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Abstract . _ 

The bootstrap, extensively studied during the last decade, has become a 
powerful tool in different areas of Statistical Inference. In this work, we present the 
main ideas of bootstrap methodology in several contexts, citing the most relevant [ 
contributions and illustrating with examples and simulation studies some interesting
 
aspects.
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1 INTRODUCTION 

The bootstrap, a resampling method introduced by Efron (1979), aims to reproduce 
from the sample the mechanism generating the data and to use it in the statistic of 
interest, replacing everywhere the unknown populational model. Let X = (Xl,"" X n ) be 
a random sample from a variable X with unknown distribution P and consider the statistic 
R = R(Xl , ••. ,Xn ; P) . If Pn is the empirical probability corresponding to X (giving mass 
~ to each observation), the bootstrap version of R is R* = R(X;, ... ,X~; Pn ) , where 
X* = (X;, .. . ,X~) is a random sample drawn from Pn ; this is known as standard, nai've 
or nonparametric bootstrap. Other resamplin~ approaches have also been considered: 
instead of Pn , we can use a smoothed version Pn (smoothed bootstrap) or, if it is known 
that P belongs to a parametric family {Pg: 0 E:: e} and On = On(X) is an estimator of 
0, X* can be taken as a sample from Pgn (parametric bootstrap); in general, any other 

estimator P of P could be used. n 

The bootstrap technique proceeds in several steps: 
(i) simulate artificially a random sample X* == (X;, . .. , X~) -m not necessarily equal 

to n- from the empirical probability Pn • 

(ii) evaluate R at the bootstrap sample to obtain the bootstrap version of the statistic 
R* = R(Xi, .. ·, X~; Pn ) . 

(iii) replicate (i) and (ii) a large number B of times, in order to get B values of R*, 
Ri = R(X*i; Pn ), i = 1, ... , B. 

Finally, a histogram (or, in general, any other estimate of the distribu tion of R*) is 
obtained from Ri, i = 1, ... , B. This is an approximation to the distribution of R* which 
in turn is the bootstrap estimation of the unknown distribution of R. 

There exists an extensive literature on bootstrap. This paper is focused on the basic 
ideas in several statistical contexts; we quote the most relevant contributions and illus­
trate with examples and simulation studies some interesting topics. The contents are the 
following: 

1. Introduction 

2. The bootstrap as an alternative to the jackknife. Estimation of bias and variance. 

3. Bootstrap approximation to the distribution of a statistic. 

4. Bootstrap confidence intervals. 

5. The bootstrap in linear regression models. 

6. Bootstrap prediction error estimation. 

7. The bootstrap for empirical processes. Applications. 

8. Alternative bootstrap resampling: smoothed, symmetrized and bayesian bootstrap. 

9. The bootstrap in curve estimation. 
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10.	 Other topics and applications. 

Previous review or introductory papers on bootstrap or applications of the bootstrap 
in specific areas of statistical inference are Efron (1982), Efron and Tibshirani (1986), 
Hinkley (1988), DiCiccio and Romano (1988), Hardle and Mammen (1991) and Leger, 
Politis and Romano (1992). 

[ Since it is extremely difficult to exhaustively review such a growing literature, the 
choice of topics inevitably reflects the authors interests; moreover, some very recent emerg­
ing applications in several fields (e.g., binomial models or model checking in time series 
(Tsay, 1992)) are not covered. We don't either consider questions related to the com­
putational efficiency of the resampling procedure (see Efron (1990), Davison, Hinkley 
and Schechtman (1986), Graham, Hinkley, John and Shi (1990), Do and Hall (1991) and 
references therein); Sanchez (1991) is a survey on this subject. 

2	 THE BOOTSTRAP AS AN ALTERNATIVE TO THE JACKKNIFE. ESTIMATION OF BIAS 

AND VARIANCE 

Initially, the bootstrap was introduced by Efron(1979) as an alternative technique to 
the classical Quenouille-Tuckey jackknife (see Miller, 1974) to estimate either the bias 
EFT(X) - T(F) or the variance VarFT(X) of some estimator T(X) of T(F), where X = 
(Xl,"" Xn ) is a random sample from the distribution F. Taking R(X; F) = T(X) -T(F), 
this entails to estimate EFR(X; F) or VarFR(X; F). If Fn is the empirical distribution ob­
tained from the sample X, EFR(X; F) can be estimated by EFn R(X"; Fn ) = E.. R(X"; Fn ), 

which in turn can be approximated by 

R"	 = ~t R(X..ij Fn ). 

i=l 

Analogously, a bootstrap estimator for VarFR(X; F) is VarFnR(X"; Fn ) = Var .. R(X"; Fn ) 

which can be also approximated by 

When either it is difficult to obtain explicit estimations using E.. or V.. or when the 
approximatting computational mechanism is too complicated, a Taylor expansion can be 
used. Indeed, if (Xl,"" xn ) is a particular value of X and Nt = #{Xt = xd, i = 1, ... , n 
and pi = !If, then the bootstrap resampling vector P" = (pi, ,p~) is distributed as 
1 times a multinomial distribution with mean E..P" = §. = (1, ,1) and covariance n	 n n n 

matrix given by 

where I is the identity matrix and et is the transpose of vector e. So, assuming that R is 
invariant with respect to sample permutations, we can identify R(X", Fn ) and R( p .. ) in 
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the following second order Taylor expansion at ;: 

.. e .. e 1 .. e .. et
R(P )::: R(-) + (P - -)U + -(P - -)V(P --) 

n n 2 n n 

8R(P") . 
Ui = 8 Ip·=~,z=l, ... ,njpi n 

and 

82R(P") . 
Vij= 8 8 Ip·="'-,z=l, ... ,n.pi pj n 

Calculating mean and variance in the previous Taylor expansion, we get 

Var .. R"::: Var"R(P")::: Ut(£ - et:)U = ~ tur (2.2) 
n n n i=1 

Considering expresions (2.1) and (2.2), we can compare all known interesting estimates 
of bias and variance of a functional T(Fn ); taking R(X, F) = T(X) - T(F) = T(Fn ) ­

T(F), we get 

a) Bootstrap estimations of bias and variance of T(X): 

BiasbootT(X) = E.. R" = E..T(X") - T(Fn ) (2.3) 

(' VarbootT(X) = Var .. R" = Var ..T(X") (2.4) 

L 
b )Approximations to bootstrap distributions of bias and variance of T(X): 

(2.5) 

V;;:;ootT(X) = B ~ 1 t,(T(X..i ) - T .. )2 (2.6) 
1:::1 

c) Jaeckel's (1972) infinitesimal jackknife estimations: 

1 n 

Biasjack_iT(X) = 22 LVii (2.7) 
n i=1 

1 n 

Varjack_iT(X) == 2 L ul (2.8) 
n i=1 
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where 

and 8x • is the corresponding Dirac's delta at Xi, i = 1, ... , n. 

In several interesting cases, these estimations coincide with the ones given by the 
classical delta method and with the corresponding ones obtained through the empirical 
influence function (see Efron (1982) for further details). 

d) Ordinary jackknife estimations (Quenouille, 1956, and Tukey, 1958): 

(2.9)BiasjackT(X) = 2n(n 
1
_ 1) trn_

Vii 

1 ~ -r2
VarjackT(X) = 2" L./Ji , (2.10) 

n i=1 

where "Cii and Ui are approximations for Vii and Ui with E = -1~n' 
Thus, the infinitesimal jackknife estimations of bias and variance coincide, respectiveiy, 

with the linear and quadratic approximations of the bootstrap estimations, whereas the[' ordinary jackknife estimations approach the corresponding infinitesimal jackknife ones. 
Expressions (2.9) and (2.10) should be compared with (2.7) and (2.8); the original 

ordinary jackknife expressions were 

(2.11 ) 

(2.12) 

where t = ~ L:~1 T(X(i)) and X(i) is the sample when the i-th observation is deleted. 
From Biasjack, we can construct a new estimator of T(F) (the so called corrected bias 
estimate) 

pack(X) = T(X) _ BiasjackT(X) := nT(X) _ n - 1 t T(X(i)) = 
- n i=1 

1 n 1 n _ 

= - E(nT(X) - (n - l)T(X(i))) = - ET(1), 
n i=l _ n~1 

where T(i) is the i-th jackknife pseudovalue (which is also an estimate of T( F)). It can be 
shown that 

r~ 
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(2.13) 

To end this section, we present a simulation study comparing jackknife and bootstrap 
as estimators of the variance of a given statistic. Let F be a distribution which is symmet­
ric about its mean (and median) 8 == T(F) == JxdF(x). To estimate 8, we will consider 
the sample mean, T(X) == X, the a-trimmed mean 

1 n-[nc>] 

Ta(X) == 2[ f l: X(iJ,n - nO' .l=[na]+l 

where [t] denotes the greatest integer less than or equal to t and (X(1)l ... ,X(n)) is the 
ordered sample, and the sample median T1/ 2(X). It is easy to check that the jackknife 
and bootstrap estimations of the variance of the sample mean are S2/ n and S~/n, where 
S2 and S~ are the sample quasi-variance and variance, respectively (so, the jackknife 
estimation is unbiased). The exact expression for the bootstrap variance of the sample 
median is 

n 

VarbootTl/2(X) == l:(X(k) - E.. T1/2(X"))2 pk , 
k=l 

[' 
if n == 2m - 1 (resampling distribution of the bootstrap median (see Efron 1979, 1982)). 
Ghosh et at (1984) have shown the consistency, under certain conditions, of the bootstrap 
estimation of the variance of the sample median, in opposition to the asymptotic behavior 
of the jackknife (Miller, 1974): r. . 

1 (X2~)2nVarjackTl/2(X) ---+w 4j2(8) 

and (see, e.g., Kendall and Stuart, 1958) 

r 1 
l .. 

nVarT1/ 2(X) --; 4j2(8)' 

2 
where f is the density corresponding to F, f( 8) > O. Since the mean of the variable (T)2 
is 2, the jackknife estimate is inconsistent. 

The bootstrap estimator of the variance of the sample median was introduced by 
Maritz and Jarret (1978) and Efron (1979). Babu (1986) obtained the consistency of the 
bootstrap estimator of the variance of any sample quantile and Hall and Martin (1988) 
have proved that its rate of convergence is slow (of order n-t). 

Tables 1.1 and 1.2 present the results of a simulation study comparing the bootstrap 
and jackknife approximations to the variance of the sample mean, median and a-trimmed 

r,
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c means for a N(O, 1) population. We have used (2.6) and (2.12) and the fact that, in this
) , 

case, the theoretical variance of the mean is ~ and the asymptotic variances of the samplel_ 
'median and a-trimmed means are 2

1r 
n and 

F ((<f>-l(l_Q))2) + 20'(4)-1(1 _ 0'))2
"1(1,3/2) 2 • 

n(1-2a)2
c­

respectively, where F'Y(1,3/2j and 4> are the distribution functions for the gamma and normall., 
distributions, respectively. Both tables give the exact variance of the estimates and the 
means and mean squared errors -between parentheses- of the jackknife and bootstrap 
approximations for 1000 simulated samples of size 11 (Table 1.1) and 21 (Table 1.2) with 
B = 200 bootstrap replications. 

I.., Exact Jackknife Bootstrap
.~ 

Mean Var. 0.0909 0.0904 (0.0016) 0.0821 (0.0014) 
Median Var. 0.1427 0.1685 (0.0415) 0.1738 (0.0148) 

O.l-mean Var. 0.0963 0.0978 (0.0025) 0.0989 (0.0021) 
0.2-mean Var. 0.1040 0.1103 (0.0052) 0.1099 (0.0031) 
0.3-mean Var. 0.1138 0.1267 (0.0110) 0.1222 (0.0050) 
OA-mean Var. 0.1263 0.1685 (0.0426) 0.1400 (0.0084) 

Table 1.1 

Exact Jackknife Bootstrap
 

r
\ , 

Mean Var. 0.0476 0.0475 (0.0002) 0.0452 (0.0002)
 
Median Var. 0.0747 0.1078 (0.0227) 0.0895 (0.0031)
 

O.1-mean Var. 0.0504 0.0506 (0.0003) 0.0520 (0.0003) 
0.2-mean Var. 0.0545 0.0554 (0.0006) 0.0563 (0.0005) 
0.3-mean Var. 0.0596 0.0636 (0.0014) 0.0625 (0.0008) 
OA-mean Var. 0.0661 0.0793 (0.0054) 0.0718 (0.0016) I 

Table 1.2 

As expected, the results show a better behavior of the bootstrap approximation in 
mean squared error, improving with a. 

3 BOOTSTRAP APPROXIMATION TO THE DISTRIBUTION OF A STATISTIC 

As we have seen, a general goal of bootstrap resampling is to approximate the distribution 
PF{ R(X, F) ~ x} of the statistic R(X, F) by using the distribution 

PF,,{R(X*, Fn ) ~ x} = P*{R(X.,Fn ) ~ x} 

of R(X*, Fn ). This can be expressed in several ways. If R(X, F) converges weakly to a 
distribution S(F), it suffices to show that R(X", Fn ) converges weakly to S(F) for almost 
all samples X 1 , ... Xn ... (R(X*,Fn ) -w S(F) a.s.) or to establish that the distance 

r" 
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(	 between the law of R(X*, Fn ) and the law of S(F) tends to zero in probability for any 
It	 distance metrizing weak convergence (R(X*, f'n) -+w S( F) in probability). Also, the 

discrepancy between the sampling and the bootstrap distributions can be measured by 
using different functional distances: the supremum distance 

doo(F, G) == sup IF(x) - G(x)1 
xE'R 

or the Mallows metric, defined on the class of distribution functions with finite second 
moment, given by 

where F-1(t) == inf{x : F(x) 2: t}, t E (0,1). This metric characterizes weak and second 
order moments convergence. Discrepancies at a fixed point x are usually treated by means 
of Edgeworth expansions. 

Bickel and Freedman (1981) show that if EFX 2 < 00 then 

d2(PFn{nl/2(X~- Xn):S ·},Ppfn1
/ 
2(Xn - f.l):S .}) -+ ° a.s. 

Later on, Bickel and Freedman (1984) extend his result to stratified sampling. Under 
the same hypotheses, Singh (1981) proves the result for the distance doo • Moreover, 
under different hypotheses, he gets the corresponding rates of convergence; in particular, 
if EFIX/ 3 < 00, he obtains that 

a.s. 

This rate of convergence is larger than the one obtained in the same paper for the 
sample quantiles, R(X, F) = n 1/ 2(F -l(t) - P-l(t)) : assuming that the second order n
derivative of F does exist, that the first order derivative is bounded in a neighborhood of 
F-1(t) and that F'(F-1(t)) > 0, Singh shows that 

One of the most studied cuestions over the eighties is comparing the boots trap ap­
proximation rate with the approximation rate of previously existing methods, such as 
the normal approximation in the central limit theorem. Edgeworth expansions are the 
fundamental tool for this purpose. In this way, following, e. g., Hall (198B-a), if F is not 
reticular and E\XI 3 < 00, it is possible to compare rates of convergence for the bootstrap 
and the normal approximation using Edgeworth expansions for R(X, F) = n1/2( Xn - f.l): 

(3.14) 

[	 
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(3.15) 

[	 uniformly in x, where ()' is the standard deviation of X, 113 is the third order central 

L	 moment and c/J and ~ are, respectively, the density and distribution function of the normal 
distribution with zero mean and variance equals to one. Indeed, let us consider the 
Edgeworth expansions for the bootstrap distributions 

and 

{ nl/2(X~-Xn) } 
PFn Sn :S x , 

obtained from (3.14) and (3.15) by replacing the theoretical parameters by the sampling 

, {: ones. The bootstrap behaviour is better for th~. studentized statistic: the bootstra~ and 
1normal approximations are equivalent for n / 

2(Xn-/1-) since they are given by ~ (;n') but 

the bootstrap	 approximation will be better for nI/2(~n-~) because we have 

meanwhile the normal approximation error is O(n- 1/ 2 ). This is due to the equivalence 
between the rate of convergence of the bootstrap approximation and the first order correc­
tion of the Edgeworth expansion (see Abramovitch and Singh (1985) for further details). 

r .	 Also in this context, Bose and Babu (1991) have obtained probabilistic bounds for theLi	 deviation of the sampling distribution from the bootstrap distribution and they give the 
rate of convergence to one of the probability that the bootstrap approximation outperform 
the normal approximation. 

The results by Bickel and Freedman (1981) and Singh (1981) have been extended 
to more general statistics like, for instance, M-statistics, statistics defined by Frechet 

rr
j , differentiable functionals, V-statistics or V-statistics (see section 7). Some asymptotic 
~ __ ' minimax properties of the bootstrap can be seen in Beran (1984). 

There exist, however, some situations where this nai've bootstrap does not work. Babu 
(1984) showed that this happens for the appropriately normalized sample mean if the 
population X is a symmetric stable random variable with index p, 1 < p < 2; more 
specifically, Athreya (1987) proved that if X belongs to the domain of attraction of a 
nonllormal stable law (and so EX2 = (0) then the bootstrap version of the correspond­
ingly normalized mean has a random distribution and it does not converge to the stable 
law (see also Knight (1989) for a different proof of this result). Gine and Zinn (1989) have 
proved that EX 2 < 00 is a necessary condition for the boots trap of the sample mean to 
converge weakly almost surely; they have also established that if the bootstrap of the 

It	 9 
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mean converges weakly in probability then the populational distribution has to be in the 
domain of at traction of a normal law. Hall (1989-a) characterizes weak convergence in 
probability for the bootstrap sample mean in terms of the tail behaviour of the popu­
lational distribution F. All this results give evidence of the naive bootstrap failing for 
heavy-tailed distributions. A feasible modification of the bootstrap method is changing 
the resample size from n to m n with m n = o(n); Arcones and Gine (1989) prove that 
if X is in the domain of attraction of the normal law then the bootstrap of the sample 
mean converges weakly in probability to the Gaussian distribution for any resampling size 
m n ---+ 00 and they also show that if mn =o( log~g n) and X is in the domain of at traction 
of a stable law, then the bootstrap sample mean converges weakly almost surely but it 
does not happen if EX 2 = 00 and infn mn(lo~~ > O. Wu, Carlstein and Cambanis 
(1989) apply blockwise bootstrap for the mean in the nonnormal stable case. 

A different example where the na'jve bootstrap is not asymptotically correct is pre­
sented by Beran and Srivastava (1985) for the distribution of the eigenvalues of the sample 
covariance matrix when the populational covariance matrix has multiple eigenvalues; an­
other related situation where inconsistency of the bootstrap is related with ties between 
the parameters is considered by Hall, Hardle and Simar (1991). Bickel and Freedman 
(1981) prove that the bootstrap does not work when the statistic of interest is the largest 
or smallest value of the sample. Basawa et al. (1991) give also an example of inconsistent 
bootstrap in the context of AR(l) models with a unit root (see Section 5). 

Efron (1992) uses jackknife-after-bootstrap techniques to study the accuracy and sen­
sitivity of the bootstrap approximations, avoiding further bootstrap resampling. Cuevas 
and Romo (1991) consider the qualitative robustness for the bootstrap approximation to 
the distribution of a statistic. 

4 BOOTSTRAP CONFIDENCE INTERVALS 

One of the main applications of bootstrap methodology is to calculate confidence intervals. 
Depending on the bootstrap mechanism being used, the differences between the resulting 
intervals can be important (see, e.g., Efron and Tibshirani (1986), DiCiccio and Romano 
(1988), Hall (1988-a) and Swanopoel (1990)). 

In what follows, the distribution Fn producing the resampling data X* is either the 
empirical distribution Fn or (in the parametric bootstrap case) the corresponding para­
metrically estimated distribution FOn ' 

1.	 Standard method. Assume that () = T(F) is the parameter of interest. Let er: = 
VarFO = VarFT( Fn ). The standard method is to approximate the distribution of 

by a N(O,l) distribution and the interval is given by 8± }/2Zo./2, where ep(Zo./2) = 
1 - a./2. The estimated parameter;' can be obtained using the delta method, the 
estimated Fisher information, the bootstrap, the jackknife, etc. 
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2.	 Percentile method. It is based on approximating H(s) = Pp{O::; s} by 

H* (s) == PF" {ir ::; s} = P* {{r ::; s}; 

so, the interval is given by (H*-1(a/2), H*-l(1 - a/2)). In practice, one simulates 
B bootstrap samples of size n, X*i, i = 1, ... , B and consider the ordered values 

, I (

0(1) ::;, ... , S; O(B)' The interval (O(T) ,8(3)) is an approximation to the previous 
L.	 

interval, where r = [B2c< ] and s = [B(12- a
) ] • 

3.	 Bias-corrected percentile method. It is assumed that there exists a monotonically 
increasing transformation 9 such that T(g( (;) - 9(0)) + Zo has a known distribution 
1( symmetric about zero, for some unknown values T and zoo Then a theoretical 
interval will be 

with Zo = 1(-I(H(O)). The value Zo is called bias-correction parameter; there is no 
correction when H(O) = 1/2. The corresponding bootstrap interval is given by r'

L 

where Zo = 1(-1 (H*( 0)) and it is known as bias-corrected percentile interval. This 
method was introduced by Efron (1982), who studied the case K = 4>. The cal­
culation in practice is analogous to the one for the percentil method (OtT)' 8(3)) but 
with 

and 

If i o =0 and f( = 4>, we get the percentile method. 

4.	 Accelerated bias-corrected percentile method. Introduced by Efron (1987), it is as­
sumed that there exists a monotonically increasing transformation 9 and constants 
T, Zo and a such that 

9(0) - g(O))
T	 + Zo

1 +aTg(O),I	 
( 

i\ 

, C..---,' has a known distribution J( symmetric about zero. A theoretical interval is given 
by 

r,If,', 
11 
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r .'.
I ' 

r' with 

t 
Ce./2 = 

Ze./2 + Zo 

1 - a(ZO + Ze./2) 
- ZOo 

Zo is the bias-correction parameter and a is the acceleration constant; as in 3, Zo = 
I 

t 
J(-l(H(())). 
given by 

If a = 0, it becomes case 3. The corresponding bootstrap interval is 

where 20 = K-1(H*(0)) and he./2 and ce./? are estimated from 20 and a. Of course, 
the main difficulty with this method relies on the estimation of a. Efron (1987) 
gives the choices: 

(,3 is the skewness coefficient) for parametric bootstrap, and 

where Vi = lim(_0~(T((1-€)Fn+€8xi) -T(Fn)),i = 1, ... ,n, for nonparametric 
bootstrap. 

As in 2 and 3, in practice, the bootstrap interval will be given by (O(r) ,0(8)) with 

r = [BI«220 ­ he./2)] and s = [BK(220 +Ce./2)] . 

5. Pivotal method. Is was introduced by Beran (1987) and studied in Beran (1988, 
1990). If Q(O, ()) is a pivot for () with distribution H under the populational dis­
tribution F, it is known that H(Q(O*,O)) is approximately uniform. If Q(O,()) is 
monotone in (), using the bootstrap quantiles of order a/2 and 1 - a/2, a confidence 
interval can be calculated. For instance, let ~: be an estimation of VarFO. If H is 
the distribution of 

r
l 

then H ( nl/2~B_(J)) follows a uniform distribution HI and 

{ ( 
nl/2(0

PF a/2 ~ H a­
())) 

~ 1 -
}

a/2 = 1 ­ a 

would give a pivotal confidence interval which cannot be calculated since H is not 
known. In the bootstrap context, 

12 

_...._------------------------------------­



r

t 
I 

and 

[' 

have distributions H* and H~, respectively; so, H- 1(a./2) and H- 1 (1 - a./2) can 
be approximated by H*-1(H;-1(a./2)) and H*-l(H;-l(1 - a./2)). The difficulty 
with this method is that the bootstrap mechanism has to be carried out twice. The 
required steps are the following: 

(a)� Obtain the bootstrap sample X*j, j =: 1, ... , B and consider the values 

n1/2(O*J _ 0) 
j=1, ... ,8.&*j 

Its empirical distribution tends to H" when B ~ 00. 

(b)� From each X*J,j = 1, ... ,B get N bootstrap samples X*Jk,k = 1, ... ,N­
wich will be condi tionally independent given X and X* , j = 1, ... , B. If Zj, j = 
1, ... , B is the fraction of values 

[ . n 1/ 2( O*jk _ O*J)�
( k=l, ... ,N�&*Jk 

which are less than or equal to 

n 1/2(O*j - 0) 
&*j 

the empirical distribution of Zj,j = 1, ... , B is used to approximate the dis­
tribution H;. 

6.� Percentile-t method. Considered by Hall (1986, 1988-a), this technique applies the 
percentile method idea to the statistic 

Two versions can be considered. The symmetrized percentile-t, which tries to esti­
mate the value (}( a.) satisfying 

PF{nI/2Io~ol:;; o(al} = I-a, 

using the quantity (}* (a.) such that 

13 
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and the equal tails percentile-t whose goal is to estimate ()lo and ()20 verifying 

r 
L 

through ()io and ()2o' The values ()lo and ()20 are the order a/2 and 1- a/2 quantiles 
of 

\ I 

and ()io and ()20 are the corresponding quantiles for 

In practice, one has to proceed in the same way as for the percentile method but 
considering the values 

i=l, ... ,B 

or 

n1/2( O*i. - 0) I 
i=l, ... ,B,

\ . I fr*' ' 
l __ 

depending on the considered percentile-to 

7. Methods based on Edgeworth expansions. Assuming that the statistic 

I

I 
\. • 

admits an Edgeworth expansion of the form 

I[ 
where ll'j(x), i = 1,2, ... , are polynomials in x with coefficients depending on the 
populational moments, several confidence intervals can be calculated, inverting this 
expansion (Hall, 1983) or using the bootstrap approximation to these inversions 
(Abramovitch and Singh (1985) and Rayner(1989)). 

r'
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From the available results, the following conclusions can be drawn: r' 
) 
\ 

(a) Among all percentile methods (2, 3 and 4)., the accelerated bias-corrected percentile 
is the one performing best. 

(b)� Methods 4 and 6 give intervals with theoretical covering error of order O(n -I), and 
methods 1,2 and 3 are of order O(n- I / 2 ). 

(c)� Methods 4 (Efron, 1987) and 6 (Hall, 1988-a) present different properties; the former 
is scale invariant and the later has good computational properties. 

(d)� Hall (1988-a) gives a covering error of order O(n-2 ) for the symmetrized percentile-t 
and O(n- 1) for the equal tails percentile-to The pivotal method 5 applied to the 
symmetrized percentile-t leads to an error O(n-3 ) (Beran, 1987). 

(e) Rayner (1987) presents simulation results for several methods of type 7. 

p = 0.1 p = 0.3 p =: 0.5 p = 0.7 p = 0.9 
TWO-SIDED 

r m 
t� Stand 1.304(1.00) 1.449(1.00) 1.656(1.00) 1.874(1.00) 2.100( 1.00) 

Per 0.514(0.96) 0.554(0.96) 0.547(0.94) 0.410(0.92) 0.167(0.93) 
A-Per 0.717(0.83) 0.626(0.85) 0.548(0.93) 0.410(0.93) 0.169(0.93) 
Sim-t 0.552(0.96) 0.604(0.92) 0.626(0.89) 0.461 (0.91 ) 0.178(0.91 ) 

{� Eq-t 0.460(0.95) 0.552(0.69 ) 0.593(0.81) 0.445(0.85) 0.173(0.85) 

{ 
D 
Stand 0.912(0.94) 0.768(0.91 ) 0.561(0.89) 0.342(0.87) 0.117(0.84) 
Per 0.516(0.96) 0.555(0.96) 0.546(0.94) 0.408(0.92) 0.166(0.93) 
A-Per 0.391 (0.83) 0.512(0.85 ) 0.541(0.93) 0.407(0.93) 0.167(0.94) 
Sim-t 1.029 (0.98) 0.923(0.97) 0.760(0.96) 0.535(0.96) 0.213(0.94)

\ 
\ ....� Eq-t .0.788(0.77) 0.768(0.77) 0.683(0.88) 0.486(0.92) 0.192(0.93) 

ONE-SIDED 

m 
Stand 0.629(1.00) 0.698(1.00) 0.798(1.00) 0.904(1.00) 1.012(1.00) 
Per 1.037(0.91) 1.095(0.93) 1.241(0.92) 1.491(0.92) 1.810(0.91 ) 
A-Per 0.753(0.91) 1.004(0.93) 1.234(0.93) 1.485(0.93) 1.804(0.93) 
t 0.934(0.83) 1.085(0.85) 1.310(0.84) 1.562(0.83) 1.843(0.83) 

D 
Stand 0.440( 1.00) 0.370(1.00) 0.270(1.00) 0.165(0.98) 0.056(0.94) 
Per 0.51O( 1.00) 0.420( 1.00) 0.292(0.96) 0.167(0.96) 0.053(0.96) 
A-Per 0.632(0.84) 0.462(0.87) 0.295(0.95) 0.170(0.96) 0.055(0.96) 
t 0.714(0.77) 0.542(0.77) 0.342(0.88) 0.190(0.93) 0.060(0.93) 

Table 4.1. 
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To compare the previous methods, we have carried out a simulation study divided into 
two parts. First, we have obtained N = 500 samples with size 25 from a bidimensional 
normal variable X with distribution 

N2 ( ( ~ ) , (~, i))· 
The parameters we consider are the eigenvalues of the covariance matrix Al = 1 + P 

and A2 = 1 - p. From the corresponding sample values, '\1 and '\2, using the statistics 

n I /
2(,\i - Ai) 

i = 1,2,
(2'\i)1/2 

we have calculated right one-sided and two-sided confidence intervals for methods 1 
(Stand. in the table), 2 (Per in the tables), 4 (A-Per in the tables) and symmetrized and 
equal tails 6 (Sim-t and Eq-t in the "two-sided" tables and t in the "one-sided" ones), with 
B = 1000. Table 4.1 shows the mean lengths and mean coverings (between parentheses) 
for a theoretical covering value of 0.95 and different values of Pi in the "one-sided" case, 
the mean lengths are replaced by the mean critical points. 

Next, to estimate the mean a of a variable X of the form 

ax~ 
a ER,T' 

we have carried out a simulation study with the same technical features. Table 4.2 presents 
the results for different values of k and a = 2. 

k = 1 k=2 k:= 3 k=4 k=5 
TWO-SIDED 
(a = 2) 
Stand 2.124(0.89) 1.546(0.91 ) 1.231(0.91) 1.085(0.94) 0.970(0.92) 
Per 2.061 (0.89) 1.504(0.90) 1.199(0.92) 1.056(0.94) 0.945(0.92) 
A-Per 2.217(0.90) 1.576(0.91 ) 1.237(0.93) 1.083(0.93) 0.963(0.94) 
Sim-t . 3.002(0.94) 1.912(0.94) 1.453(0.95) 1.245(0.96) 1.096(0.95) 
Eq-t 2.839(0.93) 1.856(0.94 ) 1.419(0.95) 1.227(0.95) 1.083(0.96) 

ONE-SIDED� 
(a = 2)� 
Stand 1.149(0.97) 1.384(0.97) 1.482(0.97) 1.554(0.97) 1.589(0.97)� 
Per 1.230(0.95) 1.432(0.96) 1.516(0.96) 1.582(0.96) 1.611(0.97)� 
A-Per 1.337(0.92) 1.498(0.94) 1.560(0.96) 1.618(0.94) 1.641(0.95)� 
t 1.289(0.94) 1.464(0.95) 1.534(0.96) 1.594(0.96) 1.622(0.97)� 

Table 4.2. 

In the first problem, the bootstrap-t does not behave as well as expected; in fact, Efron 
has remarked that the bootstrap-t is troublesome in the correlation coefficent problem. 
However, the percentile method behaves very well, in opposition to the very conservative 
standard method. An asymptotic study for this example could be carried out using 
Edgeworth expansions (see Beran and Srivastava, 1985). 
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{� ;) THE BOOTSTRAP IN LINEAR REGRESSION MODELS 

t, 
We will consider three different models: (a) Yi = x;,8 + ci, i = 1, ... , n, where Xi E nk, 
13 is the unknown k-dimensional parameter and Ci, i = 1, ... , n are independent and 
identically distributed errors with zero mean, (b) (XL Yi), i = 1, ... , n are independent 
and identically distributed random variables with distribution function F and we look for 
the vector ,8 minimizing EFIY - X,81 2, and (c) as in (a), but allowing for independent 
errors Ci, i = 1, ... ,n, with distribution depending on xL i = 1, ... ,n-e. g., through the 
variance (heteroskedastic models). For each of them, the bootstrap should be adapted to 
capture the specific features of the model. 

For model (a), we present the bootstrap as an alternative to the jackknife. Let ,8 = 
(XtX)-lXty be the least squares estimate of tl, where 

and 

and let us consider the estimation of COVF~, where F is the distribution of Ci, i = 1, ... , n. 
The following jackknife estimates have been proposed: 

1. Ordinary jackknife. From (2.9) and (2.10), with ri = Yi - x~~, 

n In - - 1 n 
COVjack~ = -=- 2)~(i) - ~)(~(i) - ~)t::: ~(XtXtl(Lxix;r;)(XtXtl 

n i=l� n i=l 

(5.16) 

where ~(i) is the least squares estimate deleting the i - th observation, i = 1, ... ,n 
and 

[� 
( ~ = L:~l ~(i) .� 

n 

2.� Hinkley's (1977) jackknife. It is based on a modification of the previous jackknife. 
We have that 

where ~(i) = n~ - (n -1 )~(i) = ~ +(n -1 )(~ - ~(i) is the i - th jackknife pseudovalue 
and 

-;:;f "n,8'(i)
,8� = ~l=.==-l­

n 

So, taking ~(i)H = ~ +n(1 - Wi)(~ - ~(i), where 

17 
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i =� 1, ... , n, 

we have 

l : 
l 

. -;;H L:n (,](,)H).. . . 
With (3 =,-1 n . ThiS mechamsm reflects the weighted character of regressIOn 
by replacing; in method (a) by Wi' 

3. Wu's� (1986) jackknife. It is a generalization of the ordinary jackknife, giving 

(5.17) 

Since COVF~ = 0'2(Xtxtl 
, assuming that Ee2 = 0'2 < 00, it follows that methods 

(a) and (b) are biased and (c) is unbiased. Hinkley (1977) proves robustness proper­
ties of (b) in the heterokedastic case. Compared to these three jackknife procedures, 
the bootstrap proceeds in the following way: 

(a)� Get a bootstrap sample ei, i = 1, ... , n from the empirical distribution of 

i=I, ... ,n;� i=I, ... ,n 

ii . 
or (n:k)l;2' t=I, ... ,n 

ordinary, centered or standardized residuals, respectively. 

(b)� Obtain the bootstrap values yi ;= x~~ + ei, i = 1, ... , n and calculate the 
bootstrap least squares estimate (3*. 

(c)� Replicate (a) and (b) a large number B of times. 

For each type of residuals obtained in (a), we get: 

A A A A 1\.'.3:...... 2 I 
E*(3* 1:- (3, COv*(3* = COVboot(3 = - i.-lri (Xtxt (ordinary residuals) 

n i=l 

(centered residuals)I
{ 

~ 

C� * a* = 1 ~ 2(Xt 
.X)-1 . (standardizedOV!J� --k ~ r i residuals) 

n - i=1 

18 
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The bootstrap can be also used to approximate the distribution of nl/2(~ -(3), 

by 

(5.19) 

where Fn is any of the three previous empirical distributions. Under regularity conditions, 
Freedman (1981) has established that (5.19) is a good approximation to (5.18) and Navidi 
(1989) has shown that it is better than the normal approximation. Hall (1989-b) has 
obtained confidence intervals with excellent approximations to the theoretical covering 
probabili ty. 

For model (b), the resampling has to be ca.rried out from the empirical distribution
\ of (XL Vi), i = 1, ... , n to get (X;*, 1'i*), i = 1, ... , n. Repeating B times this process, we 

will have 

with 

Y...?· ),
and y*j == j=l, ... ,B,

( 
Y*J n 

to approximate COVboot~. This resampling mechanism is well suited to model (b); when 
applied to model (a), leads to inconsistent procedures (Wu, 1986). Recently, Stute (1990) 
has shown, under very weak conditions, that 

a.s. 

Finally, if we consider heteroskedasticity in model (c), Ef~ =u;, it holds that 
\ 

n 

COVF1, .. .,Fn~ = (X t xttO: XiX~Un(XtX)-l, 
i::t 

where Ft, ... ,Fn are the distributions of the errors Cb' .. ,Cn' The bootstrap estimators 
given for model (a) are not consistent in this set up; so, the bootstrap behaves worse than 
Wu's (1986) jackknife (5.17) ,which is unbiased under certain conditions. 

Wu (1986) has proposed a bootstrap technique adapted to model (c): 

(a) For each i, sample a value ti from a distribution with zero mean and variance one. 

(b) Get 1'i* = x;~ + v'lr~witi,i = 1, ... ,n, and the corresponding estimate ~*. 

For this bootstrap mechanism, E*~* = ~ and 

( 

L 19 

--------..-----_._-----------------,-----------------­



c 

1� 
I 

which coincides with Wu's estimation. 
Next, we present an application of the bootstrap to linear regression from Gonzalez 

Manteiga et al. (1990). The model expresses the dependence between fusion temperatures 
of certain ashes and their chemical composition. The goal of this study was to prevent the 
growing of incrustations on the chimney walls of the As Pontes thermic power station. 
From 144 observations with dimension 14 (4 corresponding to temperatures and 10 to 
chemical components), a new variable C based on the principal component of the 4 
temperatures was introduced and, through stepwise regression, the two most important 
chemical variables, U = Al20 3(%) and V = Fe203(%), were chosen. A correlation model 
((U, V), C) was considered. The density of the residuals 

i = 1, ... ,144, 

was estimated nonparametrically and the hypothesis of normality was clearly accepted 
(see Figure 5.1). 

Figure 5.1 

Then, classical (normal theory) and bootstrap confidence intervals were calculated for 
/3i, i = 1,2,3 and for the multiple correlation coefficient p, with B = 1000 and confi­
dence level 0.05 (see Table 5.2). Although the most simple bootstrap version -ordinary 
percentile- wa.s used, it was fairly competitive in a situation where the classical confi­
dence intervals are optimal. 

Classic Bootstrap 

/31 (-1.056, -0.156) (-1.084, -0.211) 

/32 (-0.132, -0.088) (-0.134, -0.085) 

/33 (0.305, 0.384) (0.296, 00405) 
p (0.794, 0.890) (0.810, 0.881) 

Table 5.2 

Bootstrap for regression models with binary response has been considered by Sauer­
mann (1989); Huet and Jolivet (1989) apply bootstrap and Edgeworth expansions to 
nonlinear regression models and Huet et al. (1990) present simulation results in this case. 

The study of the bootstrap for time series and dynamic regression models was started 
by Freedman (1984). Bose (1988) has shown that, under some regularity conditions, the 
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bootstrap approximation to the distribution of the least-squares estimator in stationary 
autoregressive models is of order o(n-t) a.s., improving on the normal approximation 

(which is O( n - t)); Thombs and Schucany (1990) give bootstrap prediction intervals in 
this case. The validity of the bootstrap for the least squares estimator in explosive AR( 1) 
models 

I /3� I> 1, 

has been established by Basawa et al. (1989) and Stute and Grunder (1990) have obtained 
bootstrap approximations to prediction intervals in this case. Basawa et al. (1991) prove 
that the bootstrapped least squares estimator has a random limit distribution for the 
unstable first-order autoregressive model (/3 = 1). Under no model assumptions, Kunsch 
(1989) investigates blockwise bootstrap for stationary observations. 

6� BOOTSTRAP PREDICTION ERROR ESTIMATION 

Let X = (Xl,"" X n ) be a random sample, with Xi = (T/, }'i), where Ti is a p-dimensional 
predictors vector and }i is a one-dimensional response variable having (p + 1)-dimensional 
joint distribution F. The goal is to predict Yo, given a future observation To; this means to 
give a value to the response variable corresponding to the predictors, by using a decision 
rule 

and� minimizing 

EFQ(YO' 7](1~, X)). 

The function Q(y, 7]) is the incurrred loss when predicting y with 7]; our goal is to 
estimate its expectation with respect to the distribution F of (Tci, Yo) -the prediction 
error. 

We will focus on the following situations: 

(a)� Linear r~gression. Consider, e.g., model (b) in Section 5 (analogously model (a), 
replacing T by a deterministic t). We have 

7](Tci, X) = Tci~, 
f··.· 

where 

with 

and 

r.� 21� 
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is the least squares estimator of 13. If Q(y, 1]) = (y - 1])2 , we are estimating the 
least squares prediction error of the linear prediction rule. 

(b)� Discriminant analysis. In this set up, Yi is dichotomous, taking values °or 1 when 
the corresponding predictor variable T/ belongs to each of the populations we are 
trying to discriminate. Let 

0,� if Tci~ < c 
1] ( Tci ,X) = { 1,� if Tci{3

A 

2: c, 

where c E Rand P= (T1 - T 2)S-1, with 

n y = # {Yj = y}, 

and Q(y, TJ) = l{#y}. The goal is to estimate the probability of misclassification of 
the Fisher linear discriminant rule. 

(c)� Logistic regression model. If we pu t 

1 
1I'i = P{Yi = IITd= 1 {Tt{3}+exp - i 

in model (b), we get a logistic regression model. In this case, usually is 

(T.t X) _ {O, if ITo 2: c 
1] 0' - 1, if ITo < c ' 

c E (0,1), where 

1 
11'0 = 

r-,� 1 + exp{ - TriP} 

and� Pis the maximum likelihood estimator corresponding to the pseudolikelihood 

71IT 1I'r(1 .- 1I'i)1-Yi. 
i=l 

The objective will be to estimate the misc!assification probability for the logistic 
discrimination rule. 
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The natural way to estimate the prediction error 

E(X, F) = EFQ(JiQ, 77(T6, X)) 

is the so called apparent error 

Eap = Eap(X) = EFn (J(l'O, 77(T6, X))� 

For (a) and (b), Eap is, respectively,� 

and 

n 

Unfortunately, this procedure leads, in general, to underestimate the errors because the 
same sample is used for the estimation and for the prediction rule validation. Thus, it is 
important to estimate the prediction error excess, 

R = R(X, F) = E(X, F) - Eap(X) (6.20) 

(see Efron (1982, 1983, 1986), Gong (1986), Stine (1985) and Bunke and Droge(1984)). 
Let w = w( F) = ExR(X, F). It seems reasonable to correct the optimism of the 

apparent error by estimating wand then defining a new estimation of the prediction error 
using Eap +W. 

The jackknife estimation is 

(6.21 ) 

and the cross-validation estimation is 

CvEap +w = .!. t Q(}i, 77(1:t, X(i))). (6.22) 
n i=l 

Efron (1982, 1983, 1986) introduced the bootstrap estimation 

Eap +E* R(X*., Fn ) = 

Eap + E* {t(.!. -p';)Q(}i, 77(T/, x*))} , (6.23) 
i=l n 

where X* = (Xi, ... ,X~) = ((Ti*, YJ), ... ,(T~·', Y;)) is the bootstrap sample and 

* #{X*=Xd
Pt. = J , i = 1, ... ,n. 

n 

23� 



[� 

f 

i 
I"~ 

I 

L� 

The bootstrap estimation (6.23) is usually obtained by simulating B samples X· b, b = 
1, ... , B, for a large B, and calculating 

Eap + ~ t, {~(; -pib)Q(Yi, 1](T/, X.b))} . 

A comparative study for methods (6.21), (6.22) and (6.23) has been carried out, from 
both the theoretical and the applied points of view, in the linear regression set up (Efron, 
1982, Bunke and Droge. 1984 and Stine, 1985), for logistic models (Gong, 1986 and Efron, 
1986) and for discriminant analysis (Efron, 1983). In this last context, Prada Sanchez 
and Otero Cepeda (1989) present the following simulation results. Consider a population 
X = (Tt, Y), where Tlr' = y has a distribution N2((y - t), /), with P{Y = O} = P{Y = 
I} = t. A sample with size 14 is simulated and the Fisher discriminant linear optimal rule 
is estimated. The true prediction error, E, the apparent one, Eap , and the corresponding 
excess R(X, F) are calculated from it. This process is iterated 100 times, considering 
different estimations of the estimated expected excess in the process (B = 200). Table 
6.1 gives the first ten estimations and the average final results.The last three columns in 
the table present alternative bootstrap techniques which will be introduced in Section 8. 
Also, the mean squared error is given for the estimations of E through Eap +W, with five 
different values forw. Since 

M.S.E.� = E ((Eap + w) - (Eap + R))2 = 
= (Ew - w)2 +Var w - 2 cov (w, R) +Var R, 

the sign of cov (w, R) is very relevant. Comparing the methods in this case, the bootstrap 
behaves better than cross-validation: a larger bias, but smaller overall mean squared error. 

wc.; v� boot WS bt wb ·bt wbS ,btE Eap R(X, F)� w ­
0.319 0.142 0.176 0.000 0.052 0.063 -0.000 0.032 
0.316 0.142 0.173 0.000 0.033 0.051 0.001 0.095 
0.330 0.214 0.116 0.071 0.076 0.055 0.000 0.021 
0.337 0.357 -0.019 0.071 0.093 0.048 -0.001 -0.060 
0.309 0.142 0.166 0.142 0.061 0.086 -0.000 0.133 
0.338 0.214 0.124 0.142 0.081 0.115 0.001 0.095 
0.380 0.071 0.308 0.071 0.056 0.136 -0.002 0.158 
0.324 0.3.57 -0.033 0.000 0.081 0.078 -0.020 -0.046 
0.321 0.071 0.249 0.071 0.048 0.124 -0.001 0.142 
0.;360 0.422 -0.067 0.071 0.104 0.097 0.006 -0.086 

Mean 0.349 0.252 0.097 0.100 0.077 0.091 0.000 0.0.50 
Dev. 0.0,57 0.128 0.126 0.089 0.027 0.027 0.007 0.073 
Corr. 0.005 -0.663 -0.245 0.011 0.749 
M.S.E.� 0.023 0.021 0.018 0.025 0.009 

Table 6.1 
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7 THE BOOTSTRAP FOR EMPIRICAL PROCESSES. ApPLICATIONS 

The validity of the bootstrap for empirical processes on the real line was first studied 
by Bickel and Freedman (1981). Gaenssler (1986) considered empirical processes indexed 
by Vapnik-Cervonenkis classes of sets. The definitive result on the bootstrap for gen­
eral empirical processes has been obtained by Gine and Zinn (1990). Let (5, S, P) be a 
probability space and let Xl,"" Xn be a random sample of variables with distribution 
P and let Pn be the corresponding empirical probability. If X~, ... , X~ is the bootstrap 
sample, P; will be the associated empirical measure. Let Vn = n t(Pn - P) and let 
v~ = nt(p; - Pn). Consider the empirical process {vn(f) : 1 E F} ( and its bootstrap 
version {v~(f) : 1 E F}) indexed by a class F of measurable functions with envelope 
F(s) = SUPfEF I l(s) I, finite for all sE 5. Gine and Zinn (1990) prove, under some tech­

I nical measurability conditions on F, that, in the space lOO(F) of real bounded functionsl 
on F, 

if , and only if, 
in probability, 

where Gp is a Gaussian centered process; they also show that the bootstrap central limit 
theorem holds almost surely if, and only if, the central limit theorem holds and, moreover, 
JF2dP < 00. This gives the validity of the bootstrap in many situations, without any 
local uniformity about P for the central limit theorem. The asymptotic correctness of the 
bootstrap for a large class of statistics follows from this theorem; e. g. , for continuous 
functions of the empirical measure viewed as an element of lOO(F). 

As a consequence of this result, Romo (1990) proves that the bootstrap works in prob­
ability for maximization estimators under nonstandard conditions (in the setup of Huber 
(1967)) assuming Pollard's (1985) "stochastic differentiability" hypothesis and also that 
the bootstrap approximation holds in probability for the k-means algorithm in clustering 
analysis. Under somewhat stronger conditions, Arcones and Gine (1990-a) established 
the almost sure validity of the bootstrap in these situations. 

The asymptotic bootstrap approximation for statistical functionals which are differ­
entiable in a (generalized) Frechet sense has been obtained by Dudley (1990). Gill (1989) 
and Sheehy and Wellner (1988) get the correctness of the bootstrap under Hadamard 
(compact) differentiability of the statistical functional. 

The bootstrap for U and V statistics has been considered by several authors. Let 
h(Xl"'" Xk) be a symmetric measurable function. The U and V statistics based on h 
and Pare 

U;:(h, P) = Ck}-l L: h(Xil"'" X ik) 
l:5 i l <...<i k :5 n 

and 
n 

kVt(h, P) = n- L: h(Xi1 ,···, Xik )· 
il, ... ,ik=:l 

These statistics satisfy a central limit theorem; Bickel and Freedman (1981) proved 
the bootstrapped central limit theorem for non-degenerate U and V statistics of order 
k = 2. Bretagnolle (1983) established the validity of the bootstrap in probability if the 
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resampling sample size m n verifies ~ ---? 0 and almost surely if m ... (I~gn)b ---? 0 for some 
b> 1, in the general case with k = 2; he also notes that the na'ive bootstrap does not work 
for h(x,y) = xy if EX1 = O. Arcones and Gin€! (1990-b) propose a different resampling 
scheme which works almost surely for any k and for any sample size m n ---? 00. Klenk and 
Stute (1987) study the bootstrap for L-estimators. 

Gine and Zinn (1991) obtain sufficient conditions for the asymptotic validity in proba­
bility of the bootstrap under parametric resampling. Arcones and Gine (1991) give tests of 
symmetry for continuous distributions based on the bootstrap version of the Kolmogorov 
distance between the empirical distribution and its symmetrization. 

8� ALTERNATIVE BOOTSTRAP RESAMPLING: SMOOTHED, SYMMETRIZED AND BAYESIAN 

BOOTSTRAP 

In this section, we present several techniques that are alternative to the standard or naive 
bootstrap. 

(a) Smoothed bootstrap. In many statistical problems, we are interested in a popula­
tional local characteristic, for example the density function at a fixed point x, T( F) = 
f(x). In this situation, it seems natural to resample from a distribution Fn having a 
density. A candidate is the smoothed distribution estimator, 

(see Gonzalez Manteiga and Prada-Sanchez (1985)) with fn a nonparametric normal den­
sity estimator, 

• 1 ~ (X - Xi)
fn(x) = nh f;t J( h ' n n 

where J( is a density function, hn is the smoothing parameter and X = (Xl,"" Xn ) is a 
random sample from F. Since Fn is the convolution of the empirical distribution and the 
distribution corresponding to J(, it is computationally easy to resample from it. 

The smoothed boo£strap gives good results in practice (see the s - bt column in 
Table 6.1); also, it improves on the standard bootstrap when we are interested on a 
local property. For example, if we want to estimate the variance of a sample quantile, 
i7

2(F) = VarF(X(r)), with X(r) = F;l(p),r = [np],p E (0,1), we have, under regularity 
conditions, 

2 p(p - 1) ( 1 )� 
i7 (F) = n(J(e ))2' +0 n2 '� 

p 

where ep = F- 1(p) is the populational quantile. Hall and Martin (1988) have shown that, 
with standard bootstrap, 

n ( '2 - i72) = (JP (n -1/4) ,i7boot 

and� Hall, DiCiccio and Romano (1989) have proved that, for somoothed bootstrap, 
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( , 2 2) 0 ( -2/5)n as-boot - a = p n , 

with hn ::::: n- 1/ 5. Similar differences in the rates of convergence can be observed when we 
try to approximate 

by 

hPP {n1/2(Fn- (p) - Fn-1(p)) ~ x},
n 

taking Fn = Fn or Fn (Falk and Reiss, 1989-a)" Also Falk and Reiss (1989-b) study the 
Kolmogorov and variational distances between the distribution of the sample p-quantile 
and the corresponding smooth bootstrap distribution and they show that this random 
distance can be again consistently estimated by using the bootstrap. 

(b) Symmetrized bootstrap. If additional information on the populational distribution 
is avalaible, it can be used in the bootstrap mechanism. Let X = (X1, ... ,Xn ) be a 
sample from a population with distribution F, mean J." and variance 0'2. Assume that F 
is symmetric with respect to J.". If we try to approximate the distribution of 

with an Edgeworth expansion given by 

Pp {nl/2(~: - J.") ~ x} = <p(x) + n-1
/ 
2 (::3(1 + 2x2

)) <ti(x) + O(n- 1 
), 

we find that the error with respect to the normal distribution is O(n-1 
) since J."3 = 0; 

this is the same rate that we get using standard bootstrap. This can be corrected by 
symmetrizing the bootstrap. Cao-Abad and Prada-Sanchez (1991) propose to symmetrize 
the sample to get 

}'; _ { X~, i = 1,2, ... , n 
I - 2Xn - X i - n , i = n + 1, ... , 2n, 

and then resampling from Yj, Y2"'" l'2n. Since the first order moments and the centered 
second order ones coincide for both samples and the centered moments of odd order for 
the new sample are zero, they get that the approximation rate is now O(n -3/2). 

(c) Bayesian bootstrap. Let X = (X1, ... ,Xn ) be a sample from a population F; the 
aim is to estimate the distribution of O( F) IX == x. In bayesian bootstrap, we simulate B 
random vectors Vj considering a Dirichlet distribution with parameters (n; 1, ... ,1) as a 
prior over all possible populational distributions and we weight Xii) by using the i - th 
component of Vj; these weights add to one and determine a random distribution F;J. The 
empirical distribution corresponding to the values O(F:J), j = 1, ... , B approximates the 
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posterior distribution of O(F). A smoothed bayesian bootstrap, can give excellent results 
(see last column of Table 6.1 for O(F) = w(F)). In practice, usually the i - th component 
of Yj, j = 1, ... , B is taken as Uti) - U(i-I), i := 1, ... , n(Uo = 0, Un = 1), where Ui are 
independent and identically distributed uniform random variables on (0,1). 

The bayesian bootstrap was introduced by Rubin (1981) and has been studied by 
Lo (1987, 1988) and Weng (1989). Boos and Monahan (1986) apply the bootstrap in a 
bayesian context, replacing the posterior distribution by an estimated posterior distribu­r·. tion using bootstrap. 

9 THE BOOTSTRAP IN CURVE ESTIMATION 

The bootstrap has been incorporated only very recently to the curve estimation litera­
ture. Next, we describe its applications to density estimation, regression estimation and 
smoothing parameter estimation. 

(a) Density estimation. Let F be a populational distri bution with density I. If we 
consider a nonparametric kernel estimate, 

A 1 n (X-X')Ih n (x) = -h L K h ,1 

n n i=l n 

it is interesting to approximate the distribution of 

R(X, F) = (nhn )1/2(}hJX) - I(x)) = 

(nhn)1/2 (/ :n K (X ~ U) dFn(u) - F'(x)) . (9.24) 

Since Fn is not differentiable, R(X·, Fn ) is not well defined and the smoothed bootstrap 
seems to be a sensible option to approximate the distribution of (9.24) by using 

R(X·, FgJ = (nhn)(1/2) (Ji:Jx) - ]gn(x)) = 

(nh n )1/2 (/ LK(x ~ u)dF~(u) - F;Jx)) , 

where 

with 

and X· is a sample simulated from Fgn . 
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If we take hn minimising the estimated integrated squared error (ISE) or the estimated 
mean integrated squared error (MISE), verifying 

it is possible to approximate the distribution function of (9.24) at a point z by means of 
the normal approximation 

~ (ZV~/~)' 
where C = tc~2dKJ"(x) and V = cKf(x), with 

CK = Jf{2(t)dt and dK = Jt2f{(t)dt 

(see Parzen, 1962), Cao Abad (1990-a, 1990-b), using Berry-Esseen bounds, gets the 
following rates of convergence: 

5d(X) (p {(nhn )1/2(}hJX) - f(x)) 5 .}, ~ C~/~)) = O(n- 1
/ ) 

for the previous normal approximation, not attainable in practice, 

doo (p {(nh.j'J2(ih. (x) - f(x)) s; -}, ,{0/~))= O( n -'I'), 

C· 1 9e = ~c~2dKf;~(x) (with 9n :::::l n- / , optimal rate to estimate the second derivate 1")
l and V = CA: fh n (x), for the so called "plug-in" normal approximation, and 

= Op(n-2/ 9 ), 

(9n :::::l n-1/ 9), for the bootstrap approximation. This shows that the bootstrap is the one 
performing best. 

Hall (l992-a, 1991), following Hall (1988-a) carries out a different approach, Taking 
1.. n / 2 (9_1I) h 'dthe statistic a-' e consl ers 

where 

, 1 J (X - U)Efh n ( x) = h l< --,;;: dF( u) 
n 

and 

:r 
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Resampling from Fn , one obtains 

with probability one when hn ::::: n-1/5
. Even though Hall's rate of convergence is better 

than Cao Abad's, it does not consider the bias EJn(x) - f(x), which has to be explicity 
estimated, with the corresponding loss in the speed of convergence (see Hall 1992-a, 1991) 

(b) Regression estimation. Hardle and Mammen (1991) is an overview on this topic. 
Following the same pattern as in Section 5, the models we consider for li = m(Xi)+€i, i = 
1, ... ,n are: 

(i) The errors €i, i := 1, , n are independent and identically distributed with zero 
mean and Xi = Xi, i = 1, , n are deterministic values. 

(ii) The variables (Xi,li), i:= 1, ... ,n are independent and identically distributed 
such that E(€iIX;) = 0, i.e., m(x) = E(lilXi = x), i = 1, ... , n. 

(iii) The errors €i, i = 1, , n are independent with zero mean and the distribution of 
€i depending on Xi, i = 1, , n. 

The function m is usually estimated by the Nadaraya (1964) and Watson (1964) esti­
mator 

,,~_ liK (~)• () L.,.,,_l h n
mh X -

n - "n }' (~) ,
L.,.,r=l" hn 

where hn is the smoothing parameter and K is the kernel function. The aim is to approx­
imate the distribution of 

(nh n )1/2 (mhJx) - m(x)). 

For model (i), the resampling procedure follows the next steps: 

•� Calculate the residuals f.i := li - mhn (Xi), i = 1, ... , n.� 

'd 1 - , A 1 "n ' . 1�• Center the resl ua s €i = €j - A10, 10 = ; L.,.,1:=1 €i, l = , ... , n. 

• Resamplefrom€i, i=1, ... ,ntogett;, i=1, ... ,n. 

• Obtain the new observations li* = mgJx;) + fi, i = 1, ... , n. 
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• Calculate 

and 

• Get the bootstrap approximation by repeating B times this process. 

In this way, the distribution of 

(nh n )1/2(mhJx:) - m(x))

l is approximated by the distribution of 

(nh n )1/2(mi,JX) - mg,,(x)). 

Hardle and Bowman (1988) proved that 

doo (p* {(nhn )1/2 ((mh,,(x) - mg,,(x)) S·}, 
P {(nhn )1/2 (mh,,(X) - m(x)) S .}) 

I [ 

l. 

tends to zero in probability, assuming VaT t := (12 and some other regularity conditions. 
Later on, Hall (1992- b) got good rates of convergence regardless of any ccnsiderations on 
bias. 

I Two resampling procedures have been proposed for model (ii): the one by Dikta 
(1990), where (Xi, ii*), i = 1, ... ,n is obtained from the original sample and then 

2:': y* K (X-X;)A. () l=l l h"m x-
h" - "n }T (X-X~) 

L..tr::l i h" 

is calculated from it, and the smoothed bootstrap proposed by Cao Abad and Gonzalez 
Manteiga (1990), where the sample is obtained from 

For optimal choices of hn , the smoothed bootstrap leads to good results, 

doo (p. {(nhn )1/2 (mi:,,(x) - mgJx)) s .} , 
P {(nh n )1/2 (mh" (x) -- m(x)) S .}) = 
= Op(n-2/ 9 ) 

.f' 1/when gn ::::; n- 9 , opposite to Dikta's bootstrap, which is in trouble with bias, 

meanwhile 
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E·(m;;,,(x) - mg,,(x)) = Op(n- 4
/ 

5
), 

as can be seen in Hardle and Mammen (1990-b). 
The best suited bootstrap for model (iii) is the one known as "wild bootstrap", in­

troduced by Wirdle and Mammen (1990-30), based on ideas used by Wu (1986) for linear 
regression. The steps are the following: 

•� Obtain the residuals fi = }i - mh,,(xd, i = 1, ... , n. 

•� For each i, resample fi from a distribution Fi verifying Et.Z = 0, Et;Z2 = er and 

Et; Z3 = Er (Z has distribution Pi)' 

•� Calculate m;;,,(x) and repeat this process B times. 

Cao Abad (1991) has shown that, under regularity conditions, the rate of convergence 
for the "wild bootstrap" is 

l;� de<) (p. {(nh n )1/2 (m;;,,(x) - mg,,(x)) ::;.} 1 

P{(nhn )1/2(mh,,(x) - m(x))::; .}) = 
= Op(n- 2/ 9 ), 

meanwhile the rate of convergence for� the normal approximation is Op(n- 1
/ 

5 
). 

The "wild bootstrap" idea is also used by Hardle and Marron (1991) to obtain boot­
strap simultaneous error bars for model (ii). Hardle, Huet and Jolivet (1991) prove that 
"wild bootstrap" with explicit bias estimation gives improved coverage accuracy for con­
fidence intervals. 

The cuestion of detecting a difference between two mean functions in the setting of 
model (iii) by using bootstrap has been addressed by Hall and Hart (1990). 

Franke and Wendel (1992) considers bootstrap for nonparametric autoregressive timel: 
series and Franke and Hardle (1990) show that the bootstrap works for kernel spectral 
density estimates. 

(c)Smoothing parameter estimation. Another important application of bootstrap in[ " 

curve estimation is the bandwidth choice. Thus, when we are using the kernel method forL density estimation, an important choice is the: hM [SE which is the bandwidth minimising 

MISE(hn ) = E{JUh,,(x)-f(x))2dx} = V(h n )+B2 (h n ) = 

2� 2[:� = n~n J K (x)dx + h~ (J j"2(x)dx) (i J x K(x)dX) 2 + 

+ 0 (h
1 

) + O(h~), 
n 

where V(h n ) is the variance and B2(h n ) is the squared bias. 

3"1 
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Among the several proposed methods to estimate hM1SE (see Cao Abad, Cuevas and 
Gonzalez Manteiga, 1991), it is important the bandwidth h~flSE' minimising 

M [ SE* (hn) = E* {J (J'hn - fgn (x) )2dx } . 

I� The case 9n = hn was considered by Taylor (1989), but, as pointed out by Cao Abad 
I 

(1990-b), it can present some inconsistencies. Cao Abad (1990-b), Marron (1990), Falk '['� (1990) and lones, Marron and Park (1991) present exhaustive studies proving that, for 
some choices of 9n, it is possible to get 

hAfISE _ 1 = Op(n- 1/ 2 ), 
hM1SE 

,t the usual "root-n" rate. Hall (1990) considers an alternative approach, resampling from 
subsamples of the original sample. 

Other applications of smoothed bootstrap in curve estimation are the estimation of 
a density mode� (Romano, 1988) and checking; the number of modes (Mammen, Marron 
and Fisher, 1992) . 

. [ 10 OTHER TOPICS AND APPLICATIONS 

In this section, we briefly sketch the application of bootstrap techniques to censored data 
and to the construction of new estimators and tests. 

(a) The bootstrap for censored data. Let T be the variable of interest (usually a lifetime: 
related to a patient, to the reliability of a system, etc.). Sometimes, T is not observed 
because it is censored at a random time C. Thus the initial sample is given by (Xi ,8i ), 

i = 1, ... , n, where Xj = min{Ti , Cd and 6i == Im~c;} (random censorship on the right) . 

[� Two bootstrap resampling schemes have been initially proposed for this situation: 
. 

1.� Efron's (1981) resampling. A sample (Xi, 8,)*, i = 1, ... ,n (also denoted by (Xi, 6;), i 
= 1, ... ,n) can be obtained simulating; from the original sample. Alternatively, let 
S°(t) = P{T > i}, R(i) = P{C > t} and S(i) = P{X > i} be the survival 
functions of T, C and X, respectively. If 

and 

, (_. ) (1-6(j)
R(t) = IT n . J 

{X(J)9} n - J + 1 
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are the Kaplan-Meier (1958) estimators of 5° and R, where (j) indicates order for 
the data Xi and 6(j) is the corresponding 8, we can generate samples from (1 - SO), 

(Tt,···,r;), and from (1- k),(Ci, ... ,C~), and then calculate Xt = min{Ti*,Ct} 
and 6; = [{To' ~cn, to get the bootstrap sample (Xt, 6;), i = 1, ... , n. Efron (1981) 
has shown, under regularity conditions on the distributions, that both resampling 
schemes are equivalent in estimating the variance of statistics of the form {) = ()(SO). 

[� 2. Reid's (1981) resampling . The resampling is done directly form 1 - SO and then () 
is evaluated at the empirical distribution corresponding to the sample {X;, ... ,X~} 

obtained from 1 - So. 
Akritas (1986) has carried out an interesting study to compare both resampling 

1strategies. Since the empirical process n / 
2(S°C) - 5°(·)) converges in law to 

BO(I{('))1~J:I) in [O,r), with r < sup{t : 1 - 5(t) < 1}, where T and Care 

variables with positive support, K(x) = l~b(~) with 

(X 1 _ 
C(x) = lo 5 2(t)d(1 - 5)(t), 

1 - S(x) = P{X ~ x,8 = 1} and BO is the Brownian bridge (see Hall and Wellner 
(1980)); it follows from Akritas (1986) that the correct bootstrap to mimic the 
populational model is Efron's (1981). Indeed, for Efron's (1981) resampling, we 
have that 

a.s., 

and, for Reid's (1981), it holds that 

a.s.[ 
The reason for this different behavior is that Reid's resampling is done from non­
censored data. Asymptotic results for this resampling can be also found in Lo and 
Singh (1985), Horvath and Yandell (198"1) and Chung (1989). The bidimensional 
censoring case is developped in Dabrowske (1989). 

Dikta and Ghorai (1990) study the model with proportional hazard rate censoring. 
In this context, 

with P{8 = 1} = 1~13 = E(6), and so, a natural estimate for 5° is 

1 "''' 81 n ) "L,=l ' 
SO(t) = 5~"(t) = ( - I: [{X,>t} , 

n i=1 
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since S(t) R(t)SO(t) = SO(t)l+i3. The I'esampling procedure in this case is the 
following: 

(a)� Draw a random sample Xi, , X~ from 1 - Sn' 

(b)� Draw a random sample 8~, , 8~ from a Bernoulli distribution with parameter 
In, independent from Xi, ,X~ (in this model, I and X are independent) . 

L n.1. • 
(c)� Calculate the bootstrap estimate (S~rr~ = (~ Lr:l I{xt>t}) n i=l ')'•• 

(d)� Repeat this process B times. 

Under regularity conditions, Dikta and Gorai (1990) have established that 

(p*{ sup Inl/2(S~')'~(t) - S~n(t))1 ~ '},doo 
°9~1' 

P{� sup Inl/2(S~n(t) - S°(t))1 ~ .} -.0 almost surely. 
°9~1' 

(b )Some applications of the bootstrap to the construction of new estimators and tests. 
An area very recently explored is the construction of estimators using bootstrap tech­

niques. Suppose we want to obtain an estimate of the parameter () = ()( F). The natural 
nonparametric maximum likelihood estimater would be obtained through ()( Fn ); in some 
situations, this estimation may be meaningless and a previous approximation,

L 
m = m n -. 00, 

is needed. Finally, the bootstrap approximation ()m(Fn) is used. 
Swanopoel (1986) presents this idea for density estimation. Let Xl,"', X n be a sample 

from the distribution F with density f and let X(1) ~, ... , ~ X(n) be the corresponding 

[ ordered sample. If a = [nF(x)] + 1, we have that 

1/2(X _ ) ---> N (0 F(x)(1 - F(X)))
n (a) X d , j2(x) , 

and, so, 

r-� 1/2 
L __.� () - F(x)(1 - F(x)) ~"f() - ()(F) 

m (F) - V (X) ) ~"x - , m -. 00,( m arF (a) 

can� be used for a bootstrap estimation of the density function: 

()m(F ) = j(x) = (Fn(X)(1 - Fn(X))) 1/2n
mVarFn(X(a)) 

Another application of this technique is given by Swanopoel (1990): if we consider 
Tm(X I , X 2, ... , X m) as a previous estimate of () := ()(F), taking 
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we get a general family of bootstrap estimators 

()m(Fn ) = medianFn(Tm (X1 , ••• , X m )). 

For instance, if Tm (X 1 , ••• , X m ) = Xm and m == 1, 

if m = 2, ()m(Fn ) = median (Xi~Xl) is the Hodges-Lehmann estimate, etc. 
Leger and Romano (1989, 1990) show very interesting applications of this principle. 

For example, let the ;3 - trimmed functional 

()/3(F) = 1;3 rt-/3 F- 1(t)dt, 0:5;3:5 1. 
1 - 2 J/3� 

A natural bootstrap estimation is given by� 

1 /1-/3 1�O/3(Fn ) = 1 _ 2;3 Jp Fn- (t)dt 

and the adaptive bootstrap estimator is fJ /J minimising the risk bootstrap estimator 
EFn ((){3(F:) - 0{3(Fn ))2. Other extensions of this methodology to more general loss func­
tions can be found in the above mentioned papers. 

Romano (1988) propose bootstrap nonparametric tests (independence of variables, 
goodness of fit, equality of distributions and rotational invariance). 

Recently, Boos and Brownie (1989) and Boss, Jensen and Veraberbeke (1989) have 
used bootstrap resampling for variance homogeneity tests obtaining encouraging results 
compared to the classical Bartlett test. 
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