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Abstract, _ 

This paper presents an alternative approach to the 
likelihood methods for estimating the parameter A in the Box-Cox 
family of transformations when the data arise from a random 
sample. The method is based on a representation of the quantile 
function of the variable under consideration. Theoretical 
properties of the method, its practical applications and 
comparison with the likelihood approach are studied. 
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1. Introduction. Let X be a random variable with unknown 

distribution function F. Let {g(.,A)} a family of transformations 

indexed by the parameter AeA, where A is a non empty set of ~m. A 

method for modelling F is to suppose that, for some unknown AeA, 

g(X,A) -N (ll,cr
2

) • When m=l, a common family of transformations is 

the family of Box-Cox (1964): 

X(A)={XA~l • AOO ( 1.1) 

logX, A=O. 

In (1.1), X must be positive. If not, X is replaced by X+c (X+c>O). 

The model is then, 

(1. 2) 

Given X, ... , X a random sample from F, A is usually estimated 
1 n 

by likelihood methods. In this paper I present, following Parzen 

(1979) suggestions, an alternative approach for estimating A based 

on the quantile function of X under (1. 2). Section 2 introduces 

some necessary background and presents some motivation. Section 3 

contains the new method and studies i ts properties. section 4 

compares the new method with the likelihood approach and another 

quantile method due to Hinkley (1975). section 5 is devoted to 

examples. section 6 contains some final comments and remarks. 

2. Background� and motivation. The quantile function of X is 

defined� to be 

Q(u)=inf{x: F(x)~u} O<u<1. (2.1) 
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The reader is assumed to have knowledge of the main properties 

related to (2.1) (see ParZen(1979, seco 2, 3 and 4) ; 

Serfling(1980, seco 1.1.4.) and Reiss(1989, chapo I) for 

references). ... , X a random sample from F. A sample
n 

version of the quantile function is obtained by substituting, in 

(2.1), F by Fn, the empirical distribution function of the sample. 

This yields 

Q (u)=inf{x: F (x)~u} O<u<1. (2.2)
n n 

As defined by (2.2), we have, Qn(U)=X(j)' (j-1) In<usj/n (lsjsn). 

It is well-known that the transformations in the Box-Cox family 

are increasing and continuous for all A. Therefore, under the 

-1model (2) (and X>O) ~+CTq, (u) = [Q (u) ] (A), where ,-1 (u) is the 

inverse of the distribution function of N(O,l). Given that 

([Q(U)](A»'=q(U) [Q(U)]A-1 (all A), where q(u)=Q'(u), we get 

f[Q(u)]= (l/CT) [Q(U)]A-1 cp[q,-l(U)], where cp is the density of the 

standard normal distribution function. Taking logs results in the 

following relation 

log f(Q(u)] = -logCT + (A-1)10gQ(u). (2.3) 
cp[q,-l(U)] 

Formula (2.3) is a slight modification of a resul t in Parzen 

(1979, sec • 12). 

(2.3) suggests that if we substitute Q(.) by Q (.) and then we 
n 

put u=j In for l s j sn the following approximate relationship among 

the quantities j=l, 

•.• ,n, holds: 

Ut-logCT+(A-l)Vj' (2.4) 

for j=l, ••• ,n. Two comments arise from (2.4): (i) The adecuacy of 

the power transformation to attain normality should be indicated 
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( 

by a linear trend in a scatter plot of (V, U ).
J J 

is equivalent to estimating the slope in 

regression modelo 

(11) Estimating i\ 

a simple linear 

e 

e 

3. The method and its properties. Take ~=i\-1 in (2.4). Set, for 

(l/n) 

where 

random 

-1 • • a =logcp[~ (]/n+1) ]=J(]/n+1) , 
J n 

Define D == E (V -V) 2, and L = 
n J n

J=l 

least-squares "estimate" of ~ is aThe 
n 

the form 13 =(A -1) +B, where A -1= (E V W -nVW) ID and 
n n n n j=l J J n 

n 

E a 10gX( )'
J =1 J J 

variable of 

j=l, ... ,n, W =log[f(X )] and 
J J 

1 1 -1 2J (t) =­ 2log271­ - 2[ ~ (t)] • 

e B = (lID) [-nL + na V].
n n n 

13 +l=A +B. However, for 
n n n 

convenient to take 

A natural "estimator" for i\ 

reasons which will appear 

would then be 

later, it is 

as 

i\ =A 
n n 

the building block for constructing a new estimator for i\. 

e 
THEOREM. 

density 

Let 

f. 

The method is based on the following 

Xl' •.• , xi. i. d. as a distr ibution function F with 
n 

Suppose that P[X~O]=l and that E[llogxI 4 
] and 

'e 

( 

E[llogf(X) \4] are both finite. The following results hold: 
1 

(i) Ln~ J[logQ(t)]J(t)dt, a.e., 
o 

(ii) D In ~ var[log(X )], a.e., 
n 1 

and 

(iii) A -AN(m,s2/n ), for certain m and s. 
n 

PROOf. (i) Note first that by Cauchy-Schwartz inequality, if N is 
1 1/2 1/2 

U(O,l), IJ [logQ(t)]J(t)dtlsE [llogXI 2]E [IJ(N) 12] <~, since Q(N)-X 
o 

-1 1 n •
and tP (N)-N(O,l). If h(t)=logt, then, L =­ E J(]/n+1)h[x( )], so 

n n j=l J 

.c 
l 
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L is written in a L-estimate formo If (X) are L Ld. a set of 
n n 

sufficient conditions for (i) to hold is given in Serfling (1980, 

p. 277 and 279). All the conditions are easy to check in this 

situation and to see that \J(t) I~M[t(1_t]-1+<t/rl+eS. given that 

J (t) =J (l-t) , i t is enough to proof that 

ItI>-l(t) 12=Q([t(1-t) f1+<t/rl+eS), as t---+1. In the well known 
eo 2 2 

inequality for x>O, J e-<tl2lY dy ~ (l/X)e-(X /2), put 
x 

X=tI>-l(t) (t>1/2) r=4, and 0<eS<1-(1/r)=3/4, to obtain, 

[t (1-t) ]1- (lIr l-eS Iti> -1 (t) 12~ [ti>-1 (t) ]Pexp{- (q/ 2) [ti>-1 (t) ]2} . In the 

latter expression, p=l+(l/r)+eS and q=l-(l/r+eS) are both positive. 

(ii) This is a direct consequence of the strong law of the large 

numbers. (iii) Simple algebra shows that A =g (Z ) , where 
n n 

n n 

Z=(V,W,(1/n)I:v2,(1/n) I:VW) and g(a,b,c,d)=(d-ab+c-a2)/(c-a2). 
J=1 J J=1 J J 

It's clear that Z-AN(E[Z1]' (l/n)t), where is the 4x4 

variance-covariance matrix of the random vector 

W, v2, V W) whose existence is guaranteed by the moment conditions1 1 1 1 
given in the statement of the theorem. Therefore, 

g(Z)-AN(m,(1/n)s2) where 

m=g[E(Zl)]' s2=d'I:d, 

and d is the gradient vector of g(.) evaluated at E[Z ]E~4. 
1 

~.em a 1lIc. The conditions of the theorem on the f initeness of 
4E[!logxI 4 

] and E[llogf(X) 1 ] are not empty. By using the formula 

r eo 
d rr(l+S)=J (logt)rtse-tdt (s~O), r=1,2,3, .• 
ds o 

(see Cramér(1958), p. 125) it is easy to show that the moments 

above are finite when f belongs to one of each of the family of 

distributions on [O,eo): exponential, gamma, Weibull, lognormal and 
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log double-exponential. These families are suitable for 

transformations in the framework (1.1) and (1.2). 

Mamen.t ~. To assess the usefulness of the theorem 

above we need to relate the moments of to 

(~,A,~) . Under the model (1.2) 

f(X )=(1/2n~2)1/2exp[_(1/2~2)(x(A)_~)2]XA-1, holds. Taking logs
111 

and using (1.1), 

V =logX =(l/A) log(l+AX(A», (3.1)1 1 1 

and 

(3.2) 

(In (3.1), for A=O, take the limit when A~O). The main problem 

in computing expectations of quantities which depend on V and W 
1 1 

arises in dealing with E [logx1], with e=(~,A,~). To overcome this e 

situation, an inmediate approximation is 

E [logX ]~E [X (A) ] =~ e 1 e 1 
(3 . 3 ) 

(3.3) is obviously motivated by log(l+t)~t(t~O) and is sensible 

for small values of A. For A=O, (3.3) is exacto Furthermore, note 

that the model (1.2) is i tself an approximation and can only be 

valid, for positive data, when A=O. For other techniques related 

to computing expectations regarding logx1, see Bickel and Doksum 

(1981, seco 6). See also Draper and Cox (1969). As shown below, 

approximation (3.3) produces very useful results in practice. 

In the following, let U denote a standard normal random 

variable. Using (3.3) sistematically, as well as (3.1) and (3.2), we 

can write 

Ee[Zl]~E[AS]=AE[S], and Ve[Zl]~V[AS]=AV[S]A', (3.4) 

where S=(U3 ,U2,U,1)' and A is the 4x4 matrix given by 
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-(1/2) 0"(A-1) -lOg~+(A-1)1J ].A=[~ 
o 

0"2 1J221J0" 

o [(A-1)0"2-(1J/2)] [-0"1oguV2rr+20"(A-1)1J] [-lJlogO"V2n+(A-1)1J2] 

Observe, finally, that 

15 O 3 
2 OE[Sl=[~] and V[Sl-[~ 
O 1 ~] . (3.5) 

1 O O O O� 

We now relate L , D and A to the triplet (IJ,A,O") •� 
n n n 

Recalling (10), logQ (N) = Qlo9X (N) ~ Q (Al (N) = IJ+O'" 
-1 

(N) 
x 

and, using ,-l(N)-N(O,l) and the definition of J(N), we 
1 

have J [logQ(t)]J(t)dt=E[logQ(N)J(N)]~-(1J/2) (1+log2n). 
o 

(2) D In. Exploiting again (10), vare[logx ]~vare[x(A)]=0"2 
n 1 1 

(3) A. By using (3.4), (3.5) and the definition of g it's not hard 
n 

to find (after somewhat tedious calculations) that 

and 

~~ ~. The theorem and approximations above 

provide strongly consistent estimators for IJ and O" in an obvious 

way. For practical purposes about A, the following points are 

important: (i) We have that B ~CElR, a.e •• Since 
n 

1JJ(t)dt=-(1/2) (1+log2n), we get c~O. This justifies choosing 
o 

A =A as the "estimator" of A. A is an approximate weakly
n n n 

consistent estimator for A. Notice also that A is asymptotically
n 

normal with asymptotic mean around A. (U) A depends on the 
n 

unknown density f. The latter must be replaced by a suitable 

density estimator ~ (.), computed from the sample, to obtain, in 
n 

obvious notation, the estimator ~ . When A is small, a 
n 
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distribution arising from the model (2) is typically long-tailed. 

Practical experiences performed by the author suggest taking t (.)
n 

as the adaptive kernel estimate defined by 

(3.6) 

where h is the bandwidth, K(.) is the gaussian kernel 
n 

K(t)=(1/271)1I2exp [-(t2/2)], and the constants i\j are the local 

bandwidth factors defined by i\j={f (Xj )/g}-I/2, where 9 is the 
n 

geometric mean of the f (X ). f (.) is i tself a pilot estimate of 
n j n 

the density which may be taken as the automatic kernel estimate 

n - -1-1f (x)=(nh) EK(h <x-X», (3.7)
n n n j

j =1 

with bandwidth (the same as in (3.6», h =0.9 n-1/ 5min(R/1.34, 
n 

st), where R and st are, respectively, the interquartile range and 

the standard deviation of the sample. Proposals (3.6) and (3.7) 

are taken from Silverman (1986, chapters 3 and 5). (~) 

Replacing f by t creates sorne technical difficulties since 
n 

asymptotic normality of A does not necesarily transmit to ~. 
n n 

Keeping this warning in mind an approximate studentization 

procedure follows. Taking the approximate distribution of 

0'(2n/5)1/2(~ -i\) as N(O,l), replace O' by the estimate (D /n)l/2 to 
n n 

get the approximate (1-a)x100% interval for i\ 

~ ± (5/2D) I/2Z (3.8) 
n n a/2 

where Za/2 is the appropriate quantile of the N(O,l) distribution. 

4. Compar i sons. Let (~K' ~K'~K) denote the maximum likelihood 

estimator of (1l,i\,0') under the model (2). Following Bickel and 

Doksum (1981) , I will treat (~K' ~K'~K) as asymptotically normal 
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with mean (Il,A,O') and asymptotic variance-covariance matrix n
-1 

times the information matrix under (1.2). Let L(Il,A,O') denote the 

log-likelihood of the sample. The usual (1-a)x100% asymptotic 

interval for A using likelihood methods is the set of all A values 

such that 

L (~) - L (A) ~ (1/2 )x 2
( 4 . 1 ) 

max K max 1,a 

where L (A)=maX L(Il,A,O') and a=p[x2a:X2 
]. To compare i with ~ 

max 1 1.a n K11,0' 

and the interval (3.8) with (4.1) , note that: (¿) Exact 

computation of ~K requires iteration and interval (4.1) is usually 

handled through a grid of A-values. In contrast, i and interval 
n 

(3.8) are computed directly from the sample. (U) The new method 

provides the scatter plot of the pairs (V , Ó ) as a useful 
j j 

exploratory tool for assessing the need for transformation of the 

data. (W) For the case A=O, the asymptotic variance of ~K is 

given by (2/3)/0'2 (see Hinkley (1975) and Bickel and Doksum 

(1981» • On the other hand, the asymptotic variance of A is 
n 

2(5/2) /0' • Therefore, the approximate ARE (asymptotic relative 

efficiency) of ~ to i is 
K n 

AftE=(5/2)/(2/3)=15/4=3.75 (4.2) 

The quantile method, then, has poor efficiency properties. This 

inconvenient is counterbalanced by the comments in points (¿) and 

(U) • 

Hinkley's (1975) method is complicated to use since it requires 

solving a trascendental equation first. If ~H is Hinkley's 

estimator, it's asymptotic variance has a very complicated 

expression. For the exponential case, f(x)=exp(-x), Hinkley (1975) 

shows that ~K converges to 0.2564 with asymptotic variance 0.314. 
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For ~ it can be shown, using the theorem in section 3 and formula 
n 

(3.5) that ~ converges to 0.392 with asimptotic variance 0.918. 
n 

Recall that 0.918/0.314=2.92. This is to be compared to (4.2). 

5. Examples. a) !fUnutatian ~. Under the model (1. 2) with 

~=O and u=l, 1000 samples are generated for each combination of 

i\E{0.0,0.25,0.33,0.5} and sample sizes n=10, 25, 49 and 75. The 

method of simulation consists in generating a sample (Yl' ."'Yn) 

of N(O,l), identifying y =x(i\) and then using (1.1) to get the 
I I 

data (Xl' ••• ,X ). If y :S-(l/i\), YI is replaced by O or XI=1. This 
n I

yields a sample which follows approximately the model (1.2). 

Tabie 1 

The table shows a reasonably satisfactory behaviour of A • In 
n 

practice f, must be replaced by the density estimator t (.)
n 

constructed as in (3.6). I consider in detail, for illustration, 

the case i\=0 and n=49. 

For a specific generated sample of size 49 under the model (1.2), 

figures 1 and 2 are, respectively, the scatter plots of (VJ,U )
J

and (V, Í) ). Notice the linear trend of both plots. Also A =0.027
J J n 

and ~=0.231. The value of ~ is clearly inacceptable. Notice that 

n 

n n 

~n is the least-squares estimate of the regression of WJ on V ' J 
Therefore, the value of 6A is badly " "influenced (Cook (1977» by 

points not perfectly fi tted by the estimate t (.). A possible
n 

remedial action is: (l) Since the graph (VJ,W ) is not linear, useJ
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(V , () ) to detect influential points on ~. (U) Delete the bad 
J J n 

points detected and compute ~ with the remaining ones. 
n 

In this case, if points 1 and 4 are deleted from the analysis, 

the new ~ equals 0.045. 
n 

Figure 1 Figure2 

Figure 3 

Bhattacharyya and Johnson (1977, p. 51) present a data set of 

size 40 obtained in an epidemiological study. Figure 3 is the plot 

of pairs (V, () ) • The linear trend suggests considering an 
J J 

analysis under the model (2). The maximum likelihood estimate is 

~M=-0.215 and the interval (16) (-0.63,0.20). The quantile method 

yields ~=-0.17 with associated interval (-0.95,0.61). The latter 
n 

interval has length 1.56 while the former has length 0.83. This is 

not unexpected, in view of the comments regarding the ARE of the 

two methods in section 4. 

6. Final Comments. In this paper, a quantile based approach to 

the estimation of the one dimensional Box-Cox transformation when 

the data come in the form of a random sample, is studied. The 

method is valid only for positive data and small values of A. This 

is not a serious limitation since this is the most important case 
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in practice. Small values of A (IAI~o.5) are reasonable when it is 

suspected that (var[X]) 1I2oc (E[X])c, ci!:O.5. (c=O corresponds to 

taking logs). Extension of the proposed methodology to a general 

means model of the form E[X1JJ=1l1 (i=l, ••• ,k¡ j=l, ••• ,n1J ) is 

fairly straightforward by considering the quantile function in 

each of the groups. However, the extension to the regression case 

requires a new definition of the quantile function given by Basset 

and Koenker (1982). The latter does not allow an easy obtention of 

an analog of (2.3) and, consequently, extension to the regression 

case remains as an open problem. 
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Table 1­ Means and mean square errors for A 
n 

n 
A 0.0 0.25 0.33 0.5 

10 0.024 

[1.164] 

0.251 

[1.159] 

0.341 

[1.125] 

0.426 

[1.127] 

25 0.001 

[1. 092] 

0.323 

[1. 075] 

0.396 0.497 

[1. 057] [1.040] 

49 0.007 

[1. 051] 
0.342 

[1. 037] 
0.446 

[1. 028] 
0.526 

[1. 017] 

75 0.003 

11.033] 

0.368 

[1. 027] 
0.437 

[1. 020] 

0.538 

[1.010] 
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CAPTIONS FOR FIGURES� 

Fig. lo Simulation data, n=49, A=O. Plot of U =logf (X ) VS.j j 
Vj=logXj • 

Fig. 2. Simulation data, n=49, A=O. Plot of Í} =logí (X ) VS.j n j 
Vj=logXj 

Fig. 3. Epidemiological data. Plot of Í} =logí (X) vs. Vj=logXj • 
j n j 


