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l. INTRODUCTION 

A long standing problem in continuous time optimization is the el differentiability of the 

value function. As illustrated in Pontryagin et al. (1962), from the C2 differentiability of 

the value function it is easy to obtain a fairly simple proof of the maximum principIe and 
e the Euler equations, and clarify the relation between dynamic programming and the 

canonical Hamiltonian equations. AIso, if the value function is C2 differentiable, then 

the policy function is el differentiable. This is particularly relevant for analyzing the 

dynamics of optimal solutions, and for linearization procedures. 
( . 

It is well known that in general the value function is not e 2 differentiable [see, for 

instance, Pontryagin et al. (1962)]. The usual counterexamples found in the literature 

stem from a lack of concavity of the return function, and from noninteriority of optimal 

solutions. However, for general economic models, under frrst-order differentiability and 

concavity of the return function, and a mild interiority condition on optimal solutions, 

Benveniste and Scheinkman (1979) have shown that the value function is first-order 

differentiable. Moreover, to overcome the differentiability problem, generalized concepts 

e	 of solutions for Bellman's equation have been studied [see, for instance, erandall, Evans 

and Lions (1984), and Lions (1982)]. The main goal of these approaches is to define a 

weaker solution concept under which the value function is usually characterized as the 

unique solution of the associated Bellman equation. 

This paper is concerned with the classical methods of variational analysis. The main 

purpose is to show that for continuous-time economic models with unbounded horizon, 

under the hypotheses of C2 differentiability and concavity of the return function, and 

interiority of the optimal solutions, the value function is e 2 differentiable -and the 

optimal feedback control or policy is el differentiable. 

For finite-horizon, continuous-time optimization problems (under rather strong 

assumptions) the e 2 differentiability of the value function was established in the early 

70's by Fleming (1971) solving the Bellman equation by the "method of characteristics." 

Under this procedure, the value function is obtained as the solution of a partial differential 

equation from a given terminal condition. The "method of characteristics," however, 

cannot be applied to optimization models with unbounded time horizon, since the 

"characteristics" are simply undefined at infinity. Of course, for such time unbounded 

models one could consider as in Santos (1990) succesive truncations of the horizon. 

Then show that a sequence of corresponding policy functions for finite horizon models 

converges in the el topology. Nevertheless, Section 4 will provide a more straight­

forward proof to the el differentiability of the optimal policy (and the e 2 differentiability 
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of the value function), which is fairly specific to the continuous time model. The proof 

considers directly the entire, infinite-horizon optimization problem, and assumes the 
e Lipschitz continuity of the policy function. 

In discrete-time growth models with unbounded horizon, the Lipschitz continuity of the 

policy function has been established under general conditions by Montrucchio (1987). 
í,- Montrucchio's method of proof, however, does not generalize to the continuous time 

case. The approach followed here is fairly different. It is based on an approximation of 

the optimal policy by a sequence of el functions with unüorm Lipschitz constant. 

Another important topic addressed in this paper is the higher-order düferentiability of the 

optimal policy. In the discrete time case, Araujo (1989) has constructed an example of a 

e3 optimization model in which the optimal policy is el but fails to be e2 
differentiable. It is unknown, however, which are the sources of non differentiability, 

and whether counterexamples of this sort are robust to small pertubations of the model. e 
Further, it is as yet unclear whether such counterexamples may be constructed from 

simple return functions. Section 5 shows that even for third-degree-polynomial utilities, 

the optimal policy may fail to be e2 differentiable. From sorne standard results from the 

theory of dynamical systems, we isolate a set of conditions which may prevent higher­e 
order differentiability. It will follow from these conditions that in one-dimensional 

models eoo policy functions are the rule rather than the exception. The higher-order 

differentiability of the optimal policy is useful to the study of chaotic dynamics, 

endogenous cycles, and bifurcations [e.g., see Boldrin and Woodford (1990, Sect. 2)]. 

The outline of the paper is as follows. Section 2 is concerned with a formal description 

of the the model, along with sorne preliminary results. Section 3 is devoted to establish 

the Lipschitz continuity of the optimal policy, and Section 4 to establish the el 
differentiability. The higher-order differentiability of the optimal policy is analyzed in 

Section 5. 

2. 1HEMODEL 

We begin with a continuous time version of the model of optimal growth. Given B> O 

and T e R2n, consider the following optimization problem: Find an absolutely 

continuous path (x*(t)} Q() as a solution to 

(2.1) V(xo) =sup fc;' L(x(t), ~(t» e~t dt 
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s. t. (x(t), ~(t» E T , a. e., with x(O) = xo and t ~ O, 

where ~(t) denotes the time derivative of x('), whose existence is guaranteed almost 

everywhere (a. e.). 

e Assumption A: The mapping L: T -+ R is conrinuous and on the interior of its domain 

it is Cl differentiable. Moreover, there is sorne constant a> O such that the function 

L(x, ~) + ~ 11 ~ 11 2 is concave for aH (x,~) in T. 

e Assumption B: The set T is convex, and with non empty interior. 

e 

Both assumptions are entirely standard. The norm 11· 11 is the usual Euclidean one. The 

concavity requirement asserted in Assumption A is termed a~-concavity [see, for 

instance, Montrucchio (1987)]. 

e 

The question of the existence of an oprimal solution to problem (2.1) has been amply 

analyzed in the literature [e.g., Carlson and Haurie (1987) and Toman (1986)]. 

FoHowing Benveniste and Scheinkman (1979), we shall assume locally the existence of 

an optimal solution which satisfies a certain mild interiority condition. 

Assumption C: There exists an open set U in Rn such that for every XQ in U, there 

is an optimal solution {x*(t)}~Q to problem (2.1), with x*(O) = XQ, and the value 

function V(xQ) is finitely valued; rnoreover, for all XQ in U there is a given time h > O 

such that (x*(t), ~*(t» E int(T) for all t S h. 

Under the aboye standard assumptions, it foHows from Fleming and Rishel (1975, 

CoroHary 111.6.1) that every optimal path {x*(t) }~Q with x*(0) =XQ in U is C1 

differentiable on the interval [O, h]. Moreover, for aH t S h the oprimal path satisfies 

Euler's equation 

(2.2) 
o

DIL(x*(t), x*(t» 
1: 

e-ut d o 
- dt [D2L(x*(t), x*(t» 

1: 
e-ut] =O, 

where ~t is the time derivative, and DIL(x*(t), ~*(t» and D2L(X*(t), ~*(t» are the 

frrst-order partíal derivatives ofL.1 Benveniste and Scheinkman (1979) have shown that 

the value function V, defined in (2.1), is Cl differentiable on U. Therefore, this 

function must obey the functional equation of dynamic programming 

(2.3) 
o o

oV(xQ) = max L(XO, x) + DV(xQ)·x. 
o 
x 
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e 
solution to problem (2.1) if and only if it obeys at aH times equation (2.3). The dynamics 

of the optimization problem (2.1) are, therefore, fuHy characterized by BeHman's 

equation. In virtue of Assumption C, the optima! feedback control or policy ~(O) = 
g(x(O» must satisfy the frrst-order conditions 

e (2.4) 
o

D2L(XO, x) + DV(XO) =o. 

By the concavity of L, it follows from equation (2.4) that the function ~(O) =g(x(O» 

continuous on U. 

is 

e 

( 

Remark 2.1: As shown in Benveniste and Scheinkman (1979), the conditions that 

insure the differentiability of Vare: strict concavity and frrst-order differentiability of 

L, and Assumptions B and C. Such conditions are the only required to establish the 

continuity of the policy function g. The a~-concavity of L stated in Assumption A will 

be employed in the sequence. 

e 
3. LIPSCHITZ CONTINUITY OF TIIE POLICY FUNCTION 

The purpose of this section is to show that under the aboye assumptions, and a Lipschitz 

condition on the derivative of the return function L, the policy function g is a Lipschitz 

mapping on U.2 In the discrete time case, the Lipschitz continuity ofthe policy function 

has been established by Montrucchio (1987). 

To summarize the main ideas underlying the Lipschitz continuity of the policy function in 

discrete-time differentiable models, consider the following simple optimization problem 

max F(xO, Xl), 
Xl 

where F is a C2, ax¡-concave function defined on R2n. In that case, an optimal 

solution Xl = g(XO) exists, and must satisfy the frrst-order conditions 

D2F(xO, Xl) =O. 

By the implicit function therorem, the derivative Dg(xO) = -[D22F(XO,XI)]-I. 

D21F(XO,XI), where [D22F(XO,XI)]-1 is the inverse matrix. Note that the O-x¡-concavity of 

F imposes a uniform bound on the matrix norm 11 [D22F(XO, XI)]-lll. Therefore, in the 

case in which D2IF(XO, Xl) is unifonnIy bounded the optimal policy g is a Lipschitz 

mapping. Under general conditions, Montrucchio (1987) has shown that these results 
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hold for the Bellman equation of a discrete-time, infmite-horizon optimization model even 

if the return and value functions are not e 2 differentiable. 

e 

One way to weaken the e 2 differentiability requirement is to approximate the given 

function by a sequence of e 2 mappings. (Such method of proof will be employed 

subsequently.) Assume, for instance, that F is a el, (X.x¡-concave mapping and that the 

partial derivative D2F(XQ, Xl) is Lipschitz continuous with respect to xQ. eonsider a 
sequence of e 2 , (X.x¡-concave functions {Fn}n~Q, which converge to F in the el 

e 
topology. Such sequence may be chosen with the property that the cross-partial 

derivative D2lFn is uniformly bounded for all n ~ O. Then the corresponding sequence 

of optimal policies {gn}~ is Lipschitz continuous, with a uniform Lipschitz constant. 

AIso {gn}n~ converges point-wise to g. Therefore, the policy function g is Lipschitz 

continuous. 

e 

( 

Unlike the discrete time case, one cannot apply directly this method of proof to the 

Bellman equation (2.3). That is, one cannot longer assume that D2F(x,~) =D2L(X, ~) + 

DV(x)'~ is Lipschitz continuous with respect to x. Indeed, this is only true if the 

derivative DV(x) is a Lipschitz function. (By equations (2.3) and (2.4), this would 

amount to assume that g is already a Lipschitz function.) AIso, there does not seem to be 

a reasonable method to construct a discrete-time approximation to problem (2.1), and via 

a limiting argument to make valid uniform Lipschitz bounds for the continuous time case. 

As already suggested, the approach taken in this paper is to consider a sequence of 

continuous-time optimization problems in which the optimal policies are shown to be el 

differentiable with uniformly bounded derivatives. Such sequence of differentiable 

policies converges point-wise to the optimal policy g. The el differentiability of the 

optimal policies is established following the method of proof of Santos (1990). 

Theorem 3.1: Assume that the derivative DL is a Lipschitz mapping. Under 

Assumptions A to e, the policy function g is Lipschitz continuous on the set U. 

Proof: As pointed out aboye, assume frrst that L is 

the following optimization problem 

e 2 differentiable. eonsider now 

(3.1) Vn(xQ, O) =max ~ L(x(t), ~(t» e-Bt dt + Wn(x(h» e-Bh 

s. t. (x(t), ~(t» E T, with x(O) = XQ and O ~ t ~ h, 

where Wn is a e 2 concave function. Let gn(xn(t), t) =~n(t) denote the optimal policy 

to problem (3.1) at time t (O ~ t ~ h). Let Wn approach V, as n~co. Then gn(x, t) 
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converges uniformly to g(x) on the set [O, h]. Therefore, by Assumption e, for every 
*XQ in U there is n' > O such that the optimal solution {xn(t) }<r.:;t:;;h to (3.1) has the 

* 0*
property that (xn(t), xn(t» E int(T) for aH O~ t ~ h and aH n ~ n'. 

e 
By equations (2.4) and (3.1), the function gn(', h) is el differentiable at the point 
* xn(t). AIso, from the Maximum PrincipIe it must hold for each t in [O, h] that 

(3.2) 

e 
(3.3) 

e 
*where qn(t) is equal to the derivative DIVn(Xn(t), t) [the derivative of the function 

* * * vnCt) at xn(t)], and DIH(xn(t), qn(t» and D2H(Xn(t), qn(t» are the partial derivatives 

of the Hamiltonian 

e * H(xn(t), qn(t» * o o=max L(x (t), x) + qn(t)·x
o n 
x 

Equations (3.2) and (3.3) define a first-order differential equation on (x, q). As L is 

assumed to be e2 differentiable, these equations define by Assumptions A and e a flow 

11l(., t) = I1lt such that 

*Since I1lt-h is locally el differentiable, then either DIVn is a el mapping at xn(t) orit 

has an unbounded slope. We shall now show that at each time t, DIVn has a Lipschitz 

constant independent of n. 

*By the el differentiability of 11l, it foHows that DIVn is el differentiable at xn(t), 

whenever t is sufficient1y close to h, say t in [t', h]. AIso, 

Vn(x:(t') , t') =max ~ L(x(t), ~(t» e-at dt + Wn(x(h» e-ah 

s. t. o(x(t), x(t» E T, * with x(t') =xn(t') and Os: t s: h. 
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Therefore, for a given function (z(t) }~t' 

true that 

with ~(t) =DIgn(X*(t), t)·z(t) it must hold 

e 

2 * z(t')'·D Yn(xn(t'), t')·z(t') = 

z(h)'·D2Wn(x:(h».z(h) e-5h 

Jh
t' 

o 2 * 0* o(z(t), z(t»'·D L(xn(t), xn(t»·(z(t), z(t» 5e t dt + 

e 

e 

*where D2yn(xn(t'), t') denotes in this case the second-order derivative of the function 

*y n( " t') at x n(t') and z(t')'is a transposed vector. Consider now the following 

concave, quadratic optimization problem 

* lb o 2 * 0* o 5(3.4) 'l'n(xn(t), t') = max Jt, (y(t), y(t»'·D L(xn(t), xn(t»·(y(t), y(t» e- t dt + 
(y(t) }h~~t' 

y(h)'·D2Wn(x:(h».y(h) e-5h 

e 

s. t. y(t') =zn(t'). 

A staight-forward computation shows that the path (z(t) }h~~t' satisfies the necessary and 

sufficient frrst-order conditions 

(t' S t S h) 

Therefore, 'l'n(x*(t'),t') = z(t')'-D2yn(X: (t'), t')·z(t'). Hence, for 1I z(t') 1I = 1 the 

*value z(t')'·D2yn(xn(t'), t')·z(t') is uniformIy bounded (independently of n), since this 

value is (in absolute terms) less than or equal to the value achieved in (3.4) by the 

constant control ~(t) = t~n~t'h' Consequently, the functions DYn(', t') and DgnC t') 

are Lipschitz continuous and their respective Lipschitz constants are independent of n. 

Therefore, if L is C2 differentiable, then the function g is locally Lipschitz on U. 

Moreover, ifL is Cl differentiable, and the derivative DL is Lipschitz continuous, then L 

can be approximated by a sequence of C2 functions {Ln}n~ with uniformIy bounded 
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second-order derivatives. Whence, in this case the function g is also a Lipschitz mapping 

on U. The theorem is proved. e 

4. Cl DIFFERENTIABILITY OF THE POLICY FUNCTION 

e 
In order to show the Cl differentiability of the policy function, we shall need to 

strengthen the differentiability ofL and the interiority of optima! paths. We shall maintain 

Assumption B. 

Assumption A': The mapping L is continuous, and on the interior of of its domain it is 

C2 differentiable with uniformly bounded second-order derivatives. Moreover, there is 

sorne constant a> O such that L(x(t), ~(t)) + ~II ~(t) 11 2 is a concave function on T. 

e 
Assumption C': There exists an open set U in RO such that for every XQ in U, the 

value function V(xQ) is finitely valued and there is an optimal solution {x*(t) }~Q to 

problem (2.1), with x*(O) =XQ, such that (x*(t), ~*(t)) E int(T) for all t ~ O. 

e The boundedness of the second-order derivatives required in Assumption A' can be 

weakened in the same way as in Santos (1990). Assumption C' is a strengthening of 

Assumption C, since the optimal path must now lie in the interior at every moment in 

time. This interiority requirement is generally assumed in economic models, and can be 

obtained from restrictions on the return function [cf. Stokey, Lucas and Prescott (1989, 

p. 134)]. Observe that in order to guarantee the Lipschitz continuity of g at XQ is only 

necessary that the optimal path x*(·) be initially in the interior. However, as will 

become clear from the development below [see also the example in Santos (1990, p. 7)], 

the Cl differetiability of g at xQ requires that the optimal path x*(·), and its derivative 

~*O, be always in the interior.3 

Theorem 4.1: Under Assumptions A', B and C' the policy function g is Cl 

differentiable on U. Moreover,for every XQ in U there exists a constant K> Osuch 

that over the optimal path {x*(t) }~,with x*(O) =X(), it must hold that J~ 11 ~(t) 11 2 e-Bt 

dt 5 K,for every function {z(t)}~ with ~(t) =Dg(x*(t))·z(t),for all t ~ O, and 

11 z(O) 11 =1. 

Corollary 4.2: Under Assumptions A', B and C', the value function V is C2 

differentiable on U. 
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The assened upper bound on the integral J; 11 ~(t) 11 2 e-5t dt implies that the dynamical 

system generated by the derivative of the policy function, Dg, cannot grow at an 

exponential rate higher than ~. An analogous result holds in discrete time models [Santos 
2 

(1990, Prop. 2.3)]. In fact, following the methodology outlined by Santos (1989) this e 
propeny of the derivative can be used to establish the joint differentiability of the policy 

function with respect to the initial state and a vector of parameters. Under such 

framework, the results on local determinacy of equilibria of Kehoe, Levine and Romer 

(1990) can be extended to continuous time economies with general equilibrium dynamics. 

Another useful implication of this propeny of the derivative Dg penains to the 

characteristic roots (resp. exponents) associated to fixed points (resp. periodic orbits) of 

the Euler equation (2.3). It is well known [see Levhari and Liviatan (1972) and Benhabib 

and Nishimura (1979)] that at a given stationary point or closed orbit if A is a 

characteristic exponent then so is - A+ O. It follows that the Euler equation contains n 

characteristic exponents Ai such that re Ai ~ ~, and n characteristic exponents Aj such 

that re Aj ~ ~. Moreover, in the case where L is <Xi-concave there is no exponent with 

O
real pan equal to 2" [cf. Santos (1990, Lernma 3.9)]. The assened upper bound on the 

integral J; 11 ~(t) 11 2 e-5t dt implies then that at a given stationary point or closed orbit the 

n characteristic exponents associated to the dynamical system generated by g are those n 

exponents Ai of the Euler equation such that re Ai < ~ (cf. op. cito Prop. 2.3). 

From the Lipschitz continuity ofDV and g, one can now derive the following preliminary 

resulto 

Lernrna 4.3: Let (x*(t)}~ be an optimal interior solution.lfthe policy function g is 

differentiable at the point x*(O), then it is differentiable at every point of the orbit 

{x*(t) }~o. 

Proof: Consider the mapping Xt = ",(xo) given by 

l/lt� 
XQ ~ (XQ, DV(xO)) ~ (xt> DV(xV) ~ Xt.� 

where l/lt denotes the flow induced by equations (3.2) and (3.3), and DV(xv =q(t). Since 

DV and l/lt are differentiable mappings, the mapping '" is also differentiable at XO' 

Funhermore, since the derivative Dl/lt is invertible and, by Theorem 3.1, DV is a 
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Lipschitz function at x*(t), it must hold true that D'I'(xO) is also invertible. By the 

inverse function theorem, the mapping '1' has a local inverse VI which is differentiable 

at the point x*(t). 

Therefore, (x*(t), DV(x*(t))) = ~t(XO, DV(xO)) = ~t(VI(x*(t)), DV(VI(x*(t))). As aH 

these functions are differentiable, an application of the chain rule shows then that the 

mapping DV is differentiable at x*(t). Furthennore, by the implicit function theorem 

applied to equation (2.4) the mapping g is also differentiable at x*(t), and x*(t) is an 

arbitrary point of the optimal orbit (x*(t) }~. The lernma is thus established. 

Following Santos (1990) we introduce the foHowing condition which will play a 

fundamental role in the method of proof. 

Condition D: Let (x*(t)}~ be an optimal path. Then a function z(·) defined on [O, 

00) with 11 z(O) 11 =1 is said to satisfy Condition D if 

D.!. For all t ~ O 

o o o l: d o
[z(t)'·DllL(x*(t), x*(t)) + z(t)'·D2IL(x*(t), x*(t))] e-uL dt ([z(t)'·D12L(x*(t), x*(t)) + 

o o l:
z(t)'·D22L(X*(t), x*(t))] e-ut) = O. 

D.2. There exists a uniform constant M > O such that 

- I~ ~ (z(t), ~(t))"D2L(x*(t), ~*(t))·(z(t), ~(t)) e-Bt dt S M. 

Rernark 4.4: As in the proof of Theorem 3.1, Condition D.l corresponds to the first­

order variational conditions of a quadratic expansion along an optimal orbit (x*(t)}Q:O of 

the infinite honzon problem (2.1). Condition D.2 will play the role of a transversality 

condition. By the ~-concavity of L, Condition D.2 implies that ~ ~ 11 ~(t) 11 2 e-Bt dt 

S M. Therefore, lim 11 z(t) 11 2 e-Bt =O. 
a. t~oo 

Lernrna 4.5: Let (x*(t) }Q:O be an optimal path. If a sequence (z(t) }Q:O satisfies 

condition D, then (z(t) h~o is an optimal solution to the quadratic optimization 

problem 

roo 1 o 2 o o l:(4.1) max Jo"2 (y(t), y(t))'·D L(x*(t), x*(t))·(y(t), y(t)) e-utdt 
(y(t)}~ 

s. t. y(O) =z(O). 
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Proof: Assume that there is another path {z'(t)}~O which solves problem (4.1). Then 

{z'(t)}~ must obey aH times the Euler equation given by Condition D.1. AIso, there is 

a given constant M' > Ofor which {z'(t)}~ must obey Conditon D.2. Let 11(t) =z'(t) 

- z(t). Then following a standard argument [cf. Arrow and Kurz (1970, pp. 44-45)] 

J6 ~11(t), ~(t))"D2L(x*(t), ~*(t))'(11(t), ~(t)) e-Btdt ~ 

¡¿«11(t)'.D¡¡L(x*(t), ~*(t)) + ~(t)"D2¡L(x*(t), ~*(t)) e-Bt _ 

(4.2) (11(T)'·D¡2L(X*(T), ~*(T)) + ~(T)"D22L(x*(T), ~*(T)))'11(T) e-BT, 

where the first inequality foHows from an integration by parts. The second inequality 

follows from the fact that {11(t)}~ satisfies Condition D.1, and 11(0) =O. 

Since 11(t) =z(t) - z'(t), {z(t)}~ and {z'(t)}~ satisfy conditon D.2, and the second­

order derivatives of L are assumed to be uniformIy bounded, for sorne T arbitrarily large 

the value in (4.2) must be near zero (cf. Remark 4.4). Hence, lim J6 ~ «11 (t), 
T~oo 

~(t))'.D2L(x*(t), ~*(t))'(11(t), ~(t))) e-Bt dt =O. As L(x*(t), ~*(t)) is <xo-concave, it 
x 

must be the case that 11 (t) =Ofor aH 1. Therefore, {z(t)} ~o is an optimal solution to 

problem (4.1). The proofis complete. 

Lernrna 4.6: Let {x*(t)}~ be an optimal solution to problem (2.1). Assume that g 

is differentiable at every point of the orbit {x*(t)h~o. Then every sequence {z(t)h~o 

with ~(t) =Dg(x*(t))'z(t), for aH t ~ O, and 11 z(O) 11 =1, satisfies Condition D. 

Proof: Note that every optimal interior solution {x*(t) }~o must obey at aH times the 
. o ~ d o B oEuler equauon D¡L(x*(t), x*(t))e-ut - dt [D2L(X*(t), x*(t)) e- t] = O where x*(t) = 

g(x*(t)). Then, it is readily seen [cf. equation (3.5)] that any solution {z(t) }~o with 

~(t) =Dg(x*(t))·z(t) must satisfy Condition D.1. 

Also, by the Bellman principIe V(x*(O)) = ¡¿ L(x*(t), ~*(t)) e-Bt dt + V(x*(T)) e-BT. 
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The statement of the Lernma implies that Y is twice differentiable at the points x*(O) and 

x*(T). Therefore, for {z(t)}~ with ~(t) = Dg(x*(t»·z(t) it follows that 

z(0)'·D2y(X*(0))·Z(0) - 1'6 (z(t), ~(t))'·D2L(x*(t), ~*(t))·(z(t), ~(t» e-5t dt ­

z(T)'·D2Y(x*(T))·z(T) e-ST= O. 

By the concavity of Y, we have for every T ~ Othat 

-f6 (z(t), ~(t»)'·D2L(x*(t), ~*(t))·(z(t), ~(t» e-St dt ~ - z(0)'·D2y(x*(0))·z(0). 

As DY is a Lipschitz mapping, there is a uniform constant M > O such that every 

sequence {z(t)}~ with ~(t) = Dg(x*(t»·z(t), for all t ~ O, and 11 z(O) 1I = 1, must 

satisfy Condition D.2. This proves the lernma. 

Proof of Theorem 4.1: By Theorem 3.1, the function g is locally Lipschitz 

continuous on the open neighborhood U. Therefore, by Rademacher's theorem [cf. Stein 

(1970)] the function g is differentiable almost everywhere on U. Moreover, following 

Clarke (1975, Prop. 1.13) the function g is Cl differentiable on U if every sequence 
of differentiable points {xn}~ converging to x(O) in U has the property that lim 

n--+oo 

Dg(xn) is unique1y defmed. 

•Assume, therefore, that g is differentiable at a point Xn E U. Let (xn(t)h~o be the 

•optimal solution to problem (2.1) with xn(O) =Xn. Then the mapping g is differentiable 

at every point of the path (x:(t) }~, by Lernma 4.3. Let ~ni(O) denote the ith column of 

•the derivative Dg(xn(O». Let Zi be the canonical basis element of Rn with 1 in the ith 

coordinate. Then by Lemmas 4.5 and 4.6 the path (zn(t)lt~O with ~n(t) = 

•Dg(xn(t)),zn(t) and zn(O) =Z¡ is an optima! solution to the quadratic optimization 

problem 

(4.3) 

s. t. Yn(O) = Zi. 

Since by Theorem 3.1 the function g is Lipschitz continuous, the sequence (~n(O)} n~O 
is bounded. Hence, it follows from the ao-concavity of L and Euler's equation [cf. 

x 
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Condition D.l] that for every T the sequence of functions [{ (zn(t)Jn(t» }os~r]n~ is 

e equicontinuous. Therefore, we can extract a subsequence of [{ (zn(t), ~n(t»} ~]n~O 

which, converges point-wise to a given limit, say {(z(t), ~(t»}~o. Moreover, as g is a 

continuous function it is readily seen that {(z(t), ~(t»}~ must satisfy Conditon D, and 

by Lernma 4.5 it is therefore an optimal solution to The quadratic optimization problem 

e (4.1). 

However, every converging subsequence of ((zn(t), ~n(t»} must converge to a unique 

limito For, if not, the strictIy concave, quadratic problem (4.1) would contain several 

'--, optimal solutions. Therefore, the entire sequence [{ (zn(t), ~n(t»} ~O]n~ converges 

point-wise to {(z(t), ~(t» }~. Hence, the sequence (~n(O)}n~O is convergent, where 

~(O) is the ith column of Dg(xn). Since the choice of i =1, ... , n is arbitrary, it fol1ows 
that for every sequence of differentiable points (xn}n~ converging to x(O) in U, lim 

n-p> 

Dg(xn) is uniquely defined. Consequently, the function g is Cl differentiable on U. 

Moreover, it fol1ows from Lernma 4.6 and Remark 4.4 that there is K = M such that I~ 
a. 

I1 ~(t) 11 2 e-St dt < K for ~(t) =Dg(x*(t»·z(t), for al1 t ~ O, and 11 z(O) 11 = 1. The 

theorem is proved. 

5. HIGHER-ORDER DIFFERENTIABILITY OF THE POLICY FUNCfION 

In the preceding section we showed that under general conditions if the variational 

integrand L is C2 differentiable, then the policy function g is a Cl mapping. Under 

the previous assumptions, our goal here is to explore the higher-order differentiability of 

the policy function g, as the degree of differentiability of the integrand L is increased. 

The higher-order differentiability of oprimal paths is often useful to analyze the behavior 

of chaotic dynamics, endogenous cycles and bifurcations [see, for instance, Boldrin and 

Woodford (1990, Sect. 2)]. 

In the discrete time case, Araujo (1989) has presented an example of a C3 optimization 

problem in which the policy function is only Cl differentiable at an unstable stationary 

point. It is unknown, however, whether examples of this sort arise from very simple 

return functions, and if these examples are robust to small perturbations of the objective. 

By identifying certain conditions which may prevent higher-order differentiability, the 

subsequent development will provide a fairly satisfactory answer to these questions. 

These conditions are related to certain results on loss of differentiability in the theory of 

dynamical systems. A fundamental result in this area is a theorem due to Sternberg 
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(1959). roughly, the theorem states that for a non-linear e k function f: RO ~ RO, if at a 

stationary point x* the characteristic roots do not fulfill certain independence conditions 

(named non-resonance conditions), then it is not always possible to establish around the 

stationary point x* a e k correspondence between the orbits of the dynamical system 

generated by f and the orbits of the dynamical system generated by the derivative Df(x*). 

[More precisely, around the stationary point x*, the function f is not necessarily e k 

conjugate to its derivative Df(x*).] 

We frrst proceed with a simple example of a cubic return function whose policy is only 

el differentiable.4 Then we shall focus on the conditions which generate this resulto 

Example: Define 

(5.1) L(k, ~) = 24(k - 1) - 14(k - 1)2 - (k 31)3 + 5(k - 1)~ - ~ ~2 - 2~. 

Then around the point (k,~) =(1, O) the Hessian matrix D2L(k, ~) is negative definite. 

Therefore, L is locally a strongly concave function. Moreover, assuming that the discount 

rate B=12, the Euler equation is satisfied at the point (k, ~) = (1, O). Let y =k - 1. 

Then the Euler equation is in fact defined by 

00 o 2(5.2) y =12y - 32y + y . 

Hence. the linear system is 

00 o
(5.3) y =12y - 32y. 

The characteristic roots for the system are Al =4, A2 = 8. Therefore, the system is 

unstable. Let x =Y. We now claim that around the point (O, O) there is no e 2 invariant 

curve x =h(y) with h'(O) =4. Given that the derivative Dg(l) =4 (see the cornmentary 

after Theorem 4.1), this claim yields the required example. 

The claim will be established following the method of undetermined coefficients [e.g., 

van Stríen (1979)]. Assume that there is a solution ofthe form 

(5.4) x =h(y) =4y + a2y2 + 0(y2) 

where 0(y2) collects all remaining terms of order lower than y2 (Le., lim O(~2) = O).
y-+o y 

Then the derivative 

(5.5) h'(y) =4 + 2a2Y + o(y). 
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e� 

e As x =~, from equation (5.2), 

(5.6) 
~ 
o 
y 

12x - 32y + y2 
x 

e Substituting out equation (5.4) into (5.6), we obtain 

~ _ 12(4y + a2y2 + o(y2)) - 32y + y2 
(5.7) 

o - 4y + a2y2 + o(y2)y 
e 

e Since h is an invariant curve for the flow generated by (5.2), then at every ~ '# O it 
o 
x

follows that h'(y) =-. o 
y 

Therefore, from equations (5.5) and (5.7) e 
4 + 2a2Y + o(y) = 12(4y + a2y2 + o(y2)) - 32y + y2 

4y + a2y2 +o(y2) 

Hence, 

16y + 12a2y2 + o(y2) =48y - 32y + 12a2y2 + y2 + o(y2). 

This implies that 

However, this last identity cannot be true around the point y =O. Therefore, around the 

point (k, ~) =(1, O) the return function (5.1) cannot contain a C2 invariannt curve ~ = 
g(k) with slope equal to 4. ConsequentIy, the policy function is at most Cl at k =1. 

Let us now explore the sources of non-differentiability. In the frrst place, the point (k, ~ ) 

= (1. O) is an unstable stationary point. Quoting sorne results from the theory of 

dynamical systems, Santos and Vila (1988) pointed out that higher-order 

differentiability may be lost at unstable stationary points. At stable steady states, and at 

points in the basin of attraction of a steady state, it follows from an application of the 

center manifold theorem that if the return function is Ck, then the policy function is Ck-l, 

where k~ 2.5 
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In the aboye example the characteristic roots Al =4, A2 =8 have the property A2 = e 
2AI. Therefore, the roots do not satisfy the independence (non-resonance) conditions 

given by Sternberg (1959). According to Sternberg's results, higher-order 

differentiability may only be lost in the case A2 =nAI, where n is sorne positive integer. 

Moreover, following Hirsch, Pugh and Shub (1977, Th. 5.1), if A2 =nAI then there is 

always a e n- l invariant curve whose slope at the steady state is equal to Al. Therefore, 

the loss of higher-order differentiability in our example is maximal. 

Another feature of this example is that the return function is locally a polynomial of 

degree 3. Note that quadratic return functions give rise to linear policy functions, and 

consequentIy such policy functions are always coa differentiable. On the other hand, it is 

worth pointing out that those terms with an exponent greater than 3 would not have any 

effect on the e 2 differentiability of the policy function. For example, if we add to a 

quadratic return function a term of the form m(k-1)4, where m is a real number, such 

perturbation may have an effect on the e 3 differentiability of the invariant curves, but 

would not have any effect on the e 2 differentiability of such curves. 

The resonance conditions of Sternberg (Le., A2 =nAI for sorne integer n ~ 1) are not 

preserved under small perturbations of the characteristic roots. Likewise, continuous­

time, unidimensional models display fairly simple dynamic behavior. Indeed, stationary 

points are the only type of recurrent dynamics. Therefore, under the aboye assumptions 

for one dimensional models, if return functions are eoo differentiable, then optimal 

policies are generically going to be coadifferentiable. eonsequentIy, the aboye example is 

pathological in the sense that the result will not be preserved for small e 2perturbations 

of the return function. 

Models with many goods feature more complicated recurrent dynamics. Such models 

may contain periodic orbits, limit cycles, and other fairly complex configurations of 

asymptotic behavior. There is here more scope for non differentiability. Of application to 

our purposes is a result due to Mañe (1975). Such result establishes that if a eoo 

dynamical system contains a coa invariant manifold which is k-normally hyperbolic, then 

every nearby coa dynamical system contains an invariant manifold, but such manifold is 

possibly at most e k differentiable. 

Even if the policy function is not always higher-order differentiable, for a given model 

(satisfying the aboye assumptions) we could consider how big is the set of points where 

higher-order differentiability is not achieved. For example, as illustrated in Santos an Vila 

(1988), for one dimensional models higher-order differentiability is lost at most at a 

countable number of isolated, unstable stationary points. For multidimensional models, 
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there is an analogous resulto A well known theorem in the theory of dynamical systems 

[cf. Bowen (1975, Th.4.11)] states that under the action of an Axiom A diffeomorphism 

almost all points are in the basin of an attractor.6 Whence, systems which feature 

dynamics of this type have the property that the policy function is almost always higher­

order differentiable. 
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FOOTNOTES� 

e 

e 

1. For functions L: RO x RO ~ R, DL(k, ~) denotes the derivative ofL evaluated at the 
e 

point (k, ~ ), and DIL(k, ~ ) and D2L(k, ~ ) denote the partial derivatives of L at (k, ~) 

with respect to k and ~,resp. A1so, if L is e2 differentiab1e, then D2L(k, ~ ) is the 

Hessian matrix at (k, ~ ), and for i,j = 1,2, DijL(k, ~) is the second-order partía1 

derivative of L at (k, ~ ) with respect to the ith and jth components. 

2. A function g: U e RO ~ Rm is called Lipschitz if there is a constant K > O such that 

11 g(x) - g(y) 11 S K 11 x-y 11 for all x, y in U. 

3. For sorne technical reasons, an exception to this rule is the one-dimensional case, 

where Santos and Vila (1988) demonstrate the el differentiability of g under the mild 

interiority requirement given by Assumption e. 

4. Since the too1s of this section come from the theory of dynamical systems, the example 

and remaining results have corresponding analogues in the discrete time case. 

5. Araujo and Scheinkman (1977) were the first to show that the policy function is 

differentiable at a hyperbolic stable steady state. 

6. A diffeomorphism satisfies Axiom A if the wandering set Q(f) is hyperbolic and Q(f) 

= {x: x is periodic), see op. cito 



20 
e 

REFERENCES 
e 

Araujo, A. (1989), "The once but not twice differentiability of the policy function," 

unpublished manuscript. 

Araujo. A. and lA. Scheinkman (1977) " Srnoothness, cornparative dynamics, and the e 
tumpike property," Econometrica 45,601-620. 

Arrow, K.J. and M. Kurz (1970), Public investment, the rate oi return, and optimal 

fiscal policy. Johns Hopkins University Press. 

Benhabib, 1. and K. Nishirnura (1979), "The Hopf bifurcation and the existence and 

stability of closed orbits in rnultisector rnodels of optirnal econornic growth," 

Journal oiEconomic Theory 21,421-444. 

Boldrin, M. and M. Woodford (1990), "Equilibriurn rnodels displaying endogenous 

fluctuations and chaos: A survey," Journal oiMonetary Economics 25, 189-223. 

Bowen, R. (1975) Equilibrium states and the ergodic theory oi Anosov 

diffeomorphisms. Lecture Notes in Mathernatics no. 470, Springer-Verlag. 

Carlson, D.A. and A. Haurie (1987), Infinite horizon optimal control. Lecture Notes in 

Economics and Mathernatical Systerns no. 290, Springer-Verlag. 

Clarke, F. H. (1975), "Generalized gradients and applications," Transactions oi the 

American Mathematical Society 205,247-262. 

Crandall, M.G., L.C. Evans and P.-L. Lions (1984), "Sorne properties of viscosity 

solutions of Harnilton-Jacobi equations," Transactions oi the American 

Mathematical Society 282,487-502. 

Fleming, W.L. (1971), "Stochastic control for srnall noise intensities," SIAM Journal on 

Control 9,473-517. 

Fleming, W.L. and R,W. Rishel (1975), Deterministic and stochastic optimal control. 

Springer-Verlag. 

Hirsch, M.C., C.C. Pugh and M. Shub (1987), Invariant manifolds. Springer-Verlag. 

Kehoe, T.J., D.K. Levine and P.M. Rorner (1990), "Determinacy of equilibriurn in 

dynamic rnodels with finitely rnany consurners," Journal oiEconomic Theory SO, 

1-21. 



21 

( 

Levhari, D. and N. Liviatan (1972), "On stability in the saddle-point sense," Journal of 
e 

Economic Theory 4, 88-93. 

Lions, P.-L. (1982), Generalized solutions ofthe Hamilton-Jacobi equations. Research 

Notes in Mathematics no. 69, Pitman, London. 
e 

Mañe, R. (1974), "Persistent manifolds are nonnally hyperbolic," Bulletin of the 

American Mathematical Society 80,90-91. 

Montrucchio, L. (1987), "Lipschitz continuous policy functions for strongly concave 

optimization problems," Journal ofMathematical Economics 16,259-273. 

Pontryagin, L.S., V.G. Boltyanskii, R.V. Gamkreledze, and E.F. Mischenko (1962), 

The mathematical theory ofoptimal processes. Interscience, John Wiley. 

Santos, M.S. (1989), "Differentiability and comparative analysis in discrete-time infinite­

horizon optimization problems," revised version, submined to Journal ofEconomic 

Theory. 

Santos, M.S. (1990), "Smoothness of the policy function is discrete time economic 

models," to appear in Econometrica. 

Santos, M.S. and J.-L. Vila (1988), "Smoothness of the policy function in continuous 

time economic models: The one dimensional case," to appear in Journal of 

Economic Dynamics and Control. 

Stein, E.M. (1970), Singular integrals and differentiability properties of functions. 

Princenton Mathematical Series no. 30. 

Stemberg, S. (1959). "On the structure of local homeomorphisms of Euclidean n-space 

n," American Journal ofMathematics SO, 623-631. 

Stokey, N.L, R.E. Lucas and E.C. Prescott (1989), Recursive methods in economic 

dynamics. Harvard University Press. 

Toman, M.A. (1986), "Optimal control with unbounded horizon," Journal ofEconomic 

Dynamics and Control 9, 291-316. 

van Strlen, S. (1979), "Center manifolds are not CO"," Mathematische Zeitschrift 166, 

143-145. 


