
This paper has been presented at:

Seventh International Workshop on Cloud Technologies and Energy Efficiency in Mobile
Communication Networks (CLEEN 2019). How cloudy and green will mobile network and
services be?
15 April 2019 - Marrakech, Morocco

https://5g-ppp.eu/cleen2019/

https://5g-ppp.eu/cleen2019/

Profit Maximization by Forming Federations of
Geo-Distributed MEC Platforms

Li-Hsing Yen, Chi-Han Chang, and Yi Chia Chen
Department of Computer Science, College of Computer Science, National Chiao Tung University, Hsinchu, Taiwan.

Email: lhyen@nctu.edu.tw, cross122911@gmail.com, yijia0112@hotmail.com

Abstract—Multi-access edge computing (MEC) as an emerging
technology which provides cloud service in the edge of multi-radio
access networks aims to reduce the service latency experienced
by end devices. When individual MEC systems do not have
adequate resource capacity to fulfill service requests, forming
MEC federations for resource sharing could provide economic
incentive to MEC operators. To this end, we need to maximize
social welfare in each federation, which involves efficient fed-
eration structure generations, federation profit maximization by
resource provisioning configuration, and fair profit distribution
among participants. We model the problem as a coalition game
with difference from prior work in the assumption of latency
and locality constraints and also in the consideration of various
service policies/demand preferences. Simulation results show that
the proposed approach always increases profits. If local requests
are served with local resource with priority, federation improves
profits without sacrificing request acceptance rates.

I. INTRODUCTION

Emerging Internet of Thing (IoT) applications demand
massive computation and communication resource yet low
response time, which is not viable with the current cloud
environment. As a response, multi-access edge computing
(MEC) [1] has been proposed, which brings cloud servers
(namely MEC servers) to the proximity of IoT devices [2]
while exploiting multi-radio access technology. MEC also
facilitates other time-sensitive cloud services and applications
like cloud-based AR/VR.

An MEC system comprises a set of inter-connected small-
scale MEC servers that scatter over some region, and is
operated and controlled by an MEC service provider (MSP).
It is envisioned that in the near future, a couple of MEC
systems each with limited resource capacity may have par-
tially overlapping service coverage areas. When MEC user’s
resource requests come in bursts targeting at some hot-spot
zone, the demand may exceed the capacity of a single MEC
system. Meanwhile, other MEC systems may have residual
capacities that can collectively meet the user’s demands. Fig. 1
shows an example with four MSPs. Here MSP1 and MSP3

both have resource demands exceeding their capacities while
MSP2 and MSP4 have residual capacities which are left idle.
If these MSPs form a federation to enable resource sharing
among them, all federation members can potentially have
higher profits (with the consideration of resource costs and
user’s payments). The federation also benefits MEC users as
it could lower request denial rate due to limited capacity.

In this work, we assume a broker who acts for all MSPs
to form a federations structure [3]. A federation structure is

D: demand

K: capacity

D K D K D K D K

MSP1 MSP2 MSP3 MSP4

C: unit cost

P: unit price

C P
C P

C P C P

Fig. 1. Example of MEC Federation

a partition of all participants into disjoint subsets, each corre-
sponding to a federation. Different federations yield different
profits. If we define the social welfare of a federation structure
to be the total profits in the structure, finding a federation
structure that maximizes the social welfare is NP-complete
[4]. Sandholm et al. [4] proposed an approach to this problem
which involves three activities: federation structure generation,
maximizing the profit of each federation, and allocating the
profit of each federation to federation members.

Federation structure generation is non-trivial because the
number of all possible federation structures is an exponential
function of the number of participants [4]. A common heuristic
to federation structure generation is merge-and-split, where
the initial federation structure contains singleton federations.
The approaches repeatedly merges two federations into more
profitable one until no further merging is beneficial. It then
attempts splitting every federation to seek possible profit
improvement. If any federation is ever split, another round of
merge-and-split then follows. The whole process stops when
no further merging or splitting is possible.

The profit-maximization problem of each federation is
domain-dependent. In most cases, it is a linear programming
problem [5]. In our problem, this is to maximize the profit
of a federation by resource provisioning configuration (RPC)
in the federation subject to various constraints, policies, and
preferences. It is not trivial because requests come with
different demands and payments, and different MEC systems
have different resource capacities and costs.

Finally, how federation profits are distributed to participants
can affect the stability of federations. A federation is stable if
no participant can be better off by deviating from the result
(splitting from its federation to work alone or join another

1

federation). Generally speaking, computing a stable payoff
configuration is intractable in most cases [4].

We propose an approach to federation structure formation
in the framework of coalition game. Coalition game theory
has been applied to grid computing [6], vehicular cloud [7],
mobile cloud [8], traditional cloud [3], and fog computing [9].
Our approach differs from prior work in the following points.
• Assumption of latency and locality constraints imposed

by requests. Without these constraints, any (cloud) server
could serve any request provided that it has adequate
resource. In contrast, an MEC server may not be able
to serve a request due to long latency or lack of context
information in an MEC environment.

• Assumption of independent service policies of service
providers. An MSP may either serve local requests first
(LRF) or seek maximal profit (MP) by serving more
profitable requests from other MECs. On the other hand,
MEC users may minimize latency by demanding local
MEC service only (LSO) or maximize the ratio of granted
requests by accepting any MEC service (AS). MEC users
can also make a trade-off by requesting local service first
(LSF) and accepting non-local service only when local
MSP does not have enough resource.

• Consideration of heterogeneous service costs and prices.
In traditional clouds, it is the service provider that deter-
mines selling price of resource. In our setting, it is MEC
users that offer buying prices to MSPs.

The proposed scheme uses merge-and-split heuristic to form
a federation structure that ensures stability. The maximal
profit that can be earned by each federation is solved by an
integer program solver. The profit of each federation is fairly
distributed to federation members based on Banzhaf value
[10]. We have conducted extensive simulations to study the
performance of the proposed approach (in terms of profits and
amount of allocated resource) with various settings. The results
show that federations always increase profits. With LSF, we
can increase total profits without any reduction on the amount
of allocated resource in every MSP.

The rest of this paper is organized as follows: Sec. II formu-
lates our problem and the next section presents the proposed
approach in details. Simulation results and discussions are in
Sec. IV. The last section concludes this work.

II. PROBLEM FORMULATION

We assume MEC system providing Infrastructure as a
Service (IaaS) with resource in the form of various sizes of
virtual machines (Small, Large, XLarge, etc.) As in [5], we
normalize the resources expressed in amounts of resources
using the size of small instances as the reference. With this,
Small, Large, and XLarge instances may demand 1, 2, and 4
units of resource, respectively (for example).

We assume a set of n MSPs S = {sp1, sp2, . . . , spn}.
Each MSP spi has a resource capacity Ci with unit cost ci.
We assume that all resource requests submitted by users of
spi have been aggregated with total amount ri and payment
per unit pi. These requests have latency constraint ti. If spj

serves requests from spi, the latency will be spj’s computa-
tion latency lj (depending on spj’s computing power) plus
communication latency lcj,i. The offloading also incurs extra
communication cost that could be estimated by the amount of
resource provided by spj to spi times bi,j , the unit cost of the
communication link from spi to spj .

We assume that there is a broker for S which finds 1) a
stable federation structure of S that maximizes social welfare,
2) a RPC for each federation that maximizes the total profit
of the federation, and 3) a profit allocation scheme that fairly
allocates the total profit of each federation to the federation
members.

The social welfare of a federation structure F =
{F1, F2, . . . , Fm} is defined as

u(F) =
∑
Fi∈F

u(Fi), (1)

where u(Fi) is the maximum profit that Fi can earn. Let F(S)
be set of all possible federation structures that can be formed
on S. Given S, F ∈ F(S) is an optimal federation structure
if it maximizes u(F):

max
F∈F(S)

u(F). (2)

Let qj,k be the amount of resource provided by spj to spk.
A RPC is a setting of all qj,k’s for each spj and spk in a
federation Fi. Apart from RPC, u(Fi) also depends on the
following parameters defined for every spj and spk in Fi:
• the unit profit when spj serves resource requests from

users of spk, which is pk − cj − bj,k, and
• whether the resource provided by spj to spk meets the

associated latency constraint. We define an indication
variable fk,j for this condition, where fk,j = 1 if
lj + lj,k < tk and fk,j = 0 otherwise.

The value of u(Fi) is the maximum profit that Fi can earn
with any RPC:

u(Fi) = max
qj,k

∑
spj∈Fi

∑
spk∈Fi

(pk − cj − bj,k) · qj,k · fk,j (3)

subject to capacity constraint∑
spk∈Fi

qj,k ≤ Cj , ∀spj ∈ Fi (4)

and demand constraint∑
spj∈Fi

qj,k ≤ rk, ∀spk ∈ Fi. (5)

This is an integer programing problem. If the serving policy
of some spj ∈ Fi is LRF, we have additional constraint∑

j 6=k qj,k ≤ max(Ck − rk, 0) for it. If LSO is demanded in
some spk ∈ Fi, we have qj,k = 0 for all j 6= k for it. If LSF
is demanded instead, the constraint is qk,k = min(Ck, rk).

Profit distribution is to allocate u(Fi) among all members
of Fi. Let xj be the profit allocated to each MSP spj ∈ Fi.
An allocation (xj)spj∈Fi is feasible if

u(Fi) =
∑

spj∈Fi

xj . (6)

2

Let (xj)spj∈Fi
be a feasible allocation for Fi. If there exists

another feasible allocation (yj)spj∈H for some sub-federation
H ⊂ Fi such that yj ≥ xj for all spj ∈ H and yk > xk
for some spk ∈ H , then H has a Pareto improvement on the
allocation (xj)spj∈H . The existence of a Pareto improvement
on the allocation of any subset H ⊂ Fi implies instability of
the allocation because all members in H could leave Fi to
form a new federation without profit reduction and at least
one member can receive a higher profit. In that case, we say
that H blocks Fi. The goal of stable profit distribution is to
find a feasible allocation for each federation Fi such that no
H ⊂ Fi can block Fi.

Algorithm 1 merge-and-split: Federation formation
1: S ← {{sp1}, {sp2}, . . . , {spn}}
2: repeat
3: F ← {{Fi, Fj}|Fi, Fj ∈ S, Fi ` Fj or Fj ` Fi}
4: while F 6= ∅ do
5: repeat
6: randomly select {Fi, Fj} from F
7: F ← F \ {{Fi, Fj}}
8: until can merge(Fi, Fj) or F = ∅
9: if can merge(Fi, Fj) then

10: S ← S \ {Fi, Fj}
11: S ← S ∪ {{Fi, Fj}}
12: F ← {{Fi, Fj}|Fi, Fj ∈ S, Fi ` Fj or Fj ` Fi}
13: end if
14: end while
15: redo← false
16: for all H ∈ S such that |H| > 1 do
17: for all partitions {Fi, Fj} of H do
18: if can split(Fi, Fj) then
19: S ← S \ {H}
20: S ← S ∪ {Fi, Fj}
21: redo← true
22: break
23: end if
24: end for
25: end for
26: until redo = false
27: return S

III. FORMING MEC FEDERATIONS

A. Federation Structure Generation

As mentioned, we use merge-and-split as a heuristic to
construct a federation structure. Refer to Algorithm 1. The
algorithm forms the initial structure S that consists of singleton
federations only, where each singleton federation is an MSP.
Unlike in tradition clouds, where any two federations could be
considered for possible merging, merging two federations Fi

and Fj into one in MEC is beneficial only if some MSP in Fi

is able to provide its resource to another MSP in Fj or vice
versa subject to latency constraint. Recall that fi,j = 1 if the
request from spi can be served by spj without violating the
latency constraint ti. Based on f , we define sharable relation
` on federations. For any two federations Fi and Fj , Fi ` Fj

iff ∃spp ∈ Fi,∃spq ∈ Fj , fp,q = 1. Therefore, merging Fi and
Fj should be considered only if Fi ` Fj or Fj ` Fi. We use

F to keep the set of all possible pairs of federations in S for
which merging should be considered.

The merging phase randomly picks up a pair of federations
{Fi, Fj} from F to see if Fi and Fj should be merged
together. Function can merge(Fi, Fj) returns the check result.
On merging, S is updated by removing both {Fi} and {Fj}
from it and adding the union of {Fi} and {Fj} into it. F is
also updated accordingly.

For any two (possibly singleton) federations Fi and Fj such
that Fi ∩ Fj = ∅, a necessary condition for H = Fi ∪ Fj to
be a stable federation is

u(H) 6< u(Fi) + u(Fj). (7)

The reason is not hard to see. If (7) does not hold, either Fi

or Fj blocks H for any feasible allocation for H . Even if (7)
holds, whether H is stable also depends on the profit allocation
for H . Let xk(F) denote the profit allocated to spk ∈ F . We
define binary relation � on federations as

F � F ′ iff ∀spi ∈ F ∩ F ′, xi(F) ≥ xi(F ′) (8)

and also relation ≡

F ≡ F ′ iff ∀spi ∈ F ∩ F ′, xi(F) = xi(F
′). (9)

Finally, F � F ′ if F � F ′ and F 6≡ F ′.
Some prior work allows merging Fi and Fj into H only if

H � Fi and H � Fj or H � Fj and H � Fi [6], [7]. Some
other work allows a merging only if the merging improves
every member’s profit [3]. We take the same merging rule as
[3]. Refer to Algorithm 2.

Algorithm 2 Function: can merge(Fi, Fj)

1: H ← Fi ∪ Fj

2: for all spk ∈ H do
3: if spk ∈ Fi and xk(H) ≤ xk(Fi) then
4: return false
5: else if spk ∈ Fj and xk(H) ≤ xk(Fj) then
6: return false
7: end if
8: end for
9: return true

When there is no more federation pair in F to check, the
algorithm proceeds to the splitting phase. It checks all possible
partitions of every non-singleton federation H in S to see if H
should be partitioned into two subsets. Whenever a partition
occurs, the algorithm goes back to the merging phrase with
the updated S.

Several conditions can be used for splitting up a federation
H into two disjoint subsets Fi and Fj . The condition could
be when the splitting improves at least one member’s profit
without decreasing any other’s (Fi � H and Fj � H or
Fj � H and Fi � H) [7], when the splitting has a Pareto
improvement on one subset (Fi � H or Fj � H) [6], or
when all members in one of the subsets have the same or
higher profits after the splitting (Fi � H or Fj � H) [3].
We take the same rule as [7]. So function can split(Fi, Fj)
returns true if Fi � H and Fj � H or Fj � H and Fi � H ,
where H = Fi ∪ Fj .

3

TABLE I
FOUR TYPICAL RESOURCE DEMAND/PROVISIONING CASES

Service policy
MP LRF

Request
demand

LSO LSO
LSF - LSF
AS MP LRF

TABLE II
AN EXAMPLE OF FEDERATION FORMATION

MSP (spi) sp1 sp2 sp3 sp4 sp5
Resource Capacity (Ci) 90 80 140 100 250
Resource Demand (ri) 120 100 120 180 100
Unit cost (ci) $2 $1 $2 $5 $1
Unit price (pi) $4 $2 $4 $6 $1

B. Resource Demand/Provisioning Cases

For a given federation, we need to find a RPC that max-
imizes the total profit. The RPC is subject to MSP’s service
policy and also user’s demand preference. Recall that an MSP
has two options for its service policy (LRF and MP) and each
MEC user can demand either LSO, LSF, or AS. Table I lists
four typical cases for resource demand and provisioning. We
take the example shown in Table II to illustrate the difference
of these four cases.

• Case 1 (LSO): When users only accept resource provided
by local MSPs, it does not matter what the MSP’s service
policy is. There cannot be any federation at all and all
MSPs work alone. For the example shown in Table II, the
social welfare is $600 and all unserved requests amount
to 130 units.

• Case 2 (LSF): MEC users are willing to accept resource
provided by remote MSPs only when local MSP does
not have enough resource. On the other hand, MSP must
provide enough resource to local requests before offering
residual capacity to remote requests. This setting ensures
that MEC users receive at least the same amount of
resource as in LSO and the social welfare is at least the
same as in LSO. In this case, sp4 and sp5 in Table II could
form a federation. After meeting its local demands, sp5
could offer 80 units of resource to sp4 to earn extra profit
80× ($6− $1) = $400. The social welfare is thus $1000
and the amount of unserved requests reduces to 30 units.

• Case 3 (MP): Federation members collaborate to maxi-
mize total profit while MEC users accept resource pro-
vided by any member in the federation. In our example,
sp1, sp2 and sp3 can form a federation so sp2 could
provide all its resource (80 units) to meet sp1’s local
request and earn a profit of 80× ($4−$1) = $240. After
that, sp1 could provide another 40 units of resource to
earn a profit of 40× ($4− $2) = $80. sp1 and sp3 then
provide their residual resource to the local request of sp2
without extra profit. sp4 and sp5 also form a federation
such that sp5 provides 180 units of resource to sp4’s local
request. That brings in 180×($6−$1) = $900. The social

TABLE III
SIMULATION PARAMETERS

Name Description Default Value
n Number of MSPs 10
µk Mean of Ci 1200
σk Standard deviation of Ci 110
µr Mean of ri 1000
σr Standard deviation of ri 110
µc Mean of ci 500
σc Standard deviation of ci 110
µp Mean of pi 1000
σp Standard deviation of pi 110
p Cooperation intensity 0.6

welfare is $1460 and the amount of unserved requests is
60 units.

• Case 4 (LRF): MEC users are willing to accept resource
offered by any MSP and the maximal amount of resource
that MSP spi can provide to remote users is limited by
Ci−ri. The limitation does not imply that spi should offer
Ci−ri units of resource to its local users. Other MSPs in
the same federation with cheaper residual resource may
serve its local requests. In our example, {sp3, sp4, sp5}
forms a federation such that sp3, sp4, and sp5 provide
20, 10, and 150 units of resource, respectively, to serve
sp4’s local requests, yielding a total profit $1080 in the
federation. sp1 and sp2 both form singleton federations.
The social welfare is $1340 with 50 units of unserved
requests.

C. Profit Allocation

Shapley value [11] for payoff distribution in a coalition
is based on marginal contributions of players considering all
possible player joining orders. For a specific joining order, a
player’s marginal contribution is the change of the value of
the coalition before and after the player joins the coalition.
Shapley-value-based profit distribution is fair but incurs high
computational cost.

Banzhaf value based on marginal contribution can also be
used for payoff distribution that guarantees fairness. It needs
only one (instead of all) player joining order to compute
Banzhaf value and thus is more computationally efficient. For
this reason, we adopt Banzhaf value for profit distribution. The
Banzhaf value for spj ∈ Fi is defined as

βj(Fi) =
1

2m−1

∑
H⊆Fi\{spj}

[u(H ∪ {spj})− u(H)], (10)

where m = |Fi|. The normalized Banzhaf value is defined as

Bj(Fi) =
βj(Fi)∑

spk∈Fi
βk(Fi)

. (11)

The profit of federation Fi allocated to spj is proportional to
Bj(Fi):

xj(Fi) = u(Fi)Bj(Fi). (12)

4

IV. SIMULATION RESULTS

We have studied the performance of the proposed approach
via simulations with various settings. The performance metrics
include the social welfare and the amount of allocated resource
in constructed federation structures. We used Gaussian distri-
bution to generate the values of Ci, ri, ci, and pi for each
MSP spi. Table III lists the notations for the means and the
standard deviations of these variables with their default values.
We used Python library PuLP [12] as an integer programming
solver for RPC in each federation.

The value of fi,j for every pair of MSPs (spi, spj) was
randomly determined with Pr[fi,j = 1] = p. We refer to p
as the cooperation intensity among MSPs (with default value
0.6). Fig. 2 shows how the social welfare and the total amount
of allocated resource changed with increasing p. Because LSO
allows no resource sharing, the performance with LSO is not
affected by p. The performance with all other three cases
improves as p increases. Among them, the highest social
welfare is with MP while the largest amount of allocated
resource is with LSF. The performance with LRF is between
these two cases.

We then varied µr, the mean number of requested resource
units, to study how the resource demand-to-supply ratio affects
the performance. The results are shown in Fig. 3. When µr is
less than µk = 1200, the mean number of capacity units, the
demands are lower than the supplies so both the social welfare
and the amount of allocated resource increase linearly as µr

increases. When µr ≥ µk, the amount of allocated resource is
limited by µk. Still, the social welfare could be improved by
appropriate RPC as MF demonstrates in Fig. 3a.

We next fixed all parameters but µp, the mean unit price
of resource, as a way to vary the price-to-cost ratio. From
the results shown in Fig. 4, we can see that resource requests
are generally fulfilled with LSO and LSF. On the other hand,
more profits can be earned with MF and LRF. The extra profits
come at the cost of low request acceptance rates. The cost is
particularly significant when the price-to-cost ratio is low.

We also varied σk, the standard deviation of resource
capacity, to see how the diversity of resource capacity affects
the performance results. Fig. 5 shows the social welfare
and the amount of allocated resource with different resource
demand/provisioning cases. The social welfare generally de-
creases as σk increases. The result with MP is the highest
among all, followed by LRF, LSF, and LSO (in that order). The
amount of allocated resource also decreases as σk increases,
but LSF outperforms the others. The performance of MP and
LRF is pretty much similar, and much better than LSO.

Although the supply of resource generally exceeds the
demand (µk > µr), a higher σk value implies a higher
variation of the supply. The worst performance is with LSO
because LSO allows no resource sharing. In contrast, MP
maximizes total profits due to its flexibility in RPC, but it
does not maximize the total amount of allocated resource.
One reason is that it does not allocate resource from some
MSP to another when that allocation yields zero profit (even

though doing so increases the amount of allocated resource.)
Consequently, LSF allocates the most amount of resource.

V. CONCLUSIONS

We have proposed an approach to profit maximization for
federated MECs. This approach uses merge-and-split proce-
dure for efficient federation structure generation, an integer
programming solver for RPC in each federation that maxi-
mizes profit, and a fair profit allocation based on Banzhaf
value. The merge-and-split procedure considers latency and
locality constraints. The RPC considers four different cases
for resource demand and provisioning, namely, LSO, LSF, MP,
and LRF. We have conducted extensive simulations to study
the impact of these constraints and rules on the performance of
the federations. The results show that maximal profits can be
earned with MP but sometimes at the cost of reduced amount
of allocated resource. With LSF, the amount of allocated
resource is not lower than the case of no federation yet the
profits can potentially be improved.

ACKNOWLEDGEMENTS

This work was partially supported by the Ministry of Sci-
ence and Technology, Taiwan, under grant numbers 106-2221-
E-009-004 and by the H2020 collaborative Europe/Taiwan
research project 5G-CORAL (grant number 761586).

REFERENCES

[1] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: a survey of the emerging 5G network edge
cloud architecture and orchestration,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[2] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
Internet of Things applications,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439–449, Feb. 2018.

[3] L. Mashayekhy, M. M. Nejad, and D. Grosu, “Cloud federations in
the sky: formation game and mechanism,” IEEE Trans. on Cloud
Computing, vol. 3, no. 1, pp. 14–27, Jan.-Mar. 2015.

[4] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé,
“Coalition structure generation with worst case guarantees,” Artificial
Intelligence, vol. 111, no. 1-2, pp. 209–238, Jul. 1999.

[5] M. Hadji and D. Zeghlache, “Mathematical programming approach for
revenue maximization in cloud federations,” IEEE Trans. on Cloud
Computing, vol. 5, no. 1, pp. 99–111, 2017.

[6] L. Mashayekhy and D. Grosu, “A merge-and-split mechanism for dy-
namic virtual organization formation in grids,” IEEE Trans. on Parallel
And Distributed Systems, vol. 25, no. 3, pp. 540–549, Mar. 2014.

[7] R. Yu, X. Huang, J. Kang, J. Ding, S. Maharjan, S. Gjessing, and
Y. Zhang, “Cooperative resource management in cloud-enabled vehicular
networks,” IEEE Trans. on Industrial Electronics, vol. 62, no. 12, pp.
7938–7951, Dec. 2015.

[8] R. Yu, J. Ding, S. Maharjan, S. Gjessing, Y. Zhang, and D. H. K. Tsang,
“Decentralized and optimal resource cooperation in geo-distributed mo-
bile cloud computing,” IEEE Trans. on Emerging Topics in Computing,
vol. 6, no. 1, pp. 72–84, 2018.

[9] C. Anglano, M. Canonico, P. Castagno, M. Guazzone, and M. Sereno,
“A game-theoretic approach to coalition formation in fog provider
federations,” in Proc. 3rd IEEE Int’l Conf. on Fog and Mobile Edge
Computing, Barcelona, Spain, Apr. 2018, pp. 123–130.

[10] G. Owen, “Multilinear extensions and the Banzhaf value,” Naval Re-
search Logistics, vol. 22, no. 4, pp. 741–750, Dec. 1975.

[11] L. S. Shapley, “A value for n-person games,” in Contributions to
the Theory of Games II, Annals of Mathematics Studies. Princeton
University Press, 1953, vol. 28, pp. 307–317.

[12] “Optimization with PuLP.” [Online]. Available:
https://pythonhosted.org/PuLP/

5

0 0.2 0.4 0.6 0.8 1
4.9

4.95

5

5.05

5.1

5.15

5.2
x 10

6

cooperation intensity (p)

S
o
c
ia

l
w

e
lf
a
re

LSO

LSF

MP

LRF

(a)

0 0.2 0.4 0.6 0.8 1
9910

9920

9930

9940

9950

9960

9970

9980

cooperation intensity (p)

A
m

o
u
n
t
o
f
a
llo

c
a
te

d
 r

e
s
o
u
rc

e
 (

u
n
it
s
)

LSO

LSF

MP

LRF

(b)
Fig. 2. (a) Social welfare and (b) amount of allocated resource with respect to cooperation intensity (p)

700 800 900 1000 1100 1200 1300 1400 1500
3.5

4

4.5

5

5.5

6

6.5
x 10

6

Mean of the amount of resource requested (µ
r
)

S
o
c
ia

l
w

e
lf
a
re

LSO

LSF

MP

LRF

(a)

700 800 900 1000 1100 1200 1300 1400 1500
0.7

0.8

0.9

1

1.1

1.2

1.3
x 10

4

Mean of the amount of resource requested (µ
r
)

A
m

o
u
n
t
o
f
a
llo

c
a
te

d
 r

e
s
o
u
rc

e
 (

u
n
it
s
)

LSO

LSF

MP

LRF

(b)
Fig. 3. (a) Social welfare and (b) amount of allocated resource with respect to the mean units of resource request (µr)

300 350 400 450 500 550 600 650 700
0

0.5

1

1.5

2

2.5
x 10

6

Mean unit price of resource (µ
p
)

S
o
c
ia

l
w

e
lf
a
re

LSO

LSF

MP

LRF

(a)

300 350 400 450 500 550 600 650 700
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Mean unit price of resource (µ
p
)

A
m

o
u
n
t
o
f
a
llo

c
a
te

d
 r

e
s
o
u
rc

e
 (

u
n
it
s
)

LSO

LSF

MP

LRF

(b)
Fig. 4. (a) Social welfare and (b) amount of allocated resource with respect to the mean unit price of resource (µp)

0 100 200 300 400 500 600
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2
x 10

6

Standard deviation of resource capacity (σ
k
)

S
o
c
ia

l
w

e
lf
a
re

LSO

LSF

MP

LRF

(a)

0 100 200 300 400 500 600
8400

8600

8800

9000

9200

9400

9600

9800

10000

10200

Standard deviation of resource capacity (σ
k
)

A
m

o
u
n
t
o
f
a
llo

c
a
te

d
 r

e
s
o
u
rc

e
 (

u
n
it
s
)

LSO

LSF

MP

LRF

(b)
Fig. 5. (a) Social welfare and (b) amount of allocated resource with respect to the standard deviation of resource capacity (σk)

6

