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Abstract

This paper implements the estimation of dynamic probit correlated random ef-
fects (CRE) models with unbalanced panel data. The type of models we consider
include a lag of the endogenous variable and other explanatory variables that are
strictly exogenous. We introduce a Stata package, xtprobitunbal; this command es-
timates these models allowing for the unbalancedness process to be correlated with
the time-invariant unobserved heterogeneity. It reduces the computational burden of
the maximum likelihood (ML) estimation, while keeping its good asymptotic proper-
ties. We also introduce the command mgf_unbal to compute the marginal effects of
the variables of the model and its standard errors. Finally, we study the estimation
of CRE unbalanced panel data probit models by ML estimation and under more re-
strictive assumptions than the ones considered by xtprobitunbal, discussing the main
problems to implement them.
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1 Introduction

There are important reasons why it is necessary to have specific econometric software for
dealing with unbalancedness in the estimation of non-linear dynamic panel data models.1
As pointed out by Albarran, Carrasco and Carro (2019), using software that just ignores
the unbalancedness and treats the data as if they were balanced produces inconsistent
estimates of the parameters even if the unbalancedness process is completely at random.
Taking a subsample to “make the sample balanced” also presents important caveats. For
instance, using the subset of individuals that are observed over the same periods implies
an endogenous selection of the sample and, therefore, it is not possible to obtain consistent
estimates of the average marginal effects unless the unbalancedness is independent of the
individual effects. Also balancing the sample using the subset of periods at which all
individuals are observed is in many cases infeasible due to the lack of enough number
of common periods across individuals and, when feasible, it discards useful information
which may imply important efficiency losses.

In Albarran et al. (2019) we propose methods to deal with the unbalancedness structure
of the data in the estimation of dynamic non-linear correlated random effects (CRE)
models. The type of models we consider include a lag of the endogenous variable and
other explanatory variables that are strictly exogenous. We assume the unbalancedness
process to be independent of the time-varying shocks but allow it to be correlated with
the time-invariant unobserved heterogeneity. We discuss how to address the estimation by
maximizing the likelihood function of the whole sample and propose a minimum distance
(MD) approach which is computationally simpler and asymptotically equivalent to the
maximum likelihood (ML) estimation.

In this paper we present a Stata command, xtprobitunbal, that implements the MD
estimator proposed for a general dynamic model in Albarran et al. (2019) to the probit
case dealing with the initial conditions problem as in Wooldridge (2005). It reduces the
computational burden of the ML estimation while keeping its good asymptotic properties.
We also present a post-estimation command, mgf_unbal, to compute the marginal effects
of the variables of the model, which are the main parameters of interest, and its standard
errors. It is important to point out that the procedure we propose can also be implemented
using any other software different from Stata with libraries to estimate probit models or
to perform maximum likelihood estimation.

As previously explained, existing commands to estimate dynamic CRE probit models,
such as xtprobit or redprob in Stata, should not be used in the presence of unbalanced
panel data.2 This is because when using these commands one either ignores the unbal-
ancedness or extracts a balanced panel from the unbalanced sample which, as previously
pointed out, is incorrect. Also, as we will show, the estimation that accounts for the
unbalancedness could in principle be performed via joint ML estimation, using commands
such as gsem or gllam in Stata or similar commands for other software. The problem
with the ML estimation is that the optimization procedure is cumbersome. The reason
is that the likelihood needs to be maximized jointly with respect to a high number of
parameters because, due to the unbalancedness, there is a different set of parameters for

1Unbalanced panels are often encountered in applied work. The unbalancedness can be driven by sample
design, for instance, in the case of rotating panels where the unbalancedness is completely at random, as in
the Monthly Retail Trade Survey for the US. In other cases the unbalancedness structure may be related
to some of the model’s variables, like in panels with attrition as the PSID for the US or the GSOEP for
Germany.

2xtprobit implements the estimation of dynamic probit CRE models under the solution used in
Wooldridge (2005) to solve the initial conditions problem, while redprob implements the estimation using
the Heckman (1987)’s approach; see Stewart (2006). Notice that the initial conditions problem is exac-
erbated when the panel is unbalanced because it affects to each first period of observation in the data
set.
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each subpanel.
The rest of the paper is structured as follows. In Section 2, we present the model. In

Section 3, we describe the syntax of xtprobitunbal and mgf_unbal and illustrate their
use through an example using simulated data calibrated to the estimates presented in the
empirical application in Albarran et al. (2019). Section 4 discusses the implementation
of the ML estimation with existing Stata commands and the problems it presents. In
Section 5 we present the Stata codes that can be used to estimate models under more
restrictive assumptions than the ones considered by the xtprobitunbal command, as
well as models that account for the initial conditions problem by using Heckman (1987)’s
approach. Finally, Section 6 concludes.

2 The model

Borrowing the notation from Albarran et al. (2019), consider the following dynamic binary
choice model:

yit = 1
{
αyit−1 +X>it β + ηi + εit ≥ 0

}
, (1)

−εit| yt−1
i , Xi, ηi, Si ∼

iid
N(0, 1), (2)

and a random sample of (Yi, Xi, Si) ≡ {yit, xit, sit}Tt=1 for N individuals. yit is the out-
come, Xit is a row vector of dimension K of covariates. sit indicates whether yit and
Xit for individual i are observed. ηi denotes the vector of permanent unobserved hetero-
geneous characteristics, and εit are period-specific disturbances that are assumed to be
independent and identically distributed across both i = 1, . . . , N and t = 1, . . . , T with
known distribution.

We assume that εit is independent of ηi and Xi. This means that we consider models
whereX are strictly exogenous covariates with respect to the period-specific unobservables,
ε, but they can be correlated with the time-invariant unobservables, ηi. We also assume
that ε is conditionally independent of the sample selection process Si that produces the
unbalancedness. However, note that this assumption does not restrict the relation between
Si and (ηi, Xi). Therefore, although we do not consider an endogenous selection process
with respect to the period-specific disturbances, we allow Si to be correlated with the
unobserved permanent characteristics ηi.

We consider panels for which all the observations for unit i are consecutive. Let
Mi be the (Ti × T ) matrix that select the set of Xi that we observe, that is, MiXi =(
X>iti , . . . , X

>
iti+Ti−1

)>
, where ti is the first period in which unit i is observed and Ti is

the number of periods we observe for unit i. We denote by J the number of different Si
sequences that we have in the total panel. We refer to the sub-set of units with the same
sequence S(j) as “sub-panel” j, j = 1, . . . , J . In other words, subpanel j contains all the
individuals i such that Si = S(j). Finally, we consider panels where N is large and T and
J are small relative to N .

The probability of a given random sample of N unit observations is

Pr
(
S>1 Y1, . . . , S

>
NYN

∣∣∣X1, . . . , XN , S1, . . . , SN
)

=
N∏
i=1

Pr
(
S>i Yi|MiXi, Si

)
. (3)
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For each i = 1, . . . , N ,

Pr(si1yi1, . . . , siT yiT |MiXi, Si, ηi) =

=
T∏
t=1

Pr (yit|sit−1yit−1,MiXi, Si, ηi)sitsit−1 Pr (yit|MiXi, Si, ηi)sit(1−sit−1)

=
ti+Ti−1∏
t=ti+1

Pr (yit|yit−1,MiXi, Si, ηi) Pr (yiti |MiXi, Si, ηi) , (4)

We can write Pr
(
S>i Yi|MiXi, Si

)
in equation (3) by making a distributional assumption

about ηi conditional on the initial period observation:∫
ηi

ti+Ti−1∏
t=ti+1

Pr (yit|yit−1,MiXi, Si, ηi)h(ηi|yiti ,MiXi, Si)dηi

Pr (yiti |MiXi, Si) , (5)

where, from the model equations in (1) and (2), Pr (yit|yit−1,MiXi, Si, ηi) is

Pr (yit = 1|yit−1,MiXi, Si, ηi) = Φ
(
αyit−1 + β0 +X>it β + ηi

)
. (6)

To deal with the initial conditions problem that arises in dynamic models under the CRE
framework, as in Wooldridge (2005) we assume

ηi|yiti ,MiXi, Si ∼ N
(
π0Si + π1Siyiti +MiXi

>
π2Si , σ

2
ηSi

)
, (7)

where MiXi
>

= 1
Ti−1

∑ti+Ti
t=ti+1 xit; see Rabe-Hesketh and Skrondal (2013). Notice that the

initial conditions problem becomes particularly relevant with unbalanced panels because
it applies to each first period of observation of the individuals in the sample.

Alternatively, we can consider a model in which the unobserved effect is integrated
out by specifying the density for the first observation in each sub-panel conditional on the
unobserved effect, Pr (yiti |MiXi, Si, ηi), and the density of the unobserved effect. Then,
we can write the probability Pr

(
S>i Yi|MiXi, Si

)
in (3) as

Pr (si1yi1, . . . , siT yiT |MiXi, Si) =
∫
ηi

ti+Ti∏
t=ti+1

Pr (yit|yit−1,MiXi, Si, ηi)×

Pr (yiti |MiXi, Si, ηi)h(ηi|MiXi, Si)dηi (8)

To solve the initial conditions problem in this case we can follow Heckman (1987)’s ap-
proach and use for the first observation the same parametric form as the conditional
density for the rest of the observations:

Pr (yiti = 1|Xi, Si, ηi) = Pr (yit = 1|Xit, Si, ηi, sit−1 = 0, sit = 1)

= Φ
(
δ0Si +X>itiδSi + µSiηi

)
, (9)

where we have different distributions for each value of Si because we allow for correlation
between Si and ηi.

For the density of the unobserved effect, h(ηi|Xi, Si), we can follow Chamberlain (1980)
to allow for correlation between the individual effect and the explanatory variables:

ηi|Xi, Si ∼ N
(
X
>
i βηSi , σ

2
ηSi

)
, (10)
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whereXi contains the within-means of the time-varying explanatory variables. Notice that
(10) allows for correlation between the sample selection process, Si, and the permanent
unobserved heterogeneity ηi.

Albarran et al. (2019) show that both approaches to write the likelihood function, (5)
and (8), have similar performance. As a consequence of that, the command we develop
is based only on (5) because for the distributions and functional forms considered, it
is faster to compute. Nonetheless, Section 4 includes a discussion on how to estimate
the model both under the Heckman’s approach and Wooldridge’s proposal using the ML
estimation procedure and the main problems in doing so. Section 5.2 explains why when
the unbalancedness is independent of ηi the specification using Heckman’s approach is
easier to estimate by ML.

2.1 Minimum distance estimator

Model (5) can be estimated by ML. The contribution to the likelihood function for indi-
vidual i is given by

Li =
∫ ti+Ti−1∏

t=ti+1
Φ
[(
αyit−1 +X>it β + π0Si + π1Siyiti +MiXi

>
π2Si + a

)
(2yit − 1)

]
×

1
σηSi

φ

(
a

σηSi

)
da. (11)

The ML estimator maximizes L = ∑N
i=1 logLi with respect to

θ ≡
(
α, β>, {π0j}Jj=1 , {π1j}Jj=1 , {π2j}Jj=1 , {σηj}

J
j=1

)>
.

The properties of the ML estimator are well-known, as well as the numerical procedures
to obtain it. The problem is that the optimization procedure is cumbersome because the
likelihood function should be maximized with respect to a high number of parameters:
the vector of common parameters and the set of sub-panel specific parameters. This will
typically preclude using standard estimation software and will increase computation time.3

We propose a procedure to estimate the model using a MD approach. This procedure
allows us to take advantage of the existing routines or estimation programs for balanced
panels, while keeping the good asymptotic properties of the ML estimator and reducing
its computational burden. The proposal has two steps:

1. Estimate by ML the model for each sub-panel separately using the same standard
software as when having balanced panels.4 That is, we obtain in a first stage δ̂ =(
δ̂>1 , δ̂

>
2 , . . . , δ̂

>
J

)>
by maximizing Lj = ∑

i∈{i:Si=S(j)} logLi for each subpanel j =
1, . . . , J .

2. Obtain the estimates of the common parameters across subpanels by MD.5 Notice
that each δ̂>j includes two types of parameters: δ̂[c]

j , the estimates of the parameters
that are common across subpanels, and δ̂

[nc]
j , the estimates of the non-common

parameters for sub-panel j.
3Although in theory it is possible to obtain these ML estimates by using the gllamm and/or gsem

commands in Stata (version 13 or higher), in practice this is not computationally feasible in many cases.
See Section 4 for details.

4In this stage one can use the existing commands to perform the estimation as in balanced panels, both
following the Wooldridge’s and the Heckman’s approach.

5It is important to note that, although computationally feasible, a potential practical problem with the
MD estimator could be the lack of variability in a specific subpanel.
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To recover the estimate of the common parameters, we assume that all the δ̂[c]
j are

estimates of the same common parameters. Therefore the restrictions are

h (θ) =

 h1 (θ)
...

hJ (θ)

 = Pθ.

The structural parameters θ can be consistently and efficiently estimated by minimizing
the following quadratic form:

θ̂MD = arg min
θ

Q (θ) =
[
δ̂ − h(θ)

]>
V −1

[
δ̂ − h(θ)

]
. (12)

The solution to the minimization of this quadratic form is

θ̂MD =
[
P>V −1P

]−1
P>V −1δ̂, (13)

where V is replaced by a consistent estimator obtained in the first step; see Albarran et
al. (2019), for details.

2.2 Average marginal effects

The average marginal effects (AMEs), which are ultimately the parameters of interest, are
based on

E[Φ
(
αyit−1 +X>it β + ηi

)
], (14)

Using that ηi = π0Si+π1Siyiti+MiXi
>
π2Si+ξi and followingWooldridge (2005), expression

(14) becomes

E

Φ

αyit−1 +X>it β + π0Si + π1Siyiti +MiXi
>
π2Si√

1 + σ2
ηSi

 , (15)

where this expectation is taken with respect to the distribution of the covariates conditional
on the unbalancedness structure, {S(1), . . . , S(J)}.

The AME for a continuous regressor is the derivative of (15) with respect to that
regressor, and the AME for a discrete regressor is the difference in expression (15) for a
unitary change in the regressor. It is worth noting that previous expression depends on
the correlation between the unbalancedness and this individual effect. Therefore, when
this correlation is neglected, the estimates of the AMEs will be biased.

The estimated AME, ̂AME, can be simply obtained by replacing the population ex-
pectation in (15) with the sample mean. For instance, the ̂AME for the lagged dependent
variable is:

̂AMEyt−1 = 1
N

N∑
i=1

Φ

 α̂+X>it β̂ + π̂0Si + π̂1Siyiti +MiXi
>
π̂2Si√

1 + σ̂2
ηSi


− 1
N

N∑
i=1

Φ

X>it β̂ + π̂0Si + π̂1Siyiti +MiXi
>
π̂2Si√

1 + σ̂2
ηSi

 . (16)

Finally, the standard errors of the ̂AMEs are computed using the Delta method.
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3 Syntax and implementation of the MD procedure

In this section we describe how users can implement the MD estimation procedure pre-
viously described using the package xtprobitunbal in Stata. This includes the estimation
command xtprobitunbal and the post-estimation command mgf_unbal for marginal ef-
fects computation. It can be installed from the Statistical Software Components (SSC)6

archive by typing on the Stata command line the following code:

. ssc install xtprobitunbal, all replace

Two files are also downloaded with the code above: the dataset exportunbal.dta and
exportunbal.do, a Stata code script with examples. These are intended to familiarize
users with the commands.

The basic syntax to obtain the parameter estimates is as follows:

xtprobitunbal depvar indepvars [if] [in], meansvar(varlist) ///
[gensubp(varname) indep niterat(#) quatp(#)]

The lag value of depvar is included by default. The list indepvars is a non-optional vari-
able list which includes the exogenous covariates of the model. Moreover, meansvar(varlist)
should specify a list of variables the means of which will be included in the reduced form
for the initial condition equation.

Being a Stata [xt] command, it requires the command xtset to be run in advance
to declare the panel structure, using a panel variable (and, optionally, a time variable).
By default, a subpanel is defined as each of the different time patterns in the data set,
defined by the first and last time period in which an individual is observed.7 In this case,
observations for which the first and final periods are the same belong to the same subpanel.
Under this setting, the xtprobitunbal command allows for the unbalancedness process
to be correlated with the time-invariant unobserved heterogeneity.

Alternatively, users can set the option indep. In such a case, the command xtprobitunbal
consider a subpanel to be defined only by the initial period; thus, individuals with the
same initial period belongs to the same subpanel. If subpanels are defined in this manner,
xtprobitunbal estimates the econometric model under the underlying assumption that
the unbalancedness is independent of the initial condition; see Section 5.2.

Note that the econometric method requires each subpanel to contain at least three
time observations per individual and to have enough variation for the estimation of the
correlated random effects model for each subpanel. These conditions also applies to the
ML estimator. If any of these requirements are not met in a given subpanel, this will be
excluded in the first stage of the procedure. When this happens, the command output
informs the user and the procedure continues with all the remaining valid subpanels.

There are three additional minor options. On the one hand, gensubp allows to specify a
variable name where the subpanel index is stored. On the other hand, niterat and quatp
are options controlling the correlated random effects estimation (number of iterations and
number of quadrature points, respectively).

After xtprobitunbal, users will typically run the command mgf_unbal to obtain the
marginal effect of an explanatory variable in the model, either the lag or a control variable;
note that only one variable is admitted at a time. The syntax for this post-estimation
command is as follows:

mgf_unbal [if] [in], dydx(string) [val0(#) val1(#)]

6See https://ideas.repec.org/s/boc/bocode.html
7These patterns are shown in Stata by the command xtdescribe.
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In the mandatory option dydx, users specify both the variable whose marginal effect will
be calculated and whether this is a discrete or a continuous variable. Three possible types
of input are accepted in dydx for string:

• lag: to compute the effect of a discrete change (from 0 to 1) of the lagged dependent
variable.

• d.varname: to compute the effect of a discrete change of the variable varname.

• c.varname: to compute the marginal effect of an infinitesimal change of the contin-
uous variable varname.

In the case of discrete changes (d.varname), the options val0(#) and val1(#) can also
be specified. The command will compute the marginal effect of a discrete change in the
variable varname when it changes from the value set in val0 to the value set in val1.
Defaults values are val0(0) and val1(1).

3.1 Example

In this section, we illustrate the implementation of xtprobitunbal and mgf_unbal by
estimating a model for firms’ export market participation decision. We use the data set
exportunbal.dta that is available when installing the package, jointly with the compan-
ion Stata example script exportunbal.do.8 These are simulated data, calibrated to the
estimates presented in Albarran et al. (2019) using data for Spanish manufacturing firms
from the Business Strategies Survey (Encuesta sobre Estrategias Empresariales, ESEE)
for the period 1990 to 1999. The sample consists of an unbalanced panel with 14 different
subpanels of 1,807 firms and 12,683 observations. The dependent variable (Exportit) is
a dummy equal to 1 if the i − th firm exported in year t. In addition to Exportit−1, the
explanatory variables of the model are: firm’s size (number of employees/100), share of
medium skilled workers (workers with a high school degree), firm’s age (years since firm
creation/10), and a time trend.

The xtprobitunbal command returns

. xtprobitunbal export size trend med_skill age, meansvars(size med_skill)

Minimun Distance Estimation of common parameters
for Correlated Random Effects dynamic probit

Number of observations = 10876 Number of groups = 1807

Number of sub-panels = 14 Log likelihood = -2476.06
------------------------------------------------------------------------------

export | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Common |

export |
L1. | 1.528326 .0665742 22.96 0.000 1.397843 1.658809

|
size | .1778051 .087053 2.04 0.041 .0071844 .3484258

trend | .1082449 .0119901 9.03 0.000 .0847447 .131745
med_skill | .0012457 .0044586 0.28 0.780 -.0074929 .0099844

age | .0200351 .0174813 1.15 0.252 -.0142276 .0542977

8The following and additional examples of code can be found in this script.
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------------------------------------------------------------------------------

Subpanels actually used in estimation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14

(Variable _subpanel_xtprobitunbal contains the subpanel index)

The heading of the output display provides basic information on the model, the estimation
procedure, and the sample and number of subpanels used in the estimation. It presents
the coefficient estimates of the common parameters.

By default, xtprobitunbal stores the estimates of the model parameters, both the
common and the specific parameters for each subpanel, as well as the mean and the
variance of the sub-panel specific fixed effects in a variable named e(finalB). These
values can be used for subsequent analysis, for example to analyse to what extent the
distributions of the fixed effects differ by subpanel. Thus, using the values stored in
e(finalB), we can draw a graph with the distribution for the fixed effects by subpanel as
specified in equation (7), abstracting from MiXi

>
. We obtain

Figure 1: Density functions of ui for each subpanel.

We can see in the graph that there are substantial differences in the variances of the
individual effects by subpanel, although the means are more similar. We can also be
interested in analysing to what extent the aggregate distribution can be approximated
by a normal distribution. Again, using the information stored in e(finalB), one can
present the values for the Skewness and Kurtosis statistics for the simulated variable ηi.
We obtain a Skewness equal to 1.66 and a Kurtosis equal to 30.26. These values are far
from the values for a Normal distribution, 0 and 3 respectively. A normality test confirms
this conclusion since the p value for the test is smaller than 0.0001.

The main parameters of interest in this type of non-linear models, the marginal effects
of the variables, can be obtained by using the post-estimation command mgf_unbal. In
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particular, for the marginal effect of the lagged dependent variable we obtain

. mgf_unbal, dydx(lag)

Computing marginal effect of a discrete change from 0 to 1 for the lag of the
dependent variable export.

panel variable: id (unbalanced)
time variable: time, 1990 to 1999

delta: 1 unit

Number of observations = 10876 Number of groups = 1807

--------------------------------------------------------------------------------
| Delta-method
| AME Std. Err. z P>|z| [95% Conf. Interval]

-------------+------------------------------------------------------------------
L.export | .2870526 .0213657 13.44 0.0000 .2451765 .3289286

--------------------------------------------------------------------------------

The heading of the output display provides information on the marginal effect that has
been calculated, and basic information on the sample. As another example, the marginal
effect of a discrete change of a variable different than the lagged dependent variable can
also be computed. For instance, for the effect of a discrete change in age from the value
2 to the value 3 we obtain:

. mgf_unbal, dydx(d.age) val0(2) val1(3)

Computing marginal effect of a discrete change from 2 to 3 for age.
panel variable: id (unbalanced)
time variable: time, 1990 to 1999

delta: 1 unit

Number of observations = 10876 Number of groups = 1807

--------------------------------------------------------------------------------
| Delta-method
| AME Std. Err. z P>|z| [95% Conf. Interval]

-------------+------------------------------------------------------------------
age | .002598 .0022833 1.138 0.2552 -.0018771 .0070732

--------------------------------------------------------------------------------

4 Discussion on ML estimation
The model considered in this paper, that allows for correlation between the unbalanced-
ness structure and the individual effect, can be also estimated by ML. To obtain the ML
estimates one has to write the expression for the likelihood function in any likelihood max-
imizing program. Or in some software, as in Stata, it is also possible to use the commands
gsem or gllamm to obtain the ML estimates. Nonetheless, any of these alternatives are
computationally very cumbersome and more difficult to implement.

In this section, we illustrate this point. In particular, we present how the gsem and
gllamm commands in Stata can be used to estimate these type of models. Suppose that
the likelihood function to be maximized is the one considered by the xtprobitunbal
command in equation (11). Suppose also to simplify that we have two sub-panels defined
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by the indicator j, j = 1, 2. Before calling gllamm we need to specify that there are two
conditional distributions for the random effects, one for each sub-panel. Therefore, we need
to generate first two different constants, const_1 and const_2, and two initial conditions,
y0_1 and y0_2, to be included in the main equation. Then, the gllamm command is
specified as follows:

eq etai_1: const_1
eq etai_2: const_2
gllamm y l.y x const_1 const_2 y0_1 y0_2 mx_1 mx_2, ///

i(id) nrf(2) eqs(etai_1 etai_2) ///
nip(#) fam(binom) link(probit) ///
adapt trace iterate(#) nocorrel noconst

where x is a covariate and mx_1 and mx_2 are the means of the covariate interacted with
const_1 and const_2, respectively; of course, additional covariates could be included in
a similar manner. The nrf(2) option indicates that there are two random effects and
the equations eq etai_1 and eq etai_2 specify the variables associated to them. The
nocorrel option specifies zero correlation between the two random effects.

Notice that as the number of sub-panels increases the implementation of this command
becomes infeasible. Similar problems can be found when using the gsem command. In
this case, we have to specify three equations: one for the main dynamic model and two
for the initial conditions. We have also to generate the variables x0_1 and x0_2 defined
as the values of the regressor for the first time period for subpanel 1 and 2, respectively.
Then the gsem command is executed by coding

xi: gsem( y <- l.y x I[id] J[id], probit) ///
( I[id] <- x0_1, probit) ///
( J[id] <- x0_2, probit)

Notice again that, as the number of sub-panels increases, the number of equations to be
included in the command also increases. Therefore, the estimation procedure becomes
increasingly complex and it often fails to achieve convergence.

Suppose that instead of maximizing the likelihood function in (11) we follow the Heck-
man’s approach and approximate the joint probability of the full observed y sequence as
follows:

Li =
∫
ηi

Φ
(
δ0Si +X>itiδSi + µSiηi

)
(2yiti − 1)×

ti+Ti∏
t=ti+1

Φ
[(
αyit−1 + β0 +X>it β + ηi

)
(2yit − 1)

]h(ηi|Xi, Si)dηi (17)

In this case, the generalization of the gsem command basically consists on specifying one
initial condition equation different for each sub-panel, while the dynamic equation for the
rest of observations is common to all the individuals. For instance, for the two sub-panels
case the command is specified as follows:

xi: gsem( y <- l.y x I[id], probit) ///
( y0_1 <- J[id] x0_1, probit) ///
( y0_2 <- K[id] x0_2, probit)

Notice that a different latent variable should be included in each equation to ensure that
the unobserved effect follows a different distribution in each sub-panel. Again, as the
number of sub-panels increases the number of equations to include in the command also
increases.
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The implementation of the gllamm command for this model is also difficult. Following
with the previous example of two sub-panels, we need to generate not only const_1 and
const_2, but also two different dummy variables for the initial conditions, d0_1 and d0_2,
taking in this case the value one if the observation corresponds to the first (or second)
subpanel and the first period, and 0 otherwise. Then, the gllamm command is specified
by coding
eq etai_1: const_1 d0_1
eq etai_2: const_2 d0_2
gllamm y l.y x1 d0_1 d0_2 x0_1 x0_2 mx_1 mx_2, ///

i(id) nrf(2) eqs(etai_1 etai_2) ///
nip(#) fam(binom) link(probit) ///
adapt trace iterate(#) nocorrel

We have performed some simulations (available upon request) for a model without covari-
ates which show that, as expected, the behaviour of the MD and ML estimators is very
similar, in terms of both the estimated parameters and the marginal effects. Nonetheless,
the computation time of the ML estimation can be between 150 and 1,600 times greater
than that of the MD, depending on the number of periods and subpanels. And this time
will further increase when adding covariates.

5 Stata implementation under other assumptions
In this Section we explain how to estimate CRE panel data probit models under more re-
strictive assumptions than the considered by xtprobitunbal by using standard RE probit
Stata software. We consider two simplifying assumptions: (i) imposing that the variance
of the conditional distribution of ηi is constant across sub-panels, and (ii) assuming that
the unbalancedness is independent of the individual effect. Under any of these assump-
tions both the estimates obtained with xtprobitunbal and the estimates presented in next
subsections are consistent, but the latter are more efficient. However, if those assumptions
are not correct, xtprobitunbal still produces consistent estimates whereas the others don’t.

5.1 Constant conditional variance of ηi

One can assume that the variance of the conditional distribution of ηi is constant across
sub-panels. This simplifying assumption makes the implementation of the ML estimator
easier and feasible. That is, if we assume that

ηi|yiti ,MiXiSi ∼ N
(
π0Si + π1Siyiti +X

>
i π2Si , σ

2
η

)
, (18)

ML estimates can be easily obtained by using the xtprobit command. One just have to
generate as many constants as different subpanels we have and different initial conditions
for each subpanel. For instance, for a two sub-panels case without additional regressors,
the Stata code would be the following:
xtprobit y l.y const_1 const_2 y0_1 y0_2, re iter(#) intpoints(#)

where l.y is the lagged of the dependent variable, const_1 and const_2 are the two
intercepts, and y0_1 and y0_2 are the initial conditions for each subpanel.

Notice, however, that this assumption is particularly unrealistic when there is cor-
relation between ηi and Xi. The reason is that even under the assumption that Si is
independent of ηi, if the individuals are not observed the same number of periods one
would expect the variance of the distribution of ηi|MiXi to be a function of the number
of periods observed and, therefore, to be different for each Si. Actually, in our example in
Section 3.1 the variances change substantially across subpanels.

11



5.2 Unbalancedness independent of the individual effect

One could assume that Si is independent of ηi, so that h(ηi|MiXi, Si) = h(ηi|MiXi). This
assumption would be relevant, for instance, when having rotating panels. Let’s also assume
that h (ηi|MiXi) is a function common to all Si, so that its value changes only as the values
of the X>s at which it is evaluated change (but not as a function of the specific periods
at which Xi is observed). Notice that even under these assumptions we do not obtain a
conditional distribution of ηi common to all sub-panels. That is, h(ηi|yiti ,MiXi, Si) will
be different for each ti. In particular, it will be

ηi|yiti ,MiXi, Si ∼ N
(
π0ti + π1tiyiti +MiXi

>
π2ti , σ

2
ηti

)
, (19)

unless the process is not dynamic or it is in its steady state since t = 0, or yti comes from
the same exogenous distribution for all units and ti.

As can be seen in (19) ηi|yiti ,MiXi, Si still has different parameters depending on
the period each subpanel starts even under independence of the unbalancedness from ηi.
This implies again a complicated structure of the likelihood function and, therefore, the
computation of the ML estimator in this case is not much simpler than in the general
situation without independence. Therefore, we can use xtprobitunbal to avoid the joint
ML estimation. For that, we only need to define properly the subpanels using the indep
option to indicate that they only differ in the initial period observation but not in their
duration.

It is interesting to point out that if we write the likelihood function by specifying the
density of the first observation conditional on the unobserved effect to deal with the initial
conditions problem, as in (17), the ML estimation under independence is simplified and
using the gsem or the gllamm commands becomes feasible. Notice that the difference
with respect to the correlated case is that there is only one common distribution for the
unobserved effects in all subpanels. In this case, the likelihood function to be maximized
is

Li =
∫
ηi

Φ
(
δ0Si +X>itiδSi + µSiηi

)
(2yiti − 1)×

ti+Ti∏
t=ti+1

Φ
[(
αyit−1 + β0 +X>it β + ηi

)
(2yit − 1)

]h(ηi|Xi)dηi (20)

Then, the gsem command is specified as follows:

gsem( y <- l.y x I[id], probit) ///
( y0_1 <- I[id] x0_1, probit) ///
( y0_2 <- I[id] x0_2, probit)

The difference with respect to the correlated case is that the same latent variable, I[id],
is included in all the equations.

The model based on the likelihood (20) can be also implemented using the gllamm
command. According to Arulampalam and Stewart (2009), it only requires to specify
one equation for the random effect, with one constant, const, and two different dummy
variables for the initial conditions, d0_1 and d0_2:

eq etai: const d0_1 d0_2
gllamm y l.y x1 d0_1 d0_2 x0_1 x0_2 mx_1 mx_2, ///

i(id) nrf(1) eqs(etai) ///
nip(#) fam(binom) link(probit) ///
adapt trace iterate(#)
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6 Conclusion
In this article we have described how to implement a minimum distance estimator for
dynamic probit CRE models with unbalanced panels using the xtprobitunbal package for
Stata. The method allows researchers to obtain consistent estimates of the coefficients of
the model and also of the marginal effects, the ultimate parameters of interest, by using
an estimation procedure that is computationally more tractable than the ML estimator.

We have illustrated the use of xtprobitunbal using an example from Albarran et
al. (2019). We have shown the importance of accounting properly for the unbalanced
structure of the data by allowing for the specific subpanel fixed-effects to have different
distributions. We have found that those distributions do differ across subpanels and that
the assumption of aggregate normality is far from being accepted.

We study alternative ways of doing the estimation. As a result of that, we conclude that
the only situation in which it is feasible to use existing Stata software for correlated random
effects probit models is to impose more restrictive assumptions than the ones considered by
xtprobitunbal. If one is not willing to impose those assumptions, xtprobitunbal represents
an useful alternative to the, computationally cumbersome, joint ML estimation.
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