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Abstract

The onset of macroscopic strain localization limits the ductility of many ductile materials. For
porous ductile materials, two distinct mechanisms of macroscopic localization have been identi-
fied: void growth induced softening and void coalescence. In this work we focus on analyzing
the influence of materials strain rate sensitivity (SRS) on the two mechanisms of macroscopic
localization or ductile failure as a function of the imposed stress triaxiality. To this end, three
dimensional finite element calculations of unit cells have been carried out to model void growth
and coalescence in an infinite block containing a periodic distribution of initially spherical voids
in a band. The matrix material of the unit cell is considered to follow a strain rate dependent
elastic perfectly plastic flow response. The unit cell calculations are carried out for a range of
SRS parameter, imposed stress triaxiality and initial orientations of the voided band. Our results
show that both the critical porosity and strain at the onset of localization and coalescence are
strongly influenced by the SRS parameter and the imposed stress triaxiality values. Furthermore,
the relative effect of the SRS parameter is found to increases with the increasing value of the
imposed stress triaxiality.

Keywords: Ductility (A), Fracture Mechanisms (A), Elastic-viscoplastic Material (B), Porous
Material (B), Finite Elements (C)

1. Introduction1

The ductility of metals and alloys is limited by the onset of macroscopic strain localization,2

as it marks the end of uniform deformation and acts as a precursor to failure. Two distinct3

mechanisms have been identified that can lead to macroscopic strain localization in porous ductile4

materials (Tekoğlu et al., 2015).5

The first mechanism of macroscopic strain localization involves strain softening due to mi-6

crostructural changes, thermal effects and/or damage evolution resulting in local degradation in7

material’s load carrying capacity. The local degradation in the material’s load carrying capacity,8

causes localized deformation in a thin band with smoothly varying deformation pattern outside the9
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band (Fressengeas and Molinari, 1985; Tvergaard, 1981; Pardoen and Hutchinson, 2000; Mercier10

and Molinari, 2003; Aretz, 2007; Pineau et al., 2016). This results in a weak discontinuity along the11

thin band at the micro-scale and a discontinuity in the displacement field at the macro-scale. In12

porous ductile materials, damage (void growth) induced softening is the dominant mechanism that13

triggers the onset of macroscopic localization (Tvergaard, 1982), resulting in void sheet fracture.14

The width of the thin band engulfing the voids in this scenario has a length scale comparable15

or greater than the mean spacing between the voids. Under these circumstances the onset of16

macroscopic localization is strongly dependent on material properties, initial porosity, orientation17

of the band undergoing localized deformation and the imposed stress state (Needleman and Rice,18

1978; Yamamoto, 1978).19

The second mechanism of macroscopic strain localization in porous ductile materials involves20

void coalescence. Void coalescence is a local instability phenomenon where the interaction between21

neighboring voids plays a critical role. The onset of void coalescence is associated with a sudden22

concentration of plastic strain in the ligaments linking neighboring voids (Koplik and Needleman,23

1988). Thus, following the onset of void coalescence, the kinematics of the void enlargement24

significantly differs from that of void growth prior to this instability mode. For void coalescence25

induced macroscopic localization the width of the micro-scale localization band is much more26

narrower because the deformation is limited to the ligaments between the neighbouring voids.27

The two aforementioned mechanisms of macroscopic localization in porous ductile materials,28

void growth induced softening and void coalescence, are distinct and have been identified in29

Tekoğlu et al. (2015); Guo and Wong (2018). In particular, for a strain rate independent material,30

Tekoğlu et al. (2015) showed that depending on the value of the imposed stress triaxiality a31

clear separation exists between the two mechanisms of macroscopic localization. This raises a32

fundamental question: how does the material’s strain rate sensitivity affect the two mechanisms33

of macroscopic localization or ductile failure as a function of the imposed stress triaxiality?34

The strain rate sensitivity is an important material parameter and it greatly affects the onset of35

localized deformation and damage evolution (Marciniak et al., 1973; Hutchinson and Neale, 1977;36

Ghosh, 1977; Hutchinson et al., 1978; Taya and Seidel, 1981; Budiansky et al., 1982; Cocks and37

Ashby, 1982a,b; Pan, 1983a; Pan et al., 1983; Yoon and Taya, 1984; Duva, 1986; Nemat-Nasser38

et al., 1986; Ortiz and Molinari, 1992; Czarnota et al., 2006; Vadillo et al., 2012; Srivastava and39

Needleman, 2013; Agoras and Ponte Castañeda, 2014; Osovski et al., 2015; Wang et al., 2018). This40

in turn affects the performance, safety, reliability and manufacturability of engineering components41

and structures; for example, the crash worthiness of automobiles, the blast resistance of ships and42

airplane cargo holds, and the manufacturability of sheet metal components. In general, increasing43

the strain rate sensitivity of a ductile material can delay the onset of localized plastic deformation.44

Furthermore, it has also been shown that an increase in the material’s strain rate sensitivity can45

slow down the evolution of porosity and delay the onset of void coalescence in a porous ductile46

material. In this work we focus on analyzing the influence of materials strain rate sensitivity on47

the two mechanisms of macroscopic localization or ductile failure as a function of the imposed48

stress triaxiality.49

Several analytical and computational studies have been carried out in past to analyze the50

onset of localized deformation (Marciniak and Kuczyński, 1967; Rudnicki and Rice, 1975; Rice,51

1977; Saje et al., 1982; Pan, 1983b; Mear and Hutchinson, 1985; Nahshon and Hutchinson, 2008).52

The micro-mechanical approach that constitute the basis of these works involves analyzing an53
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infinite sheet or block with a defect band inclined at an angle with respect to the imposed loading54

direction. Alternatively, the onset of localization in a porous material can also be analyzed via unit55

cell model calculations. In the unit cell model calculations, a periodic distribution of voids in the56

material is assumed, that allows us to model a single void in the material and impose proportional57

loading throughout the deformation history (Koplik and Needleman, 1988; Scheyvaerts et al., 2011;58

Fritzen et al., 2012; Srivastava and Needleman, 2013; Brünig et al., 2013; Dunand and Mohr, 2014;59

Tekoğlu et al., 2015; Liu et al., 2016; Torki et al., 2017; Guo and Wong, 2018; Luo and Gao, 2018).60

Thus, unit cell model calculations not only provide the macroscopic response of the material but61

also provide the details of the void growth and coalescence, as a function of the imposed constant62

stress triaxiality values.63

In this work, three dimensional finite element calculations of unit cells have been carried out64

to model macroscopic strain localization due to damage induced softening, void growth and/or65

coalescence, in an infinite block containing a periodic distribution of initially spherical voids in66

a band. Note that we have assumed a state of the material where either the voids are initially67

present or have already nucleated (uniformly for the sake of simplicity) in a narrow region in the68

material. The unit cell modeled consists of a central block with a single void in its center within69

two semi-infinite void-free blocks. The matrix material of the unit cell is considered to follow a70

strain rate dependent elastic perfectly plastic flow response. Limited calculations have also been71

carried out to explore the combined effect of material’s strain rate sensitivity and strain hardening.72

The unit cell calculations are carried out for one initial void volume fraction, a range of strain rate73

sensitivity parameter, a range of imposed stress triaxiality, and three initial orientations of the74

voided band. In the calculations, onset of macroscopic localization is defined as the point when75

the ratio of the rate of deformation in the band and outside the band reaches a critical level, while76

the onset of void coalescence is defined when the ratio of the maximum to the minimum effective77

plastic strain rate at the surface of the void reaches a critical value following the work of Tekoğlu78

et al. (2015); Guo and Wong (2018).79

The remainder of this paper are organized as follows. The problem formulation and numerical80

method are detailed in Section 2. The numerical results and the discussion of the key results are81

presented in Section 3. The main conclusions of this work are summarized in Section 4.82

2. Problem Formulation and Numerical Method83

Three dimensional finite element calculations are carried out to model plastic flow localization84

and void coalescence in an infinite block containing a periodic distribution of initially spherical85

voids in a band as shown in Fig. 1 (top left). The configuration analyzed here is numerically86

similar to the works of Tvergaard (1989); Barsoum and Faleskog (2011); Tekoğlu et al. (2015) and87

Guo and Wong (2018).88

2.1. Unit Cell Model89

As shown in Fig. 1, for the periodic distribution of the voids in the voided band, a unit cell90

can be defined as a central block with a single void in its center within two void-free semi-infinite91

blocks. The initial volume of the central block is taken to be Vcentral block = D10D20D30 = D3
092

and the initial volume fraction of the spherical void with radius R0 is f0 = 4πR3
0/3D

3
0. In the93

finite element calculations, the semi-infinite blocks along x1 direction are assumed to be of finite94
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Figure 1: Three dimensional representation of an infinite block containing a periodic distribution of initially
spherical voids in a band initially inclined at an angle ψu with respect to the x2-x3 plane (top left). The two
dimensional sections of the block along x1-x3 (top center) and x1-x2 (top right) planes are also shown in the figure
to highlight the periodicity of the voids. Owing to the periodic distribution of the voids, the voided band can be
represented as a central block with a single void in its center within two void-free semi-infinite blocks (bottom
center). The initial dimensions of the central block are D10, D20, and D30 along x1, x2 and x3 axes, respectively
(bottom left). A zoomed in view of the finite element model of 1/2 unit cell with initial void volume fraction,
f0 = 0.001 and ψu = 39◦ (bottom right).

length but long enough to numerically mimic semi-infinite blocks. For a given loading state and95

orientation angle, ψu, of the voided band in the initial state, the orientation angle of the band at96

any deformation angle ψ progress with the deformation of the outer blocks as:97

tan(ψ) = e(E1−E3) tan (ψu) (1)

ψ̇ =
1

2
sin (2ψ)

(
Ė1 − Ė3

)
(2)

where, E1, E2, E3, are the macroscopic logarithmic principal strains given as:98

E1 = ln (λ1) , E2 = ln (λ2) , E3 = ln (λ3) (3)
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In Eq. (3), λ1 = L1/L10, λ2 = L2/L20 and λ3 = L3/L30, with Li0 being the initial, and Li99

being the current lengths of the unit cell along xi axes. The current lengths of the unit cell follow,100

L1 = L10 + U1; L2/2 = L20/2 + U2; L3 = L30 + U3 (4)

where, Ui, are taken at point A′ in Fig. 1. Following Eq. (3), the rates of macroscopic loga-101

rithmic principal strains are:102

Ė1 =
λ̇1
λ1
, Ė2 =

λ̇2
λ2
, Ė3 =

λ̇3
λ3

(5)

The unit cell shown in Fig. 1 (bottom) is symmetric along x2 axis, so that only 1/2 of the unit103

cell needs to be analyzed. The boundary conditions uABba
2 = uabcd2 = udcCD

2 = 0 and uA
′B′b′a′

2 =104

ua
′b′c′d′

2 = ud
′c′C′D′

2 = U2 are imposed on the external faces of the unit cell normal to x2 axis. Also,105

we assume that the external faces of the upper and lower blocks of the unit cell (see Fig. 1) that106

are initially straight and normal to the x1 and x3 axes remain normal and straight throughout107

the deformation history. This results in boundary conditions, uDD′C′C
1 = 0 and uAA′B′B

1 = U1, and108

uBB′b′b
3 = ucc

′C′C
3 = 0 and uAA′a′a

3 = udd
′D′D

3 = U3. Next, following Tvergaard (1989), boundary109

conditions applied on the external faces of the band in the unit cell that are initially straight and110

normal to the x3 axis are,111

uaa
′d′d

1 − ubb′c′c1 = L30

(
eE3 tan (ψ)− tan (ψu)

)
uaa

′d′d
3 − ubb′c′c3 = L30

(
eE3 − 1

)
(6)

where, L30 = D30 = D0 cos (ψu).112

The voided part of the cell is weaker than the outer blocks. This is reflected by additional113

rigid body displacements among the outer blocks with values 2∆1 and 2∆3. The values ∆1 and114

∆3 vanish if the cell has no void. By symmetry, there is no relative displacement of the outer115

blocks in x2 direction. The corresponding relative displacement field in the upper block outside116

the voided cell (evaluated at point a in Fig. 1 and relative to the center of the void) can then be117

given as:118

u1 = (λ1 − 1)x1 + ∆1 (7)

u2 = (λ2 − 1)x2

u3 = (λ3 − 1)x3 + ∆3

The strain rate components in the band, Ėb
ij, are the result of the sum of the uniform strain119

outside the band plus the strain associated with the rigid body displacements ∆1 and ∆3:120

Ėb
11 = cos2 (ψ) Ė1 + sin2 (ψ) Ė3 +

2∆̇1 cos (ψ)− 2∆̇3 sin (ψ)

H
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Ėb
22 = Ė2 (8)

Ėb
33 = sin2 (ψ) Ė1 + cos2 (ψ) Ė3

Ėb
13 = sin (2ψ)

(
Ė1 − Ė3

)
+

2∆̇3 cos (ψ) + 2∆̇1 sin (ψ)

H

Here, the components of Ėb
ij are defined with respect to the local axes (x′1, x

′
2, x

′
3) attached121

to the band that consequently rotates with the band.122

The components of the strain rate Ėij are however expressed with respect to x1, x2 and x3 axes.123

H is the current thickness of the band (in x′1 direction), being H0 = D10cosψu, with Ḣ = Ėb
11H.124

The Ėb
eq and Ėeq are given as:125

Ėb
eq =

√
2

3
Ėb

ijĖ
b
ij, Ėeq =

√
2

3

(
Ė2

1 + Ė2
2 + Ė2

3

)
(9)

and, Eb
eq =

∫ t

0
Ėb

eqdτ and Eeq =
∫ t

0
Ėeqdτ .126

The macroscopic true principal stresses Σ1, Σ2 and Σ3, or the average reaction forces per unit127

area at the deformed cell boundary, are defined in terms of the Cauchy stress components, σii, as:128

Σi =
1

LjLk

∫ Lj

0

∫ Lk

0

[σii]xi=Li
dxjdxk with i, j, k = 1, 2, 3

The macroscopic stress triaxiality, T , and the Lode parameter, L are defined as:129

T =
Σh

Σeq

; L =
2Σ2 − Σ1 − Σ3

Σ1 − Σ3

(10)

with Σh and Σe being the hydrostatic and equivalent macroscopic stresses, respectively, and130

are given as:131

Σh =
Σ1 + Σ2 + Σ3

3
, Σeq =

1√
2

(
(Σ1 − Σ2)

2 + (Σ1 − Σ3)
2 + (Σ2 − Σ3)

2)1/2 (11)

Relations, Eq. (10) and Eq. (11) allows to express Σ1, Σ2, Σ3 as functions of Σeq, T and L,132

with the range of possible values:133

0 ≤ Σe ≤ ∞, −∞ ≤ T ≤ ∞, −1 ≤ L ≤ 1 (12)

In this work, the stress states are characterized by the values of the stress triaxiality, T , and134

the Lode parameter L, while the strain states are characterized by the equivalent strain in the135

band, Eb
eq, and the macroscopic equivalent strain, Eeq, in the upper/lower faces of the outer blocks.136

Finite element unit cell calculations are carried out for prescribed constant stress triaxiality, T , and137

Lode parameter, L, values using the commercial finite element code ABAQUS/Standard (2017).138

The periodic boundary conditions on the faces of the unit cell are implemented as multi-point139
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constraints in ABAQUS/Standard (2017), while the boundary conditions required to prescribe140

constant values of T and L are implemented in ABAQUS/Standard (2017) using an MPC user141

defined subroutine. More details of the boundary conditions to prescribe constant values of T and142

L are given in Appendix A. The finite element calculations use C3D20R elements from the in-built143

element library of ABAQUS/Standard (2017), and the number of elements in the finite element144

mesh varies from 9, 672 to 18, 316 for initial band angle varying from ψu = 0◦ to 39◦, respectively.145

A cropped region of a unit cell with ψu = 39◦, f0 = 0.001 and D0 = 1 mm with finite element146

mesh in the voided region is shown in Fig. 1.147

2.2. Constitutive Relation148

The matrix material of the unit cell is modeled using finite strain J2 flow theory. In the149

finite element calculations, updated Lagrangian formulation is used to account for large deforma-150

tions. For hypo elastic-plastic materials, the macroscopic rate of plastic deformation tensor, Ė
p
,151

is assumed to be related to the macroscopic stress rate by:152

Σ̇ = C :
(
Ė− Ė

p
)

(13)

where, C is the linear isotropic elastic tensor defined by the fourth order tensorial relation:153

C = 2GIdev +K1⊗ 1 (14)

with Idev being the unit deviatoric fourth order tensor having the form,154

(Idev)ijkl = 1/2 (δikδjl + δilδjk)− 1/3δijδkl (15)

while G = E/(2(1 + ν)) and K = E/(3(1− 2ν)) are elastic constants.155

Assuming Mises plasticity, the yield function and the associated flow rule are given as:156

Ψ = Σeq − σ̄ (ε̇p)

Ė
p

= λ̇
∂Ψ

∂Σ̇
(16)

where, σ̄ follows:157

σ̄ =

{
Eε ε ≤ ε0

σ0 · (1 + ( ε̇
p

ε̇0
)m) ε > ε0

(17)

In Eq. (17), σ0 represents a reference yield stress, m is the strain rate sensitivity parameter158

of the material, ε̇0 is the reference strain rate, E is the Young’s modulus, ε0 = σ0/E, and plastic159

equivalent strain rate, ε̇p =
√

2
3
Ė

p
: Ė

p
.160
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3. Results and Discussion161

In a porous ductile material, onset of macroscopic localization due to the softening induced by162

void nucleation and growth, or due to void coalescence resulting from plastic strain localization163

in the ligaments between the voids, marks the end of uniform deformation. For a strain rate164

independent porous ductile material, Tekoğlu et al. (2015) showed that depending on the value165

of the imposed stress triaxiality a clear separation exists between the two modes of macroscopic166

localization. This raises a fundamental question: how does the material’s strain rate sensitivity167

affect the two modes of localization or ductile failure as a function of the imposed stress triaxiality?168

In this section, we present results obtained using the numerical method detailed under Section 2169

to address this question.170

E11
b

Σ
1/σ

0

0 0.05 0.1 0.15 0.20

1

2

3

4

5 Current work
Teko lu et al.(2015)

(a)

Eeq

Σ
1/σ

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.350

1

2

3

4

5 Current work, T=1.5
Teko lu et al.(2015), T=1.5
Current work, T=3.0
Teko lu et al.(2015), T=3.0

(b)

Figure 2: Comparison of the evolution of (a) normalized Σ1/σ0 with Eb
11 for T = 3.0 and that of (b) Σ1/σ0 with

Eeq for T = 1.5 and T = 3.0, predicted in the current work with the results of Tekoğlu et al. (2015). In both (a)
and (b), L = −1, ψu = 0◦, f0 = 0.001 and N = 0.1.

Our numerical method to model the unit cell that includes a central block with a single void171

in its center within two void-free semi-infinite blocks, differs from that of Tekoğlu et al. (2015).172

Tekoğlu et al. (2015) only considered the inclined part of the unit cell within the band, Fig. 1,173

and modeled the void-free semi-infinite block (along x1) through complex boundary conditions.174

On the other hand, here we assume that (see Section 2) if the length of the void-free block along175

x1 is sufficiently greater than the characteristic length, D0, of the unit cell, it can mimic the semi-176

infinite block. Thus, it is warranted to validate the predictions of our numerical method against177

the available results of Tekoğlu et al. (2015). To this end, we use a strain rate independent flow178

response, as in Tekoğlu et al. (2015):179

σ̄ =

{
Eε ε ≤ ε0

σ0 · ( ε
p

ε0
)N ε > ε0

(18)

instead of Eq. (17). The calculations use, E = 167GPa, σ0 = 418MPa, ε0 = 0.0025, ν = 0.3180

and N = 0.1. The evolution of the normalized macroscopic stress along x1, Σ1/σ0, with the strain181

8



in the band, Eb
11, for T = 3.0, L = −1, ψu = 0◦ and f0 = 0.001 predicted using the numerical182

method detailed under Section 2 are compared with the results of Tekoğlu et al. (2015) in Fig. 2(a).183

Similarly, the evolution of Σ1/σ0 with the macroscopic equivalent strain in the outer blocks, Eeq,184

for T = 1.5 and 3.0, and the same values of L, ψu and f0 predicted using the current method185

are compared with the results of Tekoğlu et al. (2015) in Fig. 2(b). The results (of the current186

work) presented in Fig. 2, are for a unit cell whose length along x1 direction is six times the187

characteristic length, D0, of the problem i.e. L10 = 6D0. The strikingly good correlation between188

the predictions using our method and the results of Tekoğlu et al. (2015) in Fig. 2, clearly shows189

that the assumption of L10 = 6D0 numerically represent the unit cell consisting of a central block190

with a single void in its center within two void-free semi-infinite blocks.191

After validating our numerical method, we now focus on analyzing the influence of material’s192

strain rate sensitivity on the onset of macroscopic localization due to void growth induced soft-193

ening and/or void coalescence. All the results presented here onwards are from the finite element194

calculations utilizing strain rate dependent flow response defined in Eq. (17). The full set of con-195

stitutive parameters used to define material (in the band as well as in the outer block) in the196

calculations are: E = 167GPa, ν = 0.3, σ0 = 418MPa, ε0 = 0.0025, and ε̇0 = 1 s−1, while197

the strain rate sensitivity parameter, m, is varied from 0 to 0.25. For each strain rate sensitivity198

parameter value, unit cells with one initial void volume fraction, f0 = 0.001, but three initial199

orientations of the voided band, ψu = 0◦, 20◦ and 39◦ are considered. The choice of the initial200

orientation of the voided band, ψu, is based on the results of Tekoğlu et al. (2015) for strain201

rate independent material. Finally, for each strain rate sensitivity parameter, m, value and ini-202

tial orientation of the voided band, ψu, calculations are carried out for prescribed constant stress203

triaxiality, T , values in the range, 0.75 ≤ T ≤ 3 and one Lode parameter, L = −1.204

3.1. Strain Localization, Void Growth and Void Coalescence205

The evolution of the equivalent strain inside the band, Eb
eq, with the macroscopic equivalent206

strain outside the band, Eeq, in unit cells with initial orientation of the voided band, ψu = 0◦ and207

39◦ are shown in Fig. 3. As shown in Figs. 3, during initial stages of deformation Eb
eq is same as208

Eeq, but at later stages of deformation, strain localizes in the band, and thereafter Eb
eq increases209

rapidly while Eeq increases slightly in the material outside the band. The onset of localization is210

assumed to occur when the ratio between the rate of macroscopic equivalent strain in the band211

and outside the band reach the value of 5. The onset of void coalescence is assumed to occur when212

the ratio of the maximum to the minimum equivalent plastic strain rate at the void surface first213

exceeds the threshold of 20, as in Tekoğlu et al. (2015). For T = 1.25, the onset of coalescence214

occurs soon after the onset of localization. But, for T = 2.75, the onset of coalescence occurs215

at a much greater value of Eb
eq following the onset of localization. A comparison of the results216

shown in Figs. 3(a) and (b), and Figs. 3(c) and (d), show that increasing the strain rate sensitivity217

of the material delays the onset of both, the localization and coalescence. However, the relative218

stabilizing effect of material’s strain rate sensitivity is greater at the onset of localization than at219

the onset of void coalescence. For example, for T = 2.75, (Eb
eq)m=0.25/(E

b
eq)m=0 ≈ 5.3 at the onset220

of localization and (Eb
eq)m=0.25/(E

b
eq)m=0 ≈ 2.8 at the onset of void coalescence. Also a comparison221

of the results shown in Figs. 3(a) and (c), and Figs. 3(b) and (d), show that there is an increase in222

the relative stabilizing effect of material’s strain rate sensitivity with the increasing value of the223

imposed stress triaxiality.224
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Figure 3: Evolution of equivalent strain in the band, Eb
eq, with macroscopic equivalent strain outside the band,

Eeq, for (a) imposed stress triaxiality, T = 1.25 and strain rate sensitivity parameter, m = 0, (b) T = 2.75 and
m = 0, (c) T = 1.25 and m = 0.25, and (d) T = 2.75 and m = 0.25. The initial orientation of the voided band is
ψu = 0◦ for the cases shown in (a) and (c), and ψu = 39◦ for the cases shown in (b) and (d). In the figures the
value of Eb

eq at the onset of localization and void coalescence are marked with dashed horizontal lines.

The evolution of normalized porosity, f/f0, with macroscopic equivalent strain outside the225

band, Eeq, for T = 1.25, is shown for two unit cells with initial orientation of the voided band226

ψu = 0◦ and ψu = 39◦ in Figs. 4(a) and (c), respectively. The same is shown for T = 2.5, for two227

unit cells with ψu = 0◦ and ψu = 39◦ in Figs. 4(b) and (d), respectively. To quantify the influence228

of the strain rate sensitivity parameter on the evolution of the porosity, results are shown in Fig. 4229

for m = 0, 0.05, and 0.1. As shown in Fig. 4, for both the values of T and ψu, a higher value of230

m shifts the f/f0 versus Eeq curves to the right i.e. the stabilizing effect of the material’s strain231

rate sensitivity slows down the evolution of porosity. For T = 2.5, the value of f/f0 at the onset232

of localization is less than the value of f/f0 at the onset of void coalescence for both the values233
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Figure 4: Evolution of the normalized porosity, f/f0, with Eeq for (a) ψu = 0◦ and T = 1.25, (b) ψu = 0◦ and
T = 2.5, (c) ψu = 39◦ and T = 1.25, and (d) ψu = 39◦ and T = 2.5. The open circles in the figure mark the onset
of localization while the closed triangles mark the onset of void coalescence.

of ψu and all three values of m. For T = 1.25, the value of f/f0 at the onset of localization is234

less than the value of f/f0 at the onset of void coalescence for ψu = 0◦ for m > 0. However, for235

T = 1.25, the value of f/f0 at the onset of localization is same as the value of f/f0 at the onset236

of void coalescence for ψu = 39◦ for all three values of m.237

The effect of the material’s strain rate sensitivity on deformation in the band and distribution238

of equivalent plastic strain on the void surface is highlighted in Fig. 5. In Fig. 5, results are239

shown for two strain rate sensitivity parameters, m = 0 and 0.25, for a unit cell with the initial240

orientation of the band, ψu = 20◦ and subjected to an imposed stress triaxiality, T = 1.0. As241

can be seen in Fig. 5, the edges, ad and bc, that were initially straight and normal to the x3 axis,242

undergo deformation following the periodicity of the initial voids in the band. In addition, the243

results also show that at the same equivalent strain levels in the band, Eb
eq, the maximum value244
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Figure 5: Deformed shape of the band and the distribution of the equivalent plastic strain, εp, in the band with
initial orientation ψu = 20◦ under imposed stress triaxiality T = 1.0 for two strain rate sensitivity parameters,
m = 0 and 0.25 at two equivalent strain levels in the band, Eb

eq = 0.18 and 0.36.

of equivalent plastic strain, εp, on the void surface for m = 0.25 is much less than that for m = 0.245

The lower levels of εp on the void surface for m = 0.25 compared to m = 0 is consistent with the246

effect of m on the evolution of f/f0 shown in Fig. 4.247

3.2. Effect of Strain Rate Sensitivity on Critical Porosity248
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Figure 6: Variation of the normalized critical value of porosity, fc/f0, at the onset of localization and void coales-
cence with material’s strain rate sensitivity parameter, m, for (a) T = 1.25 and (b) T = 2.5.

We now analyze the effect of material’s strain rate sensitivity, m, on critical values of porosity249

at the onset of strain localization and void coalescence. The critical value of porosity at the onset250

of void coalescence is widely used as an input parameter to simulate ductile fracture due to void251

nucleation, growth and coalescence (Besson et al., 2003; Srivastava et al., 2014; Cheng et al., 2014).252
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The variation of the normalized critical value of porosity, fc/f0, at the onset of localization253

and void coalescence with material’s strain rate sensitivity parameter, m, in two unit cells with254

initial orientation of the voided band, ψu = 0◦ and 39◦, for two values of imposed stress triaxiality,255

T = 1.25 and 2.5, are shown in Fig. 6. For T = 1.25 and ψu = 0◦, the values of fc/f0 at the onset256

of localization and void coalescence are roughly the same for m < 0.05. However, for greater value257

of m the value of fc/f0 at the onset of localization is less than the value of fc/f0 at the onset258

of void coalescence. For T = 1.25 and ψu = 39◦, the values of fc/f0 at the onset of localization259

and void coalescence are roughly the same for all values of m. On the other hand, for T = 2.5,260

the values of fc/f0 at the onset of localization is less than the values of fc/f0 at the onset of void261

coalescence for all values of m, for both ψu = 0◦ and 39◦. Also, for T = 2.5 the difference between262

the values of fc/f0 at the onset of localization and void coalescence increases with increasing value263

of m. The results presented in Fig. 6 show that at low imposed stress triaxiality values, the264

extent of void growth induced softening is not sufficient to trigger macroscopic localization, thus265

localization does not occur until the onset of void coalescence. On the other hand, the void growth266

induced softening is sufficient to trigger macroscopic localization at high imposed stress triaxiality267

values and the macroscopic localization occurs much before the void coalescence. The increase268

in the value of fc with increasing value of m is because an increase in the value of m results in269

increased strain rate hardening thus requiring an increase in damage induced softening to trigger270

any localized deformation in the voided band or within the ligament between the neighboring271

voids to trigger void coalescence.272

3.3. Effect of Strain Rate Sensitivity on Critical Strain273
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Figure 7: Variation of the critical macroscopic equivalent strain, Ec
eq, outside the band at the onset of localiza-

tion/coalescence with material’s strain rate sensitivity parameter, m, for (a) T = 1.5 and (b) T = 2.75.

The results presented thus far clearly show that both the material’s strain rate sensitivity and274

imposed stress triaxiality affect the onset of strain localization and void coalescence. Following275

this, we analyze the variation of critical macroscopic equivalent strain outside the band, Ec
eq, and276

critical equivalent strain inside the band, Ecb
eq, with strain rate sensitivity parameter, m, shown in277
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Figure 8: Variation of the critical equivalent strain, Ecb
eq, inside the band at the onset of localization/coalescence

with material’s strain rate sensitivity parameter, m, for (a) T = 1.5 and (b) T = 2.75.

Figs. 7 and 8, respectively, and the variation of Ecb
eq with imposed stress triaxiality, T , shown in278

Fig. 9.279

As shown in Fig. 7, the value of Ec
eq increases with increasing value of strain rate sensitivity280

parameter, m, for all three initial orientation of the voided band, ψu = 0◦, 20◦ and 39◦, and281

for both the imposed stress triaxiality values, T = 1.5 and 2.75. As also shown in the figure,282

for all three ψu values and for T = 1.5, the value of Ec
eq is same at the onset of localization283

and void coalescence. For T = 2.75, Ec
eq values at void coalescence are slightly greater than the284

values of Ec
eq at the onset of localization. This is consistent with the observation that at low285

imposed stress triaxiality values, the extent of void growth induced softening is not sufficient to286

trigger macroscopic localization, whereas at high imposed stress triaxiality values the void growth287

induced softening is sufficient to trigger macroscopic localization. As also shown in Fig. 7, the288

effect of initial band orientation on the value of Ec
eq depends on both, the values of T and m.289

For example, the minimum value of Ec
eq at the onset of localization corresponds to ψu = 20◦ for290

T = 1.5 while it corresponds to ψu = 39◦ for T = 2.75.291

Similarly, the value of the critical equivalent strain in the band, Ecb
eq, at the onset of localiza-292

tion/coalescence increases with increasing value of m for all three ψu and for both T , Fig. 8. In293

addition, the variation of Ecb
eq with m for T = 1.5, Fig. 8(a), roughly follows the same trend as294

shown in Fig. 7(a) for Ec
eq. But for T = 2.75, the value of Ecb

eq at the onset of localization is less295

than the value of Ecb
eq at the onset of void coalescence for all the values of m and ψu, Fig. 8(b).296

For T = 2.75, the initial band orientation that gives lowest values of Ecb
eq is ψu = 0◦, and the297

orientation that gives largest values of Ecb
eq is ψu = 20◦. This is in contrast to the dependence of298

Ec
eq on ψu as shown in Fig. 7(b). This is because at high imposed stress triaxiality values, the299

onset of macroscopic localization occurs due to void growth induced softening that significantly300

affects the deformation in the band.301

Figures 9(a) and (b) compare the variation of Ecb
eq at the onset of localization and coalescence,302

with imposed stress triaxiality values, T , for m = 0.05 and 0.25, respectively. As shown in303
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Figure 9: Variation of the critical equivalent strain, Ecb
eq, inside the band at the onset of localization/coalescence

with imposed stress triaxiality, T , for (a) m = 0.05 and (b) m = 0.25.

4

the figure, for both the values of m, the value of Ecb
eq at localization/coalescence decreases with304

increasing value of the imposed T . But for sufficiently large values of T , with increasing T ,305

the decrease in Ecb
eq at void coalescence is rather gradual as compared to the decrease in Ecb

eq306

at localization. This results in a clear separation between the values of Ecb
eq at localization and307

coalescence for T ≥ 2, with the increasing difference between Ecb
eq at localization and coalescence308

with increasing value of T .309
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Figure 10: Variation in the ratio (Ecb
eq)coa/(E

cb
eq)Loc with imposed stress triaxiality values, T , for initial orientation

of the voided band, (a) ψu = 0◦ and (b) ψu = 20◦.

We now analyze the variation of the critical equivalent strain in the band at the onset of310
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Figure 11: Variation in the ratio (Ecb
eq)coa/(E

cb
eq)Loc with material’s strain rate sensitivity parameter, m, for initial

orientation of the voided band, (a) ψu = 0◦ and (b) ψu = 20◦.

coalescence normalized with the value of the critical equivalent strain in the band at the onset311

of localization, (Ecb
eq)Coa/(E

cb
eq)Loc, with T and m in Figs. 10 and 11, respectively, for two initial312

orientation of the voided band, ψu. As shown in Fig. 10, for all m and for both the values313

of ψu, the ratio (Ecb
eq)Coa/(E

cb
eq)Loc is approximately one for T < 2 and for T ≥ 2, the ratio314

(Ecb
eq)Coa/(E

cb
eq)Loc increases with increasing value of T . This is because both (Ecb

eq)Coa and (Ecb
eq)Loc315

decrease with increasing T but for T ≥ 2, (Ecb
eq)Loc decreases more rapidly with increasing T than316

(Ecb
eq)Coa. Furthermore, as shown in Fig. 11, for T > 2, the value of (Ecb

eq)Coa/(E
cb
eq)Loc decreases317

with increasing m for both the values of ψu. The decrease in the value of (Ecb
eq)Coa/(E

cb
eq)Loc with318

increasing m becomes more pronounced with increasing value of the imposed T . Note, that both319

(Ecb
eq)Coa and (Ecb

eq)Loc increase with increasing m, thus a decrease in the value of (Ecb
eq)Coa/(E

cb
eq)Loc320

suggests that (Ecb
eq)Loc increases more rapidly with increasing m for higher stress triaxiality values.321

To summarize, the relative stabilizing effect induced by strain rate sensitivity of the material not322

only increases with the increasing value of the imposed stress triaxiality, but also the relative323

stabilizing effect of the strain rate sensitivity is greater at the onset of strain localization than at324

the onset of void coalescence.325

3.4. Effect of Strain Hardening326

In this work, we have focused on answering the question: How does the materials strain rate327

sensitivity affect the two mechanisms of macroscopic localization or ductile failure as a function328

of the imposed stress triaxiality? To answer this question, we have carried out a series of unit329

cell calculations, where the matrix material of the unit cell is considered to follow a strain rate330

dependent elastic perfectly plastic flow response. So the question arises as to what extent strain331

hardening in the material affects our results. A complete study of the combined effect of material’s332

strain rate sensitivity, strain hardening and imposed stress triaxiality is beyond the scope of this333

work. However, our limited unit cell calculations presented in this section show that incorporating334

both material’s strain rate sensitivity and strain hardening does not affect the qualitative effect335
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Figure 12: A comparison of the evolution of equivalent strain in the band, Eb
eq, with macroscopic equivalent strain

outside the band, Eeq, in strain hardening and non strain hardening materials for (a) imposed stress triaxiality,
T = 0.75 and (b) T = 2.5. The initial orientation of the voided band is ψu = 0◦ for all the cases shown. In the
figures the open circles mark the onset of localization while the closed triangles mark the onset of void coalescence.

of material’s strain rate sensitivity and stress triaxiality reported in this work.336

The results of our limited unit cell calculations to explore the combined effect of material’s337

strain rate sensitivity, strain hardening and stress triaxiality on the two mechanisms of macroscopic338

localization is shown in Fig. 12. The combined effect of material’s strain rate sensitivity and strain339

hardening is explored using the flow response given as,340

σ̄ =

{
Eε ε ≤ ε0

σ0 · ( ε
p

ε0
)N · (1 + ( ε̇

p

ε̇0
)m) ε > ε0

(19)

instead of Eq. (17). For the calculations corresponding to results in Fig. 12, the values of341

E = 167GPa, σ0 = 418MPa, ε0 = 0.0025, ε̇0 = 1 s−1, N = 0 and 0.1, and m = 0.05 and 0.25342

are used in Eq. (19). The results presented in Fig. 12 show that incorporating strain hardening343

in to the flow response of the material does not affect the qualitative effect of material’s strain344

rate sensitivity and stress triaxiality on the onset of localization and void coalescence reported in345

this work. For example, irrespective of the value of the strain hardening exponent, N : (i) for low346

stress triaxiality value, T = 0.75, the value of Eb
eq at the onset of localization and void coalescence347

are the same, (ii) the value of Eb
eq at the onset of localization and void coalescence increases with348

the increasing value of strain rate sensitivity parameter, m, for both the values of T , (iii) for high349

stress triaxiality value, T = 2.5, the value of Eb
eq at the onset of localization is less than the value350

of Eb
eq at the onset of void coalescence, and (iv) the difference between the values of Eb

eq at the351

onset of localization and void coalescence decreases with increasing value of m.352

17



4. Summary and Concluding Remarks353

Strain localization and void coalescence (resulting in the formation of micro-cracks) in a porous354

ductile material mark the end of uniform deformation and limits the ductility of the material. In355

this work the focus is confined to analyzing the influence of material’s strain rate sensitivity on356

the onset of strain localization and void coalescence as a function of the imposed stress triaxiality.357

To this end, three dimensional finite element calculations of unit cells have been carried out358

to model localization and coalescence in an infinite block containing a periodic distribution of359

initially spherical voids in a band. The unit cell modeled consists of a central block with a single360

void in its center within two semi-infinite void-free blocks. The matrix material of the unit cell361

is considered to follow a strain rate dependent elastic perfectly plastic flow response. Limited362

calculations have also been carried out to explore the combined effect of material’s strain rate363

sensitivity and strain hardening. The unit cell calculations are carried out for one initial void364

volume fraction (f0 = 0.001), a range of strain rate sensitivity parameter (varying in the range365

0 ≤ m ≤ 0.25), a range of imposed stress triaxiality (varying in the range 0.75 ≤ T ≤ 3) with one366

Lode parameter (L = −1), and three initial orientations of the voided band (ψu = 0◦, 20◦ and367

39◦). In the calculations, onset of localization is defined as the point in the deformation history368

when the ratio of the rate of deformation in the band and outside the band reaches a critical level,369

while the onset of coalescence is defined when the ratio of the maximum to the minimum effective370

plastic strain rate at the surface of the void reaches a critical value following the work of Tekoğlu371

et al. (2015). Our results show that both the critical void volume fraction and strain, at the onset372

of localization and coalescence, are strongly influenced by the material’s strain rate sensitivity and373

the imposed stress triaxiality.374

The main conclusions of this work are as follows:375

1. Influence of material’s strain rate sensitivity, m, and imposed stress triaxiality, T , on the376

critical void volume fraction, fc, at the onset of strain localization and void coalescence:377

(a) For low T values, fc is roughly the same at the onset of localization and coalescence,378

whereas for greater values of T , fc at the onset of coalescence is greater than fc at the379

onset of localization.380

(b) For all values of T , the value of fc at localization/coalescence increases with increasing381

m.382

2. Influence of material’s strain rate sensitivity, m, and imposed stress triaxiality, T , on the383

critical equivalent strain in the band, Ecb
eq, at the onset of strain localization and void coa-384

lescence:385

(a) For low T values, T < 2, Ecb
eq is same at the onset of localization and coalescence,386

whereas for T ≥ 2, Ecb
eq at the onset of coalescence is greater than Ecb

eq at the onset of387

localization.388

(b) For all values of m, the value of Ecb
eq at the onset of localization/coalescence decreases389

with increasing T . But for T ≥ 2, the value of Ecb
eq at localization decreases more390

rapidly with increasing T compared to the value of Ecb
eq at coalescence.391

(c) For all values of T , the value of Ecb
eq at the onset of localization/coalescence increases392

with increasing value of m. But for T ≥ 2, the value of Ecb
eq at localization increases393

more with increasing value of m compared to the value of Ecb
eq at coalescence.394
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(d) The concluding points, 2(b) and (c), clearly show that the relative stabilizing effect of395

m increases with the increasing value of T , and the relative stabilizing effect of m is396

greater at the onset of localization than at the onset of coalescence.397

Our limited results aimed at exploring the combined effect of material’s strain rate sensitivity,398

strain hardening and imposed stress triaxiality on the onset of localization and void coalescence399

show that incorporating strain hardening into the flow response of the material does not affect the400

aforementioned qualitative effect of material’s strain rate sensitivity and stress triaxiality on the401

onset of localization and void coalescence. In this work, we have focused on one Lode parameter402

value, L = −1. The value of the Lode parameter may also affect the onset of localization and403

void coalescence especially at low values of stress triaxiality. The numerical method presented in404

this work can be used for future research to explore the combined effect of material’s strain rate405

sensitivity and strain hardening, and imposed stress triaxiality and Lode parameter on the onset406

of localization and void coalescence. Furthermore, our results motivate the need to incorporate407

the effect of material’s strain rate sensitivity in the porosity and stress triaxiality dependent flow408

potential (or constitutive response) of the material.409
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Appendix A. Procedure for the Multipoint constraint419

The procedure to prescribe proportional loading i.e. fixed ratio of principal stresses, R = Σ2/Σ1420

and Q = Σ3/Σ1 to maintain constant macroscopic stress triaxiality, T , and Lode parameter, L,421

throughout the deformation history, follows the work of Vadillo et al. (2016).422

Since the macroscopic true stresses (Σ1, Σ2, Σ3) and the macroscopic strain rates (Ė1, Ė2, Ė3)423

are equal to the volume average values in a cell (Hill, 1967), the total rate of deformation work in424

the whole cell Ẇ considering jointly upper, lower and central voided block, can be written as:425

Ẇ = V Σ1Ė1 + V Σ2Ė2 + V Σ3Ė3 (A.1)

where V is the total volume of the RVE.426

Defining P1 = V Σ1, P2 = V Σ2 and P3 = V Σ3 as generalized forces and work rate conjugate427

quantities to Ė1, Ė2 and Ė3, respectively, the expression of Ẇ becomes:428

Ẇ = P1Ė1 + P2Ė2 + P3Ė3 (A.2)

in which P1, P2 and P3 must satisfy:429

P2

P1

= R;
P3

P1

= Q (A.3)

The ratios R and Q can be written in terms of the imposed stress triaxiality, T , and Lode param-430

eter, L:431

Q =
3T
√
L2 + 3− 3− L

3T
√
L2 + 3 + 3− L

; R =
3T
√
L2 + 3 + 2L

3T
√
L2 + 3 + 3− L

(A.4)

Next, with the transformation:432

(A.5)
433  Ė(I)

Ė(II)

Ė(III)

 = N

 Ė1

Ė2

Ė3

 ;

 P(I)

P(II)

P(III)

 = N

 P1

P2

P3


where N is an orthonormal

(
N−1 = NT

)
unsymmetric matrix:434

N =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 ;

with the elements:435

A11 =
1√

1 +R2 +Q2
; A12 =

R√
1 +R2 +Q2

; A13 =
Q√

1 +R2 +Q2

A21 = − R√
1 +R2

; A22 =
1√

1 +R2
; A23 = 0. (A.6)

A31 =
Q√

(1 +R2) (1 +R2 +Q2)
; A32 =

RQ√
(1 +R2) (1 +R2 +Q2)

A33 = − (1 +R2)√
(1 +R2) (1 +R2 +Q2)

20



Now, Ẇ can be expressed in terms of the transformed rates of deformation and forces, as:436

Ẇ = P(I)Ė(I) + P(II)Ė(II) + P(III)Ė(III) (A.7)

If in the transformed coordinate system, the imposed incremental boundary conditions are437

prescribed as stress uniaxial:438

P(II) = 0; P(III) = 0; Ė(I) = ĖI (A.8)

the total rate of deformation work has the form Ẇ = P(I)ĖI , that follows, in the initial system439

and considering the relations given in Eq. (A.5), the three relations:440

(1) P(II) = 0→ A21P1 + A22P2 + A23P3 = 0 (A.9)

(2) P(III) = 0→ A31P1 + A32P2 + A33P3 = 0

(3) Ė(I) = ĖI → A11Ė1 + A12Ė2 + A13Ė3 = ĖI

or in a similar manner, if values of R, Q and ĖI are prescribed on the unit cell, this leads to:441

(1) (Σ2/Σ1) = R (A.10)

(2) (Σ3/Σ1) = Q

(3)
(
Ė1 +RĖ2 +QĖ3

)
= ĖI

√
1 +R2 +Q2

This procedure was implemented into ABAQUS/Standard (2017) as MPC user subroutine.442
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Marciniak, Z., Kuczyński, K., 1967. Limit strains in the processes of stretch-forming sheet metal.495

International Journal of Mechanical Sciences 9, 609–620.496
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