

This is a postprint version of the following published document:

Bega, Dario, et al. Toward the network of the future: from enabling technologies to 5G concepts, in: *Transactions on Emerging Telecommunications Technologies*, 28(8, e3205), pp. 1-12 (August 2017) DOI: https://doi.org/10.1002/ett.3205

© 2017 John Wiley & Sons, Ltd.

RESEARCH ARTICLE

Towards the network of the future: from enabling technologies to 5G concepts

Dario Bega^{1,2}, Marco Gramaglia², Carlos J. Bernardos², Albert Banchs^{1,2}, and Xavier Costa-Perez³

¹ Institute IMDEA Networks, Spain ² Universidad Carlos III de Madrid, Spain ³ NEC Laboratories Europe, Germany

ABSTRACT

There is a wide consensus by the research community and the industry that it will not be possible to satisfy future mobile traffic demand and applications' requirements by simply evolving the current 4G architecture. Instead, there is the need for a considerable revision of the mobile network system: such an effort is commonly referred to as the future "5G architecture", and large-scale initiatives all around the globe have been launched world-wide to address this challenge. While these initiatives have not yet defined the future 5G architecture, the research community has already invested a very substantial effort on the definition of new individual technologies. The fact that all new proposals are tagged as 5G has created a lot of confusion on what 5G really is. The aim of this article is to shed some light on the current status of the 5G architecture definition and the trends on the required technologies. Our key contributions are the following: (i) we review the requirements for 5G identified by the different world-wide initiatives, highlighting similarities and differences; (ii) we discuss current trends in technologies, showing that there is a wide consensus on the key enablers for 5G; and (iii) we make an effort to understand the new concepts that need to be devised, building on the enablers, to satisfy the desired requirements. Copyright © 0000 John Wiley & Sons, Ltd.

*Correspondence

E-mail: {dario.bega}@imdea.org; {cibc,banchs,mgramagl}@it.uc3m.es; xavier.costa@neclab.eu

1. INTRODUCTION

It is well known that mobile data consumption is exploding, driven by the increased penetration of smart devices, better screens, and compelling services, among other factors. At the same time, emerging communication services impose new requirements on the network: use cases such as tactile Internet, vehicular communications, high-resolution video streaming, road safety, or real-time control place have stringent requirements on throughput, latency, reliability, and robustness. It is widely agreed that all these new requirements and demands cannot be provided by simply evolving the current 4G architecture. Therefore, novel architectural patterns and solutions must be introduced. The core network will be especially impacted by this re- engineering, but also the access

will incorporate new technologies. The new architecture that will result from this re-designing effort is commonly referred to as the "5G architecture".

Driven by the above trends, there is currently a huge ongoing worldwide effort towards the definition of the new 5G architecture, with initiatives such as (*i*) 5G-PPP [1] in Europe, (*ii*) 5G America's [2] in America; (*iii*) IMT-2020 (5G) PG [3] in China, (*iv*) 5GForum [4] in Korea, and (*v*) 5GMF [5] in Japan.

Standardization activities such as 3GPPP SA2 [6], SA5 [7] and TGS-RAN [8] are the other side of the coin. These activities that we will detail further, range from the definition of the technologies that improve of the underlying wireless interfaces to other that, by leveraging on ongoing cloudification trends, improve transport technologies and adopt the softwarization paradigm. The

fact that many of these proposals are tagged by the 5G label has produced some confusion on what 5G is and which are the technologies that will actually conform the future 5G network.

The aim of this paper is to review the major ongoing activities in this area and put some order on the current flood of supposedly 5G building blocks. While the 5G architecture has not yet been defined, and hence any attempt to define its technological components is a mere speculation, we provide a thorough review of the current trends identifying the Key Performance Indicators (KPIs), new concepts and their enabling technologies considered necessary for the future 5G network. The remainder of this paper is organized as follows. Section 2 presents a view of the consolidated performance that 5G systems should satisfy, highlighting the similarities and discrepancies between the requirements provided by the different initiatives deriving the KPIs proposed. Section 3 describes the technologies upon which the new 5G concepts rely in order to enable the expected requirements. In Section 4, the 5G concepts, i.e. the approaches the 5G architecture will based on, have been identified, while in Section 5 we detail the ongoing worldwide activities concluding our work in Section 6.

2. THE NEED FOR 5G

As in the design of any system, the objectives in terms of KPIs are key for the deployment of future 5G systems. To this end, the main driving bodies behind 5G have recently dedicated a very substantial effort towards not only identifying, but also quantifying the objectives of the 5G technology in terms of KPIs. Table I depicts the key KPIs that have been proposed by the main driving actors of the 5G technology, including Europe (i. e., 5G-PPP, METIS-II [9]), America (i. e., 5G America's), China (i. e., IMT-2020 (5G) PG), Korea (i. e., 5GForum), and Japan (i. e., 5GMF).

We observe from the table that, in addition to traditional KPIs for network performance, 5G also includes some additional indicators that are crucial for the upcoming network. Indeed, classical indicators for network design such as peak data rates, average and cell-edge user throughput and overall cell throughput will continue to be

important for the 5G network design. However, additional KPIs also need to be defined:

- Due to the massive uptake of machine-type traffic supporting new vertical user groups in industry, public administration, and business, KPIs such as network availability, coverage (both deep indoors and for sparse rural areas), robustness and reliability play a very important role.
- The current trends towards Internet-of-Things (IoT), which is one of the fundamental use cases of 5G, point towards the support for dramatically increased numbers of almost zero-complexity devices with long stand-by times, all of them essential to support such a use case.
- Other very important use cases in 5G such as tactile Internet and vehicular communications require extremely low latencies, which is one of the most stringent KPIs included in the table.
- Another major challenge is energy-efficiency, driven by the need to support growing mobile data volumes without increasing the energy consumption, which translates to greener operations and the corresponding cost savings.
- Finally, due to the broad adoption of flat rates, mobile operators will have to support the growth in mobile data volume resulting from the above KPI without increases in subscription fees; costefficiency will thus remain a key challenge for future network developments.

When comparing the data provided in Table I for the different actors, the main observation is that they all largely agree on the target performance of 5G systems. While the parameters provided by some of these actors are more concrete than others, and there may be a slight deviations in some of the parameters, the numbers provided by different fora fall within the same order of magnitude in almost all of the cases. Therefore, the main conclusion is that there is a wide consensus on the performance requirements of future 5G systems.

It is worth noting that there is one of the KPIs in Table I which is only indicated by 5G-PPP and no other forum: the service creation time. Indeed the flexibility of easily customizing the network infrastructure to new services may be one of the driving design criteria in 5G. Therefore,

KPI	5G-PPP	5G America's	IMT-2020 (5G) PG	5GForum	5GMF	METIS-II
Data Rate	10 Gbps	100x	10 Gbps	50 Gbps	10 Gbps	10 Gbps
Latency	5ms (E2E)	5x - 100x	1ms (E2E)	1ms (E2E)	1ms (E2E)	ms (E2E)
Connected Devices	1M/Km^2	10x - 100x	1 M/K m^2	10x - 1000x	10000 x cell	10x - 100x
Capacity	10 Tbps/Km ²	x1000 - x5000	10 Tbps/Km ²	1000x	1000x	1000x
Energy Consumption	10x		100x	1000x		10x
Reliability	five nines	"high"	five nines	"hyper"		"ultra"
Mobility	≈ 500 Km/h	> 350 Km/h	> 500 Km/h	> 350 Km/h	≈ 500 Km/h	
Cost	"ultra low"	"< 4G"	100x	"hyper low"		"as today"
Service Creation Time	90 min					

Table I. 5G Key Performance Indicators (KPI) according to the different initiatives. 10x means ten times better

it is somehow surprising that such a KPI is ignored by the other actors.

At a more general level, the KPIs provided in this table refer mostly to the data plane performance, and little emphasis is placed on the flexibility of adapting the network behavior to the specific requirements of the different operators and the services they are providing. Given the current trends towards virtualization and softwarization of the network driven by the need for flexibility, it seems that future networks should place much more emphasis on this kind of KPI.

3. ENABLING TECHNOLOGIES

The requirements that need to be addressed by the future 5G networks clearly demand new technologies and architectures, as simply evolving existing 4G deployments would not be enough. While these new technologies, which we refer to as 5G enablers in this article, are essential pieces of the future 5G technology, they will not suffice by themselves to satisfy the requirements identified. The new concepts required, along with the mapping between 5G enablers, concepts and requirements, are studied in Section 4.

We next identify and describe the main 5G enablers based on the existing components being considered by the most relevant players in the research and standardization communities. It is important to highlight that there is quite a rough consensus on the technologies that are

considered fundamental enablers for 5G among these key players [1]- [16]. Table II* graphically details which of the identified 5G enablers are considered by each of these players. We blinded and aggregated the selected vendors (NEC, Huawei, Ericsson, Samsung, Nokia) to emphasize this point: we are not claiming to interpret future strategies of network equipment vendors nor providing their comprehensive vision of 5G. Our goal is to present distilled information from their white papers to provide useful insight on the relevant technological trends in 5G.

3.1. Spectrum & Massive MIMO (mMIMO)

Future networks will need to cope not only with higher data rates, but will also need to provide extremely low latencies and support a substantially larger number of connected devices. In order to address this, a combination of new advanced spectrum efficiency mechanisms (e.g. carrier aggregation techniques) and use of new frequency bands (such as 60 GHz, mmWave, etc.) are required. Unlicensed spectrum, for instance, can be used in combination with licensed spectrum (for critical control signalling and mobility handling) to boost capacity. More spectrum can also be obtained with authorized-shared access, in which the cellular system can access additional free spectrum otherwise apportioned for use by other (non-telecom) services. The use of high-frequency bands also allows for

^{*}We remark that we solely used the information available in each player 5G vision white paper [1]- [16]. Vendors participation in standardization activities or product development is not considered in our comparison.

	Spectrum	mMIMO	SDN	NFV	C-RAN	Local Offloading	Small Cells
5G-PPP	✓	✓	✓	✓	✓		✓
5G America's	✓	✓	✓	✓	✓	✓	✓
IMT-2020 (5G) PG	✓	✓	✓	✓	✓	✓	✓
5GForum	✓	✓	✓			✓	✓
5GMF	✓	✓	✓	✓	✓		✓
METIS-II	✓	✓	✓	✓	✓	✓	✓
Vendor 1	\checkmark	✓	\checkmark	✓	✓	✓	✓
Vendor 2	✓	✓	\checkmark	✓	✓	✓	
Vendor 3	✓	✓	\checkmark	✓	\checkmark		\checkmark
Vendor 4	\checkmark	✓	✓	✓		✓	✓

Table II. There is rough consensus among different 5G players on the enabling technologies.

mMIMO technique that, by exploiting antenna arrays with a few hundred antennas simultaneously, can serve many tens of terminals in the same time-frequency resource, increasing the capacity 10 times or more, and enables a significant reduction of latency on the air interface [17]. Those new access technologies in the actual LTE network paradigm would be implemented separately since it does not allow multiple connection utilizing different technologies. In this way is not possible to exploit completely their benefits.

3.2. Software Defined Networking (SDN)

Currently, it is extremely complex to express operators' high-level network policies, since it is needed to configure each individual network device separately using low-level and often vendor-specific commands. Besides, networks are vertically integrated. The control plane and the data plane are bundled inside the networking devices, reducing flexibility and hindering innovation and evolution of the networking infrastructure.

The SDN paradigm [18] separates the control and the data forwarding planes. Such separation allows for quicker provisioning and configuration of network connections. With SDN, network administrators can program the behaviour of both the traffic and the network in a centralized way, without requiring independently accessing and configuring each of the network hardware devices. This approach decouples the system that makes decisions about where traffic is sent (i.e., control plane)

from the underlying system that forwards traffic to the selected destination (i.e., data plane). Among other advantages, this simplifies networking as well as the deployment of new protocols and applications. In addition, by enabling programmability on the traffic and the devices, an SDN network might be much more flexible and efficient than a traditional one.

3.3. Network Function Virtualization (NFV)

In today's networks, every time a new service has to be deployed, operators have to buy proprietary devices, which often require a lot of time to be produced due to carrier grade quality requirements. In addition, this equipment needs physical space for its installation and energy to run. Last, but not least, trained personnel is required to setup, configure and operate it.

The new 5G requirements for more diverse and new (short-lived) services with high data rates has made operators even more reluctant to continue following the current networks' operation model. They are excited and hopeful with the advent of virtualization techniques in the field of networks, what is widely known as network function virtualization (NFV) [19].

The key concept of NFV is the decoupling of physical network equipment from the functions that run on them (decoupling the intelligence from the raw capacity). With this approach, network functions (e.g., a load balancer) are now dispatched as software components, allowing for the consolidation of many network equipment types onto

high, COTS-based, volume servers, switches and storage, which could be located in data centers, distributed network nodes and at end user premises. The virtual network functions (VNFs) that provide network services can be flexibly reimplemented and relocated to different network locations as needed since they may run on general purpose hardware, thus makes it faster and cheaper to put into operation new services. Besides, combined with SDN, it enables multi-tenant and sliced networks in which multiple service providers share the physical resources, reducing the time and costs to deploy a new service.

3.4. Centralized RAN (C-RAN)

C-RAN is one possible way to efficiently centralize computational resources, by connecting multiple sites to a central data center where all the baseband processing is performed. Radio signals are exchanged over dedicated transmission lines (called fronthaul) between remote radio heads and the data center. With a pure C-RAN approach, only fiber links are today capable of supporting the required data rates, (e.g., about 10 Gb/s for TD-LTE with 20 MHz bandwidth and eight receiver antennas) being this need for a high-capacity fronthaul the main drawback of C-RAN [20]. The trade-off between centralized processing requiring high capacity fronthaul links, and decentralized processing using traditional backhaul to transport the user and control data to/from the radio access points has triggered the design of cloud RAN approaches. This allows flexible and adaptive software deployment, taking advantage of the enormous potential of cloud computing. In a flexible cloud RAN environment, different RAN functions can be optimally and dynamically allocated, and moved between the radio access points and data centers deployed within the network, even at the core.

C-RAN is therefore a key 5G enabler as it allows to flexibly move functions within the network, facilitating the achievement of lower latencies and the use of more efficient mobility mechanisms (e.g., depending of the nature of the traffic, mobility anchors might be deployed closer to the end-user devices).

3.5. Local offloading

5G networks are foreseen to share resources to cope with disparate traffic demands from heterogeneous users/applications (e.g., IoT and 4K high definition video

streaming). Additionally, some services may benefit from local processing capabilities at the edge of the network, whereas other services might demand a centralized processing because of privacy or legal concerns.

In this heterogeneous environment, local offloading strategies are needed to flexibly and opportunistically (i) allow for extremely high bit rates, low delays and low power consumption exploiting the UEs proximity; (ii) reduce network load and improve spectrum efficiency exploiting direct transmission among devices [21]. For mobile networks, the more promising technique is network assisted D2D communications, where two nearby devices can communicate with each other with limited BS involvement. Besides all the advantages, for both service providers and users, D2D raises new challenges as security and interference management, requiring also new pricing models [22]. ETSI, recognizing the important role of local offloading strategies, has standardized a new technology called Mobile Edge Computing (MEC) [23] - [25] with the aim of improving its efficiency. MEC provides an IT service environment and cloud-computing capabilities within the RAN thus, in close proximity to mobile subscribers. In this way, it is able to reduce latency, ensure highly efficient network operation and service delivery, and computing agility in the computation offloading process.

Finally, in this heterogeneous environment, it is needed to flexibly and opportunistically allow to locally breakout selected traffic closer to the edge (i.e., offloading the network core) and exploiting the use of different gateways for traffic with different connectivity and mobility requirements.

3.6. Small Cells

It is well known that increased spatial reuse (i.e., denser networks and smaller cells) has been the dominant factor in the increase of the system throughput of cellular networks, as compared to new physical layer techniques. Therefore, the use of very dense, low-power, small-cell networks is a clear option to cope with future data rate demands. Ultradense deployments exploit two fundamental effects: (i) the distance between the radio access point and the user is reduced, leading to higher achievable data rates, and (ii) the spectrum is more efficiently utilized due to the reuse of time-frequency resources across multiple cells.

Small cells do not replace but complement existing macro cellular deployments, which are still required to provide coverage for fast-moving users and in areas with low user density. The denser the network is, the higher the probability that an individual access point just carries a light load. Therefore, smart coordination and management mechanisms are required to achieve a more efficient use of spectral and energy resources [26].

Since both higher individual per-flow data rates, and aggregated offered loads are expected in the near future, small cells, together with new spectrum and MIMO, are key 5G enablers.

4. 5G CONCEPTS

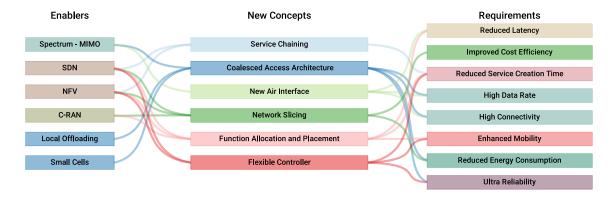
Pushed by the rising of new technologies (what we refer to as 5G enablers in Section 3), new solutions need to be devised. Indeed, new algorithms and protocols are needed in order to exploit the above technologies towards achieving the goals identified in Section 2. Throughout this section we review and classify the most important ones available in the literature. Figure 1 provides a graphical representation of the proposed taxonomy[†]. It shows the enablers that we have identified in the previous section, highlighting the new 5G concepts they mainly contribute to enable. Then, we disclose which requirements can be satisfied by means of the new concepts (we present only the principal connections among the actors in order to focus on their main role).

4.1. Service Chaining

A fundamental component towards achieving the flexibility needed in the future 5G networks is the self-adaptation capacity. Usually, network services are built on top of several, well defined, functions (e.g., firewalls, load balancers, ...). In the legacy networking concepts, the placement of these functions was tightly coupled with the underlying network topology. The development of the SDN and NFV concepts has substantially changed the game. The possibility of running a network function almost anywhere in a data-center (on general purpose server hardware) decouples the sequence of network functions needed by a service from the physical topology. Network functions are

hence not deployed according to their functionality (e.g., placing load balancers close to the servers), but are defined and chained in an abstract fashion [27].

The main advantage provided by this approach is flexibility. Chains can not only be instantiated in the network, but they can also be modified according to the QoS demands of the users. For example, a Video Optimizer or a CDN middlebox can be easily placed inside the chain on the fly if needed by the current network conditions. Therefore, service function chaining (SFC) allows the rapid development of new services: new function chains can be deployed on demand, rather than forcing the modification of the network topology to insert a new function needed by the targeted service.


4.2. Coalesced access architecture

Having to face the current trends in mobile data consumption, the requests of new services (e.g., massive Machine to Machine communications) and the always increasing number of connected devices, the current cellular-based network architecture clearly shows its shortcomings. Providing very heterogeneous services using the same infrastructure will not be feasible anymore in the near future, even with very efficient modulations and coding schemes. For this reason, future 5G Networks will be based on a ductile access architecture, leveraging also on small cells and on smart flow offloading whenever it is possible. This fine-grained wireless access structure requires a very careful coordination among all the elements of the network: something unlikely achievable with the legacy architecture, but possible by using new 5G concepts as Flexible Mobile Network Controller (FMNC).

The optimized spectrum utilization, in exchange, will provide increased performance (in terms of available bandwidth and capacity) with an increased efficiency from an energy point of view. Moreover, having small, high capacity cells will certainly improve the signal quality received by the user device, helping to reach the envisioned goals for reduced energy consumption and the overall reliability of the system. Figure 2 shows an example of how the future 5G Networks provide and unified interface for the management and control of heterogeneous access technologies to various 5G services.

6

 $^{^\}dagger$ Note that the colours are used to highlight how the enablers on the left hand side relate to the concepts in the middle, and how these cooperate to meet the 5G goals represented on the right hand side.

Figure 1. 5G new concepts, enablers and requirements. The figure identifies the enablers upon which each concept relies, and which requirements it contributes to satisfy.

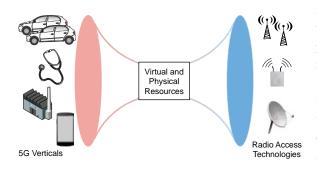


Figure 2. The future coalesced architecture: several 5G vertical employ heterogeneous access technologies. The 5G core provides an unified API for their management

4.3. New Air Interfaces

In 4G networking, the available radio access technologies were somehow limited to cellular ones: LTE-A and WiMAX. In 5G networking, the intrinsic flexibility of the proposed architectures allows for the deployment of more heterogeneous radio access technologies. The raise of new communication techniques at PHY and MAC layers fosters the research on new air interfaces. The availability of more and faster communications channels enables three of the envisioned goals of 5G: reduced latency, higher data rates and reduced energy consumption.

The current structure of LTE-A was designed to be an enhancement of 3G networking. The targeted **KPIs!**s (**KPIs!**s) were related to the voice and data communications from mobile terminals use cases (i.e., throughput, capacity, blocking probability during calls). As time went by, the need for new services arose: some of them required very diverse characteristics that were just

not targeted by the initially envisioned KPIs. Although the support for more enhanced service is currently being provided in LTE-A, a focused revision of the access network (that is an evolution of 2G and 3G) is needed.

5G networks hence propose a complete paradigm switch: not just making more bandwidth available to the users, but also achieving it through the seamless integration of new frequency bands in the 6-100 GHz range (made available using massive MIMO deployments), advanced spectrum efficiency management methods (especially in the legacy, sub 6 GHz band) and their integration [28].

Among the considered innovations, there will be evolved waveforms, but also wireless network coding will play a major role during the definition of the new 5G air interfaces. This also tackles the MAC layer, with the definition of an integrated frame structure capable of allowing very diverse traffic types.

The key point is not only implement new access technologies but exploit them allowing multi-connectivity, thus the possibility to connect the same user using different access technologies such as 5G, Wi-Fi, LTE, 6 GHz, mmWave or visible light communications at the same time. The main innovation is not to develop new technologies but to utilize them together, improving in this way their efficiency.

The current consensus is that the 5G in order to provide a very considerable high data rate and reduce the latency, needs to combine the use of new frequency bands (higher frequencies), advanced spectrum efficiency enhancement methods in the legacy band, and seamless integration of licensed and unlicensed bands

4.4. Network Slicing

Nowadays, very different applications share the same communication infrastructure, but communication networks were not designed with this in mind. With the trend of increased heterogeneity, 5G networks must be designed embracing this from the very beginning. Moreover, the final goal of 5G is not only to support very heterogeneous services, but also to reduce the costs (OPEX and CAPEX).

Theoretically, this goal can be achieved by having several physical networks deployed, one for each service (or even one for each business). Isolated services can hence use their resources in an optimal way, avoiding difficult re-configuration of hardware and network entities. Clearly, this approach cannot be applied to real networks, and calls for a solution that allows both the efficient resource sharing (i.e., *multi-tenancy*) and utilization.

A mild approach to multi-tenancy, mostly passive, is already standardized and applied by many operators that currently share cell sites. However, the equipment still belongs to each operator, limiting hence the cost reduction. 5G networks will go one step further, pushing for the active sharing of resources among different tenants, allowing for the so-called "verticals", where also non operators may need the use of the network.

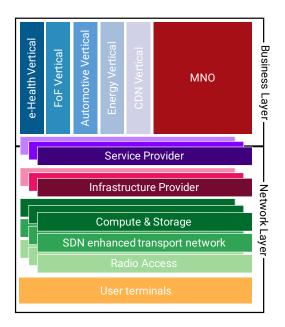


Figure 3. Multi-tenancy in a network sliced representation.

This kind of approach can be reached due to the *programmability* feature of future 5G networks, that will

be heavily based on the NFV and SDN paradigms. Hence, different tenants can share the same general purpose hardware to provide all the needed functionality to the final users. A first approach in this sense was proposed by NGMN with the introduction of the Network Slice concept [29]. *Softwarization* techniques paved the way towards the virtualization of network resources, so, fully decoupled networks can be built on top of virtual infrastructure laying on a shared physical infrastructure.

Therefore, a network slice can be defined as a subset of virtual network infrastructure resources dedicated to a specific tenant, which can use it to provide its envisioned service. The virtualization layer between different slices and the physical infrastructure ensures the economy of scale that suggests the viability of the network slicing approach.

Network slices are created mostly with a business purpose: following also the 5G verticals spirit, an infrastructure provider will assign one or more network slices to each service of a service provider portfolio (e.g., the vehicular network slice, the factory of the future slice, the health net slice, see Figure 3). The required KPIs are provided just when needed and where needed, allowing hence a better network utilization with the consequent running cost reduction.

Network slicing calls for a flexible architecture capable of orchestrating and configuring all the entities used by a network slice. This role is played by the FMNC described in Section 4.6.

4.5. Function Allocation and Placement

If SFC defines the set of network functions (or middleboxes in the legacy jargon) that have to be traversed by the data traffic in a network slice and how to chain them (i.e., how to ensure that the traffic traverses the different functions in the right order), their actual instantiation in the network is another part of the problem. Currently, with hardware middleboxes and their fixed location in the infrastructure network, flows are routed through the chain using static configurations. This approach clearly lacks flexibility and it is certainly prone to configuration errors. The emerging NFV technology enables the paradigm switch from hardware to software packet processing, with the possibility of deploying a network function everywhere in the network. The flexibility provided by NFV (and SDN) comes at a price: while with legacy middleboxes QoS

problems were tackled by over-provisioning the network, using the NFV/SDN approach the QoS management can be managed in a more efficient (but complex) way.

The increased flexibility can be used for many purposes, ranging from cost reduction due to a better infrastructure utilization, to more efficient and fine-grained network features. Enhanced mobility management schemes, for example, can be more effectively implemented by using this approach. Specific mobility-related functions may be located closer to the actual user locations and possibly re-located upon massive user mobility in order to always provide the best possible QoS.

Also radio functions may be allocated and moved flexibly across different network locations. Traditionally, service function chains in mobile networks just include elements that come down-line the P-GW (e.g., firewalls, TCP optimizers, ...), because the digital signal processing hardware could not be detached from the physical base stations. The C-RAN concept extends the possibility of having function chains also for the baseband part.

The ecosystem of possible VNFs that have to be orchestrated within a network slice, each one with heterogeneous constraints to be fulfilled, calls for QoS-aware VNF orchestrators. A QoS-aware VNF orchestrator should place VNF into the right physical machines of a data-center, in order to minimize the used resources while guaranteeing the Service-Level agreed for a given network slice.

4.6. Flexible Control

With the introduction of Flexible Mobile Network Controllers FMNCs, future 5G networks will bring the concept of *network programmability* beyond SDN. While SDN splits routing and forwarding capabilities in a switch using a SDN controller, the FMNC perform such split between *logic* and *agent* for any network function in the network. That is, the SDN principles are extended to all control,data plane and management functions usually deployed in mobile wireless networks, that can ultimately be divided into three categories: (*i*) control plane functions, (*ii*) data plane functions and (*iii*) wireless control functions.

The former points are a rather natural extension of the application of SDN principles, while the latter captures the key aspect of a FMNC: wireless control functions will not be implemented any more in specialized hardware (e.g., LTE eNB), but rather be a piece

of software. Therefore, many functions like channel selection, scheduling, Modulation and coding scheme (MCS) selection and power control will be provided using a software-defined approach. All these functions are performed by a (virtualized) programmable central control, which provides very important benefits for the operation of the mobile network.

The advantages are manifold. The first one concerns the increased flexibility of the network: one of the current problems that network operators are facing today in their wireless equipment (besides high associated cost). By leveraging the programmability of the FMNC approach, operators will be able to match their needs by simply re-programming the controller, thus reducing costs. This approach also allows to scale-up and down virtual functions, enhancing reliability as well. The flexibility is not just exposed to network operators, but also to third parties, that can acquire network resources fulfilling a predefined Service Level Agreement (SLA). Programmability also allows to customize the network, enhancing the QoE perceived by users.

The FMNC approach implies to have a unique management point for the network: a logical centralized controller that homogenizes different network technologies. By controlling a reduced number of FMNCs, network operators reduce the complexity of the network management. Dense wireless networks, as envisioned in 5G, are especially favored by the FMNC approach: the management of user mobility schemes and dynamic radio characteristics are in charge of the FMNC, that can employ especially tailored algorithms according to the network slice they are deployed in. Moreover, if needed VNFs can be deployed close to the users (i.e., an Automotive network slice) reducing their experienced latency.

New services can hence be enabled by just modifying the controller functions: services that were not initially included by an operator in its architecture design, can now be introduced by implementing service-specific enhancements. The FMNC behaviour can also be modified to meet specific needs of the application or to better adapt to a specific scenario. A good example is the management of base station schedulers: as the FMNC has a global view of the network slice, it can optimize the scheduling algorithms and the resource allocation across them. This concept can be extended to the resource control across network slices. FMNC allows the optimization of network

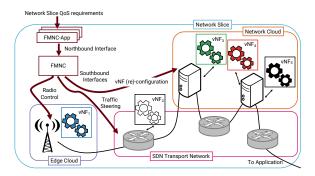


Figure 4. An example of the Flexible Mobile Network Controller.

utilization: a network infrastructure provider may allocate unused resources to demanding network slices, provided that the SLA is satisfied for all the hosted network slices.

Another possible usage of the FMNC is mobility management. As stated above, the FMNC is an extension of the SDN concept to any kind of network function in the mobile network. So, a straightforward amendment of the SDN dialect, capable of directly handling GTP tunnels, may be used to directly control the S-/and P-GW entities of the network. However, the same idea can be used to directly control other low-level user flows, steering traffic through network functions implementing the C-RAN architecture (see Section 3.4). That is, one centralized, flexible application *logic* can control heterogeneous network functions through specialized interfaces.

Therefore, the FMNC, following the SDN principles, has a northbound and southbound interface. The northbound interface is used by FMNC-applications to exchange high-level messages with the controller. The FMNC applies these high level commands to the underlying SDN/NFV-based networks through southbound ones, that are used to actually configure them. With FMNC, service providers will be able to fit the equipment to their needs by simply re-programming the controller using well-defined APIs, and thus enabling new service within a very reduced implementation, test and deployment footprint.

5. CURRENT ACTIVITIES

The attention and the efforts around 5G networks have hugely increased in the last years with the emergence of worldwide initiatives with the aim of defining the new architecture, specific technologies and solutions by the 2020. The most relevant ongoing projects are:

5G-PPP, an European joint initiative between the European ICT industry and the European Commission with the aim to rethink the infrastructure and to create the Next Generation of communication networks and services that will provide ubiquitous super-fast connectivity and seamless service delivery in all circumstance. It is composed by 19 different projects (Flex5Gware, 5G-XHaul, 5G-Ensure, METIS II, Euro 5G, 5GNORMA, Charisma, Sesame, Selfnet, CogNet, Virtuwind, 5GEx, Fantastic 5G, Coherent, SONATA, Superfluidity, 5G Crosshaul, mmMagic and Speed5G) where industries and academia's members collaborate. On July 2016 they released a white paper [30] focused in particular on the definition of the key points of the overall 5G architecture. After identifying the 5G requirements, it provides a first preliminary logical and functional architecture ranging from the physical to the management and orchestration layer. Wider attention is placed on softwarization (including NFV/SDN) in 5G, seen as an important enabler for the next communication network.

5G America's, a wireless industry trade organization composed by leading telecommunications service providers and manufactures and voice of 5G and LTE for the Americas. It focuses its efforts in order to advocate the advancement of LTE wireless technology and its evolution beyond to 5G, throughout the ecosystem's networks, services, applications and wirelessly connected devices in the Americas. On November 2016 5G America's released a white paper [31] that details network slicing implementation relative to 5G technologies, recognising this new concept as one of the most important in order to meet

the different 5G's use cases and requirements including scalability and flexibility.

IMT-2020 (5G) PG in China is a program embarked by ITU-R to develop the new International Mobile Telecommunications system and 5G. It is the major platform to promote the research of 5G in China and its member include the leading operators, vendors, universities, and research institutes in the field of mobile communications. On September 2016 they released a firstround results of the 5G Technology R&D Trial focused on the main key technologies for 5G, such as massive MIMO, novel multiple access, new multi-carrier, highfrequency communication, network slicing, mobile edge computing, C/U Plane separation and network function reconstruction. The results proves that the implementation of the above technologies lead to support the diverse 5G requirements, such as Gbps user experienced data rate, ms-level end-to-end latency, and 1 million of connections per square kilometer. The next step will be focused on technical schemes of 5G air interface and network and system trial. The second-round results is expected by the end of 2017 [32].

5GForum is an organization founded in 2013 in Korea. It is composed by mobile networks operators, global manufacturer, research institutes, universities and governments. Its goal is to assist in the development of the standard and contribute to its globalization. By 2020 the South Korean government intends to commercially deploy 5G mobile telecommunication technology for the first time in the world, and they are planning to test five core 5G services during the Pyeongchang 2018 Winter Olympics such as mobile 3D imaging, artificial intelligence, high-speed services and ultra- and high-definition resolution capabilities.

5GMF is a Japanese entity founded in 2014 with the aim of contributing to the development of the use of telecommunications. On July 2016 they released an updated White Paper [33] proposing two key concepts for 5G: Satisfaction of End-to-End (E2E) quality and Extreme Flexibility. The former means providing every user satisfactory access to any application, anytime, anywhere, and under any circumstance while the latter is the feature of communications systems which will allow 5G to always achieve E2E quality. Furthermore, it identifies two key technologies to support the proposed

concepts: Advanced Heterogeneous Network and Network Softwarization and Slicing.

3GPP SA2, SA5 and TGS RAN have grown in parallel to the above mentioned large-scale initiatives working groups those standardization activities are focusing on specific technologies and solutions that aim at addressing some specific requirements imposed on mobile networks by new services or scenario. In particular, SA2 is in charge of identifying the main functions and entities of the networks, how these entities are linked to each other and the information exchanged. SA5 will specify the requirements, architecture and solutions for provisioning and management of the future 5G network (RAN, CN, IMS) and its services. Their consistent integration with the radio architecture elements defined by TGS RAN.

We can easily understand that the worldwide attentions and efforts on defining and developing the new 5G network is enormous. It is worth noticing that the more relevant ongoing projects agree on the key requirements the new network will need to provide and on the key technologies and enablers, even if each of them targets a different goal.

6. CONCLUSION

The architecture and the operation of future 5G networks has yet to be defined. However, there is already rough consensus on what the fundamental building technologies will be and where future 5G network should lead us. We have reviewed the most important enabling technologies, describing how they can be used to achieve the goals envisioned for 5G networking by the most prominent fora.

The goals of 5G networks are being addressed by applying novel concepts to the legacy wireless networks. We have listed many of them, underlining the interaction between the enabling technologies and the final goal. Despite that many current softwarization and virtualization technologies are considered to be over-hyped, we remark their fundamental contribution towards the goals of 5G by placing them into the new 5G concepts landscape.

This landscape is, however, still blurred. In this paper we made an effort to specify the current research works, shedding light on the future trends that will eventually build the 5G networking technology.

ACKNOWLEDGEMENT

This work has been performed in the framework of the H2020-ICT-2014-2 project 5G NORMA. The authors would like to acknowledge the contributions of their colleagues. This information reflects the consortium's view, but the consortium is not liable for any use that may be made of any of the information contained therein. This work has also been performed in the framework of the H2020-ICT-2014 project 5GEx (Grant Agreement no. 671636), which is partially funded by the European Commission. This information reflects the consortiums view, but neither the consortium nor the European Commission are liable for any use that may be done of the information contained therein.

REFERENCES

- 5G-PPP white paper, "5G Vision. The 5G Infrastructure Public Private Partnership: the next generation of communication networks and services." Feb. 2015.
- 4G America's white paper, "4G Americas' Recommendations on 5G Requirements and Solutions," Oct. 2014.
- IMT white paper, "5G Vision and Requirements," May 2015.
- 4. 5GForum white paper, "5G Vision and Requirements of 5G Forum," Feb. 2014.
- 5. 5GMF white paper, "5GMF activities for 2020 and beyond in Japan," Sep. 2015.
- 6. http://www.3gpp.org/
 specifications-groups/sa-plenary/
 sa2-architecture
- 7. http://www.3gpp.org/
 specifications-groups/sa-plenary/
 sa5-telecom-management
- 8. http://www.3gpp.org/
 specifications-groups/ran-plenary
- Jose F. Monserrat et al., "METIS Research Advances towards the 5G Mobile and Wireless System Definition".
- Afif Osseiran et al., "Scenarios for 5G Mobile and Wireless Communications: The Vision of the METIS Project," IEEE Communications Magazine, May 2014.

- 11. Nokia Networks white paper, "Network architecture for the 5G era".
- 12. Ericsson Review white paper, "5G radio access," June 2014
- 13. Samsung white paper, "5G Vision," Feb. 2015.
- 14. Huawei white paper, "5G Network Architecture-A High-Level Perspective," 2016.
- Patrick Kwadwo Agyapong, Mikio Iwamura, Dirk Staehle, Wolfgang Kiess, and Anass Benjebbour, "Design Considerations for a 5G Network Architecture," IEEE Communications Magazine, Nov. 2014.
- 16. NEC white paper, "Network Evolution toward 2020 and Beyond," 2015.
- Erik G. Larsson, Ove Edfors, Fredrik Tufvesson and Thoma L. Marzetta, "Massive MIMO for Next Generation Wireless Systems," IEEE Communications Magazine, Feb. 2014.
- 18. White paper on "Software-Defined Networking: The New Norm for Networks," https://www.opennetworking.org
- White paper on "Network Functions Virtualisation (NFV) - Network Operator Perspectives on Industry Progress," Oct. 2013.
- NGMN Alliance, "Suggestion on potential solutions for C-RAN," White Paper, Jan. 2013.
- Gbor Fodor, Erik Dahlman, Gunnar Mildh et al., "Design Aspects of Network Assisted Device-to-Device Communications," IEEE Communications Magazine, March 2012.
- Mohsen Nader Tehrani, Murat Uysal, and Halim Yanikomeroglu, "Device-to-Device Communication in 5G Cellular Networks: Challenges, Solutions, and Future Directions," IEEE Communications Magazine, May 2014.
- 23. ETSI GS MEC 001, "Mobile Edge Computing (MEC); Terminology," March 2016.
- 24. ETSI GS MEC 002, "Mobile Edge Computing (MEC); Technical Requirements," March 2016.
- ETSI GS MEC 003, "Mobile Edge Computing (MEC); Framework and Reference Architecture," March 2016.
- NGMN Alliance, "SmallCells: Recommendations For Small Cell Development and Deployment," Sep. 2015.
- Wolfgang John, Konstantinos Pentikousis, George Agapiou et al., "Research Directions in Network

- Service Chaining," Future Networks and Services, 2013 IEEE SDN for.
- 28. ICT-317669 METIS project, "Components of A New Air Interface Building Blocks and Performance," Del. D2.3, Apr. 2014, https://www.metis2020.com/documents/deliverables
- 29. NGMN Alliance, "NGMG 5G WHITE PAPER," White Paper, Feb. 2015.
- 30. 5G-PPP white paper, "View on 5G Architecture," July 2016.
- 31. 5G America's white paper, "Network Slicing for 5G Networks and Services," Nov. 2016.
- 32. http://www.imt-2020.cn
- 33. 5GMF white paper, "5G Mobile Communications Systems for 2020 and beyond," July 2016.