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Abstract In the context of forecasting for renewable energy, it is common to
produce point forecasts but it is also important to have information about the
uncertainty of the forecast. To this extent, instead of providing a single mea-
sure for the prediction, lower and upper bound for the expected value for the
solar radiation are used (prediction interval). This estimation of optimal pre-
diction intervals requires simultaneous optimization of two objective measures:
on one hand, it is important that the coverage probability of the interval is as
close as possible to a given target value. On the other, in order to bound uncer-
tainty, intervals must be narrow; this means that there is a trade-off between
both objectives, as narrow intervals reduce the coverage probability for those
solutions, as the actual value of solar radiation is more likely to fall outside
the predicted margins. In this work we propose a multi-objective evolutionary
approach that is able to optimize both goals simultaneously. The proposal uses
neural networks to create complex non-linear models whose outputs are the up-
per and lower limits of the prediction intervals. Results have been compared
with a single-objective optimization of similar neural network architectures
and a baseline algorithm (quantile estimation with gradient boosting). Re-
sults show that the neural network is able to provide accurate results. Also,
the multi-objective approach is able to obtain the best results and has also
the advantage that a single run is able to obtain prediction intervals for any
target coverage probability.
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1 Introduction

The importance of renewable energy in the electric energy production mix has
increased in recent years. But because of its inherent variability, a crucial issue
for integrating renewable sources in the energy mix is to improve the forecast
reliability of the sources (solar, wind, ...). Many research works can be found
in the literature that achieve this aim by means of statistical or machine learn-
ing methods (Mellit, 2008; Costa et al, 2008; Mellit and Pavan, 2010; Pedro
and Coimbra, 2012; Marquez and Coimbra, 2011; Marquez et al, 2013; Alonso
et al, 2015; Linares-Rodriguez et al, 2015; Gala et al, 2016; Okumus and Dinler
, 2016). In most cases, the models are trained to produce point forecasts or
average predictions for a period of time. However, in the context of renewable
energy it is also important, not only to have accurate forecasts, but to estimate
their uncertainty (Pinson, 2013). A common way of estimating uncertainty is
probabilistic forecasting (Zhang et al, 2014). Probabilistic forecasting can be
carried out by estimating quantiles, probability density functions (PDFs), and
prediction intervals. Quantiles (such as the median or the first percentil) can
be estimated by means of quantile regression techniques (Nielsen et al, 2006;
Bremnes, 2004) and also machine learning methods such as radial basis neural
networks (Sideratos and Hatziargyriou, 2012). PDFs can be approximated by
means of kernel density estimators (Juban et al, 2007). In the case of pre-
diction intervals (PIs) the aim to is to estimate lower and upper limits that
bound the forecast for a given confidence level.

This paper is focussed on probabilistic forecasting using PIs. In (Khosravi
et al, 2011) four traditionally used methods to estimate PIs (delta, bayesian,
bootstrap, and mean-variance) are analyzed, but argues that none of them aim
to optimize both main defining features of PIs, namely coverage and interval
width, in addition to being computationally costly. Instead, an approach to
estimate directly the lower and upper bounds of the Pls is proposed and shown
to be equal or superior to the other methods in different domains. This direct
approach optimizes artificial neural networks (ANN), whose outputs are the
lower and upper bounds of the PI, by means of an evolutionary computation
technique known as simulated annealing. In (Khosravi and Nahavandi, 2013),
this direct approach is applied to estimating PIs for wind energy production.
Since then, the direct estimation of wind energy PI bounds, by optimizing
machine learning models with evolutionary methods, has been applied in dif-
ferent ways. For instance, (Kavousi-Fard et al, 2014) uses ANNs, fuzzy logic
and particle swarm optimization (PSO) in order to optimize different crite-
ria that evaluate the quality of PIs. A combination of type-2 fuzzy systems
and PSO is described in (Marin et al , 2016). In (Wan et al, 2016), PSO
optimizes an extreme learning machine (ELM) (a type of ANN) whose two
outputs represent the PI. In the latter work, the interval does not depend on
the meteorological situation. This issue has been addressed in (Pinson and
Kariniotakis, 2010), where intervals are conditioned to some meteorological
variables by means of fuzzy logic, but evolutionary computation was not used
in this case. In (Afshari-Igder et al, 2016) PIs are computed taking into account



two sources of variability: model and noise, ELMs and the bootstrap method
is used for the former and the improved krill herd optimization algorithm (an
evolutionary method) for the latter.

All previous works refer to wind forecasting. There are fewer works for
solar energy probabilistic forecasting. For instance, in (Bacher et al, 2009),
autoregressive models are used for point forecasting and quantile regression to
estimate uncertainty. In (Bracale et al, 2013) the probability distribution of
the energy generated by a photovoltaic plant is approximated with a bayesian
autoregression approach. (Chu et al, 2015) proposes a hybrid model using
support vector machines (SVM) to classify situations into high and low DNI
(direct normal irradiance) variation, and then ANNs to approximate the vari-
ance of the PI. In (Alessandrini et al, 2015), analog ensembles (a technique
related to nearest neighbor methods), is used for short term probabilistic solar
power forecast. With respect to Pls, in a recent work, the direct approach
already discussed for wind energy is also applied to solar energy forecasting
(Chai et al, 2015). In particular, a granular neural network is trained using
PSO to approximate the upper and lower PI bounds.

Based on the successful application of the direct estimation of PI bounds
discussed in the previous literature review, the present work takes this tech-
nique as a foundation and extends it using multi-objective (MO) evolutionary
optimization methods. This work will be empirically tested on solar forecast-
ing, where less research has been carried out. Following other works in the
literature, a multi-layer perceptron (MLP) with two outputs are used to de-
termine the lower and upper interval bounds. Given that the desired outputs
(the interval limits) are not known, the standard backpropagation learning
algorithm cannot be used to train the network. In that situation, previous
research has shown that evolutionary computation can be used to optimize
the MLP and therefore, the returned PI bounds. The two most important
criteria to evaluate PIs are the width of the interval (to be minimized) and
its coverage probability (to be maximized). While the standard direct esti-
mation of Pls uses those two conflicting goals to evaluate Pls, typically they
are optimized using single-objective (SO) methods. SO techniques address
multi-criteria problems by aggregating both goals into a single value using a
reasonable tradeoff between them. This tradeoff is controlled by means of a
parameter or weight, and different weights will produce solutions of different
qualities. However, the weight has to be set by the user prior to the optimiza-
tion process and might not return a PI with the appropriate coverage or width,
requiring optimization to be repeated with a different weight. In addition, the
single solution returned by SO does not allow the user to observe the trade-offs
between the two goals. For instance, the user cannot determine how much the
interval width would have to be increased in order to have a larger coverage.

The main motivation of the present work is to address these issues by
using multi-objective (MO) evolutionary techniques (Deb , 2001; Talbi, 2009;
Babalk , 2017), more concretely, multi-objective particle swarm optimization
(MOPSO) (Coello et al, 2004). Hence, in this work MLPs with two outputs
(the limits of the intervals) are trained using MOPSO. Instead of returning



a single solution, MO techniques provide a set of them, called the Pareto
front. This set contains the solutions with the optimal trade-offs between the
different objectives to be optimized. In the proposed approach, each solution in
the final Pareto front is a trained MLP, each one generating PIs with different
trade-offs between interval coverage and width. From this front, the user can
select the most appropriate solution to his/her needs, in terms of the desired
coverage or width. But differently to the SO approach, the user does not
need fix his/her preferences before the optimization process, because the MO
generates the whole Pareto front, from which selection can take place after
the optimization run. One of the most important features of evolutionary
MO techniques is that they include mechanisms to encourage the uniform
distribution of solutions along the front. This makes it likely that solutions
with the required properties will be present in the front. Additionally, having
the whole Pareto front available, and with all regions in the front covered,
allows the user to explore the effect of small changes to his/her preferences.
For instance, it could be determined the cost in terms of interval width increase
of having a slightly larger coverage.

The rest of the paper is organized as follows. In Section 2 the problem
of estimating Pls is defined, including the functions to measure the quality
of an interval. Section 3 presents briefly the PSO and MOPSO algorithms.
The multi-objective approach proposed in this work is described in Section
4. Section 5 describes the data used for the experiments. The experimental
results obtained by the proposed approach are shown in Section 6. This section
also includes a comparison with a single-objective approach using PSO and
a baseline in this field (quantile estimation by gradient boosting). Finally,
Section 7 draws the main conclusion of this work.

2 Estimation of Prediction Intervals

Let M = {(Xj,t;),_o..n} be a set of observations, where X; is a vector with
the input variables and ¢; is the observed output variable. In the context of
renewable energy, X; are the observed values of some meteorological variables
at moment ¢, and ¢; can be the solar or wind energy generated at that time. A
solution to the estimation of intervals is a sequence of PIs, PI; = [Low;, Upp;),
that is defined for the whole set of observations X, € [0--- N]. Thus, given a
new observation Xy k > N, a corresponding PI, PI; = [Lowy, Uppy), should
be provided. In summary, for every possible input X, the intention is to com-
pute its optimal PI, PI(X;) = [Low(X;),Upp(X;)), that contains the true
value t; of the output variable.

Note that in this scenario, the point estimate for solar radiation is not the
objective of the prediction. Quality of a solution is assessed by the number of
measures that lie in the predicted PI. This is the reason why narrow Pls are
desirable.

The quality of a solution can be evaluated using two conflicting measures:
reliability and width. The reliability of a PI is the expectation that for any



future observation Xy, ¢t will lay inside the interval PI;. Reliability is mea-
sured using the prediction interval coverage probability (PICP), calculated
using Eq. 1 over the available data.

1N
PICP = + ; xpr (Xi) (1)
where xpr, (X;) is the indicator function for interval PI;, that takes value
1 if t; € PI; and value 0 otherwise.

Obviously, reliability can be made larger by just increasing the width
of the PI, but then we will be less certain about the actual output value.
Therefore, it can be considered that the width of the interval measures the
degree of uncertainty around a prediction. Given that different observations
have different PIs, the average interval width (AIW) can be calculated using
Eq. 2 over the available data.

N

AIW = % ;(Uppi — Low;) (2)
where Upp; and Low; are the upper and lower bounds of the interval,
respectively. In other works, an interval score derived from Upp; and Low;, is
used instead of AIW. The interval score rewards narrow PI and gives penalty
if the target does not lie within the estimated PI (Wan et al, 2014). However,
this measure evaluates both width and the actual output belonging to the
interval, but the latter is closely related to reliability. In this article, we have
preferred to have two independent measures, as will be explained in the next

section.

It is important to note that most practical problems involve the estimation
of PIs that will be able to achieve an specified reliability level. This means
that a nominal value will be defined as a parameter and the optimization
methods will provide the best solution that meets the criterion of being close
to this nominal level. This value is usually called prediction interval nominal
confidence (PINC) and in order to meet that restriction, solutions must be
found where PICP > PINC.

In summary, our interest in this article is, given some available data M and
a target PINC, to find models Upp and Low that for every input X return
the PI [Low(X),Upp(X)), such that:

— PICP > PINC
— AIW is as small as possible.

3 Single and Multi-objective Particle Swarm Optimization

Particle Swarm Optimization (PSO) (Kennedy et al, 2001) is an iterative
stochastic search method that is designed for finding the optimum value for
a fitness function that has a number of parameters that take values either in



a discrete or in a real-valued parameter space. However PSO is mostly used
for real-value parameter optimization. PSO belongs to the family of nature-
inspired metaheuristic algorithms, which includes genetic algorithms, evolu-
tion strategies, harmony search, or ant colony optimization, among others,
and they have shown a good performance in engineering and mathematical
optimization problems (Arqub and Abo-Hammour , 2014; Mousavi and Alfi ,
2015; Arab and Alfi , 2015; Ameli et al , 2016; Pahnehkolaei et al , 2017).

In PSO, search is conducted by a population (swarm) of solutions (parti-
cles). Particles are defined by their position vectors X; = {x;0, %1, , Tim }
where each z;; is the value of one of the parameters of the function f to be
optimized, called objective function.

There are several versions of PSO adapted for multi-objective optimization.
One of the most popular versions is MOPSO (Coello et al, 2004), that uses
the archiving strategy of PAES (Knowles and Corne, 2000). In this work we
use a variant of this algorithm that introduced crowding distance to ensure
maximum coverage of the Pareto front (Raquel and Naval , 2005).

In MOPSO, fitness is a vector F = {fo, f1,+- , fn} with one value f; for
each objective function. Each particle in MOPSO is a solution to the opti-
mization problem. The algorithm uses an external repository that contains
the Pareto front of non-dominated solutions found during its execution and
returns the repository when reaches its termination criterion.

Both in PSO and MOPSO, the particle’s movement is guided by two influ-
ences. One is the best position of the particle at the moment. This ensures that
each particle performs a local search of its environment. The second influence
is a neighbor solution selected from the rest of the swarm, that is chosen in
different ways in PSO and MPSO:

— In PSO, particles are statically “connected” to a set of other particles,
called the particle’s neighborhood. The best particle in that neighborhood
is used to influence the original particle’s movement.

— In MOPSO, the algorithm stores non-dominated solutions in an exter-
nal repository. Each particle is influenced by one of the solutions already
present in this repository, that is, using a random procedure that favors
solutions in areas of the repository that are sparsely populated to the mo-
ment.

The MOPSO algorithm tries to generate non-dominated solutions with due
diversity, that is, solutions must be spread along a Pareto Front, and not
concentrated in a specific section in objective space. Diversity arises from the
mechanism that each particle uses to select the leader solution that guides its
movement on a given iteration.

The variant of MOPSO used in this work selects leaders for the particles
in the population using a metric called crowding distance (Raquel and Naval
, 2005). For every solution in the archive, its crowding distance is calculated
comparing the position in objective space with the positions of the closest
solutions in the archive. Non-dominated solutions with maximum distance to
their neighbors in objective space are therefore considered more isolated and



used as leaders for each iteration of the algorithm. These values are updated
whenever new solutions are inserted in the MOPSO archive.

4 Multi-objective approach to estimate Prediction Intervals

In this article, the models that estimate the upper Upp and lower Low bounds
of a PI take the shape of a MLP with two outputs (Upp and Low). The
inputs to the MLP are meteorological variables available near the locations of
solar stations. The network is a three-layered perceptron with a single layer of
hidden units. In this context, the target outputs (upper and lower bounds) for
the MLP are not directly available and therefore it cannot be trained using the
standard back-propagation algorithm. Instead, an optimization method that
does not depend on gradients, such as PSO, can be used for that purpose.
PSO is also a good option for real-value optimization, which is the problem
addressed in this article (optimizing the weights of MLPs). As explained in
Section 2, models must produce intervals that are both close to the nominal
probability coverage (PINC') and narrow.

It is straightforward to formulate an optimization problem where a weighted
aggregation of both goals is used as the function to be optimized (exact de-
tails of a possible formulation can be found in Subsection 4.2). However, if this
approach is used, the user has to commit on the relative importance (i.e. the
weight) of each goal before the optimization process starts. The final result
will depend on the chosen weight, and if the final PI does not conform to the
user needs, the optimization process will have to be re-run with a different
weight.

In our proposal, the problem is addressed within a multi-objective formu-
lation, where both goals are optimized simultaneously using MOPSO. Details
of the function to be optimized can be found in Subsection 4.2. After a single
run of MOPSO, a Pareto front of non-dominated solutions is generated, which
means that, for each value of PINC, the model that obtains the narrowest
PI is obtained. This formulation removes the need to define the weight that
determines the tradeoff between the two goals, because optimal solutions for
all possible tradeoffs are obtained in a single run. In a real-world scenario,
this would have the added advantage that the prediction module could be ad-
justed instantly to a different level of PINC' if desired, without running the
optimization algorithm again.

When using evolutionary algorithms (like PSO and MOPSO), both the
decision and the objective spaces have to be defined:

— Decision space: in our case it is the set of weights that define the MLP mod-
els that compute PlIs, which in evolutionary algorithms must be encoded
in the chromosome. Next Subsection 4.1 explains this.

— Objective space: for this problem, it is defined by two goals: closeness to
the target PINC and interval width. In evolutionary algorithms, goals are
computed by means of fitness functions, which are explained in Subsection
4.2.



4.1 The decision space: encoding MLP weights

In this work, single-hidden-layered MLPs are used to represent the models.
Both the single hidden layer and the output layer have sigmoidal units and
their activation functions are given by Eq. 3:

B 1
T 1l4e®

5(x) (3)
where s(z) is a real-valued function associated to the sigmoidal unit, and
x corresponds to the total input to that neuron.

The output layer has two sigmoidal units whose outputs (y; and ys), repre-
sent the upper and lower bounds of the interval, respectively. Figure 1 displays
the architecture of such ANN. Thus, given an input vector x € R™, the output
or activation of the i;; hidden neuron, a;, is given by

a; = s(wi-x+b;) (4)

where w; = (w1, Wa, ..., Wy;) is the vector of weights connecting the n
inputs and the i*" hidden neuron and b; is the threshold or bias corresponding
to the " hidden neuron.

The output of the first output neuron, y;, when the hidden layer has m
units, is given by:

y1 = s> hir-a; +59) (5)
=1

where h;; is the weight connecting the i** hidden neuron and the first
output neuron, a; is the activation of the i*” hidden neuron, given by Eq. 4,
and bf is the bias corresponding to the first output neuron.

Similarly, the output of the second neuron ys is given by:

y2 = s> hiz - a; + 1Y) (6)
=1

For m hidden neurons in the MLP, the number of weights for n inputs and
2 outputs is given by Eq. 7:

Wi b; hik by,
—~ AN T A
D=nxm+"m +mx2+ 2 (7)

where k = {1, 2} corresponds to the output neuron.

Both PSO and MOPSO optimize the values of the D weights of the MLP
by encoding the whole set of weights and bias as coordinates for each of the
particles, and performing a search in R for the values that provide the best
results.
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Fig. 1 Multilayer perceptron with n inputs and m hidden units used to estimate the upper
and lower bounds of the PI

4.2 The objective space: fitness functions for PSO and MOPSO

As explained in section 2, the quality of a PI depends on both coverage prob-
ability (PICP) and interval width (AIW). For a single-objective formulation,
both goals have to be aggregated by means of a weight which measures the
tradeoff between the two goals. In particular, the fitness function for PSO,
which must be minimized, is given by Eq. 8:

Fpso(PINC) = ay x AIW + (1 — a1) * max{PINC — PICP,0}  (8)

The first goal computes AIW (see 2) and the second goal measures the
closeness of PICP to the target PINC. Both goals must be minimized. a;
weights the relative importance of the first goal versus the second. The meaning
of term max{PINC — PICP,0} in Eq. 8 is that we are interested in intervals
that get as close to the target PINC' as possible, but it is not important to
go beyond that value. MIRAR-RAM:For instance, if the target is PINC =
0.95, a PI with PICP = 0.94 would be considered better than another with
PICP = 0.97. Otherwise, the optimization process might return PIs with
higher-than-necessary PIC' P, but at the cost of very large AITW.
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For the multi-objective formulation of the problem, the two goals to be
optimized are PICP and AIW. In order to have two goals to be minimized,
the problem is formulated as in Eq. 9, where the second goal is « = 1— PICP.

Fyopso = {AIW,1 — PICP} = {AIW, a} 9)

It can be noticed that the target PINC' is not involved in the definition
of the objective space (Eq. 9), because selecting the solution closest to the
target is done after the optimization procedure has been run and generated
the Pareto front. Figure 2 displays an actual Pareto front obtained from one of
our experiments. This front represents the optimal tradeoffs between coverage
probability (PICP) and width (AIW) and the user can select the solution
with the desired target PINC value. If the target PINC is 0.9, the point in
the Pareto front closest to the 0.9-horizontal line would be selected. In this
case, this would be the solution with PICP = 0.9020 and AIW = 0.3186.
This solution corresponds to a MOPSO particle that codifies the weights of
the MLP. It is important to remark that our method uses the training dataset
in order to carry out the selection process described (i.e. (PICP, AIW) pairs
in Figure 2 have been computed with the training dataset). The selected MLP
solution might have different (PIC P, AIW) values in the test dataset, but
if the MLP models do not overfit, they should be similar. In this particular
case, the PIC'P and AIW of the selected MLP on the test set are 0.9086 and
0.3276, respectively, very close to the training values.

5 Data

The data available from the Kaggle website has been provided by the Ameri-
can Meteorological Society ! in the context of a solar energy prediction contest
(McGovern et al, 2015). The goal is to predict the total daily incoming solar
energy, measured in J x m™2, at 98 sites of the Oklahoma Mesonet network,
which covers a surface of, approximately, 180000 square kilometers. The in-
put data for each day corresponds to the output of the numerical weather
prediction model GEFS (global ensemble forecast system) using 11 ensemble
members and 5 forecast timesteps from 12 to 24 hours in 3 hour increments.
Each ensemble member produces outputs for 15 different meteorological vari-
ables for each timestep and each point of a 16 x 9 uniform land-surface grid,
with a spatial resolution of about 90 km, including the State of Oklahoma
and surrounding areas. Figure 3 shows the GEFS grid nodes (blue points) and
the 98 Oklahoma Mesonet sites (red points). Some of the meteorological vari-
ables used are the following: accumulated precipitation (kg.m~2), air pressure
(Pa), downward and upward shortwave/longwave radiation (W.m~2), cloud
cover (%), temperature (K), etc. A more detailed information can be found
in L.

Thus, the number of attributes for each grid node is 11 x5 x 15 = 875. In order

1 https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest
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Fig. 2 Population of solutions obtained by MOPSO with the training set

to reduce the amount of data, we have combined the 11 ensemble members
of the GEFS system using the mean of each meteorological variable at each
timestep, as we justified in our previous work (Martin et al, 2015). Then, the
number of attributes for each node is reduced to 5 x 15 = 75. In that work we
also showed that four grid nodes where enough to obtain reasonable results
in the prediction of the daily solar radiation in the nodes of the Oklahoma
mesonet network. For this reason, in this work we have used the four grid
nodes around the mesonet site. Then, the number of input variables used is
5 x 15 x 4 = 300.

Data has been collected everyday from 1994 to 2007 (5113 days) in as-
sociation with the corresponding accumulated incoming solar energy, which
is the attribute to be predicted. This accumulated incoming solar energy (in
J x m~2) has been calculated by summing the solar energy measured by a
pyranometer at each mesonet site every 5 minutes, from the sunrise to 23:55
UTC of the corresponding date. From the total input-output available data
covering 14 years for each station, we have used the period 1994-2005 as the
training set (4383 days), reserving the period 2006-2007 (730 days) for the
testing set.

In order to validate the performance of the proposal to estimate PI, the
experiments have been run for two sites from the 98 sites available, situated
at different latitude and longitude locations, concretely station 1 (at latitude
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34.808330 and longitude -98.023250) and station 98 (at latitude 36.518060 and
longitude -96.342220), although any Mesonet station could be used.

® ® GEFS e o Mesonet]

Fig. 3 GEFS grid points and mesonet stations (McGovern et al, 2015)

6 Experimentation

In this section, the experimental results about the estimation of PIs using
the single and multi-objective approaches are shown. In order to compare
with a baseline, the ensemble method Gradient Boosted Regression (GBR)
(Friedman, 2000, 2002; Schonlau , 2005) has also been used for estimating
PIs. GBR is a recent machine learning technique that has shown considerable
success in regression tasks. It produces a prediction model in the form of
an ensemble of weak prediction models, typically regression trees. GBR uses
boosting to construct the ensemble by sequentially adding models, so that
each model focuses on the errors of the previous one. GBR can also be used
for quantile regression (or quantile estimation) (Kriegler and Berk, 2007; Zheng
, 2012). We have followed the approach recommended in (Meinshausen, 2006):
in order to compute a PI with a probability coverage PINC, GBR is used for
estimating two quantiles, Lower=2" Iév € and Upper=1 — %Nc. Thus, the PI
with a coverage of PINC'is [Lower, Upper).
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Table 1 Parameter values explored for each method

Method Parameter Values
MOPSO  Hidden Neurons {15, 30, 60, 80,100,120}
Iterations {1000, 2000, 3000, 4000}
PSO Hidden Neurons {15, 30, 60, 80,100,120}
Tterations {500, 1000, 1500, 2000, 2500, 3000, 3500, 4000}
al {0.2,0.3,0.4}
GBR Trees {100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}
Depth {2,4,6,8,19,12, 14}
Shrinkage {0.0001, 0.0005, 0.001, 0.005, 0.01,0.05,0.1,0.5}

Before obtaining the results for the estimation of PIs with the different
methods (multi-objective, single-objective and quantile estimation by GBR),
we have performed an extensive task of experimentation in order to decide the
main parameters used for each of these methods, and to study the sensitivity
of the results to the values of these parameters. This study is carried out using
data from station 1. The best configurations of parameters will be used to
obtain the results for the second station (station 98).

This section is organized as follows: in subsection 6.1 we explain the pro-
cedure used to select the optimal combinations of parameters for each of the
methods; in 6.2 we report and analyze the results of those best combinations
of parameters for all methods, on two different measuring stations and the
test datasets; in subsection 6.3 we study the sensitivity of the results to the
main parameters. The last subsection reports the execution times for each of
the methods. In the text of this section, MOPSO refers to the multi-objective
method, PSO to the single-objective one and, GBR to quantile estimation by
means of Gradient Boosting.

6.1 Parameter selection

We have performed a series of experiments with different combinations of
parameters, in order to select the most suitable configuration for each method.
Table 1 displays the parameter values considered for each method. For MOPSO
and PSO, the main parameters are the number of hidden neurons and the
number of iterations carried out by the evolutionary algorithm. Also for PSO,
a1 that weights the two goals to optimize. For GBR, its three main parameters
are the number of trees in the ensemble, the maximum depth of each tree, and
the shrinkage (or learning rate).

We use a common procedure for parameter selection called grid search,
where all possible combinations of parameters are evaluated. They are evalu-
ated by generating a model using the training data, and evaluating it on the
validation set. The combination that attains the best validation value is the
one finally selected, as it is expected to generalize well over the test set. In or-
der to get more accurate results, each combination of parameters has been run
5 times, with different random seeds, and results are averaged. The previous
procedure has been performed for each of three different PINC values used
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in this article: 0.99, 0.95 and 0.90, except for MOPSO, where PINC' is not a
parameter but a decision criterion used to select a solution from the Pareto
front. For both PSO and MOPSO typical values found in literature are used,
for parameters such as the inertia coefficient (w = 0.4), and the mutation
probability(pMut = 0.5). The population size was fixed to 100 particles and
the archive size of MOPSO was 500.

In order to select the best set of parameters for each of the methods, we
have used the following measures:

— Multi-objective approach: the best combination of MOPSO parame-
ters is selected using the hyper-volume metric (Zitzler and Thiele , 1999),
averaged for each of the 5 runs of each experiment. Hyper-volume is typi-
cally used in multi-objective approaches to evaluate the quality of the final
Pareto fronts. In the present 2-objective case, the hyper-volume is the area
covered by the Pareto front; the higher, the better. Two different values
of hyper-volume have been computed: HV is the total hyper-volume, and
HYV is the hyper-volume in the section of the Pareto front related to the
high-coverage PIs (PICP > 0.90), that will be used later.

— Single-objective approach and quantile estimation by GBR: the
average value of ACE = |PINC — PICP| has been used. That is, a com-
bination of parameters is preferred if it results in a solution with PICP
closest to the nominal PINC.

Following the common practice for parameter selection in machine learning,
all these measures were calculated on a validation set that is independent from
both the training and the test data sets. As we have mentioned in Section 5,
the period from 1995 to 2005 has been used as training. As validation set,
data from 2004 and 2005 has been extracted from the training set. This choice
allows us to select configurations that are independent of the test data, but
are expected to generalize well to provide good results on the test set. Note
that test data is composed of measures from the two most recent years (2006
and 2007).

In Table 2, we provide the five best combinations of parameters for MOPSO
in terms of HV 3 and HV on the validation set. We have selected as best result
the experiment with 80 neurons and 4000 iterations. As it can be observed, it
ranked first on the restricted hyper-volume (HV3) and second in total hyper-
volume (HV). It can also be observed that the values of HVy and HV are
very similar in the five best experiments.

With respect to the number of iterations for MOPSO, Table 2 shows that
4000 is the best value. Given that this is the largest value that has been eval-
uated, it could be considered that perhaps better results could be obtained
by using more iterations. Figure 4 displays the evolution of the validation-set
Pareto front, as the number of iterations increases (and for MLPs with 80
neurons). Fronts are shown for 1000, 2000 and 4000 iterations. Results show
that fronts for 2000 and 4000 iterations are fairly similar, while for 1000 itera-
tions convergence of the front is not yet complete. Therefore we conclude that
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Table 2 Best five combinations of parameters for MOPSO on the the validation set

Parameters Metric Parameters Metric
Neurons Iterations HVy (PICP >0.9) Neurons Iterations HV
80 4000 0.0553088226 120 4000 0.8350620363
80 3000 0.0551441698 80 4000 0.834025399
120 4000 0.0547833572 60 4000 0.8337651769
100 4000 0.0546995848 120 3000 0.8336586572
80 2000 0.0546599585 80 3000 0.8332798968

the evolution has almost converged and that further increasing the number of
iterations is not expected to improve the results.
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Fig. 4 Evolution of the validation-set Pareto fronts for MOPSO.

In Table 3 we show the five combinations that gave the best results (in
the validation set) for PSO approach and GBR quantile estimation. Let’s re-
member that for both approaches, different experiments must be carried out
for each desired PINC value (in this work 0.90, 0.95 and 0.99). The lower
the ACE metric, the better the method approximates those nominal values.
For PSO, for each value of PINC, the best result is achieved by different
combinations of the parameters. However, some similarities can be observed.
For PSO, the best results are always for a; = 0.2. This was expected as this
value gives more importance to the PINC' objective, and thus works towards
smaller values of ACE. Also for PSO, none of the best experiments required
more than 500 iterations, despite allowing the system to run until 4000 itera-
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Table 3 Best five combinations of parameters for PSO and GBR quantile estimation on
the the validation set

PSO GBR
Parameters Metric Parameters Metric
PINC | Neurons Iters. a1 ACE Trees Depth  Shrink. ACFE
0.90 60 500 0.2  6.32E-003 | 5000 12 0.001 5.75E-004
120 500 0.2 8.07E-003 | 500 14 0.01 1.40E-003
100 500 0.2  8.89E-003 | 1000 12 0.005 1.40E-003
80 500 0.2  1.00E-002 | 4500 14 0.001 1.50E-003
30 500 0.2  1.09E-002 | 5000 14 0.001 1.56E-003
0.95 100 500 0.2 2.83E-003 | 5000 10 0.001 6.70E-004
80 500 0.2  3.63E-003 | 1500 4 0.005 6.98E-004
30 500 0.2  4.50E-003 | 5000 12 0.001 9.17E-004
60 500 0.2  6.14E-003 | 2500 2 0.005 9.44E-004
100 1000 0.2  7.48E-003 | 2000 2 0.005 9.99E-004
0.99 15 500 0.2  6.69E-003 | 4000 10 0.001 4.24E-004
80 500 0.2 8.60E-003 | 3500 10 0.001 6.98E-004
15 1000 0.2 1.11E-002 | 1000 8 0.005 7.36E-004
120 500 0.2 1.16E-002 | 4500 4 0.005 8.02E-004
80 1000 0.2 1.22E-002 | 5000 8 0.001 8.40E-004

tions. For GBR, values of the parameters were also different among the three
series of experiments. However, it was clear that Shrinkage = 0.001 always
produced the best results. Also, the best experiments used a high number of
trees (either 4000 or 5000). Finally, the depth parameter in these experiments
was either 10 or 12. In both PSO and GBR, variations in ACFE are in fact not
large, so different combinations of parameters should provide similar results.

MIRAR-RAM: Similar to MOPSO, for PSO we also analyze the evolu-
tion of the fitness (Eq. 8) as the number of iteration increases. Figures 5, 6
and 7 show the values of fitness for both the training and the validation sets
at 500, 1000, 1500, 2000, 2500, 3000, 3500 and, 4000 iterations. It is observed
how fitness is quite stable for the train and validation after 500 iterations. For
PINC =0.9 and PINC = 0.95 a certain degree of over-fitting is observed af-
ter 500 iterations. Therefore, for PSO we can also concluded that the evolution
has converged and the best results are archived at 500 iterations.

6.2 Experimental results

In this section we report and compare the results of the three methods, on
the testing set, for the two mesonet sites mentioned in Section 5, using the
best configuration of parameters for each method determined in the previous
subsection.

For all the experiments, the goal is to achieve a target PINC value (in this
work 0.9, 0.95, and 0.99). Single-objective PSO and quantile estimation based
in GBR must be run for each desired target value, while MOPSO is run only
once and then the solution for the desired value is selected from the Pareto
front.
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Table 4 shows the PICP and AIW results, grouped by PINC, for both
the training and testing sets for Stations 1 and 98. For station 1 it can be
seen that, when a PINC level of 0.90 is required, MOPSO obtains for the
testing set a PICP value of 0.913 with an AIW of 0.331. PSO and GBR also
fulfill the PINC requirement although the obtained AIW's are slightly higher
(0.383 and 0.362, respectively).

For the PINC = 0.95 level, we observe that both MOPSO and PSO reach
the required 0.95 value, while GBR is close (PIC' P = 0.944). But GBR interval
width is broader than either MOPSO or PSO (0.516 vs. 0.412 and 0.440).

For the hardest PINC level, 0.99, we can observe that GBR reaches the
target for the testing set, but at the expense of AIW, which is very broad
(AIW = 0.784). MOPSO is very close to the nominal coverage (obtaining
PICP = 0.984) and also obtains a narrower PI compared to GBR (AIW =
0.552). Finally, PSO also obtains reasonable values for PINC and ATW (0.981
and 0.567, respectively), but worse than MOPSO.
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Table 4 Comparison by PINC for Stations 1 and 98 with different methods

Station 1 Station 98
Train Test Train Test

PINC  Method AIW  PICP | AIW  PICP AIW  PICP | AIW  PICP
0.9 MOPSO | 0.318 0.900 0.331 0.913 0.353  0.899 0.351 0.911

PSO 0.374  0.900 0.383  0.908 0.446  0.900 0.450 0.917

GBR 0.364  0.947 0.362  0.904 0.382 0.949 0.378  0.893
0.95 MOPSO | 0.398  0.950 0.412  0.950 0.433 0.951 0.445  0.960

PSO 0.436  0.950 0.448  0.950 0.485  0.950 0.490 0.957

GBR 0.519  0.964 0.516  0.944 0.531  0.968 0.527  0.939
0.99 MOPSO | 0.539  0.990 0.552  0.984 0.590  0.990 0.602  0.996

PSO 0.557  0.983 0.567  0.981 0.680  0.983 0.681  0.987

GBR 0.782  0.983 0.784  0.990 0.805 0.985 0.806  0.984

In the right side of Table 4, results for Station 98 are shown. For PINC
values 0.90 and 0.95, both MOPSO and PSO fulfill the nominal level, although
the AIW obtained by MOPSO (0.351 and 0.445) are narrower than the ones
obtained by PSO (0.450 and 0.490). For PINC values 0.90 and 0.95, GBR
does not reach the nominal level in testing (0.893 and 0.939, respectively) and
the AIW are in both cases broader than those of MOPSO. Finally, for the
most strict PINC level (0.99), the only method which reaches the nominal
value is MOPSO (0.996) compared to PSO (0.987) and GBR (0.984). Besides,
MOPSO obtains the best AIW (0.602) compared to PSO (0.681) and GBR
(0.806).

Summarizing results for both stations, MOPSO usually obtains PICP
values very close to the nominal required value, in addition to providing the
narrowest Pls.

Figures 8, 9 and 10 display the test results for all methods on the ob-
jective space, for each of the PINC values and for each of the five runs. The
background plot shows the cloud of points representing the five test-set Pareto
fronts. The horizontal line displays the target PINCs. The solution from the
MOPSO experiment that is closer to this PINC is selected as the solution for
that experiment. Note that in this case, instead of showing the average results
of the five experiments, as in Table 4, we show each of the five experiments
independently.

These figures show that, while for PINC = 0.90 GBR gives a solution
that is comparable to MOPSO, and better than PSO, as we increase PINC
GBR generates very wide intervals (higher ATW') that are very far from the
solutions of MOPSO. It is also clear that solutions provided by PSO are close
to solutions by MOPSO only for the smallest value of a; = 0.2, but those
solutions have also wider ATW than the corresponding solutions of MOPSO.

Finally and for illustrative purposes, we can see in Figures 11, 12 and 13
the predictions of the upper and lower limits of the intervals and the actual
output value (radiation) for each day of one year within the two year period
of the testing set. These predictions on the testing set correspond to one of
the five MOPSO solutions selected for PINC = 0.9, PINC = 0.95 and,
PINC = 0.99, respectively. As we explained before, each solution is taken from
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the corresponding Pareto front that was built by MOPSO using 80 neurons
and 4000 iterations. We can see that the actual radiation values for each day
fit well inside the intervals formed by the predictions of the upper and lower
limits of the intervals for each day. In order to make the figure more clear, we
have chosen one year inside the two-year period of the testing set.

6.3 Sensitivity to parameters

In subsection 6.1, the best combination of parameters was exhaustively deter-
mined for each of the approaches using the validation set. In subsection 6.2,
these best configurations were evaluated on the test set. Those can be consid-
ered as our main results. In the present subsection, we show whether results
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Fig. 11 Prediction of the upper and lower limits of the interval and the actual output
value, corresponding to one year period within the testing set for a PINC = 0.90. MOPSO
solution with 80 neurons and 4000 iterations.
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value, corresponding to one year period within the testing set for a PINC = 0.95. MOPSO
solution with 80 neurons and 4000 iterations.
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Fig. 13 Prediction of the upper and lower limits of the interval and the actual output
value, corresponding to one year period within the testing set for a PINC = 0.99. MOPSO
solution with 80 neurons and 4000 iterations.

depend strongly on the precise parameter values selected for MOPSO and
PSO. This is done for two of the most important parameters: the number of
hidden neurons (for both MOPSO and PSO) and the a; coefficient for PSO
(see Eq. 8), that controls the tradeoff between width and coverage.

Figures 14 and 15 show how AIW and PICP for MOPSO, change as the
number of hidden neurons in the MLP increases. AIW and PICP shown in
those figures are computed on the test data set. Also, each value displayed
in the figures uses the optimal value found out for the rest of the parameters
(for instance, for 80 hidden neurons, the value displayed uses 4000 iterations,
because that was the optimal value found out when using 80 neurons (see Table
2)). Each figure contains three lines corresponding to the different values of
PINC (0.90, 0.95 and 0.99). It is observed that both PIC'P and AIW do not
change much once the number of neurons reaches 80 (and beyond). For smaller
number of neurons, while PICP is near the nominal value, this is achieved at
the cost of an increase in the value of ATW.

Figures 16 and 17 show the same information than figures 14 and 15, but
regarding the PSO single-objective approach. For PICP = 0.99 the number
of neurons affects the AITW value to a greater extent. In this case, results show
an increase in AIW and results suggests that the number of neurons should be
set at least to 60 and no more than 100. For PINC = 0.90 and PINC = 0.95
the effect in the value of AIW is minor and results show that the number of
hidden neurons should also be set at least to 60. The values of PICP do not
show great variation respect to the number of hidden neurons.
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Finally, the sensitivity to the coefficient a; in PSO single-objective (see Eq.
8) is shown in Figures 14 and 19. As we have already mentioned, this term
balances the relative importance of both AIW and PICP as optimization
objectives. Results show that AIW is better and PIC' P worse for higher values
of ay. This effect is much more important for the experiments with PICP =

0.99.
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Table 5 Average execution times, in minutes, for MOPSO (4000 iterations) and PSO (500
iterations)

Neurons MOPSO (mins.) PSO (mins.)

15 99.796 13.046
30 163.716 19.910
60 263.665 73.312
80 333.883 75.913
100 389.715 50.021
120 431.501 127.682

6.4 Execution times

To give an idea of the order of magnitude of the computational costs of the
different approaches, we provide execution times in Table 5 and 6. All experi-
ments were performed on an Intel(R) Xeon(R) CPU E5-2620 v4 @Q 2.10GHz,
and times reported correspond to a single core.

Differences between MOPSO and PSO are mainly due to the number of
iterations. We report values for 4000 iterations for MOPSO and 500 iterations
for PSO, because those are the most appropriate values for each approach. This
explains the higher computational cost observed for MOPSO. In both cases,
time increases with the size of the neural network. The computational cost of
quantile estimation based on GBR is generally less than the computational
time required by MOPSO and PSO. However, it must be noticed that PSO
and GBR must be run for every value of PINC, while using MOPSO one
single run is enough.
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Table 6 Average execution times, in minutes, for GBR

Trees Depth Shrinkage Time (mins.)

4000 10 0.001 20.110
4000 10 0.001 25.138
5000 12 0.001 30.375

7 Conclusions

In this paper a multi-objective evolutionary approach is proposed for the con-
struction of PIs using a MLP. The inputs to the network are meteorological
variable forecasts for time ¢ and the outputs are the PI upper and lower bounds
of the solar energy generated at time t. The MLP is trained using MOPSO
to minimize the width of PIs and to maximize their coverage probability (or
reliability). More concretely, the proposal computes models to estimate upper
and lower bounds of PIs for every sample input such that the average interval
width (AIW) is minimized and the prediction interval coverage probability
(PICP) is greater or equal than a nominal level, the prediction interval nom-
inal confidence (PINC). Both objectives are conflicting, in the sense that
improving one of them usually degrades the other one. Our proposal takes
advantage of multi-objective evolutionary algorithms, providing a set of so-
lutions (the non-dominated solution set or Pareto front) that represents all
the optimal tradeoffs between the two objectives, from where the user can
choose according to his needs (typically, the solution that achieves the target
PINC). We show that the multi-objective approach is advantageous over the
single-objective formulation because the former does not require to weight the
two objectives in advance. Rather, both of them are optimized simultaneously,
providing a set of solutions (the Pareto front) in a single run, and delaying
the selection of the most appropriate one after the optimization process has
taken place. Additionally, the user can observe the trade-offs between the two
objectives by analyzing the Pareto front, and explore the consequences on one
of the objectives of changes made on the other one.

The proposal has been validated using data related to solar energy gener-
ation, where meteorological variable forecasts were obtained from the Global
Forecast System, and the accumulated radiation was measured at two of the
Oklahoma mesonet sites. Results have been compared with a single-objective
PSO approach and with non-linear quantile regression by means of the GBR
method. Different PINC' target values have been tested. When intervals are
estimated using single-PSO or GBR, a run for every value of PINC' has been
carried out, while MOPSO was run only once, as explained in the previous
paragraph. In this case, the set of solutions (the Pareto front) can be used for
any possible target PINC.

A complete set of experiments have been carried out in order to select the
best parameter configuration for all the methods. The final experimental re-
sults show that the multi-objective approach provides similar or better results
than single-PSO and GBR, depending on the desired value of PINC'. For the
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most difficult target value, PINC = 0.99, MOPSO obtains the probability
coverage very close to the target PINC while at the same time, providing the
narrowest intervals. When methods provide similar PICP values, MOPSO
provides the best value of ATW.

Funding: This work has been funded by the Spanish Ministry of Science under
contract ENE2014-56126-C2-2-R (AOPRIN-SOL project).
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