

Doctoral Thesis

Control and Communication Systems for
Automated Vehicles Cooperation and Coordination

Author:
Ahmed Hussein

Supervisors:
Prof. Dr. José María Armingol

Dr. Fernando García

Electrical Engineering, Electronics and Automation

Leganés, May, 2018

Doctoral Thesis

Control and Communication Systems for
Automated Vehicles Cooperation and Coordination

Author: Ahmed Hussein

Supervisor: Prof. Dr. José María Armingol

Co-Supervisor: Dr. Fernando García

Signatures of the examination court:

President:

Spokesperson:

Secretary:

Leganés, May, 2018

This work is dedicated to my family, who has always loved me unconditionally and has been
constant source of support and encouragement to work hard for the what I aspire to achieve.

Thank you!

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this thesis are my original work toward the degree of Doctor of Philosophy at
Universidad Carlos III de Madrid. This thesis is my own work and contains nothing which is
the outcome of work done in collaboration with others, except as specified in the text.

Ahmed Hussein
Leganés, May 2018

Acknowledgements

First and foremost, I thank God Almighty for giving me the strength, knowledge, ability
and opportunity to undertake this thesis work and to persevere and complete it satisfactorily.
Without his blessings, this achievement would not have been possible. I am grateful to all
of those with whom I have had the pleasure to work during this project. Therefore, I would
like to start by thanking my fellow colleagues for their feedback, cooperation and of course
friendship. Furthermore, I would like to express my very great appreciation to my supervisors
for their valuable and constructive suggestions during the planning and development of this
thesis. Their willingness to give me time so generously has been very much appreciated. So
thank you for your patient guidance, enthusiastic encouragement and useful critiques during
this journey. Finally, thanks to each and everyone who was in one way or another contributed
in the completion of this thesis.

Abstract

The technological advances in the Intelligent Transportation Systems (ITS) are exponentially
improving over the last century. The objective is to provide intelligent and innovative services
for the different modes of transportation, towards a better, safer, coordinated and smarter
transport networks. The Intelligent Transportation Systems (ITS) focus is divided into two
main categories; the first is to improve existing components of the transport networks, while
the second is to develop intelligent vehicles which facilitate the transportation process. Differ-
ent research efforts have been exerted to tackle various aspects in the fields of the automated
vehicles. Accordingly, this thesis is addressing the problem of multiple automated vehicles
cooperation and coordination. At first, 3DCoAutoSim driving simulator was developed
in Unity game engine and connected to Robot Operating System (ROS) framework and
Simulation of Urban Mobility (SUMO). 3DCoAutoSim is an abbreviation for "3D Simulator
for Cooperative Advanced Driver Assistance Systems (ADAS) and Automated Vehicles
Simulator". 3DCoAutoSim was tested under different circumstances and conditions, after-
ward, it was validated through carrying-out several controlled experiments and compare
the results against their counter reality experiments. The obtained results showed the effi-
ciency of the simulator to handle different situations, emulating real world vehicles. Next
is the development of the iCab platforms, which is an abbreviation for "Intelligent Campus
Automobile". The platforms are two electric golf-carts that were modified mechanically, elec-
tronically and electrically towards the goal of automated driving. Each iCab was equipped
with several on-board embedded computers, perception sensors and auxiliary devices, in
order to execute the necessary actions for self-driving. Moreover, the platforms are capable
of several Vehicle-to-Everything (V2X) communication schemes, applying three layers of
control, utilizing cooperation architecture for platooning, executing localization systems,
mapping systems, perception systems, and finally several planning systems. Hundreds of
experiments were carried-out for the validation of each system in the iCab platform. Results
proved the functionality of the platform to self-drive from one point to another with minimal
human intervention.

Resumen

Los avances tecnológicos en Sistemas Inteligentes de Transporte (ITS) han crecido de forma
exponencial durante el último siglo. El objetivo de estos avances es el de proveer de sistemas
innovadores e inteligentes para ser aplicados a los diferentes medios de transporte, con el fin
de conseguir un transporte mas eficiente, seguro, coordinado e inteligente. El foco de los ITS
se divide principalmente en dos categorías; la primera es la mejora de los componentes ya
existentes en las redes de transporte, mientras que la segunda es la de desarrollar vehículos
inteligentes que hagan más fácil y eficiente el transporte. Diferentes esfuerzos de investi-
gación se han llevado a cabo con el fin de solucionar los numerosos aspectos asociados con
la conducción autónoma. Esta tesis propone una solución para la cooperación y coordinación
de múltiples vehículos. Para ello, en primer lugar se desarrolló un simulador (3DCoAutoSim)
de conducción basado en el motor de juegos Unity, conectado al framework Robot Operating
System (ROS) y al simulador Simulation of Urban Mobility (SUMO). 3DCoAutoSim ha
sido probado en diferentes condiciones y circunstancias, para posteriormente validarlo con
resultados a través de varios experimentos reales controlados. Los resultados obtenidos
mostraron la eficiencia del simulador para manejar diferentes situaciones, emulando los
vehículos en el mundo real. En segundo lugar, se desarrolló la plataforma de investigación
Intelligent Campus Automobile (iCab), que consiste en dos carritos eléctricos de golf, que
fueron modificados eléctrica, mecánica y electrónicamente para darle capacidades autóno-
mas. Cada iCab se equipó con diferentes computadoras embebidas, sensores de percepción y
unidades auxiliares, con la finalidad de transformarlos en vehículos autónomos. Además,
se les han dado capacidad de comunicación multimodal (V2X), se les han aplicado tres
capas de control, incorporando una arquitectura de cooperación para operación en modo
tren, diferentes esquemas de localización, mapeado, percepción y planificación de rutas.
Innumerables experimentos han sido realizados para validar cada uno de los diferentes sis-
temas incorporados. Los resultados prueban la funcionalidad de esta plataforma para realizar
conducción autónoma y cooperativa con mínima intervención humana.

Table of contents

List of figures xix

List of tables xxiii

List of acronyms xxv

List of symbols xxvii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 5
1.3 Structure . 6

2 State-of-the-art 9
2.1 Introduction . 9
2.2 Simulation Environments . 9
2.3 Automated Vehicles . 12

2.3.1 By Wire Systems . 14
2.3.2 Communication Systems . 14
2.3.3 Localization Systems . 15
2.3.4 Mapping Systems . 16
2.3.5 Perception Systems . 16
2.3.6 Planning Systems . 16

2.4 Cooperative Driving . 17
2.5 Task Allocation . 18
2.6 Concluding Remarks . 19

3 Simulators 21
3.1 Introduction . 21

Table of contents

3.2 ROS Framework . 21
3.3 GAZEBO Simulator . 22
3.4 Unity Game Engine . 23
3.5 3DCoAutoSim Simulator . 25

3.5.1 Environments and Scenarios . 25
3.5.2 SUMO Connectivity . 26
3.5.3 ROS Connectivity . 27
3.5.4 Features . 29
3.5.5 Devices . 30
3.5.6 Output . 31
3.5.7 Multiple Simulators . 32

3.6 Concluding Remarks . 32

4 Platforms 33
4.1 Introduction . 33
4.2 TurtleBot3 . 33

4.2.1 Hardware Description . 33
4.2.2 Software Description . 34

4.3 SkyOnyx . 36
4.3.1 Hardware Description . 36
4.3.2 Software Description . 37

4.4 iCab . 40
4.4.1 Hardware Description . 40
4.4.2 Software Description . 46

4.5 Concluding Remarks . 62

5 Cooperative Driving 63
5.1 Introduction . 63
5.2 Communication Schemes . 63

5.2.1 Communication with vehicles . 63
5.2.2 Communication with pedestrians 64
5.2.3 Communication with infrastructure 68

5.3 Platooning Approach . 69
5.3.1 Modeling . 69
5.3.2 Algorithm . 71

5.4 Concluding Remarks . 72

xvi

Table of contents

6 Task Allocation 75
6.1 Introduction . 75
6.2 Proposed Approach . 75
6.3 Proposed Architecture . 79

6.3.1 Core Node . 79
6.3.2 Requests System Side . 81
6.3.3 Vehicles Side . 82

6.4 Problem Formulation . 83
6.4.1 Solution Construction . 85
6.4.2 Objective Function . 85
6.4.3 Solution Constraints . 86

6.5 Proposed Algorithm . 86
6.6 Concluding Remarks . 91

7 Results and Discussion 93
7.1 Introduction . 93
7.2 3DCoAutoSim Validation Results . 93

7.2.1 Setup . 93
7.2.2 Scenario . 95
7.2.3 Metrics . 96
7.2.4 Qualitative and Quantitative Analysis 97

7.3 TurtleBot3 Results . 98
7.3.1 Scenario . 98
7.3.2 Qualitative and Quantitative Analysis 99

7.4 SkyOnyx Results . 100
7.4.1 Scenarios . 100
7.4.2 Qualitative and Quantitative Analysis 100

7.5 iCab Communication Results . 102
7.5.1 Setup . 102
7.5.2 Scenarios . 102
7.5.3 Metrics . 103
7.5.4 Qualitative and Quantitative Analysis 104

7.6 iCab Localization Results . 108
7.6.1 Scenarios . 108
7.6.2 Evaluation Metrics . 110
7.6.3 Qualitative and Quantitative Analysis 110

7.7 iCab Planning Results . 113

xvii

Table of contents

7.7.1 Setup . 113
7.7.2 Scenarios . 114
7.7.3 Metrics . 115
7.7.4 Qualitative and Quantitative Analysis 115

7.8 iCab Platooning Results . 118
7.8.1 Scenario Description . 118
7.8.2 Qualitative and Quantitative Analysis 120

7.9 MRTA Results . 123
7.9.1 Selected Scenarios . 123
7.9.2 Evaluation Metrics . 123
7.9.3 Comparative Study . 124

8 Conclusion and Future Work 129
8.1 Introduction . 129
8.2 Conclusion . 129
8.3 Future Work . 131

Appendix A Publications List 135

Appendix B Theses Supervision 141

Appendix C 3DCoAutoSim Read-Me 145

Bibliography 151

xviii

List of figures

1.1 Benz Patent Motorwagen [1] . 1
1.2 Sensors that can make cars safer [10] . 3
1.3 SAE 2016 five driving automation levels [22] 4

2.1 Network simulator ns-2 . 10
2.2 Udacity self-driving car simulator [34] . 11
2.3 DARPA grand challenge cars . 13

3.1 Robot Operating System (ROS) framework modules 22
3.2 Car Demo simulator [143] . 23
3.3 Unity game engine features . 24
3.4 3DCoAutoSim main menu graphical interface 26
3.5 ROS and Unity link general overview . 28
3.6 Device abstract class as the parent for all devices 30
3.7 CSV logging framework design . 31

4.1 TurtleBot3 platforms; "Burger" (left), and "Waffle" (right) [174] 34
4.2 TurtleBot3 architecture . 35
4.3 SkyOnyx platform . 36
4.4 SkyOnyx architecture [178] . 38
4.5 Proposed platforms, red iCab-2 is an EZ-GO RXV 2008 (left) and blue

iCab-1 is an EZ-GO RXV 2009 (right) . 40
4.6 Intelligent Campus Automobile (iCab) steering actuator 41
4.7 Ackermann steering schematic [185] . 42
4.8 iCab braking actuator . 43
4.9 Vehicle center of mass when braking (left) or at constant speed (right) . . . 44
4.10 iCab-1 platform on-board devices side and front views 46
4.11 iCab overall software architecture . 47
4.12 iCab GUI . 49

xix

List of figures

4.13 iCab control three-tiers architecture . 51
4.14 Calculating the sigma points innovation for covariance estimation 56
4.15 Vehicle dynamics bicycle model [209] . 60

5.1 Proposed Virtual Private Network (VPN) architecture, green arrows utilizes
the internet directly, while red arrows utilizes the virtual network 64

5.2 Collision prediction algorithm modeling 66
5.3 Application debug screen (left) and application user interface screen (right) 67
5.4 Webserver graphical user interface for V2I communication 69
5.5 Leader-Follower platooning modeling diagram 70

6.1 Proposed Multi-robot Task Allocation (MRTA) approach flowchart 76
6.2 MRTA architecture . 80
6.3 Example for the mutation operators . 87
6.4 Example for the crossover operators . 88

7.1 Simulator controllers . 94
7.2 3DCoAutoSim driving simulator car seat 94
7.3 Selected path over the OSM of Vienna, where the green pin is the starting

point and the red pin is the ending point 95
7.4 Paths comparison against the theoretical one 97
7.5 TurtleBot3 platforms simulated environment in GAZEBO 99
7.6 TurtleBot3 platforms environment perception in RVIZ 100
7.7 UAV planning results . 101
7.8 WiFi heat-map of the testing environment 103
7.9 Results of the V2V communication . 105
7.10 Results of the V2P communication . 106
7.11 Results of the V2I communication . 107
7.12 Visual demonstration of the selected scenarios 109
7.13 Visual demonstration of the selected scenarios 113
7.14 Visual demonstration of the selected scenarios 116
7.15 Two autonomous vehicles platooning scenario with VRU crossing their

designated path . 119
7.16 Trajectories of iCab 1 (Blue), iCab 2 (Red), and VRU (Green) 120
7.17 Spacing distance error between follower and leader vehicles 121
7.18 Euclidean distance between the pedestrian and the vehicle 122
7.19 mTSP selected benchmark scenarios, red marker is the depot 124

xx

List of figures

7.20 Environment map with the real-world scenario vehicles and passengers
locations . 125

xxi

List of tables

4.1 SkyOnyx hardware description . 37
4.2 Steering actuator specifications . 41
4.3 iCab platform on-board devices description 45

7.1 Simulator computer specifications . 93
7.2 Quantitative results for the simulator validation 98
7.3 TurtleBot3 allocation results . 99
7.4 UAV planning quantitative analysis . 101
7.5 Main results of the V2V communication 106
7.6 Main results of the V2P communication 107
7.7 Main results of the V2I communication 108
7.8 Mean of the 3 scenario I experiments results 111
7.9 Mean of the 3 scenario II experiments results 112
7.10 Mean of the 3 scenario III experiments results 112
7.11 Scenario I - Experiments Results . 117
7.12 Scenario II - Experiments Results . 117
7.13 Scenario III - Experiments Results . 117
7.14 Simulation Experiments Results . 118
7.15 VRU detection statistics [meters] . 122
7.16 Tracking error statistics [meters] . 123
7.17 System Specifications . 124
7.18 Benchmarks comparative results . 126
7.19 Deviation errors to optimal MinMax costs 127
7.20 Deviation errors to optimal total costs . 127

xxiii

List of acronyms

ABS Anti-Locking Braking

ACC Adaptive Cruise Control

ADAS Advanced Driver Assistance Systems

CNP Contract Net Protocol

EKF Extended Kalman Filter

ESC Electronic Stability Control

GA Genetic Algorithm

GUI Graphical User Interface

I2V Infrastructure-to-Vehicle

iCab Intelligent Campus Automobile

ITS Intelligent Transportation Systems

LQR Linear Quadratic Regulator

MRS Multi-robot System

MRTA Multi-robot Task Allocation

mTSP multi-Travelling Salesman Problem

OSM Open Street Map

P2V Pedestrian-to-Vehicle

xxv

List of acronyms

PID Proportional, Integral, and Derivative Controller

PWM Pulse Width Modulation

ROS Robot Operating System

RTT Round Trip Time

SA Simulated Annealing

SAE Society of Automotive Engineers

SLAM Simultaneous Localization and Mapping

SUMO Simulation of Urban Mobility

TCP Transmission Control Protocol

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UKF Unscented Kalman Filter

V2I Vehicle-to-Infrastructure

V2P Vehicle-to-Pedestrian

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Everything

VANET Vehicle Ad-hoc Networks

VPN Virtual Private Network

VRU Vulnerable Road Users

WHO World Health Organization

xxvi

List of symbols

Symbol Description Unit
a Vehicle acceleration m/s2

δ Ackermann reduced bicycle model steering angle o

δc Ackermann column steering angle o

η Motor efficiency
Fb Vehicle braking force N
fr Vehicle rolling friction coefficient m/s2

g Gravity of Earth, which is equals to 9.81 m/s2

KD Derivative controller gain
KI Integral controller gain
KP Proportional controller gain
Kt Motor torque constant N.m/A
Lm Motor inductance constant H
Q The covariance matrix of the process noise
r1 Spur reduction ratio
r2 Worm gear reduction ratio
Rm Motor resistance constant Ω

Wt Vehicle total weight kg

xxvii

Chapter 1

Introduction

1.1 Motivation

It all started back in the 19th century, on the 3rd of July 1886, when Karl Friedrich Benz, a
German mechanical engineer, introduced a horseless carriage to the public, the Benz Patent
Motorwagen shown in Figure 1.1. It was the first practical automobile, it had three-wheels
with a rear-mounted engine with no gears, which had a single-cylinder four-stroke with
trembler coil ignition and reaching a top speed of 16km/h in his first test-drive [1].

Figure 1.1 Benz Patent Motorwagen [1]

1

Introduction

Shortly after during the demonstration, he crashed into a wall, due to the difficulty to
control. Since then, governments and car manufacturers have been working around to reduce
the error from the least reliable part of the vehicle, the driver. This is through improving
three main aspects, the car strength, safety, and intelligence. For the first aspect, car strength,
several types of research were conducted to study the car material, by reducing the car weight,
using of high strength steel sheets, and introducing fiber-reinforced composites [2–6]. Fiber-
reinforced polymers are one of the most common materials for the automotive industry, due
to the fact that they offer enhanced characteristics, for instance, higher impact strength, easier
to mold, better aesthetics, and lighter weight compared to the more common automotive
components [7].

The second and most important aspect is the safety, in terms of both road and car safety.
Accordingly, in May 2010, the United Nations has adopted the "Decade of Action for Road
Safety" through the resolution A/RES/64/255, aiming to lower the predicted levels of road
traffic casualties through five pillars; road safety administration; more secure roads and
mobility; more secure vehicles; safer road users and improving after-crash response [8].
Accordingly, the following safety features were introduced1:

1. Seat belts: they were originated in the early 1900s, which developed to the standard
three-point design in 1959. In the 1970s, seat belts became a standard in the cars.

2. Shatter-resistant glass: it was invented in the 1930s, using two layers of laminated,
shatter-proof glass and a layer of plastic in between. Therefore, impact of a collision
no longer break into shards.

3. Airbags: they were invented in the 1950s, starting with only driver airbags, then the
side-impact airbags were included. In 1998, airbags became mandatory in all cars.

4. Anti-Locking Braking (ABS): it was invented in the 1950s, which were actually first
developed for aircraft to prevent wheels from locking when landing. In the 1980s,
ABS became a standard in the cars production.

5. Crumple zones: it was invented in the 1950s, to absorb crash energy within the outer
parts of the car rather than being transferred to passengers. Nowadays, all new cars are
required to incorporate crumple zones for passenger protection.

6. Electronic Stability Control (ESC): it was invented in the 1983, where it brakes
individual wheels when needed and can cut engine power until control is regained.
ESC became standard in car production in the early 1990s.

1Source: https://www.budgetdirect.com.au/blog/car-safety-features-in-modern-cars.html

2

1.1Motivation

Thelastaspectistheintelligence,whichhasthesamepurposeofimprovingthecarsafety,

throughtheuseofsensors.Figure1.2depictsanoverviewofawide-rangeofon-board

sensors.Accordingly,theITSsocietyintroducesnewtechnologiesaspartoftheADASto

relecttheincreasinguseofelectronicandtelecommunicationtechnologywithintheroad

transportsector[9].Fromtheigure,itisnotedthatnotalltechnologiesareforcarsafety,

•

• Electronic
engine
management

•Rear collision
warnings

Forward collision
warning says

"accident imminent"

Seat belt
pre-tensioner
activated

Air bag
deployed

Impact

Position sensors in pillar and roof

Body mass sensors under seat

Driver’s body mass and position
•Tire pressure
sensor

• Intelligent brake
control

• Forward collision
warning

• Road surface
condition sensors

° Shift headlights

• Local weather
broadcasts

• Roadside-to-vehicle
communications
(e.g., hazard alerts)

• GPS data mapping
• Driver face
and gaze tracking

• Music
• Driving directions
• E-mail alerts
° Head-up display
 on windshield

° Cut off electronic
 devices

• Occupant position
• Mobile phone
° Seat belt pre-tensioners
 and airbag deployment

° Audible warnings
° Vibrating driver seat

• Side collision
warning

° LEDs on rear
 side mirrors

•Input
°Output

butsomecanbeforcomfort,professionaluseortraficmanagement[10].

Figure1.2Sensorsthatcanmakecarssafer[10]

Ingeneral,humansinherentlyhavelimitedcapacityforthenumberofsimultaneously

processedthoughts[11,12].Ourlivesareilledwithdistractions,anddriverstakethose

distractionswiththemintothecarseveryday,whichleadstodistracteddriving. Any

activitythatdivertsattentionfromdriving,includingtalkingortexting,eatinganddrinking,

iddlingwiththenavigationsystem,amongothers[13,14].AccordingtotheWorldHealth

Organization(WHO)reports,thetraficaccidentsleadtoover1.6millioncrashesevery

year[15].Oneoutofeveryfourcaraccidentsiscausedbytheuseofcellphones[16].

3

Introduction

Accordingly, the term intelligent vehicle is introduced and Society of Automotive Engi-
neers (SAE) proposed the five driving automation levels [17], presented in Figure 1.3. The
first level is the assisted driving, where the driver is continuously exercising longitudinal
control, while the system is performing the lateral control, for example, cruise control sys-
tem [18]. The second level is the partial automation, where the driver has to monitor the
systems at all times and be ready to take control, while the system has longitudinal and
lateral control, for example, Adaptive Cruise Control (ACC) system [19] combined with
lane keeping assist system [20]. These systems are currently functional in many cars for
over a decade. The third level is the conditional automation, where the driver must be in a
position always ready to take-over control, if needed, while the system has both longitudinal
and lateral control and is aware of the surrounding environment during a defined use case,
thus it recognizes when the driver is needed to take over, currently Tesla Autopilot car is
the closest to reach this level [21]. The fourth and fifth levels are not yet reached and they
are quite similar; on the one hand, in the high automation level, the driver is not required
during the defined use case and the system can cope with all situations automatically in this
use case. On the other hand, in the full automation, the driver is still not required and the
system can cope with all situations automatically during the entire journey and in all cases.
In other words, the car is responsible for accelerating, braking, steering, monitoring the car
(self-awareness), perceive the surrounding environment and roadway; as well as responding
to events, determining when to change lanes, turn, and use signals.

Driver is
continuously

exercising
longitudinal
AND lateral

control

Driver has to
monitor the

systems at all
times and be
ready to take

control

Driver must
always be in a

position to
resume control,

if needed

Driver is
continuously

exercising
longitudinal
OR lateral

control

Driver is not
required during
the defined use

case

System can
cope with all

situations
automatically

during the
entire journey,

no driver
required

System has
longitudinal or
lateral control

System has
longitudinal
and lateral
control in a

defined
use case

System has
longitudinal
AND lateral
control in a
defined use

case, it requests
driver to take

over, if needed

System can
cope with all

situations
automatically
in a defined

use case

Level 1Level 0 Level 3Level 2 Level 5Level 4

Assisted
DrivingDriver Only Conditional

Automation
Partial

Automation
Full

Automation
High

Automation

Figure 1.3 SAE 2016 five driving automation levels [22]

4

1.2 Objectives

At the same time of the rapid technological development in the automotive industry
over the past century, cities and populations are growing dramatically, with increasing
transportation requests among others. In order to manage the whole system and optimize the
outcome, the smart city is introduced and in consequence smart mobility is introduced [23].
From smart mobility to shared mobility [24], they are all leading to cooperative automated
driving for intelligent vehicles [25].

In conclusion, the necessity of intelligent vehicle is crucial, to lower the number of
accidents, traffic congestion, air pollution and improve quality of life. Additionally, the more
intelligent vehicles are introduced to the roads, the more cooperation and coordination among
them is required. Therefore, it is of a great importance to research, develop and propose an
efficient approach to solve the multiple automated vehicles cooperation problem.

1.2 Objectives

Accordingly, this thesis is addressing the problem of multiple automated vehicles cooperation
and coordination, by proposing an approach to solve it through various stages. First stage is
the study of simulation environments, since it is essential to understand how the vehicle is
going to behave in simulation before deployment in the real roads. Therefore, a powerful 3D
simulator is designed for simulation of any type of ground vehicle with a various number
of on-board devices. This simulator is tested under different circumstances and conditions,
moreover, it is validated through carrying-out several controlled simulated experiments and
compare the results against their counter reality experiments with multiple drivers.

The second stage is to use different platforms for testing the proposed approaches
to automation. Therefore, small mobile robots were selected to carry out several indoor
experiments of both cooperation and coordination algorithms. Moreover, an unmanned aerial
vehicle platform was selected to test the proposed planning approach. The purpose of the
carried-out experiments was the verification of the generic aspect of the proposed approaches
and their functionality on heterogeneous platforms.

The third stage is the main focus of this thesis, which is the full development of a highly
automated intelligent vehicle. Multiple electric golf carts were selected to be the vehicles,
where they were modified electrically, mechanically and electronically to achieve conditional
automation and reach one step closer to the high automation level. Moreover, multiple devices
and sensors were installed on the platforms, to acquire data for the environmental analysis
and understanding. For the self-driving goal, several approaches to localization, mapping,
perception, and planning were implemented. In addition to multiple communication schemes
for the cooperation and coordination approaches.

5

Introduction

The fourth stage is to utilize the developed automated vehicles to analyze the effect of
communication schemes in enhancing the environment perception under different conditions
and constraints. Furthermore, a platooning approach was introduced as a use case for
cooperative driving. The approach was analyzed using the automated vehicles and road users
in an off-road urban environment through a number of experiments.

The fifth stage is to design an architecture for the multiple automated vehicle coordination,
focusing on solving the shared mobility-on-demand transportation requests problem. The
architecture is designed in a generic manner, to allow heterogeneity, scalability, adaptability,
and integrability to various platforms. Moreover, the proposed coordination architecture took
into consideration the connection to the vehicle software architecture to execute the assigned
tasks in real-world experiments and not limited to only simulation experiments.

Finally, the last stage is to propose a solution method to the coordination problem, which
is able to allocate the vehicles to the requests in real-time and near-optimal solution. The
objective function is to optimize the distance covered by each vehicle, the overall execution
time, the waiting time of the users, and the vehicle energy consumption. The proposed hybrid
approach was compared to various benchmarks to extensively test its capabilities of handling
tasks allocation.

In summary, the thesis main contribution is to present control and communication systems
for multiple automated vehicles in order to solve the cooperation and coordination problems.
The systems are tested in several simulations and real-world experiments for validation of
the proposed work, ensuring its functionality and extendability to heterogeneous vehicles.

1.3 Structure

This thesis consists of eight chapters, including this one, and three appendices. Each chapter
begins with a brief introduction for its contents and ends with a brief concluding remarks to
the obtained outcomes. The majority of the presented work in this thesis is validated through
various publications in different conferences, journals, and books. The structures of each
element is summarized as follows:

• Chapter 1: introduces a general introduction to the thesis by shedding a light on the
motivation of the work and the target objectives and contribution.

• Chapter 2: gives a general overview of the different simulation environments, and
different automated vehicles. Followed by a review to the previous work in cooperative
driving and task allocation problems.

6

1.3 Structure

• Chapter 3: presents the utilized softwares for the simulators, highlighting their advan-
tages and disadvantages. In addition to, a detailed presentation for the designed driving
simulator.

• Chapter 4: presents brief details to the secondary platforms of this thesis, the in-
door mobile robot and the outdoor Unmanned Aerial Vehicle (UAV). Furthermore, it
presents a detailed report to the main platform of this thesis, the Unmanned Ground
Vehicle (UGV), highlighting the designed architecture, mounted devices, implemented
technologies and functionalities.

• Chapter 5: demonstrates the proposed schemes for different vehicle communication
approaches and their enhancements to the automated vehicles environment percep-
tion. Furthermore, the proposed platooning approach is presented as a use case of
cooperative driving.

• Chapter 6: introduces the multiple vehicles coordination Robot Operating System
(ROS)-based architecture for transportation requests. The architecture flowchart pro-
cess is described, detailing the intelligibility with heterogeneous platforms. Fur-
thermore, a hybrid optimization-based algorithm is presented, in order to solve the
allocation problem of requests for the automated vehicles.

• Chapter 7: validates the proposed work and approaches by presenting obtained results
from all carried-out experiments. Each section includes the experimental setup, the
selected scenarios description, the selected evaluation metrics and finally a discussion
of the results in qualitative and quantitative analysis.

• Chapter 8: summarizes the carried-out work and presents future recommendations.

• Appendix A: presents the publications list derived from the thesis carried-out work.

• Appendix B: shows the list of supervised theses during the framework of this thesis.

• Appendix C: introduces the Read-Me documentation of the implemented simulator.

7

Chapter 2

State-of-the-art

2.1 Introduction

This chapter presents a state-of-the-art for the related work of this thesis based on the
proposed objectives. In Section 2.2, a review for the different simulation environments is
presented, showing the attempts to link simulators with vehicle controllers framework, in
order to reach a more accurate virtual emulation. Section 2.3 presents a brief history of
various forms of automated vehicles hardware and software architecture. Afterward, the
literature review for cooperative driving approaches is presented through several use-cases in
Section 2.4. Additionally, Section 2.5 introduces the task allocation problem for vehicles,
showing different approaches to solve the problem. Finally, the chapter is summarized in few
concluding remarks.

2.2 Simulation Environments

Driving simulators have been used in many applications, including traffic safety, ADAS
implementation, driver distraction, human-machine-interaction, among others. For example,
to evaluate the usability of head-up displays in forwarding collision warning systems [26]
or to assess a user interface for a novel traffic regulation system [27], in addition to several
examples for simulation models are described in [28]. The authors in [29] combined the
network simulator ns-2 [30] with the open source traffic simulator Simulation of Urban
Mobility (SUMO) [31] to evaluate Vehicle Ad-hoc Networks (VANET) and developed a
TraCI [29], in which SUMO and ns-2 communicated over a Transmission Control Protocol
(TCP) connection to simulate inter-vehicular communication. In a further work, SUMO

9

State-of-the-art

was also integrated with the network simulator OMNeT++, in order to evaluate inter-vehicle
communication protocol [32, 33].

Figure 2.1 Network simulator ns-21

Furthermore, the Udacity self-driving car nano degree program offers a simulator to
teach students how to train cars and how to navigate road courses using deep learning [34],
the authors utilized Unity game engine for the simulation environment. On the one hand,
authors in [35], utilized Unreal engine to develop CARLA simulator, which has been devel-
oped to support training, and validation of self-driving urban systems. On the other hand,
authors in [36] developed OpenDS driving simulation platform for various driving tasks and
environment design.

1Source: https://ns2projects.org/ns2-simulation-code-for-vanet

10

2.2 Simulation Environments

Figure 2.2 Udacity self-driving car simulator [34]

Intelligent vehicles simulations are utilized as the initial step of experiments before the
deployment on the roads. In the past, the possibility of having a simulator that emulates
real-life was not straightforward, due to the lack of common software systems that relate
the vehicle control to the virtual environment. Nowadays there are several frameworks that
can be used to control vehicles, and ROS is the most common one [37]. Moreover, there are
several powerful visualization tools that can be used for simulations, and Unity Game Engine
is on the top of the list [38]. Accordingly, several attempts towards the link between ROS
and Unity were made. In 2013, authors in [39] introduced Unity-Link protocol, which is a
stream-oriented, layered and componentized design. The link was through Python scripts to
send and receive data over TCP/IP sockets, however, a detailed analysis of the performance
was not available, since it was out of their scope. Later in 2014, authors in [40] proposed a
methodology to connect from ROS to Unity, to send data over TCP/IP sockets. This was the
first attempt to utilize rosbridge library [41], which responsible for taking JSON [42] strings
and converting them to ROS messages, and vice versa. They verified their approach through
leveraging a mobile robot via virtual environment display and interaction in Unity.

On the other hand, in 2015, authors in [43] presented a 3D simulation system for miniature
unmanned aerial vehicles. The exchange of data packets between the Unity server and the
ROS client was achieved by TCP/IP protocol. On the client side, a ROS node was developed
unitysocket, which communicates to the preset IP address of the Unity server. Authors

11

State-of-the-art

validated their approach through various experiments and proved the ability to glue ROS
and Unity together for near real-time Unmanned Aerial Vehicle (UAV) simulations [44]. In
2017, authors in [45] presented several scripts which establish the connection and allows for
invoking ROS services. The objective was to monitor and control industrial robotic arm and
the approach was validated with satisfactory results.

Also in 2017, authors in [46] proposed a connection mechanism to bind ROS and Unity
for virtual reality applications. The link was again through rosbridge library, utilizing both
JSON and BSON strings and converting them to ROS messages. The results from this
approach were validated using human-robot interaction in virtual reality simulator. The
idea of rosbridge library to connect ROS and Unity obtained the best results, therefore
Michael Jenkins created unityros library [47]. This Unity library was implemented to send
and receive data of TurtleBot [48]. Then Thorstensen enhanced the library in [49] to include
more messages and move one step closer to the generalization [50]. Accordingly, to sum
up, a generic methodology to connect both systems, ROS, and Unity is lacking, which is
addressed through work in Chapter 3.

2.3 Automated Vehicles

Automated vehicles could revolutionize how people get around. With the introduction
of automation into roads, it will contribute to solving the issues related to the traffic ac-
cidents, congestion, and energy consumption. The self-driving vehicle technologies are
advancing on a great scale, specifically the multiple sensors fusion techniques, deep learn-
ing and computational intelligence. Together, they enable these vehicles to understand the
nearby surroundings and take appropriate actions to navigate on their own from one point to
another [51–53].

The first two main demonstrations of the capabilities of self-driving vehicles took place
in the United States through the Defense Advanced Research Projects Agency (DARPA) to
develop automated cars. First one was in 2004 and 2005, the DARPA Grand Challenge had
the races in the desert with no dynamic obstacles [54]. The second one was in 2007, the
DARPA Urban Challenge had the race in an urban circuit among automated cars, simulating
the dynamic traffic as in real urban environments [55], as shown in Figure 2.3.

Self-driving cars are becoming more frequent in both scientific and industrial context
since Google launched their driverless car project in 2011 [56]. From then onwards, many
other approaches proposed different architectures and solutions all of them moving towards
the development of the autonomous vehicle. For instance, Mercedes with the Bertha project
proved the viability of Autonomous vehicles in German roads based on advanced sensing

12

2.3 Automated Vehicles

Figure 2.3 DARPA grand challenge cars2

capabilities [57]. The V-Charge project studies in the direction of allowing automated
valet parking for self-driving cars [58]. Moreover, several vehicle manufacturers have
proposed different solutions in the field of automated vehicles which are close to the market,
such as BMW and Audi [59], Mercedes-Benz [60] and Volvo [61]. Furthermore, several
other proposals offer the possibility to include autonomous vehicles in public transportation
systems [62, 63]. Automated vehicles continue as an important topic in ITS, where a recent
work shows that driver-less vehicles could become widely available in the next 5 to 10
years [64]. In this thesis, multiple automated vehicles were designed to examine the proposed
approaches in real-life experiments. The development of the automated vehicles required the
study of the various system, which is summarized in the below subsections.

2Source: https://medium.com/self-driving-cars/failure-and-the-darpa-grand-challenge-92c8dd63b25b

13

State-of-the-art

2.3.1 By Wire Systems

The by wire system is the first step to implement an automated vehicle. It can be defined as the
replacement of mechanical linkages and systems with electrical or electro-mechanical ones
for performing traditional vehicle functions [65]. The system consists of three categories;
steer, drive, and brake by wire systems. On the one hand, the steer by wire system replaces
the conventional steering system of the vehicle and aims to eliminate the physical connection
between the steering wheel and the wheels causing high-speed stability [66].

On the other hand, the drive by wire system executes the vehicle propulsion by means of
an electronic throttle without any cables from the accelerator pedal to the throttle valve of
the engine. However, for electric vehicles, this system controls the electric motors connected
to the wheels by sensing the accelerator pedal input and sending commands to the power
interface modules [67]. Finally, the brake by wire system eliminates traditional mechanical
and hydraulic components and replaces them with electronic sensors and actuators to control
the brakes in vehicles [68]. In this thesis, all three by wire systems were developed on
multiple automated vehicles, presented in Chapter 4, and later tested in several experiments
as presented in Chapter 7.

2.3.2 Communication Systems

The vehicular communication technologies consist of three main categories; inter-vehicle
communication, communication with pedestrians, and communication with infrastruc-
ture [69]. Vehicle-to-Everything (V2X) technologies augment vehicles on-board sensors
and perception systems with non-line of sight awareness [70]. Each of the communication
categories consists of several schemes, and several solutions utilize Ad-hoc networks, which
are created by the temporarily connected vehicles. These networks are known as VANET [71].
In VANET, vehicles transmit data to each other when they are located in the defined range
of connectivity from each other. Accordingly, VANET main drawback is its dependence on
vehicle position in the environment, which does not guarantee constant connection.

Vehicle-to-Vehicle (V2V) communication scheme is defined as the transmission of
data among multiple vehicles. The main objective of V2V communication is to enhance
the perception capabilities of the vehicle, therefore reducing the number of traffic acci-
dents [72]. Vehicle-to-Pedestrian (V2P) and Pedestrian-to-Vehicle (P2V) communication
schemes enclose a wide range of road users, which allows bilateral detection and notification
systems [73]. Last but not least, the systems can be enhanced through communicating with
infrastructure. Vehicle-to-Infrastructure (V2I) and Infrastructure-to-Vehicle (I2V) communi-
cation schemes provide enhancements to the automated vehicles, for instance, the suggestion

14

2.3 Automated Vehicles

of dynamic velocities or routes based on the instant information of traffic lights [74]. The
use of this technology allows to the urban traffic coordination, ramp metering, monitoring
and pollution management for control purposes in the smart cities [75]. The three categories
of vehicular communication are designed and created within the framework of this thesis, as
presented in Chapter 5.

2.3.3 Localization Systems

The localization system is considered as one of the important parts in any intelligent vehicle.
The accuracy of the localization system must be as high as possible; in order to avoid
any catastrophic maneuver. Sensors of high accuracy data are available for many decades;
however, they are still unaffordable for mass production. Therefore, it is required to increase
the accuracy of the localization using multiple cost-efficient sensors, which is achieved by
the calibration, modeling, filtering and fusion processes. The good knowledge about the
covariances and the identification of the uncertainties are fundamental; in order to obtain a
filter close to optimal. Tuned and constant covariance parameters are widely used in different
works [76, 77]; this is due to the simplicity of the calculations. However, it is not sufficient
because the uncertainty in the drift suffering sensors changes with operating conditions,
which leads to sub-optimal fusion results. Moreover, it needs a significant number of trails to
obtain tolerable results.

Several methods have been presented to estimate the noise covariance matrices; such as
correlation techniques that are based on Autocovariance Least-Square method (ALS) [78,
79], Covariance Matching (CM) [80, 81], maximum likelihood [82, 83], and Bayesian
estimation [84, 85]. These previous methods usually estimate the covariances of linear
systems, except CM methods which deal with nonlinear systems, however, it is a non-optimal
estimator. Other works used Adaptive Kalman filters; in order to estimate the covariance
matrices [86]. In [87], a Kalman filter with recursive estimation has been presented; to
estimate the noise covariance matrix from the measurement sequence of linear time-invariant
systems. Additionally, in [88], a stability analysis has been performed to verify the state of
the estimator. However, the obtained results were based on simulations, furthermore, the
estimation algorithm is efficient with linear systems.

Using filters requires accurate covariances for all the sensors being fused, however,
determining the exact values of these covariances is difficult, due to the absence of a ground
truth for the exact estimation. Moreover, the values of these covariances might change
during the operation of the vehicle. Based on the literature, it is common to manual tune
these covariances, which lead to the filters to operate sub-optimally and obtain worse results.
Accordingly, in this thesis, an online adaptive estimation of the noise covariance matrix Q for

15

State-of-the-art

drift suffering proprioceptive sensors, using an exteroceptive sensor with known uncertainty
is presented. This estimation is independent of the factors that affect the sensor reading,
and it is not subjected to the accumulation of the error, but to the random white noise error.
Furthermore, a comparative study was conducted using multiple odometry sensors fusion
algorithms for validation of the approach efficiency and functionality.

2.3.4 Mapping Systems

The classification of map types has been changing over time, the most common categories are
occupancy grid maps, feature maps, and topological maps [89]. Though topological maps are
used in higher-levels of control, they do not contain as much information as occupancy grid
maps, which are more common for the representation of the environment and the planning
of trajectories [90]. Therefore, in order to achieve self-driving, the vehicle must be able
to create a map of the world and localize itself in it. Several researchers addressed the
environment mapping in [91, 92], furthermore, Simultaneous Localization and Mapping
(SLAM) techniques, in particular, have been an active area of research [93, 94]. However,
since the accuracy of the mapping systems must be as high as possible for better environment
perception; it is required to increase the accuracy using multiple sensors, which is achieved
by the calibration, modeling, filtering and fusion processes [95, 96].

2.3.5 Perception Systems

One of the necessary components to develop an automated vehicle is the perception of
the surrounding vehicle environment. Perception systems are able to sense and interpret
surrounding environment based on various kinds of sensors [97]. Several approaches for
obstacle detection and classification are proposed; vision-based techniques [98, 99], lidar-
based techinques [100, 101], and most recently deep learning based techniques [102, 103].

2.3.6 Planning Systems

Path planning has been a subject of study for the last decades. Most of the authors divide the
problem into global and local planning. A review of the different approaches and concept
definitions are presented in [104]. Depending on the analysis of the map, some methods are
based on roadmaps, such as [105], others solve the problem by assigning a value to each
region of the map in order to find the path with minimum cost [106]. A similar approach by
using potential fields is described in [107], the most extended algorithm used a few years ago
rapidly-exploring random trees [108] or the new approach based on neural networks [109].

16

2.4 Cooperative Driving

2.4 Cooperative Driving

The self-driving technology is advancing rapidly, however, in order to safely deploy vehicles
on public roads, cooperation with other road users is mandatory. This cooperation would
allow the safe interaction with other vehicles, whether a human driver or driverless. Although
some of the proposed solutions already handle the presence of other vehicles in the road [104,
110, 111], by handling static and dynamic obstacles and adapting the trajectory accordingly,
the cooperative driving is not yet achieved.

Cooperative driving demands the information exchange and control strategies deployed
in all the vehicles involved following a two-way communication. In this sense, during recent
years many works have addressed this topic, trying to provide solutions based on different
configuration and solutions. The Grand Cooperative Driving Challenge 2016 was created
with the purpose to boost cooperative automated vehicles in the form of a cooperative based
competition [112]. On the one hand, authors in [113] presented an auction-based cooperative
control for autonomous vehicles, on the other hand, authors in [114] proposed an approach
to enhance common motion planning algorithms, this proposal allows cooperation with
human-driven vehicles. Additionally, a novel concept is presented, based on a centralized
strategy, using maneuver templates, which are formalized collaborative maneuvers, to select
cooperative driving strategies [115]. All this work prove the importance of collaboration
and communication among vehicles to allow a safe and efficient deployment of autonomous
vehicles real in driving scenarios.

Coordination of automated vehicles is part of the cooperative driving approaches. Since
coordination ensures the safety of road users and enhances the efficiency of road traffic [116].
A use case of the coordination approaches is the vehicles platooning. Platooning is defined
as multiple vehicles following each other in a coherent system, which has been widely used
in several intelligent vehicles applications [117]. Furthermore, automated highway systems
using platooning approaches have been demonstrated over the past several years [118–121].
Automated vehicles platooning can be classified into three main categories:

• Longitudinal control; where the follower vehicles are required to maintain a specific
distance to the leader vehicles, in meantime maintaining the same driving speed.

• Lateral control; where the follower vehicles are required to execute lane tracking and
lane changing algorithms to follow the leader vehicles on the road.

• Maneuver coordination; where the platoon formation plays an important role in
joining and leaving protocols to assure smooth and safe driving on the road.

17

State-of-the-art

2.5 Task Allocation

During the last decade, Multi-robot System (MRS) is one of the main focus topics for the
ITS field. This increased interest originates from the significant benefits provided by several
robots over a single one. MRS can be simply understood to be a group of robots cooperating
together for accomplishing a certain task or mission [122, 123]. In reference to the literature
review survey, the coordination and cooperation among multi-agent systems can be modeled
as a MRTA problem. MRTA is an NP-hard problem, which concerns the use of the available
resources in an coherent manner. Consequently, the decision of which robot will do which
task strongly affects the performance of the system [124, 125].

MRTA problem answers the question of which robot is going to execute which task? In
the literature, there are different approaches utilized to solve the MRTA problem. Authors
in [126] proposed a mixed integer linear programming optimization approach to allocate
heterogeneous robots for maximizing the coverage area of the environment. In [127], authors
proposed a SA approach to solve the MRTA through multi-Travelling Salesman Problem
(mTSP) formulation. In [128], authors introduced the principles of a market economy to the
coordination problem of multiple robots. In [129], authors proposed market-based approach
over Contract Net Protocol (CNP) to solve MRTA problem. Moreover, the task allocation
problem was also solved using hybrid optimization approaches such as the tabu search with
random search method in [130] and tabu search with noising method in [131].

On the one hand, authors in [132] presented a centralized method for MRTA and path
planning, and [133] authors simulated several planners based on centralization and decou-
pling. On the other hand, authors in [134] presented a formation control of MRS using
decentralized approach, since the robots in the system lack the information about the environ-
ment and the positions and goals of other robots . And, in [135], authors presented a mobile
sensor network using MRS, they used a decentralized approach in estimation and control
of the agents to maintain connectivity during motion . Furthermore, in [136], ant-colony
approach was proposed to solve MRTA problem for UAV to multiple targets in a military
application scenario. As per the survey in [137], there are different approaches to solve the
MRTA problem. Though several techniques are presented with satisfactory results, they lack
the applicability and integrability to real automated vehicles, additionally, they lack online
distributed computation on multiple vehicles [138]. Accordingly, in this thesis, a task alloca-
tion architecture for multiple automated vehicles is presented in Chapter 6. Moreover, the
architecture was integrated into the developed automated platforms and tested for validation.

18

2.6 Concluding Remarks

2.6 Concluding Remarks

Based on the conducted literature review, it can be concluded that the research of the
automated vehicles has been diverse and extended over wide disciplines. However, despite
this, there are few points that need more research, in order to reach the desired driving
automation level. Since a generic methodology to connect both systems, ROS and Unity
is lacking, a powerful 3D simulator development is proposed within the framework of the
thesis, which is addressed through work presented in Chapter 3. In Chapter 4, multiple
automated vehicles were designed to be utilized as the platforms for all experiments in
this thesis, starting from small indoor mobile robots, to an automated UAV, and finally the
main platforms of the thesis, which are two automated Unmanned Ground Vehicle (UGV).
Moreover, Chapter 4 details all the developed intelligent systems in the platforms to reach the
goal of automated driving. The developed communication schemes to enable the cooperative
driving are explained in Chapter 5, along with the description of the proposed approach
for multiple vehicles platooning. Finally, the coordination architecture among the multiple
automated platforms is presented in Chapter 6, where the MRTA problem was solved using a
hybrid optimization-based algorithm.

19

Chapter 3

Simulators

3.1 Introduction

In this chapter1, the formal definition of ROS framework is described in Section 3.2. Sec-
tion 3.3 presents an example of one of the commonly used driving simulators in the ROS
framework. On the other hand, the formal definition of Unity game engine is described
in Section 3.4. Furthermore, Section 3.5 introduces the proposed 3D driving simulator
implementation, how it the simulator utilizes both ROS and Unity softwares to achieve a
better simulation environment. Finally, the chapter is summarized in few concluding remarks.

3.2 ROS Framework

ROS stands for robot operating system, which is an open source programming framework
for robotics, whose development began in the late 2000s at Stanford University and Willow
Garage [37]. To better understand the benefits, let’s consider how robotics projects were
developed before ROS existing. The kinds of commercially available systems have histori-
cally involved software control systems that were proprietary and highly specialized for their
intended tasks. Each system was different, therefore lack standardization, and as a result,
suffered from long development times.

ROS changed this by a framework for developing a software that facilitates and even
encourages the sharing and reuse of good ideas. The goal is not to have one general purpose
software programming framework that will solve all the problems with robotics development.
However, ROS has maximized the utility of having open source programming framework, by
addressing many of the common problems robotic developers face.

1Publications of the author related to the chapter are [139, 140]

21

Simulators

ROS enables modular software development by providing a library of reusable code
packages that are free and available. ROS also provides a run-time environment that supports
near real-time communication between system elements and data sharing. Moreover, ROS
provides programming standards, which are useful for creating and using ROS supported
codes in a repeatable and reliable way. There is also a suite of ROS development tools that
are helpful in monitoring, troubleshooting and visualizing the system. Last but not least,
ROS has a vibrant community of tens of thousands of users and contributors all over the
world, as depicted in Figure 3.1.

Reusable Code Packages

Run-Time Environment

Programming Standards

Development Tools

User Community

Figure 3.1 ROS framework modules

3.3 GAZEBO Simulator

In 2002, researchers from University of Southern California started the development of a new
simulator environment called GAZEBO. The target was to design a high-fidelity simulator,
in order to emulate robots in indoor or outdoor environments under various conditions,
complementary to Stage simulator [141]. In 2013, GAZEBO was used to run the Virtual
Robotics Challenge, a component in the DARPA Robotics Challenge. GAZEBO offers
the ability to accurately and efficiently simulate populations of robots in complex indoor
and outdoor environments. It poses a robust physics engine, high-quality graphics, and
convenient programmatic and graphical interfaces [142].

In 2017, GAZEBO creators released a simulator for a Prius in Mcity using ROS Kinetic
and Gazebo 8. The simulator is called Car Demo, which allows controlling vehicle throttle,

22

3.4 Unity Game Engine

brake, steering, and transmission through ROS topics. Additionally, all sensor data is
published using ROS, and accordingly visualized with RViz [143].

Figure 3.2 Car Demo simulator [143]

Though this simulator can be utilized to test various algorithms of localization, perception,
and control among others; it is limited to the only available platform, Toyota Prius. The
kinematics and dynamics of any other platform are not available, therefore the simulation
does not emulate reality accurately, thus the need for a more flexible and generic simulator is
justified.

3.4 Unity Game Engine

Unity Technologies released the very first version of Unity in mid-2005 targeting only OS
X development [38], since then, Unity has developed and upgraded the support to more
than 25 platforms including virtual and augmented reality. Unity is a platform independent
game engine, where games are created by manipulating 2D or 3D objects and attaching
several components to them. It has a powerful PhysX physics engine, render engine, collision
detection engine among others. Furthermore, it supports high-fidelity 3D environments
and allows sensors modeling [144]. Unity engine utilizes a standard mesh for the game

23

Simulators

object, which includes the location of all vertices of the object shape. This allows the physics
engine and collision detection engine to enhance the authenticity and realism of the behavior
of the dynamic game objects in the simulator. Moreover, Unity render engine provides
several shaders and graphics effects to enhance the authenticity and realism of the 3D virtual
environment [145].

Furthermore, Unity has a wide range of online tutorials, which facilitates getting started
with the development from day one. Unity has well-documented API, along with the vibrant
community. Unity provides the opportunity to modify the virtual environment using an editor,
or by manipulating it directly in the game window. It also provides scripting language to the
developer to define behaviors and controllers.

Based on the comparison of different game engines [146], Unity is a feature-rich and
highly flexible editor. As shown in Figure 3.3, it is characterized by the all-in-one editor,
where it is possible to implement the project on any operating system, additionally, it supports
2D and 3D development with features and functionality needs across genres. Moreover, it
has an advanced AI path-finding tool, which includes a navigation system that allows you
to create NPCs that can intelligently move around the virtual environment. Another feature
is the rapid iteration, where play mode is used for rapid iterative editing and the alterations
in the scripts are viewed instantly. Finally, Unity has a vibrant developer community, with
thousands of threads for developers to share their ideas, suggestions, information, and queries.

All-in-one Editor

2D & 3D Support

AI Path-finding Tools

Rapid Iteration

Developer Community

Figure 3.3 Unity game engine features

24

3.5 3DCoAutoSim Simulator

3.5 3DCoAutoSim Simulator

Based on the aforementioned information, this section presents the proposed simulator for
automated vehicles, which was developed in the context of this thesis. 3DCoAutoSim is an
abbreviation for "3D Simulator for Cooperative ADAS and Automated Vehicles Simulator".
It is a vehicle driving simulator with high-quality 3D visualization based on Unity, which
makes it possible to emulate a variety of environments. The proposed work is an extension
of the capabilities presented in [147], where a driver-centric driving platform visualized the
mobility behavior of other vehicles based on traffic models and a TraCI protocol allowed
communication between Unity and the microscopic traffic simulator SUMO. And the work
in [148], which calculated the optimal speed while approaching an intersection by retrieving
the traffic light timing program from the road infrastructure, namely Traffic Light Assistance
System. Finally, the work in [149], in which VANET communication capabilities were used
to assess different information paradigms.

The simulator is implemented using Unity since it is a powerful 3D visualization tool,
which is platform independent and has a strong physics engine. The simulator architecture
hierarchy is divided into several categories; environments, scenarios, features, outputs,
devices, and mode. The required configuration can be selected from the main menu, depicted
in Figure 3.4.

3.5.1 Environments and Scenarios

As shown in Figure 3.4, there are several options for environments or scenarios available
for selection. Selection is only for either the environments or scenarios, which will be the
emulated area during the experiment.

• FHTW Environment, which is a 3D constructed map of the campus of University
of Applied Sciences, Technikum Wien (FHTW) in the city of Vienna. The map
construction was carried-out using the CityEngine software [150], achieving thus a
one-to-one scale with high-quality visualization to emulate the real environment.

• Race City, which is provided as a testing environment by the Realistic Car Controller
asset in Unity [151]. It includes several buildings, a parking lot and a large circular
racing track for high-speed experiments.

• SUMO Open Street Map (OSM) based environments are dynamically configured by
the user through adjusting a configuration file from anywhere in OSM and link it
SUMO, further details are shown in the next sub-section.

25

Simulators

• Scenario based selection are environments that are designed for a specific use-case,
for instance, all validation results in this work were carried out using the validation
scenario, which is explained in the experimental work section.

Figure 3.4 3DCoAutoSim main menu graphical interface

3.5.2 SUMO Connectivity

The communication between Unity and the microscopic traffic simulator SUMO makes it
possible to use real-world road networks together with realistic traffic models to simulate a
variety of driving conditions for evaluating interaction with other road users. Integrating traf-
fic environment into the driver-centric simulator has a series of restrictions, however SUMO
overcomes most of them as illustrated below.

• Macroscopic simulators lose the ability to refer to a single element in the environment,
however SUMO is of a microscopic granularity nature, which allows identifying each
different element.

• Time discrete and space continuous simulator. Whereas the latter can be simulated, the
former is a requirement because the status of the whole simulator will be asked at a
regular pace of 60Hz.

26

3.5 3DCoAutoSim Simulator

• A way to establish a bidirectional communication. Through the TraCI API, the
simulator is able to provide and embody information related to each of the elements in
the environment.

The SUMO OSM option requires a previously created scenario. When this option is
selected and the simulation initiated, a new SUMO simulation runs in server mode. The
loading operation is explained in [147]. The simulation process is as follows:

1. SUMO is started in server mode (i.e. stopped and waiting for a connection to a newly
created socket in a free port), specifying the scenario the user has entered in the
configuration box.

2. A new connection is made to the port from the 3DCoAutoSIM simulator.

3. All the roads are loaded to create all the network in the 3D environment.

4. All the traffic lights are loaded: the states and configuration of the traffic lights are
cached in order to decrease the calls to the SUMO server.

5. All the initial cars are loaded.

The simulation is then started. For each game loop, a new simulation step is performed
in the micro-simulator through the API, asking for the position of the system-controlled
vehicles and communicating the current position of the user-controlled vehicle.

3.5.3 ROS Connectivity

Several libraries are required for linking the two architectures, ROS and Unity, which must
be implemented in both ends. Figure 3.5 depicts the simplified general overview of the
link, where the ROS framework is on the left side, with all nodes that one might have in
the system, in addition to a unity− node, which acts as the link to subscribe and publish
messages through the rosbrdige node from and to Unity. Whereas Unity game engine is on
the right side, with all scripts one might have in the system, in addition to ros− script, which
acts as the link to subscribe and publish messages through the rosbridgelib library from and
to ROS. All transmitted messages between the two architectures are formatted as JSON. The
detailed methodology for each architecture is described as follows.

27

Simulators

Unity Game Engine

script-1

script-2

script-n

ros-script

rosbridgelib
ROS Framework

node-1

node-2

node-n

unity-node

rosbridge
JSON
Data

sub / pub

Figure 3.5 ROS and Unity link general overview

For ROS Framework

The rosbridge library [41] is utilized. rosbridge library provides a JSON API to ROS
functionality for non-ROS programs. It is a Python library responsible for taking JSON
strings and converting them to ROS messages, and vice versa. In this approach, WebSocket
server was selected as the front end, where rosbridge server accepts WebSockets connections
and implements the rosbridge protocol. Therefore, after the installation of the library,
launch the rosbridgewebsocket node from the rosbridgeserver package, after adjusting the
WebSocket IP and port number. Afterward, in the unity−node, subscribe to the messages
from Unity and publish messages to Unity based on the application needs. Since the library is
integrated as part of the ROS framework, it accepts any kind of standard or custom messages
defined in the package dependencies.

For Unity Engine

The rosbridgelib library [50] is utilized. This library is to included in the Unity project assets
folder, where it must be imported in the ros− script file. This is the main file, which setups
WebSockets connection to connect to the same IP and port number, which are adjusted by the
rosbridgewebsocket at the ROS end. Once the connection is established, it defines the Unity
publishers and subscribers. Furthermore, the U pdate() function provides a mechanism for
the callbacks on the rendering thread and deserializes JSON data into appropriate instances

28

3.5 3DCoAutoSim Simulator

of packets and messages. The library does not support every ROS message, the currently
available ones are:

• std_msgs

• geometry_msgs

• sensor_msgs

• nav_msgs

• geographic_msgs

• auv_msgs

However, in the case of the necessity of new messages or custom messages, it is fairly
simple to create the script files for these messages, and include them in the library folder.

3.5.4 Features

Automated Driving

Automated driving is a feature that controls the vehicle navigation to follow a set of waypoints,
generated by a path planning algorithm [152]. Through the connection between ROS and
Unity, the navigation commands are published from ROS based on the vehicle current
location and destination point.

Traffic Sign Detection

3DCoAutoSim is also able to detect and recognize traffic signs or obstacles such as construc-
tion cones in the simulated environment, using the mounted frontal camera and the works
presented in [153, 154]. The objective is to increase drivers awareness by informing them
about the detected traffic signs or obstacles in the environment.

Traffic Light Assistance

Traffic light assistance option is an ADAS, which communicates with the traffic lights of the
environment and provides the driver with information regarding the optimal speed to arrive
at the intersection in the green phase [148].

29

Simulators

Tailgate (Keep-Distance)

The tailgate feature is based on the works presented in [155] and [156]. The feature utilizes
vehicular communication or mounted sensors, to measure the distance between the driven
vehicle and the car ahead, relying on the work in [149].

3.5.5 Devices

3DCoAutoSim provides an extension API to create devices to be attached to the cars. Each
new device has to be comprised at least of a prefab element, to be attached to the vehicles,
and of a subclass of the Device abstract class, as described in Figure 3.6.

Figure 3.6 Device abstract class as the parent for all devices

The figure depicts the relationship between the devices and the associated loggers to dump
their data. The reason is that the API is internally connected with the logging framework. As
a consequence, any data related to a device can be easily created and logged.

3DCoAutoSim vehicles include four devices that can be enabled or disabled and allow to
record their associated data for further analysis:

• CAN Bus. This is the only device that cannot be disabled. It gathers internal informa-
tion about the vehicle, such as current speed, odometry, wheels torque and consumption.
Some of these values are extracted directly from the simulator itself, whereas some
others (such as the fuel consumption) are extracted from SUMO. The logging rate
defaults to 10Hz.

30

3.5 3DCoAutoSim Simulator

• GPS. Emulates a GPS located in the middle of the vehicle. It provides the 3D position
of the vehicle inside the scenario at a regular rate (defaults to 10Hz).

• LiDAR. Emulates a LiDAR located on top of the vehicle with the frontal position
heading to the forward and with the 0-plane horizontal to the ground. It has some
parameters that are configurable such as the number of planes (defaults to 8 planes),
the horizontal resolution (defaults to 1deg) or the vertical separation of planes (defaults
to 2.5deg). The default logging rate is 1Hz.

• Monocular Camera. A monocular camera which takes photos at a regular rate
(defaults to 2Hz).

3.5.6 Output

3DCoAutoSim logs data for each of the devices that are used in the experiments. To this end,
methods and attributes of the Device subclass need to be implemented, (i.e. Row (attribute for
getting the last row of data) of GetDescription() (the textual information of the device object)).
An overview of the logging framework that defines the methods required for the subclasses to
implement is presented in Figure 3.7. In the framework DataLogger and DeviceDataLogger
are the abstractions of the design for which CsvDataLogger and CsvDeviceDataLogger are
concrete implementations.

Figure 3.7 CSV logging framework design

CSV logging is a default implementation. For each experiment, it creates a new folder
with the summary of the enabled devices and their configurations as well as the time stamp
for starting and ending. Each of the devices creates a new CSV file with all the data logged
at the specified step.

The SQL option is a further implementation. It requires a query string and the drivers’
device class to connect to the database. It adds a new row to the experiment tables with the

31

Simulators

configuration and devices. In case of missing device tables or data columns, the implementa-
tion will create them.

3.5.7 Multiple Simulators

Networked driving simulation represents an effective virtual prototyping tool, which supports
the development of intelligent vehicles and accelerates system deployment [157]. Accord-
ingly, 3DCoAutoSim supports the options of single or multiple nodes. The two systems have
all aforementioned features and capabilities, in addition to Unity Multiplayer Service, which
creates real-time networked instances of the simulator, each on a separate computer.

3.6 Concluding Remarks

This chapter introduced the formal definitions for the main software of this thesis, ROS
framework and Unity game engine. The definition included the main features of the software
and the advantages of utilizing them for the development of the work. Besides the definitions,
the GAZEBO Car Demo simulator was presented. Although, it is a powerful simulator that
is utilized to test various algorithms; it is limited to the only one platform. Moreover, Unity
game engine has a more powerful physics engine and very high-fidelity visualization 3D
environments, among others. Therefore, the concept to link ROS and Unity is essential for
better emulation of reality in the simulation world. Accordingly, this chapter also introduced
the developed simulator 3DCoAutoSim. The simulator has several features and capabilities,
in addition to its connectivity to both SUMO and ROS. Furthermore, it allows the option
of multiple user vehicles in the simulation environments, thus cooperative algorithms of
automated vehicles can be analyzed, which is the main focus of this thesis.

32

Chapter 4

Platforms

4.1 Introduction

In this chapter1, the three different platforms are introduced in separate sections. Section 4.2
introduces the mobile robot TurtleBot3, Section 4.3 introduces the automated drone SkyOnyx,
and Section 4.4 introduces the automated vehicles iCab. The first two platforms are briefly
described, highlighting their main features and capabilities, since their purpose was to validate
the heterogeneity of proposed work. However, the iCab is the main platform of this thesis,
accordingly, the detailed transformation of the platform from regular to the automated vehicle
is described, followed by a comprehensive description for the designed software architecture
and all implemented systems for the automation objective. Finally, the chapter is summarized
in few concluding remarks.

4.2 TurtleBot3

In this section, hardware and software descriptions of TurtleBot3 platform are presented.

4.2.1 Hardware Description

TurtleBot is a series of inexpensive robots developed specifically for ROS. The first TurtleBot
prototype was created by Willow Garage in 2010. Willow Garage is a group that develops
hardware and open source software for robotic applications. TurtleBot name comes from
the ROS tutorial simulator, which was named after the cursor name of the Logo software.
TurtleBot2 was released in 2012 and TurtleBot3 in 2017 [48]. TurtleBot3 designs are clearly

1Publications of the author related to the chapter are [158–166, 152, 167–171]

33

Platforms

smaller than the previous TurtleBots. TurtleBots included an embedded computer, which
was replaced by TurtleBot3 single PCB computer, Raspberry Pi 3 [172]. The robot has also
been made very modular, as the whole frame has built-in screws for easier mounting [173].
TurtleBot3 is available as two models; "Burger" is smaller, and "Waffle" is larger. The models
chassis consists of identical mounting plates, but have different components. The most tech-
nical difference between the models is the 3D camera included in "Waffle" TurtleBot3 [174].
Both platforms are shown in Figure 4.1.

Figure 4.1 TurtleBot3 platforms; "Burger" (left), and "Waffle" (right) [174]

TurtleBot3 uses XL430-W250-T DYNAMIXEL motors for the differential motion, which
are embedded with optical encoders. The motors are controlled by the STM32F7 OpenCR
board. Furthermore, it is equipped with a 360°Laser Distance Sensor LDS-01(HLS-LFCD2).
The sensor is capable of measuring unobtrusive and opaque objects at a minimum of about
12cm and a maximum of about 3.5m away. The sensor measures only two-dimensional,
meaning it only detects objects in the same plane.

4.2.2 Software Description

There are several ROS packages included in TurtleBot3 architecture, as depicted in Figure 4.2.
The gmapping package provides laser-based SLAM, it creates a 2D occupancy grid map
from laser and pose data collected by the robot [175]. Later the navigation stack package
takes in information from odometry, sensor streams, and a goal pose and outputs safe velocity
commands that are sent to a mobile base [176]. TurtleBot3 utilizes the amcl package for
probabilistic localization, while the move_base package is used for the attempt to reach a
given goal pose in the world. Last but not least, the dwa_local_planner package provides an
implementation of the Dynamic Window Approach for local robot navigation on a plane. A
detailed description of the software architecture is provided in the eManual [177].

34

4.2 TurtleBot3

Fi
gu

re
4.

2
Tu

rt
le

B
ot

3
ar

ch
ite

ct
ur

e

35

Platforms

4.3 SkyOnyx

In this section, hardware and software descriptions of SkyOnyx platform are presented.

1- Flight Controller 4- /idar
2- On-board Computer 5- Frontal Camera
3- Downward Camera �- GPS

Figure 4.3 SkyOnyx platform

4.3.1 Hardware Description

As shown in Figure 4.3, SkyOnyx body is a carbon fiber hexacopter of total weight 4.5kg,
based on Pixhawk 2 autopilot. SkyOnyx is equipped with three main navigation sensors;
GPS, IMU, and barometer. Additionally, it has two on-board SJCAM SJ4000 monocular
cameras, which provide 640×480 RGB images. All the processing is performed on-board by
an embedded computer; Intel NUC computer, which has an Intel i7-7567U CPU at 3.5GHz
CPU and 8GB RAM. The software has been developed and integrated with ROS, under
Ubuntu 16.04 LTS operating system. A full description of the SkyOnyx hardware is detailed
in Table 4.1.

36

4.3 SkyOnyx

Table 4.1 SkyOnyx hardware description

Hardware Description

Structure
A hexacopter with carbon fiber body.
It has T-Motor KV 470 motors and F 30A Dshot ESCs,
with total endurance of 15 min and total weight of 4.5kg

Flight
Controller

Pixhawk 2 Cube:
Processor
32-bit ARM Cortex M4 core with FPU
168 Mhz/256 KB RAM/2 MB Flash
32-bit failsafe co-processor
Sensors
Three redundant IMU sensors
InvenSense MPU9250 and ICM20948 as first and third
IMUST Micro L3GD20+LSM303D as backup IMU
Two redundant MS5611 barometers

On-board
Computer

Intel NUC NUC7i7BNH:
Intel Dual-Core i7-7567U @ 3.5GHz
with Turbo Boost upto 4.0GHz,
4MB Cache, 8GB DDR4 2133MHz
WD Green M.2, 120 GB SSD - SATA 6 Gb/s
Intel Iris Plus Graphics 650

Camera Two monocular cameras, one downward and one forward;
both are SJCAM SJ4000 with 640 x 480 RGB images

Lidar
Velodyne VLP-16:
Dual Returns
16 Channels, 100m Range 360°horizontal and 15°Vertical FOV

GPS

Concurrent reception of up to 3 GNSS
(GPS, Galileo, GLONASS, BeiDou)
Industry leading 167 dBm navigation sensitivity
HMC5983 MAG, and LIS3MDL Mag

4.3.2 Software Description

The presented architecture of the SkyOnyx platform exchanges the information between the
subsystems based on the task. Figure 4.4 shows the overview of the whole system.

The data acquisition phase is the responsible of obtaining the raw data from the mounted
sensors; such as monocular cameras, IMU, GPS, among others, and transfers it to the different
modules in the system.

37

Platforms

Waypoint Tracking

Path Estimator Path Follower Obstacle Avoidance

Fuzzy Control

Motion Control

Vision-based Navigation Guidance

Pose Estimation Obstacle Detection

IMU, Gyroscope

Frontal Camera

Downward Camera

GPS

Storage
Storage

Follower Filter

Active State

Sensor Fusion

SkySkySkySkyOnyx

Figure 4.4 SkyOnyx architecture [178]

Localization

The UAV flies in indoor and outdoor environments with the ability to localize itself accurately.
In the proposed platform, the localization system is based on the fusion of three main sensors
(downward monocular camera, IMU, and GPS), with the ability to fuse other sensors data as
well.

Visual Odometry The pose estimation solution for estimating 6-DOF attitude of the UAV
is presented in [179]. This is achieved by solving the different homographies world-to-frame
and frame-to-frame; in order to estimate the relation between the detected points in the image
and its positions in the 3D world relative to the UAV position.

IMU Odometry One of the essential sensors for the UAV localization is the IMU, which
provides sensor readings for acceleration, gyroscopic and magnetic data, granting SkyOnyx
with 9-DOFs of sensorial awareness. The advantage of this type of sensor is the fast sampling
rate and it provides a lot of information about the motion of the vehicle although its precision
is not as accurate as desired.

GPS Odometry GPS is considered as one of the most known approaches that are used
for outdoor localization [180]. It determines the absolute position and orientation in the

38

4.3 SkyOnyx

3D space according to the respective positioning of at least three satellites, from a total of
24, orbiting around the Earth. The GPS has integrated a compass to correct the orientation
measured by the GPS signal [181].

Odometries Fusion Due to the inaccuracy or the noise in the information of the sensors;
which leads to worsening the accuracy of the localization; fusing the obtained information
from multiple sensors to improve the accuracy of the localization system is very common.
Accordingly, an Extended H∞ filter is used to fuse multiple odometries (GPS, IMU, and
visual) for localizing the aerial vehicle SkyOnyx. The fusion algorithm is extended work
of [168].

Perception

Another challenging problem in the domain of autonomous aerial vehicles is the designing
of a robust real-time obstacle detection and avoidance system. The perception module
implemented in SkyOnyx is mainly dealing with the obstacle detection problem, providing
a bio-inspired method that mimics the human behavior of analyzing the size states of the
approaching obstacles using monocular camera [182].

Planning

Furthermore, the planning module presents an approach to perform automated flights from
the start point to the destination. This module is divided into two stages; a planning stage
with a robust guidance algorithm, that generates the waypoints to determine the flight path
based on environment, and the situated obstacles. And a waypoint tracking stage with a
strategy of following and swapping the generated waypoints efficiently [158].

Control

Furthermore, the ability to fly safely from the start point to the destination is crucial in the
domain of autonomous UAVs. Besides a robust guidance and path planning algorithms,
a stable control system to perform the path following as well as the obstacle avoidance
maneuver is required. The control module is consists of two systems; one is responsible fro
the flight stability and waypoint tracking maneuvers, while the second control is responsible
for obstacle avoidance maneuvers. The Fuzzy Logic Control (FLC) is formulated to control
the stability of the UAV in the Hover flight mode, as well as to track and follow the predefined
waypoints. Two parallel controllers are implemented; the first one is to control the heading
angle and the altitude of the UAV, whilst the second one is implemented to control the angles
(pitch, roll), and the vertical velocities in (x,y)-axes [183].

39

Platforms

4.4 iCab

In this section, hardware and software descriptions of iCab platforms are presented.

4.4.1 Hardware Description

iCab project consists of two electric golf-carts, which are shown in Figure 4.5. iCab is an
abbreviation for "Intelligent Campus Automobile", which utilizes multiple automated UGV
for shared mobility application. The vehicles are modified electrically, electronically and
mechanically for the purpose of self-driving to carry-out users transportation requests from
one point to another, with minimal human intervention. The vehicles modifications and
hardware description are presented below, for both platforms.

Figure 4.5 Proposed platforms, red iCab-2 is an EZ-GO RXV 2008 (left) and blue iCab-1 is
an EZ-GO RXV 2009 (right)

40

4.4 iCab

Steering System

In order to design the vehicle steer by wire system, the steering wheel was replaced with an
actuator and an absolute encoder systems, as shown in Figure 4.6. The steering actuator is a
Parvalux PM60 LWS brushed DC motor, which has the specifications detailed in Table 4.2.
It has a spur gear ratio of r1 of 6 : 1, a worm gear ration of r2 of 25

3 : 1 and an estimated
motor efficiency η of 80%. The motor had mounted to it a TEKEL TKM60 absolute encoder,
which had a maximum resolution of 8192 positions per 4096 turns.

Figure 4.6 iCab steering actuator

Table 4.2 Steering actuator specifications

Parameter Value Unit
Kt 0.054 Nm/A
Rm 1.25 Ω

Lm 10−6 H

As shown in Figure 4.7, the dynamic model of the vehicle is the based on Ackermann
steering principle [184]. The experimental relation between the column steering angle δc

and the reduced bicycle model steering angle δ is estimated in Equation 4.1.

δ = 0.056×δc (4.1)

41

PlatformsPlatforms

Figure 4.7 Ackermann steering schematic [185]

The system was modeled using Simscape, the MATLAB, and Simulink physical modeling
tool. The simulated response shows that deceleration is high and that the system reaches
zero velocity in no time. Accordingly, a rotational hard stop block was added to the model
to account for the backlash between the worm and worm-gear, which is superior among all
reductions. The angle of backlash was found to be 0.227°. Accordingly, the controller was
chosen to minimize overshoot, with the tuned gains are: KP is 65, KI is 0, and KD is 10.

Drive System

In order to design the vehicle drive by wire system, the throttle pedal was deactivated and the
control is applied directly to the traction brushed DC motor. iCab platforms traction motors
the 36 VDC, Series Wound, Non Vented 2.5 hp (1.9 kW) @ 2700 RPM Brazed Armature
and Solid Copper Windings. The motor is composed of a rotor, represented and a stator.
Moreover, a Heidenhain ROD426 rotary encoder is mounted on the motor main shaft, it has
up-to 10,000 incremental signals lines.

In this thesis, the drive by wire system is divided into two levels. The first level is
the low-level controller, by utilizing a microcontroller to replace the accelerator box. A
fine-tuned PID controller was designed and implemented in the microcontroller to control
the values of the stator and rotor, the work is presented in [186].

The second level is velocity controller, and in order to determine the gains of the controller,
a model of the system is designed in MATLAB and Simulink. The input of the controller

42

4.4 iCab

corresponds to the reference velocity from the navigation controller, and the feedback signal
corresponds to measured velocity by the encoder, and finally, the output corresponds to the
Pulse Width Modulation (PWM) value that controls the rotor speed.

In order to have a complete drive by wire system, the velocity controller must be linked
with the brake by wire system, which is explained in detail in the next subsection.

Brake System

In order to design the brake by wire system, the brake pedal action must be activated by
an external electronic actuation, however maintaining the brake pedal functionality, as an
external safety option for on-board passengers. iCab platforms have a set of self-adjusting
drum brakes on the rear axle type, which means that the brakes adjust themselves depending
on the amount of wear that occurs in the friction element. Thus the friction element always
maintains a constant gap between itself and the hub. In order to externally activates the
braking power, a linear actuator is attached to the vehicle frame by a metal casing. Therefore,
when the brake signal is sent, the linear actuator pushes the equalizer, which pulls the brake
cable and stops the vehicle. The actuator is the MCCA100-12V-50mm linear motor, which
has a speed of 2mm/s and 1000N maximum load. Attached to the actuator, a linear position
sensor, the Novotechnik TR100, which has an accuracy of 0.002mm, which is shown in
Figure 4.8.

Figure 4.8 iCab braking actuator

Furthermore, the braking deceleration that a vehicle can achieve is defined as the product
of application level and the brake gains of torque. This deceleration brings up a consequence
related to the vehicle load which is translated into a weight transfer. It basically modifies

43

Platforms

the position of the center of mass of the vehicle, delivering the majority of the weight to the
front axle of it, which is represented in Figure 4.9.

:

Braking Constant Speed

Figure 4.9 Vehicle center of mass when braking (left) or at constant speed (right)

Taking the aforementioned modeling for both drive and brake by wire systems into
consideration, the braking force is estimated using Equation 4.2. Therefore, the required
braking power is based on the change in vehicle velocity, the change in the vehicle weight
based on the number of passengers aboard, and type of road.

Fb =Wt ∗
(

a
g
− fr

)
(4.2)

where Fb is the vehicle braking force, Wt is the vehicle total weight, a is the vehicle accelera-
tion, g is the gravity of Earth, and fr is the vehicle rolling friction coefficient.

The brakes are now capable of reducing speed accordingly to the needs of the real
environment. When designing the controller, the braking torque applied to the vehicle was a
parameter, which could be adjusted to reduce velocity at a faster or slower rate, based on the
detected difference between speed values. It has been created in order to provide and ensure
commodity and safety for the user, which will not have any control over the vehicle except
for an emergency button, which deactivates all the mechanisms of the vehicle.

At this stage, the iCab platform has all the necessary actuators installed for executing
the driving behavior via controllers. Thus, the by wire systems represent the electrical,
electronical and mechanical modification to the platform, which were carried out for both
golf-carts. The verification of the proposed controllers and systems is presented in [187–
189]. Furthermore, the schematics for the electrical wirings, electronics configuration and
acquisition driver packages is presented in [190].

44

4.4 iCab

On-board Devices

The two platforms are almost identical in terms of the on-board devices. Figure 4.10 shows
the side-view of iCab-1 platform, indicating the location of all on-board devices. The
description of all the devices is summarized in Table 4.3.

Table 4.3 iCab platform on-board devices description

Category Hardware
Description

iCab-1 iCab-2

Computers
Embedded computer 1 AAEON AEC-68772

Embedded computer 2 Intel NUC6i7KYK3

Sensors

Laser rangefinder SICK LMS2914

Stereo camera Bumblebee 2 1394a5 Bumblebee XB3 1394b6

Lidar Velodyne VLP-16 Puck7

GPS and compass 3DR UBlox Module8

Kinect Kinect Sensor9

Ultrasonic sensors MaxBotix MB845010

Auxiliaries

Primary touchscreen Hannspree HT 231 HPB 23” Touchscreen11

Secondary touchscreen Xenarc 705TSV 7" Touchscreen12

Router TP-LINK Archer AC750 4G LTE13

Light Rotating Warning Light

Buzzer Warning Buzzer

Speaker Stereo Speaker

2http://www.aaeon.com/en/p/fanless-embedded-computers-aec-6877
3https://www.intel.com/content/www/us/en/nuc/nuc-kit-nuc6i7kyk-features-configurations.html
4https://www.sick.com/ag/en/detection-and-ranging-solutions/2d-lidar-sensors/lms2xx/c/g91905
5https://www.ptgrey.com/bumblebee2-firewire-stereo-vision-camera-systems
6https://www.ptgrey.com/bumblebee-xb3-1394b-stereo-vision-camera-systems-2
7http://velodynelidar.com/vlp-16.html
8http://ardupilot.org/copter/docs/common-installing-3dr-ublox-gps-compass-module.html
9https://msdn.microsoft.com/en-us/library/hh438998.aspx?f=255&MSPPError=-2147217396

10https://www.digikey.com/catalog/en/partgroup/mb8450-usb-carsonar-wr/72338
11http://www.hannspree.eu/en/monitors-range/ht-series/ht231hpb
12https://www.xenarc.com/705TSV.html
13https://www.tp-link.com/uk/products/details/cat-9_Archer-C2.html

45

Platforms

Figure 4.10 iCab-1 platform on-board devices side and front views

Every single device is used for the software architecture to achieve the vehicle automation.
The computers are running Ubuntu 16.04 LTS operating system and hold the designed ROS-
based architecture, which is explained below. All sensors are used for localization, mapping,
and environment perception, furthermore, the data is fused for a better overall performance of
the system. Finally, the auxiliaries are used for the platform passenger or for the environment
users, as information and warning devices. All the aforementioned modifications to the
platforms were developed in the framework of this thesis, along with the mounting and
wiring for the devices.

4.4.2 Software Description

Figure 4.11 presents the overall software architecture for the iCab platform. The architecture
is designed in a ROS framework for the automation of the platform. It consists of five main
layers; acquisition, processing, decision, control, and actuation. Each layer consists of several
packages to send and receive data and connects the whole architecture as a single entity.

46

4.4 iCab

D
ec

is
io

n

A
cT

ui
si

tio
n

Pr
oc

es
si

ng
Pr

op
ri

oc
ep

tiv
e

Se
ns

or
s

IM
U

En
co

de
rs

C
om

pa
ss

Po
te

nt
io

m
et

er

E
[t

er
oc

ep
tiv

e
Se

ns
or

s

G
PS

C
am

er
as

Li
da

r

U
ltr

as
on

ic

La
se

r r
an

ge
fin

de
r

/
oc

al
i]

at
io

n

En
co

de
r O

do
m

et
ry

G
PS

 O
do

m
et

ry

V
is

ua
l O

do
m

et
ry

IM
U

 O
do

m
et

ry

Fu
si

on
 O

do
m

et
ry

Ve

lo
dy

ne
 O

do
m

et
ry

Pe
rc

ep
tio

n

O
bs

ta
cl

e

D
et

ec
tio

n

O
bs

ta
cl

e

C
la

ss
ifi

ca
tio

n

O
bs

ta
cl

e

M
an

ag
er

M
ap

pi
ng

Lo
ca

l M
ap

pi
ng

G
lo

ba
l M

ap
pi

ng

M
ap

pi
ng

 F
us

io
n

C
om

m
un

ic
at

io
n

V
2V

V
2I

 &
 I2

V

V
2P

 &
 P

2V

C
oo

rd
in

at
io

n
	

 C
oo

pe
ra

tio
n

Pl
at

oo
ni

ng

Ta
sk

 E
xe

cu
to

r

C
on

tr
ol

La
te

ra
l

Lo
ng

itu
di

na
l

R
ea

ct
iv

e

A
ct

ua
tio

n
St

ee
r b

y
w

ire

D
riv

e
by

 w
ire

B
ra

ke
 b

y
w

ire

M
RT

A

/
oc

al
 P

la
nn

in
g

G
lo

ba
l P

la
nn

in
g

%
eh

av
io

ra
l P

la
nn

in
g

Tr
aj

ec
to

ry
 P

la
nn

in
g

O
bs

ta
cl

e
Av

oi
da

nc
e

Ev
en

t M
an

ag
er

M
an

eu
ve

r M
an

ag
er

R
ou

te
 P

la
nn

in
g

M
is

si
on

 P
la

nn
in

g

:
eb

se
rv

er

:
eb

cl
ie

nt

Fi
gu

re
4.

11
iC

ab
ov

er
al

ls
of

tw
ar

e
ar

ch
ite

ct
ur

e

47

Platforms

First, the acquisition layer, where the drivers packages provide a software interface to the
on-board sensors, enabling the operating system to access the device functions and publish
the data in the ROS messages format to the second layer, the processing layer. The processing
layer holds the core systems for vehicle automation, where multiple localization systems are
implemented for the estimation of the vehicle position and orientation in the environment,
combined with mapping systems for the environment understanding as both globally and
locally. Additionally, the perception systems are implemented in the processing layer for
the obstacles detection and classification. Moreover, several communication schemes are
implemented, which are utilized in the cooperation and coordination systems. Upon finalizing
the processing of all data from the sensors, the decisions are made in the third layer, where
the global and local planning systems are implemented. Afterward, the control layer takes
the planning output and estimate the necessary actions for the vehicle movement, in both
lateral and longitudinal. Finally, the output of the control layer is connected to the actuation
layer, which has the steer by wire, drive by wire, and brake by wire systems for the low-level
control. The description for all implemented packages is presented in the below subsections.

Auxiliaries

There are two auxiliaries packages in the iCab platform, the Graphical User Interface (GUI)
package and the sound manager package, which are explained below. The other auxiliary
devices, such as the warning buzzer and light are activated using dashboard switches during
the operation of the vehicle. These devices ensure additional safety measures for the road
users surrounding the vehicle.

Graphical User Interface: This package displays the status and states of the platform,
displays informative messages to the passengers related to the journey, and takes the passen-
gers input for their destination or to override the automation process and go back to manual
control. The GUI is developed in C++ using Qt graphics libraries14. The GUI consists of
five tabs, the "Main" tab, which is shown in Figure 4.12, it presents the necessary operative
information. The "SLAM" tab presents the fused localization and mapping outputs, the
"Odometries" tab presents all the different localization systems outputs, the "Obstacles" tab
presents the obstacle detection and classification systems outputs, and finally the "ROS" tab
includes the parameters for the link of the GUI with the framework. The detailed description
of the implementation of the GUI and its packages are presented in [190].

14https://doc.qt.io/qt-5.10/topics-graphics.html

48

4.4 iCab

Figure 4.12 iCab GUI

Sound Manager: The sound manager package is responsible for generating audio
messages to the passengers. The messages are either informative about the environment
or for warning purposes. The informative messages include the affirmation to the inputs
commands from the passenger and stating the vehicle current driving mode. On the other
hand, the warning messages include the information about the detected obstacles. Though
the simplicity of this package, it is essential for a complete platform user interactions. The
package is developed in C++ and connected to all the required topics to trigger the audio
messages in the ROS framework.

Communication

The communication packages are implemented based on developed communication schemes
explained in Chapter 5.

49

Platforms

Multi-master: This package is necessary for the inter-vehicular communication, since
it ensures that each platform has its own ROS, thus guaranteeing the system distributed
paradigm. The multimaster_fkie package is based on the work in [191], where authors
combined the essential packages to create and control a multi-master network in ROS
framework. The proposed design requires the vehicles to be under the same network,
which is achieved through the development of Virtual Private Network (VPN) and detailed in
Chapter 5. The objective of this approach is to use VPN over the available internet connection.
Therefore, a secure multi-cast connection is initiated and the V2X communication schemes
are created and summarized in Chapter 5.

Pedestrian Warning Manager: This package is necessary for the pedestrian communi-
cation, where its main purpose is to communicate with the developed smartphone application
for collision prediction and warning of Vulnerable Road Users (VRU). The application
detailed description is presented in Chapter 5. The package receives the estimated collision
coordinates from the smartphone and uses it to improve the environment perception by
detecting a pedestrian who is not in the line of sight.

Webclient Manager: This package is necessary for the infrastructure communication,
where its main purpose is to communicate with the developed webserver. The webserver
detailed description is presented in Chapter 5. The webclient manager package gets the
list of requests from the webserver through JSON messages and decodes to ROS messages
to be published to the framework. Moreover, it sends the vehicle stats to the webserver
through JSON messages after encoding the subscribed ROS messages. This way it ensures
bidirectional communication with the webserver and maintaining the ROS standards for the
inter-packages communication.

Control

The vehicle control architecture consists of three tiers based on the work presented in [192].
The architecture of the control tiers is presented in Figure 4.13, starting by the reactive tier
and its connection to the environment, after taking the tasks from the sequencer tier, which
takes the orders from the high deliberative tier. This control architecture is flexible and allows
the addition of more features and or the modification of the interlaced algorithms to improve
the output results. The detailed description of the control architecture and its packages are
presented in [190], and brief descriptions of the tiers are as follows:

• Reactive Tier: it is the lowest control layer, in which the vehicle lateral and longitudi-
nal controllers are implemented for the movement of the automated vehicle. The inputs
are obtained from middle layer, the sequencer tier. These inputs are transferred one

50

4.4 iCab

after the other to estimate the necessary movement outputs for the steer by wire system,
drive by wire system, and brake by wire system for the actuation process [190].

• Sequencer Tier: it is the connection layer between the high-level and low-level
controllers. The inputs are obtained from the deliberative tier one after the other as a
complex task, and the outputs are sent to the reactive tier. The objective is to decompose
the high-level tasks to reactive ones. Furthermore, an obstacle threat interrupter is
simultaneously executed for the detection of risky situations in the environment [190].

• Deliberative Tier: it is the top layer to coordinate the required actions for the overall
system. After data processing stage, the layer outputs are sent one after the other to
the sequencer tier for decomposition. This layer is responsible for the environmental
awareness before taking the high-level decisions [190].

Deliberative

Sequencer

Reactive

Environment

Sensor ReadingsActuator Controls

Partial Task Ordering

Instantiate Task

Hybrid

Reactive

Deliberative

Figure 4.13 iCab control three-tiers architecture

51

Platforms

Cooperation

Since this thesis presents multiple automated vehicles, the cooperation packages are essential
to execute the necessary algorithms for coordination among the vehicles.

Platooning: This package is responsible for the implementation of the platooning al-
gorithm presented in Section 5.3. The package subscribes to the states and statuses of the
vehicles in the system in order to estimate the necessary commands maintaining the platoon
in order.

MRTA: This package is responsible for the implementation of the task allocation al-
gorithm presented in Chapter 6. The package subscribes to the states of the vehicles in
the system in order to execute the allocation algorithm and assign the tasks to each vehicle
accordingly.

Localization

The localization system is considered as the most crucial steps in the vehicle automation,
therefore redundancy of several approaches is required and after the fusion of all these
approaches to achieve the most accurate results.

GPS and Compass Odometry: This package subscribes to the data from the on-board
GPS and compass module and estimates the global position and orientation accordingly. This
is the only package that estimates global localization since the algorithm does not measure
the vehicle displacements with respect to a fixed reference point, however, it provides the
absolute position on the terrestrial surface of the receiving device. The developed algorithm
is based on the work presented in [193], which filters and estimates the raw data to obtain
longitude and latitude coordinates. However, the accuracy of the results is not perfect,
especially in urban environments. Accordingly, the package converts the longitude and
latitude coordinates to local coordinates, and the compass reading to a local heading angle.
Therefore, the output odometry can be integrated into the fusion algorithm.

Initial Pose Estimation: The kidnapped robot problem commonly refers to a situation
where an automated robot in operation is starting in an arbitrary location. This problem is
frequent in many applications and therefore and several approaches were proposed for solving
it [194–196]. However these solutions require expensive equipment to be installed in the
environment, on the other hand, widespread solution based on particle filters is considered as
a proper alternative [197]. The main advantage of this approach is the usage of the on-board
sensors of the vehicle, such as a lidar sensor or a stereo camera. Therefore, in the proposed
approach the lidar pointcloud is processed using PointCloudLibrary and LibPointMatcher.
These libraries are used for preprocessing of the pointcloud before proceeding to the search

52

4.4 iCab

of the initial pose estimation. A detailed description of the developed algorithm is presented
in [198]. The output from this package is the global offset for the vehicle to integrate with all
the following local localization systems.

Visual Odometry: This package utilizes the stereo images and computes an estimated
ego location of the vehicle based on the work presented in [199]. This method is based on
tracking the road feature points frame by frame, in order to estimate the movement of the
vehicle, avoiding outliers from dynamic obstacles. The road profile is used to obtain the
world coordinates of the feature points as a unique function of its left image coordinates.
Though the algorithm obtains good results in most of the scenarios, it is not fully reliable,
since the lighting condition of the environment affects it drastically.

IMU Odometry: The IMU is used to determine the accelerations as well as the orien-
tation of the vehicle in the 3D space. Accordingly, using this information, the pose vector
x̂ ∈R6 of the vehicle, which consists of the three spatial coordinates as well as the Euler
angles can be determined according to the kinematic model in Equation 4.3.

x̂k = f(x̂k−1, ˙̂xk,uk)

= xk−1 + ẋkdt + ẍk
dt2

2

(4.3)

where dt is the sampling time and ˙̂xk−1,uk are shown in Equations (4.4) and (4.5)

˙̂xk = f(˙̂xk−1,uk) = ẋk−1 + ẍkdt (4.4)

uk =



ẍk

ÿk

z̈k

α̇k

β̇k

γ̇k


(4.5)

where α , β and γ are the roll, pitch and yaw angles respectively.
Therefore, the package follows the presented model and estimates the vehicle position and

orientation. However, the IMU odometry suffers from a very high error and are considered
to have completely diverged.

Encoder Odometry: The pose of the vehicle is computed recursively, using the previous
pose xk−1 and the input to the vehicle uk, as illustrated in Equations (4.6), (4.7) and (4.8).

53

Platforms

x̂k = f(x̂k−1,uk)

=

xk−1

yk−1

θk−1

+

∆de
kcos(θk−1 +∆θ e

k /2)
∆de

ksin(θk−1 +∆θ e
k /2)

θk−1 +∆θ e
k

 (4.6)

uk =

[
∆de

k

∆θ e
k

]
(4.7)

∆θ =
∆de

k
L

tan(ϕs) (4.8)

where ∆dm
k is the incremental distance covered in the last iteration, ϕs

k is the instantaneous
steering angle of the vehicle, and L is the vehicle wheelbase.

Since the encoder sensors are publishing the raw data at a very high rate, an Extended
Kalman Filter (EKF) was incorporated into the output data of the encoder odometry to filter
the outliers and obtain better results.

Velodyne Odometry: The Velodyne odometry package is based on the work presented
in [200], where it subscribes to the lidar pointcloud and apply almost instant lidar odometry
and mapping. The package accuracy over the KITTI Benchmark is in the second place in the
list of the most efficient odometry algorithms, with values of 0.64% and 0.0014o/m for the
mean translation error and mean orientation error respectively. Though this is considered the
most accurate of all proposed localization methods, its accuracy is only effective in urban
and structured environments. Therefore, the necessity of additional localization systems and
a fusion is justified.

Covariance Estimation: Proprioceptive sensors measure internal states of the vehicle.
For example, wheel optical encoders measure the position of the wheels, accelerometers
measure the vehicle accelerations, and digital compasses or gyroscopes measure the vehicle
heading angle. On the other hand, exteroceptive sensors acquire information from external
observations; such as GPS modules [201]. However, proprioceptive sensors suffer from
the accumulation of error in the vehicle pose estimation, which is called the drift error. It
is divided into two components: deterministic and stochastic components. The determin-
istic component includes unequal wheel diameters, misalignment of wheels, or kinematic
modeling error due to the inaccuracy of parameters measurement. However, the stochastic
component occurs due to the ground condition (slippage), the temperature change, and the
driving behavior [202]. Taking both components into consideration, the sensor error is
modeled using Equation (4.9).

54

4.4 iCab

qm = (1+µ)qt + ε (4.9)

where qm and qt are true and measured variable, µ is the distance dependent scale factor,
which models the measured variable dependent errors and ε models the random errors.

The deterministic component can be calibrated [203], however, the stochastic component
of the error cannot be eliminated and is variant with different driving conditions. Accordingly,
µq and ε are considered random variables, and it is safe to assume that these variables have
zero mean Gaussian distribution N , as shown in Equation (4.10) and (4.11).

µqt ∼N (0,σ2
µ) (4.10)

ε ∼N (0,σε)) (4.11)

Assuming zero mean errors, in case of wheel encoders the value µqt will be µdt and is
correlated to the Standard Deviation (SD) σµ with the correlation constant c, as in (4.12).

σmu = cµqt (4.12)

Accordingly, the proprioceptive error model is:

qm = qt +ψ (4.13)

ψ = µqt + ε (4.14)

ψ ∼N (0,(cµqt)2 +σ
2
ε) (4.15)

where σε is the SD of the stochastic component of the error.
The pose of a vehicle is estimated using proprioceptive sensors based on a recursive

kinematic model, which calculates the vehicle pose xk using the previous pose xk−1 and the
input measurement uk, as shown in Equation (4.16).

xk = f(xk−1,uk) (4.16)

where uk is the distance traveled and steering angle in case of encoders, yaw angle in case of
a digital compass or a gyroscope, and accelerations in case of an accelerometer.

55

Platforms

Given the kinematic model of the vehicle, and using Equation (4.13) for quantifying the
error in a proprioceptive sensor, the generalized error model and the covariance for the inputs
are presented in Equations (4.17) and (4.18) respectively.

u =

qm
1
...

qm
n

=

qt
1 +ψe

...
qt

n +ψs

 (4.17)

Qu =

(c0µ0qt
0)

2 +σ2
0 . . . 0

...
0 . . . (cnµnqt

n)
2 +σ2

n

 (4.18)

The exteroceptive sensor measurement in the world frame N (Z,R) is shown in Equa-
tion (4.19).

Zk =

xo
k

yo
k

θ o
k

 and R =

σxx σxy σxθ

σyx σyy σyθ

σθx σθy σθθ

 (4.19)

where xo
k , yo

k and θ o
k are the observed vehicle states.

The true pose x most likely lies in the confidence ellipse of the measurement defined
by the Eigenvalues of R, as shown in the Figure 4.14. Hence, using the square root of
the covariance matrix, a set of points in the observation distribution (sigma points) at time
instance k is computed according to to [204] and shown in Equation (4.20).

Figure 4.14 Calculating the sigma points innovation for covariance estimation

56

4.4 iCab

ξk =
[
Zk Zk +(α

√
Rk) Zk− (α

√
Rk)

]
(4.20)

where α is a scaling constant which depends on the accuracy of the used sensor, along with
the accuracy of exteroceptive sensor covariance matrix.

In order to ensure that the vehicle pose lies inside the confidence ellipse of the exterocep-
tive sensor, a method for neglecting the outliers is implemented; using Mahalanobis distance
threshold, as shown in Equation (4.21) and (4.22), where the estimated pose is used instead
of the true pose, since the vehicle actual pose is unknown.

v̂T
k Rv̂k < g2 (4.21)

vk = x̂k−Zk (4.22)

where g2 is the Mahalabonis threshold and vk is the innovation between exeroceptive and
propriocetpive observations.

Using the sigma points, the sigma innovation points are sampled with Equation (4.23),
and the innovation is mapped to the sensor space with Equation (4.24).

vζ =
[
vζ0

vζ1
. . . vζ6

]
where vζi = ξ

i
k− x̂k (4.23)

vm
ζi
= M(vζi) (4.24)

where M is a mapping function from the world frame vζi to the sensor space vm
ζi

.
For example, in case of encoders, the function M is represented in Equation (4.25).[

ve
ζi

vs
ζi

]
=

[∥∥vxi + vyi

∥∥
2

vθi

]
(4.25)

After computing the innovation in the sensor space, the value is concatenated in a matrix
that is referred as innovation memory matrix ξ as shown in Equation (4.26), where the choice
of the size of the innovation memory matrix n should be a trade-off between accuracy in
estimation and the computational cost.

ξ
q j =


ve

ζk−n

ve
ζk−n+1

...
ve

ζk

 (4.26)

57

Platforms

An exteroceptive sensor does not suffer from error accumulation, but only from random
error, therefore using the innovation memory matrix ξ , the measured variable dependent
scale factor µ is estimated by computing the first order polynomial fit of the innovation data,
using linear least squares approach, as shown in Equation (4.27).[

µ0

µ̂
q j
1i

]
= (KT ·K)KT

ξ
q j
i (4.27)

where K is the time vector for the last n instances, ξ
q j
i is the ith column of the innovation

memory matrix of the jth measured quantity, and µ̂
q j
1i

is the estimated scale factor computed
from the ith sigma innovation for the jth measured variable q j, as shown in Equation (4.28).

µ̂
q j
1 =

[
µ̂

q j
10

. . . µ̂
q j
16

]
(4.28)

Accordingly, the measured variable dependent scale factor µ is estimated by calculating
the weighted mean of µ̂

q j
1 , as shown in Equation (4.29).

µ̂
q j =

6

∑
i=0

W (m)
i µ̂

q j
1i

(4.29)

The weights are adjusted as shown in Equation (4.30), however, they can be modified
according to the user preference, where W (m)

i is weight of the ith scale factor.

W (m)
0 =

L
2L+1

and W (m)
0 =

L+1
4L2 +2L

(4.30)

Therefore, using µ̂q j , the propriocetpive sensor covariance matrix is approximated as
shown in Equation (4.31).

Qu ≈

(c0µ̂0qm
0)

2 + ε2
0 . . . 0

...
0 (cnµ̂nqm

n)
2 + ε2

n

 (4.31)

where ε is a parameter representing the stochastic component of the propriocetpive sensor
error, and c is adjusted according to the sensor performance.

Therefore, in order to integrate all the aforementioned localization systems into a fusion
algorithm, the output of each system was passed on to the covariance estimation package
first, to estimate the confidence level of the readings based on the GPS as the exteroceptive
sensor.

Odometry Fusion: This package is based on the work presented in [205], where the
robot_localization package is developed. The package is a collection of state estimation

58

4.4 iCab

nodes, each of which is an implementation of a nonlinear state estimator for moving vehicles.
It contains two state estimation nodes, one is based on the EKF fusion algorithm, and the
other is based on the Unscented Kalman Filter (UKF) fusion algorithm. The work was also
extended in [168] to include another fusion approach based on Extended H-infinity filter.

Mapping

It is necessary to convert the data received from sensors to a common format, which was
selected to be occupancy grid map. This mapping format allows later to perform the fusion at
the cell level independently. Accordingly, a mapping library was developed for the algorithms
which are presented in this work [96]. The mapping packages provide local map based on the
data from the laser rangefinder, stereo camera and lidar sensors, which all are fused to have a
more accurate description of the environment. Moreover, the Kinect sensor is used to create
a local map for the rear-view of the vehicle based on the work presented in [206]. However,
the global map is based on the lidar sensor only, which is created once per environment to be
utilized for localization estimation and correction.

Perception

In this package, an architecture for dense image labeling to obtain a rich understanding of
vehicle surroundings is presented, based on the work in [207]. The presented approach takes
advantage of stereo information for scene segmentation. The organization of the algorithm
into loosely coupled stages, which provides the proposed architecture with the capability of
being extended with ease so that other classifiers can be easily integrated. The algorithm
uses the stereo information in order to detect the obstacles and the free space in front of
the vehicle, whereas the visible information is used to classify obstacles as pedestrians
and non-traversable areas, such as gardens. Furthermore, the obstacle manager package
receives the processed data from the perception system to trigger interrupters for the platform
operation and take the appropriate action, either stop or maneuver.

Planning

In the planning packages, the path from the vehicle to the destination is estimated and then
navigated through navigation commands.

Local and Global Planner: The local and global path planner is based on the work
presented in [208]. The package creates a sequence of poses between the vehicle pose and the
desired goal pose as the global plan, based on the global map of the environment. Afterward,
it generates intermediates poses as the local plan, based on the local map of the environment.

59

Platforms

It requires the velocity and acceleration limits of the vehicle, the security distance of the
obstacles and the geometric, kinematic and dynamic constraints of the vehicle. One main
drawback of this method is the influence of the dynamic obstacles direction in the generation
of the recalculated local plan.

Path Follower: In this package, an optimal path tracking approach is proposed, which is
based on Linear Quadratic Regulator (LQR). Figure 4.15 shows the vehicle dynamics over the
simplified bicycle model. Applying summation to all the lateral forces yields Equation (4.32).

Fy f cos(δ)−Fx f sin(δ)+Fyr = m(v̇y + vxr) (4.32)

where Fy f is the lateral forces on the front wheels in the Y-axis direction, δ is the steering
angle, m is the vehicle mass, vx is the vehicle velocity in X-axis direction, and r is the angular
rate about yaw axis.

Figure 4.15 Vehicle dynamics bicycle model [209]

Based on planar driving only, the vehicle center of mass is located in the middle of the
vehicle base, therefore balancing the yaw moments is estimated Equation (4.33).

l f (Fy f cos(δ))− lr(Fyr−Fx f sin(δ)) = Izṙ (4.33)

where l f is the distance from the front track to the vehicle center of mass and Iz is the inertial
yaw.

The slip angles of the tires are estimated as in Equation (4.34).

α f = tan−1(
vy + l f r

vx
)−δ and αr = tan−1(

vy + lrr
vx

) (4.34)

60

4.4 iCab

Modeling the forces of wheels based on slip angle, as presented in [210], therefore, the
lateral forces are estimated in Equation (4.35).

Fy f =−c f α f and Fyr =−crαr (4.35)

Furthermore, to linearize the system, the obtained mathematical model parameters are
substituted via the linear controllers applied to reduced vehicle model, thus the state space
equation is formulated as:

[
v̇y

ṙ

]
=

−(c f+cr)
mvx

lrcr−l f c f
mvx

− vx
lrcr−l f c f

Izvx

l2
f c f+l2

r cr

Izvx

[
vy

r

]
+

[c f
m

l f c f
m

]
δ (4.36)

The simplified state space model of vehicle dynamics is written as shown in Equa-
tion (4.37), which expresses the reduced vehicle modeling about the path coordinates.

ẋ = Ax+Bδ at which x =
(

ecg ėcg θe θ̇e

)T
(4.37)

where ecg is the lateral distance from the center of gravity to the path, θe is the heading angle
deviation of the vehicle in reference to the path heading, and δ is the reference steering angle.

To apply the state feedback law, the controllability of the system is tested using MATLAB,
and it is full rank. Accordingly, the feedback law is applied to the model as shown in Equation
(4.38).

δ =−Kx =−k1ecg− k2ėcg− k3θe− k4θ̇e (4.38)

Accordingly, the eigenvalues of the (A−BK) matrix are substituted at the desired loca-
tion. However, to optimize the control gains, a discrete Linear Quadratic Regulator (LQR) is
proposed. Firstly the system is transformed to be in a discrete-time domain, the discretization
was performed using MATLAB, using a time-step of 0.0001sec. The system state is never-
theless periodic, to eliminate lack of data and create a continuous signal to the controller, a
zero order hold method was implemented.

The objective cost function was introduced to the model as a minimization problem, to
place the control gains at minimum cost, which is shown in Equation (4.39).

J =
∞

∑
k=0

xT (k)Qx(k)+δ (k)Rδ (k) (4.39)

where Q is the diagonal weighting matrix with an entry for each state corresponding to the
performance aspects, and R is weighting value corresponding to the control effort.

61

Platforms

For the selected test platform, the Q matrix was designed to penalize the change more
on the relative position error and the relative rotation error, while adding less weight to
their rate of change. The Q diagonal values R were experimentally adjusted to the values in
Equation (4.40).

Q =
(

100 1 10 5
)

and R = 10 (4.40)

The cost function equation was solved using the LQR design tool on MATLAB, and
the proportional gains of the controller were obtained. Finally, the package inputs are the
waypoints list and the vehicle pose and outputs are the steering angle and vehicle velocity.

4.5 Concluding Remarks

This chapter presented the three different platforms that are used in the work of this thesis.
First, the differential mobile robot TurtleBot3, which was utilized for validation of the multi-
ple vehicle cooperation approaches for transportation of cargo-related requests allocation and
obtained results are discussed in Section 7.3. Then the automated drone SkyOnyx, which was
used for validation of the generic aspect of the path planning algorithm and the heterogeneity
of the cooperation algorithm 7.4. Finally, the iCab automated vehicles are presented in detail,
which are the main platforms of this thesis and all the explained work was completed during
the duration of the thesis with the obtained results discussed in Chapter 7.

62

Chapter 5

Cooperative Driving

5.1 Introduction

In this chapter1, Section 5.2 presents the implemented communication schemes within the
framework of the thesis for cooperative driving approach, each scheme purpose is explained
and described its objective in the platform. Then, Section 5.3 introduces an approach for
platooning of multiple vehicles based on the communication schemes and describes how
it improve the vehicle environment perception. Finally, the chapter is summarized in few
concluding remarks.

5.2 Communication Schemes

According to the Intelligent Transportation Systems (ITS) society definition of road entities,
they are classified as vehicles, pedestrians, and infrastructure. Therefore, in order to have a
cooperation among the entities, several communication schemes are required [69]. Accord-
ingly, five vehicular communication technologies are introduced in this section, to be used in
proposed automated vehicles systems, they are V2V, V2P, P2V, V2I, and I2V.

5.2.1 Communication with vehicles

Vehicular communication is pivotal to share relevant data among the vehicles in the system,
this is achieved through Vehicle-to-Vehicle (V2V) communication scheme [214]. V2V
communication is achieved in a number of methods, if and only if, a medium is available, for
instance networks. In the literature, different approaches are researched for communication

1Publications of the author related to the chapter are [211–213]

63

Cooperative Driving

with other vehicles. In reference to the available standards, such as IEEE 802.11, the proposed
V2V schemes are focused on short-range handshaking connections [215, 216].

Therefore, in this thesis, an approach for inter-vehicular communication for the broad
off-road environment is proposed. The approach objective is to maintain a continuous
connection among the vehicles in the system. Accordingly, a Virtual Private Network (VPN)
is created, which requires secure connection via the use of authentication keys and certificates.
The platform connects to the VPN via any suitable internet connection using the proper
authentication credentials. In reference to platform ROS software architecture, the approach
utilizes the multi-master presented in [191]. This enables the platform to have a separate
ROS core, thus it is self-dependent and does not operate in a centralized paradigm. Ergo, as
depicted in Figure 5.1, the proposed scheme allows the platform to access two networks. One
for the vehicular communication schemes, and another for any other types of communication.

Internet

ROS Core 1 VPN Server ROS Core N

Network 1 Network N

Figure 5.1 Proposed VPN architecture, green arrows utilizes the internet directly, while red
arrows utilizes the virtual network

5.2.2 Communication with pedestrians

Communication with pedestrians is a crucial function for the safety of the road entities.
Approaches for pedestrians safety in the Intelligent Transportation Systems (ITS) filed are
divided into two categories; sensor based and communication based. Almost all available

64

5.2 Communication Schemes

proposed solutions are based on the earlier one [217]. However, the main disadvantage of
these approaches is the dependence to be in line of sight for detecting pedestrians. Therefore,
the use of V2P and P2V communications enhance the environment perception for pedestrian
detection and improve the road safety [73].

Both schemes involve sending and receiving messages between the VRU and intelligent
vehicles. Accordingly, a smartphone application is proposed for this purpose. The proposed
application intends to reduce the risks related to the use of mobile devices in a traffic context
and thereby decrease the accident exposure of pedestrians and other VRU.

Collision Prediction Algorithm

The proposed collision prediction approach is based on the algorithm presented in [218],
which retrieves information from two information sources and anticipates the possible
collision point. To contribute to the enhancement of the system, danger index is incorporated
to the calculation using Equation 5.5. In addition to computing the collision point with
reference to location coordinates, the orientation angles are estimated for both the pedestrian
and the vehicle. The calculations are performed using Equations 5.1 and 5.2.

xc =
(y2− y1)− (x2 · tan(θ2)− x1 · tan(θ1))

(tan(θ1)− tan(θ2))
(5.1)

yc =
(x2− x1)− (y2 · cot(θ2)− y1 · cot(θ1))

(cot(θ1)− cot(θ2))
(5.2)

where xi,yi and θi are the location coordinates and heading angles of pedestrian (1), vehicle
(2) and collision point (c), as shown in Figure 5.2.

The period of time to collision point (TTC) from the perspective of the pedestrian differs
from the one of the vehicle. However if the difference is less than a specific threshold,
the situation is considered potentially unsafe, as a collision might occur. This case is
calculated in Equation 5.3, where T TCi denotes the TTC for the pedestrian (1), the vehicle is
represented by (2), (d) is the difference between them, and δ denotes the preset threshold,
which determines if the road situation can be considered dangerous.

T TCd = |T TC1−T TC2|< δ (5.3)

The value of the δ parameter can be calculated based on the information of the driver
reaction time tr and braking time of the vehicle tb, as shown in Equation 5.4.

δ = tr + tb (5.4)

65

Cooperative Driving

Figure 5.2 Collision prediction algorithm modeling

As the difference in the TTC is not the only factor that determines a potentially dangerous
road situation, the di danger index was also considered in the calculations, as shown in
Equation 5.5. This index is calculated for collision and no-collision trajectories, where λ is a
parameter that is adjusted.

di(T TCd,d) =




e−
λT TC2

d
2δ2 , for collision trajectories

e−dγ , for none collision trajectories
(5.5)

where the value of λ parameter is chosen to provide a danger index di of 0.7 When the value
of T TCd is equal to δ , the value of λ is set to 0.713. The value of γ parameter is adjusted for
no-collision trajectories to ensure a specific safety distance, therefore for a desired di of 0.7
and safety distance of 3 meters, the value of γ is set to 0.119.

Smartphone Application

The collision prediction algorithm is implemented as a mobile application, which runs in
the background when the mobile phone is active. It uses the on-board smartphone GPS
localization sensor to access the pedestrian current location and uses the magnetometer
sensor to access the pedestrian current orientation angle. Based on these data, the application
updates the algorithm with pedestrian location information, then it waits for a nearby vehicle
that broadcasts the vehicle location information.

Thereafter, the application processes the information in order to calculate and predict the
location of the collision point, with respect to the pedestrian location. Moreover, it calculates

66

5.2 Communication Schemes

distance and time to the collision point for both pedestrian and vehicle. Last but not least,
the system calculates the collision time and danger indexes to display the warning message
accordingly. In the event that the application detects a situation that could jeopardize the
safety for the pedestrian, it displays a warning and vibration message on the screen to inform
the pedestrian about an approaching vehicle. In order to foster a quick reaction time to
the message displayed, the user interface indicates the direction of the oncoming vehicle.
Figure 5.3 shows an example of the calculations in the debugger and the user interface of the
application.

Figure 5.3 Application debug screen (left) and application user interface screen (right)

An alert control system is responsible for automatically triggering an alarm when a
situation is deemed unsafe, i.e. when the values are lower than a specific threshold. This
threshold is calculated in Equation 5.4, taking into account the minimum estimated reaction
time of 0.66 seconds as defined in [219] and corroborated in a more recent work in [220].
When the time to collision is shorter than this value, the alarm is triggered according to
the specific required reaction time determined by the type of vehicle involved and the road
situation. The advantages of the proposed system are described as follows:

• Alert to foster road attentiveness, in the event that a mobile device is being used when
traffic needs to be considered, the mobile application urges the user to quickly pay
attention to the road and it sends a notification to the vehicle involved.

67

Cooperative Driving

• Road safety and battery conservation. The application avoids the trigger of an alarm if
the mobile phone is inactive as it would indicate that the user is not manipulating the
device. At the same time it preserves the battery of the phone. Triggering an alarm
in a situation that has not been classified as unsafe might provoke the opposite of the
desired effect, as for example the user might turn off the system or ignore all warnings.

• Verification of reliability of automated vehicles. Information about the nearby location
of an automated vehicle might help familiarize users with new technology and increase
perceived safety of autonomous vehicles.

5.2.3 Communication with infrastructure

Last but not least is the communication between vehicles and the infrastructure. Nowadays,
private companies advance in the development of pertinent infrastructures, in order to
facilitate the next step for automated vehicles. V2I communication offers several advantages
for automated vehicles, such as traffic light cycle details, potential road hazards alerts,
and other contextual information. Moreover, V2I communication is essential for smart
cities in many aspects, for instance, urban traffic coordination among others. Accordingly,
recent collaboration between car manufacturers, such as Audi, BMW, Daimler, and Ford, in
collaboration with telecom companies, such as Samsung, Verizon, SK Telecom, and Ericsson,
are developing the 5G Automotive Association (5GAA) for connected mobility and road
safety in the future smart cities [221].

In the proposed work, V2I communication scheme presents the infrastructure as the role
of the observer, by gathering information from all vehicles in the system for monitoring
and inspection purposes [222]. The infrastructure node is a webserver with a graphical user
interface, which displays the system information such as vehicle location, battery level, status
and tasks list, as shown in Figure 5.4.

The webserver node runs in the VPN server computer, which utilize apache2, nodejs and
mongoDb. The node apply both V2I and I2V communication schemes. On the one hand.
the V2I communication is only to monitor and observe the vehicles available in the system
at all times. Thus, vehicles send their position, orientation, battery level, status, number of
on-board passengers and tasks list to the webserver for display. Afterwards, the webserver
shows these data over a graphical user interface for operators to keep an eye on the vehicles
behavior, as shown in Figure 5.4.

On the other hand, the I2V communication has a different function, which is to register
and store transport requests in a database from users in the testing environment. This request
database is available for all vehicles in the system to be acquired for multi-robot cooperation

68

5.3 Platooning Approach

9ehicle ,con %attery
/evel Status 7asks

iCab 1
a2vulov0w1

]f0pfp8bpv

iCab 2

ovn2ruj]h�

uiwdxq]x8i

l05c�mt5ls,D:
l05c�mt5ls

From:
Sabatini North

7o:
 Library

Passengers:
2

Date 	 7ime:
 201�01251315

Status:
Pending

Copyrights � Intelligent Systems Lab �LSI�

Figure 5.4 Webserver graphical user interface for V2I communication

and coordination algorithms. Therefore, the webserver is not acting as a central node, but
as a hub where requests data are stored. Vehicles perform the allocation algorithm in a
decentralized organizational paradigm. Through the graphical user interface, users can create
transportation requests from one point to another and specify the number of passengers. One
additional function of the webserver is updating the user with the status of the transportation
requests via notification messages, as per the communication with the vehicles output from
the allocation algorithm.

Consequently, the iCab platforms utilize all above mentioned communication schemes to
apply cooperation and coordination approaches, as explained in the following sections.

5.3 Platooning Approach

In this section, a model for the cooperative vehicles platooning is described, and the algorithm
with detailed steps that shows how the vehicles benefits from V2X communications to achieve
an efficient cooperation between them.

5.3.1 Modeling

When people drive vehicles in a road, they take in consideration the desired path to their
destination point, the surrounding vehicles position and speed, and other environment percep-

69

Cooperative Driving

tion in taking decisions. Therefore for an efficient cooperative driving among autonomous
vehicles, same concepts should be applied.

V2V via
VPN

LeaderFollower

� , , � &

Laser
rangefinder

Stereo-
camera

Figure 5.5 Leader-Follower platooning modeling diagram

For instance, autonomous vehicle platooning is selected to test the cooperation algorithm.
A simple diagram for the leader-follower platooning model is depicted in Figure 5.5.

Accordingly the kinematics modeling that govern the motion of the autonomous vehicles
can be outlined in such a way. The desired distance ddr as a gap between the two vehicles is
evaluated as shown in Equation (5.6).

ddr =
v2

l − v2
f

2amax
+ v f .tbr (5.6)

where vl and v f are the forward velocities of both the leader and follower vehicles respectively,
amax is the maximum acceleration of the follower vehicle and tbr is the follower vehicle
braking time, which is estimated according to the vehicle braking model.

The separating distance dsr is evaluated by the follower vehicle sensors. Both sen-
sors, stereo-camera and laser rangefinder, are used to detect and classify the ahead leader
vehicle [160]. Accordingly the spacing distance error esd is evaluated as per Equation (5.7).

esd = dsr −ddr (5.7)

Along these lines, a classical proportional differential (PD) controller is used to regulate
the follower vehicle velocity, as shown in Equation (5.8).

v f (t) = kp.esd(t)+ kd.
d
dt

esd(t) (5.8)

On the other hand, the V2V communication ensures sharing the vehicles pose, position
(x,y) and orientation (θ), with the each others. In addition to sharing the vehicles status, to

70

5.3 Platooning Approach

acknowledge which vehicle is elected to be the leader. Consequently by means of Equa-
tion (5.9), the waypoint pose with respect to the follower vehicle is estimated. Afterwards,
the vehicle applies path planning algorithm to get the necessary navigation commands to
reach that point. xp

yp

θp

=

xl

yl

θl

−
sin(θ) 0 0

0 cos(θ) 0
0 0 0

 .ddr−

x f

y f

θ f

 (5.9)

Utilizing the vehicles kinematics model, on-board environment perception sensors and
communication schemes, the follower vehicle cooperates with the leader vehicle to follow it
based on the described algorithm in the next section.

5.3.2 Algorithm

The selection of platooning mode is carried out in the reactive layer of the proposed ROS
architecture. Accordingly upon the system acquires a complex task, which requires multiple
vehicles to navigate the same path, it decomposes the task into simpler tasks for the reactive
layer.

The platooning algorithm is divided into several steps, starting with the two vehicles
navigate to the initial point of the path from their current location. Upon arriving there,
each vehicle uses V2V communication to check the other vehicle pose. Thus the leadership
election is achieved, according to which vehicle is ahead of the other in the direction of the
initial point. Afterwards both vehicles run Algorithm 1.

This algorithm applies different functions in the system, which are described below:

• getAheadVehicle() function takes two poses as inputs and returns which one is ahead
of the other.

• pathPlanning() function utilizes the optimization approach in [161].

• getSeparationDistance() function reads the perception sensors in allocating the leader
pose utilizing [160].

• getDesiredDistance() function takes vl and v f as inputs and returns the desired dis-
tance based on (5.6).

• getFollowerWaypoint() function takes dsr and ddr as inputs and returns the waypoint
pose based on (5.9).

71

Cooperative Driving

Algorithm 1: Cooperative platooning algorithm
Input: poseown, poseother, statusplatoon, poseinital , posegoal , velocityown, velocityother
Output: posewaypoint , pathleader, distanceseparation, distancedesired

1 statusplatoon← getAheadVehicle(poseown, poseother)
2 while poseown ! = posegoal do
3 if statusplatoon == LEADER then
4 pathleader ← pathPlanning(poseown, posegoal)
5 setNavigationCommands(pathleader)
6 else
7 distanceseparation← getSeparationDistance()
8 distancedesired ← getDesiredDistance(velocityown, velocityother)
9 posewaypoint ← getFollowerWaypoint(distanceseparation, distancedesired)

10 setNavigationCommands(posewaypoint)
11 end
12 end

• setNavigationCommands() function takes a list of waypoints and apply the navigation
approach in [161].

During the vehicles navigation, the perception system is active for obstacles detection,
classification and avoidance. Moreover, the leader vehicle has the V2P and P2V communi-
cations active, in case of VRU presence, thus it receives a warning notification of possible
collision point in advance. Due to the cooperative driving architecture and V2V communica-
tion, the leader vehicle shares the information of the presence of an obstacle ahead with the
follower vehicle. Accordingly the necessary action of braking or maneuvering is applied in
both vehicles.

The cooperative driving architecture is implemented in ROS. Therefore all shared topics
and messages are inscribed with time-stamp, which allows synchronization between the
vehicles systems, sensors and actuators.

5.4 Concluding Remarks

This chapter presented the various communication schemes that are implemented in the iCab
platforms for cooperative driving purposes. Starting with the creation of the VPN to enable
the multiple ROS core communication, then explaining how the V2V communication scheme
is defined. For the V2P and P2V, a smartphone application was developed to predict possible
collision point for VRU based on the positions and headings of the vehicle and the VRU.
Furthermore, V2I and I2V communication schemese are presented for the purpose of system

72

5.4 Concluding Remarks

motioning and acquiring of the transportation requests from the platform users. Finally,
as a case study of cooperative driving, an approach for platooning of multiple vehicles is
proposed. The modeling of the approach is dynamically based on the vehicles velocities and
acceleration to maintain a distance gap in the platoon.

73

Chapter 6

Task Allocation

6.1 Introduction

In this chapter1, the proposed approach flowchart for the MRTA problem is defined and
detailed. Furthermore, the explanation for the proposed ROS-based generic architecture is
presented. Then the chapter introduces a novel hybrid optimization-based solution to the
MRTA problem. First problem formulation is introduced and the basic concepts behind this
formulation are also discussed. Later, the solution construction is presented, the objective
function and solution constrains. Finally, the proposed algorithm is explained and discussed.

6.2 Proposed Approach

The objective of the examined system is to collect any number of user transportation requests
and allocate them to the available multiple automated vehicles. The MRTA problem governs
the coordination and cooperation among the vehicles and the allocation of the requests for
optimal solution. In this section, the flowchart of the proposed approach is explained, which
is presented as a generic architecture for any type of transportation request, to be allocated to
any type of mobile vehicle.

Figure 6.1 depicts the overview of the proposed MRTA approach flowchart. The proce-
dures in the diagram represent the architecture continuous running loop. The loop is executed
upon the connection using V2V communication scheme for sharing data among the vehicles,
and the connection using V2I and I2V schemes for acquiring the transportation requests from
the users and updating the requests status after allocation.

1Publications of the author related to the chapter are [137, 223–226]

75

Task Allocation

St
ar

t

M
RT
A

pe
nd
in
g

re
qu

es
ts

?

M
RT
A

le
ad
er

to
ke

n?

U
se
rs
 m
ak
e

re
qu
es
ts
 to

w
eb

se
rv

er

W
eb
cl
ie
nt
 g
et
s

re
qu
es
ts
 li
st

Ve
hi

cl
es

pu
bl
is
h
st
at
es

Aw
ai
ts
 a
llo
ca
tio
n

tri
gg
er

M
RT

A

su
bs
cr
ib
es
 to
 a
ll

ve
hi
cl
e
st
at
es

M
RT

A

su
bs
cr
ib
es
 to

re
qu
es
ts
 li
st

M
RT

A

pu
bl
is
he
s s
ta
rt

al
lo
ca
tio
n
tri
gg
er

M
RT
A

co
m
pu
te
s

al
lo

ca
tio

n

M
RT
A
 p
ub
lis
he
s

al
lo
ca
tio
n
lis
t

Ve
hi
cl
es
 e
xe
cu
te

as
si
gn
ed
 ta
sk
s

M
RT
A

su
bs
cr
ib
es
 to
 ta
sk
s

st
at
us
 u
pd
at
es

W
eb
cl
ie
nt
 u
pd
at
es

&
 se
nd
 re
qu
es
ts
 li
st

W
eb
se
rv
er
 u
pd
at
es

re
qu
es
ts
 st
at
us
es

Ye
s

Ye
s

N
o

N
o

W
eb
 /
M
ob
ile
 A
pp

Le
ad
er
 V

eh
ic

le

A
ll
Ve

hi
cl

es

1

2
3

4

5

6
7

8
9 10111213

Fi
gu

re
6.

1
Pr

op
os

ed
M

R
TA

ap
pr

oa
ch

flo
w

ch
ar

t

76

6.2 Proposed Approach

The diagram consists of three types of entities for the process execution; the web / mobile
application, the dynamically selected leader vehicle, and all vehicles in the system. The
color code for the entities indicates the location of the process execution. The red-color is
for the web / mobile application, which is managed externally and independent from the
proposed approach, it governs the handling of acquiring requests from the users, and shows
the requests status based on the allocation algorithm results. The green-color is for the leader
vehicle, which is dynamically selected based on a selection criteria explained below. Finally,
the blue-color is for all the vehicles in the system, including the leader vehicle. Moreover,
the processes are numbered for easier in-text reference.

At the top of the system, users can make transportation requests using the web / mobile
application, for instance the application presented in Chapter 5. Though this process is
independent from the proposed approach, however it is crucial for the process flow. Once
the proposed approach starts, process (1) starts and executes a trigger for all the vehicles in
the system to publish their states and statuses. The published vehicles data are the global
position and orientation in the environment, the battery level, the cargo capacity and the
vehicle status. The vehicle statuses are:

• Idle: this status is set when the vehicle is static and not assigned to any request.

• Performing: this status is set when the vehicle is in motion with an assigned request.

• Unknown: this status is set in when the vehicle is neither idle nor performing.

Next, in process (2), the leader token selection algorithm is executed, which is executed
in the MRTA node of all vehicles. The algorithm objective is to dynamically select the leader
for the loop instance, based on the vehicles states and statuses. The leader role is to unify the
inputs to the allocation algorithm and to synchronize data among all the vehicles. Though this
might be considered as centralized paradigm, the leader is dynamically changing each loop.
Therefore, the token selection concept ensures the decentralization of the system, at which if
the leader vehicle had malfunction or loss of communication, another leader is selected to
keep the whole system operating; same concept applies if a new eligible vehicle joins the
system. The token algorithm checks the whole system at the beginning of every loop to ensure
only one token is assigned to a unique vehicle. Accordingly, this mechanism guarantees the
consistency and synchronization of the requests through the distributed system. The token
selection is estimated based on weighted maximization objective function, which has the
vehicle status and the battery level as inputs. The vehicle status indicates the computational
power consumed by the vehicle, idle vehicle is more eligible to communicate with the
webserver for the requests acquisition, same applies to the battery level.

77

Task Allocation

Once this process ends and the token is assigned, the non-leader vehicle awaits the
allocation trigger published by the leader in process (8), however if leader, it starts the
acquisition process for the requests and other vehicle status in the following sequence.
First, in process (3), the leader webclient node communicates with the webserver to get the
requests list. Only the requests which are not finished are communicated to the webclient.
Once requests list is available, in process (4), the leader MRTA node subscribes to it for
processing. Then in process (5), the leader MRTA checks whether all requests are assigned,
or there are still pending requests. In case there are no pending requests, the loop restart to
await new requests for allocation. However, in case there are pending requests, the leader
MRTA node subscribes to all vehicle statuses in process (6). Therefore, at this stage the
allocation algorithm is ready to start, since the both requests and vehicles lists are obtained
and synchronized.

Consequently, leader MRTA node triggers the start of allocation for all vehicles in process
(7). In process (8), all vehicles were awaiting the allocation trigger to move forward to process
(9), where all vehicles computes the allocation using the defined algorithm. This option
allows the execution of a distributed computational algorithm, however if the algorithm is
exactly the same in all vehicles, the process can be executed only in the leader vehicle to
save computational power. Regardless the fact of the algorithm is executed in all vehicles or
only in the leader vehicle, only the leader vehicle publishes the final allocation solution, in
process (10) for synchronization and avoid discrepancies, because of the metaheuristic of the
solution generation.

Upon the final allocation solution is published, in process (11), all vehicles start the
execution process for the assigned tasks and publishes the status of the task completion back
to the leader. Thus, in process (12), the leader MRTA subscribes to the tasks status updates.
Accordingly, in process (13) the leader webclient node updates the requests statuses based
on the tasks statuses. This process is the final step, thus upon completion, the loop restart. In
the meantime, it updates the webserver with the new requests list, in order to display to the
user the status of request, which can be one of the following statuses:

• Created: this status is set when the request is first created by the user.

• Assigned: this status is set when the request is assigned to specific vehicle.

• Processing: this status is set when the request is executed by the assigned vehicle.

• Finished: this status is set when the request is completed and finished.

• Canceled: this status is set when the request is canceled by the user.

78

6.3 Proposed Architecture

6.3 Proposed Architecture

In this section, the software architecture for the proposed MRTA system is described. The
core MRTA algorithm is connected to both the user and the vehicles. On the one hand, the
connection to the user is usually implemented through a requests acquisition system. This
connection is used to obtain the transportation requests and update the status of those requests.
On the other hand, the connection to the vehicles is used to, first, acquire all the information
about the state of the vehicles, and then command them their allocated requests. The system
architecture has been designed with two key features in mind: First, the integration with
the requests acquisition systems and the vehicles must be easy to perform, as long as those
systems follow certain predefined rules. Second, the implementation to solve the MRTA
optimization problem must be exchangeable in the algorithm. This will allow developers to
focus on the problem-solving algorithm, without investing time in the software infrastructure
needed to make it work in the vehicles.

The proposed system follows a ROS-based architecture, which allows an easy integration
of the core MRTA algorithm with different vehicles and requests acquisition systems. This
system is mainly composed of two nodes: mrta and task_executor. The mrta node implements
the input acquisition from the requests and the vehicles, the output formatting, and the
communication between vehicles. Moreover, it also implements the token-based leader
selection algorithm, in order to decide which vehicle will be the leader. The leader vehicle is
the one responsible to get the requests from the web server and trigger the allocation process.
Finally, the MRTA problem solution is implemented as a standalone module, which can be
easily replaced in the mrta node. Next subsections will detail the composition of the MRTA
nodes and the interfaces between the proposed system and the requests and vehicle systems.
On the other hand, the task_executor node is the connection between MRTA and the vehicle,
and its main task is to send the task commands and provide their corresponding feedback.

6.3.1 Core Node

The mrta node has been designed in such a way so it can be configured to work with
different kind of vehicles in a heterogeneous way. The configuration of each vehicle is
known beforehand and includes its ID and its maximum velocity, cargo capacity and battery.
Aside from this static information, the leader mrta node also subscribes to the state of all
other vehicles in the system. By this mean, the leader node receives the position, orientation,
battery level and status of each vehicle.

79

Task Allocation

Ve
hi
cl
e
1

Ve
hi
cl
e
2

Ve
hi
cl
e
N

W
eb
 A
PI

R
O
S
To

pi
c

R
O
S
Se
rv
ic
e

R
O
S
A
ct
io
n

W
eb

se
rv

er
U

se
r

up
da

te

re
qu

es
t

re
qu

es
ts

_l
is

t
up

da
te

_r
eq

ue
st

s
ve

hi
cl

e_
st

at
us

/v
1/

w
eb

cl
ie

nt
/v

2/
w

eb
cl

ie
nt

/v
1/

ge
t_

pe
nd

in
g_

re
qu

es
ts

/v
1/

up
da

te
d_

re
qu

es
ts

/v
1/

m
rt

a

/v
1/

ge
t_

ca
nc

el
ed

_r
eq

ue
st

s
/v

1/
le

ad
er

_t
ok

en

/v
1/

ve
hi

cl
e_

st
at

us

/v
1/

ve
hi

cl
e_

m
an

ag
er

/v
1/

ac
tio

ns

/v
1/

ta
sk

_e
xe

cu
to

r

/ta
sk

_a
llo

ca
tio

n

/ta
sk

_s
ta

tu
s

/v
2/

le
ad

er
_t

ok
en

/v
2/

m
rt

a

/v
2/

ve
hi

cl
e_

st
at

us

/v
1/

ve
hi

cl
e_

m
an

ag
er

/v
1/

ac
tio

ns

/v
1/

ta
sk

_e
xe

cu
to

r

/v
n/

w
eb

cl
ie

nt

/v
n/

le
ad

er
_t

ok
en

/v
n/

m
rt

a

/v
n/

ve
hi

cl
e_

st
at

us

/v
n/

ve
hi

cl
e_

m
an

ag
er

/v
n/

ac
tio

ns

/v
n/

ta
sk

_e
xe

cu
to

r

Fi
gu

re
6.

2
M

R
TA

ar
ch

ite
ct

ur
e

80

6.3 Proposed Architecture

This information is sent back to all vehicles when the allocation calculation is triggered,
so all the computations use the same synchronized input values. When the new set of pending
requests is acquired, they are decomposed into simple tasks. The simple tasks can be of three
different types:

• Go To Task: Basic navigation tasks containing origin and destination points.

• Pick Up Task: These tasks represent cargo pick up actions. They specify the location
of the action and which elements must be picked up in the operation.

• Drop Off Task: These tasks represent cargo drop off actions. They specify the location
of the action and which elements must be dropped off in the operation.

Although these are the most basic tasks for transportation purposes, new types could be
added depending on the capabilities of the vehicles. The decomposition process will process
each request and generate the minimum number of simple tasks needed in order to complete
it. The most basic decomposition of a request will consist of a "Go To" to request origin,
"Pick Up" cargo, "Go To" request destination point and "Drop Off" cargo. More complex
requests may have a different decomposition, including multiple origin and destination off
points. Furthermore, when the decomposition is computed, the maximum capacity of all
available vehicles is taken into account; in order to split the request cargo if needed.

After the decomposition is performed, the allocation of those simple tasks is ready to
be calculated, hence the trigger is sent from the leader mrta node to all other mrta nodes.
The algorithm selected to do this calculation is selected by a parameter on startup, which is
implemented as an external module and included in the mrta node. The best found solution
for the MRTA problem is the one adopted, and the leader mrta node publishes the allocation
result, so vehicles can start performing the tasks. At this point, the status of the allocated
requests is updated and sent to the requests acquisition system. This status also includes the
ID of the vehicles assigned to that request.

6.3.2 Requests System Side

The communication between mrta and the requests acquisition system is performed with
ROS services. For this reason, an extra node is needed to act as a bridge between mrta
and the requests acquisition system. In the example architecture shown in Figure 6.2, this
bridge node is webclient. The webclient node is responsible of advertising the services
get_pending_requests, get_canceled_requests and updated_requests, which are the ones
needed for mrta. As per their names, the get_pending_requests service is called to get all

81

Task Allocation

requests that still need to be fulfilled, the get_canceled_requests is called to get the latest
canceled request; in order to remove them from the allocation, and the updated_requests
service is called to send the feedback about the status of the requests back to the requests
acquisition system. In the example system presented in Figure 6.2, the requests acquisition
system is implemented as a Web service through a RESTful API, where the user can request
a vehicle and see the status of his request. The webclient from the leader vehicle will send
the corresponding HTTP requests to the Web API in order to get the requests and update
their status. Moreover, the webclient nodes from all vehicles are also responsible for sending
the vehicle status to the Web server, which is later used for visualization purposes.

A different requests acquisition system can be implemented, as long as the interface with
the mrta node remains the same. For example, instead of a Web service, this system could be
a desktop application, or even a random requests generator, which can be used for simulation
and testing, and does not need the inputs from an actual user.

In the example system presented in Figure 6.2, the requests system is implemented as a
web service through a RESTful API, where the user can request a vehicle and see the status
of his request. The webclient from the leader vehicle will send the corresponding HTTP
requests to the Web API in order to get the requests and update their status. Moreover, the
webclient nodes from all vehicles are also responsible for sending the vehicle status to the
webserver, which is later used for visualization purposes.

A different requests system can be implemented, as long as the interface with the mrta
node remains the same. For example, instead of a Web service, this system could be a
desktop application, or even a random requests generator, which can be used for simulation
and testing, and does not need the inputs from an actual user.

6.3.3 Vehicles Side

The main link between mrta and the vehicle is the task_executor node. This node is respon-
sible for parsing the allocation msg; in order to extract the next task to be performed, and
also to command the execution of the tasks. Furthermore, the task_executor must collect the
feedback about the performance of the task being executed, so it can send it back to mrta.
Note that, unlike mrta and webclient nodes, the task_executor does not depend on the leader
token, since its interaction with the leader mrta is done through global topic names, as shown
in Figure 6.2.

The exact implementation of the task_executor node may vary depending on how the
vehicle can receive the commands. In the example given, all the tasks that the vehicle is
able to perform are implemented as ROS actions by the vehicle_manager node. This node is
responsible for the actual execution of the task, and also provides feedback about the task

82

6.4 Problem Formulation

status through the ROS action. If the vehicle receives the commands via service or standard
topic, a new task_executor node should be implemented with that interface. The use of ROS
actions (through actionlib) is the recommended way to implement the task execution because
it provides powerful mechanisms to control the state of the action and provide feedback
about the action status.

Finally, the vehicle nodes (in the example case, the vehicle_manager node) are responsible
for publishing the vehicle state, which includes the vehicle position, battery and status. This
information is used by the MRTA algorithm; in order to compute the allocation taking into
account those variables.

6.4 Problem Formulation

In this section, the MRTA problem modeling and formulation are introduced. MRTA
problem [122] is formulated to allocate multiple robots, vehicles, to numerous tasks, requests.
The procedures are summarized as follows:

1. Given a set of n vehicles, V = {V1, V2, ... Vn}

2. Given a set of m requests, R = {R1, R2, ... Rm}

3. Allocation of the requests to the vehicles occurs, A : R→ V

4. Output set S is the best allocation of the requests to the vehicles

S ={ (V1 R1) (V2 R2) ... (Vk Rk) }
for 1 ≤ k ≤ m (6.1)

5. Allocation S minimizes a certain objective function in order to get the best performance
of the system

Accordingly, a variant of mTSP is used to model MRTA problem. In the standard mTSP
formulation, n nodes are defined with the edges distances and m salesmen are known. The
salesmen are required to cover all the available nodes and return back to their starting node,
such that each salesman makes a round trip. The mTSP can be formally defined on a graph
G = (V,E) where V is the set of n nodes and E is the set of edges. Let c = (ci j) be the
distance matrix associated with E. Assuming the more general case which is an asymmetric
mTSP, thus ci j ̸= c ji ∀ (i, j) ∈ E [124]. The mTSP can be formulated as follows:

83

Task Allocation

xi j =

1 if edge (i,j) is used in the tour

0 otherwise
(6.2)

minimize
n

∑
i=1

n

∑
j=1

ci j× xi j (6.3)

n

∑
j=2

x1 j = m (6.4)

n

∑
j=2

x j1 = m (6.5)

n

∑
i=1

xi j = 1, j = 2, ...,n (6.6)

n

∑
j=1

xi j = 1, i = 2, ...,n (6.7)

xi j ∈ {0,1},∀(i, j) ∈ E (6.8)

∑
i∈S

∑
j∈S

xi j ≤ |SubTour|−1,∀SubTour ⊆V\{1},SubTour ̸= φ (6.9)

where Equation (6.3) represents the objective function which is the summation of the total
distance traveled, Equations (6.4) and (6.5) ensure that exactly m salesmen departed their
starting node and returned back. Equations (6.6), (6.7) and (6.8) are the usual assignment
constraints. Finally, (6.9) is the subtour elimination constraint.

The proposed formulation is extended and adapted to the problem, where vehicles
represent the salesmen and requests represent the cities. Therefore, vehicles capabilities and
requests requirements are considered and included in the mTSP implementation. The added
features of the vehicles are capacity, velocity, energy, efficiency and sensors, and the ones for
the requests are timestamp, priority, and passengers.

The vehicle capacity is the maximum number of passengers that it can hold, the velocity
is a representation of the maximum speed it can reach, the energy is a representation of the
battery level, the efficiency is a representation of the aging factor, and finally the sensors
are a set of on-board devices to consider the vehicles as heterogeneous robots. On the
other hand, the request timestamp is the date and time of the request creation, the priority
is a representation or the request urgency based on the request type, and passengers is a
representation of the number of users for the request.

84

6.4 Problem Formulation

6.4.1 Solution Construction

The solution is constructed as a set that includes a list of all vehicles in the system, followed
by their assigned requests. The order of the list defines the quality of the solution according
to the objective function. For example, a problem with three vehicles and five requests, one
of the possible candidate solutions is represented as follows:

Candidate Solution = [V 1 R1 R2 V 2 R3 R4 V 3 R5] (6.10)

Any combination of this list presents another candidate solution, and since the mTSP is a
permutation problem, therefore the order of this list affects the quality of the solution as per
the objective function. The order implies that each vehicle is going to execute all requests
that succeeds it. In the candidate solution presented in Equation (6.10), requests 1 and 2 are
executed by vehicle 1, requests 3 and 4 are executed by vehicle 2, and finally request 5 is
executed by vehicle 3.

6.4.2 Objective Function

Although the MRTA problem is formulated as an instance of the mTSP, however the same
objective function of the mTSP previously explained in Equation (6.3) cannot be straightfor-
wardly used as the objective function for the MRTA problem. Therefore, some variations
had to be introduced to the objective function of the mTSP in order to be effectively used for
the MRTA problem [227].

There is three main variation of the MRTA problem objective function than the mTSP
objective function. First, it is a multi-objective function instead of a single objective function,
second, the variable to be minimized is the time rather than the distance, and third minimizing
the time of the maximum subtour rather than minimizing the total time, thus dealing with it
as a MinMax problem. Then for k subtours and r requests in each subtour, the total traveling
time is calculated as follows:

f(x) = argmax
j∈{1,2,...k}

∑
r−1
i=1 distance(subtour ji,subtour ji+1)

vehicle velocity j

+

argmax
j∈{1,2,...k}

∑
r
i=1 execution time (subtour ji)

vehicle efficiency j
(6.11)

85

Task Allocation

6.4.3 Solution Constraints

Although any arrangements of the vehicles and requests solution set are considered as a
candidate solution for the mTSP problem, however, this does not guarantee that this solution
is feasible for the MRTA problem. Therefore, few constraints are applied to the obtained
solution, to ensure its validity and feasibility, which means checking whether the vehicle
capabilities and request requirements are matching.

The first constraint is related to the capacity, for example, a vehicle with a maximum
capacity of 4 passengers cannot handle a request of 6 passengers in one go, thus the request
is decomposed into several requests and re-allocated accordingly. The next constraint is the
energy, the vehicle battery level is always taken into consideration before the final allocation
of the request, since if the vehicle does not have sufficient energy for a specific request, it is
re-allocated to another vehicle. Another constraint is the priority level of the request, which
implies that some requests, maintenance request for instance, must be executed first. Last but
not least, a constraint related to the mounted on-board sensors, which check if the request
requires the presence of a specific sensor in the vehicle.

These applied constraints strongly affect the search space of the problem through decreas-
ing the number of candidate solutions that can be accepted as feasible solutions. One may
think that this decrease of the number of feasible solutions among the candidate solutions
may make it easier for the applied algorithm to find the best solution than the case without the
constraints. However, these applied constraints, in fact, make it more difficult and more time
consuming to find the best solution. This is mainly because the algorithm will be visiting a
large number of solutions that are candidate solutions of the mTSP, but are not feasible to
solve the MRTA problem.

6.5 Proposed Algorithm

The proposed algorithm is designed as metaheuristic optimization approach. It is a hybrid
approach, which is based on both trajectory-based and population-based techniques. The
trajectory-based is the family of optimization techniques that use a single solution throughout
the algorithm, in order to find the near-optimal solution. While the population-based is the
family of optimization techniques that iteratively transforms a set of solutions, in order to
generate a new population of solutions with the aim of finding the near-optimal solution [224].

On the one hand, Simulated Annealing (SA) was selected as a trajectory-based approach,
where the neighboring operator is randomly chosen at each iteration for diversity. The
mutation operators are swapping, deletion and insertion, inversion, and scrambling. On the
other hand, Genetic Algorithm (GA) was selected as the population-based approach, where

86

6.5 Proposed Algorithm

the selected mutation operators are the same, however, additional crossover operators are
selected, which are partially mapped crossover and order crossover.

The swapping operator chooses two random elements of the solution list and swaps them
with each other. Deletion and insertion operator chooses a random element and delete it from
its current position and randomly insert it in a new position. The inversion operator chooses
two random positions and inverts the order of elements between these two positions. The
scrambling operator picks two random positions and scrambles the elements between these
two positions. Figure 6.3 illustrates an example of all proposed operators, where positions 1
and 6 are selected as the two random elements. At each iteration, one of the four mutators is
randomly chosen in order to generate a neighboring solution of the current solution. The four
methods vary in their diversification and intensification effect on the generated neighboring
solution.

V1 R1 R2 V2 R3 R4 V3 R5

V1 V3 R2 V2 R3 R4 R1 R5

V1 R2 V2 R3 R4 V3 R1 R5

V1 V3 R4 R3 V2 R2 R1 R5

V1 R3 R4 V3 R2 R1 V2 R5

Candidate Solution

Swapping

Deletion & Insertion

Inversion

Scrambling

Figure 6.3 Example for the mutation operators

The crossover operator is the mimicking of the biological recombination between chro-
mosomes, when some portion of the genetic material is swapped between chromosomes
producing a new offspring chromosome. On the one hand, in the partially mapped crossover,
two points are selected at random in both parents solutions and the offspring is created by
exchanging the in-between chromosomes. On the other hand, in the order crossover a portion
of one parent is mapped to a portion of the other parent, then from the replaced portion on,
the rest is filled up by the remaining genes, where already present genes are omitted and the
order is preserved. Figure 6.4 illustrates an example of proposed crossover operators, where
positions 2 and 5 are selected as the two random elements. At each iteration, one of the two
crossover mutators is randomly chosen in order to generate a neighboring solution of the
current solution. Additionally, the random choice of the used operator gives the algorithm

87

Task Allocation

both the explorative and exploitative features, that are useful in escaping local minimum and
finding a better solution through searching in the neighbors of elite solutions respectively.

V1 R1 R2 V2 R3 R4 V3 R5

V2 R2 R5 V3 R1 R3 R4 V1

V3 R5 R2 V2 R3 R4 R1 V1

V3 R1 R2 V2 R3 R4 V1 R5

Parent Solution 1

Parent Solution 2

Partially Mapped Crossover

Order Crossover

Figure 6.4 Example for the crossover operators

The algorithm is used to solve the formulated model of the MRTA problem. Inputs are
the list of the requests with their requirements, the list of vehicles with their capabilities and
the matrix of the distances between the points of interests of the requests locations. At each
iteration of the algorithm, a solution is constructed to be evaluated, initially, it is random.
The initial solution set is always filled with random elements of the requests list, and the
vehicles list until both lists are empty; the only constraint is that the start of the solution must
be an element of the vehicles list. After the construction of the initial candidate solution
or any other neighboring solution through the algorithm iterations, the feasibility of this
solution must be checked, according to the solutions constraints. As the algorithm progress,
neighboring solutions of the current solution must be generated in order to explore the search
space of the problem. Algorithm 2 presents the proposed algorithm used to solve the MRTA
problem in this paper.

Where the parameters can be defined as follows:

• parentsList is the list with parents solutions

• childrenList is the list with children solutions

• nextGenerationList is the list with next generation solutions

• iterationsNumber is the number of iterations

• elitismPercent is the elitism percent

• populationSize is the population size

• initialTemperature is the initial temperature

88

6.5 Proposed Algorithm

Algorithm 2: Proposed hybrid optimization-based algorithm
Input: Requests list requests, Vehicles list vehicles, Distances matrix distances
Output: Best allocation bestAllocation

1 begin
2 for i← 1 to populationSize do
3 parentsList ← generateValidSolution(requests, vehicles, distances)
4 end
5 currentAllocation← minimumOf(parentsList)
6 for i← 1 to iterationsNumber do
7 if i ≤ 25% of iterationsNumber then
8 elitismPercent = 20%
9 else if i > 25% of iterationsNumber AND i ≤ 50% of iterationsNumber then

10 elitismPercent = 30%
11 else if i > 50% of iterationsNumber AND i ≤ 75% of iterationsNumber then
12 elitismPercent = 40%
13 else
14 elitismPercent = 50%
15 end
16 childrenList ← crossover(least 20% of parentsList)
17 childrenList ← mutation(top 80% of parentsList)
18 nextGenerationList ← minimum elitismPercent of parentsList
19 nextGenerationList ← minimum elitismPercent of childrenList
20 for j← 1 to (100%− elitismPercent×2) of iterationsNumber do
21 currentAllocation← generateValidSolution(requests, vehicles, distances)
22 currentCost ← getAllocationCost(currentAllocation)
23 bestCost ← currentCost
24 (currentAllocation, currentCost)← temperatureLoop() // Algorithm 3
25 nextGenerationList ← currentAllocation
26 end
27 if minimumOf(parentsList) < currentAllocation then
28 currentAllocation← minimumOf(parentsList)
29 end
30 parentsList ← nextGenerationList
31 end
32 bestAllocation← currentAllocation
33 end

• f inalTemperature is the final temperature

• currentTemperature is the current temperature

• iterationsPerTemperature is the number of iterations per temperature decrements

• α is the geometric coefficient

89

Task Allocation

Algorithm 3: SA temperature loop
Input: Requests list requests, Vehicles list vehicles, Distances matrix distances
Output: Current allocation currentAllocation, Current cost currentCost

1 begin
2 while currentTemperature < f inalTemperature do
3 for i← 1 to iterationsPerTemperature do
4 neighborAllocation← generateNeighborSolution(currentAllocation)
5 neighborCost ← getAllocationCost(neighborAllocation)
6 if neighborCost < currentCost then
7 currentAllocation← neighborAllocation
8 currentCost ← neighborCost
9 if neighborCost < bestCost then

10 bestAllocation← neighborAllocation
11 bestCost ← neighborCost
12 end
13 else
14 Generate: random number randomNumber ∈]0,1[
15 transitionProbability = exp(−neighborCost−currentCost

currentTemperature)

16 if transitionProbability > randomNumber then
17 currentAllocation← neighborAllocation
18 currentCost ← neighborCost
19 end
20 end
21 end
22 currentTemperature = currentTemperature∗α

23 end
24 end

• transitionProbability is the transition probability

• currentAllocation is the current allocation solution

• currentCost is the current solution cost

• neighborAllocation is the neighbor allocation solution

• neighborCost is the neighbor solution cost

• bestAllocation is the best allocation solution

• bestCost is the best solution cost

90

6.6 Concluding Remarks

6.6 Concluding Remarks

This chapter presented the detailed process flowchart of the proposed MRTA problem
approach for allocation of transportation requests to automated vehicles. The approach is
easily extended to any type of transportation and any type of vehicle, which provides a generic
aspect and adaptability. Moreover, the approach is independent from requests acquiring
system. Furthermore, the ROS-based architecture for the MRTA problem is explained.
Each element of the architecture was explained and described its role in the overall system.
Furthermore this chapter introduced and discussed the extension of mTSP formulation for
MRTA problem. The solution construction method, the objective function and solution
constraints of the problem were presented. Finally a hybrid optimization-based algorithm,
using SA and GA was proposed to solve the MRTA problem.

91

Chapter 7

Results and Discussion

7.1 Introduction

In this chapter, the results from all the carried-out work in the thesis are discussed. Sec-
tion 7.2 presents the simulator validation results, then Section 7.3 presents the results of
the coordination architecture using the TurtleBot3. Section 7.4 presents the results of the
planning algorithm using SkyOnyx. Sections 7.5, 7.6, 7.7, and 7.8 discuss the results of the
different implemented approaches in iCab platform. Afterwards, the results of the proposed
solution method to the MRTA problem are compared to well-known benchmarks and ana-
lyzed in Section 7.9. The majority of the work in this chapter are published in peer-review
publications, as per the list in Appendix A.

7.2 3DCoAutoSim Validation Results

7.2.1 Setup

The simulator is implemented on a computer with the specifications listed in Table 7.1.

Table 7.1 Simulator computer specifications

Processor 8 Cores, 8 Threads @3.5GHz

Memory 16GB DDR4-2133MHz

Graphics GTX 970M, 3GB GDDR5

In order to control the vehicle in the simulator, a Thrustmaster T500 RS controller is used
as the steering wheel, in addition to its throttle, brake and clutch pedals, and the TH8 RS
gear shifter, as shown in Figure 7.1.

93

Results and Discussion

(a) Pedals (b) Gears shifter (c) Steering wheel

Figure 7.1 Simulator controllers

The controller is connected to a car play seat, shown in Figure 7.2, to simulate a real
vehicle and the simulator visuals are displayed using overhead HD beamer with resolution of
1400x1050, in addition to a five point one surround sound system. Detailed description is
presented in the ReadMe in Appendix C.

Figure 7.2 3DCoAutoSim driving simulator car seat

94

7.2 3DCoAutoSim Validation Results

7.2.2 Scenario

The selected scenario was the surroundings of the University of Applied Sciences Technikum
Wien, in the city of Vienna. The trajectory was a total distance of 2.6 km, which included
intersection, traffic lights, a roundabout and pedestrians crossing. The route was defined
over OSM, as shown in Figure 7.3, which is considered as the theoretical path in all ex-
periments. The theoretical path is represented as the waypoints, such that the center of the
vehicle should be in the center line of the road lane.

Figure 7.3 Selected path over the OSM of Vienna, where the green pin is the starting point
and the red pin is the ending point

Multiple experiments were carried-out for the selected scenario, which are summarized
as follows:

95

Results and Discussion

• Driver Real Car, users drive the selected route using a car equipped with on-board
OBD-II transmitter. The recorded data are the vehicle GPS coordinates, orientation,
velocity, acceleration, and CAN bus data.

• Driver Simulator, users drive through the selected route using a car in the simulator,
same data parameters are recorded for later comparison.

• Automated Simulator, the simulator uses the route waypoints and the path tracking
methods of Unity to navigate the same car on its own. Same data parameters are
recorded for later comparison.

• Automated ROS, the simulator connects to ROS, where optimal path tracking nodes
use the route waypoints to navigate the same car on its own. Same data parameters are
recorded for later comparison.

7.2.3 Metrics

In order to evaluate the functionality and efficiency of the simulator, evaluation metrics are
calculated for the vehicle position. Accordingly, the mean and maximum relative position
error percentages are calculated as shown in Equations (7.1) and (7.2) respectively.

PEmean[%] =

1
N

N
∑

k=1

∥∥∥∥∥
[

x̂k

ŷk

]
−

[
xk

yk

]∥∥∥∥∥
2

TotalDistance
(7.1)

PEmax[%] =

1
N max(

∥∥∥∥∥
[

x̂k

ŷk

]
−

[
xk

yk

]∥∥∥∥∥
2

)

TotalDistance
(7.2)

where x̂k, ŷk are the coordinates of the vehicle and xk,yk are the theoretical coordinates of the
vehicle at time step k.

The metrics represent the vehicle lateral deviation from the center of the lane in which
the vehicle drives. They characterize driving performance and performance degradation.
The lane position was measured as the distance between the vehicle center and the lane
center and depends on the lane geometry. Coordinates re-sampling and interpolation were
implemented to calculate the lateral path deviation for all the vehicles that were driving at
different velocities. To this end, each point in the experiment path was orthogonally projected
to the lane center. The standard deviation of lateral position (SDLP) is calculated as the root
mean square of the error.

96

7.2 3DCoAutoSim Validation Results

7.2.4 Qualitative and Quantitative Analysis

Figure 7.4 depicts the followed trajectory by the vehicle for each carried-out experiments,
where the green point represents the starting position, and the red point represents the final
position. The compared trajectories correspond to the four experiments (Driver Real Car,
Driver Simulator, Automated Simulator and Automated ROS), in addition to the theoretical
path, which is the waypoints of the path shown in Figure 7.3.

−400 −350 −300 −250 −200 −150 −100 −50 0 50 100
−1200

−1000

−800

−600

−400

−200

0

X−coordinates [meter]

Y
−c

oo
rd

in
at

es
 [m

et
er

]

Theoretical
Driver Real Car
Driver Simulator
Automated Simulator
Automated ROS

Start

End

Figure 7.4 Paths comparison against the theoretical one

The automated simulator experiment using ROS path tracking delivered the best results
in terms of deviation from the lane center. This was due to the fact that it relied on the

97

Results and Discussion

Ackermann modeling for the simulation of kinematic and dynamic parameters. The driver
real car and automated simulator experiments delivered similar results in terms of smoothness
and overall error. The driver simulator experiment delivered, however, a constant lateral-error
during a period of 13 minutes on average per driver.

Out of 40 driving experiments, Table 7.2 summarizes quantitative results for the trajec-
tories shown in the aforementioned section. The obtained results emphasize the qualitative
analysis, where the automated driving using ROS obtained PEmean of 0.38% (SD: 0.21%),
followed by the automated driving using Unity with PEmean of 0.64% (SD: 0.28%). The
manual driving of the cars in both real and simulator obtained less accurate results, due to the
fact that human error is involved. Driving the simulator car obtained the maximum PEmean

of 1.01% (SD: 0.48%).

Table 7.2 Quantitative results for the simulator validation

Metrics PEmean [%] PEmax [m] vmean [m/s]

Driver Real Car 0.88% 37.692 4.79

Driver Simulator 1.01% 25.523 5.69

Automated Simulator 0.64% 16.879 5.11

Automated ROS 0.38% 13.421 4.89

The results show the viability of the proposed simulator to emulate ideal conditions,
which are defined for automated vehicles and then compared with manual driving in a real
test field or in a simulator environment. The simulator functionality and efficiency were
validated by the performed experiments. The performance decrease shown in the driver
simulator experiment was due to the settings difference, in terms of velocity in the simulator.

7.3 TurtleBot3 Results

In this section, several experiments were carried-out using GAZEBO simulator, in which three
TurtleBot3 platforms were selected to validate the proposed cooperation and coordination
architecture in Chapter 6.

7.3.1 Scenario

Figure 7.5 shows the designed environment of dimensions of 6×9 meters. The red-filled
circles simulate the possible target locations to reach by each of the platforms.

98

7.3 TurtleBot3 Results

Figure 7.5 TurtleBot3 platforms simulated environment in GAZEBO

Accordingly, the environment is formulated using mTSP for the MRTA problem, where
the tasks have instantaneous arrival completion. As previously mentioned in Chapter 6, the
inputs are the vehicles list, the tasks list, and the distance matrix between the tasks locations.
Each vehicle and each task has been previously defined with the features and requirements,
therefore it is a must to consider the features of the vehicles and the requirements of the tasks
as inputs to the experiment as well.

7.3.2 Qualitative and Quantitative Analysis

Figure 7.6 shows the ROS visualization of the TurtleBot3 platforms in the simulated envi-
ronment. The platforms performed SLAM to generate the static map of the environment
using the on-board lidar scan, which is represented with red points. The five tasks and
three platforms represent a small-scaled problem for the validation purposes of the proposed
architecture. After executing the solving algorithm presented in Chapter 6, the obtained
results are reported in Table 7.3. These results validate the viability of the proposed approach
in its integration with ROS-based platforms, before the deployment in the iCab platforms.

Table 7.3 TurtleBot3 allocation results

Best Allocation Cost [m] Average Comp. Time [s] Deviation Error [%]
12.76 1.04 3%

99

Results and Discussion

Figure 7.6 TurtleBot3 platforms environment perception in RVIZ

7.4 SkyOnyx Results

In this section, the planning approach for the UAV, which is presented in Chapter 4, is
validated through several scenarios and experiments.

7.4.1 Scenarios

Four different indoors scenarios were tested to evaluate the performance of the proposed
approaches on the platform. The scenarios were implemented in an indoor field of 9×18
meters. Each scenario was selected to analyze the planning and the control of the platform
in different situations and constraints. The occupancy grid maps for the four scenarios
were generated to the scale of the real dimensions, the grid cells are divided into 1 square
meter. All the static obstacles are considered in the mapping process. Subsequently the maps
are loaded into the system to start the path planning algorithm and to obtain the final 3D
waypoints for the automated navigation.

7.4.2 Qualitative and Quantitative Analysis

Results from the four experiments are evaluated qualitatively and quantitatively. The different
proposed scenarios were used to test the algorithms qualitatively. However, in order to be able
to quantitatively test proposed algorithms, two evaluation metrics were introduced. First one

100

7.4 SkyOnyx Results

is the time taken by the UAV to navigate from the starting point to the goal point, including
the take-off and landing duration. The second one is the error margin between the theoretical
and actual paths. The performance of each scenario is illustrated through plotting the values
of theoretical path planning algorithm against the localization path; where the axes refer to
the real 3D coordinates of X , Y and Z-axes in meters.

(a) Scenario 1 results (b) Scenario 2 results

(c) Scenario 3 results (d) Scenario 4 results

Figure 7.7 UAV planning results

To sum up, Table 7.4 concludes the results of the four experiments. The error represents
the deviation of the UAV actual path (red curve) compared to the ground-truth path (blue
curve). The table shows that the error margin is small compared to the covered flying
distance, which proves the high performance of the algorithms and their applicability in
various navigation applications. Also shows that a slight fluctuation during landing as a
constant error during all experiments.

Table 7.4 UAV planning quantitative analysis

Scenario Waypoints Distance [m] Time [s] Error [%]
1 21 14.89 38.30 3.30
2 43 39.53 72.93 4.03
3 37 32.52 64.29 3.25
4 22 16.88 41.29 5.50

101

Results and Discussion

7.5 iCab Communication Results

In this section, the results for the proposed schemes in Chapter 5, all experiments were
carried using the iCab platforms and its on-board devices.

7.5.1 Setup

The testing environment was the off-road campus vicinity, at which the unstructured routes
and the presence of unpredictable behavior of pedestrians increase the complexity. The
campus includes several wireless networks access points, which are used for the WiFi exper-
iments on the IEEE 802.15.4 standard for low-rate wireless personal area networks [228].
The WiFi heat-map of the campus is shown in Figure 7.8, which is mapped by performing a
separate experiment through the whole campus. On the other hand, 4G tests took place in
the same environment using a 4G-LTE router of 150 Mbps. The bandwidth of the wireless
network is around 4 Mbps at downlink and 3.5 Mbps at uplink, while the 4G network has the
speed around 2 Mbps in both directions. These values are estimated in ideal scenarios and
they vary according to signal strength, channel load, and frequency among others.

7.5.2 Scenarios

In order to test the proposed schemes, three different scenarios were selected. Several experi-
ments were performed for each scenario, using WiFi and 4G networks for the communication
schemes. In Scenario I, both testing agents are static at different locations in the campus
(Static-Static). While in Scenario II, one agent is static and the other is moving at different
locations in the campus (Static-Dynamic). Finally, Scenario III, both testing agents are
moving at different locations in the campus (Dynamic-Dynamic).

Accordingly, for the V2V communication tests, both vehicles were static in scenario I,
one is static and one is dynamic in scenario II, and both are dynamic in scenario III. For
the V2P and V2I communication tests, only the first two scenarios were tested, where the
pedestrian or the infrastructure were always static and the vehicle was once static and another
dynamic. This is due to the fact that all experiments evaluation were performed at the vehicle
side. Figure 7.8 also shows the location of both vehicles and pedestrian testing zones, as
noted by red oval shapes and blue cross respectively.

During each experiment, the following information is shared for every proposed commu-
nication scheme. In the V2V experiments, vehicle position, orientation, stats and tasks list
are selected. For the V2P experiments, the vehicle position, orientation and alert notification

102

7.5 iCab Communication Results

Figure 7.8 WiFi heat-map of the testing environment

messages are selected. Finally, for the V2I experiments, vehicle position, orientation, stats
and requests information database are selected.

The selected scenarios require low bandwidth, thus all shared messages are transmitted
in one single transaction. However, each of the proposed schemes is running at a different
rate, for instance, inter-vehicle communication is at 20Hz, communication with pedestrians
is at 2Hz and communication with infrastructure is at 1Hz.

7.5.3 Metrics

In order to prove the credibility and efficiency of the proposed communication schemes in
the ITS field, several metrics are introduced to describe the characteristics of the system.

103

Results and Discussion

Since all the proposed schemes use TCP socket connections for the pairwise communication,
the metrics aim to give information about the quality of these connections. From the many
available indicators, the Round Trip Time (RTT) is selected. Due to the fact of its accuracy
in measurement on the client side, also it evaluates the dynamism of the communication.
The RTT, in this case, can be calculated by measuring the time between a data packet is
sent and its acknowledgment arrives on the sender network interface. In all the scenarios the
measurements were performed on the vehicle side, since the goal of the paper is to propose a
muti-modal communication environment, from the point of view of autonomous vehicles in
off-road scenarios. It is important to note, that measuring the round trip time on transport
layer also takes the packet losses into account, by increasing the measured time. Thus, by
analyzing the RTT, many information can be subtracted from it, such as:

• Bandwidth: since both the uplink and downlink bandwidth are used for sending the
data and receiving the acknowledgment.

• Availability: by checking the outliers packets, it is inferred which ones were not
delivered on time, which indicates the poor quality of the network.

• Smoothness: relying on the variance of the RTT, the smoothness of the network is
evaluated, together with information about higher level parameters, such as jitter.

.
Based on the aforementioned, RTT is suitable to compare the results in every scheme

individually. However, it can not be used directly to compare the different schemes to
each other since RTT is highly dependent on the size of the transferred data, which varies
from one scheme to another. The acceptable RTT value depends highly on the type of the
communication. Since there are types, such as video or audio streaming, that are tolerant to
higher delay but does not tolerate jitters, the deviation of the RTT value. And others, such
as data transfer, can handle the variance of the response times, but really sensitive to the
response time. It was concluded that 100ms as response time and 3−5ms as jitter guarantees
smooth cooperation.

7.5.4 Qualitative and Quantitative Analysis

In this section results and a detailed description are given, in order to prove that the proposed
system can be used to support autonomous agents. Box plots have been selected for data
representation because it is possible to represent average, quartiles, variation, and outliers.

In all figures, along the horizontal axis, the results are divided according to the different
scenarios and also grouped together based on the network type, WiFi or 4G. On the vertical

104

7.5 iCab Communication Results

axis, the values of the RTT are measured on a logarithmic scale. The average is depicted with
a horizontal line inside a box, which shows the quartiles of the dataset. The whiskers extend
to show the rest of the distribution, except for points that are determined to be outliers.

A value is considered to be an outlier if it fulfills one of the following criteria:

outlier ≤ Q1−1.5∗ IQR

outlier ≤ Q3+1.5∗ IQR
(7.3)

where the Q1 or Q3 determines the quartile and the IQR is the interquartile range. These
outliers are also highlighted with small filled rhombuses in results figures.

Figure 7.9 Results of the V2V communication

As it is depicted in Figure 7.9, in the case of V2V, the communication over WiFi is faster
than 4G in most of the scenarios, according to the average values and on the quartiles. This
is absolutely straightforward since in the WiFi case both of the vehicles are connected to the
same subnetwork. However, in the 4G case, the data has to be conveyed to the operator’s
router via the base station, and then backward as well, which results in higher response time.
The variances of the measured values are almost the same in both network configurations
and all scenarios, as shown in Table 7.5. The difference appears when the outliers are taken

105

Results and Discussion

into account, where the WiFi backed solution has higher number and values for the outliers,
in comparison to the 4G. As detailed in Table 7.5, during scenario II there were 8s with no
communication, furthermore, higher delays can be found in scenarios I and III. However,
when using 4G connection, the outliers remain under 0.24s. This due to the availability
difficulties of the campus WiFi network, as shown in Figure 7.8.

Table 7.5 Main results of the V2V communication

Type Mean[ms] IQR[ms] Max[s]
Scenario I II III I II III I II III

WiFi 11 8 8 12 8 15 2.72 8.21 4.98
4G 75 72 73 14 13 13 0.24 0.24 0.20

Figure 7.10 Results of the V2P communication

Regarding the V2P communication, the average of the RTT values and the IQR are
similar between WiFi and 4G. These values are expected since the pedestrian’s device and
the vehicle is not connected to the same subnetwork. Also, based on the variance, it can
be interpreted that the WiFi connection is faster, due to the higher bandwidth compared to
4G. Concerning the outliers, the results were different in each scenario. For scenario I, the

106

7.5 iCab Communication Results

WiFi and 4G connection show almost the same behavior, while in scenario II, WiFi has
significantly higher delays for the same reasons described in V2V results. Thus in the case
of V2P communication, the proposed VPN over 4G architecture, does not only have the
advantage of the persistent connection but also have the same performance as WiFi.

Table 7.6 Main results of the V2P communication

Type Mean[ms] IQR[ms] Max[s]
Scenario I II I II I II

WiFi 140.5 164.4 116.1 163.2 1.06 8.70
4G 105.3 123.3 69.6 58.6 0.41 0.36

Figure 7.11 Results of the V2I communication

Finally, the results of the V2I communication are depicted in Figure 7.10 and also shown
by Table 7.7. Opposite to the other schemes, the V2I communication does not use VPN,
instead, the entities communicate directly through the internet. The average and the quartiles
values in the WiFi configuration were lower than the ones in 4G connection, due to the
fact that both, the vehicle and the infrastructure, were connected to the same network. The
smoothness of the network according to the measured variance in the WiFi and the 4G

107

Results and Discussion

connections are nearly the same overall experiments in both scenarios. As expected, there
was a higher amount of outliers than previous schemes, even higher in the WiFi connection
than in the 4G, as seen in previous studies. The importance of having a stable connection is
keeping the status of the vehicles up to date and also deliver the request instantaneously.

Table 7.7 Main results of the V2I communication

Type Mean[ms] IQR[ms] Max[s]
Scenario I II I II I II

WiFi 2.7 2.9 3.3 5.9 0.10 4.88
4G 35.1 37.01 7.8 10.6 0.07 0.08

7.6 iCab Localization Results

In this section, the results for the proposed localization and covariance estimation approaches
in Chapter 4, all experiments were carried using the iCab platforms and its on-board devices.

7.6.1 Scenarios

In order to validate the proposed approach, several scenarios are designed and tested over
various experiments. This section describes the used platform for the real-word experiments,
the testing environment, the designed scenarios, and the selected evaluation metrics. The
testing environment was the off-road vicinity of the campus, which has free pedestrian areas
and surrounded with many buildings. In this environment, three scenarios were designed
to evaluate the proposed approach, and each scenario was experimented three times under
different conditions. All scenarios are depicted in Figure 7.12.

Scenario I

The first scenario was designed as a circle of total diameter of 22m, in which the iCab steering
wheel was adjusted to 8.5o and average velocity of 5km/h. In this case, the theoretical path
was designed as a pure circle with the same diameter to be compared with the obtained
odometries. The scenario was selected to evaluate the proposed approach performance in
optimizing the localization in simple circular motion. Moreover, it is a closed-loop, thus the
vehicle end point is the same as the starting point.

108

7.6 iCab Localization Results

−20 −15 −10 −5 0

−10

−5

0

5

10

X−coordinates [meter]

Y
−c

oo
rd

in
at

es
 [m

et
er

]

0 10 20 30 40 50

0

10

20

30

40

50

X−coordinates [meter]
Y

−c
oo

rd
in

at
es

 [m
et

er
]

(a) Scenario I (b) Scenario II

0 5 10 15 20 25 30 35 40

0

10

20

30

40

50

60

70

X−coordinates [meter]

Y
−c

oo
rd

in
at

es
 [m

et
er

]

(c) Scenario III

Figure 7.12 Visual demonstration of the selected scenarios

Scenario II

The second scenario was designed as a quadratic shape of total length of 54m and width of
56m. This was also a closed shape, where the theoretical path was designed as a right-angled
quadratic shape. The iCab followed the shape with average velocity of 5km/h and rotating
with sharp 30o around the corners. The scenario was selected to evaluate the proposed
approach performance in optimizing the localization in both straight-line and curved motions.

109

Results and Discussion

Scenario III

The third and last scenario was designed as a trajectory from one building to another in the
campus. The selected points are part of the pick-up / drop-off points of the iCab project.
The theoretical path was obtained from the path planner to be compared with the obtained
odometries. The path consists of multiple curves, straight-lines, dynamic obstacles, and
it is one of the normal trajectories that the iCab follows in its daily operation. The iCab
followed the path with average velocity of 5km/h and a maximum of 15o steering angle
during curvatures.

7.6.2 Evaluation Metrics

In order to evaluate the true potential of the proposed algorithm, the performance and results
are compared relative to different values of constant covariances in a fusion algorithm, and
the robot_localization package was selected for the fusion [205]. The evaluation metrics
for the Ackermann model are calculated for both, translation and orientation. Firstly, the
mean and maximum error percentages of the translation; which are calculated as shown in
Equations (7.1) and (7.2) respectively.

As for the orientation, the mean and maximum error in the orientation are divided by
the total distance covered by the vehicle, which are calculated as shown in Equations (7.4)
and (7.5) respectively.

OEmean[
o/m] =

1
N

N
∑

k=1
θ̂k−θk

TotalDistance
(7.4)

OEmax[
o/m] =

1
N max(θ̂k−θk)

TotalDistance
(7.5)

where θ̂k is the estimated orientation of the vehicle and θk is the true orientation of the vehicle
at time step k.

7.6.3 Qualitative and Quantitative Analysis

In the experiments, five different odometries were executed in the iCab platform; the lidar as
the reference odometry, GPS as the exteroceptive sensor odometry and wheel encoders as the
propriocetpive sensor odometry. Additionally, visual odometry and compass orientation were
included as more inputs to the fusion algorithm. The covariance estimation was estimated for
the propriocetpive sensor based on the available covariance of the exteroceptive sensor. In

110

7.6 iCab Localization Results

order to show the efficacy of the covariance estimation algorithm, the results are compared to
the results using different values of constant covariances. The values used are percentages of
the True Variances (TV) of both the steering encoder and the translation encoder, which are
calculated retroactively from the data of the experiments. The parameters values used for
the covariance estimation algorithm is the same in all scenarios, to ensure that the algorithm
does not need different parameters for different scenarios. During all experiments, the
exteroceptive sensor parameters were as follows: α was set to 0.5, ce and cs were set to 0.05,
and εe and εs were set to 0. Finally, the constant values of covariances are selected depending
on the error values for each experiment. As shown in the tables below, 125% of the TV gave
higher error than 25% of the TV. Observing these results, smaller percentages of the TV were
used in order to reach better results. And lower than 2.5% of the TV were omitted, because
they gave larger errors.

Scenario I

Table 7.8 shows the experimental quantitative results of the first scenario, comparing the
proposed approach of covariance estimation against the TV at four different values. The
obtained results show the covariance estimation algorithm outperforming all TV values in
both translation error and orientation error. All performed trials of TV obtained near results
at different values. There might be a chance that with more trials of different values of TV,
one of them could outperform the proposed approach, however, the tuning issue consumes
time and efforts.

Table 7.8 Mean of the 3 scenario I experiments results

Mean [%] Mean [o/m]
Metrics

T Emean T Emax OEmean OEmax

Adaptive 1.743 3.043 0.0029 0.097
True Variance 6.756 13.853 0.249 0.612

2.5% TV 1.796 3.598 0.077 0.227
5% TV 2.619 5.705 0.099 0.302
25% TV 4.061 7.746 0.164 0.349

125% TV 7.613 14.772 0.263 0.667

Scenario II

Table 7.9 shows the experimental quantitative results of the second scenario, comparing the
proposed approach of covariance estimation against the TV at four different values. The

111

Results and Discussion

obtained results show that the proposed approach was able to outperform the TV in the
translation errors. However, it obtained minimal error of 0.001o in the mean orientation in
comparison to one of the TV, despite having the best maximum orientation error.

Table 7.9 Mean of the 3 scenario II experiments results

Mean [%] Mean [o/m]
Metrics

T Emean T Emax OEmean OEmax

Adaptive 3.047 4.717 0.020 0.089
True Variance 13.034 44.662 0.019 0.109

2.5% TV 4.942 8.259 0.019 0.111
5% TV 6.498 11.451 0.019 0.103

25% TV 9.633 21.433 0.020 0.111
125% TV 13.593 60.060 0.019 0.110

Scenario III

Table 7.10 shows the experimental quantitative results of the second scenario, comparing
the proposed approach of covariance estimation against the TV at four different values. The
obtained results show that the proposed approach was able to outperform the TV maximum
errors in both translation and orientation. However, for the mean errors, it obtained a minimal
error value of 0.098% in the mean translation error, and a minimal error value of 0.003o in
the mean orientation error. This is taking into consideration that the best mean translation
error was obtained at 2.5% of the TV, while the best mean orientation error was obtained at
the exact value of the TV, which implies that the proposed approach outperforms in general
all TV values.

Table 7.10 Mean of the 3 scenario III experiments results

Mean [%] Mean [o/m]
Metrics

T Emean T Emax OEmean OEmax

Adaptive 4.473 7.545 0.025 0.085
True Variance 15.841 56.230 0.022 0.167

2.5% TV 4.375 8.971 0.023 0.090
5% TV 4.613 10.372 0.024 0.120

25% TV 7.627 21.715 0.025 0.147
125% TV 13.508 46.674 0.024 0.155

112

7.7 iCab Planning Results

7.7 iCab Planning Results

In this section, the results for the proposed planning approach in Chapter 4 are presented, all
experiments were carried using the iCab platforms and its on-board devices.

7.7.1 Setup

The experiments are divided into two parts, the simulation environment and the real-world
environment. On the one hand, the simulator platform used to test all the algorithms is the
ROS Gazebo simulator. The car_demo simulator package was used [143]. The simulation
on a different model than the actual experimental platform was essential to the validation
of the controller, because it demonstrated the flexibility of the controller and the simplicity
of tuning it to different vehicle models. On the other hand, the proposed iCab platform was
used for the test in the real scenarios.

−8 −6 −4 −2 0 2 4 6 8
−5

0

5

10

15

20

25

30

35

40

45

50

X−coordinates [meter]

Y
−c

oo
rd

in
at

es
 [m

et
er

]

−5 0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

X−coordinates [meter]

Y
−c

oo
rd

in
at

es
 [m

et
er

]

(a) Scenario I (b) Scenario II

−25 −20 −15 −10 −5 0 5
−10

−5

0

5

10

15

20

X−coordinates [meter]

Y
−c

oo
rd

in
at

es
 [m

et
er

]

−50 −40 −30 −20 −10 0 10 20 30 40 50
−30

−20

−10

0

10

20

30

X−coordinates [meter]

Y
−c

oo
rd

in
at

es
 [m

et
er

]

(c) Scenario III (d) Scenario IV

Figure 7.13 Visual demonstration of the selected scenarios

113

Results and Discussion

7.7.2 Scenarios

Four different scenarios were defined using ROS path message, which contains an array of
X and Y coordinates, in addition the heading angle at each waypoint. Each scenario path
planning points was saved and used as input for all path tracking approaches for comparison.

Scenario I

The straight line path is the simplest test that can be performed, which is shown in Figure 7.13
(a). The main maneuver for the vehicle is to demonstrate the tracking capability on a straight
path, the length of this path is 45m. Experiments on this path were performed at velocities of
1m/s, 2m/s and 3m/s.

Scenario II

The normal path captures a variety of driving scenarios and a good simulation to real-world
driving, which is shown in Figure 7.13 (b). This path is important to demonstrate general
qualitative performance and path tracking capabilities. Experiments on this path were
performed at velocities of 1m/s and 2m/s.

Scenario III

The square shaped path of 20m side-length, shown in Figure 7.13 (c), is essential in validating
a path tracking algorithm, to test the capability of the algorithm in keeping track of the path
and the robustness of the controller. The closed loop path validates the tracking approaches
when handling accumulated error. Experiments on this path were performed at velocities of
1m/s and 2m/s.

Scenario IV

This path does not reflect a normal driving scenario, however it was selected since it provides
valuable insight into the handling of a vehicle, path is shown in Figure 7.13 (d). This
experiment was tested in simulator only, since in real-world environment had free area size
limitation. Experiments on this course were performed at velocities of 1m/s, 2m/s and 3m/s.

114

7.7 iCab Planning Results

7.7.3 Metrics

In order to evaluate the proposed approach efficiency and compare it to the other approaches,
the vehicle localization was compared to the theoretical path planning input. Therefore, four
metrics were selected to evaluate the data in quantitative and qualitative manners.

Relative Position Error (RPE)

It shows how far the vehicle is from the path as the lateral deviation. The value is calculated
as a percentage, where the Euclidean distance of each position is calculated with respect to
the path and then the mean of these values is divided by the total path length.

Maximum Position Error (MPE)

It shows the maximum instant where the vehicle was deviated from the path. The value is
in meters, which is calculated as the maximum Euclidean distance error from all recorded
positions.

Relative Rotation Error (RRE)

It shows how accurate the vehicle was oriented with respect to the path planning input. The
value is calculated as degrees per meter, which by subtracting the vehicle heading angle from
the waypoint required heading angle at each position over the path then the mean of these
values is divided by the total path length.

Battery Consumption (BC)

It shows the the battery consumption by the vehicle during the path tracking. The value is
calculated as the energy in kW , which is drawn from the batteries, taking into consideration
all mounted devices consumption, and measuring power withdrawn by the translation motor
at every navigation command. Therefore, the control cost is compared for each tracking
method.

7.7.4 Qualitative and Quantitative Analysis

The experimental work resulted in collecting data from a total of 72 real world experi-
ments and evaluating four metrics from each. In this section, two different path tracking
approaches were tested, which are: the proposed optimal path tracking algorithm (OPT),
teb_local_planner ROS package (TEB) [208]. The most relevant results are summarized in

115

Results and Discussion

the following subsections. Both path trackers were fully tuned and optimized to run on the
test platform to ensure a fair comparison.

−8 −6 −4 −2 0 2 4 6 8
−5

0

5

10

15

20

25

30

35

40

45

50

X−coordinates [meter]

Y
−c

oo
rd

in
at

es
 [m

et
er

]

WP
OPT
TEB

−5 0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

X−coordinates [meter]

Y
−c

oo
rd

in
at

es
 [m

et
er

]

WP
OPT
TEB

(a) Scenario I (b) Scenario II

−25 −20 −15 −10 −5 0 5
−10

−5

0

5

10

15

20

X−coordinates [meter]

Y
−c

oo
rd

in
at

es
 [m

et
er

]

WP
OPT
TEB

(c) Scenario III

Figure 7.14 Visual demonstration of the selected scenarios

Scenario I

The experiment results in this scenario are shown in Figure 7.14 (a) for the 1m/s velocity
experiment. The OPT showed better stability in comparison to the other approach. As shown
in Table 7.11, the performance of OPT and TEB were relatively close in the results, though
the TEB performance failed at higher velocities. In conclusion, OPT outperformed the other
approach in the RPE, RRE and BC, however the TEB obtained less MPE.

116

7.7 iCab Planning Results

Table 7.11 Scenario I - Experiments Results

Metrics OPT Teb
RPE [%] 0.3009 0.3928
MPE [m] 0.5224 0.5101
RRE [o/m] 1.7297 1.8548
BC [kW] 6.8953 10.4321

Scenario II

Figure 7.14 (b) shows the performance of the path tracking approaches in following a prede-
termined path at 1m/s velocity. The trackers were able to follow the path accurately, though
the OPT has more aggressive response. As shown in Table 7.12, the OPT outperformed the
other approaches in the RPE and BC, however TEB obtained less values in MPE and RPE.

Table 7.12 Scenario II - Experiments Results

Metrics OPT Teb
RPE [%] 0.2284 0.2372
MPE [m] 0.9089 0.6595
RRE [o/m] 3.4900 3.0477
BC [kW] 25.7941 39.4247

Scenario III

Figure 7.14 (c) shows the performance of both OPT and TEB at 1m/s velocity, at which
they were able to track the path with minimal errors. Table 7.13 summarizes the quantitative
results, where OPT outperformed TEB in the RPE and RRE, and TEB outperformed in the
MPE.

Table 7.13 Scenario III - Experiments Results

Metrics OPT Teb
RPE [%] 0.3966 0.6282
MPE [m] 1.1621 1.0548
RRE [o/m] 4.1319 10.1265
BC [kW] 17.8671 24.7688

117

Results and Discussion

Simulation Results

The four scenarios were tested successfully in the simulation environment and results are
summarized in Table 7.14 as the average of all carried-out experiments at different velocities
profiles. Simulation experiments offers a deeper and more comprehensive study between the
performance of the approaches. Following the same evaluation metrics, excluding BC, this
tool allowed a larger number of experiments with different velocity profiles. The comparison
shows relatively close errors for both approaches.

Table 7.14 Simulation Experiments Results

Simulator Results
Scenario I Scenario II

Metrics OPT TEB Metrics OPT TEB
RPE [%] 0.5966 0.5770 RPE % 0.1689 0.1341
MPE [m] 0.5319 0.5357 MPE [m] 0.4179 0.4073
RRE [o/m] 0.7325 0.8896 RRE [o/m] 2.6592 2.1174

Scenario III Scenario IV
Metrics OPT TEB Metrics OPT TEB
RPE [%] 0.2214 0.2217 RPE [%] 0.1771 0.1787
MPE [m] 0.5082 0.4986 MPE [m] 0.9019 0.8722
RRE [o/m] 1.5386 1.5964 RRE [o/m] 1.0194 0.6939

7.8 iCab Platooning Results

In this section, the results for the proposed platooning approach in Chapter 5, all experiments
were carried using the iCab platforms and its on-board devices.

7.8.1 Scenario Description

The selected real-world scenario covers all testing parameters. The process is as follows, the
system receives transport request, from one point to another. This request is for 4 passengers,
since each vehicle has a maximum capacity of 2 passengers only, the two vehicles have
to carry out this task. Accordingly, in order to achieve an optimal cooperative driving,
one vehicle should be responsible for the main environment perception, path planning and
autonomous navigation from the starting point to the goal point, while the other vehicle
should communicate with the first vehicle and follow it to the destination point. In other

118

7.8 iCab Platooning Results

words, both vehicles navigate to the starting point, then apply platooning algorithm of a
leader/follower mode till the destination point. Figure 7.15 gives an overview example of the
selected scenario.

958

Fo
llo

Z
er

/
ea

de
r

9�P

9�9

P�9

Figure 7.15 Two autonomous vehicles platooning scenario with VRU crossing their desig-
nated path

Meanwhile the vehicles are navigating to the destination point, a distracted VRU is trying
to cross their designated path of the vehicles. This plot is directed to simulate a real life
scenario in a smart city, where the distracted user is crossing the road without paying attention
to the road, and the autonomous vehicles are following each other to a collision point with
the user without any mean of detecting the user with the on-board perception sensors.

119

Results and Discussion

The scenario studies the efficiency of V2V communication and the platooning algorithm
in cooperative autonomous driving. Moreover, it reviews the advantages of V2P and P2V
communications in detecting the pedestrian in advance and sending a warning message to
the pedestrian and a notification to the vehicle.

7.8.2 Qualitative and Quantitative Analysis

Real life experiments were performed inside the campus vicinity as an off-road environment.
Both iCab platforms were used in these experiments as the autonomous vehicles to test the
cooperative driving approach. And several volunteers participated in the experiments as
the VRU. The scenario was tested several times to obtain enough results for analysis. All
recorded data took place in the ROS architecture with time-stamp.

-10 0 10 20 30 40 50
0

10

20

30

40

50

60

Global X-axis (meters)

G
lo

ba
l Y

-a
xi

s (
m

et
er

s)

iCab 1
iCab 2
VRU

t=35s

t=42s
t=42s

t=35s

t=0s

t=0s

Figure 7.16 Trajectories of iCab 1 (Blue), iCab 2 (Red), and VRU (Green)

Figure 7.16 shows the navigated trajectories of the leader vehicle (iCab 1) and follower
vehicle (iCab 2) on XY plane, along with the trajectory of the pedestrian (VRU). The leader
vehicle was set to drive at speed of 5 km/h and the follower vehicle adjusted its speed and
the spacing distance accordingly. The figure also shows that the follower vehicle is moving
along the leader vehicle trail, while maintaining the desired distance with minimal error.

120

7.8 iCab Platooning Results

Further details about the spacing distance error values between the follower and the leader
vehicles, in both X and Y directions relative to the vehicle, are presented in Figure 7.17 (a)
and (b) respectively. It is seen from the figure that the tracking errors in the lateral direction
(vehicle X-axis) osculates around the reference and settle to 0.65 meters. However, for the
tracking errors in the displacement longitudinal direction (vehicle Y-axis), it decays to almost
zero meters with a maximum peek of 1.3 meters error during the turning part of the scenario.

0 20 40 60 8
0

-1.5

-1

-0.5

0

0.5

1

1.5

V
eh

ic
le

 X
-a

xi
s E

rr
or

 (m
et

er
s)

Reference
Error

0 20 60 8
0

-1

0

1

2

3

4

40

V
eh

ic
le

 Y
-a

xi
s E

rr
or

 (m
et

er
s)

Reference
Error

Time (seconds)

(a) Vehicle X-axis Error
Time (seconds)

(b) Vehicle Y-axis Error

Figure 7.17 Spacing distance error between follower and leader vehicles

Figure 7.18 displays the results of the leader vehicle obstacle detection algorithms against
time, in addition to the moment of which the warning notification message was sent through
the P2V communication. Since the pedestrian is crossing on an orthogonal direction, there
is no possible way for the sensors of detecting him. It is considered as a blind spot due to
an obstruction. Hence, the advantage of the developed system is the anticipation of VRU
crossing the vehicles path approx. 7 seconds in advance. The leader vehicle then uses V2P
communication to warn the VRU, and V2V communication to inform the follower vehicle of
the presence of the VRU.

The qualitative results prove the viability of the proposed approach for cooperative
autonomous driving, in addition to the advantages of the V2X communications in enhancing
the environment perception system.

Tables 7.15 and 7.16 present the quantitative analysis for the overall system and compare
the results with the use of V2X communication and without them. The results are obtained
from performing the experiments on the same scenario and under the same condition, once
with the communication schemes active and the other with the communication schemes
inactive, then calculate the average value of the error over the whole path.

121

Results and Discussion

40 50 60 70 80
0

5

10

15

20

Time (seconds)

D
is

ta
nc

e
to

 P
ed

es
tr

ia
n

(m
et

er
s)

Distance to Pedestrian
Detection
via P2V

Detection via
Vehicle Sensors

Figure 7.18 Euclidean distance between the pedestrian and the vehicle

In Table 7.15, VRU detection statistic are calculated based on the Euclidean distance
between the vehicle and the pedestrian at the moment of detection. The leader vehicle was
able to detect the VRU in both cases, however with the communication inactive, the detection
was late which made the decision of braking be more aggressive. On the other hand, for
the follower vehicle, it was not able to know that there is a pedestrian in the route with the
communication inactive.

Table 7.15 VRU detection statistics [meters]

With V2X Without V2X

Leader Vehicle 16.13 8.79

Follower Vehicle 21.32 N/A

In Table 7.16, the leader vehicle errors are estimated based on the deviation from the
route obtained by the path planning algorithm in the sequencer layer, therefore the values are
the same in both cases. However, for the follower vehicle errors, the values are estimated
based on the deviation from the trail of path made by the leader vehicle. It is shown that the
error almost is doubled in the case of no communication.

122

7.9 MRTA Results

Table 7.16 Tracking error statistics [meters]

With V2X Without V2X

Leader Vehicle 0.89 0.89

Follower Vehicle 0.43 0.93

7.9 MRTA Results

In this section, the results for the proposed task allocation approach in Chapter 6. Real world
experiments were carried using the iCab platforms and its on-board devices.

7.9.1 Selected Scenarios

In order to test the proposed approach, several scenarios are selected in both simulation and
real-world. The simulation scenarios are selected from well-known benchmarks of mTSP,
this is in order to have the optimal cost available for comparison. Each scenario consists of a
different number of cities, which are distributed over the environment in various locations.
Figure 7.19 shows the four selected scenarios, where the top left one is Christofides/Eilon
with 51 cities, top right is Berlin (Groetschel) with 52 locations, bottom left is Christofides-
Eilon with 76 cities and bottom right is Rattled Grid (Pulleyblank) with 99 cities [229, 230].
Each scenario has only one depot, which is represented by the red marker in the graphs.

On the other hand, the real-world scenario was designed in a way to evaluate the function-
ality of the proposed solution and the architecture in the platforms. The scenario involved
three users using the application to create transportation requests. The three users had differ-
ent starting points and different destinations, moreover the request time was close to each
other to evaluate how the vehicles are going to respond. Figure 7.20 shows the environment
map with the vehicles and passengers locations, the two vehicles are represented with the
golf-cart clip-art, the passengers representation are marked in three different colors, a circular
shape of the same color for the desired destination. The experiment was video recorded and
its results discussion is in the next section.

7.9.2 Evaluation Metrics

The proposed hybrid optimization-based solution is used to solve each scenario of the MRTA
problem and the results are recorded for evaluation. In order to evaluate the quality, two
evaluation metrics are introduced, which are the allocation cost and computational time. The

123

Results and Discussion

0 20 40 60 80
0

20

40

60

80
Christofides/Eilon − 51 Cities

X−coordinates

Y
−c

oo
rd

in
at

es

0 500 1000 1500
0

200

400

600

800

1000

1200
Berlin (Groetschel) − 52 Locations

X−coordinates

Y
−c

oo
rd

in
at

es

0 20 40 60 80
0

20

40

60

80
Christofides/Eilon − 76 Cities

X−coordinates

Y
−c

oo
rd

in
at

es

0 20 40 60 80 100
0

50

100

150

200

Rattled Grid (Pulleyblank) − 99 Cities

X−coordinates

Y
−c

oo
rd

in
at

es

Figure 7.19 mTSP selected benchmark scenarios, red marker is the depot

first evaluation metric is the allocation cost of the best allocation found. The allocation cost
is calculated based on the objective function. Thus two allocations costs are computed, one
is the MinMax cost, which represents the length of the longest sub-tour in the allocation,
and two is the total overall cost of all sub-tours. The second metric is the computational
time required by the algorithm to reach the best solution. The timer starts after the databases
of the vehicles and requests are read and stop when the algorithm stops, then the elapsed
time is reported. Since the computational time calculation is depending on the machine, the
computer used for all experiments has the specifications in Table 7.17.

Table 7.17 System Specifications

Processor 4 Cores, 4 Threads @3.8GHz

Memory 16GB DDR4-2133

7.9.3 Comparative Study

In this section, a comparative study is conducted between the proposed approach results and
the reference optimal results presented in [230]. The optimal results are obtained for the

124

7.9 MRTA Results

Figure 7.20 Environment map with the real-world scenario vehicles and passengers locations

four well-known benchmarks, which are described in the scenarios subsection. The authors
in [229] adjusted the benchmark settings, to have all vehicles located at the depot and it is
required to visit all locations in the scenario, such that each location is visited exactly once,
then return to the depot.

Table 7.18 summarizes all the results from both the optimal solutions costs, compared to
the obtained solutions costs, in addition to the computational time for the obtained solutions
costs. The optimal costs are obtained using IBM CPLEX, it took 96 hrs for the eil − 51
dataset, 120 hrs for the berlin−52 dataset, 168 hrs for the eil −76 dataset, and 216 hrs for
the rat − 99 dataset. On the other hand, the reported values of the obtained costs are the
mean of the 25 experiments of each scenario.

125

Results and Discussion

Table 7.18 Benchmarks comparative results

Benchmark Vehicles
Optimal

MinMax

Optimal

Total

Obtained

MinMax

Obtained

Total

Comp.

Time (sec)

2 222.73 444.33 236.49 470.97 124.86

3 159.57 477.15 167.11 498.64 137.06

5 123.96 615.19 129.36 629.64 158.86
eil-51

7 112.07 762.83 116.87 764.24 182.67

2 4110.21 8217.94 4315.83 8630.19 131.94

3 3244.37 9591.15 3387.35 10115.18 140.97

5 2441.39 12084.90 2509.84 11969.61 163.10
berlin-52

7 2440.92 16768.79 2491.83 15628.95 194.21

2 280.85 561.48 307.68 613.75 281.89

3 197.34 587.65 210.97 632.07 292.83

5 150.30 748.43 158.24 772.34 333.45
eil-76

7 139.62 964.69 143.74 970.42 386.62

2 728.71 1456.95 801.68 1603.31 442.96

3 587.17 1751.95 636.41 1903.04 495.36

5 469.25 2336.22 487.71 2399.87 555.85
rat-99

7 443.91 3074.30 462.59 3135.78 645.43

These results show that the proposed approached was able to converge to the near-optimal
values in much less computational time, which can actually be considered running in real-
time. For the MinMax costs, Table 7.19 shows the deviation errors to the optimal costs,

126

7.9 MRTA Results

which presents that all errors are less than 10%. However, the more visible contribution,
is that the error is actually decreasing with the increasing number of vehicles. This proves
that the proposed approach is more capable of handling multiple vehicles and obtain more
accurate solutions in all tested benchmarks.

Table 7.19 Deviation errors to optimal MinMax costs

Benchmark / Vehicles eil-51 berlin-52 eil-76 rat-99

2 Vehicles 6.18% 5.00% 9.55% 10.01%

3 Vehicles 4.73% 4.41% 6.90% 8.39

5 Vehicles 4.36% 2.80% 5.29% 3.93%

7 Vehicles 4.28% 2.09% 2.95% 4.21%

Since there are several possibilities for the solutions permutations, when the MinMax
solution is optimized, this does not guarantee the optimization for the total cost as well. How-
ever, the proposed approach objective function was designed to take this into consideration.
Table 7.20 shows the deviation errors from the optimal total costs. It is quite obvious the
same behavior of the MinMax costs, where the more vehicles are introduced to the system,
the more capable the proposed approach to find near-optimal allocations. Moreover, in
the case of berlin−52 dataset, the proposed approach obtained allocations better than the
sub-optimal ones in the case of 5 and 7 vehicles.

Table 7.20 Deviation errors to optimal total costs

Benchmark / Vehicles eil-51 berlin-52 eil-76 rat-99

2 Vehicles 6.00% 5.02% 9.31% 10.05%

3 Vehicles 4.50% 5.46% 7.56% 8.62

5 Vehicles 2.35% -0.95% 3.19% 2.72%

7 Vehicles 0.18% -6.80% 0.59% 2.00%

The conducted comparative study highlighted the high performance of the proposed
approach in different scenarios and its scalability in handling multiple vehicles. Therefore,

127

Results and Discussion

the proposed approach was not only able to obtain near-optimal allocations in much less
computational time, but also outperform the CPLEX approach in one of the scenarios, under
the same set of constraints and conditions.

Additionally, the real-world experiment was successful in terms of allocation of the
requests and the vehicles performance to pick-up and drop-off the passengers, along with the
automated navigation from the starting points to the destinations. The two iCab platforms
were connected via the V2V communication and once the first request was created on the
webserver, the token-holder vehicle collected the requests and the available vehicles to start
the proposed task allocation algorithm. The first request was allocated to iCab-1 and while
the vehicle is navigating to the first destination point, the second request came in, at which
the allocation algorithm output was to allocate it to iCab-1, since this optimizes the overall
solution. Therefore, iCab-1 continues the navigation to the first destination point, then pick-
up the second request to continue afterward to the second destination point. The last request
was communicated while the vehicle is navigating and this time the allocation algorithm
assigned it to iCab-2, which was free and able to pick-up the passenger. All computations
are executed on-board of the vehicles computers in real-time, and since the problem was
addressing 2 vehicles and 3 requests in an environment with 12 points of interests, the
computational time was approx. 1860 milliseconds for each allocation solution.

128

Chapter 8

Conclusion and Future Work

8.1 Introduction

The efforts conducted in this thesis work are summarized in this chapter. Section 8.2 presents
the conclusion as an overview about the research focus and study main points. Furthermore,
Section 8.3 introduces recommendations for further research endeavors.

8.2 Conclusion

The technological advances in the Intelligent Transportation Systems (ITS) are exponentially
improving over the last century. The objective is to provide intelligent and innovative services
for the different modes of transportation, towards a better, safer, coordinated and smarter
transport networks. The ITS focus is divided into two main categories; the first is to improve
existing components of the transport networks, while the second is to develop intelligent
vehicles which facilitate the transportation process.

During the last couple of decades, the majority of car manufacturers and research institutes
presented different forms of vehicles with Advanced Driver Assistance Systems (ADAS)
capabilities. This technological advance lead to thousands of cars today in the streets are
capable of reaching the second level of automation, with both lateral and longitudinal control
of the vehicle in defined use cases, taking into consideration that the driver has to monitor
the system at all times and be ready to take control.

However the technological advances did not stop there, there are many vehicles on the
road aiming towards the third automation level. Different research efforts have been exerted
to tackle various aspects in one of the fields of the automated vehicles research. Accordingly,

129

Conclusion and Future Work

this thesis addressed the problem of multiple automated vehicles cooperation and proposed
an approach to solve it through various stages.

First, Unity, a 3D visualization tool with a powerful physics engine, combined with Robot
Operating System (ROS) framework and Simulation of Urban Mobility (SUMO) are used to
implement 3DCoAutoSim. 3DCoAutoSim is an abbreviation for "3D Simulator for Coop-
erative ADAS and Automated Vehicles Simulator". The study of simulation environments
is essential to understand how the vehicle is going to behave before deployment in the real
environment. 3DCoAutoSim was tested under different circumstances and conditions, after-
ward, it was validated through carrying-out several controlled experiments and compare the
results against their counter reality experiments. The obtained results showed the efficiency
of the simulator to handle different situations, emulating real world cars.

Second, off-road environment automated vehicles were developed as part of the iCab
project. iCab is an abbreviation for "Intelligent Campus Automobile", which had two electric
golf-carts that were modified mechanically, electronically and electrically towards the goal
of automated driving. Each iCab was equipped with several on-board embedded computers,
perception sensors and auxiliary devices, in order to execute the necessary actions for self-
driving. iCab have Vehicle-to-Everything (V2X) communication schemes, three layers of
control levels, cooperation architecture for multiple vehicles, several localization systems,
several mapping systems, several perception systems, and finally several planning system.
Hundreds of experiments were carried-out for the validation of each system in the iCab
platform. Results proved the functionality of the iCab platform to self-drive from one point
to another with minimal human intervention.

Furthermore, through the availability of multiple instances of the iCab platform, the
problem of cooperative driving was addressed through implementing several communication
schemes and studying the outcomes of platooning approach and protocols. The use of
V2X communication along with a dynamic platooning approach obtained better results than
vehicles that depend only on its own sensors for the environment perception.

The next objective was to design an architecture for the multiple automated vehicle
coordination as Multi-robot Task Allocation (MRTA) problem, focusing on solving the shared
mobility on-demand multiple transportation requests problem. The architecture was designed
in a generic manner, to allow heterogeneity, scalability, adaptability, and integrability to
various platforms. In order to test the proposed MRTA architecture, a hybrid optimization-
based algorithm was proposed as solution method to the MRTA problem. The novel approach
utilize both Simulated Annealing (SA) and Genetic Algorithm (GA) approaches, in order to
allocate the vehicles in a near-optimal solution, optimizing the distance covered, execution
time, waiting time and vehicle energy. The proposed algorithm was tested against several

130

8.3 Future Work

benchmarks for validation of obtaining near-optimal solutions. The results showed high
performance of the proposed algorithm in tackling several form of the MRTA problem and
its scalability in handling multiple vehicles, outperforming all other approaches.

Finally, the work in this thesis derived 34 peer-reviewed publications in books, journals
and conferences, including 2 best paper awards, which are listed and detailed in Appendix A.

8.3 Future Work

While the proposed work obtained successful results, there were some aspects of the problem
that were assumed for simplification. These assumptions could be addressed in the future
work, to increase the reliability of the proposed work and to incorporate the proposed
algorithms in a different types of vehicles, aiming towards a complete self-driving platform.
The future recommendations are, but are not limited to:

• Extending the proposed approaches of the iCab platforms to different type of automated
vehicles. Accordingly, all the proposed systems will be adapted to the new automated
car and later to be tested in real urban and high-way environments.

• Extending the proposed V2X communication schemes to adapt to the environment
networks availability and utilize 5G networks. Therefore, the communication speed
is increased among all road entities, and provide the possibility of near real-time
information sharing and more efficient communication system.

• Extending the networking feature of the proposed 3DCoAutoSim driving simulator
to allow multiple user controlled vehicles in the environment along with automated
vehicles. Furthermore, carry out experiments for the intelligent vehicles approaches
with guaranteed ground-truth.

• The vehicle platooning approach assumed that all vehicles have to follow the same
trajectory during the whole trip. However, for a more generic approach, protocols of
joining and leaving the platoon are to be investigated and with multiple vehicles in a
distributed manner, thus each vehicle has a local leader to follow.

• Extending the proposed MRTA cooperation architecture heterogeneity, scalability, and
adaptability features to carry-out more experiments that include transportation requests
for both passengers and packages, using iCab ground platforms and SkyOnyx aerial
platforms respectively. Furthermore, the experiments should be carried-out in different
off-road unknown environments.

131

Conclusion and Future Work

• In this thesis, the complex tasks decomposition was executed analytically based on
the number of passengers for each request and vehicle capacity. However, for the aim
of complete autonomy of the system, further research to propose an algorithm that is
responsible for the decomposition of the complex tasks based on the objective function
is required. This ensure the adaptability of the proposed architecture for heterogeneous
vehicles and/or tasks.

132

Appendices

Appendix A

Publications List

Book Chapters

1. Ahmed Hussein, Fernando Garcia, and Cristina Olaverri-Monreal (2018). "Hands-on
Tutorial: How to use Unity as Simulator for ROS-based Applications". Chapter in
Robot Operating System (ROS), Vol. 4, pp. 1-22. Springer International Publishing.
Under-Review.

2. Abdulla Al-Kaff, Francisco Miguel Moreno and Ahmed Hussein (2018). "ROS-based
Approach for Unmanned Vehicles in Civil Applications". Chapter in Robot Operating
System (ROS), Vol. 3, pp. 1-30. Springer International Publishing.

3. David Martin, Pablo Marin-Plaza, Ahmed Hussein, Arturo de la Escalera and Jose
Maria Armingol (2016). "ROS-based Architecture for Autonomous Intelligent Campus
Automobile (iCab)". Chapter in UNED Plasencia Revista de Investigacion Universi-
taria, Vol. 12, pp. 257-272. Agbatanero.

4. Alaa Khamis, Ahmed Hussein and Ahmed Elmogy (2015). "Multi-robot Task Allo-
cation: A Review of the State-of-the-art". Chapter in Cooperative Robots and Sensor
Networks, Vol. 604, pp. 31-51. Springer International Publishing.

135

Publications List

Journal Papers

1. Ahmed Hussein, Francisco Miguel Moreno, Fernando Garcia, and Jose Maria Armin-
gol (2018). "Multiple Vehicle Cooperation Generic ROS-based Architecture for Trans-
portation Requests". In Integrated Computer-Aided Engineering, pp. 1-16. IOS Press.
Under-Review.

2. Pablo Marin-Plaza, Ahmed Hussein, David Martin, and Arturo de la Escalera (2018).
"iCab Use Case for ROS-based Architecture". In Iberian Robotics (ROBOT2018), pp.
1-31. Springer. Under-Review.

3. Aso Validi, Thomas Ludwig, Ahmed Hussein and Cristina Olaverri-Monreal (2018).
"Impact of different penetration rates of Vehicle-to-Vehicle Communication and Adap-
tive Cruise Control on road safety by means of simulated environments". In Intelligent
Transportation Systems Magazine, pp. 1-9. IEEE. Under-Review.

4. Ahmed Hussein, Pablo Marin-Plaza, Fernando Garcia, and Jose Maria Armingol
(2018). "Hybrid optimization-based approach for multiple intelligent vehicles requests
allocation". In Journal of Advanced Transportation, pp. 1-12. Hindawi Publishing
Corp.

5. Pablo Marin-Plaza, Ahmed Hussein, David Martin, and Arturo de la Escalera (2018).
"Global and Local Path Planning Study in a ROS-based Research Platform for Au-
tonomous Vehicles". In Journal of Advanced Transportation, pp. 1-11. Hindawi
Publishing Corp.

6. Pablo Marin-Plaza, Ahmed Hussein, David Martin, and Arturo de la Escalera (2017).
"Complete ROS-based Architecture for Intelligent Vehicles". In Iberian Robotics
(ROBOT2017), pp. 499-510. Springer International Publishing.

7. Ahmed Hussein, Mohamed Adel, Mohamed Bakr, Omar M. Shehata, and Alaa
Khamis (2014). "Multi-Robot Task Allocation for Search and Rescue Missions".
In Journal of Physics: Conference Series, Vol. 570, No. 5, pp. 1-10. IOP Publishing.

8. Mohamed Badreldin, Ahmed Hussein, and Alaa Khamis (2013). "A comparative
study between optimization and market-based approaches to multi-robot task alloca-
tion". In Journal of Advances in Artificial Intelligence, pp. 1-12. Hindawi Publishing
Corp.

136

Conference Papers

1. Ahmed Hussein, Alberto Diaz-Alvarez, Jose Maria Armingol, and Cristina Olaverri-
Monreal (2018). "3DCoAutoSim: Simulator for Cooperative ADAS and Automated
Vehicles". In proceedings of International Conference on Intelligent Transportation
Systems (ITSC2018), pp. 1-6. IEEE. Under-Review.

2. Abdulla Al-Kaff, Ricardo Alonso, Mostafa Osman, and Ahmed Hussein (2018).
"SkyOnyx: Autonomous UAV Research Platform for Air Transportation System
(ATSys)". In proceedings of International Conference on Intelligent Transportation
Systems (ITSC2018), pp. 1-6. IEEE. Under-Review.

3. Mostafa Osman, Ricardo Alonso, Francisco Miguel Moreno, Ahmed Hussein, and
Abdulla Al-Kaff (2018). "Extended H-Infinity Filter for Multi-Sensor Fusion Local-
ization". In proceedings of International Conference on Intelligent Transportation
Systems (ITSC2018), pp. 1-6. IEEE. Under-Review.

4. Ayman H. Abdelhamid, Miguel Angel de Miguel, Pablo Marin Plaza, Ahmed Hussein,
and Fernando Garcia (2018). "Model Predictive Linear Quadratic Regulator Based Path
Tracking for Automated Ground Vehicles". In proceedings of International Conference
on Intelligent Transportation Systems (ITSC2018), pp. 1-6. IEEE. Under-Review.

5. Ahmed H. Salem, Catherine M. Elias, Omar M. Shehata, Elsayed I. Morgan, and
Ahmed Hussein (2018). "Two-Stage Voronoi-Based Deployment Algorithm with
Obstacle Avoidance for 2D CEAC Control Problem". In proceedings of International
Conference on Intelligent Transportation Systems (ITSC2018), pp. 1-6. IEEE. Under-
Review.

6. Dalia M. Ibrahim, Catherine M. Elias, Omar M. Shehata, Elsayed I. Morgan, and
Ahmed Hussein (2018). "On-line Collision-Free Path Planning Algorithm using Vari-
ous Artificial Potential Field Approaches". In proceedings of International Conference
on Intelligent Transportation Systems (ITSC2018), pp. 1-6. IEEE. Under-Review.

7. Raul Sosa San Frutos, Ahmed Hussein, Abdulla Al Kaff and Arturo de La Escalera
(2018). "ROS-based Architecture for Multiple Robots Formation". In proceedings
of International Conference on Intelligent Robots and Systems (IROS2018), pp. 1-6.
IEEE. Under-Review.

8. Mostafa Osman, Ahmed Hussein, Abdulla Al-Kaff, Fernando Garcia and Jose Maria
Armingol (2018). "Online Adaptive Covariance Estimation Approach for Multiple

137

Publications List

Odometry Sensors Fusion". In proceedings of International Vehicles Symposium
(IV2018), pp. 1-6. IEEE.

9. Omar M. Shehata, Ahmed Hussein, Mohamed Abdelaziz and Farid Tolbah (2018).
"ATOM: Autonomous Transportation Operating Modules - A Framework for Au-
tonomous Vehicles Development". In proceedings of International Vehicles Sympo-
sium (IV2018), pp. 1-6. IEEE.

10. Ahmed Hussein, Pablo Marin-Plaza, Fernando Garcia and Jose Maria Armingol
(2017). "Autonomous Cooperative Driving Using V2X Communications in Off-Road
Environment". In proceedings of International Conference on Intelligent Transportation
Systems (ITSC2017), pp. 1-6. IEEE.

11. Noelia Hernandez, Ahmed Hussein, Daniel Cruzado, Ignacio Parra, and Jose Maria
Armingol (2017). "Applying Low Cost WiFi-based Localization to In-Campus Au-
tonomous Vehicles". In proceedings of International Conference on Intelligent Trans-
portation Systems (ITSC2017), pp. 1-6. IEEE.

12. Armando Astudillo, Francisco Miguel Moreno, Ahmed Hussein, and Fernando Garcia
(2017). "Cost-Efficient Brainwave Controller for Automated Vehicles Route Deci-
sions". In proceedings of International Conference on Intelligent Transportation
Systems (ITSC2017), pp. 51-56. IEEE.

13. Andras Kokuti, Ahmed Hussein, Arturo de la Escalera, and Fernando Garcia (2017).
"Market-based Approach for Cooperation and Coordination Among Multiple Au-
tonomous Vehicles". In proceedings of International Conference on Intelligent Trans-
portation Systems (ITSC2017), pp. 1-6. IEEE.

14. Andras Kokuti, Ahmed Hussein, Pablo Marin-Plaza, Arturo de la Escalera, and Fer-
nando Garcia (2017). "V2X Communications Architecture for Off-Road Autonomous
Vehicles". In proceedings of International Conference on Vehicular Electronics and
Safety (ICVES2017), pp. 69-74. IEEE.

15. Arman Allamehzadeh, Jesus Urdiales de la Parra, Ahmed Hussein, Fernando Garcia,
and Cristina Olaverri-Monreal (2017). "Cost-efficient driver state and road conditions
monitoring system for conditional automation". In proceedings of Intelligent Vehicles
Symposium (IV2017), pp. 1497-1502. IEEE.

16. Pablo Marin-Plaza, Ahmed Hussein, David Martin, Fernando Garcia, Arturo de la
Escalera and Jose Maria Armingol (2016). "ROS-based Architecture for Autonomous

138

Vehicles". In proceedings of Symposium SEGVAUTO-TRIES-CM: Technologies for a
Safe, Accessible and Sustainable Mobility, pp. 43-46. UPM.

17. Ahmed Hussein, Fernando Garcia, Jose Maria Armingol and Cristina Olaverri-
Monreal (2016). "P2V and V2P Communication for Pedestrian Warning on the basis
of Autonomous Vehicles". In proceedings of International Conference on Intelligent
Transportation Systems (ITSC2016), pp. 2034-2039. IEEE.

18. Pablo Marin-Plaza, Ahmed Hussein, Carlos Guindel, Fernando Garcia, David Martin
and Arturo de la Escalera (2016). "Arquitectura basada en ROS para el vehiculo iCab
(Intelligent Campus Automobile)". In proceedings of XXXVII Jornadas de Automatica,
pp. 531-536. UNED.

19. Ahmed Hussein, Pablo Marin-Plaza, David Martin, Arturo de la Escalera and Jose
Maria Armingol (2016). "Autonomous Off-Road Navigation using Stereo-Vision
and Laser-Rangefinder Fusion for Outdoor Obstacles Detection". In proceedings of
Intelligent Vehicles Symposium (IV2016), pp. 104-109. IEEE.

20. Pablo Marin-Plaza, Jorge Beltran, Ahmed Hussein, David Martin, Arturo de la Es-
calera and Jose Maria Armingol (2016). "Stereo Vision-based Local Occupancy Grid
Map for Autonomous Navigation in ROS". In proceedings of International Confer-
ence on Computer Vision, Imaging and Computer Graphics Theory and Applications
(VISAPP2016), Vol. 3, pp. 701-706. SCITEPRESS.

21. Ahmed Hussein, Abdulla Al-Kaff, Arturo de la Escalera and Jose Maria Armingol
(2015). "Autonomous Indoor Navigation of Low-Cost Quadcopters". In proceedings
of International Conference on Service Operations and Logistics, and Informatics
(SOLI2015), pp. 133-138. IEEE.

Abstract Papers

1. Ahmed Hussein, Pablo Marin-Plaza, Fernando Garcia, and Jose Maria Armingol
(2017). "Optimization-based Approach for Cooperation and Coordination of Multi-
Autonomous Vehicles". In proceedings of Sixteenth International Conference on
Computer Aided Systems Theory (EUROCAST2017), pp. 1-2. Springer.

139

Publications List

Awards

1. Best Computer Vision Award (Co-author) in XXXVII Jornadas de Automatica 2016.

2. Best Student Paper Award in IEEE International Conference on Service Operations
and Logistics, and Informatics (SOLI2015).

140

Appendix B

Theses Supervision

2018

• Miguel Descalzo (2018). Pedestrian Cross Detection for Autonomous Vehicles. Uni-
versidad Carlos III de Madrid, Bachelor Thesis.

• Ayman Abdelhamid (2018). Automatic Navigation Control for Autonomous Unmanned
Ground Vehicles. Universidad Carlos III de Madrid, Ain Shams University Bachelor
Thesis Abroad.

• Ahmed Nasr (2018). Weight Adaptive Braking Control for Autonomous Ground
Vehicles. Universidad Carlos III de Madrid, Ain Shams University Bachelor Thesis
Abroad.

• Elnagdy Hisham (2018). Modeling and Control of Steer by Wire System. Universidad
Carlos III de Madrid, Ain Shams University Bachelor Thesis Abroad.

• Amr Ramadan (2018). ROS-based Advanced Platooning Approach for Automated
Vehicles. Universidad Carlos III de Madrid, German University in Cairo Bachelor
Thesis Abroad.

• Osama Ahmed (2018). Generating and Analyzing Occupancy Grid Maps for Intelligent
Vehicles. Universidad Carlos III de Madrid, German University in Cairo Bachelor
Thesis Abroad.

• Yahia (2018). Accelerated Detection and Localization for Unmanned Aerial Vehicles.
Universidad Carlos III de Madrid, German University in Cairo Bachelor Thesis Abroad.

141

Theses Supervision

• Mohammad Abdeen (2018). Trajectory Velocity Planning and Control for Automated
Vehicles. Universidad Carlos III de Madrid, German University in Cairo Bachelor
Thesis Abroad.

• Mohamed El Tabei (2018). Hexarotor Drone Stability Control Using Flaps. Universi-
dad Carlos III de Madrid, German University in Cairo Bachelor Thesis Abroad.

• Ahmed Elghobashy (2018). Scene Understanding Visualization for Automated Vehicles
using Unity3D. Universidad Carlos III de Madrid, German University in Cairo Bachelor
Thesis Abroad.

2017

• Armando Astudillo (2017). Brainwave Controller Development For Intelligent Vehicle.
Universidad Carlos III de Madrid, Bachelor Thesis.

• Alvaro Huete (2017). Design and implementation of a brake controller for an intelli-
gent vehicle (iCab). Universidad Carlos III de Madrid, Bachelor Thesis.

• Irene Salazar (2017). Mobile Warning Application. Universidad Carlos III de Madrid,
Bachelor Thesis.

• Yekaterina Lertxundi (2017). Steering Controller for Intelligent Vehicle. Universidad
Carlos III de Madrid, Bachelor Thesis.

• Ahmed Fahmy (2017). EKF-based Multi-sensor Fusion Localization for Unmanned
Ground Vehicles. Universidad Carlos III de Madrid, German University in Cairo
Bachelor Thesis Abroad.

• Abdallah Abdelwahed (2017). UKF-based Multi-sensor Fusion Localization for
Unmanned Aerial Vehicles. Universidad Carlos III de Madrid, German University in
Cairo Bachelor Thesis Abroad.

2016

• Omar Fathi (2016). Design and Test Wireless Communication Protocol for Autonomous
Vehicles. Universidad Carlos III de Madrid, German University in Cairo Bachelor
Thesis Abroad.

142

• Ahmed Radwan (2016). Design and Test a Control System for a Quadcopter. Univer-
sidad Carlos III de Madrid, German University in Cairo Bachelor Thesis Abroad.

2015

• Ossama El Hammady (2015). Outdoors Odometry and Mapping for Autonomous Golf
Carts. Universidad Carlos III de Madrid, German University in Cairo Bachelor Thesis
Abroad.

• Hesham Nounou (2015). Vision-based Surveillance System for Counting People Using
Small Quadcopter. Universidad Carlos III de Madrid, German University in Cairo
Bachelor Thesis Abroad.

143

Appendix C

3DCoAutoSim Read-Me

Brief Description

This is the Read-Me manual for the 3D-CoAutoSim, which is an abbreviation for "3D
Cooperative Automated Vehicles Simulator", which has VANET capabilities and connected
to SUMO and ROS. The manual details the simulator functionalities, capabilities description,
in addition to how-to guides for future modifications and improvements.

This is for 3D-CoAutoSim v4.0, which was implemented using:

• Unity 2018.1.0b12

• SUMO 0.32.0

• ROS Kinetic Kame

In order to run the simulator, your system must be:

• OS: Windows 7 or higher

• CPU: Minimum quad-core with 2.6GHz

• GPU: Minimum Nvidia GTX 940

• RAM: Minimum 8GB

How to run?

The simulator runs by double clicking on the built executable file, and the configuration
window appears, screenshot is shown in Figure C.1. Through this window you can adjust

145

3DCoAutoSim Read-Me

the graphics settings from the Graphics tab, by selecting screen resolution (default is
1920x1080), graphics quality (default is ultra), display monitor, and whether you want the
application to be Windows or Full-Screen (default). Moreover, you can go to the Input tab
and remap the input buttons to your controller. Upon finalizing all settings, click Play button
and you will be redirected to the simulator configuration menu.

Figure C.1 Configuration window

A screenshot of the simulator configuration menu is shown in Figure C.2, through which
you can select the desired options from the available five categories, in the following order.
First category is the environments, where you must select one, and only one, environment for
your simulator to build and add the vehicle to it. Second category is the scenarios, where in
case a specific scenario is defined for experiment, select it instead of the environment. Third
category is the features, where you select as many features as needed to be incorporated to
the vehicle. Fourth category is the devices, each selected device will be mounted on the
vehicle and enabled for publishing data. Automatically, last category is the outputs, where
they are selected according to which device is mounted or vice versa, to record the data in
the Output folder.

146

The output files format is adjusted based on the buttons on the right-side, currently only
CSV format is available. At the top-right, the simulator mode can be adjusted to work either
in Single or Multiple simulator modes. Moreover, for the ROS connectivity, click the ROS
button on the right side to enable/disable it.

Figure C.2 Simulator configuration menu

Upon finalizing all configurations, you click on Start button, which will load the simula-
tion environment with your configuration, ready to drive with the controller. Once the driving
experiment ends, press ESC button to exit the application or return to the configuration menu.
A screenshot example of the simulation environment is show in Figure C.3.

Controller Description

The vehicle can be controlled with both Keyboard and Joystick, the buttons mapping is
listed below, which can be configured from the "RCC_CarControllerV3" script, located in
"/Assets/ExternalAssets/RealisticCarControllerV3/Scripts/" folder.

Keyboard

The following buttons can be found on a standard 104-key computer keyboard, the letter
buttons don’t have to be in capital mode.

• Up-arrow or W: increases the speed of the vehicle, acts like a throttle

147

3DCoAutoSim Read-Me

Figure C.3 Simulator simulation environment

• Down-arrow or S: decreases the speed of the vehicle, acts like a brake

• Right-arrow or D: rotates the vehicle steering to the right

• Left-arrow or A: rotates the vehicle steering to the left

• 1,2,3,4,5,6,7: shifts vehicle gear to the pressed number, acts like shifter, active only in
manual driving mode

• C: cycles camera views as per the allocated cameras in the vehicle (first-person camera,
third-person camera, orbit camera, top-down camera, & wheel camera)

• I: activates/deactivates the vehicle ignition engine

• M: cycles the driving modes as per the allocated modes in the vehicle (automatic,
semi-automatic, & manual)

• R: shifts vehicle gear to rear, thus throttle speed drives backward, active in manual or
semi-automatic driving mode

• Left-Shift: shifts vehicle one gear up, active only in semi-automatic mode

• Left-Control: shifts vehicle one gear down, active only in semi-automatic mode

• E: activates/deactivates the vehicle right-side blinker

• Q: activates/deactivates the vehicle left-side blinker

148

• L: activates/deactivates the vehicle driving front-light beam

• K: activates the vehicle high front-light beam, acts like light blinker

Joystick

The following buttons can be found on the Thrustmaster TH8A pedals and shifter, and the
Thrustmaster T500 RS steering wheel, as shown in Figure C.4.

Figure C.4 Thrustmaster TH8A Pedals & Shifter + T500 RS Steering Wheel

Please refer to Figure C.5 for the buttons mapping.

• Throttle-Pedal: increases the speed of the vehicle

• Brake-Pedal: decreases the speed of the vehicle

• Steering-Wheel: rotates the vehicle steering to the left or right

• Gear-Shifter: shifts vehicle gear to the selected number, active only in manual driving
mode, and gear number 8 represents rear gear

• PS: cycles camera views as per the allocated cameras in the vehicle (first-person
camera, third-person camera, orbit camera, top-down camera, & wheel camera)

• Start: activates/deactivates the vehicle ignition engine

149

3DCoAutoSim Read-Me

• Select: cycles the driving modes as per the allocated modes in the vehicle (automatic,
semi-automatic, & manual)

• R1: shifts vehicle one gear up, active only in semi-automatic mode

• L1: shifts vehicle one gear down, active only in semi-automatic mode

• R2: activates/deactivates the vehicle right-side blinker

• L2: activates/deactivates the vehicle left-side blinker

• ∆: activates/deactivates the vehicle driving front-light beam

• X : activates the vehicle high front-light beam, acts like light blinker

Figure C.5 Thrustmaster T500 RS Steering Wheel Buttons Mapping

150

Bibliography

[1] K. Benz, “Vehicle with gas engine operation,” German Patent Number DRP-37435,
1886.

[2] A. Jambor and M. Beyer, “New cars - new materials,” Materials & design, vol. 18, no.
1-6, pp. 203–209, 1997.

[3] K. Yamane and S. Furuhama, “A study on the effect of the total weight of fuel and fuel
tank on the driving performances of cars,” International journal of hydrogen energy,
vol. 23, no. 9, pp. 825–831, 1998.

[4] Y. Li, Z. Lin, A. Jiang, and G. Chen, “Use of high strength steel sheet for lightweight
and crashworthy car body,” Materials & design, vol. 24, no. 3, pp. 177–182, 2003.

[5] W. J. Joost, “Reducing vehicle weight and improving us energy efficiency using
integrated computational materials engineering,” Jom, vol. 64, no. 9, pp. 1032–1038,
2012.

[6] F. R. Field III, T. J. Wallington, M. Everson, and R. E. Kirchain, “Strategic materials
in the automobile: a comprehensive assessment of strategic and minor metals use in
passenger cars and light trucks,” Environmental science & technology, vol. 51, no. 24,
pp. 14 436–14 444, 2017.

[7] M.-P. Todor, C. Bulei, and I. Kiss, “An overview on fiber-reinforced composites used
in the automotive industry,” Annals of the Faculty of Engineering Hunedoara, vol. 15,
no. 2, pp. 1–181, 2017.

[8] R. Cuerden, L. Lloyd, C. Wallbank, and M. Seidl, “The potential for vehicle safety
standards to prevent road deaths and injuries,” Global NCAP, pp. 1–63, 2015.

[9] A. Paul, R. Chauhan, R. Srivastava, and M. Baruah, “Advanced driver assistance
systems,” SAE Technical Paper, Tech. Rep., 2016.

151

Bibliography

[10] W. D. Jones, “Building safer cars,” IEEE Spectrum, vol. 39, no. 1, pp. 82–85, 2002.

[11] C. Castro and T. Horberry, The human factors of transport signs. CRC press, 2004.

[12] C. Ho and C. Spence, “Human factors in road and rail transport,” Global NCAP, pp.
1–48, 2008.

[13] S. G. Klauer, F. Guo, B. G. Simons-Morton, M. C. Ouimet, S. E. Lee, and T. A.
Dingus, “Distracted driving and risk of road crashes among novice and experienced
drivers,” New England journal of medicine, vol. 370, no. 1, pp. 5–59, 2014.

[14] A. Ghosh, T. Chatterjee, S. Samanta, J. Aich, and S. Roy, “Distracted driving: A
novel approach towards accident prevention,” Advances in Computational Sciences
and Technology, vol. 10, no. 8, pp. 269–2705, 2017.

[15] WHO, Global status report on road safety. World Health Organization, 2015.

[16] S. Barbieri, G. Vettore, V. Pietrantonio, R. Snenghi, A. Tredese, M. Bergamini,
S. Previato, A. Stefanati, R. M. Gaudio, and P. Feltracco, “Pedestrian inattention
blindness while playing pokemon go as an emerging health-risk behavior: a case
report,” Journal of medical internet research, vol. 19, no. 4, 2017.

[17] B. W. Smith, “Sae levels of driving automation,” Center for Internet and Society,
Stanford Law School, 2013.

[18] R. R. Teetor, “Speed control device for resisting operation of the accelerator,” 1950,
uS Patent 2,519,859.

[19] P. I. Labuhn and W. J. Chundrlik Jr, “Adaptive cruise control,” 1995, uS Patent
5,454,442.

[20] H. W. Kim, “Lane keeping assist system,” 2012, uS Patent 8,095,266.

[21] R. Bradley, “Tesla autopilot, the electric-vehicle maker sent its cars a software update
that suddenly made autonomous driving a reality,” 2016.

[22] I. Schadler, “Eco-mobility 2025 plus - roadmap,” A3PS, pp. 1–72, 2015.

[23] C. Benevolo, R. P. Dameri, and B. D’Auria, “Smart mobility in smart city,” Empower-
ing Organizations, pp. 13–28, 2016.

[24] S. Shaheen, A. Cohen, and I. Zohdy, “Shared mobility: current practices and guiding
principles,” U.S. Department of Transportation, pp. 1–120, 2016.

152

Bibliography

[25] V. Dolk, J. den Ouden, S. Steeghs, J. G. Devanesan, I. Badshah, A. Sudhakaran,
K. Elferink, and D. Chakraborty, “Cooperative automated driving for various traffic
scenarios: Experimental validation in the gcdc 2016,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 4, pp. 1308–1321, 2018.

[26] P. R. Alves, J. Goncalves, R. J. Rossetti, E. C. Oliveira, and C. Olaverri-Monreal,
“Forward collision warning systems using heads-up displays: Testing usability of two
new metaphors,” in Intelligent Vehicles Symposium (IV) Workshop, 2013, pp. 1–6.

[27] C. Olaverri-Monreal, P. Gomes, M. K. Silveria, and M. Ferreira, “In-vehicle virtual
traffic lights: a graphical user interface,” in Information Systems and Technologies
(CISTI), 2012 7th Iberian Conference on. IEEE, 2012, pp. 1–6.

[28] R. Maia, M. Silva, R. Araujo, and U. Nunes, “Electric vehicle simulator for energy con-
sumption studies in electric mobility systems,” in Forum on Integrated and Sustainable
Transportation System (FISTS). IEEE, 2011, pp. 227–232.

[29] A. Wegener, M. Piorkowski, M. Raya, H. Hellbruck, S. Fischer, and J.-P. Hubaux,
“Traci: an interface for coupling road traffic and network simulators,” in Proceedings
of the 11th communications and networking simulation symposium. ACM, 2008, pp.
155–163.

[30] NSNAM, “ns-2: The network simulator,” [Last Accessed: 2018-04-30]. [Online].
Available: http://nsnam.sourceforge.net/wiki/index.php/Main_Page

[31] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo (simulation of urban
mobility): an overview,” The Third International Conference on Advances in System
Simulation (SIMUL), 2011.

[32] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled network and road
traffic simulation for improved ivc analysis,” IEEE Transactions on Mobile Computing,
vol. 10, no. 1, pp. 3–15, 2011.

[33] P. Bhavsar, M. Chowdhury, Y. He, and M. Rahman, “A network wide simulation
strategy of alternative fuel vehicles,” Transportation Research Part C: Emerging
Technologies, vol. 40, pp. 201–214, 2014.

[34] A. Brown et al., “Udacity self-driving car simulator,” [Last Accessed: 2018-04-30].
[Online]. Available: https://github.com/udacity/self-driving-car-sim

153

http://nsnam.sourceforge.net/wiki/index.php/Main_Page
https://github.com/udacity/self-driving-car-sim

Bibliography

[35] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open urban
driving simulator,” in Proceedings of the 1st Annual Conference on Robot Learning,
2017, pp. 1–16.

[36] R. Math, A. Mahr, M. M. Moniri, and C. Muller, “Opends: A new open-source driving
simulator for research,” in Adjunct Proceedings of the 4th International Conference
on Automotive User Interfaces and Interactive Vehicular Appilcations, Portsmouth,
NH, USA, 2012, pp. 7–8.

[37] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “Ros: an open-source robot operating system,” ICRA workshop on open source
software, pp. 1–5, 2009.

[38] D. Helgason, “Unity 1.0 is shipping,” [Last Accessed: 2018-04-30]. [Online].
Available: https://forum.unity.com/threads/unity-1-0-is-shipping.56/

[39] A. B. Lange, U. P. Schultz, and A. S. Soerensen, “Unity-link: A software-gateware in-
terface for rapid prototyping of experimental robot controllers on fpgas,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2013, pp.
3899–3906.

[40] R. Codd-Downey, P. M. Forooshani, A. Speers, H. Wang, and M. Jenkin, “From
ros to unity: Leveraging robot and virtual environment middleware for immersive
teleoperation,” in IEEE International Conference on Information and Automation
(ICIA). IEEE, 2014, pp. 932–936.

[41] R. T. Jonathan Mace and J. Lee, “Ros bridge suite,” [Last Accessed: 2018-04-30].
[Online]. Available: http://wiki.ros.org/rosbridge_suite

[42] D. Crockford, “The application/json media type for javascript object notation (json),”
IETF, pp. 1–10, 2006.

[43] W. Meng, Y. Hu, J. Lin, F. Lin, and R. Teo, “Ros + unity: An efficient high-fidelity
3d multi-uav navigation and control simulator in gps-denied environments,” in 41st
Annual Conference of the IEEE Industrial Electronics Society (IECON). IEEE, 2015,
pp. 2562–2567.

[44] Y. Hu and W. Meng, “Rosunitysim: Development and experimentation of a real-time
simulator for multi-unmanned aerial vehicle local planning,” Simulation, vol. 92,
no. 10, pp. 931–944, 2016.

154

https://forum.unity.com/threads/unity-1-0-is-shipping.56/
http://wiki.ros.org/rosbridge_suite

Bibliography

[45] E. Sita, C. M. Horvath, T. Thomessen, P. Korondi, and A. G. Pipe, “Ros-unity3d based
system for monitoring of an industrial robotic process,” in IEEE/SICE International
Symposium on System Integration (SII). IEEE, 2017, pp. 1047–1052.

[46] Y. Mizuchi and T. Inamura, “Cloud-based multimodal human-robot interaction simu-
lator utilizing ros and unity frameworks,” in IEEE/SICE International Symposium on
System Integration (SII). IEEE, 2017, pp. 948–955.

[47] M. Jenkin, “Unity ros,” [Last Accessed: 2018-04-30]. [Online]. Available:
https://github.com/michaeljenkin/unityros

[48] E. Ackerman, “Turtlebot inventors tell us everything about the robot,” IEEE Spectrum,
pp. 1–10, 2013.

[49] M. C. Thorstensen, “Visualization of robotic sensor data with augmented reality,”
Master’s thesis, Universitetet i Oslo, 2017.

[50] M. C. Thorstensen, “Ros bridge lib,” [Last Accessed: 2018-04-30]. [Online].
Available: https://github.com/MathiasCiarlo/ROSBridgeLib

[51] S. Kato, S. Tsugawa, K. Tokuda, T. Matsui, and H. Fujii, “Vehicle control algorithms
for cooperative driving with automated vehicles and intervehicle communications,”
IEEE Transaction on Intelligent Transportation Systems, vol. 3, pp. 155–161, 2002.

[52] J. Jiong, J. Gubbi, S. Marusic, and M. Palaniswami, “An information framework for
creating a smart city through internet of things,” IEEE Internet of Things Journal,
vol. 1, no. 2, pp. 112–121, 2014.

[53] D. L. Bock, D. Kettles, and J. Harrison, “Automated, autonomous and connected
vehicle technology assessment,” Electric Vehicle Transportation Center (EVTC), 2016.

[54] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann et al., “Stanley: The robot that won the darpa
grand challenge,” Journal of field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[55] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Duggins,
T. Galatali, C. Geyer et al., “Autonomous driving in urban environments: Boss and
the urban challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[56] S. L. Poczter and L. M. Jankovic, “The google car: driving toward a better future,”
Journal of Business Case Studies, vol. 10, no. 1, pp. 1–7, 2014.

155

https://github.com/michaeljenkin/unityros
https://github.com/MathiasCiarlo/ROSBridgeLib

Bibliography

[57] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang,
U. Franke, N. Appenrodt, C. G. Keller et al., “Making bertha drive—an autonomous
journey on a historic route,” IEEE Intelligent Transportation Systems Magazine, vol. 6,
no. 2, pp. 8–20, 2014.

[58] P. Furgale, U. Schwesinger, M. Rufli, W. Derendarz, H. Grimmett, P. Mühlfellner,
S. Wonneberger, J. Timpner, S. Rottmann, B. Li, B. Schmidt, T. N. Nguyen, E. Car-
darelli, S. Cattani, S. Brüning, S. Horstmann, M. Stellmacher, H. Mielenz, K. Köser,
M. Beermann, C. Häne, L. Heng, G. H. Lee, F. Fraundorfer, R. Iser, R. Triebel,
I. Posner, P. Newman, L. Wolf, M. Pollefeys, S. Brosig, J. Effertz, C. Pradalier, and
R. Siegwart, “Toward automated driving in cities using close-to-market sensors, an
overview of the v-charge project,” IEEE Intelligent Vehicles Symposium (IV), pp.
809–816, 2013.

[59] DailyNews, “Bmw, audi push self-driving cars closer to reality,” Daily News - Autos,
2013.

[60] A. Bragman, “Mercedes-benz tech brings cars closer to self driving,” USA Today,
2016.

[61] L. Laursen, “Volvo to test self-driving cars in traffic,” IEEE Spectrum - Tech Talk,
2013.

[62] A. Y. S. Lam, Y.-W. Leung, and X. Chu, “Autonomous vehicle public transportation
system,” IEEE International Conference Connected Vehicles and Expo (ICCVE), p.
571–576, 2014.

[63] P. Khaligh and U. Weidmann, “A conceptual framework for the interactions of au-
tonomous public transport systems and urban planning guideline,” Swiss Transport
Research Conference, pp. 1–18, 2016.

[64] M. M. Waldrop et al., “No drivers required,” Nature, vol. 518, no. 7537, p. 20, 2015.

[65] P. Parsania and K. Saradava, “Drive-by-wire systems in automobiles,” Journal of
Systematic Computing, vol. 6, pp. 1–5, 2012.

[66] A. Kader, “Steer-by-wire control system,” Ph.D. dissertation, Swarthmore College
Department of Engineering, 2006.

[67] R. Isermann, R. Schwarz, and S. Stolzl, “Fault-tolerant drive-by-wire systems,” IEEE
Control Systems, vol. 22, no. 5, pp. 64–81, 2002.

156

Bibliography

[68] W. Xiang, P. C. Richardson, C. Zhao, and S. Mohammad, “Automobile brake-by-wire
control system design and analysis,” IEEE Transactions on Vehicular Technology,
vol. 57, no. 1, pp. 138–145, 2008.

[69] P. Papadimitratos, A. D. L. Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza,
“Vehicular communication systems: Enabling technologies, applications, and future
outlook on intelligent transportation,” IEEE Communications Magazine, vol. 47,
no. 11, pp. 84–95, 2009.

[70] P. Wang, B. Di, H. Zhang, K. Bian, and L. Song, “Cellular v2x in unlicensed spectrum:
Harmonious coexistence with vanet in 5g systems,” arXiv preprint arXiv:1712.04639,
pp. 1–31, 2017.

[71] H. Hartenstein and K. Laberteaux, VANET: vehicular applications and inter-
networking technologies. John Wiley & Sons, 2009, vol. 1.

[72] H. M. Fahmy, G. Baumann, M. A. A. El Ghany, and H. Mostafa, “V2v-based vehi-
cle risk assessment and control for lane-keeping and collision avoidance,” in 29th
International Conference on Microelectronics (ICM2017). IEEE, 2017, pp. 1–5.

[73] N. Liu, M. Liu, J. Cao, G. Chen, and W. Lou, “When transportation meets communica-
tion: V2p over vanets,” in IEEE International Conference on Distributed Computing
Systems (ICDCS2010). IEEE, 2010, pp. 567–576.

[74] W. Cho, S. I. Kim, H. kyun Choi, H. S. Oh, and D. Y. Kwak, “Performance evaluation
of v2v/v2i communications: The effect of midamble insertion,” in International
Conference on Wireless Communication, Vehicular Technology, Information Theory
and Aerospace and Electronic Systems Technology. IEEE, 2009, pp. 793–797.

[75] I. C. Msadaa, P. Cataldi, and F. Filali, “A comparative study between 802.11 p
and mobile wimax-based v2i communication networks,” in Fourth International
Conference on Next Generation Mobile Applications, Services and Technologies
(NGMAST2010). IEEE, 2010, pp. 186–191.

[76] G. Cotugno, L. D’Alfonso, W. Lucia, P. Muraca, and P. Pugliese, “Extended and
unscented kalman filters for mobile robot localization and environment reconstruction,”
in 21st Mediterranean Conference on Control and Automation. IEEE, 2013, pp.
19–26.

157

Bibliography

[77] M. A. Skoglund, G. Hendeby, and D. Axehill, “Extended kalman filter modifications
based on an optimization view point,” in 18th International Conference on Information
Fusion. IEEE, 2015, pp. 1856–1861.

[78] J. Dunik, O. Straka, and M. Simandl, “On autocovariance least-squares method for
noise covariance matrices estimation,” IEEE Transactions on Automatic Control,
vol. 62, no. 2, pp. 967–972, 2017.

[79] M. A. Zagrobelny and J. B. Rawlings, “Practical improvements to autocovariance
least-squares,” AIChE Journal, vol. 61, no. 6, pp. 1840–1855, 2015.

[80] Y. Meng, S. Gao, Y. Zhong, G. Hu, and A. Subic, “Covariance matching based adaptive
unscented kalman filter for direct filtering in ins/gnss integration,” Acta Astronautica,
vol. 120, pp. 171–181, 2016.

[81] W. Zhang, W. Shi, and Z. Ma, “Adaptive unscented kalman filter based state of energy
and power capability estimation approach for lithium-ion battery,” Journal of Power
Sources, vol. 289, pp. 50–62, 2015.

[82] M. A. Zagrobelny and J. B. Rawlings, “Identifying the uncertainty structure using
maximum likelihood estimation,” in American Control Conference (ACC2015). IEEE,
2015, pp. 422–427.

[83] A. Aubry, A. De Maio, L. Pallotta, and A. Farina, “Maximum likelihood estimation of
a structured covariance matrix with a condition number constraint,” IEEE Transactions
on Signal Processing, vol. 60, no. 6, pp. 3004–3021, 2012.

[84] Z. Weng and P. M. Djuric, “A bayesian approach to covariance estimation and data
fusion,” in Proceedings of the 20th European Signal Processing Conference (EU-
SIPCO2012). IEEE, 2012, pp. 2352–2356.

[85] Y. Wang and P. M. Djuric, “Distributed bayesian estimation of linear models with
unknown observation covariances,” IEEE Transactions on Signal Processing, vol. 64,
no. 8, pp. 1962–1971, 2016.

[86] S. Akhlaghi, N. Zhou, and Z. Huang, “Adaptive adjustment of noise covariance in
kalman filter for dynamic state estimation,” arXiv preprint arXiv:1702.00884, pp. 1–5,
2017.

[87] H. Wang, Z. Deng, B. Feng, H. Ma, and Y. Xia, “An adaptive kalman filter estimating
process noise covariance,” Neurocomputing, vol. 223, pp. 12–17, 2017.

158

Bibliography

[88] B. Feng, M. Fu, H. Ma, Y. Xia, and B. Wang, “Kalman filter with recursive covariance
estimation—sequentially estimating process noise covariance,” IEEE Transactions on
Industrial Electronics, vol. 61, no. 11, pp. 6253–6263, 2014.

[89] S. Thrun et al., “Robotic mapping: A survey,” Exploring artificial intelligence in the
new millennium, vol. 1, pp. 1–35, 2002.

[90] T. Colleens and J. Colleens, “Occupancy grid mapping: An empirical evaluation,” in
Mediterranean Conference on Control and Automation. IEEE, 2007, pp. 1–6.

[91] G. Dissanayake, S. B. Williams, H. Durrant-Whyte, and T. Bailey, “Map management
for efficient simultaneous localization and mapping (slam),” Autonomous Robots,
vol. 12, no. 3, pp. 267–286, 2002.

[92] J. Levinson, M. Montemerlo, and S. Thrun, “Map-based precision vehicle localization
in urban environments.” in Robotics: Science and Systems, vol. 4. Citeseer, 2007,
p. 1.

[93] H. Lategahn, A. Geiger, and B. Kitt, “Visual slam for autonomous ground vehicles,”
in IEEE International Conference on Robotics and Automation (ICRA2011). IEEE,
2011, pp. 1732–1737.

[94] R. Kuramachi, A. Ohsato, Y. Sasaki, and H. Mizoguchi, “G-icp slam: An odometry-
free 3d mapping system with robust 6dof pose estimation,” in IEEE International
Conference on Robotics and Biomimetics (ROBIO2015). IEEE, 2015, pp. 17–181.

[95] R. C. Luo and C. C. Lai, “Multisensor fusion-based concurrent environment mapping
and moving object detection for intelligent service robotics,” IEEE transactions on
industrial electronics, vol. 61, no. 8, pp. 4043–4051, 2014.

[96] F. M. Moreno, “Fusion multi-sensorial en mapas de ocupacion,” Master’s thesis,
Universidad Carlos III de Madrid, 2016.

[97] A. Discant, A. Rogozan, C. Rusu, and A. Bensrhair, “Sensors for obstacle detection-a
survey,” in International Spring Seminar on Electronics Technology. IEEE, 2007, pp.
100–105.

[98] S. Sivaraman and M. M. Trivedi, “Looking at vehicles on the road: A survey of
vision-based vehicle detection, tracking, and behavior analysis,” IEEE Transactions
on Intelligent Transportation Systems, vol. 14, no. 4, pp. 1773–1795, 2013.

159

Bibliography

[99] A. Mukhtar, L. Xia, and T. B. Tang, “Vehicle detection techniques for collision
avoidance systems: A review,” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 5, pp. 2318–2338, 2015.

[100] C. Premebida, G. Monteiro, U. Nunes, and P. Peixoto, “A lidar and vision-based ap-
proach for pedestrian and vehicle detection and tracking,” in Intelligent Transportation
Systems Conference (ITSC2007). IEEE, 2007, pp. 1044–1049.

[101] W. Zhang, “Lidar-based road and road-edge detection,” in Intelligent Vehicles Sympo-
sium (IV2010). IEEE, 2010, pp. 845–848.

[102] G. Prabhakar, B. Kailath, S. Natarajan, and R. Kumar, “Obstacle detection and
classification using deep learning for tracking in high-speed autonomous driving,”
in IEEE Region 10 Symposium (TENSYMP2017). IEEE, 2017, pp. 1–6.

[103] S. Scheidegger, J. Benjaminsson, E. Rosenberg, A. Krishnan, and K. Granstrom,
“Mono-camera 3d multi-object tracking using deep learning detections and pmbm
filtering,” arXiv preprint arXiv:1802.09975, pp. 1–8, 2018.

[104] D. Gonzalez, J. Perez, V. Milanes, and F. Nashashibi, “A review of motion planning
techniques for automated vehicles,” IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 4, pp. 1135–1145, 2016.

[105] P. Bhattacharya and M. L. Gavrilova, “Voronoi diagram in optimal path planning,”
in Voronoi Diagrams in Science and Engineering, 2007. ISVD’07. 4th International
Symposium on. IEEE, 2007, pp. 38–47.

[106] M. Seda, “Roadmap methods vs. cell decomposition in robot motion planning,” in
Proceedings of the International Conference on Signal Processing, Robotics and
Automation. WSEAS, 2007, pp. 127–132.

[107] P. Vadakkepat, K. C. Tan, and W. Ming-Liang, “Evolutionary artificial potential
fields and their application in real time robot path planning,” in IEEE Congress on
Evolutionary Computation, vol. 1. IEEE, 2000, pp. 256–263.

[108] T. Ju, S. Liu, J. Yang, and D. Sun, “Rapidly exploring random tree algorithm-based
path planning for robot-aided optical manipulation of biological cells,” IEEE Transac-
tions on Automation Science and Engineering, vol. 11, no. 3, pp. 649–657, 2014.

[109] C. Luo, S. X. Yang, X. Li, and M. Q.-H. Meng, “Neural-dynamics-driven complete
area coverage navigation through cooperation of multiple mobile robots,” IEEE Trans-
actions on Industrial Electronics, vol. 64, no. 1, pp. 750–760, 2017.

160

Bibliography

[110] P. Bender, O. S. Tas, J. Ziegler, and C. Stiller, “The combinatorial aspect of motion
planning: Maneuver variants in structured environments,” IEEE Intelligent Vehicles
Symposium (IV), pp. 1386–1392, 2015.

[111] X. Qian, F. Altche, P. Bender, C. Stiller, and A. de La Fortelle, “Optimal trajectory
planning for autonomous driving integrating logical constraints: An miqp perspective,”
IEEE International Conference on Intelligent Transportation Systems (ITSC), pp.
205–210, 2016.

[112] C. Englund, L. Chen, J. Ploeg, E. Semsar-Kazerooni, A. Voronov, H. H. Bengtsson, and
J. Didoff, “The grand cooperative driving challenge 2016: boosting the introduction
of cooperative automated vehicles,” IEEE Wireless Communications, vol. 23, no. 4,
pp. 146–152, 2016.

[113] H. Rewald and O. Stursberg, “Cooperation of autonomous vehicles using a hierarchy
of auction-based and model-predictive control,” IEEE Intelligent Vehicles Symposium
(IV), pp. 1078–1084, 2016.

[114] M. Naumann and C. Stiller, “Towards cooperative motion planning for automated
vehicles in mixed traffic,” IEEE International Conference on Intelligent Robots and
Systems (IROS), pp. 1–6, 2017.

[115] S. Manzinger, M. Leibold, and M. Althoff, “Driving strategy selection for cooperative
vehicles using maneuver templates,” IEEE Intelligent Vehicles Symposium (IV), pp.
647–654, 2017.

[116] J. Luo and J.-P. Hubaux, “A survey of inter-vehicle communication,” Infoscience -
LCA-REPORT-2004-013, pp. 1–12, 2004.

[117] S. K. Gehrig and F. J. Stein, “Collision avoidance for vehicle-following systems,”
IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 2, pp. 233–244,
2007.

[118] S. E. Shladover, “Automated vehicles for highway operations (automated highway
systems),” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering, vol. 219, no. 1, pp. 53–75, 2005.

[119] S. E. Shladover, “Cooperative (rather than autonomous) vehicle-highway automation
systems,” IEEE Intelligent Transportation Systems Magazine, vol. 1, no. 1, pp. 10–19,
2009.

161

Bibliography

[120] P. Ioannou, Automated highway systems. Springer Science and Business Media,
2013.

[121] S. Meena and O. Prakash, “The study on automated highway systems,” Imperial
Journal of Interdisciplinary Research, vol. 3, no. 4, 2017.

[122] B. Gerkey and J. Mataric, “A formal analysis and taxonomy of task allocation in
multi-robot systems,” The International Journal of Robotics Research, vol. 23, no. 9,
pp. 939–954, 2004.

[123] L. E. Parker, Multiple Mobile Robot Systems. Springer, 2008.

[124] M. Badreldin, A. Hussein, and A. Khamis, “A comparative study between optimization
and market-based approaches to multi-robot task allocation,” Journal of Advances in
Artificial Intelligence, vol. 2013, pp. 1–11, 2013.

[125] A. Ezz, “Adaptive optimal task assignment for cooperative autonomous vehicles,”
Master’s thesis, German University in Cairo, 2018.

[126] N. Atay and B. Bayazit, “Mixed-integer linear programming solution to multi-robot
task allocation problem,” Washington Univ., St. Louis, Tech. Rep. WUCSE-2006-54,
vol. 54, 2006.

[127] A. R. Mosteo, “Multi-robot task allocation for service robotics: From unlimited to
limited communication range,” Ph.D. dissertation, Universidad de Zaragoza, 2010.

[128] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot coordination:
A survey and analysis,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1257–1270, 2006.

[129] A. Hussein, “A market-based approach to multi-robot task allocation problem,” Mas-
ter’s thesis, German University in Cairo, 2013.

[130] W. Kmiecik, M. Wojcikowski, L. Koszalka, and A. Kasprzak, Task Allocation in Mesh
Connected Processors with Local Search Meta-heuristic Algorithms, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2010, vol. 5991.

[131] W. Chen and C. Lin, “A hybrid heuristic to solve a task allocation problem,” Computers
& Operations Research, vol. 27, no. 3, pp. 287–303, 2000.

[132] C. Liu and A. Kroll, A Centralized Multi-Robot Task Allocation for Industrial Plant
Inspection by Using A* and Genetic Algorithms, ser. Lecture Notes in Computer

162

Bibliography

Science, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh, and
J. Zurada, Eds. Springer Berlin Heidelberg, 2012, vol. 7268.

[133] R. Luna and K. E. Bekris, “Efficient and complete centralized multi-robot path plan-
ning,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS2011). IEEE, 2011, pp. 3268–3275.

[134] E. G. Hernandez-Martinez and E. Aranda-Bricaire, “Decentralized formation control
of multi-agent robot systems based on formation graphs,” Studies in Informatics and
Control, vol. 21, no. 1, pp. 7–16, 2012.

[135] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa, and R. Suk-
thankar, “Decentralized estimation and control of graph connectivity for mobile sensor
networks,” Automatica, vol. 46, no. 2, pp. 390–396, 2010.

[136] Z. Jian, P. Zhihong, and L. Bo, “Multi-task allocation of ucavs considering time cost
and hard time window constraints,” IEEE 31st Chinese Control Conference (CCC),
pp. 2448–2452, 2012.

[137] A. Khamis, A. Hussein, and A. Elmogy, Cooperative Robots and Sensor Networks.
Springer International Publishing, 2015, ch. Multi-robot Task Allocation: A Review
of the State-of-the-Art, pp. 31–51.

[138] T. Banziger, A. Kunz, and K. Wegener, “Optimizing human–robot task allocation
using a simulation tool based on standardized work descriptions,” Journal of Intelligent
Manufacturing, pp. 1–14, 2018.

[139] A. Hussein, A. Diaz-Alvarez, J. M. Armingol, and C. Olaverri-Monreal, “3dcoau-
tosim: Simulator for cooperative adas and automated vehicles,” in IEEE International
Conference on Intelligent Transportation Systems (ITSC2018). IEEE, 2018, pp. 1–6,
under-review.

[140] A. Hussein, F. Garcia, and C. Olaverri-Monreal, Hands-on Tutorial: How to use Unity
as Simulator for ROS-based Applications. Springer International Publishing, 2018,
vol. 4, ch. ROS-Based Approach for Unmanned Vehicles in Civil Applications, pp.
1–22, under-review.

[141] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project: Tools for
multi-robot and distributed sensor systems,” in Proceedings of the 11th international
conference on advanced robotics, vol. 1, 2003, pp. 317–323.

163

Bibliography

[142] O. S. R. Foundation, “Gazebo,” [Last Accessed: 2018-04-30]. [Online]. Available:
https://bitbucket.org/osrf/gazebo

[143] O. S. R. Foundation, “Car demo,” [Last Accessed: 2018-04-30]. [Online]. Available:
https://github.com/osrf/car_demo

[144] A. S. Kyaw, Unity 4.x Game AI Programming. Packt Publishing Ltd, 2013.

[145] S. Christodoulou, D. Michael, A. Gregoriades, and M. Pampaka, “Design of a 3d
interactive simulator for driver behavior analysis,” in Proceedings of the 2013 Summer
Computer Simulation Conference. Society for Modeling & Simulation International,
2013, p. 17.

[146] A. Smid, “Comparison of unity and unreal engine,” Ph.D. dissertation, Czech Technical
University in Prague, 2017.

[147] C. Biurrun, L. Serrano-Arriezu, and C. Olaverri-Monreal, “Micro-scopic driver-centric
simulator: Linking unity3d and sumo,” in World Conference on Information Systems
and Technologies. Springer, 2017, pp. 851–860.

[148] C. Olaverri-Monreal, J. Errea-Moreno, and A. Diaz-Alvarez, “Implementation and
evaluation of a traffic light assistance system in a simulation framework based on v2i
communication,” Journal of Advanced Transportation, 2018.

[149] F. Michaeler and C. Olaverri-Monreal, “3d driving simulator with vanet capabilities
to assess cooperative systems: 3dsimvanet,” in Intelligent Vehicles Symposium (IV).
IEEE, 2017, pp. 999–1004.

[150] S. P. Singh, K. Jain, and V. R. Mandla, “Image based virtual 3d campus modeling by
using cityengine,” American Journal of Engineering Science and Technology Research,
vol. 2, no. 1, pp. 1–10, 2014.

[151] B. Ozdodanlar, “Realistic car controller v3.1,” Bone Cracker Games, vol. 3, pp. 1–36,
2017.

[152] P. Marin-Plaza, A. Hussein, D. Martin, and A. d. l. Escalera, “Global and local path
planning study in a ros-based research platform for autonomous vehicles,” Journal of
Advanced Transportation, vol. 2018, pp. 1–11, 2018.

[153] M. S. Aminian, A. Allamehzadeh, M. Mostaed, and C. Olaverri-Monreal, “Cost-
efficient traffic sign detection relying on smart mobile devices,” in International
Conference on Computer Aided Systems Theory. Springer, 2017, pp. 419–426.

164

https://bitbucket.org/osrf/gazebo
https://github.com/osrf/car_demo

Bibliography

[154] A. Allamehzadeh, J. U. de la Parra, A. Hussein, F. Garcia, and C. Olaverri-Monreal,
“Cost-efficient driver state and road conditions monitoring system for conditional
automation,” in IEEE Intelligent Vehicles Symposium (IV2017). IEEE, 2017, pp.
1497–1502.

[155] C. Olaverri-Monreal, R. Lorenz, F. Michaeler, G. C. Krizek, and M. Pichler, “Tailigator:
Cooperative system for safety distance observance,” in International Conference on
Collaboration Technologies and Systems (CTS). IEEE, 2016, pp. 392–397.

[156] C. Olaverri-Monreal, G. C. Krizek, F. Michaeler, R. Lorenz, and M. Pichler, “Col-
laborative approach for a safe driving distance using stereoscopic image processing,”
Future Generation Computer Systems, 2018.

[157] K. Abdelgawad, J. Gausemeier, R. Dumitrescu, M. Grafe, J. Stoecklein, and J. Berssen-
bruegge, “Networked driving simulation: Applications, state of the art, and design
considerations,” Designs, vol. 2017, pp. 1–17, 2017.

[158] A. Hussein, A. Al-Kaff, A. de la Escalera, and J. M. Armingol, “Autonomous indoor
navigation of low-cost quadcopters,” in IEEE International Conference on Service
Operations And Logistics, And Informatics (SOLI2015). IEEE, 2015, pp. 133–138.

[159] D. Martin, P. M. Plaza, A. Hussein, A. de la Escalera, and J. M. Armingol, UNED
Plasencia Revista de Investigacion Universitaria. Agbatanero, 2016, vol. 16, ch.
Ros-based architecture for autonomous intelligent campus automobile (icab), pp.
257–272.

[160] P. Marin-Plaza, J. Beltran, A. Hussein, B. Musleh, D. Martin, A. de la Escalera,
and J. M. Armingol, “Stereo vision-based local occupancy grid map for autonomous
navigation in ros,” in Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications (VISIGRAPP2016), vol. 3. SciTePress, 2016, pp.
703–708.

[161] A. Hussein, P. Marin-Plaza, D. Martin, A. de la Escalera, and J. M. Armingol, “Au-
tonomous off-road navigation using stereo-vision and laser-rangefinder fusion for out-
door obstacles detection,” in IEEE Intelligent Vehicles Symposium (IV2016). IEEE,
2016, pp. 104–109.

[162] P. M. Plaza, A. Hussein, C. Guindel, F. Garcia, D. Martin, and A. de la Escalera,
“Arquitectura basada en ros para el vehiculo icab (intelligent campus automobile),” in
XXXVII Jornadas de Automatica, vol. 37. UNED, 2016, pp. 1–6.

165

Bibliography

[163] P. Marin-Plaza, A. Hussein, D. Martin, and A. de la Escalera, “Complete ros-based
architecture for intelligent vehicles,” Iberian Robotics (ROBOT2017), vol. 2017, pp.
499–510, 2017.

[164] N. Hernandez, A. Hussein, D. Cruzado, I. Parra, and J. M. Armingol, “Applying low
cost wifi-based localization to in-campus autonomous vehicles,” in IEEE International
Conference on Intelligent Transportation Systems (ITSC2017). IEEE, 2017, pp. 1–6.

[165] A. Astudillo, F. M. Moreno, A. Hussein, and F. Garcia, “Cost-efficient brainwave
controller for automated vehicles route decisions,” in IEEE International Conference
on Intelligent Transportation Systems (ITSC2017). IEEE, 2017, pp. 51–56.

[166] M. Osman, A. Hussein, A. Al-Kaff, F. Garcia, and J. M. Armingol, “Online adap-
tive covariance estimation approach for multiple odometry sensors fusion,” in IEEE
Intelligent Vehicles Symposium (IV2018). IEEE, 2018, pp. 1–6.

[167] A. Al-Kaff, F. M. Moreno, and A. Hussein, Robot Operating System (ROS). Springer
International Publishing, 2018, vol. 3, ch. ROS-Based Approach for Unmanned
Vehicles in Civil Applications, pp. 1–30.

[168] M. Osman, R. Alonso, F. M. Moreno, A. Hussein, and A. Al-Kaff, “Extended h-
infinity filter for multi-sensor fusion localization,” in IEEE International Conference
on Intelligent Transportation Systems (ITSC2018). IEEE, 2018, pp. 1–6.

[169] A. H. Abdelhamid, M. A. de Miguel, P. M. Plaza, A. Hussein, and F. Garcia, “Model
predictive linear quadratic regulator based path tracking for automated ground ve-
hicles,” in IEEE International Conference on Intelligent Transportation Systems
(ITSC2018). IEEE, 2018, pp. 1–6, under-review.

[170] A. Al-Kaff, R. Alonso, M. Osman, and A. Hussein, “Skyonyx: Autonomous uav
research platform for air transportation system (atsys),” in IEEE International Con-
ference on Intelligent Transportation Systems (ITSC2018). IEEE, 2018, pp. 1–6,
under-review.

[171] P. Marin-Plaza, A. Hussein, D. Martin, and A. de la Escalera, “icab use case for
ros-based architecture,” Iberian Robotics (ROBOT2018), vol. 2018, pp. 1–31, 2018,
under-review.

[172] E. Upton, “Raspberry pi 3,” [Last Accessed: 2018-04-30]. [Online]. Available:
https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale

166

https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale

Bibliography

[173] S. Korkalainen, “Turtlebot3-robotit,” Metropolia Ammattikorkeakoulu, pp. 1–40, 2017.

[174] E. Guizzo and E. Ackerman, “The turtlebot3 teacher [resources hands on],” IEEE
Spectrum, vol. 54, no. 8, pp. 19–20, 2017.

[175] V. Rabaud et al., “Slam gmapping,” [Last Accessed: 2018-04-30]. [Online]. Available:
https://github.com/ros-perception/slam_gmapping

[176] E. Marder-Eppstein, D. V. Lu, M. Ferguson, A. Hoy et al., “Ros navigation stack,”
[Last Accessed: 2018-04-30]. [Online]. Available: https://github.com/ros-planning/
navigation

[177] Robotis, “Turtlebot3 emanual,” [Last Accessed: 2018-04-30]. [Online]. Available:
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview

[178] A. Al-Kaff, “Vision-based navigation system for unmanned aerial vehicles,” Ph.D.
dissertation, Universidad Carlos III de Madrid, 2017.

[179] A. Al-Kaff, A. de La Escalera, and J. M. Armingol, “Homography-based navigation
system for unmanned aerial vehicles,” in International Conference on Advanced
Concepts for Intelligent Vision Systems. Springer, 2017, pp. 288–300.

[180] J. T. Isaacs, C. Magee, A. Subbaraman, F. Quitin, K. Fregene, A. R. Teel, U. Mad-
how, and J. P. Hespanha, “Gps-optimal micro air vehicle navigation in degraded
environments,” in American Control Conference (ACC). IEEE, 2014, pp. 1864–1871.

[181] M. F. Bahat and T. Filik, “Gps-based antenna tracking and signal beamforming system
for small uav platform,” in Signal Processing and Communications Applications
Conference (SIU). IEEE, 2015, pp. 1977–1980.

[182] A. Al-Kaff, F. Garcia, D. Martin, A. De La Escalera, and J. M. Armingol, “Obstacle
detection and avoidance system based on monocular camera and size expansion
algorithm for uavs,” Sensors, vol. 17, no. 5, p. 1061, 2017.

[183] A. Al-Kaff, F. M. Moreno, A. de la Escalera, and J. M. Armingol, “Intelligent vehicle
for search, rescue and transportation purposes,” in International Symposium on Safety,
Security and Rescue Robotics (SSRR). IEEE, 2017, pp. 110–115.

[184] R. Rao, “Steering linkage design. a method of determining the configuration of the
steering linkage so that the geometry conforms to ackermann principle,” Automotive
Engineering, vol. 58, pp. 31–33, 1968.

167

https://github.com/ros-perception/slam_gmapping
https://github.com/ros-planning/navigation
https://github.com/ros-planning/navigation
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview

Bibliography

[185] E. Mohamed and S. Albatlan, “Modeling and experimental design approach for
integration of conventional power steering and a steer-by-wire system based on active
steering angle control,” American Journal of Vehicle Design, vol. 2, no. 1, pp. 32–42,
2014.

[186] D. Garcia, “Interfaz de control icab, el vehiculo autonomo,” Bachelor Thesis, Univer-
sidad Carlos III de Madrid, 2015.

[187] Y. Lertxundi, “Steering controller for intelligent vehicle,” Bachelor Thesis, Universi-
dad Carlos III de Madrid, 2017.

[188] E. Hisham, “Modeling and control of steer by wire system,” ASU Bachelor Thesis
Abroad, Universidad Carlos III de Madrid, 2018.

[189] A. Nasr, “Weight adaptive braking control for autonomous ground vehicles,” ASU
Bachelor Thesis Abroad, Universidad Carlos III de Madrid, 2018.

[190] P. M. Plaza, “icab ros architecutre,” Ph.D. dissertation, Universidad Carlos III de
Madrid, 2018.

[191] S. H. Juan and F. H. Cotarelo, “Multi-master ros systems,” Institut de Robotics and
Industrial Informatics, pp. 1–18, 2015.

[192] R. Peter Bonasso, R. James Firby, E. Gat, D. Kortenkamp, D. P. Miller, and M. G.
Slack, “Experiences with an architecture for intelligent, reactive agents,” Journal of
Experimental and Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 237–256,
1997.

[193] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “The pixhawk open-source
computer vision framework for mavs,” The International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, vol. 38, no. 1, p. C22,
2011.

[194] A. Majdik, M. Popa, L. Tamas, I. Szoke, and G. Lazea, “New approach in solving the
kidnapped robot problem,” in Joint conference of the 41st International Symposium
on Robotics (ISR2010) and the 6th German Conference on Robotics (ROBOTIK2010).
VDE, 2010, pp. 1–6.

[195] Z. Su, X. Zhou, T. Cheng, H. Zhang, B. Xu, and W. Chen, “Global localization of a
mobile robot using lidar and visual features,” in IEEE International Conference on
Robotics and Biomimetics (ROBIO2017). IEEE, 2017, pp. 2377–2383.

168

Bibliography

[196] C. N. Taylor and D. Mohler, “A study of particle filtering approaches for the kidnapped
robot problem,” in Signal Processing, Sensor/Information Fusion, and Target Recog-
nition XXVII, vol. 10646. International Society for Optics and Photonics, 2018, p.
106460A.

[197] B. Zhang, J. Liu, and H. Chen, “Amcl based map fusion for multi-robot slam with
heterogenous sensors,” in International Conference on Information and Automation,
2013, pp. 1–6.

[198] D. Cruzado, “Laser multiplano aplicado a los vehiculos autonomos: Mapeado y
localizacion inicial,” Master’s thesis, Universidad Carlos III de Madrid, 2017.

[199] B. Musleh, D. Martin, A. de la Escalera, and J. M. Armingol, “Visual ego motion
estimation in urban environments based on uv disparity,” in IEEE Intelligent Vehicles
Symposium (IV2012). IEEE, 2012, pp. 444–449.

[200] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time.” in Robotics:
Science and Systems, vol. 2, 2014, pp. 1–9.

[201] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to autonomous mobile
robots. MIT press, 2011.

[202] A. Rudolph, “Quantification and estimation of differential odometry errors in mobile
robotics with redundant sensor information,” The International Journal of Robotics
Research, vol. 22, no. 2, pp. 117–128, 2003.

[203] K. Lee, W. Chung, and K. Yoo, “Kinematic parameter calibration of a car-like mobile
robot to improve odometry accuracy,” Mechatronics, vol. 20, no. 5, pp. 582–595, 2010.

[204] E. A. Wan and R. Van Der Merwe, “The unscented kalman filter for nonlinear estima-
tion,” in IEEE Adaptive Systems for Signal Processing, Communications, and Control
Symposium. IEEE, 2000, pp. 153–158.

[205] T. Moore and D. Stouch, “A generalized extended kalman filter implementation for
the robot operating system,” in Intelligent Autonomous Systems 13. Springer, 2016,
pp. 335–348.

[206] A. J. Rincon, “Mapeado con camara tof para vehiculos inteligentes,” Master’s thesis,
Universidad Carlos III de Madrid, 2018.

169

Bibliography

[207] J. Beltran, C. Jaraquemada, B. Musleh, A. de la Escalera, and J. M. Armingol, “Dense
semantic stereo labelling architecture for in-campus navigation,” in Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applications
(VISIGRAPP2017), 2017, pp. 266–273.

[208] C. Rosmann, F. Hoffmann, and T. Bertram, “Timed-elastic-bands for time-optimal
point-to-point nonlinear model predictive control,” in European Control Conference
(ECC2015). IEEE, 2015, pp. 3352–3357.

[209] K. Nam, S. Oh, H. Fujimoto, and Y. Hori, “Estimation of sideslip and roll angles
of electric vehicles using lateral tire force sensors through rls and kalman filter ap-
proaches,” IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 988–1000,
2013.

[210] J. Y. Wong, Theory of ground vehicles. John Wiley and Sons, 2008.

[211] A. Hussein, F. Garcia, J. M. Armingol, and C. Olaverri-Monreal, “P2v and v2p
communication for pedestrian warning on the basis of autonomous vehicles,” in IEEE
International Conference on Intelligent Transportation Systems (ITSC2016). IEEE,
2016, pp. 2034–2039.

[212] A. Kokuti, A. Hussein, P. M. Plaza, A. de la Escalera, and F. Garcia, “V2x com-
munications architecture for off-road autonomous vehicles,” in IEEE International
Conference on Vehicular Electronics and Safety (ICVES2017). IEEE, 2017, pp.
69–74.

[213] A. Hussein, P. Marin-Plaza, F. Garcia, and J. M. Armingol, “Autonomous cooperative
driving using v2x communications in off-road environment,” in IEEE International
Conference on Intelligent Transportation Systems (ITSC2017). IEEE, 2017, pp. 1–6.

[214] J. Harding, G. Powell, R. Yoon, J. Fikentscher, C. Doyle, D. Sade, M. Lukuc, J. Simons,
and J. Wang, “Vehicle-to-vehicle communications: Readiness of v2v technology for
application,” USDOT NHTSA, pp. 1–327, 2014.

[215] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-vehicle wireless communication
protocols for enhancing highway traffic safety,” IEEE Communications Magazine,
vol. 44, no. 1, pp. 74–82, 2006.

[216] L. Tellis, F. Ahmed-Zaid, J. E. Stinnett, C. Nave, T. E. Pilutti, T. D. Zwicky, J. A.
Martell, and J. C. Ivan, “Vehicle-to-vehicle/vehicle-to-infrastructure control,” IEEE
The Impact of Control Technology, 2011.

170

Bibliography

[217] M. Bagheri, M. Siekkinen, and J. K. Nurminen, “Cellular-based vehicle to pedestrian
(v2p) adaptive communication for collision avoidance,” in IEEE International Confer-
ence on Connected Vehicles and Expo (ICCVE2014). IEEE, 2014, pp. 450–456.

[218] F. Garcia, D. Martin, A. de la Escalera, and J. M. Armingol, “In-vehicle sensor fusion
methodology for pedestrian detection with danger estimation,” in Congreso Espanol
sobre Tecnologias y Ligica Fuzzy (ESTYLF2014), 2014.

[219] G. Johansson and K. Rumar, “Drivers’ brake reaction times,” Human factors, vol. 13,
no. 1, pp. 23–27, 1971.

[220] H. Makishita and K. Matsunaga, “Differences of drivers reaction times according
to age and mental workload,” Accident Analysis and Prevention, vol. 40, no. 2, pp.
567–575, 2008.

[221] G. A. Association et al., “The case for cellular v2x for safety and cooperative driving,”
5GAA Whitepaper, 2016.

[222] E. Ndashimye, N. I. Sarkar, and S. K. Ray, “A novel network selection mechanism for
vehicle-to-infrastructure communication,” IEEE International Conference on Depend-
able, Autonomic and Secure Computing (DASC), pp. 483–488, 2016.

[223] A. Kokuti, A. Hussein, A. de la Escalera, and F. Garcia, “Market-based approach
for cooperation and coordination among multiple autonomous vehicles,” in IEEE
International Conference on Intelligent Transportation Systems (ITSC2017). IEEE,
2017, pp. 534–539.

[224] A. Hussein, P. M. Plaza, F. Garcia, and J. M. Armingol, “Optimization-based approach
for cooperation and coordination of multi-autonomous vehicles,” in Sixteenth Inter-
national Conference on Computer Aided Systems Theory (EUROCAST). Springer
International Publishing, 2017, pp. 1–2.

[225] A. Hussein, P. Marin-Plaza, F. Garcia, and J. M. Armingol, “Hybrid optimization-based
approach for multiple intelligent vehicles requests allocation,” Journal of Advanced
Transportation, vol. 2018, pp. 1–12, 2018.

[226] A. Hussein, F. M. Moreno, F. Garcia, and J. M. Armingol, “Multiple vehicle coopera-
tion generic ros-based architecture for transportation requests,” Integrated Computer-
Aided Engineering, vol. 2018, pp. 1–16, 2018.

171

Bibliography

[227] A. Maji and M. K. Jha, “Multi-objective highway alignment optimization using a
genetic algorithm,” Journal of Advanced Transportation, vol. 43, no. 4, pp. 481–504,
2009.

[228] A. Lewandowski, S. Bocker, V. Koster, and C. Wietfeld, “Design and performance
analysis of an ieee 802.15. 4 v2p pedestrian protection system,” in IEEE International
Symposium on Wireless Vehicular Communications (WiVeC2013). IEEE, 2013, pp.
1–6.

[229] R. Necula, M. Breaban, and M. Raschip, “Tackling the bi-criteria facet of multi-
ple traveling salesman problem with ant colony systems,” IEEE 27th International
Conference on Tools with Artificial Intelligence (ICTAI), pp. 873–880, 2015.

[230] R. Necula, M. Breaban, and M. Raschip, “Performance evaluation of ant colony
systems for the single-depot multiple traveling salesman problem,” International
Conference on Hybrid Artificial Intelligence Systems, pp. 257–268, 2015.

172

	Table of contents
	List of figures
	List of tables
	List of acronyms
	List of symbols
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure

	2 State-of-the-art
	2.1 Introduction
	2.2 Simulation Environments
	2.3 Automated Vehicles
	2.3.1 By Wire Systems
	2.3.2 Communication Systems
	2.3.3 Localization Systems
	2.3.4 Mapping Systems
	2.3.5 Perception Systems
	2.3.6 Planning Systems

	2.4 Cooperative Driving
	2.5 Task Allocation
	2.6 Concluding Remarks

	3 Simulators
	3.1 Introduction
	3.2 ROS Framework
	3.3 GAZEBO Simulator
	3.4 Unity Game Engine
	3.5 3DCoAutoSim Simulator
	3.5.1 Environments and Scenarios
	3.5.3 ROS Connectivity
	3.5.4 Features
	3.5.7 Multiple Simulators

	3.6 Concluding Remarks

	4 Platforms
	4.1 Introduction
	4.2 TurtleBot3
	4.2.1 Hardware Description

	4.3 SkyOnyx
	4.3.2 Software Description

	4.4 iCab
	4.4.1 Hardware Description
	4.4.2 Software Description

	4.5 Concluding Remarks

	5 Cooperative Driving
	5.1 Introduction
	5.2 Communication Schemes
	5.2.1 Communication with vehicles
	5.2.3 Communication with infrastructure

	5.3 Platooning Approach
	5.3.2 Algorithm

	5.4 Concluding Remarks

	6 Task Allocation
	6.1 Introduction
	6.2 Proposed Approach
	6.3 Proposed Architecture
	6.3.1 Core Node
	6.3.2 Requests System Side
	6.3.3 Vehicles Side

	6.4 Problem Formulation
	6.4.1 Solution Construction
	6.4.2 Objective Function
	6.4.3 Solution Constraints

	6.5 Proposed Algorithm
	6.6 Concluding Remarks

	7 Results and Discussion
	7.1 Introduction
	7.2 3DCoAutoSim Validation Results
	7.2.1 Setup
	7.2.3 Metrics
	7.2.4 Qualitative and Quantitative Analysis

	7.3 TurtleBot3 Results
	7.3.1 Scenario
	7.3.2 Qualitative and Quantitative Analysis

	7.4 SkyOnyx Results
	7.4.1 Scenarios
	7.4.2 Qualitative and Quantitative Analysis

	7.5 iCab Communication Results
	7.5.1 Setup
	7.5.2 Scenarios
	7.5.4 Qualitative and Quantitative Analysis

	7.6 iCab Localization Results
	7.6.1 Scenarios
	7.6.2 Evaluation Metrics
	7.6.3 Qualitative and Quantitative Analysis

	7.7 iCab Planning Results
	7.7.1 Setup
	7.7.2 Scenarios
	7.7.3 Metrics
	7.7.4 Qualitative and Quantitative Analysis

	7.8 iCab Platooning Results
	7.8.1 Scenario Description
	7.8.2 Qualitative and Quantitative Analysis

	7.9 MRTA Results
	7.9.1 Selected Scenarios
	7.9.2 Evaluation Metrics
	7.9.3 Comparative Study

	8 Conclusion and Future Work
	8.1 Introduction
	8.2 Conclusion
	8.3 Future Work

	Appendix A Publications List
	Appendix B Theses Supervision
	Appendix C 3DCoAutoSim Read-Me
	Bibliography

