Universidad

ucdm | Carloslil -Archivo
de Madrid

This is a postprint version of the following published document:

luhasz, G.; Petcu, D. Monitoring of Exascale data processing, in 2019 IEEE
International Conference on Advanced Scientific Computing (ICASC), 12-14,
September 2019, Sinaia, Romania. Proceedings

DOI: https://doi.org/10.1109/ICASC48083.2019.8946279

© 2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.


https://doi.org/10.1109/ICASC48083.2019.8946279
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

ASPIDE

Exascale programIng models for extreme data processing e Preprint

Monitoring of Exascale data processing

GABRIEL [uHASZ

Institute eAustria Timisoara and West University of Timisoara
iuhasz.gabriel@e-uvt.ro

DanNa PeTCU

Institute eAustria Timisoara and West University of Timisoara
dana.petcu@e-uvt.ro

Abstract

Exascale systems are a hot topic of research in computer science. These systems in contrast to current Cloud, Big Data and HPC systems will
routinely contain hundreds of thousand of nodes generating millions of events. At this scale of hardware fault and anomalous behaviour is not

only more likely but to be expected.

In this paper we describe the architecture of and Exascale monitoring solution coupled with an event detection component. The latter component
is extremely important in order to handle the multitude of potential events. We describe the major lacking research that needs to be done, which

will make event detection freezable in real world Exascale systems.

Keywords Exascale, H2020, monitoring, event processing, anomaly detection
Formal publication https://doi.org/10.1109/ICASC48083.2019.8946279

I. INTRODUCTION

System monitoring for large-scale HPC platforms is a challenging
task, which becomes more difficult as the scale and complexity of
the infrastructure increases. This is true both in the case of hard-
ware as well as the underlying software stack. In such cases, the
system mean time between failures tends to decrease inversely pro-
portional to the number of components. Therefore, the applications
can experience interruptions in service due to hardware failures or
misconfigurations. As the HPC systems’ size increases, application
failures become a critical issue, which could have profound effect
on the overall system performance. In addition to hardware failures,
novel system software stacks coupled with legacy parallel scientific
applications deployed on modern cluster platforms push the enve-
lope of reliability. The DARPA Exascale Computing Study [1, 11]
predicts that at Exascale the predicted failure rates could be as low
as 35-39 minutes.

One important challenge in Exascale computing consists of devel-
oping scalable components that are able to monitor in a coordinated
and efficient manner the use of hardware resources and the be-
haviour of applications. However, monitoring Exascale system is
a challenge due to the large number of components and the tight
requirements, such as sub-optimal period scheduling [7]. Moreover,
in HPC systems the schedulers assign compute nodes in a static way,
trying to run different applications in different nodes to avoid inter-
ferences. They use CPU availability as main criteria on the scheduler
side and HPC system statistics, as TACC Stats in [5], to improve the
system utilization. However, as nodes scale-in, a single failure could
affect multiple applications in the system simultaneously. Thus,
efficient system monitoring plays an important role in three aspects:
1) tuning the computing infrastructure;2) optimizing scheduling in
order to share resources and to provide high efficiency; and 3) detect
faulty components/nodes in the system.

II. CURRENT MONITORING SOLUTIONS

Essential problem in extreme scale systems is their scalability due
to large numbers of resource and huge data amounts to be trans-
ferred, stored and accessed. These facts impose a challenge on
monitoring system to provide insightful data allowing to avoid or
remove bottlenecks related to data congestion, and in this way, im-
prove performance and efficiency of large scale applications. On the
other hand, the scale and complexity of such systems put important
constraints on the monitoring system itself.

There are a large variety of monitoring solutions available for large
scale systems. In particular the most popular monitoring solutions
are external services at least in the case of Cloud and Big Data
framework monitoring.

NewRelic' provides a solution for monitoring both the infrastruc-
ture in a traditional, hybrid or Cloud setup as well as the appli-
cations running on them. It provides "serverless" solution capable
of handling a wide variety of metrics including those from code
instrumentation.In this situation, code refers both to actual code
that runs as well as the VM’s on which the code is running. This
means that users can observe the effects of deploying new features
on preexisting deployments and infrastructure.

Honeycomb? is designed as a platform driven by events intended to
debug systems, applications and databases. Aggregation is done in
real-time for use in fast analytics and data analysis. It is designed to
hide as much as possible of the underlying schemas or data indexes.
It also features integration with various communication media, in
particular with Slack which aids in communication and alerting of
detected events.

DataDog?® is a service based monitoring solution that provides full
stack monitoring. It handles infrastructure monitoring, application
monitoring as well as log management. It is designed to be used in
DevOps type workloads in particular for aggregating metrics and
events.

Thttps:/ /newrelic.com/
2htl‘ps: / /honeycomb-analytics.com/
Shttps:/ /www.datadoghq.com/


mailto:iuhasz.gabriel@e-uvt.ro
mailto:dana.petcu@e-uvt.ro
https://doi.org/10.1109/ICASC48083.2019.8946279

Exascale programIng models for extreme data processing e Preprint

Although these service based solutions fit many large scale system
requirements they have 2 major drawbacks. First, almost all of them
are paid services. Payment can be done on a subscription basis or
on the number of incoming metrics and events. The latter being
particularly bad scenario for Exascale systems where hundreds of
thousands of nodes will generate millions if not billions of messages
and events.

An alternative to these types of service based solutions are usually
made up of different components each having a well defined scope.
One interesting an well used and liked monitoring stack is the so
called ELK* stack made up of 3 main components; ElasticSearch,
Logstash and Kibana.

Logstash is a tool developed in order to collect, process and
forward events and log messages. Basically, it handles Extract,
Transform and Load (ETL) operations. It uses configurable plugins
for input, output and filters in order to collect, process and load
data. The input plugins then send the data for processing to the filter
workers. Finally, the processed data is routed to one or more output
plugins such as Elasticsearch, Kafka, InfluxDB and many more types
of data stores. It is an extremely useful tool in any monitoring setup
as its configurability means that it can fill many roles at the same
time.

ElasticSearch is an open-source, RESTful search engine based
on top of Apache Lucene®. It is horizontally scalable n which can
perform near real-time processing. It also provides support for multi-
tenancy, streamlined backup procedures as well as insuring data
integrity. One of the most important capabilities of Elasticsearch is
its ability to handle high throughput of tens or even hundreds of
thousands of messages per second. Each node, which makes up an
Elasticsearch cluster can be configured to have a specific role from
serving as data store node, to load balancer nodes and coordination
or master node.

Ganglia® is a scalable distributed monitoring system for high-
performance computing systems such as clusters and Grids. The
design of Ganglia is hierarchical and targets federation formation
for clusters. Because of the use of hierarchical approach, it manages
preserve a low per-node overhead and high concurrency. By design
it is robust and easy to be ported on various operating systems. One
of its major benefits is that it can easily scale-up to handle thousands
of nodes. Nowadays it is being used in lots of setups around the
world.

Nagios” monitoring platform supports multi-layer monitoring.
Due to its plugin based architecture, Nagios provides a way of moni-
toring both Cloud based resources as well as in-house infrastructure.
In order to achieve this it uses SNMP monitoring network resources.
The architecture of Nagios requires a centralized server in order to
collect monitoring data. However, it is possible to create a hierarchy
of Nagios servers that mitigate the disadvantages of a centralized
server.

D-Monl4], is a monitoring tool developed during the H2020 DICE
research projects. It was designed for the monitoring of data in-
tensive applications during the development phase focusing on Big
Data frameworks. In contrast to other solutions it provides a detailed
snapshot for different versions of the same application. It is based on

4https:/ /www.elastic.co/
Shttps:/ /lucene.apache.org
Ohttp:/ /ganglia.info
7https://wwwnagios,org/

Monitoring
control

APIs / services

< Monitored data
< Redundant link
----- Control

Time series /
NosQL DB
i A

r : p
collectors collectors

§
=)
o
=
b

Node Node

Figure 1: ASPIDE Monitoring

the ELK stack with a custom REST API which enables easy querying
of monitoring data. It is able to respond in a comprehensive variety
of formats (JSON, CSV, Plain, XML). Analysis tools are able to easily
query D-Mon for monitoring data. To further increase the usability
and reduce the workload on the analysis tools D-Mon also supports
some data pre-processing steps during interrogation. Furthermore, it
also supports most major big data technologies; HDFS, YARN. Spark,
HBase, Storm, Flink, MongoDB, Cassandra, Solr, Elasticsearch.

III. ASPIDE MONITORING AND EVENT DETECTION

We propose a distributed event processing platform that is capable
of analyzing the incoming monitoring data. This analysis allows end
users to have an up to date cross-section of Exascale applications
internal state and performance. One important distinction of large
scale systems is that there is a substantial quantity of data available.
However, this data is unusable by many of the available analysis
methods. This is due in large part to the fact that semantically
labeled data is very hard to obtain or create, requiring a lot of effort
which in many cases is not transferable from one large scale system
to another. In this work we aim to present a comprehensive overview
of the different technologies used that enable our event detection
system to tackle this type of analysis. We describe the requirements
for identifying events and anomalies as well as methods of utilizing
unsupervised methods in conjunction with continual user feedback.
We can see in figure 1 the overall monitoring architecture of
the ASPIDE monitoring solution. The figure has been taken from
the technical deliverable describing it in detail [8]. The following
paragraphs describe in short the aforementioned architecture.
Node collectors should be lightweight and highly configurable,
collection from several layers of the underlying software stack. In
our solution we use Collectd®. This metrics collection daemon is
widely used in HPC, Cloud and even in DevOps use-cases. There is
an active user and developer community. Being plugin based means
that it is highly adaptable. Users can create custom metrics (even

8https:/ /collectd.org



Exascale programIng models for extreme data processing e Preprint

code instrumentation) and metrics forwarding plugins with relative
ease in a variety of programming languages (C, Python, Java etc.).

Event processors, perform pre-processing of incoming raw moni-
toring data as well as computationally tractable analysis tasks. In
our solution we use a combination of Logstash and Kafka. This
setup allows us to instantiate several Logstash deployments serving
as both pre-processing nodes and potentially metrics load balancer.
Kafka allows us to push incoming events into topics which can then
be fed into long term storage and even into other tools that require
online analysis.

Time series DB must be capable of being distributed and handle
large input and query size. As mentioned before Elasticsearch is one
of the most popular solution for persistent storage of monitoring
data. However it can be quite difficult to scale. If the number of
shards is fixed at a lower limit than is required for scaling past
a certain point the entire data store has to be re-indexed into the
increased number of shards. Furthermore, the index typically takes
up 25 to 30% of the total stored data.

Graphite® is designed to store numeric time-series data and to
render graphs and other visualization in near real-time. It is one of
the most widely used open source tools for monitoring computer
system performance. It is comprised of 3 main components; carbon
responsible for receiving incoming data, whisper which stores the
incoming data similar to the industry standard RRD toolset and
finally a graphing web interface. It can be used with a wide array of
collection and visualization components such as Grafana. One issue
when dealing with Graphite is that it’s data store is of fixed size
and has to be sized upfront. It stores recent data at high resolution
(seconds per point) which gradually degrades for long term retention.
This can be an issue for Exascale systems.

InfluxDB is a time-series database written in the Go program-
ming language. It is optimized for time-series data with high-
availability. It is frequently used for monitoring infrastructure as
well as IoT and real-time analytics. It has built in support for pro-
cessing Graphite data. It has an SQL-like language which is used
to gather data composed of measurements, series and points. In
InfluxDB a point is defined as a key-value pair and a timestep. It
supports several datatype such as 64 bit Int, Float as well as string
and boolean. It also has a new data scripting language called Flux.
One major issue when using InfluxDB is that the components which
enabled horizontal scaling are no longer open-source as of version
0.12.0.

Prometheus!! is another open-source software application used
for event monitoring and alerting. Alerting is statically configured
with a YAML file. Prometheus records real-time metrics in a time
series database. Contrary to Graphite, Prometheus applies polling to
collect metrics values instead of subscription to approaching events.

We can see that none of the persistent storing solutions is a perfect
fit for the needs of Exascale systems. In ASPIDE we have decided
to use Prometheus in combination with Elasticsearch for the initial
implementation. Automatic scalability and resilience of this part
of the monitoring system is still an open question and is an issue
which requires further research.

Distribution and Optimization Manager handles the controlling of
collectors and aggregation points. It also handles also optimization

%https:/ / graphiteapp.org/
0www.influxdata.com
Hhttps:/ /prometheus.io/

during deployment. Because of the sheer scale of Exascale system
manual installation and configuration is not freezable. There are
configuration management solutions that can handle this task such
as Puppet and Chef, however they are not enough in our case. Not
only will this system have to handle fault event and new nodes
being added to the system but also with configuring the aggregation
nodes. In short it must decide how many nodes are assigned to and
aggregation point, what operations it applies to the incoming data
and finally which node from the Exascale system will be assigned
the role of aggregation node.

Decision Support system (Auto tuner) handles intelligent configu-
ration (data centrist) of Exascale application and tasks. It will receive
data from both the runtime, monitoring and event detection and use
this to generate new configurations. Basically creating a feedback
loop which optimizes application execution.

IV. EVENT AND METRICS

The event detection sub system will handle the processing of raw
monitoring data in order to identify events and anomalies during ap-
plication execution. The event processing and detection components
architecture (called EDE) is described in full in [6].

Figure 2 show how EDE is integrated into the exascale monitoring.
It collects historical data from the monitoring which it then applies
pre-processing and formatting tasks to, so that it can be finally uses
to train predictive models. The events and anomalies detected are
then fed back into the decision support system to use it in fine
tuning.

The question at this point is what are the events or anomalies and
what metrics are required? This is a key issue which to the best
of our knowledge has no clear response at this time. What can be
inferred is that there are two types of methods which can be used
in this scenario; supervised and unsupervised. Arguably the easiest
one to use are the unsupervised methods where we work under the
assumption that normal events are grouped together in relatively
dense clusters while anomalies are sparse. The major downside of
these methods is that even if we successfully detect an event we can’t
always clearly identify what type of the event or anomaly is nor can
we easily analyze the root cause.

In the case of supervised methods root cause analysis is made
simpler. However, contextual anomalies root cause analysis is still
difficult. By contextual anomalies we mean those anomalies for
which each metric taken by itself is not anomalous but in a particular
context the event can be. The context is given by the metrics collected
at a given time.

Defining context (in other words creating labeled training data)
is a quite difficult to do, and usually requires human intervention.
There are semi automated methods of doing this (injecting anomalies
via predefined rules) do exist however this synthetic data is of limited
practical use.

There are some available data sets designed for use in event and
anomaly detection in the case of HPC and Cloud computing [3, 10],
however they are few and far between. This can be traced back to
the lack of access to the underlying system and the lack of interest
by infrastructure providers to make their monitoring data publicly
available.

In order to define events and anomalies for Exascale systems we
need to have input form the types of use cases which require these



Exascale programIng models for extreme data processing e Preprint

APis ervices

<«—— Manitorea data
<. Redundant link
-+ Control

Ristributior: % Opt M

Prediction Training

Method Loader Optimization

Training

Configuration

Exporting

Figure 2: ASPIDE Monitoring and Event detection

types of systems. Without this it is difficult to gauge is the events
and anomalies which are of interest in the case of current production
HPC and Cloud/Big Data based system can be mapped on Exascale.

V. CONCLUSIONS

In this paper we have described currently available monitoring
solutions and the technologies on which they are based. We have
detailed both the positive and negative aspects of the technologies
which could make up our Exascale monitoring system. As well
as describing the current working architecture. Furthermore we
described the requirements for a viable event detection system.
Future work will focus in testing the monitoring system implemen-
tation and checking for scalability and elasticity. In the upcoming
weeks we will also focus on creating a comprehensive list and de-
scription of the potential events and anomalies which might effect
any Exascale system. In order to accomplish this we will use the use

cases from the ASPIDE H2020 project [2, 9].

ACKNOWLEDGMENT

This work has received funding from the EC-funded H2020 ASPIDE
project (Agreement 801091: Exascale programming models for ex-
treme data processing). This work was supported with hardware
resources by the Romanian grant BID (PN-III-P1-PFE-28: Big Data
Science).

REFERENCES

[1] ExaScale Computing Study: Technology Challenges in Achiev-
ing Exascale Systems, 2008.

[2] L. Belcastro, E. Marozzo, D. Talia, and P. Trunfio. Parsoda:
high-level parallel programming for social data mining. Social
Network Analysis and Mining, 9(1):4, Dec 2018.

[3] A.Borghesi, A. Bartolini, and F. Beneventi. Data set for anomaly
detection on a hpc system, June 2019.

[4] I Dragan, G. Iuhasz, and D. Petcu. A scalable platform for mon-
itoring data intensive applications. Journal of Grid Computing,
May 2019.

[5

—_

T. Evans, W. L. Barth, J. C. Browne, R. L. DeLeon, T. R. Furlani,
S. M. Gallo, M. D. Jones, and A. K. Patra. Comprehensive
resource use monitoring for hpc systems with tacc stats. In 2014
First International Workshop on HPC User Support Tools, pages
13-21, Nov 2014.

[6

—_

G. Iuhasz and D. Petcu. Perspectives on anomaly and event
detection in exascale systems. In 2019 IEEE 5th Intl Conference on
Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference
on High Performance and Smart Computing, (HPSC) and IEEE Intl
Conference on Intelligent Data and Security (IDS), pages 225-229,
2019.

[7] W. M. Jones, ]J. T. Daly, and N. DeBardeleben. Application mon-
itoring and checkpointing in HPC: Looking towards exascale
systems. In Proceedings of the 50th Annual Southeast Regional
Conference, ACM-SE "12, pages 262-267. ACM, 2012.

[8] A.O.D.E.S.D.K.G.1].G.-B.]. C. V. Kashansky. D3.2 extreme
scale monitoring architecture. Technical report, H2020 ASPIDE,
2019.

91 ] LApeZ-GAmeZ, J. F. MuAoz, D. del Rio Astorga, M. F. Dolz,
and J. D. Garcia. Exploring stream parallel patterns in dis-
tributed mpi environments. Parallel Computing, 84:24 — 36, 2019.

[10] A. Netti, Z. Kiziltan, O. Babaoglu, A. Sirbu, A. Bartolini, and
A. Borghesi. Antarex hpc fault dataset, Oct. 2018.

[11] Vivek Sarkar et al. ExaScale Computing Software Study: Soft-
ware Challenges in Extreme Scale Systems, September 2009.



	portadilla_postprint_IEEE
	icasc_ieat_aspide_paper.pdf
	Introduction
	Current monitoring solutions
	ASPIDE Monitoring and event detection
	Event and metrics
	Conclusions




