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Abstract

This article proposes tests for constancy of coefficients in semi-varying coefficients models. The testing procedure

resembles in spirit the union-intersection parameter stability tests in time series, where observations are sorted
according to the explanatory variable responsible for the coefficients varying. The test can be applied to model
specification checks of interactive effects in linear regression models. Because test statistics are not asymptotically
pivotal, critical values and p-values are estimated using a bootstrap technique. The finite sample properties of the
test are investigated by means of Monte Carlo experiments, where the new proposal is compared to existing tests
based on smooth estimates of the unrestricted model. We also report an application to returns of education
modeling.
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1. INTRODUCTION

This article proposes a methodology for testing coefficients constancy in semi-varying
coefficient models. Let (Y, Z, X1, X3) be a R**%1*+2 _ yqlued random vector defined on
(Q, F,P) such that

E(Y|X,Z)=X {8, (Z)+ X300 a.s., (1)

where “’” means transpose, B, = (500,601, ...,BOkl)T , X1 = (1,X11, ..., X1z,)" and
8o = (Go1, -, Oor,)" and X = (Xo1,...., Xop,)', By : R =R¥* is a vector of unknown
functions, and J; is an unknown parameter vector in R*?. Henceforth, the discussion is
centered on the case where the constant term is in X, but the procedure also applies
to the case where there is a constant intercept, i.e. when X; = (X, ....,Xlkl)T and
X, = (1,Xo1, ..., Xox,)". The model with constant slopes, i.e. Var (8y;(Z)) = 0 all
j=1,...,ky, is known as partly linear model, and inferences on [, (-) and do have been
justified under different regularity conditions by Shiller (1984), Wahba (1985), Engle et
al. (1986), Heckman (1986), Schick (1986), Speckman (1988), Chen (1988) and Robinson
(1988) among others. This requires estimating the nonparametric regression functions of
Y given Z and of each X5 component given Z. Inferences when all the coefficients are
varying, i.e. when &y = 0, have been proposed by Cleveland et al. (1991), Hastie and Tib-
shirani (1993), Chan and Tsay (1998), McCabe and Tremayne (1995), Wu et al. (1998),
Fan and Zhang (1999, 2000), Chiang et al. (2001), Hoover et al. (1998), Cai et al. (2000),
Kim (2007), Hoderlain and Sherman (2015) or Feng et al. (2017). The semi-varying co-
efficient model, with dy # 0, has been studied by Zhang et al. (2002), Xia et al. (2004),
Ahmad et al. (2005), Fan and Huang (2005), G. Li et al. (2011), D. Li et al. (2011),
Hu and Xia (2012), or K. Li et al. (2017) among others. All these methods use smooth
estimators of the underlying nonparametric functions, generally Nadaraya-Watson kernel
regression.

Model (1) nests discontinuous regression models where

Bo(2) = Boo + Borliz<zo}s (2)

for parameter vectors 3y, and 3,,, where the discontinuity is explained by the variable Z,
which is the typical alternative to parameter stability hypothesis in time series analysis,
with parameters changing at an unknown time point. It is not possible consistently

estimating [, in model (2) using smoothing based methods.
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The goal of this article consists of testing that the varying coefficients in model (1) are

constant in the direction of nonparametric alternatives, i.e. testing

Hy:Var (Boj) =0forall j=0,1,....ky vs. Hy : Var (ﬁoj) # 0 for some j = 0,1, ..., k;.
(3)

Model (1) also nests a model with

k1
X2 = (gg(Z),Xllgir(Z), ---,Xlklglzl(z))l s 50 = ((550, 681, ceey (Sgkl)l and k?g = ij,
5=0
(4)
where 9y, are unknown m; x 1 parameter vectors, and g; : R —R™ are known functions,

Jj =0,..., k. In this case, (1) can be expressed as
E(Y]X,Z) = X1 [Bo(Z) + po(2)] as. ()
with nonparametric 8, and parametric

Ho(-) = (95(')500, 95(')5017-'-’9121(')50161)T,

for some 8o = (849, 0gy, -, Ekl)T € R*2. Therefore, under the maintained hypothesis (3)
and (5) are equivalent to omnibus model checking that the marginal effects of X, are
wo(Z), which implies a particular parameterization of the interactive effects. Needless
to say that model (5) is not identifiable in many circumstances, but the test we propose
does not need estimating the model under the alternative hypothesis. In particular, our
test is in fact a directional specification test for the linear in parameters regression model
in the direction of a semi-varying coefficient model. It can also be applied as an omnibus
specification test of a simple regression model with explanatory variable Z, i.e. k&; =0 in
(5).

Kauermann and Tutz (1999), Cai et al. (2000), Fan and Zhang (2000), Fan et al.
(2001), Fan and Huang (2005), Qu and Li (2006) and Cai et al. (2017) have considered
testing (3) based on the discrepancy between restricted and unrestricted sum of squared
residuals using smooth estimates of the varying coefficients. In these proposals, smooth
estimates of f3; are needed and, hence, situations like (2) are ruled out. Also, these tests
are not applicable when the model on the alternative is not identified.

In this paper we adapt classical parameter stability tests in time series (e.g. Quandt,

1958, 1960; Chernoff and Zacks, 1964; Battacharyya and Johnson, 1968; Hinkley, 1970;
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Brown et al., 1975; Sen and Srivastava, 1975; Hawkins, 1977, 1989; Nyblon, 1989; An-
drews, 1993; Csorg6 and Hortvath, 1988, 1997; Aue et al., 2008 among many others.)
Given (Y, Z;, X1, Xoi);, i.id. as (Y, Z,X1,X ), we interpret (V;, Xq;, Xo;); | as
sequentially observed with respect to the ordered values of {Z;}"" | . That is, denote by
(Y[Z-:n], X 1jiin), X 2[1-:,1])?:1 the Z—concomitants, or induced order statistics, of
(Vi X i, Xoa)iy s e (Yienps Xagion), Xogin) = (Vg Xy, Xog) if Zniy = Z;, where
Zin1y < Zn2) < ... < Znp) are the ordered statistics of {Z:};_, . We propose to adapt
union-intersection (U-I) type tests in time series to our context. See Hawkins (1989),
Andrews (1993), Horvath and Shao (1995) or Csorg6 and Hortvath (1997, Section 3.1.5.)
The test consists of comparing ordinary least squares (OLS) estimators of X coefficients
and (Yiin], X 1fin]s X ofin] ),

using subsamples (Y[m}, X 1jin), X Q[i:n])fz at each 7 — th

1 1

sample Z—quantile.

The rest of the article is organized as follows. Next section discusses and justifies
the testing procedure. Section 3 studies the finite sample performance of the test in
the context of a Monte Carlo experiment. We report comparisons of existing tests for
coefficient constancy based on smooth 3, estimates, as well as specification CUSUM type
tests, as proposed by Stute (1997) and Andrews (1997), which are omnibus, i.e. designed
to detect any alternative, much broader than H; in (1). In Section 4 we apply the testing
procedure to modeling interactive effects of 1() when studying education returns. Section
5 is devoted to conclusions. Mathematical proofs can be found in an appendix at the end

of the article.
2. TESTING METHOD

Define M@j(u) = E(XZX§1{FZ(Z)§u}) and Sj(u) = E(XjYL[FZ(Z)Su})a j,f = 1,27
where F; is the cdf of Z. Assume that

A.1 F is continuous.

My (u) Mis(u
Rank ufu) Malu) = ky+ ko + 1 for all w € [0,1].
MQl(’U,) M22(1>

For the sake of exposition assume w.l.o.g. that Z is uniformly distributed on [0,1]. An

U-I test of Hy is based on the sample version of ny(u) = (8, — 0y) (u), where 0y(u) =



(65" (), 05" (w), 65" (u)) ",

0o(u) = arg min {E (Y — X160 — X156°) 1{Z§u}}2 ©)

0—.,07,0°
B [(Y - X107 - X30°) 172" }

= M *(uw)S(u), uel01],

M (u) Ok, +1 Miz(u)
M (u) = | Opq1  Myi(1) — Myy(u) Mip(1) — Mig(u) |
le(u) M21(1) - M21(U) M22(1)

0, i8 & m X m matrix of zeroes, and S (u) = (57 (u), [S1(1) — S1(w)]", S%(l))T .
Obviously, Var (ﬁoj(Z)) =0forall j =0, ..., k; implies that ny(u) = 0 for all u € [0, 1] .
In relevant circumstances, discussed below, also Var (8,(Z)) =0 iff no(u) = 0 for all

u € [0,1].

Remark 1 Consider Myi(u) = uMi1(1), which is always satisfied in the partly linear
model, and Mys(u) = ubi2(1) for all w € [0,1], which is equivalent to B (X X Z) =
My (1) a.s. and B (X1X3| Z) = Mia(1) a.s. Therefore, S1(u) = Mi1(1)E (8,(2)1(z<u}) »
and applying Lemma A.5 in Andrews (1993),

B (Bo(£)1{z<uy) — uE (5,(Z£))
u(l —u)
1

= i L, ) B G2
= 0 forallue|0,1] & p,(Z2) =E(B,(2)) a.s

no(u) =

Remark 2 Consider 69 = 0, i.e. a pure varying coefficient model. Then, for all u €

[0,1],
mo(u) = My (w)Si(u) — [Myr (1) = My (u)] 7 [S1(1) — S (w)]
= [My(1) = My (w)] ™ Mya (1) [M () Sy (u) = MM (1) Sy (1)]
and
no(u) =0 allu €10,1] < Sy(u)— Mll(u)M‘l(l)Sl(l) =0 all u € [0,1]
& Jizew 1 (2) [8o(2) =B (J(2)) " E(J(Z)5y(2))] dP = 0.
with J (Z) = E(X,X"| Z). Hence, sz( is non-singular a.s.,

no(u) =0 allu € [0,1] & B,(2) =B (J(2) " B(J(2)5,(2)) as.
& Var (8y;(Z)) =0 for all j =0, ..., ki.

2) |
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The above two remarks show that testing
Hy:ng(u) =0all u e [0,1] vs. Hy:ny(u)#0some u e l0,1].

is equivalent to (3) in pure varying coefficient regression models, as well as in situations
where the elements in X ;X are mean independent of Z. Also, rejecting Hy in the
direction of H; implies rejecting Hy in the direction of H; for many other semi-varying

coefficient models, as discussed in Section 3.
+T ~0T

The sample analog of (6) is 6,,(u) = (9;T(u) 0. (u),0

.0, " (u))T, with

[nu)

én(u) = arg min Z (}/[zn] - X{[zn}e_ - '}(;[i:n]eo)2
97,0+,00 i=1

+ 0)2
+ Z [7, n] — l[z:n}e - X;[zn]e )
1=1+|nu]
~ —1

= M, (u) gn(u), u € [0,1],

n

~ ~ T
where |-] means smallest nearest integer, S, (u) = <ST (u), ST, (1) — S,Tﬂ(u),SEQ(l)) ,
( ) ZL nul X][z:n]Yv[i:n}a .] = 1727

Mlln(u) 0k1+1 MlQn(u)
Mn (u) = Oky 41 Mnn(l) — Mlln(u) M12n<1> - M12n(u) )
M21n(u) MZln(l) - le(u) Mn22(1)

and Mngj(U) =N 12@“ sznXT

jlin]» ¢,7 = 1,2. Similar expressions can be found

in time series parameter stability testing. This suggests test statistics for H, based on

suitable functionals of
. Ao A a1 -
() = (8, —8,) (w) = RM, " () S (u), (7)

with R = I, 11 0 — T o1 OkQ] and I,, is a m x m identity matrix, which is the difference

between (OLS) estimators of X coefficients under Hy using subsamples

(Yiisnds X 1fin]s Xoginn) 1y and (Yings Xafisnls X gfin))
Notice that

1=j+1"°

A

0,.(u) = Oo(u) + M, ()N, (u),

. . . . . T .
N = (82,0, 53, (1) = 85 (0, N2y ()) s and ) = 078 S X g Ui =
1,2and U; = Y; — X1.3,(Z) — X%.8y,. The asymptotic distribution of N, is obtained
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applying results for partial sums of concomitants in Bathacharya (1974, 1976), extended
by Sen (1976), Stute (1993, 1997) or Davydov and Egorov (2000), among others. Define
Noo(u) = (NL;(u), NL (1) = NL(u), NL,(u))" , where Ny; be k; x 1, j = 1,2, vectors of
centered Gaussian processes with £ (Noog(u)N;)j(v)) =E (X3X§U21{Z§um,}) A7 =1,2.
Next assumption suffices to show weak convergence of \/EN » and uniform convergence

of Mn.
A3: B| XU < cc.

Henceforth, for any matrix A, [|A| = /A (A"A) is the spectral norm, where A (C) is

” means convergence in distribution

the maximum eigenvalue of the matrix C, and "—,
of random variables, random vectors or random elements in a Skorohov’s space D [a, 0],

0<a<b<l.

Proposition 1: Assuming Al, A2 and A3,

Vi (K23, K2) =0 (V20 N2 in D1, ®)
and
lim sup (]\Z/n[j - ng) (U)H =0as., {,j=1,2 (9)

n—% yc(0,1]
Therefore, since

fa(u) = (85 — 63) (u) + R, (u) N, (u),
under H, and conditions in Proposition 1,
Vni, —ans in Dle,1—¢, e € (0,1),
where 7 (u) < R'M ' (u)N?, (u) with

Ngo (u) = (Ngg1<u)>N£§1(1) - Nggl(u)7Ng§2(U)>Ta

and N2 ,,

E (XZXJT»VZI{ZSMU}) =: Qogj(unv), withV =Y — X183, — X368, uncorrelated with the
. —_ -_ T —_ -

components of (X7, X35)" and (ﬁg, 5;) € R¥F1tk2 That is (B, 8o) are the parameters

of the best linear predictor of Y given (X1, X5), and V = U a.s. under H,. Weak

(= 1,2 s a vector of mean zero Gaussian processes with E (N2, (u) N5 (v)) =

convergence of y/n1),, in D [0, 1] is not possible even assuming that Z is independent of X
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and U, as shown by Chibisov (1964) for the standard empirical process (see subsection
2.5 in Gaenssler and Stute, 1979 for discussion).

Therefore, for € € (0,1),
E (n. (u)n’, (v)) = Se(u Av) = "M (u)Qo(u Av)M Y (0)R, u,v € (e,1 —¢),

with Qy(u) =E (N O (u) NI (u)) . Applying the U-I testing principle, this suggests tests

based on functionals of the empirical process,

b (u) = iy, (u) 3, (w)i, (u) ,u € (6,1 —€).

where
$,(u) = BM, () ()M, (w)R,
estimates 3¢ (u), and
Q11 (u) Ok +1 Q1o ()
Qu(w) = | Opsr Qa(D) = Qani () Qusa(1) — Qo (u)
Qor (1) o (1) = Qo () Qo (1)

estimates Qo(u), with Q5 (u) = n~t S X tfion) X jjin V[m], (,j=1,2 and V; = Y; —

X' (1) — X136, (1) are the OLS residuals under Ho. A sufficient condition for consis-

1Y n 2tY'n

tency of €, (u) is
A4: E||X||* < oo and E|V|* < oo.

This condition can be relaxed by assuming that E (V?| X, Z) = E (V?) = ¢2 a.s., which
implies that €o(u) = 02M (1) and 2, (u) = JQRTM;l(u)R. Consider the U-I type test,

' 1 K
Pe = max n- Gy, <l) for small € € (0, - — —] , with K < ﬁ,
[ne| +K<j<|[n(l—e)|—K n 2 n 2

and K = ky + ko + 1. The trimming parameter € is introduced to avoid boundary points
and should be chosen as close to zero as possible in order to detect any possible coefficient
variation on all its domain, including those close to the boundary. However, too small e
values can produce serious size distortions (see section 3). The asymptotic distribution
of ¢, is derived as an immediate consequence of proposition 1 after showing uniform

consistency of 3. Define the vector of random processes,
{0} g 2 ANS @M @R S5 () RM T N (W)},

Next proposition establishes the asymptotic distribution of ¢,,. as a consequence of Propo-

sition 1, after providing consistency of f]n(u) uniformly on u € [e,1 — €] .
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Proposition 2: Assume Al — A4. Under Hy, for any small fived ¢ € (0,1/2 — K/n],
K <n/2

A d
Pre =d Poce = SUD oo (u1).
u€le,1—¢€]

Therefore, a test with a significance level is given by the binary random variable
B, () = L{5, >ce(a)}> Where c. (@) is the (1 — o) — th quantile of ¢ ..
These U-I tests in time series are asymptotically distribution-free under suitable regu-

larity conditions, which has a counterpart in our context assuming that
A5 7 is independent of X and U.

Of course, this assumption is not acceptable in practice, but it is worth discussing to
illustrate the relation of our proposal with related ones in time series parameter instability
testing and the behavior of our test statistic when € is too small. Consider the do = 0
case for simplicity. Under A.5., My;(u) = uMy;(1), Qu;(v) = 0% - u- My;(1), j = 1,2,
{Noo1 (u) o1y < {Mlll/Q(l) : Wo(u)} , Wo is a (1 + k1) x 1 vector of independent

u€(0,1]
Wiener’s processes and

UMH(]_) 0 2 Mll(l)

30 (u) = o*R" R=o . (10)
0 (1—wu)My(1) u(l —u)
Therefore, under A5,
d By(u)
Pooe = SUP  ————, 11
u€le,1—¢€] U(l - U) ( )

where By(u) = [Wy(u) — ulWo(1)]" [Wo(u) — uWy(1)] is the sum of 1 + k; squared inde-
pendent Brownian bridges. The distribution of ¢, has been tabulated by James et al.
(1987) for By scalar and different values of €, and by Andrews (1993) in the general case.

Under A5, one can exploit the information in (10) and, after estimating 0% by 62 =

n~ 'S V2, use as test statistic,

i=1 Vni>
@7(10) =n-_ max _Q (i) ,

K<j<n—K n
with X
. . M, (Du(l —u) .
anfu) = it ) 0=y e o),

n

which resembles the classical U-I tests avoiding any trimming. This statistics, suitably
standardized, converges to a extremum distribution, which is proved applying Darling
and Erdés (1956) type results for normalized partial sums. To this end, we need the

alternative conditions that replaces A3 and A4 by,
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A3 B|U*" < 0o and B || X ||*"° < oo for some 6 > 0.

This implies, under A5, that E || XU|*™ < oo, which is stronger than A3. These
type of moment conditions was proposed by Shorak (1979) to extend Darling and Erdés
(1956) result to allow less than three moments. These can be further relaxed using
Einmahl (1989) moment condition. Henceforth, I'(z) = [;°y* e ¥dy, , and E is a ran-
dom variable such that P(F < z) = exp(—2exp(—=)), a(z) = 2logz and b,,(z) =
2log z + (m/2)loglog z — logT'(m/2). The convergence of 3\”) is slow, which results in a
poor size accuracy, and some alternatives may be preferred when A5 is satisfied.

We can also consider the Cramér-v Mises type statistic

and the unweighted statistic
T .
5 —  max =i 4 (l> 7
K<j<n—K n n
which both have better size accuracy under A5 than the test based on gb(o). Next propo-

n

sition provides the limiting distribution of gbff), 7 =20,1,2 under H,.

Proposition 3: Assume 6o =0, A1, A2, A3’ and A5, under Hy,

a(logn)y/ 30 — by iy, (logn) 5 E, (12)
1
o4 [ Bl 13
R (13)
2@ L sup By(u). (14)
u€e(0,1]

This suggests that, because the rate of convergence of ¢, changes suddenly at € = 0,
tests based on critical values of the asymptotic approximation (12) are expected to exhibit
poor size accuracy. See simulations in section 4.

Next, we study the power of the test in the direction of sequences of local alternatives
of the form,

7(Z)

Hy 2 B(Z) = By + W a.s.,

for constant 3, and a function 7 : R — R'*™ such that T'(u) = E [X]7(Z)1{r<y] is
bounded for all u € [0,1]. Define T (u) = [T"(u),T"(1) — T"(u), OiJr and the random

processes,

{os(u)} = {(Now+ 1) ()M (w)R"Sg () RM (1) (N o + T) ()}

u€le,1—¢| - u€le,1—e

10



In order to study the power of the test under H,,;, we need the following extra assumption.

A6 E|X,7(2)| < c.

Proposition 4: Assume Al — A4, and A6 for e € (0, (n —2K)/2n], K < n/2. Under

Hb
@ne —p 0O, (15)
and under Hy,,
@ne —d sup aio(“)? (16)
u€le,1—¢€]

Therefore, the test does not have trivial power in the direction of H,; when

Supue[e,l—e} "}/(U) > 0 with

Under A5,

T(w)" My (1) T(w)

o2 u(l—u)

7(u) =
This suggests choosing € as small as possible in order to give more weight to the extreme

values of Z.

The bootstrapped test statistic is

' 1 K
Qre =1 sup a (i) for small € € (0, = — —] , K < E,

K+|ne]<j<n—K|nc| n 2 n 2
with
an(u) = it (u) B, (W) (w),
and

Ak

Ak ~—1
i(w) = RM,, (u)N,, (u) ,
. % . . . . T .
where N (u) = (N (u), Nt (1) = Nit(u), Mg ) o Ny () = 07 S0 X Vi,
j=1,2, Vi* = Vi&,, {€,}, are i.i.d. as £, which satisfies that,

AT ]E(f):O,]E(SQ)zland§§n<ooa.s

The bootstrap test, justified in next Proposition, is @):‘w (@) = 1gp, >er ()}, Where
¢t (o) = inf{c:Pe (¢, <c¢) >1—a} and P is the induced probability of a random

en

variable &.
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Proposition 5: Assume Al — A4, and A7 for e € (0, (n —2K)/2n], K < n/2. Under
Hb
lim Pe (¢, < ¢) =P (o <) as.,

n—oo

and under H; there exists a C' > 0 such that,
lim P, (¢, > C) =1 a.s.

This implies that the asymptotic power function takes the value o under Hy and 1
under Hy, i.e. lim, . E [Ci);:e (oz)] = o under H, and lim,,_, E [('IA')ZE (a)} = 1 under H;.
The test can also be based on the bootstrap p — values, pf = P¢ (¢, > ¢,.), and we
reject Hy at o — level of significance when p* < a.

Since ¢, (a)and p! are difficult to compute in practice, they can be approximated by
Monte Carlo as accurately as desired using the following algorithm.

. n
1. Generate b sets of random numbers {551)} ;7 =1,..biid. as &, with b large.
1

i=

(0)*

2. Compute b test statistics ¢, /5, j =1,...,b, as ¢ ., using the random numbers in 1.

Approximate the bootstrap critical values ¢, (a) by

b
ég’l)*(a lIlf{ Z (b)* Z 1-— Oé} s

neg
=1

and the corresponding p — values, p:, by

b
- >
- b *
b — ¢§LQJ _wne

The greater b, the better the bootstrap critical values and p — values approximation.
The same bootstrap approximations can be performed for tests based on test statistics

PV, j=0,1,2.
3. FINITE SAMPLE PROPERTIES

We generate samples {Y;, Z;, X1, ... Xlk”,XQh,ngﬁ} _, with

Y 500 +ZBO] X1j1+250jX2]1+UZ, 1=1 y ey T, (17)

7j=1

12



with {Z;}}_, i.1.d. as uniform in [0, 1], Xyj; = Z;+e€y;i, €gj; tid as uniform in [0,1], ¢ = 1,2,

j=1, ..k, and
B eiexp(7Z;/2)
VVar(eiexp(12;/2)) ’
with €; 7id N(0,1); that is, Var(U;) = 1, and 7 governs how severe the heteroskedasticity

%

is. We generate the random coefficients as

f(2)

0j(2) = L
Pul?) = A )

I

for all j = 0,1,...,ky, i.e. Var(B8y;(2)) = A2, i.e. X\ governs how serious is the departure

from the null under the following models,

a) f(z2) = z, b) f(2) = [1+exp(—p2)] ",
c) f(z) =sin(2mz), d) f(2) =1+2- 11.<043.

Model a) is a simple linear model and b) is a nonlinear alternative, almost indistinguish-
able for p = 1 when z € [0, 1], the lower p, the smaller the departure from linearity. We
use model b) to check departures form linearity under different values of p. Model c) is
harder to fit than a) or b) using smooth methods with moderate sample sizes, and d) is a
jump model that cannot be estimated using smoothing methods. We only report results
for the 0.4 quantile, but we have also tried other values and the results do not change
substantially if the jump is not placed in extreme quantiles. Figure 1 represents 7, for

the different models and different A\ values.

|FIGURE 1 ABOUT HERE |

The simulation study is implemented to provide evidence on the effect of €’s choice
on @ne(a), the accuracy of the bootstrap test, the relative performance of our test with
respect to existing alternatives, and the performance of our test for model checking of in-
teractive effects. The Monte Carlo study is based on 1.000 replications and the bootstrap
replications are set to 1.000.

Figure 2 provides the percentage of rejections for different €'s for o = 0.05. As expected,
size accuracy is poor when ¢ is close to zero. For reasonable € values, i.e. bigger that 0.1,
the level is close to 5%, particularly for the larger sample sizes. On the other hand, under
the alternatives, i.e., a), ¢) and d), the power converges to 1 as n diverges, independently

of the value of €. Of course , the power always increases with \.
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|FIGURE 2 ABOUT HERE |

In order to check the level accuracy of the bootstrap test, we compare the percentage
of rejections using values of the asymptotic (Proposition 3) and bootstrap (Proposition
5) tests when Z is independent of X; and U using the test statistics gbglj), 7 =0,1,21in
a pure varying coefficients model, i.e. with do = 0. Table 1 reports these results. The
bootstrap tests exhibit very good size accuracy for the three test statistics. As expected,
the asymptotic test based on c,bq(@o) shows quite poor size properties, particularly for n

small. However, the size accuracy of the asymptotic tests based on gb,(ll) and Cp,(f) is fairly

good, but much worse than the corresponding bootstrap tests, as expected.

| TABLE 1 ABOUT HERE |

Now we perform the comparison with existing tests in the context of the partly linear
model. We consider the omnibus specification test proposed by Stute (1997) for consistent
testing of any nonparametric alternative, which is based on the CUSUM of residuals type
process,

n k1

ko
N 1 A
() = n ZUzH Lixy <a;) H 1{X2m§xkl+m}7 T = (71, ---7xk1+k2)T-
i=1  j=1 m=1

The CUSUM test is designed for omnibus regression model checking i.e. it detects, in
principle, any departure form linearity, including specifications different to the varying

coefficient model. We consider the Kolmogorov-Smirnov type statistic,

A~

¢, = sup +/n

xERk1+k2

Uol@)].

Our test is directional and is expected to be more powerful under H;. We also consider
the LR type bootstrap test of Cai et al. (2000) for testing Hy in the direction of H,
T, = (RSSy/RSS;) — 1 that compares restricted and unrestricted sum of squared resid-
uals. LR type tests are asymptotically distribution free by the bandwidth converging
to zero at a suitable rate as the sample size diverges (see Fan and Huang 2005 or Cai
et al. 2017). However, tests based on critical values corresponding to the asymptotic
distribution exhibit a poor size performance in finite samples. Cai et al. (2017) page 7

lines 15-19 argue that this is because the sensitivity of the test to bandwidth choice and

14



recommend approximating critical values with the assistance of bootstrap. This is why
we only report the bootstrap version of Cai et al. (2000)’s test.

In the following set of simulations we consider different X5 dimensions, ky = 1,2, 3,
A = 0.25 and 7 = 1. Table 2 provides the percentage of rejections in this simulation study.
It shows that, under H;, our directional test works better than the omnibus CUSUM as
ko increases because of the curse of dimensionality. For instance, when ky = 3 and under
model d), our test rejects more than twice than the CUSUM test. The smoothing based
test has similar power than ours in all models but the jump model d), due to the poor

performance of the Nadaraya-Watson estimator for estimating discontinuous regressions.

| TABLE 2 ABOUT HERE |

Table 3 reports the percentage of rejections for different X; dimensions, k1 = 1,2, 3,
A =0.25 and 7 = 1. Note that, again, our directional test works better than the omnibus
CUSUM as k; increases. For instance, when k; = 3 and under model d), the power of
our test is almost twice the CUSUM test. The test using T., works similarly to ours in
general, but our test performs better when k; = 3. The smooth test also suffers of the
curse of dimensionality; the power decreases as k; increases. Also, the LM test detects
departures from the null in the direction of jump model d) much less than the other tests,
which do not require to estimate the model under the alternative using smoothing.

Under model d) our test also works much better than the LM smoothing based test be-
cause of the curse of dimensionality of the Nadaraya-Watson estimator needed to compute

T,.

| TABLE 3 ABOUT HERE|

In the next set of simulations we apply the test as a regression model check of the
linearity hypothesis when k; = 0,k; = 1 and X, = Z. That is, Hy is equivalent to
omnibus specification testing of the simple regression model E (Y| Z) = By, + Zdoo a.s.
The resulting test competes with the CUSUM test based on gAbn Since [, is not iden-
tifiable, tests based on comparing fits under the null and the alternative, like the LR
test using T, as test statistic, cannot be implemented. We compare our test with the
omnibus specification test, designed to detect more general non-linear alternatives. We

consider model b) with different p values in order to check the performance of the test
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under small departures from the linearity hypothesis. Table 4 shows that our test rejects

almost double than the CUSUM test for all p values.

| TABLE 4 ABOUT HERE |

We also consider the test for model checking of non-linear regression models. We

consider testing that B (Y| Z) = By + Sory 2001 a.s. in the direction

E(Y|Z) = B4(Z +ZZ Sor—1a.s. with Var (B4(Z)) > 0 a.s.
/=1

and [y, unknown. Our test is omnibus for the nonlinear specification hypothesis, since
the direction of interest nests any possible departure from the null. This corresponds to
applying our test to model (5) with g;(z) = 27, j =1, ..., L. Table 5 reports rejections for
model b) with p = 15, which produces a sensitive departure from linearity, for different

L values

| TABLE 5 ABOUT HERE |

Next, we consider the performance of the test as a specification test of interactive
effects in the context of model (5) with k1 > 0, L =1, go(z) = 1 and ¢;(2) = z. That is,

our test is implemented for testing the hypothesis
k1
E(Y|X1,2) = Boo(Z) + 600Z + Y _ (Bo;(2)X1; + 00, X1;Z) a.s.

in the direction

k1
E (Y| Xl, Z) = BOO + (5002 + Z (BOlej —|— 50jX1jZ) a.s..

j=1
Table 6 reports the percentage of rejections for ours and CUSUM test in model b) with
= 0.5, different p values and k; = 1,2,3. Our test performs better than CUSUM in

most cases.

| TABLE 6 ABOUT HERE |

Now, we consider testing non-linear specification of interactive effects in the context of
model (5) with k; > 0, L =1,2,3,4, go(2) = 1 and g¢;(z) = 2. Our test is implemented

for testing the hypothesis

L
E(Y[X1,Z) = Bp(Z) + Z Z 5001 + Z (503 )Xy + X1, ZZ50j+L+e—1) a.s
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in the direction
) L o L
E(Y|X1,2) =B+ > Z 001+ Y (50].)(1]- + X5 ) Zf(soﬂLMl) a.s.
=1 j=1 =1
Table 7 reports the percentage of rejections for both ours and CUSUM tests under model
b) with A = 0.5, p = 15, k; = 2 and different L values. Our test performs better in

general.

| TABLE 7 ABOUT HERE |

4. AN APPLICATION TO MODELING EDUCATION RETURNS

We complement the previous Monte Carlo study with an application to using /Q) as
control, or proxy, variable of "ability" in a returns of education model. This is based
on Blackburn and Neumark (1992) work, which is used in Wooldridge (2009) textbook
(example 9.3). The data consists of 663 observations from the Young Men’s Cohort
National Longitudinal Survey. The main objective consists of estimating the marginal
effect of education on wages, controlling for relevant covariates, which include unobserved
"ability". A reasonable model using Q) as proxy variable (Wooldridge, 2009, example
9.3) is

Log (WAGE) = Bog + Bor - EDUC + By - 1Q + X 301 + U, (18)

where W AGE are USD monthly earnings, FDUC' is years of education, /(@) is intelligence
quotient (proxy of ability), and X, = (EXPER, TENURE, MARRIED, SOUTH,
URBAN, BLACK)" , EXPER are years of work experience, TENURE years with
current employer, MARRIED a dummy (1 if married), BLACK dummy (1 if black),
SOUTH dummy (1 if live in south), URBAN dummy (1 if live in urban area SMSA), and
801 = (0o1, .-, 906)" . The OLS estimators of 3, and B, in this model (heteroskedasticity
robust SE in parenthesis) are 0.054 (0.006) and 0.0036 (0.001) , respectively. The OLS es-
timator of the marginal effect of EDUC (3,,) is inconsistent when B (U| EDUC, I1Q, X 1)
depends on EDUC, i.e. I(Q) is not a good proxy for ability, but also when it only depends
on /@ in a nonlinear form. A reasonable alternative to (18) is the varying coefficients

model

Log (WAGE) = 5y,(I1Q) + n(IQ) - EDUC + X300 + U, (19)

which allows EDUC partial effects to be an unknown function of /(). Figure 3 provides

estimates of 3y, and [, varying coefficients using Cai et al. (2000) procedure, which
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uses a modified manifold cross-validation criterion for choosing the bandwidth. We also
provide OLS estimates of the parametric specification 3;(/Q) = Béﬁ») + B(()?I Q+ B(()?I Q?,
j=0,1.

|FIGURE 3 ABOUT HERE|

The p —wvalues for testing Hy : Var(B,;(1Q)) =0, j = 1,2 versus H; : Var(B8y;(1Q)) >0
some j = 1,2, or Hy: Var(By(IQ)) =0 and Var(By,(IQ)) > 0 are reported in Table 8,

where we provide the p — values.

| TABLE 8 ABOUT HERE|

We also report the smoothing LR test of Cai et al. (2000). Here the CUSUM test
is unable to reject the null hypothesis, but the directional tests reject Hy in the two
directions considered. The p — value of our test is the smallest when testing in the
direction Hy, but the corresponding p — value for the smoothing LR test based on T, is
the smallest in the direction Hs.

Next, we apply our test as a model check of the interactive effect of EDUC. The

maintained specification is
Log (WAGE) = (Bo(IQ) + 6071Q) + (B1 (1Q) + dos) - EDUC + X300 + U, (20)

which is model (19) augmented with the explanatory variables (/Q, EDUC') in the con-
stant coefficients terms, i.e. X5 in (19) is substituted by (X5, /Q, EDUC) in (20). Then

H, is in fact a specification test of the functional form of the varying coefficients in (19).

| TABLE 9 ABOUT HERE|

In this case, see table 9, we are unable to reject the specification of the interactive effect
either with the CUSUM or with our test. We conclude that the specification including
1@ and a simple interactive effect EDUC with I() cannot be rejected.

5. CONCLUSIONS.

We have proposed a test for constancy of coefficients in semi-varying coefficients mod-
els, where the variable responsible for the coefficient varying may depend on the rest of
explanatory variables in an unknown form. The test, implemented using bootstrap, is
based on comparing the OLS coefficients of subsamples of concomitants to the explana-

tory variable in the varying coefficients. The test is justified under fairly weak regularity
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conditions, which allow discontinuous random coefficients under the alternative hypothe-
sis. Our test forms a basis for specification testing of parametric varying coefficients and,
in particular, for testing the functional form of interactive effects. Simulation results have
provided evidence of the good performance of our test in finite samples compared with a
CUSUM-type test, designed to omnibus specification testing of linear regression models,
and a smooth LM test, designed to test varying coefficients constancy in the direction of
smooth alternatives. The CUSUM test, like ours, does not require estimating the model
on the alternative, but the LM-type test compares the restricted and unrestricted sum of
squared residuals and, hence, requires estimating the nonparametric smooth varying co-
efficients. Simulations show that, unlike our test, the two competitors suffer of the curse
of dimensionality. These also show that the LM smooth test exhibit a lack of power,
compared with the two competitors, under alternatives with discontinuous varying coef-
ficients. We have also included a real data application to model interactive effects of 1Q
in a returns of education model.

The proposed methodology is applicable to testing constancy of a subset of varying
coefficients or a linear combination of them. However, since the model under the null
must be estimated, smooth estimation of the unrestricted varying coefficients is necessary.
A formal justification of the resulting test is technically demanding, but it seems possible
to take advantage of existing asymptotic inference results for varying coefficient models.

A relevant extension consists of allowing endogenous explanatory variables using an
instrumental variables approach, see e.g. Cai et al. (2017). Extensions to nonlinear and

multiple equations estructural systems seems also feasible.

APPENDIX

Proof of Proposition 1. (8) follows from Davidov and Ergorov (2000) Theorem 1.
Recall that Z is distributed as an U(0,1). A typical uniformity argument shows that

SUPye(0,1] H <Mjn - Mj) (U)H = 0,(1) a.s. with

Mjn(u) = 7’L_1 Z‘leszl{zzﬁu}h] = ]_, 2

i=1
Then (9) follows by noticing that M;,,(u) = M n(Zn:\nu)) and that sup,eio 1) | Zn:nu) — | =

0 (1) a.s. by Glivenko-Cantelli theorem. =
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Proof of Proposition 2.  Define X;(u) = [X];(u), X};(1) — X1,(u), X5,]", with
_ _ _ _ T
X 1i(u) = X13(1)11z,<uy, and Oy = (,8;, [33, 63) . The result is immediate from Proposi-
tion 1 assuming A3 and A4, after showing that
(0 -00) ] o0
Eie<u<E e

with
1 n
- Z; (u)

Under Hy, 0,,(1) = 8, + O,(n~"/?) and
[nu|

Qu () = O (u) = —Z(X 0 (8.0 ~80) ) XXl

o)
~ _\T 1
~2(0,(1) = 80) ~ >~ Xy X X oy Ve

=1
GOH = n~'/?) . Then, by A3, A4, after applying Holder’s

)] o 00

Proof of Proposition 3. First notice that because Z is independent of (U, X)), the

inequality, sup K ccucK

concomitants { Ui, X i1 b are i.i.d. as (U, X). Define
[in]y X [in] f —q

4 . (e>
@Y, =N _ max o,
K<t<n—K n
with
Nin(u) — uNp, (1)

i (w) = Mpy'(1)

uw(l — u) ’
al(u) = n-9l" (u) Mo (1);;(1 —u) i, ()

Applying the extension of Darling-Erdés’ theorem (Darling and Erdés, 1956) to the vector
case, as in Horvéath (1993)

a(logn)y/ @l — byiy, (logn) —4 E.
Therefore, it suffices to prove that

sup
K<(<n—K

(@ —&h) (f) ‘ =0, (1). (21)

To this end, first, apply the Marcinkiewicz-Zygmund strong law of large numbers (Chow
and Teicher, 1988, pp 125), to establish that, for the 6 > 0 in A3/,

|:an1 <£) — (M (1)] =0 (62/(2”)) a.s. as { — oo.

20



[n (MH (1) — N, <§)) ~(n—0) M, (1)} = 0 ((n - @2/(2“)) a.s. as £ — oo,

Z Vi—no® = o(n¥®)) as. asn — oo.
Hence,
l - 14 s
max || —Myi(1) — M, (—) H = o, (n <2-6+5>) 7
n—¢ ’ ’ ¢ s
max Mll(l) - Mlln (1) — Mlln — = Op (TL (2+6)> 3
1<t<n-K || n 0
By A.2.,
i (9)] - 0
n—~01| - . V4
1§Ilp§%)EK n [MH” (1) = M (ﬁ)} = 0,(1)

Also, by the law of the iterated logarithm for partial sums,

—Nm ( )H loglogn)

1 &ty 1 A log1
67— 0% = =3 (V= 0?) = SN, (DS,(1) = 0, (n7D) + 0, ( oglogn
n

n- (G — 1) <§) _ [ 10D G, - i) (g)] (0+0M(n)
x[ =D 6, - i) (g)]

E(nn— D (o) (é) _ E(nn— 0 {{Mﬁi (g) - %Mﬁl(l)] N, <n

(22)

(25)

(26)

)

- [(Mm (1) - M, (é))_l - oM (U]

<[5 ()]}
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S () [ - ()] i 3)

e (e - (7))

Therefore, by (23)-(27),

=) (5)] = 0w <o (1) x 0, (ViogTosn)

n (2+9)

= op(1), (28)

C(n—10)

n K<t<n—K

which proves (21).
Finally, (13) and (14) follow by (28) and

{U(l )MI/Q( ) /0'} uelo,] d {Wo(u) — UWO(l)}ue[o,u in D[0,1],

by Proposition 1. =
Proof of Proposition 4. First notice that, by Proposition 1 and 2, uniformly in
u€ e, 1—¢,

= sup ()25 (u)mg(w)

n e<u<l—e

which proves (15). In order to prove, (16), notice that under My,

[nu]

ﬁ(@n—é()) (u) = A_l ZX[W]T in) + VRN (u) |

where, under A6, sup,,<; . ||n"" ZZ lJ X i (Zim) — T (u H a.s. using same
arguments to prove (8) in Proposition 1. Then, apply (8), (9) and the continuous mapping
Theorem to complete the proof. m

Proof of Proposition 5. Let P be the induced probability distribution of &. It suffices

to show that for any ¢ > 0,
P (@he <€) = P(poe <€) +0(1) as., (29)

Notice that uniformly in u € [0, 1],

A~ x

(1) = RIM (u) +o(1)] " N, (u) as.,

n
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Mimicking the strategy of proof in Stute al. (1998) (SGQ) for a similar bootstrap sta-
tistics, (29) follows by showing that conditional to the sample, \/ﬁN Z converges in dis-
tribution to N a.s., i.e. for almost all sample {Y;, X1;, X5, Z;};,, by showing the
convergence of the finite dimensional distributions (fidis) and tightness. Henceforth, E;

is the expectation operator corresponding to IP.. For fidis convergence, first notice that

for uy,uqy € [0, 1],

[n(u1Auz)]
Ak A T ]. 2,
nBe | N, (u1) N, (U2)] -, E X[i:n]X[Ti:n]V[?:n]
=1

- 1 . TY/2
— EZXlXZ‘/:L 1{Zi§ZLn(u1/\u2)J:n}

i=1
1 - T (A ! 2 TY /2
+;; [Xi (an(1) _ 90>] XXV,
= Qo (u1 Aug) +o(1) a.s. (30)

since én(l) =0, + o(1) a.s., and applying the arguments for proving (9) using A3 and
A4. Then, fixing uy, ..., u,, by the Cramér-Wold device, it suffices to show that for any
¢ < 00,

Pg{\/ﬁiaijNZ (u;) gc} —@]P{iaijNoo (u;) gc}, (31)

=1

for any b= (by,...,bx11)" and a = (ay,...,a,)". Write W; = 25:1 aijXil{
7:<7

= Lnujjzn}

q n
~ % 1 ~
ﬁ E CijTNn (Uj) = —= E Wszl
j=1 Vn i=1

I o,
= %;WM&

Then (31) follows by checking the Linderberg’s condition

1 & .
L, (0)==> W} / A W2V2E2dP: — 0 a.s.
n= {|WiVig;|>ovn}

Define W; = Z?:l a;b' X,;. Since [£] < T,

172772
w250y W2

Ln(é) < %il{

9 N
N % 2 Liw|pem)WiVi +o(1) as.
=1

= o(1) a.s.
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using arguments in (30). In order to show tightness, it suffices to check Billingsley (1968)
Theorem 15.7 as in SGQ Lemma A3. Define

- ¥ 1 « .
A~k . T - ' . £
anb(u) - \/ﬁb Nn (u) - \/ﬁ Zl b Xll{Ziﬁz\_nujzn}‘/ZSl.
We must show, as in SGQ Lemma 3, that for any b € R™* and 0 < ug < uq < up < 1,
B [A5 (u1) — g (10)]* [ (u2) — G (u)]* < O [ (u2) = Jn(uo)]?, (32)

where C' < 0o is a generic constant, J, monotone a.s., and J, — J a.s. Then, applying

Lemma 5.1 of Stute (1997),
3 2 2
LHS(32) < EZ ZEg/\i Eev?,
i#j
e AA. . =P ‘A' )
)\Z b XZ‘/;gll{Zl_nuoj:nSZiSZLnuIJ:n} and 71’ b X’L‘/;fl1{ZLnu2j:nSZi§Z|_nu1j:n}. Then,
3 2 2 Y¥r2v75
< = T ) T ) 27/2
LHS(32) - TLZZ Z <b Xl) (b XJ) ‘/; V7 1{ZULuoj:nSZiSZ\_nulj:n}1{ZL7Lu1J:n§ZiSZ\_nu2j:n}

i#]
< 3 [Jnlug) — Ju(uo)]?,

where
n

1 .
Jp(u) = — Z (bTXz‘)2 Vz?l{zigzwjm}

n <
=1

is monotone and J,(u) — J(u) =E ((bTX)2 V21{Z§u}) a.s. uniformly in u. =
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Figure 1: Representation of n, for different models when A =0 (blue curve), A = 0.25
(purple curve), and A = 0.5 (red curve).
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Figure 2: Representation of ®,.(a) for different models when X = 0.25 (red curve) and
A= 0.5 (blue curve).
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a 1% 5% 10%
k1 0 1 2 3 0 1 2 3 0 1 2 3
>0 (bootstrap)
50 102031020525 ]25|28| 24 |57 |61 |64 |59
100 {05105 |107|106]35(32(31| 24 | 85 | 6.6 | 6.0 | 5.8
2001 12(11/05104 |44 42|36 21 |84 |79 |63 | 44
500 |1 0.710.7]07 114138 |36| 45 | 91 | 77 | 84 | 84
@S) (bootstrap)
50 |06]07(01]01 (414132 34 | 87| 96 | 80 | 83
100112100705 [46|45(139]| 36 | 95| 94 | 9.1 | 85
200 1121207075343 |52| 39 | 97 |105| 92 | 7.8
500 11.0(09]06 |12 |47 41|45 | 51 |11.1| 9.0 | 87 | 95
@ﬁf) (bootstrap)
50 10711003 |13 45|51 |52| 46 | 92 |116] 9.9 | 11.3
100110110 07|06|51|45 |45 | 44 |11.0| 94 | 92 | 9.6
200112100707 |52]51|49| 26 |103|108 | 9.2 | 84
500 | 1.2 1012|1547 54|57 59 | 97 |100| 94 | 10.2
@7(10) (asymptotic)
50 | 0.0]0.1]05 (36172467233 ] 59 | 82 |18.1 439
100 0000|0110 13|11 (39| 9.1 | 53 | 59 |10.3 ]| 21.8
200100000004 (15|14 |25 46 | 44 | 46 | 5.9 | 134
5001 0000000015 ]10(24| 33 | 43| 39 | 6.2 | 103
c,b%l) (asymptotic)
50 1 05]01(00(00}29 2719 10 | 68 | 64 | 5.1 | 3.3
10011007 /06|01]|49|38|37| 24 |108| 85 | 79 | 6.7
200113120506 |46|53|40| 41 | 85 |103| 88 | 74
500 1 0.8 110804494549 | 43 | 95 | 94 | 9.5 | 87
Coﬁ?) (asymptotic)
50 102(01({01(00|20|15|1.2| 14 | 49 | 40 | 4.1 | 3.7
1001031020401 ]33|25|26| 46 | 7.8 | 5.5 | 5.0 | 4.6
200 10.7107,04103|41(35|32| 16 | 82 |72 | 64 | 4.1
500 | 0.7 0710710844139 |40| 47 | 81 | 83 | 7.8 | 81

Table 1. Percentage of times Hy was rejected (ke =0 and 7 =10)
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Model HO H1 . a H1 . C H1 o d
ko 1 2 3 1 2 3 1 2 3 1 2 3

Pno.02
50 3344|146 |115] 95 | 7.1 | 133 125|114 15.0| 11.2 | 10.3

100 | 4.0|5.04.6 266|159 | 124|259 |23.0|21.2|30.0|20.5]|19.8
200 | 45|43]36|49.1|31.4 224 |56.0|45.6|40.6|60.9|45.4 | 384
O
50 45144146127 94 | 48 {140 | 81 | 64 | 144 | 79 | 6.3
100 |46 |50 54268109 | 78 | 278|165 | 99 284|144 | 85
200 | 44|47 ]41 481|209 |11.7|57.0|34.6 | 182 |56.9 | 30.5 | 15.0
T,
50 4.714916.6|158| 9.0 | 7.6 | 15.0 | 13.7| 7.4 | 13.2 | 103 | 9.3
100 |3.84.0/6.2 321 |21.6|12.1|31.9]29.0|18.7 295|214 18.8

200 |49 |5.1]42|57.7|404 283|624 |553|45.5|56.8|41.5 | 33.6

Table 2. Percentage of times Hy was rejected, 5% of significance ( k; = 0, A = 0.25 and
T=1)

33



Model H, Hi:a Hi:c H,:d
k1 1 2 3 1 2 3 1 2 3 1 2 3

¥n0.02
50 27134123]183]20.5|20.5|26.8|41.6|54.1 252 30.6 | 34.1
100 | 3.8 4.1 |3.1|47.2]59.2]69.7|66.9 |92.7|98.5|63.6 | 8.9 | 94.6
200 139(32 40841963989 |97.2| 100 | 100 | 97.1 | 100 | 100
Pn
20 44146 |52 |21.3 177|164 (229|234 |229| 188|184 | 16.1
100 | 5.0 |54 |43 41.6|40.5|39.6 | 554 | 61.6 | 56.7 | 45.8 | 42.3 | 35.8
200 | 4.7]141]59 763|832 |81.4|93.8]96.2|94.7|86.2|84.2|76.7
T,
50 4.5 4.8 |57 |18220.2 | 227|220 | 484 | 272|158 | 42.7 | 19.8
100 | 4.2 |49 |47 448 |55.3|36.5|67.0 | 61.5 | 42.8 | 48.8 | 54.8 | 39.6

200 1491|4845 |71.1|94.0|53.5|97.2|97.7|53.6 |89.0|89.8|52.2

Table 3. Percentage of times Hy was rejected, 5% of significance ( ky =1, A = 0.25 and
T=1)

A 0.25 0.5
p 1 2 13 4 5) 15 1 2 3 4 5 15

@n0.0?
50 [ 3.8 144 (53| 66 | 75 |11.8 41|54 | 83 |11.6 | 16.6 | 35.5

100 |40 4761 7.8 |10.6 25239 |6.2|11.7|21.5 | 33.6 | 76.2
20013914364 |11.2 183 ]56.3|41]|6.5]|19.0|39.7]|615|98.7

~

¢7L
50 [ 56 (54|58 6.0 | 65 | 7.7 |56 57| 66 | 86 | 10.9|19.2

100 |49 |56 |67 7.7 | 90 | 13.7 52| 7.2 |10.0 | 14.4 | 20.8 | 49.7
200 | 4.3 1 4.7]16.7| 86 |12.0]24.8|4.6|6.8| 139|254 |40.0|87.1

Table 4. Percentage of times Hy was rejected, 5% of significance (ky = 0, ks = 1 and
T=1)
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0.25 0.5

Pno.02
o0 | 11.8 | 7.2 |44 129|355 164 | 6.1 | 2.9

100 | 25.2 | 11.8 | 6.3 | 4.7 | 76.2 | 384 | 11.7 | 4.9
200 | 56.3 | 249 | 7.3 39| 987|779 19.6 | 6.2

~

Pn
50 | 7.7 | 5.3 |62]6.1]192| 82 | 6.0 |59

100 | 13.7 | 6.0 | 5.6 | 6.2 | 49.7 | 10.5 | 5.7 | 6.1
200 | 248 | 6.3 | 4342|871 | 187 | 54 | 4.6

Table 5. Percentage of times Hy was rejected, 5% of significance (ky =0, ko =1, p =15
and T =1)

ke | 1 2 |3 1 2 3 1 2 3 1 2 3

~

¥n0.02
50 [ 3.6]133]28 |42 3.7| 3.8 |48 44 54 | 85 | 13.8 | 16.7

100 | 3.7 543048 58| 54 |61 ] 88 | 11.6 | 19.8 | 38.8 | 51.6
200 | 3.813.8]149]49|6.7]104|81]16.6|26.7|48.3 | 84.1 |94.0
o
50 | 4516.1]70|46 65| 66 |49 70 | 7.8 | 7.8 | 94 |10.3
100 | 53| 7148|6469 | 56 | 71| 8&7 | 7.3 | 121|155 |11.2
200 145159151149 |71| 68 |86| 9.0 |10.6|21.2|34.1 275

Table 6. Percentage of times Hy was rejected, 5% of significance ( ky = 0, A = 0.5 and
T=1)
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Table 7. Percentage of times H

L 1 2 3
Pno.02
50 | 13.8| 7.0 | 4.6
100 | 38.8 | 17.3 | 6.9
200 | 84.1 | 474|104
o
50 | 94 | 7.7 | 87
100 | 15.5 | 85 | 6.3
200 | 34.1 | 145 | 7.5

p=15andT=1)

was rejected, 5% of significance (k1 =2, ke =0, A=10.5

Hy :Var(By(IQ)) >0 | Hy: Var(By(IQ)) =0 | Hy: Var(By(IQ)) > 0
Test or and and
Var(By;(1Q)) >0 Var(By;(1Q)) >0 Var(By(1Q)) =0
©10.003 0.012 0.017 0.08
b, 0.734
T, 0.041 0.009 0.009
Table 8. p-value of testing Hy versus H; and H,
Hy :Var(Bo(IQ)) >0 | Hy: Var(By(IQ)) =0 | Hy: Var(By(1Q)) >0
Test or and and
Var(By (1Q)) > 0 Var(By (1Q)) > 0 Var(By(1Q)) =0
©10.003 0.6489 0.405 0.484
o, 0.491 0.653 0.543

Table 9. p-value of testing Hy versus H; and H,
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