This is a postprint version of the following published document:

Estébanez, C., Saez, Y., Recio, G., and Isasi, P. (2014), AUTOMATIC DESIGN OF NONCRYPTOGRAPHIC HASH FUNCTIONS USING GENETIC PROGRAMMING, Computational Intelligence, 4, 798–831

DOI: https://doi.org/10.1111/coin.12033

© 2014 Wiley Periodicals, Inc.
AUTOMATIC DESIGN OF NONCRYPTOGRAPHIC HASH FUNCTIONS USING GENETIC PROGRAMMING

CÉSAR ESTÉBANEZ, YAGO SAEZ, GUSTAVO RECIO, AND PEDRO ISASI

Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain

Noncryptographic hash functions have an immense number of important practical applications owing to their powerful search properties. However, those properties critically depend on good designs: Inappropriately chosen hash functions are a very common source of performance losses. On the other hand, hash functions are difficult to design: They are extremely nonlinear and counterintuitive, and relationships between the variables are often intricate and obscure. In this work, we demonstrate the utility of genetic programming (GP) and avalanche effect to automatically generate noncryptographic hashes that can compete with state-of-the-art hash functions. We describe the design and implementation of our system, called GP-hash, and its fitness function, based on avalanche properties. Also, we experimentally identify good terminal and function sets and parameters for this task, providing interesting information for future research in this topic. Using GP-hash, we were able to generate two different families of noncryptographic hashes. These hashes are able to compete with a selection of the most important functions of the hashing literature, most of them widely used in the industry and created by world-class hashing experts with years of experience.

Key words: hash functions, genetic programming, evolutionary computation.

1. INTRODUCTION

Hashing is everywhere. Hash functions are the core of hash tables, of course, but they also have a multitude of other applications: Bloom filters, distributed hash tables, local sensitive hashing, geometric hashing, string search algorithms, error detection schemes, transposition tables, cache implementations, and many more. For example, Robert Jenkins reports in his Web page\(^1\) that his hash function \texttt{lookup3} has been used by top-class companies such as Google, Oracle, and Dreamworks (they used it for the Shrek movie). He also reported that \texttt{lookup3} was used in implementations of Infoseek, Perl, Ruby, and Linux, among others. The creators of the Fowler–Noll–Vo (FNV) hash function also report\(^2\) some impressive real-life applications of their function: Domain Name System servers, Network File System implementations (FreeBSD 4.3, IRIX, and Linux), video games (PlayStation2, GameCube, and Xbox consoles), Twitter, and so on.

Why is hashing so important? The answer is that, under some reasonable assumptions, hashing allows searching for objects in a set in constant time $O(1)$, independent of the size of the set. Thus, it is not only that the access times are optimal: The most important feature is the perfect scalability of the system. Lookup time remains constant no matter how large the set is. Considering that we live in a world in which governments, companies, and research centers use every day massive databases containing thousands of terabytes of data that must be constantly accessed and updated, it should not be a surprise that hashing is such a popular technique.

\(^1\) http://burtleburtle.net/bob/other/resume2.html.
\(^2\) http://www.isthe.com/chongo/tech/comp/fnv/.

Address correspondence to César Estébanez, Department of Computer Science, Universidad Carlos III de Madrid, Av. Universidad 30, 28911, Leganes, Madrid, Spain; e-mail: cesteban@inf.uc3m.es
Of course, finding elements in time $O(1)$ is the ideal case. In fact, one of the most important drawbacks of hashing is worst case performance: Finding an object in a set of n elements could have a cost of $O(n)$. This happens only when the hash function maps every input key to the same hash value, and this extreme behavior is very unlikely as long as we design a decent function. However, performance losses due to unsuitable hash functions are very common. The performance of a hashing system entirely depends on how we design (or choose) the hash function.

1.1. Motivation

The problem is that designing top-quality hash functions is a difficult process. They are extremely nonlinear, counterintuitive mathematical constructions in which the relationships between the variables are intentionally obscure and intricate. In fact, most of the noncryptographic hashes that are commonly used in the software industry were handcrafted by experts. Some very popular functions, such as FNV, use magic numbers, which are numerical constants arbitrarily selected in a trial-and-error process. On top of that, there is no generally accepted way of measuring the quality of noncryptographic hash functions (NCHF); thus, even if one does a good job designing a hash function, it is very difficult to compare it with the state of the art.

These difficulties in the design of good hash functions suggest that artificial intelligence (AI) techniques such as genetic programming (GP) could do a good job replacing humans in the task of creating new hashes. The reason is that GP is specially suitable for that specific kind of problems: In Poli, Langdon, and McPhee (2008) authors claim that, based on the experience of numerous researchers over many years, GP is specially productive in problems having some or all of the following properties:

1. The interrelationships among the relevant variables are unknown or poorly understood.
2. Finding the size and shape of the ultimate solution is a major part of the problem.
3. Significant amounts of test data are available in computer-readable form.
4. There are good simulators to test the performance of tentative solutions to a problem, but poor methods to directly obtain good solutions.
5. Conventional mathematical analysis does not, or cannot, provide analytic solutions.
6. An approximate solution is acceptable.
7. Small improvements in performance are routinely measured (or easily measurable) and highly prized.

We can say that the problem of finding new hash functions completely fulfill at least conditions 1, 3, 4, and 7. And it probably fulfill also all the others in some way.

1.2. Objectives

In this work, we want to prove that GP, in conjunction with an adequate fitness function, is able to automatically design NCHF that are competitive with those generated by human experts with years of experience. The great difference with previous works on evolution of hashes is the use of the avalanche effect as a powerful estimator of the general quality level of an NCHF. This concept, related to information theory and widely used in cryptography and hashing, represents the power of the hash to efficiently diffuse input patterns and produce an apparently random output. In this work, we prove that selecting NCHF by their levels of avalanche effect is an efficient unbiased, and accurate way to discover high-quality functions. This allows us to use a very fast mono-objective optimization approach that obtains highly competitive results.
In the next sections, we describe the design and implementation of our hashing generation system based on GP. We call this system GP-hash. We also show the experimental work carried out to prove the practical utility of our system, and we claim that GP-hash is able to generate some hashes that compete in performance with state-of-the-art functions that are massively used in industry, such as lookup3, FNV, SuperFastHash, or MurmurHash.

1.3. Organization

The remainder of this document is organized as follows. In Sections 2 and 3, we introduce respectively the NCHF and GP. These are the two main technologies on which this work is based. Their sections give a very brief introduction to the most important concepts and suggest further reading to those interested. Then, in Section 4, we review some previous works that involve the application of evolutionary computation techniques (and AI in general) to hashing. Section 5 is dedicated to our GP-hash system: We describe all the design and implementation issues, including fitness function, terminal and function sets, parameter tuning, and so on. Then, in Section 6, we use our experimental results to show the utility of the GP-hash to generate noncryptographic hashes. Finally, in Section 7, we summarize the most important achievements and contributions of this work and give detailed explanations of what we have learned from it.

2. NONCRYPTOGRAPHIC HASH FUNCTIONS

Hash functions are a family of mathematical expressions that take a message of variable length as input and return a hash value of fixed length as output (Figure 1). This asymmetry between the sizes of inputs and outputs is one of the most important properties of hash functions. Another desirable and important property, also illustrated in Figure 1, is that minimum changes in the input of a hash function should produce maximum changes in the output.

Most noncryptographic hash functions follow the Merkle–Damgård construction scheme\(^3\) (independently developed by Merkle 1989 and Damgård 1990). Figure 2 illustrates how it works: Inputs of the hash function are split into smaller blocks of fixed size, and then

\(^3\)This does not apply to cryptographic hash functions, which use a variety of systems other than Merkle–Damgård. This is because this construction scheme is no longer considered safe, because different cryptanalysis studies have exposed some weaknesses that are considered important for cryptographic applications. Alternative schema include HAIFA (Biham and Dunkelman 2006), wide-pipe construction (Lucks 2005), and sponge construction (Bertoni et al. 2007, 2008).
the blocks are processed one by one by the mixing function, whose mission is to scramble input bits and internal state, producing a highly entropic output. In step \(i \), the inputs of the mixing function are block \(i \), and the output of the processing block is \(i - 1 \). If the length of the message is not a multiple of the block size, then a padding must be added to the last block.

There are a huge number of practical applications of hash functions, but the most important one (and the base for most of the others) is the hash table. Hash tables are data structures composed of a random-access container (e.g., an array) with \(M \) slots (usually called buckets) that can store entries, and a hash function. Entries consist of two elements: the data we actually want to store and a key that identifies the entry. To insert an entry into the table, the hash function is fed with the key, producing a hash value. This value is translated into a valid index of the table, and then the key–data pair is inserted into the bucket indicated by the generated index. When looking for a particular entry in the table, the process is reversed: The key associated to the entry is hashed and the hash value is translated into an index. The entry is supposed to be in the bucket indicated by the produced index.

Ideally, every hash value should identify a unique input message. However, as stated earlier, inputs of a hash function have variable sizes, and outputs have a fixed size. This means that there are an infinite number of possible inputs and a finite number of possible outputs. The consequence is that some inputs must produce exactly the same output. We call this a collision. Collisions are an unavoidable problem that can dramatically decrease the performance of hashing.

Apart from collision resistance, we generally require an NCHF to be fast, to distribute outputs evenly, and to produce great levels of avalanche effects.

2.1. Quality Criteria for Noncryptographic Hash Functions

According to the hashing literature, the most important quality criteria for NCHF are collision resistance, distribution of outputs, avalanche effect, and speed (Valloud 2008; Henke, Schmoll, and Zseby, 2008; Goodrich and Tamassia 2009).

- **Collision resistance**: A hash function must reduce the collisions it produces to a minimum (Knott 1975; Valloud 2008; Goodrich and Tamassia 2009). If we assume that the function produces each hash value with exactly the same probability, it should take about \(2^{n/2} \) hash evaluations (where \(n \) is the size of the output in bits) to find two colliding
keys using a birthday attack. However, it could take much fewer if the NCHF is poorly designed (Bellare and Kohno 2004). Collisions are one of the major reasons of performance loss in hashing applications, and they should be carefully controlled. Collision resistance is data dependent: The collision properties of a function can be measured only in relation to a specific key set (Knuth 1973; Valloud 2008).

- **Distribution of outputs**: It is very important for a noncryptographic hash to produce outputs that follow a uniform distribution (Knott 1975; Sedgewick 2001; Cormen et al. 2001; Valloud 2008). The function must generate each possible output value with the same probability, independent of the distribution of the inputs. An uneven distribution of outputs would produce clustering problems, which greatly affect the performance of an NCHF. Similar to the collision rate, this quality criterion is data dependent.

- **Avalanche effect**: The avalanche effect of a hash function refers to its ability to produce a large change in the output under a minimum change in the input. This property is very important for NCHF (Valloud 2008; Henke et al. 2008). A hash with a good avalanche level can dissipate the statistical patterns of the inputs into larger structures of the output, thus generating high levels of disorder and preventing clustering problems. This criterion is independent of the architecture and the data, which greatly simplifies its study and measurement.

- **Speed**: NCHF are useful because they allow searches to be performed very quickly. This means that an NCHF must be as fast as possible (Goodrich and Tamassia 2009; Heileman 1996; Knuth 1973; Ramakrishna and Zobel 1997; Sedgewick 2001; McKenzie, Harries, and Bell 1990). For this purpose, NCHF should use very few operators, and these operators should be efficient in terms of CPU consumption. This criterion obviously depends on the architecture in which the hash function runs, because different CPUs offer different performance levels for the same operators (e.g., Matsui and Fukuda 2005).

2.2. Most Common Noncryptographic Hash Function in the Literature

According to their practical applications and their presence in the literature, the most important NCHF are the following:

- **FNV** (Fowler, Vo, and Noll 1991): This function was designed by Glenn Fowler and Phong Vo in 1991 and later improved by Landon Curt Noll. It is one of the most efficient and widely used hash functions ever created. According to the authors, dozens of very important software products use FNV hash, including Linux and FreeBSD distributions, Twitter, Domain Name System servers, Network File System implementations (FreeBSD 4.3, IRIX, and Linux), and video games (in PlayStation2, GameCube, or Xbox consoles). There are two versions of this hash: FNV-1 and FNV-1a.

- **lookup3** (Jenkins 1997): This function was designed by Robert Jenkins and is one of the most important references in the field of noncryptographic hashes. According to Jenkins, companies such as Google, Oracle, and Dreamworks have been using lookup3 in their products. This hash is also included in implementations of PostgreSQL, Linux, Perl, Ruby, and Infoseek.

- **SuperFastHash** (Hsieh 2004–2008): This hash was created by Paul Hsieh with the objective of being elegant, being extremely fast, and providing high levels of avalanche. It was inspired by some principles found in FNV and lookup3. This function is popular in the software industry: According to Hsieh, Apple uses SuperFastHash in its open-source project WebKit, which is in turn used in browsers such as Safari and Google Chrome. This function was also part of several versions of the former Macromedia product Flash Player.
- **MurmurHash2** (Appleby 2008): This function was designed by Austin Appleby in 2008 and, despite its short lifetime, enjoys great prestige among hashing experts. It is used in some important open-source projects, such as libmemcached, Maatkit, and Apache Hadoop, and has outstanding avalanche properties.

- **DJBX33A**: This function was originally proposed by Prof. Daniel J. Bernstein and is used very often for hashing strings. Many different programming languages such as PHP 5, Python, and ASP.NET use DJBX33A or functions derived from it. Java also uses a function that is essentially equivalent to DJBX33A when hashing string objects. This has greatly influenced many application servers, such as Tomcat, Geronimo, Jetty, or Glassfish which could be exposed to denial-of-service attacks that use known weaknesses of DJBX33A to bring the application server to its knees (Klink and Wälde 2011; Crosby and Wallach 2003).

- **BuzHash**: This is a general-purpose hash function that was invented by Robert Uzgalis in 1992. It uses a substitution table that replaces each input byte by a randomized alias. These aliases are made so that for every bit position, exactly one half of the aliases have a 1 and the other half have a 0. It is suited for any input distribution, even extremely skewed distributions.

- **DEK**: This is a multiplicative hashing that is based on the ideas of Donald E. Knuth 1973. It is one of the oldest and simplest hashing algorithms ever created and is still very popular in the hashing community. The version used in this work is part of the “General Hash Function Library” by Arash Partow (2010).

- **BKDR**: This function was originally proposed by Kernighan and Ritchie (1988) and is included in the aforementioned General Hash Function Library.

- **APartow** (Partow 2010): This hybrid rotative and additive hash function algorithm was proposed by Arash Partow and is included in his library of hashes.

2.3. Further Reading

According to Donald E. Knuth, the first publication about hashing is an internal memorandum by H. P. Luhn, an IBM employee, in 1953, but the most cited reference about hashing is Knuth (1998). It is probably the first textbook that gives a serious introduction to hashing, but its first edition is from the 1970s and could be a bit outdated. There are other modern textbooks that are also worth reading: Valloud’s (2008) is the only textbook that we know that is a comprehensive dedicated guide to hashing. The only con is that the book is focused on SmallTalk. Other textbooks containing interesting chapters about hashing are as follows: Sedgewick (2001), Cormen et al. (2001), Goodrich and Tamassia (2009), and Heileman (1996). Another great source of information is the video lectures of the computer science course *Introduction to Algorithms* at MIT, publicly available through MIT OpenCourseWare.

3. GENETIC PROGRAMMING

Genetic programming (Koza 1992) is a stochastic search technique that tries to automatically generate solutions to a problem starting from high-level statements of what needs to be done. GP belongs to the family of evolutionary computation techniques. GP populations are composed of computer programs. Thus, GP parts from a random population of programs and tries to improve them through generations using mechanisms inspired by natural selection and evolution.

To exert a selective pressure over the population and properly guide the search, GP uses a combination of two elements: first a cost function (or fitness function) that evaluates
computer programs and assigns them a score indicating their level of adaptation to the prob­lem and, second, a set of operators that recombine or modify individuals of the population trying to produce fitter programs. As stated by Poli et al. (2008), a typical GP run executes the following algorithm:

(1) Randomly create an initial population of programs from the available primitives.
(2) Repeat:
(3) Execute each program and ascertain its fitness.
(4) Select one or two program(s) from the population with a probability based on fitness to participate in genetic operations.
(5) Create new individual program(s) by applying genetic operations with specified probabilities (Section 2.4).
(6) Until an acceptable solution is found or some other stopping condition is met (e.g., a maximum number of generations is reached).
(7) Return the best-so-far individual.

In each generation, the current population is evaluated. At the end of this process, each individual has been assigned a numerical value, called the fitness value. In some problems, we are looking for low fitness values (e.g., minimize the collisions produced by a hash function), and in some others, we want high fitness values (e.g., maximize the disorder produced by a hash function measuring the randomness of the outputs). Programs with better-than-average fitness values are selected to breed and produce new individuals for the next generation. The most common genetic operators used to breed new programs are as follows:

- **Crossover**: The offspring is created by combining randomly chosen parts from two previously selected parents.
- **Mutation**: The new child is created by randomly altering some parts of a previously selected parent.

Individuals are usually represented as parse trees or their equivalent syntactic expressions in Polish notation (Figure 3). Internal nodes of the tree are functions (operators that accept parameters), and leaves are terminals (variables or constants).

\[
(*) \ (\log \ (- \ X \ 7)) \ (+ \ 3 \ Y))
\]

Figure 3. Example of a genetic programming individual represented as a tree and its equivalent syntax expression.
4. ARTIFICIAL INTELLIGENCE + HASHING

In Section 1.1, we explained the reasons why GP could be very suitable to automatically design hash functions: Evolutionary computation techniques in general are proven to be very good in finding approximate solutions to poorly understood problems, in which the relationships between the variables are not completely known. Furthermore, GP is particularly good at discovering unexpected hash functions because the individuals it evolves do not need to have a fixed size or shape, which is perfect for evolving arbitrary mathematical expressions.

Surprisingly, there is not much research on this topic. Actually, it is hard to find research work that uses AI techniques to automatically generate NCHF.

The most similar work we found is Safdari’s (2009). In fact, the author cites a previous work that we published in 2006 (Estébanez et al. 2006a) describing the first prototype of our GP-hash system. In his article, M. Safdari starts with the family of universal hash functions

\[h_{a,b}(k) = ((ak + b) \mod p) \mod N \]

and uses a genetic algorithm to evolve parameters \(a \) and \(b \), trying to find the best function for a particular set of inputs. All the databases he uses are sets of random integers lying in a predefined range. The results are promising, but the methodology is questionable: If the input data are purely random, which is the case, then a hash function is not needed at all: Just use the input values (or a portion of them) as hash values to obtain a perfect uniform distribution and a minimum collision rate. It will be much more interesting to try the same experiments with biased input sets, which are far more difficult for NCHF. Furthermore, there are no significance tests (or at least mean values over a number of runs) on the results. The cost function used to guide the search is based on the collision rate and the load factor of the table, two concepts that are mixed in the same function in an apparently arbitrary way.

In a previous work, Berarducci (2004) already followed a similar approach, trying to automatically generate hash functions for hashing integer numbers. Their system, called GEVOSH, is even closer to GP-hash than the work of M. Safdari, because GEVOSH uses grammatical evolution (Ryan et al. 1998; O’Neill and Ryan 2003), a technique that is closely related to GP, and because complete hash functions are evolved instead of using a fixed schema and evolve the parameters. The fitness function is based on the collision rate. Two hash functions are obtained and compared with six hashes extracted from Wang (2007). The authors claim that their hashes are competitive with the other six, but the reader cannot really tell, because charts in the article are very difficult to understand (very-low-quality graphics and no explanation on the text). It is not clear in the article whether the data sets they used were random or not.

Hussain and Malliaris (2000) has a very short article in which they use a genetic algorithm with collision-based fitness to evolve some kind of polynomials that they use as hash functions. There is no explanation about how those polynomials are constructed or used to hash; thus, we assumed that they are using a schema similar to the polynomial hash codes studied by Goodrich and Tamassia (2009). The experimental results appear to be good, but the extreme lack of details makes it very difficult to evaluate their real impact.

Another interesting flavor of this problem is the automatic design of hashing circuits using Evolvable Hardware. This technique uses evolutionary algorithms to automatically design electronic devices (Sipper et al. 1997; Gordon and Bentley 2002). In this domain, Damiani, Liberati, and Tettamanzi (1998) offer an interesting approach. They use an evolutionary algorithm to evolve a field-programmable gate array (FPGA)-based digital circuit, which computes a hash function mapping 16-bit entries into 8-bit hash
values. The evolutionary algorithm uses dynamical mutation and uniform crossover. The fitness function is based on the uniformity of the output distribution. In the work of Damiani and Tettamanzi (1999), this system is adapted to online reconfiguration of the circuits. Finally, in the work of Widiger, Salomon, and Timmermann (2006), we have another example of the application of evolvable hardware to the generation of FPGA hashing circuits. In this case, the hash circuits are intended to work as hardware packet classifier inside routers. The routing rules that the device needs to hash are constantly changing; thus, the designed hash function must be adaptive, and the circuits must allow online reconfigurations. Different hash schemes are used, and the results are very interesting.

The automatic generation of cryptographic hashes is completely out of the scope of this work because their design goals and restrictions are completely different from those related to noncryptographic hashes. Even so, we suggest an interesting publication on this topic: Snasel et al. (2009).

In the work of Estévez-Tapiador et al. (2008), some of our colleges at Universidad Carlos III de Madrid continued our previous work presented in Estèbanez et al. (2006b) and created a variation of our system that evolves cryptographic hashes. Although we are not dealing with cryptographic functions in this work, we think it is important to cite this work because it shows that the central idea of GP-hash is flexible and powerful enough to be easily adapted to different domains. In the aforementioned article, authors were able to generate a block cipher that they used as the compression function of a cryptographic hash following the Miyaguchi–Preneel construction scheme (Miyaguchi, Ohta, and Iwata 1990; Preneel 1993). The function they generated was very fast and passed some statistical tests that prove that the function has no evident weaknesses and suggest that it could be secure enough to resist some attacks. They used the same fitness function based on the avalanche effect that we developed in our previous work.

4.1. Contributions of GP-hash

In this section, we reviewed the previous work on AI applied to the automatic design of NCHF, including Hussain and Malliaris (2000), Safdari (2009), and the GEVOSH system proposed by Berarducci et al. (2004). The most important difference between GP-hash and these systems is the fitness measure: Whereas in previous works, the collision rate is always the quality criterion used to evaluate general-purpose NCHF, GP-hash uses a fitness function based on the avalanche effect.

This is important because collision rate is data dependent. This means that for calculating the collision resistance of an NCHF, one needs to actually hash a key set and study the frequency of the outputs. Thus, it is only possible to measure the collision properties of a hash with relation to a specific key set. This is a major drawback when trying to evolve general-purpose hashes, which should perform well with a wide range of very different key sets.

On the other hand, our approach uses the avalanche effect as the main optimization objective. Avalanche is a fundamental characteristic of the internal mixing process of the NCHF; thus, it does not depend on the hashed key set. This feature makes the avalanche effect a perfect candidate to evolve general-purpose hashes. Furthermore, the avalanche effect could be seen as a measure of how much disorder the hash function can generate and how well it disrupts the input patterns. Our hypothesis is that this measure could be a good estimator of the overall quality of a hash function. In Section 6, we experimentally prove this hypothesis, showing how the performance of NCHF evolved with this criteria is comparable with that of the state of the art in noncryptographic hashing.
5. GP-HASH: DESIGN AND IMPLEMENTATION

The objective of this work is to automatically discover general-purpose, state-of-the-art, NCHF using GP. To do so, we used our GP system for automatic generation of noncryptographic hashes. We call this system GP-hash. It is coded in Java, and it makes use of two more publicly available Java libraries: PROGEN,\(^4\) which provides the GP framework (population management, evaluation and selection, genetic operators, strong typing, etc.), and HashBench,\(^5\) which offers a very rich application programming interface for NCHF evaluation. A primitive version of GP-hash was previously proposed by Estébanez et al. (2006b).

In the remainder of this section, we explain the decisions made during the design and implementation of GP-hash:

1. Design of the fitness function.
2. Definition of the terminal and function set.
3. Parameter tuning.

5.1. Fitness Function

To design a fitness function for NCHF, we considered the quality criteria define in Section 2:

1. Collision resistance
2. Distribution of outputs
3. Avalanche effect
4. Speed

The speed is not adequate as the only fitness measure in a mono-objective optimization approach: We want our function to be very fast, but that is not enough. The expression \(h = 0 \times 0; \text{return } h \); for example, is a syntactically valid hash function, and it is extremely fast, but it is completely useless. If we use speed as the objective function of a GP run, then we will obtain many individuals like that. The speed could be seen as a secondary objective that has an influence on the fitness through a weighted addition (the architecture dependence could be avoided by assigning a cost to each operation proportional to the architecture involved), or it could be considered a constraint of the problem. GP-hash follows the latter approach: The size (number of nodes) of the evolved hashes is always limited; thus, they can only have a limited number of operators. This way, the execution time of the evolved hashes is bounded.

Previous approaches invariably use fitness functions based on collision resistance properties. As we explained in Section 2.1, collision resistance is a data-dependent metric. This means that it is mandatory to choose a specific key set for training the hash function, which only guarantees that the evolved NCHF will do a good job hashing key sets with similar structures. This lack of generality is a major drawback when evolving general-purpose NCHF, which are expected to deliver a proper performance with many key sets of very different natures. The second quality criterion, distribution of outputs, is also data dependent and thus has exactly the same limitation.

\(^4\) ProGen website:
http://eva.evannai.inf.uc3m.es/personal/cesteban/cesteban/ProGen.html.

\(^5\) HashBench website:
http://eva.evannai.inf.uc3m.es/personal/cesteban/cesteban/HashBench.html.
One of the most important contributions of GP-hash is the use of the avalanche effect as the fitness measure to evolve general-purpose NCHF. Avalanche is an intrinsic property of the mixing function of an NCHF; thus, it is not data dependent. That makes it a perfect candidate to evaluate general-purpose NCHF. Furthermore, it is a measure of how well the function disrupts the input patterns and produces an apparently unpredictable output. This feature is intuitively related with a good distribution of outputs (the more random the output looks, the more evenly the outputs distribute) and thus with the collision rate (biased distributions generate more collisions than pure uniform distributions). This makes us hypothesize that the avalanche effect could be a very accurate estimator of the global quality of an NCHF.

Although GP-hash also implements fitness functions based on collision resistance and distribution of outputs, in this work, we only use the avalanche effect-based fitness function next.

5.1.1. Avalanche Fitness. We already introduced the avalanche effect as a quality criterion for NCHF in Section 2.1. In this section, we first provide a more formal definition of the avalanche effect and strict avalanche criterion (SAC). Then, we describe the avalanche-based fitness functions designed for GP-hash.

5.1.1.1. Avalanche effect and SAC. The concept of avalanche effect was introduced by Horst Feistel (1973) as an important property of block ciphers. Later, this concept was extended to s-boxes (Schneier 1996), cryptographic hash functions (Preneel 1993), non-cryptographic hashes (Valloud 2008; Mulvey 2007), and so on. We say that a hash function achieves a good avalanche when minimum changes in the input produce maximum changes in the output. This happens if each input bit has some influence on every output bit. The consequence is that flipping a single bit in the input produces an avalanche of bit flips in the output. If a hash function achieves a high avalanche effect, then the disorder caused by the hash is maximum (Figure 4).

A more rigorous concept is the Strict Avalanche Criterion (SAC) introduced by Webster and Tavares (1986): A hash function satisfies the SAC if for every change in any of the input bits (toggle between 0 and 1), all the bits of the output change with a probability of 1/2. In other words, flipping one bit of the input changes on average half of the output bits:

\[\forall x, y : \{ H(x, y) = 1 \} \Rightarrow E[H(f(x), f(y))] = n/2, \]

where \(H(x, y) \) is the Hamming distance between \(x \) and \(y \), \(f \) is a hash function, and \(n \) is the number of output bits of \(f \).

5.1.1.2. Avalanche fitness. A high-quality fitness function must deliver smooth and accurate measures, while keeping an eye on efficiency. The SAC is the most precise measurement of avalanche, but checking whether an individual satisfies SAC is not practical: For individuals with 32-bit input and output, this means hashing \(32 \times 2^{32} \) (i.e., 137,438,953,472) bitstrings for each individual, for each generation. That is a huge amount of CPU time that

![Figure 4. A hash function \(h \) with a nice avalanche effect.](image-url)
we cannot afford. Instead, the avalanche fitness uses a Monte Carlo simulation: It generates N random bitstrings\(^6\) and the hash values for those bitstrings. Then, for each bitstring, it generates the 32 possible flippe bitstrings (a flippe bitstring is the same original bitstring but with a single bit flipped and their hash values. Finally, the avalanche function checks the differences between h (bitstring) and each of h (flippedBitstrin). Then, there are two possibilities (and two different fitness functions):

(1) Measuring the probability $p_{i,j}$ of each input bit i affecting output bit j (i.e., if $p_{i,j}$ is 0.8, that means that if input bit i changes, then output bit j changes 80% of the time). With all the probabilities, construct the avalanche matrix. This matrix contains all the probabilities of every input bit affecting every output bit:

$$AM = \begin{pmatrix} p_{0,0} & p_{0,1} & \cdots & p_{0,31} \\
p_{1,0} & p_{1,1} & \cdots & p_{1,31} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n,0} & p_{n,1} & \cdots & p_{n,31} \end{pmatrix}.$$

For a perfect avalanche, all probabilities must be 0.5; thus, we can calculate the total error (we used root mean square error (RMSE)) and use this value as the fitness of the individual.

(2) Calculate Hamming distances between the hash values of original bitstring and the corresponding flippe bitstrings. We know that those distances should follow a binomial distribution with parameters $1/2$ and n:

$$\forall x, y | H(x, y) = 1, \quad H(F(x), F(y)) \approx B \left(\frac{1}{2}, n \right).$$

This can be used to calculate the goodness of f_i using Pearson’s chi square test:

$$\chi^2 = \sum_{i=1}^{N} \frac{(H_i - n/2)^2}{n/2}.$$

And comparing χ^2 with a chi square distribution of $N - 1$ degrees of freedom, we obtain the goodness of f_i and the fitness of the evaluated individual.

Both methods work very well, but for the default settings of GP-hash, we prefer avalanche matrices because they offer the possibility of nice graphical representations like those shown in Figure 5. The color of the square in position (i, j) represents the probability that input bit i affects output bit j. A black square means that changes in bit i do not change bit j at all or always changes it\(^7\) (0.0 or 1.0 probability of change). A white square means that i has a perfect influence on j (i.e., probability = 0.5).

\(^6\)In our experiments, we used $N = 100$ by default.

\(^7\)Note that a probability of 1.0 is as bad as 0.0, because 1.0 means that the value of the output bit is defined by the input bit (every time we change input bit, output bit changes).
5.2. Terminal and Function Set

In this section, we explain all the aspects related with the building blocks that GP-hash uses to construct syntactically correct, efficient NCHF. First, we give a brief description of the internal representation of the hashing structures. Then, we explain how we choose the terminals and functions of our problem. And finally, we show the experimental evidence that supports our choice.

5.2.1. Representation of Individuals. The mission of GP-hash is to evolve 32-bit non-cryptographic hashes (we focus on 32-bit NCHF because those are the most common, and we do not want to unnecessarily complicate the explanations, but it is trivial to configure GP-hash to produce functions with different output sizes, e.g., 64 or 128). Given that we already know that virtually all NCHF use a Merkle–Damgård construction, it is an unnecessary waste of time and resources to ask GP-hash to reinvent the wheel: The optimal solution is to provide a Merkle–Damgård construction and make GP-hash evolve only mixing functions. Internally, individuals of GP-hash only code mixing functions whose inputs in a particular step are the block being processed and the output from the previous step. When we
want to externally use those individuals, we wrap them with Merkle–Damgård constructions obtaining fully functional hash functions. Mixing functions are coded as regular GP trees.

5.2.2. Terminal Set. Given that evolved functions will follow the Merkle–Damgård scheme, we need at least two different terminals:

- **hval**: This is a 32-bit variable containing the internal state of the hash function. When processing block M_i, $hval$ contains the result of processing the previous block M_{i-1}. By default, it is initialized to zero but could be initialized to any other value.
- **a₀, a₁, ..., aₙ**: These variables contain the block being processed in the current step. In the Merkle–Damgård scheme, these blocks have a fixed size, but internally, the mixing function could process them in separate parts. In the most common case, blocks are 32 or 8 bits long, and we only use one variable a_0 coded in an integer (32 bits) or in a byte (8 bits). However, other combinations are possible and very common in the hashing literature. For example, the mixing function of `lookup3` consumes blocks of 96 bits on each step, and internally, the function splits each block into three variables of 32-bit length and mixes them separately. To obtain a similar mixing function in GP-hash, we should use three integer variables (a_0, a_1, and a_2). By default, we always use one 8-bit variable a_0.

Other important building blocks are **magic constants**. They are very common in hashing literature, in the form of big numbers that are combined with the variables of the system ($hval$, a_0, a_1, ..., a_n) to improve the overall entropy. There are no established rules about how to choose those numbers, but, in general, prime numbers are preferred, because they are considered to provide more disorder (e.g., Partow 2010). In GP-hash, **magic constants** are implemented as **ephemeral random constants** or ERCs (special terminals that are randomly initialized the first time they are evaluated but that keep their values during the rest of the GP run, as defined by Koza 1992). Each ERC is initialized with an integer randomly selected from a list\(^8\) of one million prime numbers between 15,485,867 and 32,452,843.

$$\text{Terminal set} = \{hval, a_0, a_1, \ldots, a_n, \text{PrimesERC}\}.$$

5.2.3. Function Set. The approach we follow to create the function set is to gather some of the most widely used noncryptographic hash functions and check which are the operators that more frequently appear. This way, we define a basic function set by putting together the most common operators in the hashing literature. Then we carry out a battery of experiments to refine the basic function set.

In Table 1, we show some of the most important noncryptographic hashes and the operators they use. Addition (+), subtraction (−), multiplication (×), and division (÷) are the common arithmetic operators we use everyday.\(^9\) Bitwise operators xor (⊕), and (∧), or (∨), and not (¬) are also very usual and do not need explanation. Right shift (>>) and right rotation (>>>) are bitwise operators that literally move the bits of a variable to the right. The difference between >> and >> is that in the former, bits originally placed in the right end are discarded, and zeros are injected in the left end, while in >>>, bits that are shifted out on

\(^8\) This list was obtained from Caldwell (1994–2009).

\(^9\) Except for division, which is protected to avoid divide-by-zero errors and respect the closure property as defined by Koza (1992).
We observe in Table 1 that almost every NCHF uses a combination of some of the following operators: { +, −, *, /, ^, &, |}. Operators /, &, | are not used by any hash. This is not a surprise given that these operators are not reversible. We say that an operator (●) is reversible when the operation \(x \bullet C = y \) (with \(C \) constant) can be reversed; this means the value of \(x \) can be deduced from the value of \(y \). Using only reversible operators guarantees that the mixing function is reversible, which means that inputs of the function can be calculated out of the outputs. In other words, there is a one-to-one mapping between inputs and outputs; thus, the mixing function is collision free. If the function is not reversible, then at least two different inputs must be producing the same output, which means that the mixing function is introducing totally avoidable collisions, which will finally propagate to the hash function. See Mulvey (2007) for more information about reversible operators and mixing functions.

Multiplication is reversible only in some circumstances and could be slow in some architectures, but it is often used because it introduces a lot of disorder.

Bit shifts are very popular because they are highly entropic and also because they are extremely efficient (only one CPU cycle latency on most modern microprocessors). However, they are not reversible unless they are combined with other operators (e.g., \(h \ggg \text{constant} \) is not reversible, but \(h^= h \ggg \text{constant} \) is reversible); thus, they must be used with care. We cannot expect the GP to be careful when putting building blocks together; thus, given that bit rotations have a very similar behavior (and efficiency) and that they are always reversible, we tend to prefer rotations in our function set rather than shifts. Furthermore, right rotation and left rotation are completely equivalent (i.e., \(x \ggg n = (x \lll 32 - n) \)); thus, when using rotations, we arbitrarily discarded left rotations and kept only right rotations.

Apart from shifts and rotations, the most frequent operators are clearly addition, multiplication, and exclusive or. Thus, we can define a basic function set for GP-hash based on the popularity of the operators:

Basic function set = \{ +, *, \ggg, \}.

5.2.4. Validation of the Terminal and Function Set. Combining the selected functions and terminals, we create the basic terminal and function set for GP-hash. Then, following an approach similar to Wang and Soule’s (2004), we carried out a battery of experiments to
test whether this set is complete and minimum and whether our hypotheses about the functions were correct. We include a summary of the results in Table 2. Each row represents the average fitness obtained with different terminal and function sets over 50 runs. Terminal and function sets are labeled as F1, F2, ..., F10. The row labeled BTFS represents the average fitness obtained with the basic terminal and function set define earlier, and it is used as reference. In the last column, there is a symbol that encodes the statistical significance: means that results are statistically significant and means that there is no significant difference between row average fitnes and the BTFS average fitness. It is important to note that we are minimizing fitness values; thus, the lower the fitness the better the individual is. We used the Shapiro–Wilk test for normality and t-test and Wilcoxon significance tests for normal and nonnormal distributions, respectively (with significance level of $\alpha = 0.05$).

Conclusions obtained from the results are as follows:

- **F1 and F2**: Including & and | does not improve the average fitness of GP-hash. The & operator was never selected for being part of the best individual of a GP-hash run. The | operator was selected only in around 30% of the runs. This is probably related with the nonreversibility of those operators, and it is interesting to see that operators that are unpopular among hashing experts are also unpopular in GP-hash solutions. Including bit shifts does not have any effect on the average fitness of GP-hash runs either. Hash functions generated with F2 contains shifts; thus, shifts are used in the evolution even though they do not improve the performance of just having rotations. These results support our decision of excluding &, |, and shift operators from the BTFS.

- **F3**: As expected, replacing the right rotation with left rotation does not have any effect on the average fitness of GP-hash. As we already predicted, both operators are completely equivalent.

- **F4 and F6**: Surprisingly, removing either addition or xor operators from BTFS has no effect on the average fitness. This was completely unexpected: These operators are very popular in the hashing literature, but GP-hash seems to work fine without them. We want to stress that we are talking about two separate experiments: In the first one, we remove

Table 2. Average Results of 50 GP-hash Runs with Different Terminal and Function Sets.

<table>
<thead>
<tr>
<th>Label</th>
<th>Terminal and function set</th>
<th>Average fitness (SD)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTFS</td>
<td>{+, *, &&|, ^&, hval, a_0, PrimesERC}</td>
<td>0.05026 (0.00084)</td>
<td>n/a</td>
</tr>
<tr>
<td>F1</td>
<td>{+, *, &&|, ^&, hval, a_0, PrimesERC}</td>
<td>0.05134 (0.00167)</td>
<td>=</td>
</tr>
<tr>
<td>F2</td>
<td>{+, *, &&|, ^&&|&|, hval, a_0, PrimesERC}</td>
<td>0.05206 (0.00550)</td>
<td>=</td>
</tr>
<tr>
<td>F3</td>
<td>{+, *, &&|&|, hval, a_0, PrimesERC}</td>
<td>0.05015 (0.00112)</td>
<td>=</td>
</tr>
<tr>
<td>F4</td>
<td>{+, *, &&|&|, hval, a_0, PrimesERC}</td>
<td>0.05113 (0.00158)</td>
<td>=</td>
</tr>
<tr>
<td>F5</td>
<td>{+, *, &&|&|, hval, a_0, PrimesERC}</td>
<td>0.23917 (0.00874)</td>
<td>=</td>
</tr>
<tr>
<td>F6</td>
<td>{+, *, &&|&|, hval, a_0, PrimesERC}</td>
<td>0.0508 (0.00206)</td>
<td>=</td>
</tr>
<tr>
<td>F7</td>
<td>{+, *, &&|&|, hval, a_0, PrimesERC}</td>
<td>0.1739 (0.00060)</td>
<td>=</td>
</tr>
<tr>
<td>F8</td>
<td>{+, *, &&|&|, hval, a_0, PrimesERC}</td>
<td>0.43425 (0.00017)</td>
<td>=</td>
</tr>
<tr>
<td>F9</td>
<td>{+, *, &&|&|, hval, a_0}</td>
<td>0.05113 (0.00315)</td>
<td>=</td>
</tr>
<tr>
<td>F10</td>
<td>{+, *, &&|&|, hval, a_0, PrimesERC}</td>
<td>0.43416 (0.00011)</td>
<td>=</td>
</tr>
</tbody>
</table>

Standard deviation (SD) is also shown in parenthesis.

For these experiments, we used the avalanche fitness based on avalanche matrices and RMSE explained in Section 5.1.1 and the standard parameters shown in Section 5.3.
addition, and in the second one, we remove xor. The lack of impact on the fitness could be explained if these two apparently important functions belong to a function group as define by Wang and Soule (2004). We tested this possibility with function set F10.

- **F5** and **F7**: On the other hand, removing either the multiplication or the rotation does have a drastic impact on the average fitness. Both changes produce a significant worsening of GP-hash performance. These operators are clearly needed.

- **F8** and **F9**: We also tested hval and PrimesERC impact on the average fitness. Results show that the hval terminal is definitely needed for a correct evolution. That was totally expected. What was unexpected is that PrimesERC seems not to be needed. Removing it from the BFTS does not affect the average fitness.

- **F10**: Removing both addition and xor operators produces an important worsening of average fitness. As we suspected from the results of F4 and F6, xor and addition form a function group. In other words, at least one of these operators must appear in the function set, but it does not matter which one. This explains the apparent lack of effect over the fitness of these so popular operators observed in F4 and F6. It is interesting to note that every hash function in Table 1 that does not use addition uses xor, and vice versa. According to Wang and Soule (2004), the optimal solution is to choose only one of those operators for the function set. Because we already have an arithmetical operator (*), but we do not have any Boolean operator, we arbitrarily decide to include xor and remove addition from the BFTS.

Finally, we have define the terminal and function set for GP-hash:

\[\text{Terminal and function set} = \{ *, \ggg, ^, \text{hval}, a_0 \} \]

5.3. Parameter Tuning

We made an extensive experimental work to find the best parameter set. We followed a similar approach to that of Section 5.2.4: Start with an initial arbitrary configuration based on our knowledge about the problem and our experience working with GP; then, using this basic configuration as a reference, try different changes on the parameters, looking for fitness improvements.

We started our experiments with the basic configuration shown in Table 3, and we progressively introduced changes in all the important parameters: genetic operator rates (±30% to each one), tournament sizes (±5), population size (100, 200, 500, and 1,000), initialization method (grow, full, and half and half), init depth interval (2–4, 2–6, 3–6, and 4–6), and size limitations (25, 50, and 75 nodes). We could not find any configuration that significantly improved the average fitness over the basic tableau. Furthermore, we found out that the GP-hash system is very robust: With a large number of different parameter configurations, GP-hash keeps working fine obtaining approximately the same average fitness and very similar best individuals. Only when using extreme values is the average fitness significantly deteriorated. This is not surprising, because the GP is well known to be a very robust technique in general (Poli et al. 2008, Section 3.4).

We were specially careful in tuning the maximum number of generations: We started from 50 generations and tried raising this parameter. We found out that in GP-hash, evolution curves show very large fitness improvements in earlier generations and very small improvements later on. This is a very typical behavior of GP populations, as stated by Luke (2001). The improvements obtained with long runs are not proportional to the amount of extra CPU time needed. Therefore, we prefer the initial value of 50 generations per run.

The conclusion is that, in light of our experimental results, we can keep the basic tableau of Table 3 as the default parameters for GP-hash.
TABLE 3. Basic Tableau for GP-hash.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max generations</td>
<td>50</td>
</tr>
<tr>
<td>Population size</td>
<td>100</td>
</tr>
<tr>
<td>Max nodes</td>
<td>25</td>
</tr>
<tr>
<td>Terminal and function set</td>
<td>{*, \gg, ^, hval, a0}</td>
</tr>
<tr>
<td>Fitness</td>
<td>Avalanche matrices (RMSE)</td>
</tr>
<tr>
<td></td>
<td>Rate = 0.8</td>
</tr>
<tr>
<td>Crossover</td>
<td>Selection = tournament</td>
</tr>
<tr>
<td></td>
<td>Tournament size = 4</td>
</tr>
<tr>
<td></td>
<td>Rate = 0.1</td>
</tr>
<tr>
<td>Point Mutation</td>
<td>Selection = tournament</td>
</tr>
<tr>
<td></td>
<td>Tournament size = 4</td>
</tr>
<tr>
<td></td>
<td>Rate = 0.1</td>
</tr>
<tr>
<td>Reproduction</td>
<td>Selection = fitness</td>
</tr>
<tr>
<td></td>
<td>proportional</td>
</tr>
<tr>
<td>Elitism</td>
<td>No</td>
</tr>
<tr>
<td>Initialization</td>
<td>Half and half, init depth 2–4</td>
</tr>
</tbody>
</table>

6. EXPERIMENTAL RESULTS

The main hypothesis of this work is to show that evolutionary techniques such as GP can substitute human experts in the challenging task of designing high-quality NCHF. To prove that, we created GP-hash, a GP-based system for the evolution of general-purpose NCHF that uses the avalanche effect as the global quality estimator for evolved hashes. In this section, we show how GP-hash can be used to generate families of NCHF that are able to compete with a selection of the most widely used NCHF of the literature. First, we describe the methodology followed to carry on the experiments. Then we present the results, and finally, we discuss them.

6.1. Methodology

The experiments we carried out to prove the practical utility of GP-hash are divided into two different stages. In the first stage, we use the GP-hash system described in the previous section to evolve a family of NCHF: We use the avalanche effect fitness function and all the parameters previously specified to perform 50 independent GP-hash runs. This generates 50 NCHF.

In the second stage, we select the best five NCHF produced in the previous stage and compare those functions with a selection of 10 of the most widely used, general-purpose NCHF of the literature: FNV (both versions FNV-1 and FNV-1a), lookup3, SuperFastHash, MurmurHash2, DJBX33A, BuzHash, DEK, BKDR, and APartow (we already described these functions in Section 2.2). The comparison is made in terms of global performance. This means that we compare our evolved functions with the state of the art in terms of the most important quality criteria for NCHF: avalanche effect, distribution of outputs, and collision resistance (already introduced in detail in Section 2.1). Two of those criteria (collision resistance and distribution of outputs) are data dependent. This means that collisions and distribution measurements can only be calculated with relation to a particular key set. Thus, to perform reliable comparisons, we must compile a collection of key sets that represent the general features of most common hashing problems.
In the remainder of this section, we describe the metrics used to compare NCHF under each criterion and the key sets we designed for the data-dependent benchmarks.

6.1.1. Metrics. These are the metrics used to compare the performance of each NCHF under the different quality criteria:

- **Distribution of outputs:** We use the Bhattacharyya distance as a measure of how close the outputs of an NCHF are to the ideal uniform distribution. The Bhattacharyya distance is a similarity measure that can be used to determine the degree of coincidence of two statistical distributions. It is closely related to the χ^2 statistic. In fact, Aherne, Thacker, and Rockett (1998) deduce that the Bhattacharyya coefficient approximates the χ^2 statistic, avoiding in addition some drawbacks that the latter is vulnerable to.

To obtain the Bhattacharyya distance, we calculate the frequency vector of the NCHF over a key set K, defined as $X = \{x_0, x_1, \ldots, x_{n-1}\}$, where n is the number of possible outputs of the hash function, x_i is the number of times that the hash value h_i was generated, and $p(x_i)$ is the probability of x_i (i.e., $p(x_i) = x_i/|K|$). Then, we calculate the Bhattacharyya distance between the frequency vector and the ideal uniform distribution using equation (2):

$$D_B(X) = -\ln \sum_{i=1}^{n} \left(\frac{\sqrt{p(x_i)}}{n} \right).$$

- **Collision resistance:** We measure the collision rate of each NCHF, calculated as the ratio of the number of generated collisions to the total number of hashed keys.

- **Avalanche effect:** We use avalanche matrices (Mulvey 2007; Appleby 2008) in which the probability of a change in each input–output pair of bits deviates from the ideal probability (0.5). We also use error measures (in terms of RMSE) of the complete avalanche matrices with respect to the ideal avalanche matrix.

- **Speed:** In this work, the speed is considered as a requisite of NCHF, instead of a feature; thus, we do not perform speed comparisons. As we already stated in Section 5.1, individuals evolved by GP-hash have a limitation on the number of operations they can perform on each mixing cycle. This way, we only allow GP-hash to evolve efficient NCHF whose execution times are below a given threshold. The idea is to focus on evolving NCHF with good distribution, collisions, and avalanche properties, which are the real important properties, while keeping the execution time bounded.

6.1.2. Key Sets. Jenkins (1997) identifies four patterns that usually appear in key sets. These patterns can be summarized as follows:

- Keys consist of common substrings arranged in different orders.
- Keys often differ with respect to only a few bits.
- The only difference between keys is that their lengths are different, i.e., “aaaa” versus “aa.”
- Keys are nearly all zeroes, and only a few bits are set to 1.

According to Jenkins’s experience, most key sets, both human selected and computer generated, match at least one of these patterns.

Another interesting report on how to construct key sets for NCHF evaluation is the work of T.C. Fai (1996), where the author divides key sets into two classes: real sets, like
those used by McKenzie et al. (1990), and synthetic sets. Inspired by a 1953 memorandum written by H. P. Luhn for IBM (which is considered by Donald E. Knuth to be the first hashing publication ever), Fai points out that the purpose of an NCHF is to disrupt any order or pattern that the keys could contain to generate the most random possible output. Thus, Fai deduces that the most difficult key sets should be those that are more compressible; i.e., those that contain the minimum amount of information or the maximum amount of order.

Inspired by the ideas of Jenkins and Fai, we designed eight different key sets for our experiments, four real and four generated synthetically for this work:

(1) Real key sets:

- **NAMES**: This set is a list issued by the government of the city of Buenos Aires, Argentina, which contains all of the names allowed for newborn babies. In addition to the HTML labels, each line contains a name, gender, the number of the act that regulates the name, and some optional information about its origin and meaning. Most of the characters in each line are HTML labels, which are almost the same in every line, and thus, this set contains keys that are very similar (i.e., it contains very little information).

- **PASSWD**: This is a huge text file (41 Mb) that contains 3,721,256 common passwords, including alphanumeric combinations and words in 13 different languages. It is useful for testing the performance of NCHF against short alphanumeric strings, which are very common in hashing applications.

- **MEGATAB**: This key set was extracted from an 18-Gb MySQL table with 100,000,000 rows, each of which contains 26 different data points for a person: complete name, id number, gender, age, and so on. To construct our key set, we randomly extracted 2,000 rows from the table and only used the following columns: first name, middle name, last name, nationality, gender, and age. Key sets of this type that are comprised of aggregations of personal data are quite common in hashing applications.

- **LCC**: This set contains all of the compilation symbols that were created while compiling the source code of lcc, a retargetable compiler for ANSI C Fraser, Hansen, and Hanson (1995). Symbol tables for compilers and lexical analyzers are a paradigmatic application of NCHF.

(2) Synthetic key sets:

- **SPARSE**: This set contains 1,000 bit strings of 128 bits each. The main feature of these keys is that they are almost all zeroes, and only a few bits are set to 1. They are created from a statistical distribution that sets the probability of a bit containing a 1 to less than an upper limit \(\lambda = 0.1 \).

- **RANDOM**: This set contains 1,000 strings of 128 bits. Each bit has a fixed probability of being set. The probability distribution is generated randomly in a previous stage and used to produce all of the keys. This means that most of the bits are biased toward 1 or 0.

- **REPEAT**: This set contains 1,000 strings of 512 bits each. Keys of this set are strings composed of a set of substrings arranged in different orders. To create them, we selected 16 common English words and created a master string with them. All of the keys of this set are different permutations of this master string.

- **LENGTH**: Keys of this set contain only “a” characters and blank spaces in a 90:10 proportion, respectively. The set consists of 1,000 keys of between 80 and 512 bits.
TABLE 4. Summary of Minimum, Maximum, Average, Variance, and Standard Deviation Values of Fitness, Number of Nodes, and Depth.

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Average</th>
<th>Variance (SD)</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness</td>
<td>0.0448</td>
<td>0.0459</td>
<td>9.2×10^{-7} (0.0009)</td>
<td>0.0523</td>
</tr>
<tr>
<td>Nodes</td>
<td>16</td>
<td>21</td>
<td>7.6734 (2.7701)</td>
<td>25</td>
</tr>
<tr>
<td>Depth</td>
<td>9</td>
<td>12</td>
<td>4.8412 (2.2002)</td>
<td>17</td>
</tr>
</tbody>
</table>

Figure 6. Box plot of the fitness values of the 50 independent runs of GP-hash.

Keys of this set only differ in length and the position of the spaces, which is consistent with the third pattern described by Jenkins. This presents a very difficult test for NCHF, which are expected to generate different hash values for very similar strings, such as “aaaa” and “aa” or “aaaaa” and “aa aaa.”

6.2. Results

First, we show the results of GP-hash with the basic configuration. Then, we show how the sample size of the Monte Carlo simulation used in the avalanche fitness calculation can be raised to solve particular problems with special key sets.

6.2.1. Basic Configuration. In the first place, we examine the results of stage 1, including the 50 GP-hash independent runs and the selection of the five best runs. Then, in stage 2, we compare the selected hashes with the state of the art in noncryptographic hashing.

6.2.1.1. Stage 1. Table 4 and Figure 6 summarize the results of the 50 GP-hash runs with the basic configuration obtained in the experiments of previous sections. All the 50 executions achieved very good fitness values, between 0.0448 and 0.0523. Differences between executions are very small. This suggests GP-hash is a very robust system: Once the parameters have been correctly set, it is able to find NCHF with very good avalanche properties almost on every execution. We already observed this feature during parameter tuning in Section 5.3. Figure 7 shows the evolution curves of the 50 GP-hash runs. Gray circles represent the fitness of the best individual of each run on each generation. The black curve represents the average of those fitnesses on each generation. As we already observed during parameter tuning, GP-hash usually performs most of the fitness improvements during
the earlier generations. In fact, we observe that around generation 20, all the runs already founded the basic structure of their best individuals. From generation 20 to the end of the run, the computational effort is only devoted to fine-tuning adjustments.

We select the best five GP-hash runs and extract their best individuals. By wrapping these individuals into Merkle–Damgård constructions, we obtain five fully functional NCHF. We label these hashes as gp-hash601, gp-hash602, gp-hash603, gp-hash604, and gp-hash605. We call this five NCHF the gp-hash600 family. The simplified pseudocode of their mixing functions is the following:

```java
//gp-hash601:
(IEnumerable.rotateRight((hval * AO), 10) ^ (AO * (hval ^ AO)));
//gp-hash602:
(IEnumerable.rotateRight(((hval ^ hval) ^ (AO * hval)), 10)
             ^ ((hval ^ AO) * AO));
//gp-hash603:
 (((AO ^ hval) * AO) ^ Integer.rotateRight((hval ^ AO), 8));
//gp-hash604:
 (Integer.rotateRight((AO ^ (AO * hval)), 7) ^ (AO ^ (AO * hval)));
//gp-hash605:
 (Integer.rotateRight((Integer.rotateRight((hval ^ AO), 4) ^ hval), 3)
             ^ ((hval ^ AO) * AO));
```

6.2.1.2. Stage 2. The next step is to compare gp-hash600 hashes with the 10 NCHF selected as benchmarks. We performed the avalanche, distribution, and collision tests specified in Section 6.1, and results are very clear: Hashes belonging to gp-hash600 family have outstanding avalanche properties, only comparable with the best NCHF of the state of the art (Figure 8 shows the avalanche error of each NCHF), but they are also highly competitive in terms of distribution of outputs and collision resistance with all the specified key sets, with only one single exception: the SPARSE key set. Figure 9 shows the Bhattacharyya distances of the distributions of outputs generated by each NCHF with each key set. With the SPARSE set, most of the gp-hash600 hashes have serious problems and generate very poorly distributed outputs. Results of the collision tests (not shown here because of space limitations) are consistent with this observation: Except for gp-hash605, all the other hashes
of the gp-hash600 family produce four times more collisions than the reference NCHF and, which is worst, they generate their most probable hash value for up to 487 different keys, when the average of the reference NCHF is only 4.3 (more than 100 times better).

In the remainder of this section, we focus on the problems with the SPARSE key set instead of analyzing in detail the complete results of the gp-hash600 family. We are more interested in understanding and solving this problem before.

6.2.1.3. Problems with the SPARSE key set. Figure 10 shows the frequency of the hash values generated by lookup3 and gp-hash601. The differences are obvious. While lookup3 generates very few times most of the possible hash values (four times maximum), gp-hash601 follows exactly the opposite approach: It generates most of the times a few over-sampled hash values. More precisely, gp-hash601 generates 487 times the hash value 0x0, and 70% of the input keys hashed to only five different hash values. It is significant that the most probable hash value is 0x0 when we are hashing a key set like SPARSE in which all the keys contain almost only zeroes (we already explained the construction of the key sets in Section 6.1.2).

The reason for this behavior is that the mixing function of most gp-hash600 hashes relies in a multiplication by the input byte of each step. If the last byte of a key is 0x0, then the last step of the hash function multiplies the internal state by zero, and the result is always 0x0. When dealing with a key set in which there are mostly only zeroes, this happens very often.

By design, the avalanche fitness function has the power to detect this kind of behaviors, penalizing them with poor scores. The problem is that the fitness function is not calculating the real avalanche error of the individuals, which will require sampling of all the possible 32-bit input values. Instead, it estimates this error using a Monte Carlo simulation with a sample size that we initially set to $N = 100$ in Section 5.1.1. Considering that there are 2^{32} possible input bit strings, and only 2^{24} of them have only zeros on the last byte, when we randomly select 100 bit strings, in average, we are only sampling 0.37 of zero-ended strings. This means that most of the times, not even one of those bit strings has influence on the fitness calculation, and this avoids GP-hash to detect and penalize sensible hashes.

The solution we propose here is to increase the sample size to $N = 1,000$; thus, the average number of zero-ended keys sampled raises to 3.7, which should be more than enough to detect and eliminate the problematic hashes. We analyze the results obtained with this configuration in the next section.

6.2.2. Raising the Sample Size to $N = 1,000$. In this experiment, we use the same basic configuration as that in the previous section, but with two important differences. First,
the sample size of the Monte Carlo simulation used to estimate avalanche fitness is raised to $N = 1,000$. Second, to shorten the execution time of each experiment (the new sample size means that fitness calculations are 10 times slower), we reduced the number of generations to 50. This helps maintain the efficiency of the GP-hash while preserving most of its exploitation capabilities (the most important evolution always happens before generation 50, as we show in Figures 7 and 12).
Table 5. Summary of Minimum, Maximum, Average, Variance, and Standard Deviation Values of Fitness, Number of Nodes, and Depth.

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Average</th>
<th>Variance (SD)</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness</td>
<td>0.01431</td>
<td>0.0146</td>
<td>1.21×10^{-8} (0.0001)</td>
<td>0.01475</td>
</tr>
<tr>
<td>Nodes</td>
<td>18</td>
<td>22.56</td>
<td>3.84 (1.9596)</td>
<td>25</td>
</tr>
<tr>
<td>Depth</td>
<td>9</td>
<td>12.64</td>
<td>3.3233 (1.8230)</td>
<td>16</td>
</tr>
</tbody>
</table>

Figure 11. Box plot of the fitness values of the 50 independent runs of GP-hash with $N = 1,000$ and $G = 50$.

6.2.2.1. Stage 1. Table 5 and Figures 11 and 12 summarize the results of the 50 GP-hash runs with the extended sample size. In this case, the evolution curve is even more abrupt, with most of the fitness improvements happening before generation 15. Furthermore, the variance of the fitness values is lower than that with $N = 100$ (1.21×10^{-8} vs. 9.2×10^{-7}). This is a logical consequence of the greater sample size. Finally, we notice that the fitness values obtained with this new fitness configuration are considerably better than with the smaller sample size: Average avalanche fitness is 0.0146 in this case, way better than the previous value of 0.0459.
We select the best five GP-hash runs and extract their best individuals. By wrapping these individuals into Merkle–Damgård constructions, we obtain five fully functional NCHF. We label these hashes as gp-hash611, gp-hash612, gp-hash613, gp-hash614, and gp-hash615. We call this five NCHF the gp-hash610 family. The simplified pseudocode of their mixing functions is the following:

```plaintext
//gp-hash611:
(Integer.rotateRight((hval ⊕ Integer.rotateRight(((hval ⊕ (hval ⊕ AO))
   = Integer.rotateRight(hval, 1)), 4)), 3) ⊕ (AO ⊕ (hval ⊕ AO)));
//gp-hash612:
((AO ⊕ hval) ⊕ hval) ⊕ (Integer.rotateRight((hval ⊕ AO), 13) ⊕ AO));
//gp-hash613:
(Integer.rotateRight(((AO ⊕ hval) ⊕ Integer.rotateRight(hval, 1)), 7)
   ⊕ (AO ⊕ (AO ⊕ hval)));
//gp-hash614:
((hval ⊕ AO) ⊕ (AO ⊕ hval)) ⊕ Integer.rotateRight((AO ⊕ hval), 7));
//gp-hash615:
((AO ⊕ (hval ⊕ AO)) ⊕ Integer.rotateRight((hval ⊕ (hval ⊕ AO)), 10));
```

6.2.2.2. Stage 2. The gp-hash610 family obtains even better results in the avalanche tests than the gp-hash600. The avalanche matrices of the gp-hash610 hashes (Figure 13) are almost perfect, with all the squares close to pure white. In fact, the total error (in terms of RMSE) of their avalanche matrices is between 0.0022 and 0.0011 (Figure 14). Only MurmurHash2, the most powerful NCHF in terms of avalanche effect, is able to outperform gp-hash610 functions in the avalanche tests.

Furthermore, the results of the Bhattacharyya distance tests (Figure 15) show that gp-hash610 functions are also competitive in terms of distribution of outputs: gp-hash612 is the best function to hash the key sets LCC, NAMES, and RANDOM, while gp-hash611 is the best NCHF available for the key set SPARSE. Other functions such as gp-hash615 or gp-hash614 also deliver very decent distributions on some key sets, in which they are the second best NCHF. On the other hand, some gp-hash610 functions perform poorly in some

FIGURE 14. Root mean square error between the avalanche matrices of each NCHF and the ideal avalanche matrix (which contains only 0.5 values). Hashes of the gp-hash610 family obtain avalanche scores only comparable with those of MurmurHash2, the NCHF with the best avalanche properties.

sets. This is the case of gp-hash615 on the MEGATAB and VARIABLE sets or gp-hash613 on LCC.

It is also important to note that the larger sample size used to evolve the gp-hash610 family obviously improves the performance of the GP-hash with the SPARSE key set. Although gp-hash614 still has problems with zero-ended strings, gp-hash613 obtains competitive results, and there is even one hash, gp-hash611, that achieves in this set the best distribution among all the NCHF tested.

Results of the collision tests (shown in Figure 16) are even better: On seven of the eight key sets tested, a function belonging to the gp-hash610 family is the best in terms
of collision rate. The only key set in which \texttt{gp-hash610} does not win is \texttt{RANDOM}, but in this case, \texttt{gp-hash612}, \texttt{gp-hash614}, and \texttt{gp-hash613} are the second, third, and fourth best functions, respectively.

6.2.3. Discussion. Functions of the \texttt{gp-hash600} family obtain interesting results. They show very high levels of the avalanche effect, only comparable with those obtained
Figure 16. Collision rate of each NCHF for each key set (lower collision rates are better).

by lookup3, SuperFastHash, and MurmurHash2. They also obtain competitive results in the distribution and collision tests. However, they have a flaw that greatly affects their performance with the SPARSE key set, which contains a very high proportion of zero-ended keys. This flaw is a consequence of the reduced sample size \(N = 100 \) used in the Monte Carlo simulation that estimates the avalanche fitness With \(N = 100 \), it is very unlikely that any zero-ended string is sampled during the fitness evaluation; thus, the GP-hash system is unable to exert an evolutionary pressure toward unflawed individuals.

Increasing this sample size to \(N = 1,000 \) has proven to be effective: The gp-hash610 family is not generally affected by this problem, and in fact, gp-hash611 has proven to be
a very good choice for hashing the SPARSE key set. From a practical point of view, the sample size should be adjusted according to the probability of the patterns contained in the key sets of our particular application.

Finally, we want to stress that, in general, gp-hash functions are competitive with the state of the art in noncryptographic hashing, delivering outstanding avalanche properties, competitive results in the distribution of outputs tests, and exceptional collision resistances. We want to stress that these functions were automatically designed by GP-hash, and we can safely claim that they are at least as good as a selection of the best NCHF created by human experts.

7. CONCLUSIONS

Hashing is of capital importance in the software industry. The possibility of finding objects in a set in constant $O(1)$ time, independently of the size of the set, is essential for software engineers. However, very often, they do not pay enough attention to the critical process of designing appropriate hash functions for their particular problems. This is understandable: Designing good hash functions is a difficult process because of the extremely nonlinear constructions they use. Hash functions are designed in such a way that humans cannot easily invert them; thus, it is perfectly natural that these expressions are difficult to design.

However, the same design principles that make this process difficult for humans also seem to make it very suitable for GP: Highly nonlinear domains, in which the interrelationships among the relevant variables are unknown or not completely understood, are precisely the most adequate for GP, as stated by Poli et al. (2008).

Surprisingly, there is not much research about the application of GP, evolutionary computation, or AI to the design of good NCHF. In Section 4, we reviewed the most interesting articles on this topic that we know of. The approaches of those works have some merit, but we still think that this topic really is worth much more research.

The central claim of this work is that it is possible to use GP to substitute human experts in the challenging task of designing high-quality, general-purpose NCHF. For this task, we created the GP-hash system, and we learned some important facts in the process.

The most important difference with other works on the application of evolutionary computation to the automatic design of hashes is the fitness function. Previous approaches invariably use fitness functions based on the collision resistance of the evolved hashes, which is a problem, because collision properties are data dependent: We can only measure the collision resistance of a hash with relation to a specific key set. This lack of generality is a major drawback when evolving general-purpose NCHF, which are expected to deliver a proper performance with a great number of very different key sets. On the other hand, the avalanche effect is a statistical measure of an intrinsic property of the mixing function, and thus, it is completely independent of the hashed key set. Furthermore, this property is also a measure of the ability of the hash to disrupt the input patterns and to efficiently spread the input bits over the internal state, producing an apparently unpredictable output. These concepts are closely related to a good distribution of outputs (the more random the output looks, the more evenly the outputs distribute) and thus with the collision rate (biased distributions generate more collisions than pure uniform distributions). Based on this, we hypothesize that the avalanche effect could be a very good estimator of the overall quality of an NCHF. And the results shown in Section 6.2 seem to support this claim: Hashes evolved with avalanche fitness have outstanding avalanche properties, and they also perform very well in the distribution and collision tests.
Concerning the terminal and function set, we gathered together 10 of the most important functions of the hashing literature and of the software industry. We studied the operators and variables they use to generate a basic terminal and function set, and then we applied a methodology similar to Wang and Soule (2004) to refine this set. We discovered some interesting facts: first that magic constants are not needed to evolve hashes with a high avalanche effect and, second, that two very popular operators, namely addition and xor, form a group, and only one of them is needed (this is intuitively supported by the fact that hash functions that do not use addition, always use xor, and vice versa). These two discoveries could help other researchers that want to apply evolutionary algorithms to hashing, but they also suggest to hashing experts that magic constants may not be necessary in the construction of noncryptographic hashes.

We also found out that GP-hash system is highly robust and can work well with very different parameter configurations. This also supports the accepted idea that GP is a very robust technique in general.

Finally, we experimentally demonstrate the utility of GP-hash by generating a set of new general-purpose NCHF that are competitive with the state of the art in noncryptographic hashing. We used GP-hash to generate two different families of NCHF. We call them gp-hash600 and gp-hash610. The functions of the former have a weakness that makes them fail when hashing zero-ended keys, but this flaw was addressed and solved in the gp-hash610 family. Functions belonging to this family have outstanding avalanche properties, only surpassed by MurmurHash2, the NCHF with the best avalanche properties of the state of the art. Furthermore, gp-hash610 hashes are competitive as well in terms of collision resistance and distribution of outputs with a selection of the 10 most widely used NCHF of the literature. All these facts support the central claim of this work: that GP, when using the avalanche fitness and an appropriate functions and terminals set, is able to generate non-cryptographic hash functions that are similar to those generated by hashing experts with years of experience.

ACKNOWLEDGMENTS

This work has been funded by the Spanish Department of Science and Innovation (Ministerio de Ciencia e Innovación), under the research project Gestión de Movilidad Eficiente y Sostenible (TIN2011-28336).

REFERENCES

