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Abstract 

 

This paper analyzes the effects of industrial concentration on bidding behaviour 
and hence, on the seller´s expected proceeds. These effects are studied under 
the CIPI model, an affiliated value set-up that nests a variety of valuation and 
information environments. We formally decompose the revenue effects coming 
from less competition into four types: a competition effect, an inference effect, a 
winner´s curse effect and a sampling effect. The properties of these effects are 
discussed and conditions for (non) monotonicity of both the equilibrium bid and 
revenue are stated. Our results suggest that it is more likely that the seller 
benefits from less competition in markets with more complete valuation and 
information structures. 
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1 Introduction

The typical concern about any illegal collusion practice (cartels) or legal collusion
arrangement (mergers or consortia) is that these practices reduce the number of
participants in the market and hence, lessen competition, negatively a¤ecting both
the price and the bid-taker�s revenue. Nevertheless, in the context of auctions and
bidding markets, this conventional wisdom applies only to the case of indepen-
dent private value settings, as it has been modelled theoretically and empirically
supported by abundant literature.1 The simplicity of the valuation and informa-
tion environments analyzed by this literature makes collusion practices negatively
a¤ect the intensity of competition, what has been called the competition e¤ect.2

However, under a common value and/or a¢ liated signals model, the higher con-
centration provoked by joint bidding leads to other e¤ects that may counteract
the competition e¤ect, and induce a more aggressive bidding behavior. These
e¤ects can be grouped into three classes: a winner�s curse e¤ect, an inference
e¤ect and an information pooling e¤ect. First, the reduction in the number of
bidders in a common value environment permits alleviation of the winner�s curse,
because now defeating fewer bidders makes the ex post overoptimism less likely.
This implies that a higher industrial concentration increases the expected value
of the item conditional on winning the auction, and in consequence, bidders are
less conservative.3 The inference e¤ect may arise from some a¢ liated information
structures, and can be present in both private and common value environments.4

In this case, the reduction in the number of participants may increase the aggres-
siveness of the bidding behavior. The reason for this is that, although winning

1For theoretical works on (legal) joint bidding under the independent private value setting,
see Waehrer [39], Waehrer and Perry [40], Froeb, Tschantz and Crooke [9], [37], and [10], and
Dalkir, Logan and Masson [6]. Theoretical analysis on bidding rings with private values are
provided by Robinson [35], Mailath and Zemsky [21], McAfee and McMillan [25], Marshall et
al. [22], and Pesendorfer [29]. Finally, most empirical literature on illegal collusion derives its
estimation models from a theoretical set-up with private values as well. Some papers along these
lines are Hewitt, McClave and Sibley [14], Porter and Zona [33], Pesendorfer [29], Lanzillotti
[19], Scott [36], Porter and Zona [32], Bajari and Ye [2], and Baldwin, Marshall and Richard [3].

2Given some properties of bidding rings (e¢ ciency and the possibility of side payments),
illegal collusion and mergers have the same anticompetitive e¤ects on auction markets if values
are private (see McAfee [24]).

3Theoretical approaches that characterize the winner�s curse e¤ect include Bulow and Klem-
perer [4] and Hendricks, Pinkse and Porter [11]. On the other hand, a number of recent papers
provide empirical evidence of this e¤ect in several auction markets such as Hong and Shum [15],
Hendricks, Pinkse and Porter [11], and Athias and Nuñez [1].

4The previous literature refers to this e¤ect as the a¢ liation e¤ect ; see Pinkse and Tan [31],
Hong and Shum [15], and Hendricks, Pinkse and Porter [11].
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is interpreted as information that the intensity of the competition is lower than
before the auction starts, this perception is weakened when the winner faces fewer
rivals. Finally, the information pooling e¤ect improves the precision of the bid-
der�s value estimate because a coalition of bidders can observe either a new signal
or a larger amount of signals with better stochastic properties than an individual
bidder. This e¤ect also allows the winner�s curse correction on bids to mitigate,
leading to more aggressive bidding behavior.5

Therefore, all these e¤ects go in the same direction and encourage more aggressive
bids when an auction market becomes more concentrated because of mergers or
other joint bidding arrangements. As these e¤ects dominate the competition
e¤ect plus the statistic e¤ect produced by the overall reduction in the number
of participants (a sampling e¤ect), the possibility for increasing the bid-taker�s
expected revenue remains open. As a result, the standard viewpoint that less
competition is always undesirable can clearly become challenged.6

All of this underlines the importance of analyzing, in a valuation and informa-
tion setting which is as complete as possible, the e¤ects of (legal) joint bidding
practices. As a starting point for this general objective, this paper studies the
e¤ects of a change in the number of bidders on both the equilibrium bid strategy
and the seller�s proceeds.7 Consequently, we abstract away from any information
pooling type e¤ect. This implies that one can infer the other e¤ects from the
hypothetical exercise in which bidders merger but the acquired bidder�s informa-
tion is not used by the acquiring one. We then make this exercise equivalent,
from a methodological point of view, to the case in which the number of bidders
decrease because some of them do not attend some particular auction or because
they leave the industry.

From the previous literature, a good point of departure for our analysis is provided
by Pinkse and Tan [31], who examine conditions under which the equilibrium
bid is monotonic increasing with respect to the number of bidders n in a¢ liated
private-value models of �rst-price auctions. In particular, they show the existence
of a large class of such models in which the equilibrium bid function is indeed
not strictly increasing in n. Furthermore, they propose a decomposition of the

5See DeBrock and Smith [7], Hendricks and Porter [12], Krishna and Morgan [18]. Mares
and Shor [23] show that indeed this information pooling e¤ect works unambiguously for second-
price auctions, but for �rst-price auctions it induces more aggressive bids only for signals that
are su¢ ciently low.

6In addition, it has been argued that joint bidding has other pros such as facilitating entry
of wealth-constrained bidders and improving risk diversi�cation (see DeBrock and Smith [7]).

7We do not examine the welfare e¤ects of competition. For an analysis of such issues, see,
for instance, Compte and Jehiel [5].
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bidding e¤ects into two parts: a competition e¤ect and an a¢ liation e¤ect. This
latter e¤ect is precisely the source of the surprising �nding of Pinkse and Tan in
a private value environment, and it can also be present in a common value set-
up. They illustrate their results with the conditionally independent private value
(CIPV) model, a special case of the a¢ liated private value (APV) model in which
bidders�valuations are a¢ liated through a common random component, but they
are independently distributed given a realization of this common component. In
this environment , the winner never regrets its winning so that the winner curse
e¤ect has no bite.

Accordingly, it is clear that in order to also examine the winner�s curse e¤ect,
we need to consider a more general framework than that provided by the APV
model - and in particular by the CIPV model -, as this e¤ect cannot emerge from
the valuation structure characterized by these settings. One way to do this is
by means of the conditionally independent private information (CIPI) model, a
special class of the general a¢ liated value (AV) model which encompasses both
the CIPV and the pure common value setups as polar cases. In the CIPI model,
the bidders�signals (private information) are a¢ liated through a common variable
(which can also be the ex post common value of the object), but they are inde-
pendently distributed conditional on a realization of this common variable. As a
consequence, this framework provides an environment rich enough to evaluate all
the revenue e¤ects.

We group the e¤ects on revenue coming from more competition into two classes:
(i) those that a¤ect bidding behavior and (ii) a pure sampling e¤ect. On the one
hand, changes in the number of buyers in�uence the equilibrium bid. As discussed
above, in environments with interdependent valuations and dependent informa-
tion, bidding behavior can become more or less aggressive with more competition.
The �nal sign of these in�uences on bids, as well as on revenues, is therefore
ambiguous, and depends on the relative magnitudes of the bidding-based e¤ects
considered. A more in-depth characterization of these bidding e¤ects can then be-
come worthwhile for a seller interested in adopting revenue-enhancing instruments
in the face of mergers or any joint bidding practice. Consequently, we propose a
decomposition of this bidding e¤ect that allows us to isolate and formally evaluate
the winner�s curse, the competition and the inference e¤ects. The properties of
all these e¤ects are established, and conditions for the (non)monotonicity of the
equilibrium bid are stated.

On the other hand, the sampling e¤ect re�ects the upward impact on the seller�s
proceeds due to the fact that more competition implies a winning signal�s dis-
tribution with better stochastic properties. We then combine both the bidding
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e¤ect and the sampling e¤ect, providing conditions for the (non)monotonicity of
revenues. In particular, the paper shows that the seller�s expected proceeds can
be decreasing in the number of buyers as a negative and su¢ ciently large bidding
e¤ect dominates the sampling e¤ect. The main implication is that in the CIPI
model, in contrast to the CIPV setting, the conditions that allow the seller to
bene�t from less competition are less stringent. The rationale of this �nding is
the presence of the winner�s curse e¤ect, absent in a¢ liated private value envi-
ronments. In fact, as the winner�s curse constitutes an additional force for bids
decreasing in the number of buyers, it makes the conditions for nonmontonic rev-
enue to hold more likely. In a broader sense, this work highlights therefore the
role played by the valuation and information structure assumed to be satis�ed
in a particular auction-based market. Accordingly, our results suggest that, by
analyzing a more complete auction environment, the traditional idea that more
concentration is always undesirable may no longer hold.

Our model accounts for existing empirical evidence that, in auction markets in
which the winner�s curse seems to be particularly strong, the bid-taker may be
better o¤ when the number of bidders decreases. For instance, DeBrock and
Smith [7] study o¤shore oil lease auctions under a framework with values and
signals that are log-normally distributed. They show that the joint bidding
increases the total social value of the lease o¤ering and, in some cases, increases
the fraction of this value appropriated by the seller (the government). Similarly,
Hong and Shum [15] construct a model of a low-bid procurement auction with
common value and a¢ liated signals. The bidder�s cost of completing a project is
given by a log-additive formulation that includes both a private (or idiosyncratic)
and a common cost component, which are independently log-normal distributed.
They �nd that, for a large subset of construction procurement auction contracts,
the median cost rises as the number of participants increases.

It is noteworthy that while the evidence presented by these works is derived start-
ing from a framework that assumes speci�c functional forms for valuations and/or
distributions, our model yields these predictions without such restrictive assump-
tions. What is even more interesting it is likely that the available evidence against
the nonmonotonicity of revenue with the number of bidders is based largely on
these speci�c assumptions as well. For instance, Mares and Shor [23] develop
a model with pure common value and independent signals, where the value of
the item is the average of all bidders�signals. Their �ndings, corroborated by
experimental exercises, suggest that the seller�s expected revenue decreases with
less competition mainly because of the sampling e¤ect.8 Nevertheless, since their

8Since their model assumes independence and symmetry, the revenue equivalence theorem
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valuation structure depends precisely upon the number of participants, some of
the e¤ects described could be absent if other valuation functions were assumed.

The results of this paper have a scope of applicability that goes beyond a mere
academic interest, as they concern antitrust issues which are currently widely
discussed. In a recent policy-oriented article, Klemperer [16] analyzes the char-
acteristics that the competition policy on bidding markets should possess. His
general conclusion is that, although the markets organized as auctions do have
some special features such as common values behavior, a tendency to overem-
phasize the importance of these features has erroneously lead to positions in favor
of a more lenient antitrust policy. In what concerns the role played by the win-
ner�s curse, the arguments provided by Klemperer rest on two examples under the
pure common value environment in which less competition would unambiguously
hurt the seller.9 However, similar to Mares and Shor�s results, the conclusion of
Klemperer may strongly depend on the particular valuation structures considered
in his examples. In contrast, our main insight, derived without such speci�c as-
sumptions, suggests the need for an antitrust policy that scrutinizes mergers more
carefully or other joint bidding arrangements in bidding markets in which more
sophisticated valuation and information environments are present.

This paper is organized as follows. Section 2 summarizes the CIPI model, noting
how the CIPV and the pure common value models can be derived from this as a
special cases. Section 3 studies the relationship between competition and bidding
behavior in a �rst-price auction under the CIPI setting. As a consequence, we
provide conditions for the (non)monotonicity of the equilibrium bid strategy and
propose a new three-part decomposition of the bidding-type e¤ects. In Section
4, we examine the conditions that guarantee the (non)monotonicity of the seller�s
revenue with respect to n. Finally, Section 5 concludes. All the proofs are
collected in the Appendix.

2 The CIPI model

Consider a seller who wants to auction o¤ a single object among n bidders, using
a �rst-price auction with a possible reserve price r � 0. Each bidder observes a
signal xi 2 [x; x], x > 0, which is private information to him. Bidder i�s utility

implies that this result holds for both �rst-price and second-price auctions.
9These examples are the wallet game (in which valuation corresponds to the sum of all

bidders�signals) and the maximum game (in which valuation is the maximum among all bidder�s
signals).
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(valuation) is represented by the function U(v; xi), where v 2 [v; v], v > 0, denotes
an unknown random variable common to all bidders with c.d.f. Fv and p.d.f. fv.
Let z = (x1; :::xn; v) be a random vector distributed according to the c.d.f. F and
the p.d.f. f , with F a¢ liated and symmetric in its �rst n arguments. All players
are risk-neutral.

Whenever the signals xi�s are a¢ liated through the common random component
v, but they are independently and identically distributed given a realization of this
common random variable, such a model belongs to the conditionally independent
private information family (CIPI, for short). As a consequence, the signals xijv
are i.i.d. according to the c.d.f. Fxjv(tjs) = Pr(xi � tjv = s) and the p.d.f. fxjv
with support [x; x], x > 0. Notice that since this statistical structure requires xi
and v to be a¢ liated, we adopt the equivalent assumption that Fxjv satis�es the
(strict) MLRP. 10 The CIPI model can then be interpreted as a special case of the
more general a¢ liated value model (AV, for short) described above, as it can be
veri�ed that the joint distribution F satis�es a¢ liation and symmetry in its �rst
n arguments from the following expression:

f(x1; :::xn; v) = fv(v)f(x1; :::xnjv)

= fv(v)
nY
i=1

fxjv(xijv)

Imposing particular functional forms on bidder�s valuations (utilities), two polar
cases can be derived from the CIPI model.

The CIPV model. Consider the case in which bidder i�s utility (valuation) is
given by the function U(v; xi) = xi. Since the valuation to each bidder is given
entirely by his own information, we are in the private value setting as each bidder
fully knows his valuation ex ante. The only remaining uncertainty is hence about
the other bidders�valuations. In particular, since now each bidder�s value is equal
to his signal, the model corresponds to the conditionally independent private value
(CIPV, hereafter) model.11 An economic interpretation of this model is as follows.
While the random variable v is interpreted as the ex post value that the average
bidder assigns to the object for sale, the di¤erence between each bidder�s valuation
and this average value, i.e., (xi � v), represents a bidder�s speci�c characteristic

10Assuming that the p.d.f. of the signals conditional on v, f(x1; :::xnjv), is twice continuously
di¤erentiable, a¢ liation among the signals is equivalent to the following two conditions: (i)
@2 log f(x1;:::xnjv)

@xi@xj
� 0, and (ii)@

2 log f(x1;:::xnjv)
@xi@v

� 0, for all i; j [see Topkis [38], p. 310]. As de
Castro [8] discusses, the conditional independence models only guarantee the �rst condition. To
obtain the second condition, one must assume explicitely that xi and v are a¢ liated.
11This is the one studied by Pinkse and Tan [31].
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such as productive e¢ ciency, opportunity cost or idiosyncratic preference.12 Note
that the CIPV model is a special case of the a¢ liated private value setting, and
also a polar case of the CIPI model.

The CIPI-CV model. Consider now the case in which bidder i�s utility (val-
uation) is given by the function U(v; xi) = v. Since all bidders share the same
ex post valuation, and only observe an estimate of this value, we are in the pure
common value setting. In consequence, no preference heterogeneity is considered.
A traditional economic interpretation of this setting is the so called mineral rights
model. All bidders exhibit the same ex post value for a tract given by v, derived
from its exact mineral content. Nevertheless, at the time of the auction, they
only observe a noisy signal of this content, xi. We will refer to this polar case of
the CIPI family as the CIPI-CV model. Finally, notice that this pure common
value setting also constitutes a special case of the general a¢ liated value model.

Model�s Choice. As we shall see in the next section, the impact of concentration
on bidding behavior can be decomposed into three e¤ects: the competition e¤ect,
the inference e¤ect and the winner�s curse e¤ect. While the �rst e¤ect comes
from the competitive environment involved in an auction mechanism no matter
the valuation and information structure, the last two e¤ects arise in environments
with common value and dependence among signals, respectively.

This suggests that a good starting point for our analysis is provided by Pinkse and
Tan [31]. They examine conditions under which the equilibrium bid is strictly
increasing with respect to the number of bidders in �rst-price auctions under the
CIPV model. From this, a �rst matter of interest concerning the model�s choice is
related to the valuation and information structure to be studied. It is clear that in
order to examine the winner�s curse e¤ect as well, we need to widen our analysis to
a more general setting than that provided by a¢ liated private value environments,
and in particular by the CIPV model. We argue that the natural candidate which
could have bite is the CIPI setting. As discussed above, this family of models is a
special class of the general a¢ liated value model that encompasses the CIPV and
the pure common value (CIPI-CV) setups as polar cases.13 It is noteworthy that
for our purpose, it su¢ ces to focus only on the CIPI-CV case since it constitutes
the simplest setting with an environment that is su¢ ciently rich to evaluate all
the e¤ects aforementioned.14

12This interpreation is taken from Li et al [20].
13The CIPI model was �rst studied by Li et al. [20], who tested their results in OCS wildcat

auctions.
14The results derived in this paper can be particularly relevant for wildcat lease auctions. For

instance, Hendricks, Pinkse and Porter [11] provide evidence that the bidding behavior for oil
and gas auctions is consistent with a �rst-price auction under a symmetric pure common value

8



A second choice concerning our modelling strategy is given by the auction for-
mat to be examined. The bidding trade-o¤ present in the �rst-price auction
implies that the competition e¤ect is more severe in this mechanism than in the
second-price auction. Furthermore, as long as we assume any kind of dependence
among the signals, the Revenue Equivalence Theorem no longer holds. As the
classical linkage principle stated by Milgrom and Weber [26] points out, in such
an environment the second-price outperforms the �rst-price auction. All of this
suggests an important reason for preferring the latter format to study the e¤ects of
concentration in bidding markets: by analyzing the �rst-price auction, one does
indeed consider the worst scenario for the seller. Hence, if we are able to show
that under this mechanism concentration may increase revenues, we can directly
extend this conclusion to the second-price auction.15

3 Competition and bidding

In this section, we study the relationship between competition and bidding behav-
ior in a �rst-price auction under the CIPI-CV model. We then provide conditions
for (non)monotonicity of the equilibrium bids with respect to the number of buy-
ers and propose a three-e¤ect decomposition of the impact of concentration on
bidding.

3.1 (Non)monotonicity of the equilibrium bid

Since our main purpose is to analyze the role played by the number of bidders, in
what follows we adopt the (uncommon) notation according to which some func-
tions of the model (bids, distributions, reverse hazard) depend on two arguments:
x and n.

De�ne y1:n�1 = maxj=1;::n; j 6=i xj, the �rst-order statistic of all bidders� signals
except bidder i�s, and denote its c.d.f. and p.d.f. conditional on xi = x by Fyjx(:jx)
and fyjx(:jx), respectively. Let �(x;n) = fyjx(xjx)=Fyjx(xjx) be its associated
reverse hazard rate when the signals of the (n � 1) bidder i �s rivals are smaller

environment with conditionally independent private signals, i.e., the CIPI-CV model.
15Moreover, by choosing the �rst-price sealed-bid auction, the conclusions of our work concern

an auction format that is more frequently used than the second-price auction in the real world,
as stated in Paarsch and Hong [28] (p. 22). In addition, it is likely that �rst-price sealed-bid
auctions account for the bulk of transaction by value since procurements are often conducted
via low-price, sealed-bid tenders.
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than or equal to x, given that its signal realization is x.16

We also assume that the seller can set a reserve price r � 0. Under a symmetric
equilibrium, the expected payo¤ to bidder i when he observes xi = x and bids b
in a �rst-price auction is then given by

�(b; x) = E
�
(v � b)1fmaxfB(y1:n�1;n);rg�bgjxi = x

�
=

Z B�1(b;n)

x

[v(x; s;n)� b] fyjx(sjx)ds

where B(:;n) is the equilibrium bidding strategy followed by all bidders except i
when facing n rivals and v(x; y;n) = E(vjxi = x; y1:n�1 = y). If B forms part of
a symmetric equilibrium, then it must satisfy the following �rst-order di¤erential
equation

Bx(x;n) = [v(x; x;n)�B(x;n)]�(x;n) (1)

where Bx(x;n) denotes @B(x;n)=@x;17 and the appropriate boundary condition
given by B(a;n) = r, where a = a(r;n) is de�ned as follows

a = finf xjE(vjxi = x; y1:n�1 � x) � rg
Solving the di¤erential equation, bidder i�s equilibrium strategy is given by

B(x;n) = rL(ajx) +
Z x

a

v(s; s;n)dL(sjx)ds (2)

for all x 2 [a; x], where L(sjx) = exp(�
R x
s
�(u;n)du).

Pinkse and Tan have shown that, in the CIPV model, if the reverse hazard rate is
increasing in n then bids are strictly increasing in the number of buyers. Never-
theless, as the following example illustrates, in the CIPI model properties for the
reverse hazard rate no longer su¢ ce for such bid monotonicity.

Example 1 (fromWilson [41]). Consider the pure common value model U(v; xi) =
v for all i. Suppose that v is distributed according to the Pareto distribution such
that Fv(v) = 1� v�� for v � 1 and � > 2. Suppose also that the signals xi�s are
i.i.d conditional on v, so that Fxjv(xjv) = (x=v)� for 0 � x � v.

It can be veri�ed that �(x;n) = (n� 1)�=x, and that the equilibrium bid is given
by

B(x;n) =

"
(n� 1)� +max fx; 1g�(n�1)��1

(n� 1)� + 1

#
v(x; x;n) (3)

16In other words, �(x;n) corresponds to the reverse hazard rate of the second-order statistic
conditional on xi = x being the �rst-order stastistic.
17For the functions B and v, we use the subscripts x and n throughout the paper to denote

their partial derivatives w.r.t. these variables.
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Notice that B(x;n) is not strictly increasing in n. Figure 1 (see Appendix C)
displays the case in which � = 2:5 and � = :5, showing that the equilibrium
bidding function is indeed decreasing for signals that are su¢ ciently low when the
number of bidders increases from n = 2 to n = 3. Interestingly, this example
shows therefore that a nonmonotonicity of bids can be observed even though the
reverse hazard is strictly increasing in n, as @�(x;n)=@n = �=x > 0.

We can then conclude that the presence of an additional winner�s curse-based
e¤ect in the CIPI setting requires more demanding conditions to guarantee the
monotonicity of bids in the number of buyers. Equivalently, this also means that
the set of conditions under which bids decreasing in n can be observed becomes
richer.

We begin characterizing a condition that ensures monotonic equilibrium bids with
respect to the number of buyers.

Proposition 3.1 Let b = maxnB(x;n). Suppose that for all x 2 (x; x),

v(x; x;n+ 1)� b

v(x; x;n)� b
>

�(x;n)

�(x;n+ 1)

Then for all r < b and x 2 (a; x), B(x;n) is strictly increasing in n.

A possible interpretation for this result is as follows. Since b constitutes the
maximum possible bid to be made in the game, let us de�ne �(x;n) � v(x; x;n)�b,
the minimum bene�ts that a bidder with signal x can get conditional on defeating
(n�1) rivals. Thus, � can be seen as a lower bound of the winning bidder�s bene�ts
in the hypothetical case in which he were forced to participate in an auction with
a reserve price equal to b.18 As is stated in the next section, while the winner�s
curse e¤ect ensures that �(x;n) is decreasing in n, the mixed e¤ect coming from
more competition and better inference on the degree of this competition may cause
�(x;n) to be increasing in n. Consequently, Proposition 3.1 establishes that in
the CIPI model, bids will be strictly increasing in the number of buyers as long as
the negative e¤ects on the minimum bene�ts stemming from the winner�s curse be
overcome (proportionally) by the (possible) positive competition-driven e¤ects.

Since in the CIPV setting we have v(x; x;n) = x for all n, the next result follows
directly from Proposition 3.1.

Corollary 3.1 In the CIPV model, a reverse hazard function strictly increasing
in n su¢ ces for Proposition 3.1.
18Of course, � can be negative.
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Therefore, in contrast to the CIPV model, in the CIPI setting the fact that the
reverse hazard is strictly increasing in n constitutes only a necessary condition,
but not a su¢ cient condition for the equilibrium bid to be strictly increasing as
well.19 The intuition behind this result is the presence of the winner�s curse e¤ect
in the CIPI model, absent in a¢ liated private value frameworks such as the CIPV
setting. As a consequence, more restrictive conditions are needed for guaranteeing
the monotonicity of bidding behavior in environments with interdependent values.

In order to establish conditions for the nonmonotonicity of the equilibrium bid, no-
tice that our assumption of strict MLRP for Fxjv guarantees that @v(x; x;n)=@n �
0 for all x 2 [x; x] (see Milgrom [27]). This property allows us to characterize the
su¢ cient conditions for bids to be decreasing when signals are su¢ ciently low as
follows.

Proposition 3.2 Consider the two following situations:20

(1) Suppose that for some values of n and r, it is veri�ed either (A1) or (A2)
with:

�(a(n+ 1);n+ 1) < �(a(n+ 1);n) (A1 )

v(a(n+ 1); a(n+ 1);n+ 1)� r

v(a(n+ 1); a(n+ 1);n)� r
<

�(a(n+ 1);n)

�(a(n+ 1);n+ 1)
: (A2 )

Then, B(x;n+ 1) < B(x;n) must hold for some x > a(n+ 1) � a(n).
(2) Suppose that there is no reserve price and, for some value of n, it is veri�ed
(A3) with:

v(x; x;n) > v(x; x;n+ 1): (A3 )

Then, B(x;n+ 1) < B(x;n) must hold for some x > x.

Condition (A1) emphasizes that the existence of a winner�s curse-based e¤ect in
the CIPI model means that a reverse hazard decreasing in n for signals that are
low enough su¢ ces for the nonmonotonicity of bids. As in the a¢ liated private
value settings the winner�s curse phenomenon is absent, the same condition on
the reverse hazard also ensures the nonmonotonicity of bids in the CIPV model
studied by Pinkse and Tan [31].

At the same time however, the additional presence of the winner�s curse e¤ect in
the CIPI setting implies that other su¢ cient conditions for such a nonmonotonicity
19This is because such a condition guarantees that �(x;n)=�(x;n+1)< 1 , which is also satis�ed

by the ratio (v(x; x;n+ 1)� b)=(v(x; x;n)� b).
20Recall that a depends on two arguments so that a = a(r;n). For the sake of presentation,

we have omitted r.

12



can be stated even when the reverse hazard is strictly increasing. One of these
conditions is characterized in Proposition 3.2 by (A2), which constitutes a sort of
reverse of Proposition 3.1. An interpretation for this condition can be provided
following a similar line of reasoning as before. Accordingly, let us de�ne �(a(n+
1);n+1) � v(a(n+1); a(n+1);n+1)� r, the maximum bene�ts of the marginal
bidder (the one indi¤erent between participating or not) conditional on defeating
n rivals. Then, � can be thought of as an upper bound of the winning marginal
bidder�s bene�ts when participating in an auction with a reserve price r.21 Note
that whereas a decrease in the number of bidders exerts an upward in�uence on
� due to a reduced winner�s curse, it may also induce an downward e¤ect on the
reverse hazard. As a result, condition (A2) states that if the �rst e¤ect dominates
(proportionally) the second one for the marginal bidder, then, at least for signals
that are su¢ ciently low, less competition will bring more aggressive bids.

Furthermore, when there is no reserve price, condition (A3) guarantees the non-
monotonicity of the equilibrium bid irrespective of the properties exhibited by the
reverse hazard. Such a su¢ cient condition is that of v being strictly decreas-
ing in n for the lowest type. Note that Example 1 satis�es this condition, as
can be veri�ed that v(x; x;n) = max fx; 1g (� + n�)=(� + n� � 1) (see details
in the Appendix). Hence, we have that v(x; x;n) = (� + n�)=(� + n� � 1) >
(�+ � (n+ 1)) = (�+ � (n+ 1)� 1) = v(x; x;n+1) for all 0 � x � 1 and for all n.
Thus, condition (A3) holds and thereby, the nonmonotonicity of the equilibrium
bid with respect to n follows.22

3.2 The bidding e¤ect: A multiplicative decomposition

The previous subsection characterized the circumstances under which the partic-
ipation of one more bidder can increase or decrease the bid aggressiveness. The
ambiguity of this relationship highlights the importance of studying the sources of
this bidding e¤ect. In fact, identifying what forces a¤ect positively or negatively
the bidding behavior would allow the seller to improve her decisions on auction
formats. Accordingly, in this subsection we propose a decomposition of the bid-
ding e¤ect into three e¤ects, a decomposition that we have named multiplicative
decomposition.23

21Notice that � can be strictly positive as v(a(n); a(n);n) = E(vjxi = a(n); y1:n�1 = a(n)) �
E(vjxi = a(n); y1:n�1 � a(n)) � r.
22See Figure 1 in Appendix C.
23This decomposition is refered to as multiplicative as an alternative to the additive version

performed by Pinkse and Tan [31] in the context of the CIPV model. We argue that our
decomposition, as opposed to that of Pinkse and Tan, works even when the MLRP assumption
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For simplicity, we assume throughout this subsection that there is no reserve price.
As a result, the equilibrium bid becomes

B(x;n) = v(x; x;n)�
Z x

x

vx(s; s;n)L(sjx)ds (4)

Taking derivative on (4) w.r.t. n, we get that

Bn(x;n) =

�
vn(x; x;n)�

Z x

x

L(sjx)vxn(s; s;n)ds
�
�
Z x

x

Ln(sjx)vx(s; s;n)ds (5)

where vxn(x; x;n) = @vx(x; x;n)=@n and Ln(sjx) = @L(sjx)=@n.

LetW be the event in which bidder i wins the auction, i.e.,W �fx > maxj 6=i xjg.
Hence, denote �(vjW ; x) as the posterior density function of v conditional on a
bidder of type x winning the auction.

Then, the reverse hazard can also be written as24

�(x;n) =

vZ
v

�(x;n; v)�(vjW ; x)dv (6)

where �(x;n; v) � (n � 1)fxjv(xjv)=Fxjv(xjv) corresponds to the reverse hazard
associated to the situation in which (n�1) rivals of a bidder i of type x draw their
signals independently from the c.d.f. Fxjv(xjv). The reverse hazard �(x;n) can
thus be written as an average of �(x;n; v) in which the posterior density �(vjW ; x)
are the weights.25 Then, taking derivative on (6) w.r.t. n, under the assumption
that the product inside the integral is twice continuously di¤erentiable, we obtain
that

�n(x;n) =

vZ
v

�n(x;n; v)�(vjW ; x)dv +

vZ
v

�(x;n; v)�n(vjW ; x)dv (7)

only holds weakly (see Appendix B for an example).
24See Pinke and Tan [31].
25We derive the name the multiplicative decomposition proposed in this subsection from the

product �(x;n; v)�(vjW; x):
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Substituting (7) into (5), we get the following decomposition

Bn(x;n) =

�
vn(x; x;n)�

Z x

x

L(sjx)vxn(s; s;n)ds
�
+Z x

x

L(sjx)vx(s; s;n)
�Z x

s

Z v

v

�n(x;n; v)�(vjW ; x)dvdu

�
ds+Z x

x

L(sjx)vx(s; s;n)
�Z x

s

Z v

v

�(x;n; v)�n(vjW ; x)dvdu

�
ds (8)

The change in the equilibrium bid strategy due to changes in the number of bidders
can then be written as a sum of three components. The �rst term of the R.H.S.
of equation (8) represents the e¤ect coming from the winner�s curse phenomenon
associated with the common value environment. In fact, as long as we are in the
private value setting - the CIPV model, for instance -, the fact that v(x; x;n) = x
implies that this e¤ect disappears. Consequently, we refer to this e¤ect as the
winner�s curse e¤ect (WCE).26

The second term depends on �n(x;n; v). Note that by the de�nition of �(x;n; v),
its derivative w.r.t. n is related to how B(x;n) changes with n in a setting with
independence between the signals. Since under this environment one can associate
any change of this class only to the traditional bidding trade-o¤ existing in a �rst-
price auction mechanism, this e¤ect corresponds to the so-called competition e¤ect
(CE).

Finally, the third term depends on the partial derivative �n(vjW ; x), which under
a¢ liated information structures is negative (positive) for a large (small) enough v,
and for a given x and n.27 In consequence, this term allows an inverse relationship
between the bids and the number of buyers based on an inference-type e¤ect
generated by a positive dependency among the signals. Because of this, we will
refer to this e¤ect as the inference e¤ect (IE).

In sum, we have identi�ed three e¤ects on the equilibrium bid strategy coming
from changes in n : the winner�s curse e¤ect (WCE), the competition e¤ect (CE)
and the inference e¤ect (IE).28 As we are interested in the nature of these e¤ects,
the next proposition formally states their signs.

26Krishna and Morgan [18], and Mares and Shor [23] study a similar winner�s curse-based e¤ect
in the context of consortia, but they call it inference e¤ect and competition e¤ect, respectively.
Notice that we use these terms to name two other e¤ects of a di¤erent nature.
27See Proof of Proposition 3.3 in the Appendix.
28Notice that this decomposition nests indeed a variety of a¢ liated value models within the

CIPI set-up, with the CIPV and the CIPI-CV models as polar cases.
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Proposition 3.3 Suppose that in a CIPI-CV model, it is veri�ed that (A1) Fxjv
satis�es the MLRP, and (A2) jvn(x; x;n)j � jvn(x; x;n)j for all x > x. Then,
using the Multiplicative Decomposition, for all x 2 (x; x) and n � 2, it is veri�ed
that:
(i) The winner�s curse e¤ect (WCE) is negative
(ii) The competition e¤ect (CE) is positive
(iii) The inference e¤ect (IE) is ambiguous.

The intuition behind the signs of these e¤ects is as follows. First, the CE comes
from the less aggressiveness that bidders exhibit when the chances of winning in-
crease because the number of rivals decreases. Thus, this e¤ect can be associated
to the traditional negative consequences attributed to the industrial concentra-
tion in ordinary markets. Second, more concentration allows the winner�s curse
to be mitigated because defeating fewer bidders reduces the probability of such an
overbidding phenomenon. As a consequence, bidders carry out a lower winner�s
curse downward correction in bids, and thereby, the WCE takes a negative sign.
Finally, the IE stems from the a¢ liation among signals (or valuations).29 The af-
�liation may also cause that a larger concentration results in a lower conservatism
in bids. This may occur because, although winning is interpreted by the winner
as information of a less degree of competition, this perception is weakened when
he faces fewer rivals.30

So, whereas the inference e¤ect can exacerbate the negative in�uence of the win-
ner�s curse adjustment, the competition e¤ect always goes in the opposite direc-
tion. In consequence, as long as the combination of the �rst two e¤ects dominate
the latter, the equilibrium bid may be decreasing in n as established in the previ-
ous subsection.

The signs of these e¤ects are veri�ed for Example 1. For instance, with � = 2:5,
� = 0:5, n = 2 and x = 1:4, the Multiplicative Decomposition yields

E¤ect Magnitude
WCE �8:2408� 10�2 < 0
CE 4:0895� 10�2 > 0
IE �1:4172� 10�7 < 0

29Pinkse and Tan [31] also examine an inference-type e¤ect that they call the a¢ liation e¤ect.
30A more detailed analysis of the inference e¤ect is provided in the next subsection.
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with a �nal e¤ect given by

Bn(1:4; 2) = WCE + CE + AE

= �0:041513 < 0

Note that in this example, although a negative inference exists, its magnitude is
smaller than the positive one coming from the competition e¤ect. The winner�s
curse e¤ect is therefore crucial for the equilibrium bid to be a non-monotonic
function in n for signals that are su¢ ciently low.

3.3 The inference e¤ect: An illustrative example

In order to obtain a better intuition of the inference e¤ect, let us analyze, in the
context of Example 1, the source of the non-monotonicity of bids coming from the
a¢ liated structure of the signals.

Similar to �(vjW ; x), de�ne p(vjx) as the posterior density function of v condi-
tional on a bidder of type x. From Bayes�Theorem, it is easy to check that

p(vjx) =
fxjv(xjv)fv(v)R v

v
fxjv(xjv)fv(v)dv

In Example 1, these two posterior density functions are given by �(vjW ; x) =
(�+n�)max f1; xgn�+� =v�+n�+1 and p(vjx) = 1=(�+�). We can therefore state
that for a given x and n, the two following properties hold:

�(vjW ; x) > p(vjx) (9)

�n(vjW ; x) > 0 (10)

for a small enough v, and the reverse inequality is veri�ed otherwise. For instance,
with � = 2:5, � = 0:5, n = 2 and x = 1:4, we get that �(vjW ; x) = 11:364=v4:5 >
p(vjx) = 0:33 for v < 1:8201; otherwise, the reverse inequality is satis�ed (see
Figure 2). Moreover, notice that

�n(vjW ; x) = �
max (x; 1)(�+n�)

v�+n�+1
�
�
ln vmax (x; 1)(�+n�)

� �� + n�2

v�+n�+1

+
�
ln (max (x; 1))max (x; 1)(�+n�)

� �� + n�2

v�+n�+1
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Hence, for the same parameter values considered above, we get that �n(vjW ; x) =
(3:535 1=v4:5) � (5:681 8=v4:5) ln v > 0 for v < exp (0:622 19), and the opposite
result otherwise (see Figure 3).

The intuition behind these two conditions is the following. The former means
that the event of winning the auction indeed represents bad news because the
probability of small (high) realizations of v increases (decreases) for a type x bidder
after knowing that his signal is the largest one. Additionally, the second condition
points out that this bad news is reinforced by the increase in the number of bidders,
as the posterior probability of small (high) values of v increases (decreases) when
n becomes larger.

These conditions then provide a clear source for the non-monotonicity of the
reverse hazard and thus, for the non-monotonicity of the equilibrium bid. For
instance, in the CIPI-CVmodel, condition (9) implies that conditional on winning,
bidder i of type x will estimate more likely that the ex post common value v is
smaller. As a result of the a¢ liation assumption on Fxjv, he will estimate more
likely that his rivals�signals are smaller as well. Since the symmetric equilibrium
bid strategy is increasing in the signals, it will lead �nally to a perception of
a less intense competition from the bidder i�s point of view. Given that this
analysis is performed �xing the event of winning the auction, bidder i should
react following a less aggressive bidding behavior, which we call the inference
phenomenon. However, as condition (10) means that this perception of lower
competition is counteracted when n decreases, we will eventually observe a lower
conservatism in bids when a concentration process takes place. As a result, the
inference e¤ect, i.e. a possible shade in the inference-based downward adjustement
in bids due to the reduction in the number of participants, can �nally lead to an
inverse relationship between revenue and n.

Note that, in contrast to the winner�s curse, this inference phenomenon is of a
strategic nature, as it emerges as a reaction of a rational player who, focusing only
on this phenomenon, is able to reduce his bid without decreasing his probability
of winning. That is, the winner�s curse provokes a decrease in bids because the
estimation of his/her own object�s valuation is shaved. In contrast, in the case of
the inference phenomenon, this greater conservatism is caused by a shade in the
estimation of the rivals�bidding strategies.
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4 (Non)monotonicity of revenues

In this section, we examine the conditions that guarantee the (non)monotonicity
of the seller�s revenue with respect to n under the CIPI-CV model.

In the �rst-price auction, the expected revenue is given by31

R(n) = E(B(x1:n;n)) =

Z x

x

B(�;n)fx1(�;n)d� (11)

where fx1 and Fx1 are the p.d.f. and c.d.f. of the maximum signal x1:n =
maxi=1;::n xi, respectively. Denote byG(b;n) the distribution function ofB(x1:n;n).
From (11), it is clear that a �rst (and natural) condition that guarantees R to be
monotonically increasing in n is that G(b;n + 1) �rst-order stochastically domi-
nate G(b;n) for all n. In order to gain an insight into the conditions that allow
this stochastic dominance to hold, we need to invest in some additional concepts
and notations. Let us de�ne both MRSB(x;n), the marginal rate of substitution
in bids, and MRSF (x;n), the marginal rate of substitution in the winning signal
distribution, as follows

MRSB(x;n) �
Bn(x;n)

Bx(x;n)

and

MRSF (x; n) �
Fx1n(x;n)

Fx1x(x;n)

where the subscripts x and n in B and Fx1 denote the partial derivative of these
functions w.r.t. the respective variable.32 In the context of auctions, the meaning
of these marginal rates of substitution is as follows. Suppose that a marginal
increase in the number of buyers occurs. In that case, MRSB(x;n) points out
how and how much the change in x needed to keep constant the level of the
equilibrium bid is. Similarly, MRSF (x; n) represents the characteristics of the
change in x needed to keep the accumulated probability of the winning signal
constant.

On the bid side, this required change in x may be either an increase or a decrease,
depending on the sign of Bn(x;n). As discussed in previous sections, this partial
derivative can be positive or negative, according to the magnitudes of the winner�s
curse, the inference and the competition e¤ects. In contrast, the partial deriva-
tive Bx(x;n) is always positive, as bids are strictly increasing in signals. All of

31For simplicity, we assume throughout this section that there is no reserve price.
32For instance, Fx1n(x;n) � @Fx1(x;n)=@n.
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this implies that, if bids are increasing (decreasing) in n, this larger competition
will indeed require a decrease (increase) in signal values to preserve the equilib-
rium bid�s level. As a consequence, the marginal rate of substitution in bids,
MRSB(x;n), may take either a positive or a negative sign.

In contrast, on the side of the winning signal�s distribution, the change in x needed
to preserve the accumulated probability of x1:n will always be an increase. This
non ambiguity follows directly from the fact that MRSF (x; n) accounts for a
fourth e¤ect arising from changes in the number of buyers, which is not present
when focusing on bids. This is the so-called sampling e¤ect : an additional bidder
means an additional draw from the signal distribution. Because of the properties
of the �rst order statistics, the distribution of x1:n+1 �rst-order stochastically
dominates the distribution of x1:n.33 As a result, the partial derivative Fx1n(x;n)
takes a negative sign unambiguously, and thus, the marginal rate of substitution
in the winning signal distribution,MRSF (x; n), is always negative. Furthermore,
the �rst stochastic dominance induced by the sampling e¤ect on Fx1 due to more
competition translates eventually into higher seller�s expected revenue. Notice
that from equation (11), this point is very clear as the equilibrium bid is an
increasing function in signals.34

In sum, when concluding as to the �nal e¤ect of competition on revenues, we have
to examine the properties of both the bidding e¤ect and the sampling e¤ect by
means of MRSB(x;n) and MRSF (x; n), respectively. This relationship between
both marginal rates of substitution can be summarized de�ning the following term

�(x;n) �MRSB(x;n)�MRSF (x; n) (12)

According to the previous analysis, three cases can emerge:

Case 1. A positive bidding e¤ect: MRSB(x;n) � 0, and hence, �(x;n) � 0.

Case 2. A negative and dominated bidding e¤ect: MRSB(x;n) � 0 and
jMRSB(x;n)j � jMRSF (x; n)j. Thus, �(x;n) � 0.

Case 3. A negative and dominant bidding e¤ect: MRSB(x;n) � 0 and
jMRSB(x;n)j � jMRSF (x; n)j. Thus, �(x;n) � 0.

Equipped with these concepts and notation, we can go back to characterize the
circumstances under which the seller may be better o¤ or worse o¤ with more
33In fact, one additional draw from the signal distribution implies that the highest signal is

greater with probability 1=(n+ 1) and equal with probability n=(n+ 1).
34Alternatively, we can interpret the sampling e¤ect as an e¤ect contributing positively to

inducing a �rst stochastic dominance property in the winning bid distribution (see Proposition
4.1).
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competition. We start with the next proposition, which provides a su¢ cient
condition to ensure revenues that are strictly increasing in the number of bidders.

Proposition 4.1 �(x;n) � 0 for all x if and only if Gn(b;n) � 0 for all b.
Furthermore, Gn(b;n) � 0 for all b implies that R(n) is increasing in n.

This result has the following implications. First, it means that as long as the
e¤ect of an increase in n on bids is positive for all signals the �nal e¤ect on
revenue will be positive as well. In terms of our previous analysis, this means
that as long as the bidding e¤ect is positive (i.e. Case 1), the seller will bene�t
from more competition. This conclusion is true because, as explained before, the
sampling e¤ect always induces an increase in proceeds. Consequently, combining
the result concerning bids (Proposition 3.1) with Proposition 4.1, we can state the
next result.

Corollary 4.1 Suppose that for all x 2 (x; x),

�(x;n+ 1)

�(x;n)
>

�(x;n)

�(x;n+ 1)

Then for all r < b, R(n) is strictly increasing in n.

Moreover, Proposition 4.1 also implies that even though more concentration may
cause a more aggressive bidding behavior, it may bring a reduction of revenue if
the sampling e¤ect is su¢ ciently large. This can occur when we are in Case 2,
i.e. when a negative, but dominated bidding e¤ect exists. Nevertheless, and in
contrast to the a¢ liated private value model studied by Pinkse and Tan [31], in a
CIPI-CV setting the last property is more di¢ cult to be ful�lled. This is because
the winner�s curse e¤ect, absent in the private value environments, demands a
higher sampling e¤ect to o¤set the inverse in�uences arising from bids. A direct
consequence of this fact is that in the CIPI-CV model, the family of exponential
distributions analyzed by Pinkse and Tan does not necessarily satisfy one of the
su¢ cient conditions for monotonic revenues. This result is formalized in the
following statement.

Proposition 4.2 Consider the CIPI-CV model. Suppose that for some function
 , we can write Fx=v(x=v) = exp( (x)v) for all x and v. Then, the sign of
�(x;n) is ambiguous.
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Note that Pinkse and Tan [31] show that for this class of distributions, �(x;n) � 0
for all x in the CIPV model. Consequently, Proposition 4.1 allows us to rule out
the presence of such a polar case in the CIPI framework as long as an inverse
relationship between revenue and number of bidders is observed.

Corollary 4.2 Consider the CIPI model. Suppose that for some function  , we
can write Fx=v(x=v) = exp( (x)v) for all x and v. Then, if for some n, R(n+1)
< R(n), the valuation environment cannot be that of the CIPV model.

Finally, note that the reverse of the �rst part of Proposition 4.1 provides a neces-
sary and su¢ cient condition for the distribution of the winning bid with n bidders
to �rst-order stochastically dominate the distribution with n+ 1 bidders.

Proposition 4.3 For a given n, �(x;n) � 0 for all x if and only if G(b;n) �
G(b;n + 1) for all b. Furthermore, G(b;n) � G(b;n + 1) for all b implies that
R(n+ 1) < R(n).

Notice that the last result indeed constitutes a su¢ cient condition for revenue to
be non-monotonically increasing in the number of bidders. Using the analysis
performed before, note that such a property of revenues holds as long as we are
in Case 3, i.e. when there is a negative and dominant bidding e¤ect.

Hence, and based on the results stated for bids in the previous section, we can
establish the next statement on the nonmonotonicity of the seller�s proceeds.

Proposition 4.4 Consider the two following situations:
(1) Suppose that for some values of n and r, it is veri�ed that either (A1) or (A2)
hold with:

�(a(n+ 1);n+ 1) < �(a(n+ 1);n) (A1 )

�(a(n+ 1);n+ 1)

�(a(n+ 1);n)
<

�(a(n+ 1);n)

�(a(n+ 1);n+ 1)
: (A2 )

If jMRSB(x;n)j > jMRSF (x;n)j then R(n+ 1) < R(n).
(2) Suppose that there is no reserve price and it is veri�ed (A3) with:

v(x; x;n) > v(x; x;n+ 1): (A3 )

for all n and x. If jMRSB(x;n)j > jMRSF (x;n)j then R(n+ 1) < R(n).
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In this statement, both (A1) and (A2) constitute su¢ cient conditions for the bid-
ding e¤ect to be negative. Additionally, the superiority (in absolute value) of the
marginal rate of substitution in bids over that of the winning signal�s distribution
ensures that the bidding e¤ect dominates the sampling e¤ect.

Moreover, condition (A3) characterizes another situation allowing revenues to be
decreasing in the number of bidders, but in a framework without a reserve price.
In such a case, this revenue�s property requires v to be strictly decreasing in n.

In sum, the last proposition states that as long as bidding behavior becomes
more aggressive with concentration (i.e., a negative bidding e¤ect), the seller may
indeed bene�t from a reduction in competition. This phenomenon could occur if
the mixed in�uence exerted by the winner�s curse and the inference e¤ects more
than compensates the sampling e¤ect.

This nonmonotonicity of seller�s proceeds is illustrated by the following two exam-
ples.35 First, in the case of Example 1, the expected revenue can be analytically
computed, and is given by

R(n) =

�
1� n�

(�+ n� � �)(�+ n� � 1)

�
�

�� 1 :

Notice that

Rn(n) =

�
�� � + �� � �2 + n2�2

�
��

(�� � + n�)2 (�+ n� � 1)2 (�� 1)
where Rn � @R(n)=@n. Hence, sign(Rn(n)) = sign( � � � + �� � �2 + n2�2).
In particular, for � = 2:5 and � = 0:5, we have that

sign(Rn(n)) =

�
< 0 for all n 2 [0; 3: 464 1]
> 0 otherwise

This case is depicted in Figure 4, showing that in the presence of the winner�s
curse and the inference e¤ects, the expected revenue may be nonmonotonic with
n. In particular, this example illustrates the fact that the seller is better o¤when
a concentration process takes place in a very concentrated market than when it
does so in a competitive one.36

35Pinkse and Tan [30] emphasize that in the CIPV model the dominance of the bidding e¤ects
over the sampling e¤ect requires too extreme distributional assumptions. As a result, they are
unable to provide an example in which revenue is nonmonotonic with the number of buyers. In
contrast, our more general CIPI setting permits us to attain this nonmonotonicity result without
these extreme assumptions, as the next two examples show.
36A result consistent with this is theoretically stated by Hendricks et al. [13], who analyze the
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Second, a seller who bene�ts from less competition under the CIPI framework is
also illustrated by Example 2, which describes a mineral right model that previous
literature has showed (numerically) to yield nonmonotonic revenue in the number
of bidders.

Example 2 The lognormal model (from Reece [34] and DeBrock and Smith [7]).
Consider the auction of a single o¤shore oil tract lease. The gross value of
the petroleum reserve is given by v, a random variable distributed according to
a lognormal probability density function represented by fv(vj�v; �v), where �v
and �v correspond to the mean and standard deviation of log v, respectively.
The net value of the tract is given by V = v � c, where c is a known constant
that represents the cost of postsale exploratory drilling. Each bidder observes
xi, an estimate of gross tract value that is, conditional on v, drawn from an
independent and identically distributed lognormal distribution represented by the
p.d.f. fxjv(xj�x(v); �x(v)) and c.d.f. Fxjv(xjv).37

Note that in this model it is not possible to obtain an analytical solution for the
equilibrium bid strategies starting from the �rst-order conditions of the bidder�s
maximization problem. However, DeBrock and Smith [7] �nd numerical solutions
using speci�ed values of parameters (means, standard deviations and number of
bidders) consistent with real-world conditions of o¤shore oil leasing. Interestingly,
their results suggest that the share of the social value of the tract captured by the
seller (the government) can increase when joint bidding is allowed at a moderate
level.

5 Conclusions

This paper has examined the revenue e¤ect of having one more bidder at the
auction stage. To this end, we considered the �rst-price auction format under

mineral rights model. This paper shows that bidders have more incentives to form rings when
the number of potential participants in the auction is su¢ ciently large. Interestingly, they also
con�rm this prediction empirically for the o¤shore oil and gas lease auctions run by the U.S.
government. However, we do not consider any information pooling e¤ect as Hendricks et al.
do. A similar result emerges in both papers notwithstanding, because of the presence of the
winner�s curse e¤ect: whereas in Hendricks et al. the winner�s curse a¤ects the information
precision of the bidding ring, in our paper this phenomenon in�uences directly the individual
bidder�s behavior.
37Notice that Fxjv belongs to the normal distribution family, and thus, it satis�es the (strict)

MLRP. As discussed before, this property is equivalent to assuming that xi and v are a¢ liated.
Although irrelevant for �tting the CIPI framework, this class of models additionally assumes
that E(xijv) = v.
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the CIPI model, an environment that encompasses a wide variety of valuation
and information settings. We decomposed the revenue e¤ect coming from more
competition into two general sources: (i) the bidding e¤ect, and (ii) the sampling
e¤ect.

The former includes all the e¤ects on bidding behavior, which in turn, we have
grouped into three classes: the competition, the inference and the winner�s curse
e¤ects. The �rst e¤ect corresponds to the traditional positive consequences on
bid aggressiveness due to the fact that higher competition intensity reduces the
bidders�probability of winning in environments with independent signals. On the
contrary, the inference e¤ect stems from the a¢ liation among signals. In such en-
vironment, the participation of one more bidder induces more bid conservatism as
the perception that winning conveys information of less rivalry -the inference phe-
nomenon- becomes exacerbated when the number of bidders increases. Finally,
the winner�s curse e¤ect arises in common value settings, and induces unambigu-
ously less bid aggressiveness since more competition reinforces such an overbidding
phenomenon. As a consequence, the sign of the bidding e¤ect on revenue is am-
biguous and depends on the relative magnitudes of their three sube¤ects.

In contrast, as the participation of one more bidder improves the stochastic proper-
ties of the winning signal, the sampling e¤ect is always revenue-increasing because
of more competition.

Our main result points out that situations exist in which the participation of an
additional buyer can lower the seller�s expected proceeds. Consequently, from the
seller�s point of view, more competition is not always desirable, as it may deterio-
rate revenue. Equivalently, the industrial concentration need not be negative for
bid-takers. The results derived in this paper suggest therefore how inconvenient
it can be to advise the seller regarding a policy that always either promotes more
bidder participation or discourage mergers or any joint bidding practice.38,39

This work shows that the situations in which more competition can be revenue-
decreasing are characterized by a negative and su¢ ciently large bidding e¤ect

38Note that if the information pooling e¤ect induces more aggressive bids, the situations in
which the seller bene�ts from less competition would constitute a lower bound of the revenue-
increasing cases caused by joint bidding arrangements.
39Policymakers have de facto adopted a more tolerant position in markets with these charac-

teristics. For instance, in the U.S. o¤shore oil lease auctions. Before 1976, no restrictions were
imposed on joint bidding ventures, and since 1976, these arrangements have been permitted
for �rms which are small enough. Similarly, bidding consortia in takeover battles is generally
accepted as a legal practice; see, for example, the recent bidding takeover processes won by the
consortia Enel-Acciona and RBS-Banco Santander-Fortis for the control of Endesa and ABN
Amro, respectively.
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that dominate the sampling e¤ect. Our analysis identi�es two cases in which the
last condition is met. First, a bidding e¤ect with these features can emerge if
there is a negative and large enough inference e¤ect that overcome the traditional
competition e¤ect. This condition, represented by a reverse hazard not strictly
increasing in n, can be present in all settings nested by the CIPI environment,
including the a¢ liated private value case given by the CIPV model. Second,
we state that, in the CIPI model, an additional condition su¢ ces for a negative
and dominant bidding e¤ect, and thereby, for revenue loss in the face of more
competition. This extra condition arises from the winner�s curse phenomenon,
absent in the a¢ liated private value environments. Accordingly, we show that
the seller may also bene�t from concentration as long as the winner�s curse e¤ect
is su¢ ciently large.40

Therefore, we conclude that in the CIPI setting, and thus in the general a¢ liated
value model, the conditions that allow a nonmonotonic revenue in the number of
bidders are less stringent than in a¢ liated private value frameworks. As a result,
situations in which the seller is better o¤ with less competition should be more
frequent in environments with not only dependent information, but also interde-
pendent valuations. Interestingly, the available empirical evidence supports this
prediction, especially that related to bidding markets in which the winner�s curse
seems to play an important role such as wildcat auctions.
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6 Appendix

Appendix A: Proofs.

Proof of Proposition 3.1. We prove this statement by contradiction. Suppose
that, for some n, r and some ex, B(ex;n) � B(ex;n+1). From boundary condition,
we know that B(a(n);n) = B(a(n + 1);n + 1) = r. Substituting this into the
di¤erential equation given by (1), it is veri�ed at x = a(n) that

Bx(a(n);n) = [v(a(n); a(n);n)� r]�(a(n);n) (13)

Since by assumption

v(x; x;n+ 1)� r

v(x; x;n)� r
>
v(x; x;n+ 1)� b

v(x; x;n)� b
>

�(x;n)

�(x;n+ 1)
(14)

it follows from (13) that Bx(a(n);n+1) > Bx(a(n);n). It must therefore be true
that for some x� 2 (a(n); ex)

B(x�;n) = B(x�;n+ 1) � b� (15)

and
Bx(x

�;n) > Bx(x
�;n+ 1) (16)

Notice however that (16) violates (1) because according to this di¤erential equa-
tion it can be established the opposite condition

Bx(x
�;n) = [v(x�; x�;n)� b�]�(x�;n)

< [v(x�; x�;n+ 1)� b�]�(x�;n+ 1) = Bx(x
�;n+ 1) (17)

applying the same logic of (14) for b� instead of r.�
Proof of Proposition 3.2. (1) We prove the �rst part of this statement by
construction. First, because the boundary condition, B(a(n);n) = B(a(n +
1);n + 1) = r for all n. Hence, evaluating the di¤erential equation given by (1)
at x = a(n+ 1), it follows that

Bx(a(n+ 1);n) = [v(a(n+ 1); a(n+ 1);n)� r]�(a(n+ 1);n)

� [v(a(n+ 1); a(n+ 1);n+ 1)� r]�(a(n+ 1);n)

> [v(a(n+ 1); a(n+ 1);n+ 1)� r]�(a(n+ 1);n+ 1)

= Bx(a(n+ 1);n+ 1)

where the �rst inequality holds because vn(x; x;n) � 0 for all x 2 [x; x] as Fxjv
satis�es the (strict) MLRP (see Milgrom [27], Proposition 4 and Section 6), and
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the second one does since our assumption that the reverse hazard is strictly de-
creasing at x = a(n + 1). All of this implies that B(x;n + 1) < B(x;n) for all
x 2 (a(n+ 1); a(n+ 1) + �) and � > 0.

We now show the second part of the �rst statement. Since boundary condition,
B(a(n);n) = B(a(n + 1);n + 1) = r for all n. Hence, and after evaluating
the di¤erential equation (1) at x = a(n + 1), it is straightforward to verify that
assumption (A2) ensures that, given some n and r, Bx(a(n + 1);n) > Bx(a(n +
1);n+ 1). All of this implies �nally that the equilibrium bid satis�es the desired
property.

(2) Both the boundary condition (without reserve price) and the assumptions of
the statement imply that

B(x;n) = v(x; x;n) > v(x; x;n+ 1) = B(x;n+ 1)

for some n. From this, it follows that B(x;n) > B(x;n+1) for some x 2 (x; x+�)
and � > 0.�
Proof of Proposition 3.3. (i) First, our assumption of MLRP for Fxjv guar-
antees that vn(x; x;n) � 0 for all x 2 [x; x] (see Milgrom [27], Proposition 4 and
Section 6). So, if we are able to show that irrespective of the sign of vxn(s; s;n),
its magnitude is smaller (in terms of absolute value) than vn(x; x;n), the desired
result is attained. This is indeed true as

jvn(x; x;n)j � jvn(x; x;n)j � jvn(x; x;n)j

=

���� @@n [v(x; x;n)� v(x; x;n)]

����
=

���� @@n
Z x

x

vx(s; s;n)ds

����
where the �rst equality follows from assumption (A2). Moreover, since v is twice
continuously di¤erentiable, it is veri�ed that���� @@n

Z x

x

vx(s; s;n)ds

���� =

����Z x

x

vxn(s; s;n)ds

����
�

����Z x

x

L(sjx)vx(s; s;n)ds
����

for all x 2 [x; x] (with the strict inequality for all x 2 (x; x]) because of 0 �
L(sjx) � 1 for all s, x 2 [x; x] as L(:j:) satis�es the properties of a c.d.f.
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(ii) Note that �n(x; n; v) = fxjv(xjv)=Fxjv(xjv) > 0, as we have assumed that
Fxjv(xjv) does not depend on n. Furthermore, a¢ liation ensures that vx(s; s;n) >
0, and L(sjx) and �(vjW ; x) are positive for all s; x 2 (x; x]. As a result, the
desired property holds.

(iii) First, we need to prove the next auxiliary result.

Lemma 6.1 In the CIPI model, for a given x and n, it holds that

�n(vjW ; x)> 0 (18)

for a v small enough, and the reverse inequality is veri�ed otherwise.

Proof of Lemma 6.1. Using the Bayes�Theorem, it is possible to verify that

�(vjW ; x) =
F n�1xjv (xjv)fxjv(xjv)fv(v)R v

v
F n�1xjv (xjv)fxjv(xjv)fv(v)dv

Hence, it is easy to state that for a given x and n, the desired property holds.�
Then, rewrite

R v
v
�(x; n; v)�n(vjW ; x)dv as followsZ v

v

�(x; n; v)�n(vjW ; x)dv =

Z bv
v

�(x; n; v)�n(vjW ; x)dv

+

Z v

bv �(x; n; v)�n(vjW ; x)dv

The sign of the last e¤ect depends then on the magnitude of the areas delimited
by the cut-o¤ value bv, from which according to Lemma 6.1, the partial derivative
�n(vjW ; x) can take a negative sign for a given x and n.�
Proof of Proposition 4.1. De�ne B�1 so that B�1(B(x;n);n) = x for all x
and n. Note that since B is increasing in x, it holds that

G(b;n) = Pr(B(x1:n;n) � b)

= Pr(x1:n � B�1(b;n))

= Fx1(B
�1(b;n);n)
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For short, denote B�1(b;n) by t. Then,41

Gn(b;n) = Fx1n(t;n) + Fx1x(t;n)B
�1
n (b;n)

= Fx1n(t;n)� Fx1x(t;n)
Bn(t;n)

Bx(t;n)

= �Fx1x(t;n)�(t;n)

which yields the �rst desired result. Finally, from (11), it is clear that the �rst-
order stochastic dominance induced by an increase in n on G(b;n) guarantees R
to be monotonically increasing in n.�
Proof of Proposition 4.2. Recall from (5) that

Bn(x;n) =

�
vn(x; x;n)�

Z x

x

L(sjx)vxn(s; s;n)ds
�
�
Z x

x

Ln(sjx)vx(s; s;n)ds

=

�
vn(x; x;n)�

Z x

x

L(sjx)vxn(s; s;n)ds
�
+

Z x

s

�n(u;n)du

Z x

x

L(sjx)vx(s; s;n)ds

where the equality holds because L(sjx) = exp(�
R x
s
�(u;n)du). Let us de�ne

A(x;n) � �(x;n)MRSF (x; n)

Pinkse and Tan [31] shows thatZ x

s

�n(u;n)du � A(x;n) (19)

for the CIPV model. Notice however that A(x;n), by de�nition, considers the
source of two e¤ects on revenue coming from more competition: (i) the sampling
e¤ect, through MRSF (x; n), and (ii) the bidding e¤ect, but with the exception of
the winner�s curse e¤ect, through �(x;n). Consequently, the inequality (19) also
holds for the CIPI model. All of this implies therefore that

Bn(x;n) �
�
vn(x; x;n)�

Z x

x

L(sjx)vxn(s; s;n)ds
�
+A(x;n)

Z x

x

L(sjx)vx(s; s;n)ds

(20)
Furthermore, using the equilibrium bid function as stated in (2), it is easy to see
that

Bx(x;n) = �(x;n)

Z x

x

L(sjx)vx(s; s;n)ds

41Recall that the subscripts n and x denote the partial derivative of the respective function
with respect to these variables.
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Hence, and by the de�nition of A(x;n), the inequality (20) becomes

Bn(x;n) �
�
vn(x; x;n)�

Z x

x

L(sjx)vxn(s; s;n)ds
�
+Bx(x;n)MRSF (x; n)

from which, rearranging and using the de�nition of �(x;n), it follows directly
that

�(x;n) �
vn(x; x;n)�

R x
x
L(sjx)vxn(s; s;n)ds

Bx(x;n)

Note that, according to (21), the numerator of the R.H.S. of the last inequality
corresponds to the winner�s curse e¤ect. Since this e¤ect is always negative and
B is increasing in x, the sign ambiguity of �(x;n) holds.�
Proof of Proposition 4.3. It follows directly from Proposition 4.1 and the
properties of the �rst-order stochastic dominance.

Proof of Proposition 4.4. From Proposition 3.2, either condition (A1) or (A2)
implies that B(x;n+1) < B(x;n) for some x > a(n+1). As a result,MRSB(x; n)
is negative, which constitutes a necessary condition for the nonmonotonicity of
revenue. This condition and the fact that jMRSB(x; n)j > jMRSF (x; n)j ensure
then that �(x;n) � 0, which according to Proposition 4.3, provides a su¢ cient
condition for R(n+ 1) < R(n).�
Appendix B. The Additive Decomposition: A counter-example.

Following Pinkse and Tan [31], the reverse hazard can be decomposed additively
as �(x;n) = �Q(x;n) + ��(x;n). The �rst term corresponds to the reverse
hazard consistent with the case in which (n � 1) bidder i�s rivals draw their
signals independently and identically from the c.d.f. Q(xjx), where Q(tjx) =
Pr(xj � tjxi = x) and q(tjx) it is its associated p.d.f. Hence, �Q(x;n) = (n �
1)q(xjx)=Q(xjx). The second term, i.e., ��(x;n), is de�ned residually as it
corresponds to the di¤erence �(x;n)� �Q(x;n).

It is easy to verify that applying this additive decomposition to the CIPI-CV
model, we have that

Bn(x;n) =

�
vn(x; x;n)�

Z x

x

L(sjx)vxn(s; s;n)ds
�
+�Z x

x

L(sjx)vx(s; s;n)
�Z x

s

�Qn (u;n)du

�
ds

�
+�Z x

x

L(sjx)vx(s; s;n)
�Z x

s

��n(u;n)du

�
ds

�
(21)
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By construction, it follows directly that the R.H.S. of equation (21) represents
the sum of three bidding-type e¤ects: the winner�s curse e¤ect (WCE), the
competition e¤ect (CE), and the a¢ liation e¤ect (AE).

Consider now the pure common value model illustrated by Example 1. First,
since

vn(x; x;n) =
��max f1; xg
(�+ n� � 1)2

< 0

and

vxn(x; x;n) =

(
��

(�+n��1)2 < 0 if x > 1

0 otherwise

the winner�s curse e¤ect is then given by

WCE =
�
�
max fx; 1g� + �max fx; 1g1+n� (n� 1)

�
�

(�+ n� � 1)2 (n� � � + 1)
�
max fx; 1gn�

� < 0

which con�rms the sign attributed to this e¤ect.42 Second, we decompose the
competition e¤ect and the a¢ liation e¤ect based on the Pinkse and Tan�s ap-
proach. Notice however that given that Fxjv does not satis�es the strict MLRP
assumption, this decomposition does not work as �(x;n) = (n � 1)�=x does not
depend on v and it is strictly increasing in n.43 As a result, �Q(x;n) = (n�1)�=x
and hence the competition e¤ect is given by

CE =
�+ n�

�+ n� � 1

Z maxfx;1g

1

�
(
max fx; 1g

s
)�(n�1)�

��
ln(
max fx; 1g

s
)�
�
ds > 0

which also corroborates the expected sign. Nevertheless, since ��(x;n) =
�(x;n) � �Q(x;n) = 0, the a¢ liation e¤ect becomes null. Thus, the addi-
tive decomposition proposed by Pinke and Tan does not capture in this case
the inference-type e¤ect that arises from the statistic structure of the bidders�
information assumed in this example. This provides us with the rationale for
proposing an alternative multiplicative decomposition that identify an inference
e¤ect even though the MLRP assumption be weakly satis�ed.

42In particular, since vn(x; x;n) = ��max f1; xg = (�+ n� � 1)2, the negativeness of the
WCE is ensured by vn(x; x;n) < 0 and jvn(x; x;n)j � jvn(x; x;n)j for all x > x (see Propo-
sition 3.3)
43That is, strict a¢ liation does not hold as Fxjv satis�es only the weak MLRP.
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