 8.20 0 0 0 0 0 0 0 0 0 21.31
MMS 95.07 3.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.63
Mail 66.10 1.33 15.60 0 0 5.06 3.81 0 3.30 0 0 0 0 0 0 0 4.79
NetFlix 0 17.30 0 4.71 0 0 0 2.06 0 0 0 0 0 0 0 0 75.92
News 73.67 13.62 6.59 4.76 0 1.36 0 0 0 0 0 0 0 0 0 0 0
P2P 36.34 0 0 0 0 0 0 0 0 0 0 1.28 0 0 0 0 62.38
Pokemon Go 78.98 0 1.46 4.54 0 0.51 0 0 0 0 0 0 0 0 0 0 14.51
Snapchat 88.67 3.58 0 0 0 1.81 0 0 0 0 0 0 0 0 0 0.94 5
Supercell 81.84 3.57 6.26 0 0 2.15 2.34 0 0 1.53 0 0 0 0 0 0 2.30
Twitter 76.53 11.42 6.19 2.12 0 1.52 0 0 0 0 1.37 0.84 0 0 0 0 0
Updates 50.78 10.59 16.85 0 0 2.84 0 0 0 2.89 0 0 0 0 0 0.66 15.40
VoIP 78.67 9.52 5.92 0 0 1.40 1.51 0 0.69 0 0 0 0 0 0 0 2.28
WhatsApp 93.58 6.42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
YouTube 78.32 16.62 0 3.20 0 0 0 0 0 0 1.86 0 0 0 0 0 0
iCloud 88.69 7.57 0 0 2.05 1.68 0 0 0 0 0 0 0 0 0 0 0
iTunes 0 31.71 3.12 3.52 0 0 0 7.10 0 0 0 0 0 0 0 0 54.55
Total components 35 32 18 22 9 21 7 4 4 3 4 3 3 3 3 3 115
Percent power 70.69 9.23 3.14 1.68 1.64 0.98 0.53 0.45 0.17 0.14 0.13 0.12 0.09 0.08 0.08 0.06 10.79

TABLE III
OVERVIEW OF THE 16 CLUSTERS GROUPING THE 326 RETAINED SERVICE DEMAND COMPONENTS.

Fig. 6. Clusters of the 326 components from the demands for the 37 service
considered in our study. Figure best viewed in colors.

Figure 7 provides a complementary view of the same clus-
tering result. The four plots represent four different clusters,
whose period (inverse of frequency) and phase (in ◦) are
indicated below each image. In each plot, every component
belonging to the cluster is represented as a sinusoidal function
of time (in gold). We can observe that the sinusoids in the
same cluster are very similar, hence they correspond to equiv-
alent temporal patterns of activity peaks. The components
differ in terms of amplitude, but, as previously mentioned,
this is due to the heterogeneous popularity and traffic volume
associated with each service. What is relevant to our analysis
is the agreement in frequency and phase, which is confirmed
by the regular pattern of the sum of components (in blue).

A comprehensive summary of the 16 clusters is provided

in Table III. Columns in the table correspond to clusters,
identified by their frequency and phase indicated in the first
row. Subsequent rows refer to each of the 37 services we
consider in our analysis. The number in each element (x, y)
indicates the fraction of power associated with the component
of service x that is sorted in cluster y. The fractional power is
calculated with respect to all service components retained for
analysis, according to Table I; a value zero in element (x, y)
thus indicates that the demand for service x does not have any
relevant component with the frequency and phase associated
to cluster y. The last column refers to outlier components
that could not be associated to any cluster. The last two
rows list the number of components in each cluster and the
percent power of the whole cluster with respect to all clusters.
Table III lets us provide the following insights.

I. Almost all (33 out 37) of services have a largely
dominant component with a 24-hour periodicity. It is easy
to map such a component to the circadian rhythm of human
activities, which alternates low traffic overnight and high
demand during the day.

II. Most (32 out of 37) services also show the same
significant dynamic at a 12-hour periodicity. Many (22 out
of 37) also share components that highlight regular patterns
at every one week, 4.8 hours. An investigation of the causes
for these sub-daily patterns is out of the scope here, and an
object for future research; yet, we speculate that commuting
affects the demands for many services and may be behind
these dynamics.

III. Common regular behaviors are present also at periods
longer than one day for many (18-21 out of 37) services.
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Fig. 7. Components in four different clusters, portrayed as sinusoidal functions of time. Figure best viewed in colors.

One week and 28 hours are the most relevant periods, and
we consider that those are linked with different dynamics
occurring during weekends.

IV. Several services tend to defy classification, and (i) have
no or much less relevant components in the 24-hour cluster,
(ii) have an unusually high weight associated with specific
clusters, and/or (iii) have a high incidence of components
that are not included in any cluster (i.e., are outliers). Services
in this category include games (King, Pokemon Go, generic
Gaming platforms), audio streaming services (iTunes, generic
Audio streaming), NetFlix, peer-to-peer, and adult web traffic.
These are fairly specific categories of mobile applications,
with different but reasonable reasons for their diversity. For
instance, NetFlix is a fairly unique service providing long-
lived video streams to niche mobile users. Audio streaming
applications are the sole that do not need visual attention
by the user. Or, adult web traffic is characterized by unique
patterns due to its nature, which is widely regarded as socially
inconvenient.

V. CONCLUSIONS

This paper provides an original perspective on the temporal
analysis of mobile service traffic. By leveraging spectral
methods, we could identify common periodic behaviors in
the real-world traffic generated by a large set of applications,
which were not detected by previous studies. The preliminary
results we presented pave the road for further investigations,
aimed at explaining the root causes for these temporal sim-
ilarities, at assessing their generality at different spatial and
geographical scales, and at exploiting them for applications
in network planning and resource management.
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