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Abstract

In the last few years large-scale image retrieval has attracted a lot of attention from the multimedia

community. Usual approaches addressing this task first generate an initial ranking of the reference images

using fast approximations that do not take into consideration the spatial arrangement of local features

in the image (e.g. the Bag-of-Words paradigm). The top positions of the rankings are then re-estimated

with verification methods that deal with more complex information, such as the geometric layout of the

image. This verification step allows pruning of many false positives at the expense of an increase in

the computational complexity, which may prevent its application to large-scale retrieval problems. This

paper describes a geometric method known as Neighborhood Matching (NM), which revisits the keypoint

matching process by considering a neighborhood around each keypoint and improves the efficiency of a

geometric verification step in the image search system. Multiple strategies are proposed and compared

to incorporate NM into a large-scale image retrieval framework. A detailed analysis and comparison of

these strategies and baseline methods have been investigated. The experiments show that the proposed

method not only improves the computational efficiency, but also increases the retrieval performance and

outperforms state-of-the-art methods in standard datasets, such as the Oxford 5k and 105k datasets, for

which the spatial verification step has a significant impact on the system performance.
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I. INTRODUCTION

Following recent developments in camera and internet technology, size and diversity of image collec-

tions keep increasing at an astonishing speed. In particular, social networks play a very relevant role in

making these images publicly available. Instagram, one of the most popular image sharing platforms,

today contains more than 30 billion images with contents varying from passion of jazz to popular protests,

and has a growth rate of 70 million images per day [1]. Inevitably, such a growth also raises the problem

of convenient and efficient access to this content.

Various systems and search engines are available for easy access and retrieval of relevant multimedia

content, most of them rely on textual data associated with the visual contents. Despite being efficient

and fairly successful, such systems suffer vastly from the well-known semantic gap [2] in addition to

being highly noisy and ambiguous. In order to address such problems, content-based image retrieval and,

in particular, partial or near-duplicate image search where a query image is used to retrieve images that

share certain visual elements have become a key element in many image [3], [4] and video [5] search

systems.

Inspired by natural language processing methods, most state-of-the-art image retrieval techniques rely

on the Bag of Words (BoW) model [6]. Typically, visual words are used to efficiently encode the visual

appearance of salient local features, initially described using high-dimensional descriptors, such as SIFT

[7].

It is well known that the quantization process inherent to BoW reduces the discriminative power of

local descriptors. This reduction in the performance is, in general, limited by using very large visual

vocabularies (up to millions of words) [8] that convert BoW into an efficient approximation of direct

matching between descriptors. Since the use of such large vocabularies might penalize computational

efficiency, more advanced solutions have been proposed which either associate binary signatures with

local descriptors to reduce the size of the vocabularies [9], or even circumvent their use [10]. Binary

descriptors can also be used at a higher granularity to obtain more compact image representations thereby

reducing the computational complexity of the image matching process, or even improving its matching

performance. For example, in [11] each image is projected into a category-space and specific query

weights are assigned to each bit of the binary hashes to construct a query-adaptive image search scheme.

In [12] binary codes are computed that minimize the quantization error of mapping high dimensional data

to the vertices of a zero-centered binary hypercube, demonstrating better results than previous approaches.

Despite of these improvements, the baseline BoW model does not take into consideration the geometric
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relationships between local features, which strongly limits its performance in large-scale image search

systems. For example, non-relevant images might share many local descriptors with the query and lead

to false positives. To overcome this limitation, a final re-ranking step is typically performed to improve

the quality of the initial ranking either by checking the geometric consistency of the matches [13], [9],

[8], or by adding additional information modeling users’ preferences or visual attention [14]. Since such

re-ranking methods are often computationally expensive and significantly increase the retrieval time, they

are commonly used only for a subset of images (the top-ranked images).

This paper focuses on the spatial verification step of a partial or near-duplicate image search system.

We build our model on the neighborhood matching (NM) method we proposed in [15]. Rather than simply

using NM as a filtering stage that eliminates false correspondences between images, we use NM for the

geometrical verification step in large-scale image retrieval. The goal of our approach is to demonstrate

that the computational complexity of this stage can be significantly reduced for a given performance

level. There are two main contributions in this paper:

• We have developed several strategies that incorporate the NM method into the image retrieval frame-

work. They will be compared in terms of both retrieval performance and computational efficiency

and we will show that some of them not only reduce the computational complexity at a given depth

in the re-ranking step (measured as the number of images being re-ranked), but also improve the

performance with respect to the traditional solutions.

• We provide a detailed analysis of the use the NM techniques to the image retrieval problem and

describe the most appropriate configurations. We will also demonstrate that our NM-based re-

ranking step can be combined with other techniques involved in processing, such as extensions

or improvements of the computation of the initial ranking, or query expansion methods working

using geometrically-verified images.

The paper is organized as follows. In Section II we discuss the previous work related to large-scale

image retrieval and search. In Section III we briefly describe the neighborhood matching method we

proposed in [15]. The proposed method for efficient geometric verification and the experimental results

are described in Section IV and Section V. Finally, Section VI concludes the paper and introduces our

future work.

II. RELATED WORK

Although there been some recent work that uses deep Convolutional Neural Networks (CNNs) to

produce alternative multi-scale image representations [16], [17], [18], the Bag of Words (BoW) model
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has been the “de-facto” approach for image retrieval in recent years. Typically, local visual features are

used to represent local image regions identified by several detectors, (such as SIFT [7], SURF [19],

Harris [20], Hessian [21]) and described using well-known local-shape descriptors (such as SIFT [7],

RootSIFT [8], SURF [19]). Since the descriptors are usually of high dimensionality, they are clustered

into “visual words” in order to achieve more compact and more generic representations. Each image is

then represented by a histogram of visual words that model how many of the “words” they accommodate.

The histograms are later used to compare different images. Some improvements over the baseline BoW

approach have been proposed in the literature. Relevant examples can be found in [9]-[22], where the

authors encode the location of the descriptors within the Voronoi-cells associated with their visual words

as a Hamming-Embedding. This idea is later improved in more recent works, such as [23], where the

Cartesian product used in the nearest neighbor search is decomposed in lower dimensional subspaces,

each subspace is then quantized separately. In [24], where observations about the matching between

descriptors are incorporated to the embedding method. In [25], multiple soft-assignment of descriptors to

various words in the vocabulary are examined. The modeling of the burstiness phenomenon (repetitive

elements in an image) was introduced in[26].

The histograms of word occurrences or even the individual matches between visual descriptors of

two images usually do not take into account the spatial information of the underlying local features.

Since visual words are extracted from local patches, it is rather easy to match (judge as similar) totally

different images by only checking how many features are present in both images. The importance of

spatial information is discussed in detail in [15] where the prägnanz from Gestalt psychology are taken

as reference to impose spatial constraints during feature matching. The simplest and early approaches

incorporating information about feature spatial distribution along the images can be found in [27], where

the authors proposed matching localized subimages. Also in [28] a pyramid-like representation are used

for incorporating spatial distribution where images are divided into a finer grid at each pyramid level

and histograms are calculated from each grid cell and then concatenated to form the Spatial Pyramid

Matching (SPM). More recent efforts have also been made in order to improve SPM [29], [30], [31].

Graph theory has also been used in order to extract spatial information [32], [33], [34]. For example,

in [29], Ren et al. partitioned the image into a predefined number of graphs, and a BoW approach was

then used for each sub-graph independently to finally represent an image as a set of BoWs (which they

called bag-of-bag-of-words).

Alternatively, spatial information has been exploited as a post-processing stage via geometrical verifica-

tion so that retrieved images are re-ranked based on the verification. Two approaches are the main trends
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in geometric verification: methods that explicitly compute the geometric transformation between images

that show the same object/scene, and methods that implicitly verify the geometric consistency of matches

without explicitly computing the transformation. Among the former, in [35] the authors proposed a

generative probabilistic framework that concurrently models the global geometric transformation between

matched images and spatial location of matched objects. During the last few years RANSAC (Random

Sample Consensus) [36] has become the most prevalent method to verify whether the spatial distribution

of features in two images match. RANSAC is a robust iterative method for the estimating a model from

a set of observations under the assumption that it may possibly contain outliers. The method is popularly

used in computer vision applications, such as object detection/recognition and camera pose estimation

for estimating the geometric transformation between two images using point-wise matches of local image

features. RANSAC’s randomness and large computational cost either prevents its application on large-

scale problems or limits it to a small set of top-ranked images. There have several approaches proposed

to alleviate computational problems of using RANSAC [37][38][8].

With respect to the second set of verification methods described above, the goal being reducing the

computational complexity, other studies have described use of the Hough transformation space. Jegou et

al. proposed the use of “weak geometry consistency (WGC)” to filter matching descriptors that are not

consistent in terms of scale and angle in Hough space [9]. Other works, such as [39][40], also examined

the consistency of matches. Wu et al. [41] suggested to bundle regions and point features together in

order to increase discriminating power. It should be noted that although such bundling may recall the

grouping of point features we proposed in [15], it requires that two separate features be extracted from

every image. The work in [42] also extended the study of individual correspondences and considered

pairwise geometric relations between matches to improve the verification accuracy.

The goal of this paper is to merge both families of methods into a unified framework. We will

demonstrate this by grouping local features and matches into spatial neighborhoods and show it is possible

to dramatically decrease the computational complexity of a model-based geometric verification step while

maintaining or even improving the retrieval performance.

The study of geometric relationships between matches is not new in the literature and has been

extensively studied using BoW. In particular, in [43] the authors introduced the concept of visual phrases,

groups of visual words that explicitly encode their consistent co-occurrence in many images. The same

idea is explored using several geometric configurations: in [40] translations between matching points

are encoded and grouped among co-occurring matches, while in [44], radial relations between pair of

matches are described. Furthermore, in [45], the phenomena of polysemy and synonymy are modeled
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by analyzing the co-occurrence of visual words in all images and in groups of images belonging to a

particular semantic category.

Our proposed approach differs from the above in several aspects: first, neighborhoods are built around

very reliable matches that we will call strong matches. Although other matches (weak and strong) may

be identified in the surroundings of a strong match to validate the presence of a neighborhood, their

spatial relationships are not explicitly encoded. This will limit the computational complexity. Indeed, the

location and the cardinality of a neighborhood (the number of matches that belong to the neighborhood)

are the only metrics we use. Hence, our approach has to be understood more like a pre-filtering stage

that allows removing false matches than a way to encode complex spatial relationships between pairs

or even groups of words. This paper aims to incorporate the concept of neighborhoods to the geometric

verification step of a retrieval system, rather than encoding this information to generate more complex

image signatures. Finally, it is also worth mentioning that the generation of neighborhoods is completely

category-agnostic and does not require any previous analysis of the dataset.

Fig. 1: Illustration of Neighborhood Matching (top) compared to regular matching (bottom). The blue

points indicate a strong match and become the center of a neighborhood, which is then completed by

other weak matches (in red). Isolated matches that do not belong to any neighborhood are discarded

(matches that appear in the lower figure and not in the top figure). We also relax the constraints of the

distance ratios of matches within a neighborhood and considering more than one candidate match per

point in the query, we can find new matches that would not appear in regular matching (matches that

appear in top figure and not in the lower figure). .
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III. NEIGHBORHOOD MATCHING

We described in [15] that object matching is other than the mere sum of individually matched feature

points. We based this postulate on the motto of Gestalt psychology “The whole is other than the sum

of its parts”. We developed perceptual grouping of feature points - based on spatial proximity - in order

to group individually matched features, we called this Neighborhood Matching (NM). In other words

when two features are matched, their neighboring features should also match in order to improve the

outcome. Fig. 1 illustrates how two neighborhoods in two images are matched using NM compared to

regular matching. Initially, the blue feature points are found to be matching. Next, the neighboring feature

points around them are determined. Many approaches can be used in order to define what “neighboring”

means. Whereas a fixed region around the initial match as in Fig. 1 would be the simplest way, one may

also can consider incorporating the scale of the feature point (e.g. SIFT points) while determining the

size of the region. Our original approach for NM [15] suggested using nearest neighbor approach where

the N spatially closest points to the initial matching point are taken as the “neighboring points”. Next,

feature points within the neighborhoods are matched with a minimum number of matches required for

the entire neighborhood to be considered as matched. Otherwise all matches, including the initial one,

are discarded.

Note that if the same similarity threshold is used for both the initial and neighboring matches, NM

simply filters out the incorrect matches relative to regular matching. However, if the similarity threshold

is loosened for the neighboring matches, it can also increase the total number of matches. Since blindly

decreasing the similarity threshold would increase the number of incorrect matches significantly, Lowe

suggested using a similarity ratio in order to filter potential incorrect matches [7]. That is, the best and

second best matches for a feature point need to be different enough, otherwise it is regarded “ambiguous”

and discarded.

In this paper we propose to use NM as a preprocessing step before RANSAC. The potential benefits

are twofold: First, RANSAC requires a minimum proportion of inliers to perform properly, NM increases

RANSAC’s performance by increasing the ratio of inliers. In other words RANSAC is more likely to find

the correct transform between matching points, hence better filtering of outliers. Second, as discussed

in Section II, RANSAC starts from a random set and iteratively approaches to its final result. If the

ratio of outliers is high, it is more likely for that a random set will include outliers and take longer for

RANSAC to converge. Hence, increasing the ratio of inliers naturally decreases its convergence time and

its computational complexity. Therefore, NM may provide a solution to make it RANSAC more practical.
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In order to demonstrate the benefits of NM, we utilized it for the spatial verification step of an

image retrieval system. The following section briefly describes the underlying framework and multiple

approaches we examined to incorporate NM.

IV. NEIGHBORHOOD MATCHING FOR IMAGE RETRIEVAL

A. Baseline Approach For Image Retrieval

Given a query image Iq and a set of M reference images Im {m = 1, ...,M}, the goal of an image

retrieval system is to generate a ranking of reference images based on their visual similarity with the

query. Following the approach in [8], an image retrieval system computes a baseline ranking using a

Bag-of-Words (BoW) model with a very large vocabulary and then a geometric verification step that uses

a re-ranking process over the best ranked images is done. These two main phases are briefly reviewed

in the next subsections.

1) BoW-based image retrieval: The computation of a visual similarity-based ranking using a Bag-of-

Words model involves the following steps. For each image, a set of local regions of interest (keypoints)

are detected. Then, the appearance of these keypoints is characterized using descriptors such as SIFT

[7]. The descriptors are then vector-quantized using a visual vocabulary (up to 1 million words in our

case) in order to generate the image signatures which are normalized to be independent of the number

of detected keypoints. The image signatures can be later compared using a similarity metric between the

query and the reference images to produce a baseline ranking. For a detailed description of BoW-based

image retrieval the interested reader is referred to [8]. It is well known that combining this scenario with

the use of very large vocabularies becomes an efficient approximation of the matching process between

images descriptors.

2) Geometric verification: The baseline ranking described above is later refined by means of a

geometric verification process: given a query and a reference image, an initial set of Np keypoints

in the query and those detected in the reference image, a keypoint matching process is performed which,

for each keypoint in the query, finds the most similar keypoint in the reference image according to their

respective visual descriptors. In order to filter out potentially false matches, two thresholds are used: 1)

an absolute threshold of the distance between matched keypoints (THabs = 0.3 in our experiments); and

2) a relative threshold THratio of the ratio of the distances between the query keypoint and the first and

second nearest neighbors r12 = d1

d2

[7]. The goal is to remove ambiguous matches for which there are

several similar points. As a result of the use of these two thresholds, a set of Nc candidate matches are

generated between the query and the reference images.
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The geometric verification of the previously determined Nc candidate matches is then complete. The

goal is to compute a global geometric transformation between the two images and filter those matches

that do not follow the transformation (false matches). In this paper, a 3x3 Homography matrix H is used

to geometrically relate matched points.

Considering the general case where the initial set of Nc matches contains both true and false matches,

RANSAC (RANdom SAmple Consensus) [36] is usually employed to obtain a robust estimation of the

transformation. RANSAC is able to estimate models even in presence of outliers (in our scenario, it

estimates the global transformation between images in presence of false matches). The concept here is

that RANSAC can find in the entire dataset, with probability p (p = 0.99 in our experiments), a sample

set of data which is free of outliers. This outlier-free sample will provide a good estimation of the actual

geometric transformation between the two images.

Given the size s of the sample set needed to compute a model (in our experiments, we require s = 4

pairs of matched points to estimate a homography), and the proportion of inliers in the initial data set

α = #inliers
#data

, one can easily estimate the number of iterations needed to find a sample free of outliers:

k =
log(1 − p)

log(1− αs)
(1)

Since α is in general unknown, for each iteration:

1) Draw a random sample containing s = 4 matches.

2) Estimate the homography H using the selected sample.

3) For each data point in the entire data set, compute the corresponding estimation error given H . If

the error is below a threshold (THRANSAC = 0.1 in our experiments), the data point is considered

an inlier.

4) When increasing the number of inliers, update the proportion of inliers α and the estimated number

of iterations k.

This iterative process finishes when the number of iterations reaches or exceeds k.

In order to estimate a homography between two images, we use the Direct Linear Transformation

(DLT). For a detailed description of the method the reader is referred to [46]. In the next paragraphs we

will provide a brief summary to introduce the corresponding notation.

We want to find a homography matrix H such that the vectors x′

i and Hxi corresponding to a matched

pair are parallel and therefore only differ in magnitude by a factor of w′

i. Hence we look for a H matrix

such that:

x
′

i ×Hxi = 0 (2)
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where xi = (xi, yi, 1)
T and x

′

i = (x′i, y
′

i, w
′

i)
T . Denoting the j-th row of H as h

jT , we can re-write:

Hxi =













h
1T
xi

h
2T
xi

h
3T
xi













(3)

And transform the cross-product x′

i ×Hxi into a linear matrix-vector product:







w′

ix
T
i 0

T −x′ix
T
i

0
T −w′

ix
T
i y′ix

T
i






·













h
1

h
2

h
3













= 0 (4)

where we have removed the last row of the system of equations since it is a linear combination of the first

two rows. These equations hold for any value of w′

i. Hence, without loss of generality, we can consider

that x
′

i is on the image plane (w′

i = 1). Theses equations have the form Aih = 0, being Ai a 2 × 9

matrix and h an 1× 9 vector of unknowns.

In order to estimate a homography H (through vector h) one can consider a set of s matches (4 or

more) to generate a 2s-equation system: Ah = 0. If s = 4, the rank of A is 8 and an exact solution can

be determined up to a non-zero scale factor. If s > 4, the system is over-determined, there is not exact

solution, and therefore one should find h∗ that minimizes the norm ||Ah|| instead. In both cases, the

constraint ||h|| = 1 can be imposed to avoid the trivial solution h = 0 without loss of generality The

optimal solution will be given by:

h∗ = argmin ||Ah||
h

(5)

s.t.||h|| = 1

In [46] this constrained optimization problem is solved using Singular Value Decomposition (SVD).

In [46] it is noted that this approach becomes unstable in the presence of noise, so that a normalization

step is needed to ensure that the solution converges to the correct result. The details about this extension

can be found in [46].

B. Neighborhood Matching For Highly Efficient Geometrical Verification

Given the previously described baseline image retrieval system, we suggest using NM mainly to reduce

the computational burden associated with geometrical verification. Although RANSAC is a very effective
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(a) (b)

Fig. 2: Processing pipeline of the proposed strategies to incorporate NM. The filled dots represent strong

matches whereas unfilled dots represent weak matches. a) NM-based Filtering using RANSAC (NMF+R):

NM analyzes the initial set of Nc candidate matches and provides a final set of Ng = Nr matches to the

geometric verification step (RANSAC); b) three alternative approaches (SNM+R, SNM+WT, SNM+WR)

using only the Ng = Ns strong matches associated with each neighborhood. The strong matches location

and the cardinalities of their corresponding neighborhoods are used by the geometric verification in

three ways: RANSAC without considering the cardinalities (R), a weighted RANSAC considering the

cardinalities (WR), or directly computing the weighted transform without using RANSAC (WT).

technique to deal with significant proportions of false matches, it is also very time consuming. To be

more precise, we propose several ways to use NM with the same common purpose: reducing the number

of potentially false matches that are given to RANSAC for geometrical verification.

Given a pair of images coming from the top part of the BoW-based similarity ranking, a search for

matches between the keypoints of the query image and those of the reference image is done, generating Nc

candidate matches. Subsequently, NM is used to validate these matches by requiring that some neighboring

keypoints also agree with each candidate match by matching together. As a result, the original number of

candidates matches Nc is reduced to a significantly lower number Ns of what we call strong matches, one

per matched neighborhood (when there are not enough matches in the neighborhood, the neighborhood

itself does not match and the original candidate match is discarded). The NM process not only returns

the strong matches but also all the weak matches in each neighborhood around the strong match. We

denote the total number of matches returned by the NM as Nr. Furthermore, we associate a cardinality

Cs with each strong match s, given by the number of matches that fall within the neighborhood of the

strong match.
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Below we examine several approaches to take advantage of NM in order to make the geometrical

verification more efficient. We denote as Ng the total number of matches passed to the geometrical

verification step.

NM-based Filtering + RANSAC (NMF+R): In this case, NM becomes a simple pre-filtering stage

that filters potentially false matches before the estimation of the geometric transformation. Hence, only

those matches belonging to a matched neighborhood, i.e., a total of Ng = Nr matches, are passed to

RANSAC for geometrical verification. This is illustrated in Fig. 2a.

Strong Neighbor Matches + RANSAC (SNM+R): Note that, within a neighborhood, all the weak

matches will follow the same or a very similar geometric transformation than that of the strong match

(the one originating the neighborhood). In this model we remove all the weak matches and keep only

the strong match that generated the neighborhood. This model dramatically reduces the number of points

passed to RANSAC for geometrical verification (from Nc to Ns). This is illustrated in Fig. 2b (middle

part).

Strong Neighbor Matches + Weighted Transform (SNM+WT): Since the NM process allows us to

filter potentially false matches, in this model we estimate the geometrical transformation directly from

the strong matches (assuming, therefore, that all of them are inliers), avoiding the use of the iterative

and time-consuming RANSAC-based estimation. In order for estimation to be more robust, we propose

a reliability measure associated with each strong match that intends to capture the actual strength of

each match according to how well the whole neighborhood matches. In particular, we suggest a weighted

version of the DLT that takes into account these reliability measures. Starting from the set of (Ns > 4)

strong matches, and in contrast to Eq. (6), we now minimize a weighted norm ||WAh|| where W is

a NsxNs diagonal matrix W = diag{ws}. Each element in the diagonal contains a reliability measure

(weight) ws associated with its corresponding neighborhood. Specifically, given a strong match s with a

cardinality Cs, we have chosen an exponential weighting function of the form:

ws =
Cs
∑

j=1

exp
(

−γ r12j

)

(6)

where γ is a free parameter that has been heuristically determined to be γ = 100. This is illustrated in

Fig. 2b (top part).

Strong Neighbor Matches + Weighted RANSAC (SNM+WR): in this last model, we propose to take

advantage of the reliability measure associated with each strong match within RANSAC. In particular,

instead of simply counting the number of inliers, we propose to choose the best transformation according

to a global reliability measure computed over the inlier matches. To be more precise, the proposed
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weighted RANSAC selects the transformation associated to the iteration k∗ that maximizes this global

reliability measure:

k∗ = argmax
k

∑

s∈Ik

ws (7)

where Ik is the set of inliers obtained at iteration k of RANSAC, and ws denotes the above described

weight associated with the strong match s. This is shown in Fig. 2b (bottom part).

C. Analysis of the Computational Complexity

Since the purpose of using NM for geometrical verification is to reduce computational complexity,

we will compare our various approaches with respect to complexity. We have developed a theoretical

measure that estimates the computational complexity of the geometrical verification in terms of execution

time and corresponds to the execution times we observed in our experiments. Our method is therefore

an approximation of the computational complexity, and depends on some execution times associated to

basic operations (see in table II) which may differ between architectures.

The total time associated with the geometric verification tGV can be written as:

tGV = R (tM + tNM + tR) (8)

where R is the number of re-ranked images, i.e., the number of reference images considered for geometric

verification (the depth of the re-ranking step); tM is the time associated with the computation of matches

between every pair of images; tNM is the time taken by the NM algorithm; and tR is the time consumed

by the RANSAC-based estimation of the global geometric transformation between two images. Below

we describe this in detail.

The time associated with the computation of matches between two images tM is closely related to the

strategy used to find the match. In our experiments, we have used the fast approximate nearest neighbor

strategy described in [47]. Denoting the average number of detected keypoints per query image by N̄p

and the time needed to compute a nearest neighbor by tm, we can write tM as:

tM = N̄ptm (9)

The time associated with the NM algorithm is mainly that needed to compute the neighborhoods and

depends on both the number of candidate matches Nc and the time required to compute an individual

neighborhood around a strong match ts. Therefore, tNM can be written as:

tNM = N̄cts (10)
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where, again, N̄c stands for the average number of candidate matches per query-reference pair.

Finally, the total execution time associated with the RANSAC geometric verification can be approxi-

mated as follows:

tR = k̄
(

th + N̄gte
)

(11)

where k̄ is the average number of samples drawn from RANSAC, i.e., the number of iterations; th is

the execution time of generating a model given a random sample, i.e., the execution time to compute

a homography transformation H for a given sample; N̄g is the average number of matches per query-

reference pair that is passed to RANSAC (N̄g = N̄r for NMF+R and N̄g = N̄s for other cases); and te

is the running time needed to evaluate a transformation on one match.

Putting everything together we obtain the final expression for execution time, tGV :

tGV = R
(

N̄ptm + N̄cts + k̄
(

th + N̄gmte
))

(12)

According to this expression, when comparing the proposed approach based on neighborhood matching

with a baseline geometric verification using RANSAC, we note the following:

1) The term tNM = N̄cts comes from the neighborhood computation (previous to the geometric

verification) and, consequently, tNM = 0 for the baseline approach.

2) It should be noted that the model SNM+WT avoids the RANSAC-based estimation by using a

Weighted Transform on the strong matches resulting from the NM process. Therefore, in this case

we remove from the previous expression the execution time associated with RANSAC and set

tR = 0.

3) Our proposed approach aims to reduce the number of matches passed to the RANSAC-based

geometric estimation N̄g as well as to improve the proportion of inliers α, thus reducing the

number of iterations k needed to ensure a sample free-from-outliers with a given probability p.

For the experimental evaluations, average values for every parameter will be estimated so that ap-

proximate execution times can be obtained. Table I is a summary of the main variables used in our

approach.

V. EXPERIMENTAL RESULTS

The experiments have been organized into five subsections. First, the datasets and the experimental

protocol are described. Second, the parameters of the proposed method which are relevant to the study

of the complexity are analyzed. Third, with the purpose of validating our hypotheses, different versions
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TABLE I: Summary of the main variables involved in the proposed approach

Variable Description

Np Number of detected keypoints in the query

Nc Number of candidate matches (true and false)

Ns Number of strong matches resulting from NM

Nr Total number of matches resulting from NM

Ng Number of matches passed to the geometric verification stage

R Number of re-ranked images by the geometric verification stage

tGV Total execution time associated with the geometric verification stage

tM Total execution time needed to compute matches

tNM Total execution time needed to compute the neighborhoods

tR Total execution time consumed by the RANSAC-based estimation

tm Execution time to compute a nearest neighbor (individual match)

ts Execution time to compute an individual neighborhood (strong match)

k Number of iterations taken by RANSAC

th Execution time needed to compute a homography

te Execution time needed to evaluate a homography on a match

of the proposed method are compared with a baseline image retrieval system. Fourth, our NM-based

re-ranking step iscombined with other techniques to construct a retrieval system which is compared with

state-of-the-art methods. Last, we describe some error analysis to provide better understanding of the

limitations of our approach.

A. Datasets and Experimental Setup

We have used three complementary datasets for our experiments:

• The Oxford 5K dataset [48]: it contains 5,062 high-resolution images (1024x768) showing either one

of the Oxford landmarks (the dataset contains 11 landmarks) or other places in Oxford. The database

includes 5 queries for each landmark (55 queries in total), each of them including a bounding box

that locates the object of interest. For each query image, this dataset contains hundreds of relevant

references, so that the performance will strongly depend on deep positions of the ranked similarity

list.

• The Oxford 105K dataset [48]: this dataset is a super set of the Oxford 5K dataset in that 100k

distracting images downloaded from Flickr have been added. It will allow us to evaluate the perfor-

mance for a large-scale retrieval system.
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TABLE II: Average execution times (ms) by each task for the geometric verification process.

tm(ms) ts(ms) th(ms) te(ms)

0.0284 2.608 0.417 0.0131

• The INRIA Holidays dataset [9]: this is a dataset with 1,491 personal holiday photos, in which several

transformations or artifacts can be evaluated: rotations, viewpoint variance, illumination changes, and

non-rigid deformations due to moving elements (e.g. clouds). This dataset contains 500 image groups

or scenes, with the first image of each group being the query (500 queries). A few images (1-5)

are relevant for each query, so that the assessment over this dataset will depend more on the initial

positions of the ranked list.

In order to establish a meaningful comparison, we followed the feature extraction protocol described in

[8]. In particular, we detected salient points using the affine-invariant Hessian detector [49]. Then, we de-

scribe the local region around these keypoints with a 128-dimensional SIFT descriptor [7]. Subsequently,

a Bag-of-Words (BoW) model is used; in particular, we employed the same BoW as in [8] with the 1M-

sized hard-assigned vocabulary. Finally, we do a re-ranking step using RANSAC [36] starting from what

we call regular matching (RM), as opposed to neighborhood matching (NM), with THabs = 0.3 and three

different values for THratio = 0.80, 0.90, 095 . This baseline system is called RM-THratio+R in the

experiments, where THratio takes any of the previously mentioned values. It is also worth noting that when

Neighborhood Matching is used, it always starts from the regular matches coming from THratio = 0.80.

We use Average Precision (AP) [50] and mean AP (mAP) for evaluation metrics. mAP is obtained by

averaging results for all the queries in each dataset. With respect to execution times in the experiments,

all the code has been implemented using MATLAB in except of the features detection and description

(to perform a fair comparison. We used the executables suggested by the authors of each datasets [48],

[9]), and the optimized MEX-routines (C,C++) for FLANN used for approximate nearest neighbors

computation [51]. All the experiments have been executed with single-threading on a computer with

8-cores and a 3GHz processor with 32GB of RAM.

B. Analysis of parameters related to complexity

In order for a fair comparison of the different versions of the geometric verification process proposed in

this paper, we compute the mAP achieved by each of the methods for a range of computational complexity
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3: A comparative illustration of the average values of a) N̄s, b) N̄g, and c) k̄ as a function of the

number of re-ranked images R for all the examined approaches. These parameters are defined in Sec.

IV-B and Table I. Top row: Results for Oxford 5k dataset. Middle row: Results for Oxford 105k dataset.

Bottom row: Results for Holiday dataset.

levels, measured in execution time (seconds). Two are the main factors that affect the computational

complexity: a) the processing pipeline of each geometric verification method, and b) the number of

re-ranked images R in the geometric verification.

As described in Section IV-C, in order to obtain a reasonable approximation of the execution time
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4: Results of the use of NM for the geometric verification in image retrieval. Top row: results for

the Oxford 5K dataset. Middle row: results for the Oxford 105k dataset. Bottom row: results for the

Holidays dataset. Left column: mAP vs. the number of re-ranked images R. Center column: tGV vs. the

number of re-ranked images R. Right column: mAP vs. tGV .

associated with the geometrical verification process, we need to estimate first the average execution times

by each task of the geometric verification process, namely: the time associated with the computation of
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matches between every pair of images tM , the time taken by the NM algorithm tNM , and the time

consumed by RANSAC tR, which is computed from th (time to estimate a homography) and te (time to

evaluate the homography on a particular match). The average values of these variables, which are dataset

independent, are shown in Table II.

Next, we need to estimate the average number of keypoints or matches used for each step of the

geometric verification process. These values strongly depend on the depth of the re-ranking process R.

Let us elaborate a bit more: given that the re-ranking process starts from a baseline ranking provided by

a BoW model with a very large vocabulary (which efficiently approximates a matching process between

images), it becomes obvious that the number of matches between the query and the ranked list of reference

images will decrease as we go down through the ordered list.

The only value that does not depend on R is the average number of keypoints N̄p detected in the query,

which remains constant with R. N̄p depends both on the keypoint detector and its parametrization, and the

visual content of the query. In our experiments, the average number of keypoints detected is N̄p = 3, 700

for both Oxford datasets (they share a common list of queries), and N̄p = 2, 950 for Holidays.

In Fig. 3 we show the values of N̄s, N̄g and k̄ (described in Section III) as a function of the number of

re-ranked images R for the compared algorithms in the Oxford 5k, Oxford 105k and Holidays datasets.

In general, we can perceive that the curves are quite similar for all datasets. The main difference between

them, which will be analyzed in detail below, comes from the fact that the number of relevant reference

images is completely different between datasets: from 1-5 in the Holidays dataset, to a maximum of 220

in the Oxford datasets. This issue affects the behavior on the left part of the curves (in general associated

to relevant retrieved images), which might become hidden if only 2-5 images are relevant. Since the

Oxford 105k adds distracting images to the Oxford 5k dataset and the depth of the re-ranking step is the

same for both datasets (see Section V-D), the behavior in both datasets is very similar.

The average number of strong matches N̄s resulting from the NM process is equal for all the alternatives

and decreases with R, which means that as we go down through the BoW-based ranked list, we encounter

images that are more different than the query image with the consequent lower number of matches.

The average number of matches per reference image, N̄g, obviously decreases with R in all the

cases since as we go down through the ranked list, the similarity between the query and the reference

images also decreases. In the Holidays dataset, in except for some initial positions in the ranking, we

are comparing the query with non-relevant images, which causes absolute numbers that are much lower

than in the Oxford datasets.

Furthermore, the number of matches considered for geometric verification substantially varies across the
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different approaches: the baseline approaches based on RM pass every match that satisfies the condition

above the distance ratio and, therefore, N̄g simply varies with the selected THratio = 0.80, 0.90, 0.95.

NMF + R uses NM to filter the matches for which the method does not find neighboring keypoints

that also agree on that match, thus reducing N̄g. It is interesting to compare RM − 0.80 + R with

NMF + R because in both cases we use THratio = 0.8. As can be observed for the results of the

Oxford 5k and 105k datasets, for depths for which there are many relevant images, the NM algorithm

might actually increase the number of matches by also including the weak matches around every strong

match. When the relevant images are no longer predominant (higher depths in the re-ranking), the NM

algorithm filters false matches and the number of surviving matches is actually lower than that provided

by RM. In the Holidays dataset, as the proportion of relevant images is always low for almost any depth

in the re-ranking, NMF +R is always faster than RM − 0.80 +R. Finally, the alternatives of keeping

only the strong matches (SNM , Strong Neighbor Matches) provide notable reductions in the number of

matches passed to the geometric verification and, consequently, notable reductions in complexity.

With respect to the average number of samples k̄ drawn in the RANSAC robust estimation, it is clear

that it mainly depends on the proportion of inliers (true matches) in the whole set of candidate matches.

This proportion of inliers is higher when the two images (query and reference) are more similar and,

consequently, k̄ increases as this proportion decreases with R. It is interesting to note that k̄ increases

as expected with R, but it starts to slightly decline for higher values of R. This declining happens

because, as we have just discussed, the average number of matches entering the geometric verification

stage decreases with R and, for high values, the proportion of inliers starts to decline because the lower

number of total candidates matches (in the denominator of the inliers proportion) starts to compensate

for the lower number of true matches. It is also worth noting how the neighborhood matching helps to

identify and remove false matches, what leads to an important increase in the proportion of inliers, thus

notably reducing the number of iterations needed in the RANSAC iterative estimation. This capability

is indeed improved when combining NM with the weighted version of RANSAC (SNM+WR), which

brings out how these weights help RANSAC to choose samples that are free of outliers. Furthermore, the

SNM+WT approach substitutes RANSAC by a weighted computation of the projective transformation

between images so that k̄ = 1.

C. Performance-Complexity Analysis of NM for Geometrical Verification

In this section we assess the performance of the proposed alternatives that incorporate NM into the

process of geometric verification for reducing its computational complexity. A complete description of
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the alternatives was given in Section IV-B.

Detailed results for the datasets (Oxford 5k, Oxford 105k, Holidays) are shown in Fig. 4. The rows

show the results achieved for the Oxford 5k, Oxford 105k and Holidays datasets, respectively. The first

column shows the mean Average Precision (mAP) as a function of the number of re-ranked images R;

the second illustrates the evolution of the computational complexity with R; and the third shows the

mAP achieved by every method as a function of the computational complexity.

The first two columns, both the performance (mAP) and the complexity (tGV ) increase with the

number of re-ranked images R. Although some conclusions can be drawn from them, we will focus on

the figures of the third column because they provide a fair comparison (for the same complexity level) of

the approaches. In general, the proposed NM-based techniques outperform the baseline approaches using

RM. In fact, each one of the solutions that combines NM and RANSAC clearly yields better results than

the corresponding baseline.

It is also worth noticing how the results varies according to the dataset. For the Oxford datasets,

the SNM + R and SNM + WR approaches (those that combine the selection of strong matches

with RANSAC) are the best choices because in both cases the complexity of the RANSAC process

is dramatically reduced with negligible performance loss. Furthermore, the improvement achieved with

respect to their corresponding baselines is consistent for every computational complexity level (4 − 5%

with respect to RM − 0.8 +R). Furthermore, in scenarios where very low computational complexity is

required, the SNM +WT approach, which substitutes the RANSAC by a direct weighted estimation of

the homography based on the strong matches, obtains good performances at very competitive execution

times. This result is more notable in the Oxford 5k dataset. As the proportion of relevant images in the

top positions of the initial ranking is higher in this dataset than in Oxford 105k, we can conclude that

the SNM +WT successfully deals with images in which the proportion of inliers in the candidate set

of matches is high, whereas fails to filter out false matches when the number of outliers in the candidate

set increases.

For the Holidays dataset, although again the NM-based approaches clearly outperform the correspond-

ing baselines, the results are slightly different. In particular, all solutions combining NM and RANSAC

provide comparable performances. On the other hand, SNM +WT provides poor results and we have

decided to remove them from the graphs to improve general visualization.

The rationale behind the differences between the datasets is the following. The approaches relying

on strong matches (SNM ) successfully reduce the number of matches that are passed to RANSAC on

those images that show a large number of candidate matches. This occurs in reference images that are
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TABLE III: Comparison of several state-of-the-art approaches with the proposed approach for the Oxford

5k and Oxford 105k datasets with respect to mean Average Precision (mAP). In all cases, re-ranking with

Geometric Verification has been done using the 1000 top-ranked images. All methods use the vocabularies

of BoW in the Paris 6k dataset in except for Mikulı́k et al. ⋆, which used its own larger dataset. For

Jegou et al., our own implementation is used †. Some methods, marked as ⋄, are not based on BoW and

use CNN-based features.

Algorithm Model SR QE Oxford 5k Oxford 105k

Philbin et al. [25] BoW RM ✗ 73.1 62.0

Perdǒch et al. [52] BoW RM ✗ 72.5 65.2

Li et al. [42] BoW RM ✗ 73.7 -

Jegou et al.† [26] BoW RM ✗ 77.5 75.0

Proposal ([26]+NM) BoW NM ✗ 79.6 76.9

Perdǒch et al. [52] BoW RM ✓ 82.2 77.2

Chum et al. [53] BoW RM ✓ 82.7 76.7

Mikulı́k et al.⋆ [54] BoW RM ✓ 84.9 79.5

Arandjelovic et al. [55] BoW RM ✓ 80.9 72.2

Jegou et al. † [26] BoW RM ✓ 83.5 79.6

Proposal ([26]+NM) BoW NM ✓ 85.1 80.8

Gordo et al.⋄ [18] CNN – ✗ 84.5 81.6

Gordo et al.⋄ [18] CNN – ✓ 89.1 87.3

relevant to the query, which is normally more likely in the first positions of the initial ranking provided

by the BoW approach. For the Oxford datasets, since hundreds of images are relevant to each query, the

improvement provided by these methods is quite notable, diminishing only for high levels of complexity

(as can be seen in Fig. 4c, for high values of tGV the curve of FNM − R tends to reach SNM + R

and SNM +RW ). In contrast, for the Holidays dataset, since just a few reference images are relevant

to each query, the improvement is related to low levels of complexity (in this case, see Fig. 4i, one can

notice that just for low values of tGV the SNM−R and SNM−RW curves are above that of FNM-R).

D. Comparison with the state-of-the-art

To construct an image retrieval system, competitive with the state-of-the-art, we have combined the

NMS +R version of our proposal with other modern techniques that have shown to be relevant for the
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TABLE IV: Comparison of several state-of-the-art approaches with the proposed approach using the

Holidays dataset. In all cases, query expansion methods have been disabled. All methods have used the

vocabularies of BoW in the Flickr60K dataset in except for Mikulı́k et al. ⋆, which used its own larger

dataset. For Jegou et al., our own implementation is used †. Some methods, marked as ⋄, are not based

on BoW and use CNN-based features.

Algorithm Feat. SR Holidays (mAP)

Mikulı́k et al. ⋆ [54] BoW RM 75.8

Li et al. [42] BoW RM 89.2

Jegou et al. † [26] BoW RM 82.1

Proposal ([26]+NM) BoW NM 83.7

Gordo et al.⋄ [18] CNN – 86.7

Xie et al. ⋄ [56] CNN – 88.7

Fig. 5: Results for [26] and our approach at different depths R of the re-ranking step and the three

considered datasets.

complete system performance. In general, as our method focuses on the geometric verification step, it

can be easily combined with many other techniques described in the image retrieval literature, not only

for the initial ranking but also for posterior stages (e.g. Query Expansion). Specifically, in this paper, we

have used the following pipeline to generate the initial ranking:

• For the Oxford datasets, we have used the Perdǒch et al. [52] detector, which has demonstrated
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superior performance when all images are vertically aligned.

• We have used Hamming Embedding (HE) and Weak Geometric Constraints (WGC) [9] rather than the

baseline BoW. Hamming embedding was used for a vocabulary of 65k words and binary descriptors

of 64 dimensions. Both the vocabulary and the Hamming embedding parameters were trained on the

independent datasets (those used in the original proposals): Paris dataset [25] was used to compute

the vocabulary utilized in the experiments related to the Oxford datasets; whereas the Flickr60K

dataset [9] was used for Holidays. Although better results can be obtained if we use the same

corresponding dataset to compute the vocabulary (see [55] for some examples), this approach would

lead to a non-realistic scenario, prone to over-fitting unless the vocabulary is recomputed every time

the reference dataset is increased with new images (which is not scalable at all).

• We have followed the Multiple Assignment approach [25], in which each descriptor may be associated

to more than one visual word (although, due to the increment of the computational load, we have

used this multiple assignment only for the query).

• In order to deal with with the burstiness phenomenon, we have also incorporated the model proposed

in [26].

We have also made a change regarding the NM-based re-ranking. The NM step of the proposed

geometric verification uses Hamming distances between binary codes (from Hamming embedding) rather

than L2 distances between SIFT descriptors. In particular, two descriptors are matched only if they are

associated with the same word and the hamming distance is small enough. This new approach, although

entails a slight decrement on the retrieval performance, turns out to be much more computationally

efficient since we only need to compute Hamming distances among a very reduced set of binary descriptors

(those that belong to the same word).

Table III shows a comparison between our method and some state-of-the-art techniques which reported

results for the Oxford 5k and 105k datasets using the same experimental setup. Two configurations have

been tested, with and without Query Expansion (QE), to demonstrate that our approach combines well

with QE methods. In particular, we used Discriminative Query Expansion (DQE) [55] since working with

more recent alternatives for Query Expansion ([57] or [58]) fall out of the scope of this paper.

We have included various reference methods based on the BoW for comparison, namely: a) the

original combination of BoW + geometric verification (Philbin et al. [25]); b) discretized local geometry

representations (Perdǒch et al. [52]); c) fine partitioning of the descriptor space and visual word similarity

based on probabilistic relationships (Mikulı́k et al. [54]); d) Average Query Expansion (Chum et al. [53]);

e) Hamming Embedding with Burstiness and Weak Geometric Constraints (Jegou et al. [26]); f) Spatial

October 3, 2016 DRAFT



IEEE TRANSACTIONS ON MULTIMEDIA 25

database-side feature augmentation (SPAUG) and Discriminative Query Expansion (DQE) (Arandjelovic

et al. [55]); and g) Pairwise Geometric Matching (Li et al. [42]). In addition, a couple of methods that

are not based on the BoW but use features from CNNs (Xie et al. [56], Gordo et al.[18]) have been also

added at the end of the tables for comparison.

As shown in the tables, our method combines well with other techniques in the literature. In particular,

our proposal achieves better performance than all the rest of the approaches based on the BoW paradigm.

The results are consistent for the Oxford 5k dataset and the much larger Oxford 105k, which demonstrates

its applicability to large-scale image retrieval problems. In fact, as our method is only used for the top

images in the initial ranking, its complexity does not directly depend on the size of the dataset, but on the

number of re-ranked images. It is also worth mentioning that our method also outperforms [26], being

the use of Neighborhood Matching in the re-ranking step the only difference between both methods.

Furthermore, our approach would be faster because NM is faster than RM, as we have demonstrated in

Section V-C. This particular comparison was extended in Fig. 5 to show results for various depths of the

re-ranking process. As can be seen, our method consistently outperforms [26] for any depth. It should

be noticed that, in the Oxford 5k dataset, our proposal improves until a depth of around 500 images;

while, in Oxford 105k, the performance keeps improving with larger depths. This is due to the quality

of the initial ranking provided by BoW, which is lower for the Oxford 105K dataset due to the inclusion

of distracting images.

We would also like to remark that the improvements achieved by our method add to those of the

QE step. The generation of neighborhoods improves the selection of the final matches and enhances the

detection of the ROI (Region Of Interest), factors of key importance to select the most appropriate words

and samples in the Query Expansion.

Finally, the performance of methods using CNNs (marked with ⋄ in the tables) is slightly better than

that achieved by our approach. Although these methods require a previous training phase using large sets

of images, the image representations computed by CNNs seem to be more reliable and discriminative

than the handcrafted local features used in the traditional BoW approaches.

Results for the Holidays dataset are shown in Table IV. In this case, QE methods have been disabled

because they do not achieve improvements due to the small number of relevant images (1-5). For this

particular dataset, we have found that the effect of the spatial re-ranking is less relevant for several

reasons: lack of planar surfaces (as the building facades in Oxford datasets), lack of initial matches

between images, and apparition of objects at different depths (some of these issues will be analyzed in

the following section). Consequently, the performance of the proposed method is not so good as those of
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other methods which focus on other modules of the retrieval pipeline (as [42]) or CNN-based approaches

[18][56]. In addition, as can be seen in Fig. 5, the best performance for this dataset is achieved at very

low depths of the re-ranking stage, mainly due to the reduced number of relevant images for each query.

Our final conclusion is that NM improves the performance of the re-ranking step in terms of quality

and complexity if it is incorporated into a retrieval pipeline based on the BoW paradigm.

(a) (b) (c) (d)

Fig. 6: Examples of errors made by our approach. Non-relevant images retrieved in top positions of the

ranking are usually related to buildings that share small details or blocks with the query (a), or correspond

with close-ups or partial views of the query (b). Relevant images located deep in the ranking are due to

the lack of initial matches (c) and concurrent strong changes in viewpoint, scale and illumination (d).

E. Error Analysis and Discussion

In order to provide more insight about the behavior of our proposed approach, we have first identified

cases in which it fails. We have used a version without QE, so that the NM-based re-ranking is the last

step in the retrieval pipeline. As we illustrate in Fig. 6, most of the errors cannot be directly related to

the Neighborhood Matching process. In fact, non relevant images appear in top positions of the ranking

(decrease precision) mainly due to this two reasons: either details and small structures that are shared by

several different buildings or landmarks (see elements in the ceilings and towers in Fig. 6 (a)); or images

that are close-ups or partial views of larger buildings but have been labeled as negatives (Fig. 6 (b)).

Relevant images falling into deep positions of the ranking are more common in the Holidays dataset,

due to the small number of relevant images for a query. In some cases, very smooth and homogeneous

images causes the previous matching process to remove almost every correspondence and prevents the

computing of the geometric transform (Fig 6 (c)). Furthermore, concurrent transformations in geometry,

illumination and scale, as shown in Fig. 6 (d) may also break our solution.

Since the most common error sources are not related to the proposed Neighborhood Matching, we

have further analyzed the behavior of our NM-based approach (SNM-R version) compared to Regular
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7: Examples of the behavior of our approach. Top row: an example in which our NM-based approach

successfully deals with a problematic non-relevant image. The initial set of strong points is Ns = 43,

containing both true and false matches (a). In regular matching, the geometric verification produces a

final set with 13 inliers, which corresponds to the position #20 in the ranking (b). Our approach filters the

strong matches that do not belong to a neighborhood resulting in a reduced candidate set with Nr = 14

matches (c). The geometric verification results in 5 inliers (d), which corresponds to the position #71 in

the ranking. Bottom row: an example in which our approach fails for a relevant image. The initial set of

strong matches contains Ns = 59 matches (e). The Regular Matching uses these matches to compute the

geometric transformation, resulting in a final set of 15 inliers (f) and ranking the image in the position

#17. However, our NM-based approach discards strong matches that do not belong to a neighborhood

and reduces the candidate set to Nr = 25 matches (g). After the geometric verification, our approach

finally produces 10 inliers (h) and ranks the image at position #64. This final result shows that the NM

stage has removed too many matches, some of them being true.

Matching. In Fig. 7, we show two examples, one in which NM succeeds and other in which fails. The

top row shows an example in which our NM-based approach successfully deals with a non-relevant

image that is problematic for RM. In this particular case, the NM filtering stage removes many false

matches which do not belong to any neighborhood, thus decreasing the final number of geometrically

verified matches from 13 (RM) to 5 (NM). In contrast, the bottom row shows an example in which our
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method fails to process a relevant image. In this case, NM removes too many matches, some of them

true, causing the final number of geometrically verified inliers to decrease from 15 (RM) to 10 (NM).

However, the first example occurs much more often than the second, which makes that our NM-based

approach notably outperforms traditional methods of geometric verification (as we have demonstrated in

previous subsections).

VI. CONCLUSIONS

In this paper we have described the technique we call neighborhood matching (NM) and demonstrated

its use for image retrieval. We have discussed the efficacy of NM in reducing the computational complexity

of the geometrical verification process employed in image retrieval. The NM technique relies on the

hypothesis that if two points are spatially close to each other in an image, it is very unlikely that their

corresponding matches in another image are far away from each other. Consequently, this hypothesis is

used to filter those likely false matches.

We have proposed several alternative approaches to take advantage of the benefits of NM in image

retrieval. Specifically, we have designed various strategies for using NM to reduce the number of

potentially false matches that are passed to RANSAC in the geometrical verification step.

We have addressed different image retrieval tasks using the Oxford 5k, Oxford 105k and INRIA Holi-

days datasets and shown how the use of NM leads to a much better performance-complexity compromise,

producing improvements about 5% in terms of mAP with respect to the baseline approach based on RM

for equivalent complexity levels. Furthermore, we have compared an improved version of the proposed

method with several state-of-the-art methods showing that our method outperforms other methods based

on the BoW paradigm in the Oxford 5k and 105k datasets, for which the impact of the geometric re-

ranking is higher. As approaches using features computed by CNNs show better performance than those

of methods based on the BoW paradigm, our future work will focus on the development of efficient

spatial verification methods that can be combined with CNN-based approaches.
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