ON NON REPRESENTABLE PREFERENCES

Juan Arias de Reyna, Margarita Estévez Toranzo and Carlos Hervés Beloso

Abstract
In this note, we prove that for every non-separable metric space there is a continuous preference ordering which is non representable by an utility function.

Key words
Preference Ordering; Utility Function; Non Separable Metric Space.

'Arias, Departamento de Análisis Matemático, Universidad de Sevilla; Estévez, Departamento de Matemáticas, Universidad de Vigo; Hervés, Departamento de Economía, Universidad Carlos III de Madrid. The work of M. Estévez Toranzo and C. Hervés Beloso is partially supported by Research Grant PS91-0042 from the Dirección General de la Investigación Científica y Técnica, Spanish Ministry of Education.
1. Introduction

This work is concerned with the numerical representation of all continuous preference orderings on a topological space. As it is well known, if X is a connected and separable topological space, then continuous preference orderings on X always have utility representations (see Eilenberg (1941) and Debreu (1954)). The assumption of connectedness is not necessary in the setting of metric spaces: if X is perfectly separable, every continuous preference ordering is representable by an utility function (Debreu (1954)).

However, we show here that separability is also a necessary condition for the representability of all continuous preference orderings on a metric space. That is, if X is a non separable metric space, there exists a continuous preference ordering which does not admit an utility representation. This is relevant since consumption sets in infinite dimensional commodity spaces are not separable, in general.

2. Definitions

A preference ordering on the set X is, to be precise, a binary relation on X, say \preceq, which is reflexive, transitive and complete.

An utility representation for the preference ordering \preceq on X is a function $u : X \to \mathbb{R}$ such that $x \preceq y$ if and only if $u(x) \leq u(y)$.

Let X be a topological space. We say that X is separable if it contains a countable subset whose closure is X. We say that X is perfectly separable (or that X satisfies the second countability axiom) if there is a countable class of open subsets such that every open subset in X is the union of sets of that class. Every perfectly separable topological space is separable. Every separable metric space is perfectly separable. A topological space X is connected if there is no partition of X into two disjoint, non-empty closed sets. We say that X is path connected if for all x, y in X there is a continuous function $f : [0, 1] \to X$ with $f(0) = x$ and $f(1) = y$. Note that every path connected space is connected and every convex set in a linear topological space is path connected.

A preference ordering \preceq on a topological space X is continuous if the sets $\{x \in X ; x \preceq x'\}, \{x \in X ; x' \preceq x\}$ are closed for all $x' \in X$. A subset $B \subseteq X$ bounds \preceq if for every $x \in X$ there are a, b in B with $a \preceq x \preceq b$. A preference ordering \preceq is countably bounded if there exists a countable set $B \subseteq X$ that bounds \preceq. Any preference ordering which has an utility representation is countably bounded.
3. The existence theorem

THEOREM: Let \(X \) be a non separable metric space. Then there is a continuous preference ordering on \(X \) which cannot be represented by an utility function.

To prove the theorem we shall make use of an auxiliar space \(L \) called the long line (see Monteiro (1987), example 5, p. 151). Let \(\Omega_1 \) be the least non-countable ordinal. We denote by \(\Omega \) the set of all ordinals \(\alpha \) such that \(\alpha < \Omega_1 \). That is to say that \(\Omega \) is the set of all countable ordinals. Note that \(\Omega \) is a well ordered set, non-countable and such that for all \(\alpha \in \Omega \), \(\{ \beta \in \Omega ; \beta \leq \alpha \} \) is countable.

Between each \(\alpha \in \Omega \) and its follower \(\alpha + 1 \) put one copy of the real interval \((0,1)\). The space \(L \) that we get, ordered in the obvious way, is called the long line. We consider on \(L \) the order topology. The details on the topological space \(L \) can be seen in Steen and Seebach (1970, pp. 71, 72).

LEMMA: For each \(\alpha \in L \), \(\alpha \neq 0 \) the order interval \([0, \alpha] = \{ x \in L ; 0 \leq x \leq \alpha \} \) is a compact set homeomorphic to the real interval \([0,1] \).

Proof. It is clear that it suffices to prove the result when \(\alpha = \alpha \in \Omega \). As \(\{ \beta \in \Omega ; \beta \leq \alpha \} \) is a well ordered countable set, there is an order preserving \(f : \{0,1,\ldots,\alpha\} \rightarrow [0,1] \) such that \(f(0) = 0 \) and \(f(\alpha) = 1 \). We define \(\tilde{f} : [0, \alpha] \rightarrow [0,1] \) by

\[
\tilde{f}(b) = \begin{cases}
 f(b) & \text{if } b \in \Omega \\
 f(\beta) + t(f(\beta + 1) - f(\beta)) & \text{if } b = \beta + t, \beta \in \Omega, t \in (0,1).
\end{cases}
\]

It is clear that \(\tilde{f} \) is an isomorphism of the order structures.

PROOF OF THE THEOREM: Let \(X \) be a non separable metric space. Non separable metric spaces are characterized by the following property:

There are \(\varepsilon > 0 \) and an uncountable set \(D \subset X \) such that

\[
\text{for all } x, y \in D, x \neq y \text{ implies } d(x, y) \geq 3\varepsilon. \quad (1)
\]

Otherwise, for each \(\varepsilon = \frac{1}{n}, n \in N \), there exists a countable set \(D_n \) verifying (1) such that \(X = \bigcup_{n \in D_n} B(a, \frac{1}{n}) \), where \(B(a, \frac{1}{n}) = \{ x \in X ; d(x, a) < \frac{1}{n} \} \). Then the set \(D = \bigcup D_n \) will be countable and dense.

As \(D \) is uncountable, for each \(\alpha \in \Omega \) we can choose an \(x_\alpha \in D \) in such a way that \(\alpha \neq \beta \) implies \(x_\alpha \neq x_\beta \). By the lemma, for each \(\alpha \in \Omega \) there exist \(\varphi_\alpha : [0, \varepsilon] \rightarrow L \), which is an isomorphism between the order structures of \([0, \varepsilon] \subset R \) and \([\varphi_\alpha(0), \varphi_\alpha(\varepsilon)] = [0, \alpha] \subset L \).
Let $U : X \to L$ be defined by

$$
U(x) = \begin{cases}
0 & \text{if } x \notin \bigcup_{\omega \in \Omega} B(x_0, \varepsilon) \\
\varphi_\omega(\varepsilon - d(x_0, x)) & \text{if } x \in B(x_0, \varepsilon)
\end{cases}
$$

It is clear that U is continuous in $B(x_0, \varepsilon)$ because φ_ω and d are continuous. If $x \in X$ is such that $d(x_0, x) = \varepsilon$, we have $U(x) = 0$, and $\varphi_\omega(0) = 0$, then U is continuous in x. As the intersection of two different balls is empty and U is constant in the exterior of $\bigcup_{\omega \in \Omega} B(x_0, \varepsilon)$, we have that U is continuous in X.

For $x, y \in X$, we define $x \preceq y$ if and only if $U(x) \leq U(y)$. It is clear that \preceq is a continuous preference ordering on X, but has no utility representation because is not countably bounded. To see it, note that given a countable set $B \subseteq X$ there exists $\Omega B \subseteq \Omega$ such that $\sup_{b \in B} U(b) < \alpha$ and then there is not a countable set $B \subseteq X$ that bounds \preceq.

4. Final remark

We remark that separability is not a necessary condition for the representability of all preference orderings on a general topological space X. Monteiro (1987) proves that a continuous preference ordering on a path connected topological space X is representable if and only if it is numerably bounded. A continuous preference ordering on a compact topological space has one best and one worst point. Then any continuous preference ordering on a compact or σ-compact (an union of a countable family of compact sets) path connected topological space is representable by utility functions. Note that any compact or σ-compact metric space is separable but compact topological spaces in general need not to be separable.
References

