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Abstract: We study the efficiency properties of the goodness-of-fit test based
on the Qn statistic introduced in Fortiana and Grané (2003) using the concepts
of Bahadur asymptotic relative efficiency and Bahadur asymptotic optimality.
We compare the test based on this statistic with those based on the Kolmogorov-
Smirnov, the Cramér-von Mises and the Anderson-Darling statistics. We also
describe the distribution families for which the test based on Qn is locally asymp-
totically optimal in the Bahadur sense and, as an application, we use this test
to detect the presence of hidden periodicities in a stationary time series.
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1 Introduction

Let x1, . . . , xn be a sample of independent and identically distributed (iid) random
variables with cumulative distribution function (cdf) F and let x(1), . . . , x(n) be the
ordered sample. In Fortiana and Grané (2003) we proposed and studied the following
L-statistic

Qn =
6

n2

n
∑

i=1

(2 i − n − 1)x(i) (1)

as a general-purpose goodness-of-fit test of uniformity, a test which extends to case 0
in Stephens (1986), testing for a fully specified continuous distribution. The statistic
(1) was obtained from ρ+(Fn, F ), the Hoeffding’s maximum correlation between F
and the empirical distribution function Fn,

Qn =
sn

√

1/12
ρ+(Fn, F ),
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where sn is the sample standard deviation, and it is close related to the well-known
Gini mean difference statistic. We found that Qn has good properties as a goodness-
of-fit test: since it is an L-statistic, it is possible to find its exact distribution under
the null hypothesis for small samples and, additionally, it is asymptotically normally
distributed. The test based on Qn can advantageously replace those of Kolmogorov-
Smirnov, Cramér-von Mises and Anderson-Darling for a wide range of alternatives.

In the present article we study efficiency properties of the goodness-of-fit test based
on Qn using the concepts of Bahadur asymptotic relative efficiency and Bahadur
asymptotic optimality. In section 2 we describe a set of five parametric families of
probability distributions with support on [0, 1], used in Fortiana and Grané (2003)
and Grané and Fortiana (2006) as alternatives to the [0, 1]-uniform distribution and
illustrate the power of the test based on Qn. In section 3 we prove a large deviations
result for Qn, which enables us to compute its Bahadur exact slope, and study the
its Bahadur asymptotic relative efficiency with respect to the Kolmogorov-Smirnov,
Cramér-von Mises and Anderson-Darling statistics, for the set of alternative distri-
butions introduced in Section 2. In section 4 we find domains where Qn is locally
asymptotically optimal in the Bahadur sense. As an application of the test of uni-
formity based on Qn, in Section 5 we consider the problem of detecting the presence
of hidden periodicities of unspecified frequency in a time series, through the analysis
of its cumulative periodogram. We conclude in Section 6.

2 Parametric alternative distributions

In this Section we describe five parametric families of alternative probability distri-
butions with support on [0, 1]. We have chosen them so that either the mean or the
variance differs from those of the null hypothesis, the uniform distribution, which in
each case is obtained for a particular value of the parameter. We will use them in
order to compare the asymptotic efficiency of the test based on Qn with respect to
those based on the Kolmogorov-Smirnov, the Cramér-von Mises and the Anderson-
Darling statistics. These parametric families are defined by the following cumulative
distribution functions:

A1. Lehmann alternatives. A family of asymmetric distributions which concentrate
around 1, for α > 1, and around 0, for α < 1.

Fα(x) = xα, 0 ≤ x ≤ 1, α > 0. (2)

A2. Centered distributions having a U-shaped pdf, for β ∈ (0, 1), or wedge-shaped
pdf, for β > 1.

Fβ(x) =







1
2 (2x)β , 0 ≤ x ≤ 1/2,

1 − 1
2 (2(1 − x))β , 1/2 ≤ x ≤ 1.

(3)

A3. Compressed uniform alternatives,

Fγ(x) =
x − γ

1 − 2γ
, γ ≤ x ≤ 1 − γ, (4)

2



where 0 ≤ γ ≤ 1/2.

A4. A bimodal locally uniform distribution, with probability mass concentrated
near both extremes, 0 and 1.

Fδ(x) =















x/2 δ, 0 ≤ x ≤ δ,

1/2, δ ≤ x ≤ 1 − δ,

1 + (x − 1)/2 δ, 1 − δ ≤ x ≤ 1,

(5)

where 0 ≤ δ ≤ 1/2.

A5. A locally uniform distribution, mixture of A3 and A4-type distributions.

Fǫ,η(x) = 2ηǫ

[

1

2ǫ
1[0,ǫ]∪[1−ǫ,1](x)

]

+ (1 − 2ηǫ)

[

1

1 − 2ǫ
1[ǫ,1−ǫ](x)

]

, (6)

where 0 < ǫ < 1
2 , 0 ≤ η ≤ 1

2ǫ . The parameter ǫ determines the width of the
three intervals (analogous role than γ in (4) and δ in (5)). The parameter
η ∈ (0, 1

2ǫ) gives the relative proportion of A4, thus when η < 1 the probability
mass is more concentrated around the centre. In particular, this family reduces
to A3 for η = 0, and to A4 for η = 1

2ǫ .

2.1 Power study

As an illustration of the good performance of the test based on Qn, we depict only the
power functions at a 5% significance level and a sample size of n = 20. We compare
them with those obtained for the tests based on the Kolmogorov-Smirnov statistic,
Dn, the Cramér-von Mises statistic, W 2

n and the Anderson-Darling statistic, A2
n. For

all of them we have considered the critical regions derived from the corresponding
asymptotical distributions that can be found in Kolmogorov (1933) for Dn, Anderson
and Darling (1952) for W 2

n , Anderson and Darling (1954) for A2
n and Fortiana and

Grané (2003) for Qn. These powers have been estimated from N = 1000 simulated
samples of size n = 20 as the relative frequency of values of the corresponding statis-
tic in the critical region. For each family we have taken 30 different values of the
parameter. Figure 1 shows the power curves. The test based on Qn is consistent for
all the families of alternatives studied.

3 Asymptotic relative efficiency

From the available concepts of asymptotic relative efficiency (ARE), Bahadur’s is the
most adequate to compare Qn, the Kolmogorov-Smirnov statistic, Dn, the Cramér-
von Mises statistic, W 2

n , and the Anderson-Darling statistic, A2
n, since they have

different asymptotic distributions. Thorough treatments of ARE can be found in
Serfling (1980) and Nikitin (1995) as well as in the classic Bahadur (1971). For easy
reference, we include a summary of the necessary concepts, notation and results.
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Figure 1: Power functions at 5% significance level and a sample size n = 20 for the
tests based on Qn, Dn, W 2

n and A2
n for (a) A1 family, (b) A2 family, (c) A3 family,

(d) A4 family, (e) A5 family with ǫ = 1/3 and (f) A5 family with ǫ = 1/10.
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3.1 Some previous concepts and notation

3.1.1 Bahadur exact slope and Bahadur efficiency

We consider a sequence s = {xn}n∈N of random variables, iid with probability dis-
tribution Pθ, where θ ∈ Θ is a parameter. We want to test H0 : θ ∈ Θ0 versus
H1 : θ ∈ Θ1 = Θ − Θ0, with the test statistic T = {Tn}n∈N, where for each n ∈ N,
Tn(s) = Tn(x1, . . . , xn) is measurable with respect to the natural sigma-algebra of R

N,
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with values in some, possibly unbounded, interval I ⊆ R. We assume, to simplify,
that Tn has the same distribution for each θ ∈ Θ0. Let C(t) ⊂ I, where t ∈ I, be a
critical region for this test, for a given n and signification level (e. g., C(t) = (t,∞)
for a one-sided test on I = R), and let

pn(t) = Pθ(Tn ∈ C(t)), t ∈ R, θ ∈ Θ0, (7)

be the actual size of the test. Bahadur’s approach amounts to studying the rate of
decrease of pn when n increases. The p-value, defined as the random variable

Ln(s) ≡ Ln(x1, . . . , xn) ≡ pn(Tn), (8)

represents the degree to which the test T rejects H0. When C(t) = (t, +∞) or
C(t) = (−∞, t) and the distribution of Tn is continuous, Ln is uniform in [0, 1] in the
null case. For a given ε ∈ (0, 1), let N(ε) be the smallest integer m such that Ln < ε
for all n ≥ m and N(ε) = ∞ if no such m exists, i.e., N(ε) is the smallest sample
size required so that the test based on T becomes and remains significant at level ε.
If, for some positive function c : Θ1 → R+, the following convergence in probability
takes place,

1

n
log Ln

Pθ−−−−→
n→∞

−1

2
c(θ), θ ∈ Θ1, (9)

then c is called the Bahadur exact slope of T. It is related with N(ε) by

Theorem A (Bahadur 1971, thm. 7.1) If (9) holds and 0 < c(θ) < ∞,
then

lim
ε→0

N(ε)

2 log(1/ε)
=

1

c(θ)
, a.s. [Pθ], θ ∈ Θ1. (10)

If T1 and T2 are test statistics, and ci(θ), Ni(ε) correspond to Ti as above,

lim
ε→0

N2(ε)

N1(ε)
=

c1(θ)

c2(θ)
, a.s. [Pθ], θ ∈ Θ1.

This quotient is the Bahadur efficiency of the test based on T1 relative to the test
based on T2, and we will denote it by ARE(θ; T1, T2). T1 is more efficient at θ than
T2 in the sense of Bahadur if ARE(θ; T1, T2) > 1. A useful method for computing
exact slopes is:

Theorem B (Bahadur 1971, thm. 7.2) If, for some function b : Θ1 → I,
the following convergence in probability takes place,

Tn
Pθ−−−−→

n→∞
b(θ), for each θ ∈ Θ1, (11)

and, for each t ∈ I,

lim
n→∞

1

n
log pn(t) = f(t), (12)

where f is a continuous function on I, then (9) holds with c(θ) = −2 f(b(θ)).

Usually, b(θ) is computed from Glivenko-Cantelli theorem, while f(t) depends on the
behaviour of the large deviations of T.
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3.2 Results for Dn, W 2
n and A2

n

Here we reproduce some results for the Kolmogorov–Smirnov, the Cramér–von Mises
and the Anderson–Darling statistics and we compute their Bahadur exact slopes for
the parametric alternative distributions A1–A5.

Result 1 The statistic Dn ≡ ‖Fn − F0‖, where ‖ · ‖ is the supremum norm, verifies
hypotheses (11) and (12) of Theorem B with

b(θ) ≡ ‖Fθ − F0‖

and f(t) = inf{g(t, s), 0 ≤ s ≤ 1}, with

g(t, s) =

{

(t + s) log t+s
s + (1 − t − s) log 1−t−s

1−s 0 ≤ s ≤ 1 − t,

∞ s > 1 − t,

for t ∈ (0, 1).

Proof: See Bahadur (1971), Groeneboom and Shorack (1981) and Shorack and
Wellner (1986). Our Dn is equivalent to D1,n in Shorack and Wellner’s notation.

A direct application of Glivenko–Cantelli theorem gives the function b(θ) of (11) and
Groeneboom and Shorack (1981) proved the large deviation result. 2

To compute Bahadur’s slope for Dn, we use the approximation f(t) ≈ 2t2 + O(t3) if
t → 0 and f(t) = ∞ if t → 1 (See lemma 5.1 of Bahadur 1971). Table 1 contains
function c(θ) for Dn for alternatives A1–A5.

Table 1: Bahadur exact slopes of Dn for A1–A5

Alternative θ c(θ)

A1 α 4 (1/α−1)2

α2/(α−1)

A2 β (1/β−1)2

β2/(β−1)

A3 γ 4γ2

A4 δ 4(1
2 − δ)2

A5 (ǫ, η) 4ǫ2(η − 1)2

Result 2 The statistic W 2
n = n

∫ +∞
−∞ (Fn−F0)

2 dF0, verifies hypotheses (11) and (12)
of Theorem B with

b(θ) =

∫ +∞

−∞
(Fθ − F0)

2dF0

and f(t) = π2t
2 + O(t2).
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Proof: See Nikitin (1976, 1979, 1980), Mogul’skii (1977).

Taking Tn = W 2
n/n and applying Glivenko–Cantelli theorem, we get the expression

of b(θ). Mogul’skii (1977) proved that

lim
n→∞

1

n
log P (W 2

n > nt) ≈ −π2 t

2
,

where t = t(n) = o(1). Hence, the exact slope of W 2
n is given by

c(θ) ≈ π2

∫ +∞

−∞
(Fθ − F0)

2dF0.

2

Table 2 contains function c(θ) for W 2
n for alternatives A1–A5.

Table 2: Bahadur exact slopes of W 2
n for A1–A5

Alternative θ c(θ)

A1 α 2π2

3
(α−1)2

(α+2)(2α+1)

A2 β π2

6
(β−1)2

(β+2)(2β+1)

A3 γ π2

3 γ2

A4 δ π2

12 (2δ − 1)2

A5 (ǫ, η) π2

3 ǫ2(η − 1)2

Result 3 The statistic A2
n = n

∫ +∞
−∞

(Fn−F0)2

F0(1−F0) dF0, verifies hypotheses (11) and (12)
of Theorem B with

b(θ) =

∫ +∞

−∞

(Fθ − F0)
2

F0(1 − F0)
dF0,

and f(t) = t + O(t), t → 0.

Proof: See Nikitin (1976, 1979, 1980).

Taking Tn = A2
n/n and applying Glivenko–Cantelli theorem, we get the expression

of b(θ). Nikitin (1979, 1980) proved that

lim
n→∞

1

n
log P (A2

n > nt) ≈ −t, t → 0.

Hence, the exact slope of A2
n is given by

c(θ) ≈ 2

∫ +∞

−∞

(Fθ − F0)
2

F0(1 − F0)
dF0.

2

Table 3 contains function c(θ) for A2
n for alternatives A3–A5, while for families A1 and

A2, it has been numerically computed. Figure 2 contains a graphical representation
of c(θ) for A1 and A2 families.
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Table 3: Bahadur exact slopes of A2
n for A3–A5

Alternative θ c(θ)

A3 γ 4
(2γ−1)2

[γ(−1 + 2γ − γ log γ) + (−1 + 4γ − 3γ2) log(1 − γ)]

A4 δ 1
δ2 [δ(−1 + 2δ − δ log δ) + (−1 + 4δ − 3δ2) log(1 − δ)]

A5 (ǫ, η) 4(η−1)2

(2ǫ−1)2
[ǫ(−1 + 2ǫ − ǫ log ǫ) + (−1 + 4ǫ − 3ǫ2) log(1 − ǫ)]

Figure 2: Bahadur exact slope of A2
n for A1 and A2 alternatives.
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3.3 A large deviations result for the Qn statistic

Since Qn is an L-statistic, in order to find its large deviations function under the
hypothesis of uniformity, we can use the well-known connection between the uniform
distribution and the exponential one. This method is less universal than the Sanov
theorem for L-statistics (see Groeneboom and Shorack 1981), but it permits us to
obtain a more explicit form of the deviation function. We start with a technical
lemma:

Lemma 3.1 Under the null hypothesis of uniformity, the Qn statistic defined in (1)
can be written as follows:

Qn
d
=

n
∑

j=1

wj,n yj ,

where wj,n = 6n−2(n−j+1)(j−1), yj = zj/
∑n+1

i=1 zi and z1, . . . , zn+1 are iid∼ Exp(1)
random variables.

Proof: Let x1, . . . , xn be iid∼ U [0, 1] random variables and let x(1), x(2), . . . , x(n)

be the ordered sample. For i = 1, . . . , n + 1, consider the uniform spacings δi =
x(i) − x(i−1), where, by convention, x(0) = 0 and x(n+1) = 1.
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Noticing that x(i) =
∑i

j=1 δj , for i = 1, . . . , n, and after regrouping summands Qn

can be written as:

Qn =
6

n2

n
∑

i=1

(2i − n − 1)x(i) =
6

n2

n
∑

j=1

(n − j + 1)(j − 1) δj
d
=

n
∑

j=1

wj,n yj ,

where wj,n = 6n−2(n− j +1)(j−1). The last equality is obtained applying Lemma 1
in Dwass (1961) (see also, for example, Azlarov and Volodin 1986 or Chap. 21 in
Shorack and Wellner 1986), which asserts that the random vectors (y1, . . . , yn+1),
where yj = zj/

∑n+1
i=1 zi with z1, . . . , zn+1 being iid∼ Exp(1) random variables, and

(δ1, . . . , δn+1) have the same distribution. 2

In the following theorem we compute the rough large deviation asymptotics of the
centered statistic |Qn − 1| under uniformity:

THEOREM 1 Consider the function W (x) = 6x(1− x)− 1, for 0 < x < 1. Under
the hypothesis of uniformity the large deviation functions of Qn − 1 and 1−Qn may
be written in the form

fR(a) ≡ lim
n→∞

n−1 log Pθ(Qn − 1 > a) = inf
t≥0

∫ 1

0
log

1

1 − t(W (x) − a)
dx,

and

fL(a) ≡ lim
n→∞

n−1 log Pθ(1 − Qn > a) = inf
t≥0

∫ 1

0
log

1

1 − t(−W (x) − a)
dx,

fR(a) and fL(a) being continuous for 0 < a < 0.5 and 0 < a < 1, respectively, and
having the following asymptotics as a → 0+:

fR,L(a) = −
(

2

∫ 1

0
W 2(x) dx

)−1

a2(1 + o(1)) = −5

2
a2(1 + o(1)).

Finally,

f(a) ≡ lim
n→∞

n−1 log Pθ(|Qn − 1| > a) = max(fR(a), fL(a)) = −5

2
a2(1 + o(1)).

Proof: Since the Qn statistic has the same distribution as a quotient of linear
combinations of iid Exponential random variables (see Lemma 3.1), the proof follows
by arguing as in the proof of the Theorem 2 of Tchirina (2007) and applying the
Plachky–Steinebach theorem (Planchky and Steinebach 1975, see also Shorack and
Wellner 1986). 2

The next step is to obtain the Bahadur exact slope of Qn. This is stated in the
following proposition:

Proposition 3.1 The centered statistic |Qn−1| verifies hypotheses (11) and (12) of
Theorem B with

b(θ) =
∣

∣

∣

∫ 1

0
J(t)F−

θ (t)dt − 1
∣

∣

∣
and f(t) = −5

2
t2(1 + o(1)), 0 ≤ t ≤ 3/2,

9



where J(t) = 6(2t − 1) and F−
θ is the pseudo-inverse of the distribution function Fθ.

Then the Bahadur exact slope of |Qn − 1| is

c(θ) ≈ 5

(
∫ 1

0
J(t)F−

θ (t)dt − 1

)2

.

Proof: Let T be a functional defined on the set of distribution functions {Fθ, θ ∈ Θ},
T (Fθ) =

∫ 1
0 J(t)F−

θ (t) dt, where J(t) = 6(2t − 1) and F−
θ is the pseudo-inverse of

Fθ. Then we can write Qn as the result of applying T to the empirical distribution
function,

Qn ≡ T (Fn) =

∫ 1

0
J(t)F−

n (t) dt,

whenever the integral exists. Since J is a function of bounded variation in (0, 1), we
can apply Theorem (19.1.3) in Shorack and Wellner (1986), which asserts the almost
sure convergence of |Qn − 1| to b(θ) ≡ |T (Fθ) − 1|, when n → ∞, for θ ∈ Θ1, which
proves (11). Function f(t) of (12) is given by Theorem 1 above and finally, applying
Theorem B, the Bahadur exact slope of |Qn − 1| is c(θ) ≈ 5 (T (Fθ) − 1)2. 2

Function c(θ) for |Qn − 1| for alternatives A1–A5 is given in Table 4.

Table 4: Bahadur exact slopes of |Qn − 1| for A1–A5

Alternative θ c(θ)

A1 α 5
[

6α
(1+α)(1+2α) − 1

]2

A2 β 5
[

3
2

3β+1
(1+β)(1+2β) − 1

]2

A3 γ 20γ2

A4 δ 5(1
2 − δ)2

A5 (ǫ, η) 20ǫ2(η − 1)2(1 − ǫη)2

3.4 Bahadur efficiency of Qn relative to Dn, W 2
n and A2

n

In order to compare the efficiency of Qn with respect to Dn, W 2
n and A2

n we will use
the concept of asymptotic relative efficiency (ARE), introduced in Section 3. We will
say that Qn is more efficient (in the Bahadur sense) than the corresponding statistic
being considered if the quotient of their exact slopes is greater than 1. Since these
quotients can be easily obtained from Tables 1–4, here we prefer to illustrate the
behaviour of Qn through Figure 3.

It turns out that, except for the A1 family, the Qn statistic is more efficient in the
Bahadur sense than Dn, W 2

n and A2
n for nearly all the values of the parameters. It

is interesting to mention that for A3 and A4 families the ratios between Qn and Dn

or W 2
n do not depend on the parameters. Note also that for the A3 and A5 families

the ratios are always greater than 1.
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Figure 3: Bahadur efficiency of |Qn−1| relative to Dn, W 2
n and A2

n for (a) A1 family,
(b) A2 family, (c) A3 family, (d) A4 family, (e) A5 family with ǫ = 1/3 and (f) A5
family with ǫ = 1/10.
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4 Local Bahadur asymptotic optimality

In this section we will describe the domains of local Bahadur asymptotic optimality
for the Qn statistic. We start introducing some general concepts and notation.
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4.1 Some previous concepts

Let x1, . . . , xn be a sequence of iid random variables with distribution function Fθ

having support (0, 1), depending on a parameter θ that takes values in an interval Θ,
and let fθ to be the corresponding density function. Also suppose that Fθ(x) = x at
(0, 1) if and only if θ = 0.

Consider the problem of testing H0 : θ = 0 vs. H1 : θ 6= 0 with the aid of a sequence
of statistics T, large values of T being significant, and let cT(θ) be the Bahadur exact
slope of T introduced in Section 3.

Here we are interested in comparing the exact slope of T with its upper bound in terms
of the Kullback-Leibler information numbers given by the Bahadur-Raghavachari
inequality (Raghavachari 1970 and Bahadur 1971):

cT(θ) ≤ 2 K(θ) = 2

∫ 1

0
fθ(x) log fθ(x) dx.

If equality takes place for all θ 6= 0, the sequence T is said to be asymptotically optimal
in the Bahadur sense. Moreover, the exact Bahadur efficiency of T is defined by the
ratio

eB
T (θ) =

cT(θ)

2 K(θ)
. (13)

Notice that eB
T

(θ) = 1 in the case of asymptotical optimality. A significantly less
restrictive condition, consists in studying when the right-hand side of (13) tends to
1 as θ → 0. This limit yields the local Bahadur asymptotic efficiency of T:

e
B, loc
T

(θ) = lim
θ→0

cT(θ)

2 K(θ)

and the class of those distribution families for which e
B,loc
T

(θ) = 1 will describe the
local Bahadur asymptotic optimality (LAO) domain for T.

4.2 LAO domain for Qn

In order to obtain the local Bahadur asymptotic optimality domain for Qn we intro-
duce functions

H(x) =
∂

∂θ
Fθ(x)

∣

∣

∣

θ=0
and h(x) =

∂

∂θ
fθ(x)

∣

∣

∣

θ=0

and assume the following regularity conditions:

R1. h(x) = H ′(x) for almost all x ∈ (0, 1),

R2.
∫ 1
0 h2(x) dx < +∞,

R3. It is possible to change the order of the operations of differentiating in θ at zero
and integrating in x.
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Lemma 4.1 For the alternative distributions satisfying conditions R1–R3, the Kullback-
Leibler information has the following asymptotical expansion at θ = 0:

K(θ) =
θ2

2

∫ 1

0
h2(x) dx + o(θ2), (14)

Proof: To prove this lemma we expand K(θ) in a Taylor series around θ = 0. The
proof is straightforward noticing that K(0) = 0, and taking into account condition
R3 in differentiating with respect to θ. 2

Remark 1 Note that the parametric families A3, A4 and A5 of Section 2 do not
satisfy condition (14). Their Kullback-Leibler numbers are of the order 1 in θ instead
of order 2. One can explain this fact by the dependence of their supports on θ. The
Bahadur efficiency of our test tends to 0 as θ tends to 0 as well as the efficiencies of
the tests based on Dn, A2

n and W 2
n . At the same time, the local comparison of their

exact Bahadur slopes still makes sense.

Proposition 4.1 Under the regularity conditions R1–R3 the local Bahadur asymp-
totic efficiency of Qn takes the form

e
B, loc
Qn

=

(

∫ 1
0 W (x)h(x) dx

)2

∫ 1
0 W 2(x) dx

∫ 1
0 h2(x) dx

, (15)

where W (x) = 6x(1 − x) − 1.

Proof:

Function b(θ) of Proposition 3.1 can be written as as b(θ) = max{bR(θ), bL(θ)}, where
bR(θ) =

∫ 1
0 J(t)F−

θ (t) dt − 1 and bL(θ) = 1 −
∫ 1
0 J(t)F−

θ (t) dt, with J(t) = 6(2t − 1).

Defining function W (t) such that J(t) = −W ′(t) and
∫ 1
0 W (t) dt = 0, we obtain

W (t) = 6t(1 − t) − 1. After considering regularity conditions R1 and R3, the Taylor
expansions of bR(θ) and bL(θ) at θ = 0 are:

bR(θ) = −θ

∫ 1

0
W (x)h(x) dx + o(θ), bL(θ) = θ

∫ 1

0
W (x)h(x) dx + o(θ).

From Theorem 1 and Lemma 4.1 we have that

cQn(θ)

2 K(θ)
=

(

2
∫ 1
0 W 2(x) dx

)−1
b2(θ)(1 + o(1))

1
2 θ2

∫ 1
0 h2(x) dx + o(θ2)

. (16)

Finally, since b2(θ) = θ2
(

∫ 1
0 W (x)h(x) dx

)2
+ o(θ2), one gets expression (15), after

taking the limit as θ → 0 in expression (16). 2

The class of distribution functions following regularity conditions R1–R3 for which
equation (15) equals 1 describe the LAO domain of Qn. From the Cauchy-Bunyakowsky
inequality we see that the maximum efficiency is attained if and only if h(x) = θ W (x),
for θ ∈ R.

The most natural example of such a family of densities is given by
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Ex1. fθ(x) = 1 + θ (6x(1 − x) − 1), 0 < x < 1, −2 ≤ θ ≤ 1.

Other examples of families of densities for which Qn is the most locally efficient
statistic in the Bahadur sense are:

Ex2. fθ(x) =
√

6 θ
√

π eθ/2 erf
(

√

3θ
2

) exp{θ (6x(1 − x) − 1)}, 0 < x < 1, θ > 0,

where erf(x) = 2√
π

∫ x
0 e−t2dt is the error function,

Ex3. fθ(x) =

√
3 (2−θ) θ

2 arctan
√

3θ
2−θ

(1 − θ (6x(1 − x) − 1))−1, 0 < x < 1, 0 < θ < 2.

In Figure 4 we depict those families for different values of the parameter θ.

Figure 4: Examples of families of densities of the LAO domain for Qn: (a)-(b) Ex1,
(c) Ex2 and (d) Ex3.
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5 An application to time series analysis

In this section we illustrate with an example a possible application of the test of
uniformity based on Qn in the context of statistical inference for a time series based
on the frequency domain properties of the series.
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We consider the problem of detecting the presence of hidden periodicities of unspeci-
fied frequency in a time series, through the analysis of its cumulative periodogram. In
the remaining of this section we will use the notation of Brockwell and Davis (1990).

Let {Xt} ≡ {Xt, 1 ≤ t ≤ n} be a real valued stationary time series and I(wj), with
wj = 2πj/n, the corresponding periodogram. Proposition 10.2.1 of Brockwell and
Davis (1990) asserts that testing that {Xt} is Gaussian white noise is equivalent to
test that the random variables

Yi =

∑i
k=1 I(wk)

∑q
k=1 I(wk)

, i = 1, . . . , q − 1, (17)

for q = [(n−1)/2], are distributed as the order statistics of q−1 iid∼ U(0, 1) random
variables.

We will use Example 10.2.1 of Brockwell and Davis (1990) to illustrate our purpose.
In that example, the data were generated from the following process

Xt = cos(πt/3) + Zt, t = 1, . . . , 100, (18)

where {Zt} was Gaussian white noise with variance 1. Now, instead of testing the null
hypothesis that {X1, . . . , X100} is generated by a Gaussian white noise sequence, we
will consider the test of uniformity based on Qn for the random variables Y1, . . . , Y49

obtained from equation (17). A realization of this series is depicted in Figure 5. It
is clear that the series contains an added deterministic periodic component of un-
specified frequency and, hence, the null hypothesis should be rejected. The value
of our statistic is Qn = 1.1539, with a p-value of 0.0060, whereas the value of the
Kolmogorov-Smirnov statistic is Dn = 0.2099. Figure 5-(c) shows the cumulative
periodogram and the Kolmogorov-Smirnov boundaries for this series at a 5% signifi-
cance level, from where we can see that using the test based on Dn we do not reject
the null hypothesis even at a 5% significance level. However, the test based on Qn

rejects the null hypothesis at a 1% significance level.

Figure 5: (a) The series {X1, . . . , X100} generated from equation (18), (b) the corre-
sponding periodogram ordinates I(2πj/100), j = 1, . . . , 50, and (c) the correspond-
ing standardized cumulative periodogram and the Kolmogorov-Smirnov confidential
bounds at a 5% significance level
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6 Concluding remarks

For the Qn statistic introduced in Fortiana and Grané (2003) we have proved a large
deviations result under the null hypothesis of uniformity and obtained its Bahadur
exact slopes for five parametric families A1–A5. We have compared the test of uni-
formity based on our statistic with those based on the Kolmogorov-Smirnov, Dn,
Cramér-von Mises, W 2

n and Anderson-Darling, A2
n, in terms of Bahadur efficiency.

We can conclude that, first, the Qn statistic is more efficient (in the Bahadur sense)
than Dn, W 2

n and A2
n for A2, A3 and A5 families. Second, for the A4 family, it is

always more efficient than Dn and W 2
n , and it is also more efficient than A2

n for a
wide range of values of parameter δ. Using the concepts of Bahadur asymptotic opti-
mality, we have found the class of distribution functions for which the Qn statistic is
locally asymptotically optimal. Finally, as an application, we have seen that the test
of uniformity based on Qn can be used to detect the presence of hidden periodicities
of unspecified frequency in a stationary time series.
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