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Abstract

This paper presents an alternative approach to the
likelihood methods for estimating the parameter A in the Box-Cox
family of transformations when the data arise from a random
sample. The method is based on a representation of the quantile
function of the variable under consideration. Theoretical
properties of the method, its practical applications and
comparison with the likelihood approach are studied.

Key Words.
Asymptotic relative efficiency (ARE); Box-Cox transformation;
influential observations; Quantile function; Kernel density
estimation.

* Departamento de Economia, Universidad Carlos III de Madrid y
Departamento de Estadistica, Universidad Complutense. 28040-
Madrid.



1. Introduction. Let X be a random variable with unknown
distribution function F. Let {g(.,A)} a family of transformations
indexed by the parameter AeA, where A is a non empty set of R". A
method for modelling F is to suppose that, for some unknown Ae€A,
g(X,A)~N(u,02). When m=1, a common family of transformations is

the family of Box-Cox (1964):

A
x*_1

x‘“:{—x » A%0 (1.1)
logX, aA=0.

In (1.1), X must be positive. If not, X is replaced by X+c (X+c>0).
The model is then,

x(M) oN(u, o). (1.2)

Given xl, ...,xn a random sample from F, A is usually estimated
by likelihood methods. In this paper I present, following Parzen
(1979) suggestions, an alternative approach for estimating A based
on the quantile function of X under (1.2). Section 2 introduces
some necessary background and presents some motivation. Section 3
contains the new method and studies its properties. Section 4
compares the new method with the likelihood approach and another
quantile method due to Hinkley (1975). Section 5 is devoted to

examples. Section 6 contains some final comments and remarks.

2. Background and motivation. The quantile function of X is
defined to be

Q(u)=inf{x: F(x)=zu} O<u<l. (2.1)




The reader is assumed to have knowledge of the main properties
related to (2.1) (see Parzen(1979, sec. 2, 3 and 4);
Serfling (1980, sec. 1.1.4.) and Reiss(1989, chap. 1I) for
references). Let xl, ...,xn a random sample from F. A sample
version of the quantile function is obtained by substituting, in
(2.1), F by Fn, the empirical distribution function of the sample.
This yields
Qn(u)=inf{x: Fn(x)zu} Oo<u<l. (2.2)

As defined by (2.2), we have, Qn(u)=x(”, (j-1) /n<usj/n (1lsj=n).

It is well-known that the transformations in the Box-Cox family
are increasing and continuous for all A. Therefore, under the
model (2) (and X>0) u+o¢i(u) = [Q(u)]‘?), where ¢ '(u) is the
inverse of the distribution function of N(0,1). Given that
(te1M)yr=guyrem)1*™* (a1l a), where q(u)=0’(u), we get
£1Q(u) 1= (1/0) [Q(w)1*7!

standard normal distribution function. Taking logs results in the

o[¢"'(u)], where ¢ is the density of the

following relation

log 2194%11__ = =logo + (A-1)logQ(u). (2.3)
pl¢ (u)]

Formula (2.3) is a slight modification of a result in Parzen

(1979, sec. 12).

(2.3) suggests that if we substitute Q(.) by Qn(.) and then we
put u=j/n for 1l=j=n the following approximate relationship among

i=1,

the quantities Iﬂ=log{f[XU)]/¢[¢q(j/n+1)]} and V =logX .

..+,n, holds:
U~-logo+(A-1)V,, (2.4)
for j=1, ...,n. Two comments arise from (2.4): (i) The adecuacy of

the power transformation to attain normality should be indicated




by a linear trend in a scatter blot of (VJ,UJ). (ii) Estimating A
is equivalent to estimating the slope in a simple 1linear

regression model.

3. The method and its properties. Take B=A-1] in (2.4). Set, for
j=1, ...,n, Wj=log[f(xj)] and aj=logqp[¢'1(j/n+1)]=J(j/n+1), where
n
J(t)=- —Zlog2m- - 2147 (t)1%. Define D= (V,-")%,and L= (1/n)
j=1
n
Y a logX
y=1 n
variable of the form 8 =(A -1)+B , where A -1= (! VW -nVW)/D and
n n n n j=1 JJ n
Bn = (1/Dn) [-nLn+ na V]. A natural "estimator" for A would then be

o * The least-squares "estimate" of B is a random

Bn+1=An+Bn. However, for reasons which will appear later, it is

convenient to take

as the building block for constructing a new estimator for a.

Theonetical neoulto. The method is based on the following
THEOREM. Let X, ce e X i.i.d. as a distribution function F with
density f. Suppose that P[X20]=1 and that E[|logx|4] and

E[ | logf (X) |4] are both finite. The following results hold:
1
(1) L—> I [logQ(t)]J(t)dt, a.e.,
[0)

(ii) D /n —— var[log(X )], a.e.,
and
(iii) An~AN(m,sz/n), for certain m and s.
PROOF. (i) Note first that by Cauchy-Schwartz inequality, if N is

1 1/2 2 1/72 2 )
U(O,l),lj [1ogQ(t) 1T (t)dt|=E []|1ogX|31E [ |T(N)|?] <=, since Q(N)-~X
0

sO

and ¢ '(N)~N(0,1). If h(t)=logt, then, Ln=% jz J(3/n+1)RIX )1,
=1




L is written in a L-estimate form. If (Xn) are i.i.d. a set of
sufficient conditions for (i) to hold is given in Serfling (1980,

p. 277 and 279). All the conditions are easy to check in this

situation and to see that |J(t)|sM[t(1-t]*@"*® given that

J(t)=J(1-t), it is  enough to proof that

|67 (t) |%=0([t(1-t) 17 "*%), as t—1. In the well known

inequality for x>0,Ime'u/mygdy s (1/x)e_(x2/2), put
x

x=¢ '(t) (t>1/2) , r=4, and 0<8<l-(1/r)=3/4, to obtain,

[E(1-t) 17778 47 (t) |25 67! (t) 1Pexpi-(a/2) [47 (£) 1%} . In the

latter expression, p=1+(1/r)+8é and g=1-(1/r+8) are both positive.
(ii) This is a direct consequence of the strong law of the large
numbers. (iii) Simple algebra shows that An=g(Zn), where

z=(v,w,(1/n)§vj,(1/n) )Evjwj) and g(a,b,c,d)=(d-ab+c-a’)/(c-a’).
J=1 J=1

It’s clear that Z~AN(E[Zi],(1/n)Z), where X is the 4x4
variance-covariance matrix of the random vector 2.=(V,
wiﬁf,VJﬂ) whose existence is guaranteed by the moment conditions
given in the statement of the theoren. Therefore,
g(Z)~AN(m,(1/n)sz) where

m=g[E(2,)], s’=d’%4,

and d is the gradient vector of g(.) evaluated at E[ZI]eR4.

Rem ank. The conditions of the theorem on the finiteness of

E[|10gX|4] and E[|logf(X)|4] are not empty. By using the formula

dr
ds’

00
1"(1+s)=I (logt)"t*e~tat (sz0), r=1,2,3,..
0

(see Cramér(1958), p. 125) it is easy to show that the moments
above are finite when f belongs to one of each of the family of

distributions on [0,x): exponential, gamma, Weibull, lognormal and




log double-exponential. These families are suitable for

transformations in the framework (1.1) and (1.2).

Mament approxcimationa. To assess the usefulness of the theorem
above we need to relate the moments of Z1=(V1,W1,Vf,vaw1) to

(L,Ar,0). Under the model (1.2) ’

A-1
1 '

f(X1)=(1/21tcrz)1/2

exp(-(1/20%) (x M) -u)1x holds. Taking logs
and using (1.1),
v,=logX =(1/)log(1+ax{})), (3.1)
and
w1=1ogf(x1)=-(1/2)1og2ncr"‘-(1/2oz)(xi(")-u)2+(x-1)1ogxl. (3.2)

(In (3.1), for A=0, take the limit when A—0). The main problem
in computing expectations of quantities which depend on v, and W,
arises in dealing with Ee[logxl], with 6=(u,Ar,0). To overcome this
situation, an inmediate approximation is

Ee[logxl]zEe[XfA)]=u (3.3)
(3.3) is obviously motivated by log(l+t)xt(t——>0) and is sensible
for small values of A. For a=0, (3.3) is exact. Furthermore, note
that the model (1.2) is itself an approximation and can only be
valid, for positive data, when A=0. For other techniques related
to computing expectations regarding logXl, see Bickel and Doksum

(1981, sec. 6). See also Draper and Cox (1969). As shown below,

approximation (3.3) produces very useful results in practice.

In the following, let U denote a standard normal random
variable. Using (3.3) sistematically, as well as (3.1) and (3.2), we
can write

Eg[2,1*E[AS]=AE[S], and  Vg[2 ]~V[AS]=AV[S]A’, (3.4)

where S=(US,U2,U,1)’ and A is the 4x4 matrix given by




o

[

0 0 o u

a=|0 -(1/2) o(A-1) -logoV2n+ (A-1)u
0 o? 20 u?

0

[(A=1)0°~(u/2)] [-ologov3m+20(A-1)p] [-umlogovZm+(Aa-1)u’]

Observe, finally, that
15

E(si=|t| ana visi=|°

. (3.5)

» O = O
© O N O
O B O W
o O O O

We now relate Ln, Dn and An to the triplet (u,a,o0).

(1) L. Recalling (10), logQ(N)= Qlog

L (N)= Qx(h)(N) n+o¢ “(N)
and, using ¢'1(N)~N(0,1) and the definition of J(N), we

1
have I [logQ(t) ]J (t)dt=E[1logQ(N)J(N) J~=(1/2) (1+log2mn) .
0

(2) D“/n. Exploiting again (10), vare[logxl]zvare[xfm]=0‘2
(3) A . By using (3.4), (3.5) and the definition of g it’s not hard
to find (after somewhat tedious calculations) that

m=g(Eg[Z,1)~A and s’=d’%d~(5/2) /o°.

Practical considenationa. The theorem and approximations above
provide strongly consistent estimators for u and o in an obvious
way. For practical purposes about A, the following points are
important: (i) We have that Bn——ecelR, a.e.. Since

1
IJ(t)dt=-(1/2)(1+log2n), we get c~0. This Jjustifies choosing
0

An=An as the "estimator" of . An is an approximate weakly
consistent estimator for A. Notice also that A is asymptotically
normal with asymptotic mean around A. (i) An depends on the
unknown density f. The latter must be replaced by a suitable
density estimator f:‘n(.), computed from the sample, to obtain, in

obvious notation, the estimator ﬁn. When A is small, a




I

distribution arising from the model (2) is typically long-tailed.
Practical experiences performed by the author suggest taking fn(.)

as the adaptive kernel estimate defined by

2 (x)=n" T (A h)K{(A 1) (x-X )}, (3.6)
n y=1 J n Jn J

where hn is the bandwidth, K(.) is the gaussian Kkernel
K(t)=(1/2n)l’zexp[-(t2/2)], and the constants AJ are the 1local
bandwidth factors defined by AJ={fn(XJ)/g}'U2, where g is the
geometric mean of the fn(xj). fn(.) is itself a pilot estimate of
the density which may be taken as the automatic kernel estimate

f (x)=(nn)! )Ex(h*(x-x )Y, (3.7)

n n’ o n 3
with bandwidth (the same as in (3.6)), h=0.9 n”°min(R/1.34,
St), where R and St are, respectively, the interquartile range and
the standard deviation of the sample. Proposals (3.6) and (3.7)
are taken from Silverman (1986, chapters 3 and 5). (i)
Replacing f by fn creates some technical difficulties since
asymptotic normality of A does not necesarily transmit to ﬁn.
Keeping this warning in mind an approximate studentization

procedure follows. Taking the approximate distribution of

1/2

0(2n/5)“2(ﬁn-k) as N(0,1), replace ¢ by the estimate (Dn/n) to
get the approximate (1-a)x100% interval for a

+ 172

.- (5/2D)%z (3.8)

where zo‘/2 is the appropriate quantile of the N(0,1) distribution.

4. Comparisons. Let (ﬁn,ﬁn,én) denote the maximum likelihood
estimator of (u,A,0) under the model (2). Following Bickel and

Doksum (1981) , I will treat (ﬁn,ﬁn,én) as asymptotically normal




with mean (u,A,0) and asymptotic variance-covariance matrix n?
times the information matrix under (1.2). Let L(u,A,0) denote the
log-likelihood of the sample. The usual (1-a)x100% asymptotic
interval for A using likelihood methods is the set of all A values
such that

2

Lmax(ﬁl()-Lmax(h)s(l/z)xi,a !

(4.1)

where L (A)=max L(u,A,0) and a=P[x%w2 ]. To compare A with 2
max u,o 1 ™M1,a n M

and the interval (3.8) with (4.1), note that: (i) Exact
computation of ﬁu requires iteration and interval (4.1) is usually
handled through a grid of A-values. In contrast, ﬁn and interval
(3.8) are computed directly from the sample. (i) The new method
provides the scatter plot of the pairs (Vj,ﬁj) as a useful
exploratory tool for assessing the need for transformation of the
data. (iii) For the case A=0, the asymptotic variance of ﬁn is
given by (2/3)/02 (see Hinkley (1975) and Bickel and Doksum
(1981)). On the other hand, the asymptotic variance of An is
(5/2)/02. Therefore, the approximate ARE (asymptotic relative
efficiency) of ﬁnto ﬁn is

ARE=(5/2)/(2/3)=15/4=3.75 (4.2)
The quantile method, then, has poor efficiency properties. This
inconvenient is counterbalanced by the comments in points (i) and
(id) .

Hinkley’s (1975) method is complicated to use since it requires
solving a trascendental equation first. 1If ﬁH is Hinkley’s
estimator, it’s asymptotic variance has a very complicated
expression. For the exponential case, f(x)=exp(-x), Hinkley (1975)

shows that ﬁn converges to 0.2564 with asymptotic variance 0.314.




For ﬁh it can be shown, using the theorem in section 3 and formula
(3.5) that ﬁn converges to 0.392 with asimptotic variance 0.918.

Recall that 0.918/0.314=2.92. This is to be compared to (4.2).

5. Examples. a) Yimulation neaults. Under the model (1.2) with
u=0 and o0=1, 1000 samples are generated for each combination of
A€{0.0,0.25,0.33,0.5} and sample sizes n=10, 25, 49 and 75. The
method of simulation consists in generating a sample (yi, ...,yn)
of N(0,1), identifying 3H=th) and then using (1.1) to get the
data (X1’ ...,Xn). If y‘s-(l/A), Y, is replaced by 0 or X,=1. This

yields a sample which follows approximately the model (1.2).

Table 1

The table shows a reasonably satisfactory behaviour of An. In
practice £, must be replaced by the density estimator %n(.)
constructed as in (3.6). I consider in detail, for illustration,

the case A=0 and n=49.

For a specific generated sample of size 49 under the model (1.2),

figures 1 and 2 are, respectively, the scatter plots of (VJJ%)
and (Vj,ﬁj). Notice the linear trend of both plots. Also A =0.027
and ﬂ;=0.231. The value of ﬁh is clearly inacceptable. Notice that
ﬁn is the least-squares estimate of the regression of WJ on Vf
Therefore, the value of ﬁn is badly "influenced" (Cook (1977)) by
points not perfectly fitted by the estimate ?n(.). A possible

remedial action is: (i) Since the graph (V},WJ) is not linear, use

10




UG,OR to detect influential points on ﬁn. (ii) Delete the bad
points detected and compute ﬁh with the remaining ones.

In this case, if points 1 and 4 are deleted from the analysis,

the new ﬁh equals 0.045.

Figure 1 Figure2

&) 4 neal data example.

Figure 3

Bhattacharyya and Johnson (1977, p. 51) present a data set of
size 40 obtained in an epidemiological study. Figure 3 is the plot
of pairs (V},ﬁj). The 1linear trend suggests considering an
analysis under the model (2). The maximum likelihood estimate is

y=—0.215 and the interval (16) (-0.63,0.20). The quantile method
yields ﬁk=_°’17 with associated interval (-0.95,0.61). The latter
interval has length 1.56 while the former has length 0.83. This is
not unexpected, in view of the comments regarding the ARE of the

two methods in section 4.

6. Final Comments. In this paper, a quantile based approach to
the estimation of the one dimensional Box-Cox transformation when
the data come in the form of a random sample, is studied. The
method is valid only for positive data and small values of A. This

is not a serious limitation since this is the most important case

11




in practice. Small values of A (|A|=0.5) are reasonable when it is

1"2o<(E[X])°, cz0.5. (c=0 corresponds to

suspected that (var[X])
taking logs). Extension of the proposed methodology to a general
means model of the form E[XU]=“1 (i=1, ...,k; 3j=1, ...,nU) is
fairly straightforward by considering the quantile function in
each of the groups. However, the extension to the regression case
requires a new definition of the quantile function given by Basset
and Koenker (1982). The latter does not allow an easy obtention of
an analog of (2.3) and, consequently, extension to the regression

case remains as an open problem.

12
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10

25

49

75

Table 1. Means and mean square errors for An

A 0.0 0.25 0.33 0.5
0.024 0.251 0.341 0.426
(1.164] [1.159] [1.125] [1.127]
0.001 0.323 0.396 0.497
(1.092] [1.075] [1.057] [1.040]
0.007  0.342 0.446  0.526
f1.051] [1.037) (1.028) 11.017]
0.003  0.368 0.437 0.538
{1.033] (1.027] [1.020] [1.010]
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CAPTIONS FOR FIGURES

Fig. 1. Simulation data, n=49, a=0. Plot of UJ=logf(XJ) vs.

Vj=long .

Fig. 2. Simulation data, n=49, aA=0. Plot of 0j=log%n(xj) vs.

Vj=logXJ

Fig. 3. Epidemiological data. Plot of ﬁj=log%n(xj) vs. VJ=long.




