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Abstract

Latest advances in information technology and the widespread growth in different areas are producing large amounts of data. Consequently, in the
past decade a large number of distributed platforms for storing and processing large datasets have been proposed. Whether in development or in
production, monitoring the applications running on these platforms is not an easy task, dedicated tools and platforms were proposed for this task
yet none are specially designed for Big Data frameworks. In this paper we present a distributed, scalable, highly available platform able to collect,
store, query and process monitoring data obtained from multiple Big Data frameworks. Alongside the architecture we experimentally show that

the solution proposed is scalable and can handle a substantial quantity of monitoring data.
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I. INTRODUCTION

Big Data technologies have become an ever more present topic
in both academia and industrial world. These technologies enable
businesses to extract valuable insight from their available data, hence
more and more SMEs are showing increasing interest in using these
types of technologies. Distributed frameworks for processing large
amounts of data, such as Apache Hadoop!, Spark [43], or Storm?
gained in popularity and applications developed on top of them
are more and more prevalent. However, developing software that
meets high-quality standards expected for business-critical Cloud
applications remains a challenge for SMEs. In this case model-driven
development (MDD) paradigm and popular standards such as UML,
MARTE, TOSCA hold strong promises to tackle the challenges [13].

During development of Big Data applications it is important to
monitor performance for each version of the application. Informa-
tion obtained can be used by software architects and developers to
track the evolution and performance of the developed data intensive
application. Monitoring is also useful in determining main factors
that impact the quality and performance of different application
versions [7]. Throughout the development stage, running applica-
tions tend to be more verbose in terms of logged information so
that developers can get insights about the developed application.
Due to verbosity of logs, data-intensive applications produce large
amounts of monitoring data, which in turn need to be collected,
pre-processed, stored and made available for high-level queries and
visualization.

In this paper we provide details regarding our monitoring solution
that is tailor made in order to solve the aforementioned issues. We

Thttp:/ /hadoop.apache.org/
2http:/ /storm.apache.org/

present a scalable, highly available and easy deployable platform for
monitoring multiple Big Data frameworks. Currently there are no
solutions that support simultaneously system and Big Data frame-
work related metrics. The proposed solution currently integrates
resource-level metrics, such as CPU, memory, disk or network, to-
gether with framework level metrics collected from Apache HDFS,
YARN, Spark and Storm. The platform is easily extensible to other
Big Data frameworks. In addition it is capable of ingesting large
quantities of metrics from various sources and serve them to end
users and other tools. This is done such that it provides a clear
and complete overview of the current data intensive application
and underlying system states. Most currently available monitoring
solutions are not able to provide such a fine grained view of a data
intensive application during the development phase. Our solution
also possesses a simplified querying scheme not present with other
monitoring tools. It allows for the generation and serving of moni-
toring data in a variety of formats which can later be used by both
the end-users directly and other tools that require such information.
Furthermore, we also provide automatic detection of monitorable
services and the creation of visualization for Big Data frameworks.
These features are not present in most if not all current monitoring
solutions and are meant to help developers during data intensive
application design and implementation.

The rest of this paper is structured as follows. In Section II
we present the current state of the art for monitoring applications.
Section III presents the architecture and design choices made for
our distributed monitoring platform. Next, in Section IV, some
important considerations on the proposed monitored metrics are
presented. Finally, in Section VI, we present the initial validation of
our monitoring solution, while Section VII discusses ongoing and
future work.
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II. RELATED WORK

In general when monitoring big data platforms on Cloud based
deployments a cross layer monitoring scheme is employed. This is
due to the fact that components of individual applications can be
distributed on various cloud layers as well as on multiple Virtual
Machines (VMs). For this purpose the monitored parameters should
be transmitted across all the Cloud layers used by the applications.
Only by doing so one can have a complete picture of the current
status of individual applications at a given time. It is common to
have applications running various components on SaaS (Software as
a Service), PaaS (Platform as a Service) or/and laaS (Infrastructure
as a Service). In [24] some problems of monitoring public Clouds are
identified and an architecture for a monitoring platform is proposed.

II.1 Cross layer monitoring

On IaaS typically we want to monitor resource utilization such as
CPU usage, states for Hard Disk utilization, Memory usage and
status, as well as additional network parameters. In contrast at PaaS
and SaaS level parameters include byte throughput metrics, status
of system services, uptime, availability etc. For example, in the case
of a Hadoop deployment we have metrics such as MapReduce pro-
cessing time, Job Turnaround, Shuffle operations etc. The difficulty
in deciding what the optimum settings are for a given application
is considerably made worse by lacking or even missing run-time
information. For example in the case of a job and reducer task
scheduling [4] monitoring data is crucial. Another approach can be
seen in [30] where minimalist monitoring is used. A solution for
monitoring wireless devices is proposed WiGriMMA and presented
in [12].

The type of resources that are monitored is highly dependent
on the application type. For example data transfer quality and
rate is important for any video streaming application while a batch
processing application will only be interested in basic process and
network latencies.

There are several types of monitoring solutions currently in use
or under development. In the case of centralized monitoring, all
resource states and metrics are sent to a centralized monitoring
server. These metrics are continuously pulled from each monitored
component. It is easy to see that this approach, while allowing a
more controlled management of any Cloud application, has several
drawbacks. First, it has a single point of failure and lacks scalability.
This means that at a certain stage if the monitored application will
exceed the capability of the central monitoring server, the only
solution applicable would be vertical scaling of the system. Moreover
high network traffic can also lead to bottlenecks which in turn
can lead to faulty or incomplete monitoring data. A decentralized
approach can alleviate most if not all of these problems.

In a decentralized architecture no component is considered more
important than another. In structured Peer-to-Peer systems the
central authority is defused thus eliminating the central point of
failure. Unstructured Peer-to-Peer network overlay is meant to be
distributed, however, the search directory is not centralized. Besides
the aforementioned we also have the hybrid Peer-to-Peer systems
in which super peers can serve as localized search hubs for small
network portions [3].

In [26] some of the more popular monitoring tools and platforms

for Cloud computing and Big Data are presented. Part of these
platforms have been adopted from High-performance computing
(HPC) scenarios while others have been designed specifically for this
task.

I.2 Monitoring tools and platforms

NewRelic® provides a solution for monitoring both the infrastructure
in a traditional, hybrid or Cloud setup as well as the applications
running on them. In a nutshell it provides a "serverless" monitoring
solution that can handle all sorts of tasks by means of code instru-
mentation. In this situation, code refers both to actual code that
runs as well as the VM'’s on which the code is running. By doing
so one can observe the effects of deploying new features on the
existing infrastructure. Similar to most enterprise level applications
NewRelic comes with a price tag attached.

Honeycomb* is designed as a platform driven by events intended
to debug systems, applications and databases. The aggregation oper-
ations of data is done at read-time in order to support fast analytics
over big datasets without having to worry about the underlying
schemas or indexes. Another important feature advertised for Hon-
eycomb is collaboration. For this purpose it has integration with
Slack for ease of communication and every member of the develop-
ment team can explore the system without superuser rights. One of
its major drawbacks of the system is the pricing scheme, the system
cannot be used for free.

DataDog® is yet another monitoring solution that provides full
stack monitoring. It handles infrastructure monitoring, application
monitoring as well as log management. Any of these components
can be purchased individually but also as a single solution. DataDog
advertises that it is a turn-key solution for aggregating metrics and
events for full devops stack. Pricing for DataDog is per million trace
events or in case of application monitoring a flat rate is applied plus
the rate for event monitoring, resulting in a high price to pay for
application and infrastructure monitoring.

Hadoop Performance Monitoring UI [40] is designed as a built-in
solution for finding bottlenecks in Hadoop set-ups as well as pro-
viding visual representation of the available tunable parameters for
better performance of Hadoop. In essence, one can view the tool
as being a lightweight monitoring UI for Hadoop servers. The fact
that it is built-in the Hadoop ecosystem and easy to use, one can
consider this solution for minor system tuning. Although built-in, it
lacks performance, a good example where it laggs can be considered
the time spent in garbage collection by each of the tasks.

SequencelQ® is yet another solution for monitoring Hadoop clus-
ters. The architecture proposed by SequencelQ” and used in order
to do monitoring is based on the ELK stack, that is, Elasticsearch8,
Logstash® and Kibana!?.

SequencelQ uses an architecture based on Docker containers in
order to obtain a clear separation between the Hadoop deployment
and the monitoring tools. In a nutshell the monitoring solution

3https: / /newrelic.com/

4https:/ /honeycomb-analytics.com/

5 https:/ /www.datadoghq.com/

6htt‘p:/ /sequenceiq.com/

7http:/ /blog.sequenceiq.com /blog/2014/10/07 /hadoop-monitoring /
8https://Www.elastic.co

9htl‘p:/ /logstash.net

Ohttps:/ /www.elastic.com/producs/kibana
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consist of client and server containers. The server container takes
care of actual monitoring tools. In this particular deployment Kibana
is used for visualization and Elasticsearch for consolidation of the
monitoring metrics. Through the capabilities of Elasticsearch one
can horizontally scale and cluster multiple monitoring components.
The client container contains the actual deployment of the tools that
have to be monitored. This instance contains Logstash, Hadoop and
the collectd modules. Logstash connects to the Elasticsearch cluster
as a client and stores the processed and transformed metrics data
there.

Due to its design the proposed solution is created by using mul-
tiple tools that are used in order to monitor metrics from different
layers [28]. Because of containerization one can easily add or re-
move components from the system without affecting the overall
monitoring platform. Also, interrogating the system for various data
becomes an easy task to perform.

Hadoop Vaidya'! is a rule based performance diagnostic tool for
MapReduce jobs. The mechanism behind Vaidya performs post
analysis steps for map-reduce jobs. In order to achieve this goal it
parses various execution statistics, or configuration files, from job
history and stores them for later interrogation and usage.

Finding the performance problems that arise in the execution
steps is done by application of individual rules implemented by
Vaidya on the stored job execution statistics. Due to its design, rules
are applied one by one and only known problems might be detected.
By application of the rules, this system is able to provide users with
advice for future executions such that some of the already occurring
problems to be avoided. The output produces is an XML report
based on the evaluation of individual test rules.

Ganglia'? is a scalable distributed monitoring system for high-
performance computing systems such as clusters and Grids. The
design of Ganglia is hierarchical and targets federation formation
for clusters. Because of the use of hierarchical approach, it manages
preserve a low per-node overhead and high concurrency. By design
it is robust and easy to be ported on various operating systems. One
of its major benefits is that it can easily scale-up to handle thousands
of nodes. Nowadays it is being used in lots of setups around the
globe.

Apache Chukwa'3 is an open source data collection system for
monitoring large distributed systems. At its core, Chukwa uses
HDEFS system and the Map/Reduce framework. By doing so, it
provides mechanisms for easily scale. Although it is designed to
collect the monitored data, it provides the users with a toolkit able
to better understand the collected data. That is, it is capable of
analyzing and display the results of different runs of the monitored
software. Unlike other solutions, it is released under Apache license.

Nagios'* monitoring platform supports multi-layer monitoring.
Due to its plugin based architecture, Nagios provides a way of moni-
toring both Cloud based resources as well as in-house infrastructure.
In order to achieve this it uses SNMP monitoring network resources.
The architecture of Nagios requires a centralized server in order
to collect the monitoring data. However, it is possible to create a
hierarchy of Nagios servers that mitigate the disadvantages of a
centralized server.

hittp:/ /hadoop.apache.org/docs/r1.2.1/vaidya.html
2http:/ /ganglia.info

Bhttp:/ /chukwa.apache.org

14https:/ /www.nagios.org/

OpenNebula'® can be viewed as a solution for monitoring and
management of data-centers. The tool is designed to work over SSH
in order to connect to all of the monitored machines. As advertised
it was mainly designed to monitor physical infrastructures and also
private Cloud deployments.

II.3 Tools appropriate for development stage

There are also monitoring and management solutions customized for
various instances. For example OpsCenter!® provides a dedicated tool
that can be used to monitor and administrate Cassandra. Another
relevant tool that can be used in monitoring both Cassandra and
do administration work on the nodes in the cluster is Applications
Manager'’. Application Manager is not bound to only monitoring
Cassandra and provides ways of monitoring also NoSQL DB systems
as MongoDB and others. When speaking strictly about database
deployment we have a tool developed inside MongoDB MMS'8 that
runs as a service and handles the inner monitoring of the application.

The monitoring solutions presented in this section can be split
up into two main categories. The first category contains solutions
that are geared towards monitoring distributed application and/or
platforms such as web applications. Although they can theoretically
be used to monitor Big Data frameworks and the data intensive
applications developed on top of these, this task is not as straight for-
ward as it first appears. They either require significant modifications
and configuration for collecting performance data relevant during
the development stages (in particular polling periods for the metrics)
or, even more problematic, they might not support the entire Big
Data stack on which a data intensive application is built on. Fur-
thermore, most solutions are offered at Saa$S level thus making any
modification that might be necessary especially cumbersome and in
some cases impossible. The second category are those monitoring
tools which rely on post-mortem analysis. These solutions can’t
give a insight into the current performance and internal state of the
application being developed during execution.

III. PLATFORM ARCHITECTURE

In a nutshell, DICE Monitoring (DMon) platform19 is designed as a
Web service, enabling the deployment and management of several
sub-components. Each of the sub-components is responsible for
enabling monitoring of Data Intensive (Big Data) applications and
frameworks. In contrast to other monitoring solutions [2, 3, 20], our
platform aims at providing the user with as much monitoring data
as possible about the current status of the Big Data sub-components.
Its main aim is to give performance and quality related metrics to
application architects and developers during the development phase.
By doing so, a wide range of new technical challenges arise. Due to
the fact that DMon is serving near real-time fine grained metrics it
must exhibit high availability and easy scalability.

DMon provides a distributed, high availability monitoring service.
It is tailor made for Big Data technologies and it is easily extensible

5http:/ /opennebula.org/

16htt‘p:/ /www.datastax.com/what-we-offer /products-services/datastax-opscenter

17htt—psz / /www.manageengine.com/

18https:/ /mms.mongodb.com/

9This platform has been developed in the framework of the DICE project,
http://www.dice-h2020.eu
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to collect metrics from a wide range of frameworks. Big Data service
integration into monitoring platforms is still very much an open
issue. Ingesting large amounts of data in a timely manner is also
an open question. During production, only warning or error level
logs and metrics are important. However, during development this
level of detail is not sufficient. In order to consume and present
the metrics, in a useful and timely manner, is a key problem. This
problem is one of the main reasons for the necessity of designing and
implementing a specialized big data ready distributed monitoring
solution.

In general web services are build using a monolithic architecture
where most of the components of the system run in a single process.
That process is usually hosted on a Java Virtual Machine (JVM). In
case one uses this architecture type there are major advantages when
it comes to deployment and networking. On the other hand, scaling
such a system is a non-trivial task. In order to achieve the goal of
scalability, one has to organize the several instances that run behind
a load-balancer instance.

Although the monolithic approach seems to be the way to go when
deploying monitoring platforms, there are some severe limitations
to it. One of the side effects that can happen is the appearance of
unforeseen impact on various components of the application when
changing one of the components. Due to this situation adding new
features to the platform can become potentially very expensive (in
both time and resources). Another issue is related to individual
components, that is, they cannot be deployed independently. Mean-
ing that in case one is interested in only partial functionality of the
service, this cannot be achieved unless the entire service is up and
running. By doing so one is ensured that most of the platform is loos-
ing reusability. As observed in practice this is not what is happening,
but rather the focus is on readability of code hence performance loss
is a side effect.

Taking into consideration both the advantages and limitations
exposed by a monolithic design for a monitoring platform, we de-
cided to use another fundamentally different approach for DMon.
That is, we are deploying a widely used approach in the Internet
companies [18], the so called microservice architecture [34]. By using
the microservice architecture we replace a monolithic service with a
distributed system of lightweight services. Each of the service being
designed independent and narrowly focused. The approach allows
us to deploy, upgrade and scale individual services rather than en-
tire monolithic components. Due to the loosely coupled manner of
microservices, code reusability is much higher and changes made to
individual services do not necessarily require changes in other ones.
In the microservice architecture, integration and communication
between services should be done either by using HTTP (REST APIs)
or using RPC requests. The use of microservice architecture allows
us to group related behaviors into separate services, thus enabling
us to easily modify the overall system without the inconvenience of
modifying multiple services.

By design DMon is based on REST APIs that enable communi-
cation between individual services and the requested payload is
encoded as JSON messages. By doing so, DMon is empowered to
create and send both synchronous and asynchronous messages in a
much easier manner.

Figure 1 presents the overall architecture of the DMon platform.
We can see from this figure the main services and workflow which
make up DMon. Agents installed on the monitored nodes which
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Figure 1: DMon architecture

send metrics through the queuing service into the serving layer.
The controller is responsible for deploying and configuring all other
services. Services such as the anomaly detection and trace checking
consume data from the serving layer and controller. It is impor-
tant to note that the controller is also responsible for some of the
preprocessing of the data define through its query APL

The context in which DMon is developed relies on the so called
lambda architecture [32]. The lambda architecture consists of three
layers: speed, batch and serving layer. By design DMon follows the
aforementioned guidelines and uses for the serving layer Elastic-
search. This component is responsible for loading batch views of
the collected data providing other tools and layers with random
access to read it. For looking at recent data and its representation in
a query function DMon makes use of the speed layer. Whereas the
batch layer is used in order to compute arbitrary functions on large
sections of the dataset that is stored in Elasticsearch.

The design and implementation of individual components is based
on several core technologies. For storing and indexing data we use
Elasticsearch. The job of gathering and processing of log file data is
performed by Logstash. For the purpose of presenting the users with
a friendly graphical user interface we chose to use Kibana server. In
terms of services the core services used in the development of DMon
are: the dmon-controller, dmon-agent, dmon-shipper, dmon-indexer, dmon-
wui and dmon-mas. Each of these services will be used to control
both the core and node-level components.

III.1 Core components

As backbone for the monitoring platform we use the Core compo-
nents. They are used for collecting, processing, aggregating and
transforming all the incoming monitoring data. One of the most
essential features that is common for these components are: ease of
configuration, scalability and support for high throughput.

Elasticsearch [21] is an open-source, RESTful search engine based
on top of Apache Lucene [33]. By design Elasticsearch is a scalable
solution that is capable of performing near real time processing
of data. Besides providing near real time processing speed it also
allows to do streamlined backup while insuring data integrity. But
one of the core capabilities of Elasticsearch is that it can handle high
throughput of messages.

For collecting, processing and forwarding events and log messages
in the monitoring tool we make use of Logstash [39]. In a nutshell,
Logstash is designed to perform Extract, Transform and Load (ETL)
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operations. For performing all these operations it uses a variety of
plugins that can be configured as needed either for input-output
or for collecting, processing and loading data. As input data the
plugins are configured for accepting multiple sources ranging from
TCP/UDP to Kafka [31] topics. Data received by the input plugins is
later on sent for processing to the worker plugins (filter). The output
from these plugins is further sent to one or more Elasticsearch, Kafka,
InfluxDB plugin the can handle these. Because of its stateless design,
Logstash becomes a easily scalable tool, as an example we can
consider two instances of Logstash serving the same Elasticsearch
endpoint.

In our design we use Kibana [21] as a web user interface that
provides analytics and as a search interfaces for Elasticsearch. By
doing so we match the scope of Kibana, that is viewing processed
events from Logstash.

By combining the above components we obtain the so called
Elasticsearch ELK stack. This setup provides a very robust base for
DMon.

III.2 Node-level components

DMon has to monitor a wide range of Big Data technologies each
of which have different metrics and metrics systems. Because of
these constraints we had to use collectors that are flexible enough to
accommodate a wide variety of technologies. Besides input restric-
tions the collectors must have a small computational footprint. By
taking into account all the previous restrictions we limit the amount
of "noise" produced by the presence of different collectors. Another
critical feature that all the deployed collectors must obey is ease of
deployments. That is, it should be easy to deploy and configure
them for thousands of physical or virtual machines (VM).

Collectd 2 is an open-source POSIX daemon that collects, transfers
and stores performance and network related data. Being a widely
used tool, collectd provides the users with a great range of options
for collector plugins. In DMon we use collectd to collect system
metrics, such as CPU utilization, memory, hard disks, networking
and other system related metrics.

As previously presented, the Logstash server is able to collect
metrics and log files directly from the machine it is installed on. In
this particular case it would mean that we need to have a Logstash
instance on each of the monitored nodes, which in most cases is not
a suitable approach because Logstash has a substantial computa-
tional footprint when using specialized filters such as grok. Instead,
we decided to use logstash-forwarder 2! to do the job of metrics
forwarding. logstash-forwarder is designed for the purpose of log
forwarding to one or more logstash server instances. Using this
approach inside DMon we are eliminating node-level side effects
caused by local processing of logs.

Since most of Big Data frameworks are Java-based complex frame-
works, we can use Java Management Extensions (JMX) to extract
valuable metrics related to the JVM. In fact, a large number of Big
Data frameworks already support exporting metrics via JMX. Thus,
jmxtrans 22 tool is used in our architecture to collect attributes ex-
ported at JVM level. We should note at this point that jmxtrans is
only supported for backwards compatibility within the DICE project.

20https:/ /collectd.org/
21 https:// github.com/elastic/logstash-forwarder
22http:/ /www.,jmxtrans.org/

All JMX metrics are now collectable via a collectd plugin called
Fast]MX.

It is also worth mentioning that although there are new versions
of data shippers for the ELK stack called Beats?>. These shippers
are able to process data and send it directly into Elasticsearch in the
appropriate format for indexing. We currently do not use them in
DMon as during some initial test we have found that they produce
significant "noise" in the collected metrics which in a production
environment where metrics might be collected every 30 seconds or
more is negligible but when dealing with debug level metrics (every
second) the "noise" can have a negative impact on performance and
quality related metrics.

II1.3 Platform services

In this section we present a number of web services that wrap
the core and node-level components. The wrappers are developed
in order to allow easy deployment and configuration of all the
previously described components.

I11.3.1 Core-level services

The web services developed are divided into three major categories:
dmon-controller, dmon-shipper and dmon-indexer; all of the services are
implemented in Python using the Flask microframework [22]. In
order for the services to communicate with each other we encode
the messages using JSON.

The core component is dmon-controller, all the other services and
components communicate with it. In fact it acts as the main point
of integration with all the services developed in the DICE project.
The REST API is split into two main parts: Monitoring Management
API and Monitoring Query APL A swagger®* based web Ul is used
for all developed services for easy of use and a form of interactive
documentation of all REST APIs.

Monitoring Manager API

The Monitoring Management API, code named Ouerlord, is used to
register nodes, change configuration parameters and current status
of all node-level components. It can also be used to deploy and
configure node-level metrics on to registered nodes. Because of
this, when registering nodes it is required that credentials for each
node be supplied (username, password or ssh key). If node-level
components and services have already been deployed by other tools
they only have to register the already deployed node-level service
endpoints. In this scenario credentials are not needed.

The dmon-agents are also deployable using the DICE Deployment
Service [6] Chef cookbooks °. This allows the deployment of the de-
veloped application with all of the monitoring components already in
place without any additional user intervention using default parame-
ters which can be latter changed if necessary using the Management
APL

Long term storage of metrics is a problem that has to be dealt
with in all data warehousing solutions. For addressing this problem
we use DMon management API for creating indexes that store the
monitoring data. By default, in DMon we create indexes every 24

23 https:/ /www.elastic.co/products /beats
24htl‘p:/ /swagger.io/
Zhttps:/ / github.com/dice-project/ DICE-Chef-Repository / tree/master/cookbooks
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hours, all of them can be exported and even dumped into a variety
of formats. We also provide with means of querying them either
individually or all at once. Besides, the exported or dumped indexes
can be at a later point in time uploaded back in DMon or in other
deployments that perform offline processing of monitored data.

In the dmon-controlled we implemented support for version anno-
tation of metrics. That is, metrics collected from specific application
version are annotated using tags, providing a easy way of querying,
aggregating or even metric comparison for a target application. An-
other way of dealing with the problem of having multiple versions
of an application is by creating separate indexes for each of the
versions. However this approach is not as versatile as the former
solution because it makes it hard to do comparison by introducing a
second query in order to obtain the differences in metrics for two
versions of the application.

Another important role for dmon-controller is to generate and en-
act configurations for all the core components. These configurations
are mainly dependent on the data provided at registration time for
each node, resulting in an automatic configuration of each of the
DMon components.

As already mentioned, the type of node-level components needed
for monitoring is based on the Big Data service that run on each
machine. During registration a list of services that are deployed
on each node can be defined, the list is used in order to setup and
manage node-level services and components. In some instances
developers are not overly familiar with how Big Data platforms
work or what services are deployed and need to be monitored. In
the Management API we have the ability to auto detect what services
(or roles) each processing node has. We accomplish this by scanning
all nodes for Big Data platform specific services. Good examples of
this are the YARN and Spark history servers. These history servers
contain generic information about the cluster such as the available
nodes, the role assigned, submitted application related information
(execution time, execution attempts/failures etc.). Once all nodes
have a role assigned to them DMon will automatically generate the
appropriate configuration for the node level sub-components (see
section II1.3.2). It is important to note that this automatic discovery
of roles is available for all supported Big Data services (YARN, Spark,
Storm, Kafka, MongoDB, Cassandra).

Monitoring Query API

The Observer is used in order to query DMon by making use of the
Monitoring Query APL One example of such a query is presented
in Listing 1, and it does not require any kind of authentication to be
performed. The Listing 1 presents various attributes such as: size of
the returned response, its ordering, or start and stop dates (in UTC).
We use a similar format for the queryString as in Kibana, defining
the predicates that run on Elasticsearch [21] and can be further used
to aggregate data and perform additional operations on data. As
response from the query we get answers encoded as CSV, JSON or
in plain text format. Support for RDF+XML encoding using OSLC
Perf. Mon 2.0 vocabulary [29] was also developed but only system
metrics are currently exportable using this format. The CSV and
RDF+XML query responses are generated using the dmon-controller
service. As input the dmon-controller takes a JSON response and
converts it into the desired target format.

Internally DMon uses dataframes to store incoming queries and is

able to perform some post processing on them if necessary. Initially
we used a simple associate array type storage of incoming queries
however it suffered from major performance problems when trying
to apply any post processing to the queried data. For the dataframes
we used the Pandas?® library.

It is also possible to issue an aggregated query in which the
user (or tool) specifies what technologies are being monitored. The
resulting query will be an aggregation of the metrics collected for
the specified technologies (or applications). The metrics index is set
to the collection time of said metric. In the example query found
in listing 2 the field aggregation contains the name of three services
which comprise the applications and will yield a time-series where
each row represents metrics from all platforms at a certain time
(index). This will aggregation is especially helpful with novice users
of Big Data platforms for developing data intensive applications as
it is a significant simplification of the standard querying mechanism.

It is important to note that we can also specify the interval of
queried metrics. For example if we collect system metrics every 5
seconds and YARN specific metrics every 10 seconds we will have an
issue in that for every YARN metric we will have 2 system metrics.
In order to mitigate this issue we can set the interval to 10s which
will instruct DMon to create an average of all metrics with a step
size of 10 seconds, meaning that instead of two system metrics we
will have an average of those two. This interval can be set to seconds,
minutes, hours etc. Of course this type of post processing might
result in substantial data loss. A better solution would be to set the
polling period of all metrics to the same value. This polling period
can be set at runtime from DMon Monitoring Management APIL.

Listing 1: User defined DMon query

{
"DMON": {
"query ":{
"size":" <SIZEinINT >",
"ordering":" <ascldesc>",
"queryString ":" <query>",
"tstart":"now—30s",

"tstop ":" <stopTime>"

}

26http:/ /pandas.pydata.org/
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Listing 2: Aggregated DMon query

{
"DMON": {
"aggregation":
"system ; spark ;mongodb",
"fname": "output"”,
"index": "logstash —x*",
"interval": "10s",
"size": O,
"tstart": "now—1d",
"tstop": "now"
}
}

The dmon-controllers synchronous endpoint is suitable only for
small queries. Long running queries should be executed using
the asynchronous query endpoint. This endpoint is able to start
sub-processes which handle the issued queries. The number of
sub-processes can be set during the deployment (default is 5). We
opted to create a bespoke asynchronous task queue for DMon as
this allowed us more control over the implementation and behavior
while at the same time avoiding the bloating with unnecessary
dependencies such as Celery for Python which requires an external
broker such as RabbitMQ.

In order to deploy, manage and configure logstash instances, in
our implementation we make use of the dmon-shipper microservice.
Unlike the dmon-controller, that can be located on different machine
than the one containing the Logstash instance, the dmon-shipper
must be collocated on the machine. Its main purpose is to control
nodes that are configured with the Elasticsearch cluster, allowing
external tools to interact with the inner components of DMon.

The use of microservices in this context allows by design split
of control for the various core and node-level components and the
application logic of DMon. Doing so we make sure that we separate
the application logic form code that drives and enacts individual
components of the system. Using this design schema we managed
to implement most of the components to be stateless, with the
exception of dmon-controller. This implies that the current state
of the controlled component is not stored but rather polled at a
moment in time. In the case of dmon-controller service only basic
state and node-level information is stored in a relational database.
Exporting, importing, versioning or even backing up the state of
dmon-controller can be performed directly from the Management
APL

Queuing service

There are some cases where the metrics sent by node-level com-
ponents might exceed Logstash capabilities of efficient processing,
causing data-loss. In order to mitigate this issue we found three
viable solutions. The first one suggests increasing the number of
assigned workers for the filter plugin. As a second solution, one
could create another instance of Logstash to handle part of the load,
this should be done only if increasing the number of workers is
not an option. Thirdly we propose to use a queuing service that
receives all the metrics and from where Logstash can consume them
in a timely manner. By using the third option we address data loss

problem but it could potentially increase the time spent by a metric
from when it was collected until it was processed and indexed inside
DMon. Figure 1 presents the general framework design of this solu-
tion, where possible implementation candidates range from Kafka,
or Redis to a combination of MongoDB [15] and RabbitMQ [38] are
present. Section VI details on the behavior of Logstash in these
situations.

I11.3.2 Node-level Services

Management and configuration of all node-level components is dele-
gated to the dmon-agent service. Each of the nodes that is monitored
using the DMon solution must have a dmon-agent installed and
running locally. The service is designed to be stateless, in a similar
manner to dmon-shipper and dmon-indexer services. For the control
of node-level components, dmon-controller issues requests to each
dmon-agent service. Each of the requests is formulated as JSON
containing all the needed information for the control of node-level
components.

Each time a new node is added to the platform for monitoring,
the platform automatically installs the monitoring agent on it. The
monitoring agents collect data from local files and sends the data to
the platform.

As in the case of most monitoring solutions, DMon presents a web
user interface that allows user to easily interact with the platform
for viewing and management purpose. All the metrics collected
form the Big Data deployments are also presented. Being a separate
component, the web user interface can be deployed on a separate
machine provided that it has access to the appropriated DMon
endpoints.

III.4 Visualization interface

Although the platform doesn’t implement any bespoken metrics
visualization facilities, one can easily use Kibana dashboards [21]
including graphics for any number of metrics, such as CPU, memory
or network, as well as Big Data specific metrics. All these visual-
izations are based on Elasticsearch queries that can be aggregated
and plotted using a histogram based on their timestamps. Some
visualizations are created automatically by DMon and then saved
into a special index inside Elasticsearch, from where they are loaded
into Kibana. This feature has proven extremely useful for developers
and end users who are not yet familiar with Big Data frameworks. It
is also possible to add additional visualizations manually to fit the
end-users needs.

IV. PERFORMANCE METRICS

The metrics platform collects can be classified into three major cate-
gories. First category is represented by resource-level metrics, such
as CPU, memory and network utilization at the VM level. We can
also include in this category metrics related to failure rates of specific
VMs and the services running on them.

Second category is related to system level metrics. Among these
metrics we mention those specific to each supported Big Data frame-
work. Some examples are: job arrival rate, job throughput, job
parallelism, job response time, waiting buffer occupancy and so on.
We can easily see that these metrics are designed to monitor how
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the framework executes and schedules jobs. Each job is decomposed
into different tasks. Third and smallest category of metrics is focused
on worker level task metrics [41].

The overwhelming number of metrics that is exportable for Big
Data frameworks is an important problem that has to be addressed
in all monitoring solutions. There are well over 300 metrics that
can be collected for YARN, HDFS, Spark, Kafka and Zookeper. All
metrics have to be pre-process by Logstash and finally loaded into
Elasticsearch for indexing. The metrics are usually received in a
raw format that is processed by Logstash and then transformed into
JSON codification that is indexable by Elasticsearch.

When we are talking of potentially thousands of VMs each send-
ing 30 to 40 messages every 15 seconds, it is easy to see that the
sheer volume of data can be a potential problem. This issue has sev-
eral possible solutions such scaling both Logstash and Elasticsearch
instances to handle the increased throughput or decrease the polling
period for each VM from 15 seconds to a more manageable rate.

During the development stages of a Data intensive application
(DIA) usually it is not clear what metrics are crucial so filtering
of what metrics are indexed is not a viable solution in a DevOps
environment. Once a suitably stable version of an application has
been developed DMon can be setup in such a way that it indexes
only certain types of metrics.

Another common way of reducing the load on Logstash instances
would be to handle some transformation of the metrics before they
reach the monitoring platform. Although, this solution is tempting it
is not usable in DevOps. The act of in situ transformation may cause
unwanted load on the monitored nodes thus introducing noise in
the monitoring data.

Some metrics are strictly linked to the overall topology of the
application being developed. This has to be addressed in the cod-
ification of metrics that are to be introduced into the monitoring
solution. A good example of this issue are the bolts and spouts
that make up a Storm topology. There are metrics related to each
individual bolt and spout. If a global spout or bolt encoding is
used there is the potential of losing valuable performance insight.
Because, of this in DMon we collect metrics related to each bolt and
spout individually. Moreover, we are able to automatically detect all
running topologies on any given Storm instance and then extract all
metrics related to each individual bolt and spout.

Trace checking is also an invaluable source of performance data.
Log files contain timestamped data related to the internal state of
any data intensive application. Logs are collected and then analyzed
in order to check whether they satisfy a property which is usually
specified in a logical language or rule. Returning to the Storm
topology from before a property can be something like; all the emit
events of a certain bolt occur not more than ten milliseconds after
the latest receive event. This rule can be true or false.

V. ANoOMALY DETECTION

Anomaly Detection is an important component involved in perfor-
mance analysis of data intensive applications. We define an anomaly
as an observation that does not conform to an expected pattern
[14, 19]. Most tools or solutions, such as Sematex?’, Datadog28 etc.

27https:/ /sematext.com/spm/
28https:/ /www.datadoghq.com/

are geared more towards a production environment in contrast to
this the DICE Anomaly Detection Tool (ADT) is designed to be used
during the development phases of Big Data applications.

V.1 Big Data framework metrics data

In DICE most data preprocessing activities are done within DMon
[27]. However, some additional preprocessing such as normalization
or filtering will have to be applied at method level.

In anomaly detection the nature of data is a key issue. There can
be different types of data such as: binary, categorical or continuous.
We usually deal with continuous data types although categorical
or even binary values could be present. Most metrics data relate to
computational resource consumption, execution time etc.. There can
be instances of categorical data that denotes the status/state of a
certain job or even binary data in the form of Boolean values. This
makes the creation of data sets on which to run anomaly detection
an extremely crucial aspect of ADT, because some anomaly detection
methods don’t work on categorical or binary attributes.

It is important to note that most, if not all, anomaly detection
techniques and tools, deal with point data, meaning that no relation-
ship is assumed between data instances [19]. In some instances this
assumption is not valid as there can be spatial, temporal or even
sequential relationships between data instances. This in fact is the
assumption we are basing ADT on with regard to the DICE context.

Data used by the anomaly detection techniques are queried from
DMon. This means that some basic statistical operations (such as
aggregations, median etc.) can already be integrated into the DMon
query. In some instances this can reduce the dataset size on which
to run anomaly detection.

V.2 Types of anomalies

An extremely important aspect of detecting anomalies in any prob-
lem domain is the definition of anomaly types that can be handled
by the proposed method or tool. In the next paragraphs we will give
a short definition of anomaly classes.

First we have point anomalies which are the simplest types of
anomalies, represented by data instances that can be considered
anomalous with respect to the rest of data [14]. Because this type
of anomaly is simple to define and check a big part of research
effort will be directed towards finding them. We intend to further
investigate this type of anomalies and consider them for inclusion in
DICE ADT. However, as there are a lot of existing solutions already
on the market this will not be the main focus of ADT instead we
will use the Watcher?® solution from the ELK stack to detect point
anomalies.

A more interesting type of anomalies are the so called contextual
anomalies. These are considered anomalous only in a certain context
and not otherwise. The context is a result of the structure from
the data set. Thus, it has to be specified as part of the problem
formulation [37, 14]. When defining the context we consider: con-
textual attributes which are represented by the neighbours of each
instance and behavioural attributes which describe the value itself.
In short, anomalous behaviour is determined using the values for
the behaviour attributes from within the specified context [14].

2https:/ /www.elastic.co/guide/en/watcher / current/index.html
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We consider the case of time-series data which is the most common
type of data in which contextual anomalies can occur. Also, the
meaningfulness of contextual anomalies is heavily dependent of
the target application domain. Because of this in the context of
our tool we must have a set of anomalies for each of the Big Data
services covered. In this paper, the main focus is on creating a basic
framework that enables ad-hoc definition of context rather than an
exhaustive list of predefined ones. Future work will also feature
some instances of these predefined contexts and anomalies.

The last types of anomalies are called collective anomalies. These
anomalies can occur when a collection of related data instances
are anomalous with respect to the entire data set. In other words,
individual data instances are not anomalous by themselves. Typically
collective anomalies are related to sequence data and can only occur
if data instances are related.

There are a variety of methods currently implemented for ADT
from unsupervised methods such as IsolationForest, DBSCAN to
supervised methods such as Decision Trees, Naive Bayes etc. In
order to have the flexibility to use as many methods as possible
we have integrated into ADT both the Weka [25] and scikit-learn
[35] libraries. As of writing this article we are in the final stages of
integrating Googles Tensor-flow deep learning library [1]. This will
allow us to use state of the art deep learning techniques for anomaly
detection.

V.3 Anomaly detection implementation

The ADT is made up of a series of interconnected components that
can be controlled using a simple Eclipse Plugin or a command line
interface.

In total there are 8 components that make up ADT. The general
architecture can be seen in Figure 2. These are meant to encompass
each of the main functionalities and requirements identified in the
requirements identified during DICE [17].

First we have the dmon-connector component which is used to
connect to DMon. It is able to query the monitoring platform and
also send it new data. This data can be details related to detected
anomalies or it can also save trained predictive models. For each of
these types of data dmon-connector creates a different index inside
DMon.

After the monitoring platform is queried the resulting dataset
can be in JSON, CSV or RDF/XML. However, in some situations
additional formatting is required. This is done by the data formatter
component. It is able to normalize the data, filter different features
from the dataset or even window the data. The type of formatting
the dataset may or may not need is highly dependant on the anomaly
detection method which is used.

The feature selection component is used to reduce the dimensional-
ity of the dataset. Not all features of a dataset may be needed to train
a predictive model for anomaly detection. So, in some situations it
is important to have a mechanism that allows the selection of only
the features that have a significant impact on the performance of the
anomaly detection methods. Currently only two types of feature
selection is supported. The first is Principal Component Analysis*
(from Weka) and Wrapper Methods.

The next two components (see Figure 2) are used for training and
then validating anomaly detection predictive models. For training

30http:/ /weka.sourceforge.net/doc.dev /weka/attributeSelection/ PrincipalComponents.html
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Figure 2: General overview of Anomaly Detection Stack.

a user must first select the type of method desired. The dataset is
then split up into training and validation subsets and later used for
cross validation. The ratio of validation to training size can be set
during this phase. Parameters related to each method can also be
set in this component.

Validation is handled by a specialized component which mini-
mizes the risk of overfitting the model as well as ensuring that out
of sample performance is adequate. It does this by using cross vali-
dation and comparing the performance of the current model with
past ones.

Once validation is complete, the model exporter component trans-
forms the current model into a serialized loadable form. We use the
PMML [23] format wherever possible in order to ensure compati-
bility with as many machine learning frameworks as possible. This
also makes the use of ADT in a production like environment much
easier.

The resulting model can be fed into DMon. In fact the core services
from DMon (specifically Elasticsearch) have to role of a serving layer
from a lambda architecture. Both detected anomalies and trained
models are stored in the DMon and can be queried directly from the
monitoring platform. In essence this means that other tools from the
DICE toolchain need to know only the DMon endpoint in order to
see what anomalies have been detected.

Furthermore, the training and validation scenarios is in fact the
batch layer while unsupervised methods and/or loaded predictive
models are the speed layer. Both these scenarios can be accomplished
by ADT. This integration will be further detailed in later sections.

The last component is the anomaly detection engine. It is responsible
for detecting anomalies and for pushing them to the serving layer
(i.e. DMon) via the dmon-connector. The anomaly detection engine is
also able to handle unsupervised learning methods. We can see this
in Figure 2 in that the Anomaly detection engine is in some ways
a sub-component of the model selector which select both pre-trained
predictive models and unsupervised methods.

As the ADT is out of the scope of this article we will not give any
more details regarding the validation and experiments done using
different types of anomaly detection methods. The most important
thing to remember is the fact that ADT is tightly coupled with DMon
and together they for a Lambda Architecture. Each instance of ADT
can have the role of batch or speed layer while DMon has the role of
a serving layer.
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V.4 Trace checking tool

Trace checking is also a valuable source of detecting sequential
anomalies. In the case of DICE this job done by a tool called DICE-
TraCT [9] based on Soloist [11]. The trace checking tool is based
on 3 main components; trace checking engine which is in charge
of performing the actual trace analysis, log merger aggregates all
events relevant to a particular event based on each events timestamp,
finally we have Tractor which coordinates the other two components.

The trace checking tool issues a query to DMon requesting log files
from all pertinent nodes for a given data intensive application. DMon
then fetches (via dmon-agetns) the raw log files and creates a archive
which is returned to the log merger component for processing.

Similarly to the ADT tool the trace checking tool is beyond the
scope of this paper. It has been extensively covered in other publica-
tion [9].

VI. PLATFORM VALIDATION

Data intensive applications pose some difficult and unique problems.
In almost all instances these are based on Big Data frameworks and
libraries which are geared towards large scale distributed workloads.
From the point of view of monitoring this entails the collection,
processing, storing and querying of data from hundreds potentially
thousands of processing nodes. As we have seen in section IV the
available metrics from each of the supported technologies add up to
hundreds of distinct metrics.

Furthermore, as DMon is a bespoked DevOps monitoring solu-
tion for data intensive applications the collection and processing of
performance relevant metrics is one of the most important require-
ments. Polling period of metrics in development and performance
optimization scenarios can be extremely low, once every second for
all available metrics. During the development of DMon we have
used what we consider a minimum YARN and Spark deployment
comprised of 4 VMs. This number was chosen because it allows
us to start YARN and Spark specific services as recommended in
their documentation. In the case of YARN we have deployed Node
Managers and Data Nodes on all VMs, Resource Manager, Name
Node and Secondary Name Node on distinct VMs, minimizing the
collocation of key services and ensuring a balanced role distribution.
In other words interference/noise between monitored performance
metrics for Yarn and Spark services are reduced.

These 4 VMs and the services deployed on them generate (when
running a YARN/Spark app) 23 monitoring events per second with
a polling period of 5 seconds. If the polling period is set to 1 second
the number of events increases to 115 events. It is important to
consider that most of these events have more than 1800 characters
and have to be parsed and then formatted into the correct JSON
format for indexing in Elasticsearch. Furthermore, the Grok plugin
from Logstash performs substring matching by default which have
a significant impact on performance which is mitigated by the use
of anchor characters.

We can safely conclude that in many instances the challenges
and requirement for DMon closely mirror the challenges found in
the data intensive applications it is designed to monitor both in
the volume, variety and velocity dimensions. These facts have let
us to devise a comprehensive set of experiments and load testing
scenarios to see how DMon and its core service can handle (both
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process and index) the incoming monitoring data as well as how
other tools can get access to this data in near-real time.

All experiments have been executed on a private OpenStack Mi-
taka deployment. The VMs used all have 4 vCPUs 8 GB of RAM
and 250 GB of storage tuning Ubuntu 14.04.3 LTS on them. Resource
contention is not an issue as these experiments where the only VM
instances running on the cluster.

VI.1 Core Service Experiments
Phase 1

The first set of experiments was done on the Logstash based core
service which, as mentioned in Section IIL.1 is responsible for ETL
operations of incoming events. All events are unprocessed when
entering Logstash. Once they go through the custom filters (where
all ETL operations are contained) the resulting processed events can
be ingested by Elasticserach. There are a wide range of raw event
format which required us to create custom filters.

It should be noted at this time that Logstash supports input
codecs®! for a wide range of formats. However, we have identified
two problems when dealing with Big Data framework metric events.
First, almost no framework outputs metrics in a supported codec.
Second, we have found that some frameworks such as Storm and
Spark can output in JSON format but this output is nested. This
causes significant problems when trying to index nested fields in
Elasticsearch. Our solution is to flatten the input JSONs as much as
possible using mutate operations in the Logstash filters.

The first set of experiments are meant to show the maximum
throughput (measured in events per second) of the Logstash based
core service when running custom framework specific DMon filters.
For these experiments we have captured raw events from all of
the supported Big Data Technologies (see section VI.3). We have
identified all of the unique messages and created a test suite that
is sending these messages into Logstash without delay, effectively
setting the polling period to the lowest possible value.

There are a number of configuration options and parameters
which we had to take into consideration. Logstash allows the setting
of the number of pipeline workers. This option will allow the
execution in parallel of the filter and output sections of the filter
pipeline. By default this is set to the number of CPU cores. This
option sets the number of workers that will, in parallel, execute the
filter and output stages of the pipeline. If you find that events are
backing up, or that the CPU is not saturated, consider increasing
this number to better utilize machine processing power. The default
is the number of hosts CPU cores.

Another important configuration option is the batch size param-
eter. This option defines the maximum number of events an indi-
vidual pipeline worker before it attempts to executes the filters and
outputs the result. By default this is set to 125 events. Increasing it
usually results in better efficiency at the cost of increase in memory
overhead. In [16] we have investigated different JVM settings and
garbage collection methods in order to optimize throughput. In
these experiments we set the heap size 2 GB with the default JVM
garbage collector.

The experiments where conducted by setting batch and the num-
ber of pipeline workers using the DMon generated filter configu-

3https:/ /www.elastic.co/guide/en/logstash/ current/codec-plugins.html
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Experiment Number of workers | Batch size
Base-line(no filters) 4 125
Exp-0 1 125
Exp-1 2 125
Exp-2 4 125
Exp-3 6 125
Exp-4 12 125
Exp-5 4 250
Exp-6 4 500
Exp-7 4 1000
Exp-8 4 2000
Exp-9 4 10000

Table 1: Logstash Experiment Settings
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Figure 3: Different pipeline worker settings event output

rations. All test where run for 30 minutes collecting performance
metrics every second. In order to ensure that these empirical ex-
periments are deterministic we have repeated the experiments a
total of 5 times. Table 1 shows the experimental setting used for
each experimental run. Before we started to test the DMon filter
we run our experiments with no filters set. Effectively passing the
input directly to the output with no ETL processing with a batch
size of 125 and 4 pipeline workers. In this case we got a maximum
throughput of 16550 events per second.

Figure 3 shows the total amount of events processed for each
worker configuration. For these first experiments we have set only
the pipeline worker number and left the batch size default value.
The result show that the best configuration is the one where the
number of workers is equal to the number of cores. Figure 4 also
shows that although the number of events processed is somewhat
lower when over-saturating the worker count, impact on overall CPU
load is quite significant.

Heap usage percentage is exemplified in figure 5 and shows that
for the first 4 experimental runs the heap consumption is fairly stable
jumping considerably when executing 12 pipeline workers on our
deployment.

The next phase of our experiment dealt with seeing how the
batch size influences the event throughput. We have run a total
of 5 experiments with batch sizes; 250, 500, 1000, 2000 and 10000.
The number of workers was set to 4 as this has yielded the best

10
9
8
- 7
8 6
-
=}
25
O 4
\
3
2 AN
1 \ﬂwum,w e N
0
0 25 50 75 100 125 150 175 200 225 250 275 300 325
Time
‘*1 worker —2 workers —4 workers 6 workers —12 workers]
Figure 4: Short term CPU load
27 —_ 27.0
1
i
25 |
L 24.0
23 H 23.0
— 22,0
21| —_—21.0 —_—21.0 —_—21.0 e21.0 H
! i ! — 200 i
i
16| 19.0 19.0 19.0 [j 19.0 — 10,0
18.0 18.0 18.0 — 18.0 *18.0
17 — 170 — 17.0 — 170 - 17.0
| 1 —_ 160 .16.0
i i
] — 150 — 15.0
1 wn‘rkar 2 wnlvkers 4 wn‘rk&ri Bwn‘rkars 12 wn:rk&ri

Figure 5: Heap used per experimental run

performance in the previous battery of experiments.

We can see in figure 6 that the best performing setting was the
one using a batch size of 250. It is surprising that an increased
batch size does not yield a better throughput. Even more surprising
is that the worst performing experiment had a batch size of 1000
while the second best had the biggest batch size. Figure 7 show the
percent of heap usage during these experiments. As expected there
is a strong correlation between batch settings and heap usage. The
biggest batch size consumed 65% of the available heap.

Figure 8 shows quite clearly that the increased heap usage affects
the garbage consumption significantly. The box plot shows that
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Time
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Figure 6: Events per second for batch size comparison
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there is almost a 10 fold increase in garbage collection times which
negatively effects performance. In some situation all incoming events
can be stored in memory (using the batch size setting) and then
flushed all at once into then DMon generated filter. However, this
would mean a greater garbage collection time. A balance between
heap size and garbage collection is important when dealing with
applications running on JVM. In the case of our experiments we have
found that for the current event types the best configuration is to
use 1 pipeline worker per vCPU core and to calculate the batch size
based on the current heap value. In our experiments for a heap size
of 1GB the best performing batch size is 250 for the DMon generated
events.

At this point it is important to mention that during the experi-
ments detailed so far we used a simple file output, meaning that all
processed messages where written to a file in their final form (flat
JSON representation of the events). This was done so that we could
verify the correct parsing of each event. We only considered valid
those events which where correctly parsed. During the experiments
only 12 parsing failures have been detected making them statistically
insignificant.

Phase 2

Once the data has went through ETL processing it is fed into Elas-
ticsearch to be indexed. This introduces a new variable into our
experiments. We ran a series of experiments to help us maximizes
the throughput of indexed events.

Memory usage and management is extremely important. In Elas-
ticsearch once a string is analyzed on aggregated for a query it is
loaded into field data which resides in memory. Field data structure
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Field Data Cache 20%

Cache Filter 20%

Memory Index Buffer 30%
Memory Min Shard Index Buffer | 12 MB
Memory Min Index Buffer 96 MB

Table 2: Elasticsearch memory settings
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Figure 9: Processed Events

is created at query time not during indexing because of this it is
cheaper to load all of the data once into memory than piece by piece.
For example if you have a complex aggregated and selective query
which returns 20 hits filed data will not be loaded only for those
20 hits but form the entire index for the fields queried. This results
in very good querying speed but is costly when it comes to heap
allocation.

Table 2 show the field data and buffer policy used during our
experiment. Field data cache size for example is the percentage of
heap reserved for field data. All listed parameters effect the query
and indexing performance of Elasticsearch. These parameters where
set using the Management API from DMon. Heap size can also
be defined and enforced from DMon however we have found that
setting it to half the available system memory yields the best results.
In our case the heap was set to 2 GB.
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Figure 10: Elasticsearch cluster CPU load
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Figure 12: Garbage Collection count

Because both core service from DMon are horizontally scalable
we designed the next set of experiments to test how scaling effects
the performance measured in event indexing rate. First we ran an
experiment where all settings were set to default. We called this run
as "Baseline". In particular we left the flush size for the Elasticsearch
output from Logstash to the default value. For the next experiment
we set this value to be the same as the batch size from Logstash
("FlushSize").

For vertical scaling experiments we decided to run a Logstash
instance on a bare metal server having 12 CPU cores (running the
same number of pipeline workers and heap size) feeding data to a
single Elasticsearch instance ("Horizontal"). For the next step we ran
the same experiment with a 3 VM Elasticsearch cluster ("Horizontal
3 ES"). Finally we ran 2 Logstash instances feeding data into a 3 VM
Elasticsearch cluster. The Logstash instances used the same settings
as the one found in the second experiment ("Vertical L1+L2 ES 3")

Figure 9 show the number of events indexed for each experimental
run. The first thing that we have noticed is that the amount of events
indexed is much lower that the amount of events processed by
Logstash. The Logstash setting which performed the best during the
first phase of the experiments, processing on average 13,500 events
leads to an indexing rate in the mid thousand range. We have also
seen that matching the batch size settings with the flush size we got
an additional 500 to 600 events indexed every second.

One of the conclusions we arrived early in the development is that
the major performance bottleneck is Elasticsearch. This conclusion is

enforced by the Elasticsearch CPU load, seen in figure 10, heap usage
seen in figure 11 and JVM garbage collection count from figure 12.
This is very obvious when we see how much more garbage collection
is being done when running the horizontal scaling experiment.

The best performing setup was the vertical scaling of both core
services. We decided to use 2 Logstash and 3 Elasticsearch instances
(in order to avoid a "split brain" scenario). We manage to index
over 4500 events. An interesting observation was that the horizon-
tal scaling experiments yielded some interesting results. At first
it seemed surprising of how much less events we where able to
process compared to the vertical scaling. However, this behavior
was explained when checking the Elasticsearch heap usage (Fig. 11)
CPU load (Fig. 10). We can see how Elasticsearch is using a lot more
computational resource while indexing a lot less events.

We can also see that for DMon, horizontal scaling works best
for both Elasticsearch and Logstash. Although we could get better
performance in some instances by raising the heap size for Logstash
and Elasticsearch the benefits are not as immediate.

VI.2 REST Service Experiments

The scaling experiments that we have detail this far where only for
the cores services on which DMon relies. In this next section we
describe the testing done for the REST service. In the DICE toolchain
all tools that require run-time monitoring data information relies
on this service such as the verification tool called D-Vert[10]. As
mentioned in section III we have split up the REST API into two
components. For these experiments we re focused only on those
resources which have to be accessible by other tools and users (i.e.
Monitoring API) not the resources required for configuration and
setup (i.e. Management API).

For these experiments we deployed DMon on a workstation which
has an Intel Xeon E5-2630v3 processor with 8 physical cores clocked
at 2.4 Ghz with a max turbo clock at 3.2 Ghz, 32 GB of ECC RAM
and two 512 GB Toshiba SATA SSDs in RAID 0. The operating
system used was Ubuntu 14.04.3 LTS.

Monitoring API

For the Monitoring API experiments we decided to use a load testing
tool called Locust®® written in Python. Locust allowed us to create
a custom DMon user profile which simulates the interaction of
DICE tools with DMon. We where able to create separate tasks
for each resource and then create different user scenarios based on
these called task sets which describe DICE tool behaviors Basically
assigning a weight to each task from a task set.

DMon was implemented using Flask so during much of the devel-
opment we have used the on board WSGI library called Werkzeug®.
Because this default CGI library is only meant for development and
tasting we have looked into running DMon using several different
WSGI implementations such as:

e Gunicorn: Is a Python based WSGI HTTP server ported from
the Unicorn Ruby Project. One of it’s main strengths is that it
is compatible with a wide array of web frameworks and that it
has automatic worker process management

2]ocust.io
3Bhttp:/ /werkzeug.pocoo.org/
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Figure 13: WSGI Experiment results using Locust

o Tornado: Is a scalable non-blocking web server written in Python.

e Gevent: Is a Python networking library that uses greenlets to
provide asynchronous API on top of libev event loop.

e Bjoern: Is a small WSGI server written in C with a shallow
memory footprint.

Both Bjoern and Gunicorn allow for the configuration of the
number of background workers used. We have decided on running
both of them with 2, 4 and finally 8 background workers.

All experiments where run 5 times to ensure that the result where
repeatable. In contrast to the experiments detailed in section VI.1
each experimental run contained 1 million request for each setup.

Figure 13 shows the results of these experiments. We can see that
the best performing by far was the Bjoern deployment managing
an impressive 1480 request per second. Even the worst performing,
Werkzeug managed a respectable 214.85 requests. We can also see
that although Gunicorn performed extremely similar to Bjoern when
4 background workers where set this did not scale as well as in the
case of Bjoern.

Query API

The experiments mentioned in the previous sections used 4 sets of
DMon queries constructed in such a way that they returned moni-
toring data from the past 15 minutes. These queries are extremely
quick and take well under 1 second. In this section we focus on
queries which are longer running to see how DMon can handle such
long running intensive workloads. There are a number of different
query interfaces in DMon. These were detailed in section IIL.3. For
these experiments we use the asynchronous query implementation.

Figure 14 shows the performance of using asynchronous querying
versus sequential querying. For these experiments we have set the
maximum allowed parallel query to 50 however this can be modified
when DMon is first deployed. We have observed that we get almost
5 fold speedup when issuing concurrent queries.

V1.3 Use-cases

During the DICE project several use cases have been defined on
which all of the developed tools were evaluated. Because DMon
is at the core of the run time part of the DICE solution all use
cases have evaluated this tool. The three use cases detailed in the
following sections have been used to validate DMon with respects
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Figure 14: DMon Query Experiment, a value on vertical axis represents
the amount of time it takes the queries to finish, a value on the horizontal
axis represent the number of concurrent queries.

to the following key performance indicators; reduction in the time
required to configure a monitoring solution and small monitoring
agent overhead [5]. For the sake of completeness we will detail in
the next few subsections an outline of the use cases and how they
utilized and evaluated DMon.

VI.3.1 NewsAsset

NewsAsset™ is a commercial product developed and maintained
by Athens Technology Center (ATC) that handles large volumes of
news and media, providing the users with solutions for manage-
ment, storage and delivery of sensitive information. The application
incorporates state of the art technologies and software engineering
practices facilitating selection of interesting media events present in
the digital world. These technologies can deliver efficient processing
and can increase the added value to journalists.

Alongside NewsAsset a combination of social, sensor and several
other networks that are connected to Internet continuously provide
end users and the entire ecosystem with a variety of real data at a
tremendous pace. As more of those sources enter the digital era,
journalists will be able to access data from such events, helping not
only with accurate information about disasters but also in order to
generate news stories. As that trend plays out, when a disaster is
happening somewhere in the world, it is the social networks like
Twitter, Facebook, Instagram, etc. that people are using to watch
the news ecosystem and try to learn what damage is where, and
what conditions exist in real-time. In many of the cases people
directly involved in the event will most probably snap photos of the
disaster and post it on social media. Subsequently, news agencies
have realized that social-media content are becoming increasingly
useful for disaster news coverage and can benefit from this future
trend only if they adopt the aforementioned innovative technologies.
Thus, the challenge for NewsAsset is to catch up with this evolution
and provide services that can handle the developing new situation
in the media industry.

The NewsAsset is integrated in the DICE framework and uses
most of the technologies developed in the project. It uses the tools in
order to design and deploy Data Intensive Applications for gathering
big streams data released in the media. Data collected by NewsAsset
come from a heterogeneous environment that mixes social networks,
websites, RSS feeds and so on. Before data can be used it is pro-
cessed in order to reduce its dimensionality by removing duplicated
information; also the tool is capable to extract the trends.

34http:/ /ilab.atc.gr/projects/ dice
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In this use case DMon was utilized in monitoring performance
related metrics for the underlying Big Data platforms on which
NewsAsset is built. In particular DMon collected information re-
garding the Storm topologies used as well as Solr search engine and
MongoDB. It also reduced configuration time in comparison by 40%
with the results presented in [5].

VI.3.2 Prodevelop usecase

Posidonia Operations is an Integrated Port Operation Management

System highly customizable that allows a port to optimize its mar-
itime operational activities related to the flow of vessels in the port
service area, integrating all the relevant stakeholders and computer
systems.

In technical terms, Posidonia Operations is a real-time and data
intensive platform able to connect to AIS (Automatic Identification
System), VTS (Vessel Traffic System) or radar, and automatically de-
tect vessel operational events like port arrival, berthing, unberthing,
bunkering operations, tugging, etc.

Posidonia Operations is a commercial software solution that is
currently tracking maritime traffic in Spain, Italy, Portugal, Morocco
and Tunisia, thus providing service to different port authorities and
terminals.

Having this scenario, several business and technical goals have
been identified as a result of the future application of the DICE
methodology and tools to the Posidonia Operations use case [8].

In contrast to the other use cases here DMon was utilized in mon-
itoring newly developed components for the Posidonia solution. In
particular it was used to monitor a Complex Event Processor (CEP)
component which is designed for identifying different types of ma-
neuvers that ships make in or near ports. In order to accomplish this
we have utilized the ability of DMon to incorporate newly defined
message formats with minimal user intervention. It required the
addition of two user defined parsing instruction in the configuration
file of DMon. It also reduced configuration time in comparison by
94% [5].

VI1.3.3 Netfective use case

Within the frame of DICE, Netfective Technology built a minimal
viable product (MVP) to appraise the capabilities of Big Data in
e-government applications, especially for tax fraud detection [42].
Big Data technologies have already proven how much they are
valuable to industries. Many businesses that have taken advantage
of Big Data management and processing systems have increased their
effectiveness and efficiency; whether it be for healthcare, advertising,
or retail.

Fraud recognition requires a holistic approach, and a combined
use of tactical or strategic methods and state-of-the-art Big Data solu-
tions. Traditional fraud detection practices have not been particularly
successful largely because they come into play after the fact. Big
Data intelligence software can perceive the deviant behavior at real
time, thereby enabling fiscal agencies to get better outcomes. Big Blu,
the MVP, shall send an alert whenever a suspicious tax declaration
enters the information system. In this instance DMon was utilized
to collect Spark streaming and system performance metrics.

S5https:/ /www.prodevelop.es/en/posidonia-operations-0

VII. ConcrusioNs AND FUTURE WORK

In this paper we presented the architecture of the DICE Monitor-
ing platform, which is a distributed, highly available platform for
monitoring Big Data technologies.

The main goal of DMon is to create a monitoring platform that col-
lects, stores and pre-processes monitoring data from state-of-the-art
Big Data technologies. DMon is integrating monitoring data from
a number of Big Data technologies, it supports a wide range of the
big data platforms platform such as; HDFS, YARN, Spark, Storm,
MongoDB, Cassandra. Engineered using a microservices architec-
ture, the platform is easy to deploy, and operate, on heterogeneous
distributed Cloud environments.

It has several advanced features and extensions such as advanced
aggregated querying which enables a full overview of all of the
sub systems that comprise a data intensive application. This ex-
poses to developers a holistic view of all the performance metrics
which can be not only visualized in human readable format (using
DMon generated visualizations) but also exported in a variety of
formats (JSON, RDF+XML, CSV) for consumption by other tools.
Also, DMon features service auto-detection which allows it to self-
configure and start collecting performance metrics with little to no
user intervention.

We have show in this paper that the microservice based DMon
architecture is easily scalable and can handle querying and post-
processing of said queries for thousands of events. Also, in conjunc-
tion with the anomaly detection and trace checking tool it forms part
of a larger lambda architecture, DMon having the role of serving
layer which is responsible with storing not only monitoring data but
also predictive models and detected anomalies.

Further research and development will focus on creating a more
autonomous platform. In particular self-configuration will be a key
issue that needs to be addressed by developing the multi-agent
system based dmon-mas service. Currently we only support self-
configuration on a limited scale (auto-detection of services to be
monitored) we would like to extend this capability so that user
intervention and setup is at a minimum.

As Big Data platforms are constantly changing and new ones
are being developed we aim to support new technologies such as
Apache Samza® and Apache Flink®. Exascale[36] systems are also
just around the corner and monitoring such complex and large
systems is a great challenge. In our opinion DMon could be used
for such systems and we aim to develop functionalities that enables
this.
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