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Preface 

Continuous-Time Sigma-Delta modulators are often employed as analog-to-

digital converters. These modulators are an attractive approach to implement high-

speed converters in VLSI systems because they have low sensitivity to circuit 

imperfections compared to other solutions. 

This dissertation is a contribution to the analysis, modeling and design of 

high-speed Continuous-Time Sigma-Delta modulators. The resolution and the stability 

of these modulators are limited by two main factors, excess-loop delay and sampling 

uncertainty. Both factors, among others, have been carefully analyzed and modeled. 

A new design methodology is also proposed. It can be used to get an optimum 

high-speed Continuous-Time Sigma-Delta modulator in terms of dynamic range, 

stability and sensitivity to sampling uncertainty. Based on the proposed design 

methodology, a software tool that covers the main steps has been developed. 

The methodology has been proved by using the tool in designing a 30 

Megabits-per-second Continuous-Time Sigma-Delta modulator with 11-bits of 

dynamic range. The modulator has been integrated in a 0.13-m CMOS technology and 

it has a measured peak SNR of 62.5dB. 

The dissertation has been originally written in Spanish. This document is only 

a summary of the main chapters and contributions and should be considered as a 

complement of the original work. The main tables and figures have been translated, 

and references have been included again to help the reader. 
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Chapter     1  

Design methodologies for 

Continuous-Time Sigma-Delta 

Modulators 

This chapter summarizes the design techniques for low-pass Continuous-Time 

Sigma-Delta Modulators (CT-SDM) that are published in the technical literature. 

The first section deals with different methods of specifying the NTF of a CT-

SDM. The second section discusses architecture selection. Finally, the last section refers 

the most used tools in the design of CT-SDM. 

NTF specification is the first step in a CT-SDM design process. The achieved 

resolution and stability margin depends on NTF selection. 

Consider the block diagram of a CT-SDM and its linear model, both shown in 

fig. 1.1. The model has a filter block with two inputs and one output. This filter 

imposes the NTF and STF of the modulator. The NTF of this linear model has a 

complex computation that will be shown during this chapter. 

Nevertheless consider a discrete-time system equivalent to the system shown 

in fig. 1.1. It can be shown that the dynamic range is given by [Car97] 

  
2

2
2 1

2 2

3 2 1
2 1

2

N no

n

o

s n
DR OSR

n 


       (0.1) 

where 

 
2

os = power of a full-scale tone 

 
2

on = quantization noise in-band power  
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 n = modulator order 

 N = quantizer resolution in bits 

 OSR = Oversampling ratio 

Quantizer
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H s
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 v t
 y t  v n y n

D/A

sf

 
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1
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H s
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 y t  v n y n

 e n

a)

b)

 

Figure 1.1 CT-SDM  Block diagram (a) and its linear model (b) 

In an ideal case the dynamic range matches the maximum SNR at the output 

of a CT-SDM. In practice the maximum SNR is limited by large signal stability. 

Equation (0.1) has been obtained assuming the following NTF. 

    11
n

NTF z z   (0.2) 
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This NTF corresponds to a filter block composed of a chain of integrators. But 

the filter block can be implemented with other different strategies, not only with a 

chain of integrators, as first- and second-order modulators are usually defined.  

The design process depends on a proper selection of NTF, which has to be 

adequate to modulator specifications, and this selection restricts the design of the 

blocks shown in fig. 1.1.a 

1.1 NTF design 

There are several publications about CT-SDM design techniques, with 

different approaches to the analysis of stability, and different approaches to the feasible 

implementations. This section deals with most common and used methods for the 

design of CT-SDMs. 

There are two main design techniques. One is based on the design of a 

Discrete-Time Sigma-Delta Modulator (DT-SDM) first, to compute an equivalent CT-

SDM afterwards. The other one is based on a full design in continuous-time. 

1.1.1 Design technique based on impulse invariance response 

This method uses a mathematical transformation to find a CT-SDM that 

implements the NTF designed in discrete-time domain  

The first researcher who used this technique was James C. Candy. The work 

described in [Can85] has been widely referenced. It is a second order DT-SDM with 

two feedback paths and, nowadays it is considered as the standard second order 

Sigma-Delta modulator. Candy uses the impulse invariant method to find an 

equivalent continuous-time implementation.  

There are some other works that use a bilinear transformation [Bro90] or a 

modified Z -transform [Hor90] in the design of CT-SDMs or in their modeling. In this 

work we prefer the impulse invariance method because it fits better with the 

modulator behavior. 
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The impulse invariance method has been widely applied after the work 

published in [Can85]. The first works have used some previously well-known DT-

SDMs as starting points. Impulse invariance was applied to obtain bandpass CT-SDMs 

in [Thu91] and [Sch94]. Afterwards R. Schreier proposed a methodology based on 

impulse invariance in [Sch96]. In that paper the linear blocks of the SDM are described 

using the state space representation. A similar approach but, without state space 

representation was followed by [Ben97]. Since that moment, there have been many 

publications about CT-SDMs. Most of them are summarized in [Che00], which also 

covers a systematic approach to every linear and non linear aspect of CT-SDMs. Last, 

[Ger02] adds to the methodology a proposal to select some fundamental parameters of 

the modulator (order, quantizer resolution, OSR) 

Impulse invariance method is based on matching the impulse response of two 

equivalent systems. Consider the block diagram of a CT-SDM shown in fig. 1.1.a and 

its open-loop block diagram shown in fig. 1.2.a, where input signal has been removed. 

The continuous-time open-loop system has a discrete-time equivalent system with 

matched impulse response at sampling instants, such that  

        1 1

2 2
st n T

H z P s H s 

 
 Z L  (0.3) 

 

 
1

2

H s

H s

D/A

 v t
 v n

 P s

1
s

s

f
T



 y t  y n

 2H z v n  y n

a)

b)

 

Figure 1.2 CT-SDM open-loop block diagram (a) and DT-SDM open-loop block diagram (b) 

The design methodology proposed in [Che00] consists of several steps, as 

follows: 
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 Design of a  NTF z  that meets the specifications. The following methods 

are available: 

o Using a standard or classical modulator 

o Using the method described in [Ada97a], [Sch03] 

o Using CLANS method, described in [Ken93] 

o Using the method described in [Ger02], which takes into 

account power consumption 

  2H z  calculation  by means of the linear model 

  
 

 
 

2

2

1 1
1

1
NTF z H z

H z NTF z
   


 

 
 (0.4) 

 D/A pulse type selection and  2H s  calculation by means of impulse 

invariance transformation (0.3). 

 Architecture selection and computation of its coefficients 

 Transient simulation of the architecture in a Spice-like simulator, including 

linear and non-linear effects. 

  2H z  extraction from transient simulation by means of impulse 

invariance transformation, circuit parameters computation and tuning. 

1.1.1.1   Sensitivities of the design technique based on impulse invariance 

Circuit parameters computation is the main obstacle of this design technique 

because it is calculated by means of impulse invariance method applied on the result of 

a transient simulation.  

First of all, discrete-time loop-filter (  2H z ) usually has an infinite impulse 

response, which is a difficulty to numerically apply impulse invariance method. 

Applying impulse invariance method analytically is feasible but also difficult to 

implement in practice, except for particular cases. 
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On the other hand, the modeling of linear and non-linear effects needs to be 

accurate and the parameters computation has a strong dependency on this accuracy. 

The result is that the modulator can have a high sensitivity to process variations and/or 

other non-modeled effects. 

Apart from circuit parameters computation, there is another weakness in this 

design technique. As long as it is based on a discrete-time NTF specification the system 

is usually optimized for discrete-time purposes, without taking care of some effects 

that only occurs on continuous-time domain. Excess-loop delay and sampling instant 

uncertainty are the main effects that usually limit the speed and resolution of CT-SDMs 

[Che00]. It should be interesting to specify a NTF optimized against these two effects. 

1.1.2 Design on continuous-time domain 

There is another design technique that is based on specifying a CT-SDM on 

continuous-time domain only [Bre01] 

The technique consist of designing an analog filter,  2H s , such that 

 The system in fig 1.3 is stable. To analyze stability the open-loop root locus 

is observed. 

 The system meets a certain set of specifications (SNR, DR, etc.) 

Apart from the above conditions, the design technique also proposes to 

analyze stability against large signals. 

The stability is accomplished by using one of the topologies described in 

[Bre01] to implement the analog filter. These topologies are the continuous-time 

counterparts of the topologies described in [Ada97b]. 
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Figure 1.3 Linear model to analyze stability of CT-SDMs according to [Bre01] 

1.1.2.1 Disadvantages of the design technique on continuous-time domain 

The design technique based on continuous-time domain has two 

disadvantages as a consequence of the model shown in fig. 1.3. 

First of all, the linear model shown in fig. 1.3 is only valid for single-bit CT-

SDMs [Hof79]. 

Second, the model seems to be more adequate for CT-SDMs with high 

oversampling ratios since it has not included the sampling process that occurs inside 

the loop. 

Apart from the model, the design technique has no reference on how to 

systematic solve the influence of excess-loop delay and sampling instant uncertainty. 

1.1.3 Linear models comparative 

This section shows a short comparative of the described design techniques. 

Each design technique has a linear model that is used to specify and/or analyze the 

modulator (see fig. 1.4). The comparative study uses both linear models to analyze the 

same CT-SDM. 

We have selected for the comparison two 4th order CT-SDMs with an 

oversampling ratio of 12 and an excess-loop delay of 50% sT . In both modulators the 

loop-filter  2H s  has same DC-gain and pole locations. One modulator has 3 zeros so 

that the initial value of  2H s ,  2 0h , is bounded. The other modulator has the same 3 
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zeros plus one extra zero, such that  2 0h  . The latter modulator corresponds to a 

modulator compensated for excess-loop delay while the former one is uncompensated 

[Che00, Luh00]. 

The selected CT-SDMs has been simulated using an ideal loop-filter, a null 

input signal and a random noise source (band-limited and with uniform distribution 

between  1 2 1N  ) added at quantizer input. The output spectrum is compared with 

a computed power spectrum density. The computed spectrum comes from considering 

each one of the models described before with quantization error as the only input to 

the system. 
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Figure 1.4 Linear models considered in the comparative. a) Design technique based on impulse invariance. b) Design 

in continuous-time domain 

When the modulator has a loop-filter with bounded  2 0h , both models 

match roughly inside the range 0 / 2sf f  . But when  2 0h  , each model gives 

a different result. 

Figures 1.7 and 1.8 show that none of the models fit with transient 

simulations. It is supposed that impulse invariance model fits better with simulation 

for low oversampling ratios and the opposite for high oversampling ratios. 

The selected modulators are unstable with single-bit quantizers. This behavior 

is predicted by impulse invariance model because discrete-time NTF does not follow 

Lee rule [Nor97].  
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Figure 1.7 Transient simulations of  
2

0h C modulator with several quantizer resolutions 
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Figure 1.8 Transient simulations of  
2

0h modulator with several quantizer resolutions 
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1.2 Loop-filter topologies 

Loop-filter topology selection is a design step, no matter the employed design 

technique. Normally, a certain topology is chosen according to hardware restrictions, 

power consumption, and distortion and noise considerations. This section does not 

collect all these restrictions; some of them are given in chapter ¡Error! No se encuentra 

el origen de la referencia., with an application example. Instead of collecting all these 

restrictions, this chapter gives a general approach to loop-filter implementation 

possibilities.  

1.2.1 State-space description 

Grey block shown in fig. 1.9 is a two-inputs one-output linear system with 

transfer functions  1H s  and  2H s . This linear system can be described by means of 

its state-space equations, as follows, 

 

     

         

1 11 1 1 11 12
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u
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v
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       
        

                    
       

 
  

        
 

 
 

      

 

 
 

 (0.5) 

where n is modulator order and  ix t  is the i-th state variable. 
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Figure 1.9 CT-SDM Block diagram 

State-space description can be summarized in an extended ABCD matrix of 

size    1 2n n   . 

 

11 1 11 12

1 1 2

1 1 2

n

n nn n n

n

A A B B

A B
ABCD

C D A A B B

C C D D

 
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    


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 (0.6) 

Applying Laplace transformation on (0.5) and after some manipulations, 

transfer functions can be expressed as 
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 (0.7) 

Equation (0.7) shows that NTF zeros, i.e.  2H s  poles, are given by matrix A  

eigenvalues. 

The system described by (0.5) may be implemented with n  integrators and 

2 3 2n n   coefficients at most. As long as transfer functions have n  poles, the system 

is defined with a minimum of different 3 2n  coefficients [Der90]. 
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There are an infinite number of implementations of a unique transfer function. 

Each implementation corresponds to a certain state-space, given by 

    
1

n

x

x t t

x

 
 

  
 
 


  (0.8) 

There is a non-singular n -size T  transformation matrix for each 

implementations pair x


 and w


 such that 
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

 (0.9) 

State-space selection depends on practical restrictions: 

 STF and/or anti-aliasing filter specification 

 Quantizer resolution 

 Power consumption 

 Harmonic distortion specification 

1.2.2 Particular case: chain of integrators 

Consider a low-pass CT-SDM. There are two choices to select A  eigenvalues, 

i.e. NTF zeros. They may be all located at zero frequency or they may be spread over 

modulator bandwidth. 

If A  eigenvalues are all zero, the simplest implementation is a chain of 

integrators. But, if A  eigenvalues are all different between them and different from 

zero, there are more options to implement the linear system, for example with a 

parallel structure [Der90] 

All reported CT-SDMs have topologies based on a chain of integrators, maybe 

because DT-SDMs also have the same kind of topologies. The main advantage of an 

architecture consisted on a chain of integrators is the connection between hardware 
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and state-space equations, supposed that every integrator output corresponds to a state 

variable. The main disadvantage is that the linearity of first stages has a strong 

influence on output signal. However, in theory, all known continuous-time filter 

implementations are available. Using biquads, for example, may be justified if its usage 

reduces power consumption, simplifies design process and/or reduces distortion. 

Focusing on topologies based on a chain of integrators it can be defined the 

family of architectures shown in fig. 1.10. According to this family it is possible to 

define any designed  1H s  and  2H s . If A  eigenvalues are all different from zero, 

local feedbacks between integrators are needed [Der90]. 

Consider that A  eigenvalues are zero or complex conjugate pairs only. A 

linear system with pure complex poles is an oscillator. In the other hand two 

integrators of gains 1c  and 2c , connected in cascade, and feedback by means of a gain 

g , form an oscillator with resonance frequency 1 2c c g   

The ABCD matrix of this family is defined according to three cases: even 

order, odd order with a resonator as first stage (1R ), and odd order with an integrator 

as first stage (1I ). The cases where A  eigenvalues are all zero are particular cases 

among the above. 
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The family of architectures shown in fig. 1.10 has only one D/A converter in 

the feedback path. In practice there will be one D/A converter per feedback branch, i.e., 

per each ia and fbe  coefficient. 

Input feedforward coefficients, ib , only have influence on  1H s , and 

therefore they only have influence on STF.  Feeding the input through these 

coefficients usually helps to decrease distortion because of the reduction of the 

dynamic range of state variables. There is a particular case where STF is exactly 1, that 

is when i ib a . Rest of coefficients has influence on both STF and NTF. The usual 

approach is to implement NTF zeros, i.e.  2H s  poles, by means of ia  or id  

coefficients. Sometimes it is useful to use both type of coefficients, feedback ia and 

feedforward id , to increase the degrees of freedom of the system, such that a certain 

STF can be implemented. 

Some particular cases of this family of architectures are described in chapter 7. 

Notice that standard or canonical forms of describing linear systems are not included 

in this family of architectures [Oga95], [Mor03]. 

1.3 Simulation methods. CAD tools. 

This section summarizes most common and used design- and simulation-tools 

at system-level. The summary is focused on specific tools for CT-SDMs. Circuit-level 

tools are excluded, like Spice, because they are not specific for Sigma-Delta 

modulators. 

The most referenced tool is ‘delsig’ Matlab library [Sch03].The functions 

included in this library are dedicated to DT-SDMs design and simulation. Some 

functions are originally written in C and then compiled, which reduces CPU time. 

There are some functions dedicated to architecture selection, among the choices 

described in [Ada97b]. Some of them use impulse invariant method to obtain bandpass 

continuous-time topologies, with LC resonators. 
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One of the problems of all tools dedicated to Sigma-Delta modulators design 

is transient simulation. Transient simulation is always needed when a Sigma-Delta 

modulator is designed, even if a linear model is used in the first steps of design. 

Transient simulation guarantees stability and allows system characterization.  In a DT-

SDM case, simulation time is proportional to modulator order and the number of 

samples, as long as the problem to solve is based on difference equations. In a CT-SDM 

case, the simulator has to numerically solve a set of partial derivative equations, such 

that a variable integration step is needed. When signal changes quickly, as in a falling 

or rising clock edge, integration step has to be small, such that simulation time 

increases. Simulation time can be very large depending on which effects are modeled, 

such as sampling instant uncertainty, for example. The same phenomenon occurs when 

some circuit non-linearities are modeled in DT-SDM design. 

For the particular case of DT-SDMs design, [Mal03] has solved the problem by 

means of modeling a wide range of effects at system-level, such that circuit simulators 

are not longer needed. 

In CT-SDM design there are some possibilities to reduce simulation time. One 

simple solution is to use a compliable code, like ANSI-C, for modeling. Compared to 

Simulink (Matlab) models or Spice models, C-compiled models are more efficient and 

less time consuming.  The problem of this approach is the low flexibility of the model. 

For example, adding a block to an existing model may yields to rebuild the entire 

model.  However, Simulink allows to build C-coded and –compiled blocks. This 

feature has been used in [Med95] and [Rui03] to model operational amplifiers, 

samplers and quantizers among other blocks with some non-linearities included in the 

model. Each block has a state-space description in C while Simulink has an adequate 

solver. This solution is efficient but requires a large block library with many modeled 

effects. 

Another solution in order to decrease simulation time is to use a discrete 

model by means of a continuous-time to discrete-time mapping, such as impulse 

invariance method. This solution has been adopted in [Che98], [Bro90] and [Hor90]. 

The main difficulty of this approach is the modeling of non-idealities, as sampling 
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instant uncertainty, for example. However this approach is the most efficient in terms 

of CPU time. Behavioral simulator shown in [Fran02] is an intermediate solution 

between using a continuous-time to discrete-time mapping and using a compiled code. 
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Chapter     2 

Analysis and modeling of 

excess-loop delay and clock 

jitter in CT-SDMs 

This chapter is dedicated to the analysis and modeling of the main effects that 

contribute to performance degradation in a CT-SDM, i.e. excess-loop delay and clock 

jitter. The proposed design methodology (see chapter 3) uses the models included in 

this chapter. 

2.1 Excess-loop delay 

There is a delay inside the loop of a CT-SDM that is not present in a DT-SDM, 

between sampling instant and the instant where D/A output is updated as a 

consequence of sampling.  

Consider the block diagram shown in fig. 2.1. The quantizer is composed of 

one or several latched comparators. Comparators output controls one or several D/A 

converters. Consider each D/A converter consisted of current steering sources. In an 

ideal case output current changes with clock edge. In practice, transistors inside 

comparators and D/As cannot switch instantaneously and therefore there is a delay in 

the feedback loop, which is called Excess-Loop Delay (ELD). 

ELD has been widely analyzed by many researchers. One of the most detailed 

and extensive contribution is written in [Che00, chapter 4]. It also includes a wide 

reference list. 
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Figure 2.1  CT-SDM Block diagram 

ELD usually increases CT-SDM instability and therefore decreases maximum 

achievable resolution. 

This section is dedicated to the analysis and modeling of ELD effect on low 

OSR CT-SDMs. Impulse invariance principle and discrete-time root-locus have been 

used for these purposes. 

Consider the block diagram shown in fig. 2.2, where there are two blocks 

inserted, one block to model ELD in Laplace domain, as a pure delay, and another 

block to model an ideal D/A converter in Laplace domain, as a pulse shaper. Quantizer 

is assumed to be ideal as well, i.e. it switches instantaneously. ELD block has been 

placed after pulse shaping because it is easy to model a delay in Laplace domain and 

the behavior is completely equivalent to what happen in practice. 

Impulse response of feedback branch, i.e. ideal D/A converter and ELD block, 

is shown in fig. 2.3, where a rectangular pulse has been assumed for D/A converter. If 

the rectangular pulse starts on 0t  , D/A impulse response is 

    ,

1, , 0 1

0,

s

t

Tp t

rest

 

   


    
 



 (2.1) 

After applying Laplace transformation it yields 
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e e
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Figure 2.2 CT-SDM Extended block diagram 
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Figure 2.3 Feedback loop impulse response (D/A and ELD) 

Pulse type is modeled by   and  . For instance, a Non-Return-to-Zero 

(NRZ) D/A may be modeled with 0   and 1  . 

ELD effect on a CT-SDM may be analyzed by monitoring its equivalent 

discrete-time counterpart. Figure 2.4 shows the open loop block diagram 

corresponding to the system shown in fig. 2.2 together with a linear discrete-time 

system. Applying impulse invariance method on both systems yields 

          1 1

2 2, , d
st n T

H z PD s H s
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 

 

 Z L  (2.3) 

where 
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This equation may be split in several terms, one per each sample where 

   , d sa
p t T


   is present. As long as 0 1    , the delayed pulse 
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   , d sa
p t T


  will last two samples only, as is shown in fig. 2.5.  According to this 

fact, delayed pulse is split in two samples as follows 

 

           ,1 0,, ,

1

s

d

T s

d

d

PD s P s P s e
   

  

  

 

 
  

  


   

where  (2.5) 

where an ELD lower than one sampling period has been assumed, i.e. 1d  , 

although the model is extensible to higher ELD.  
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Figure 2.4 CT-SDM Open loop block diagram and its equivalent discrete-time counterpart 

n  1n   2n 

1

1d 

s

t

T
 

Figure 2.5 Example of a delayed D/A impulse response 

Therefore, discrete-time system in fig. 2.4 is composed also of two terms, as 

follows 



Chapter 2. Analysis and modeling of excess-loop delay and clock jitter in CT-SDMs 

 

-37- 

 

 
 

 
 

 
 

 
         

 
         

1 2, ,

1

1

1

2 2 2

1 1

2 2,1

1 1

2 2,1

,
d

s

s

t n T

t n T

H z H z z H z

H z P s H s

H z P s H s

   










 







 


 

 


 

  

 

 

  





where

Z L

Z L

 (2.6) 

This discrete-time system may be analyzed in close-loop configuration, such 

that discrete-time NTF yields 

  
 

 
 
 

 
 

1, , 2

1

2 2 2

1 1

1 1
d

NTF z
H z H z z H z

    


 

   


  
 (2.7) 

And NTF zeros kz  are given by 

  0, ks

kz e  (2.8) 

where ks  are  2H s  poles. 

Zero located at 0z   appears because part of D/A pulse is overlapping next 

sample time-gap. That zero increases modulator order and modifies modulator 

stability, while in-band quantization-noise power is unaffected. At the same time, NTF 

poles are also modified as a consequence of ELD. 

Consider a second-order CT-SDM as an example, like the one shown in fig. 

2.6, which has been reported before in [Can85, Cha90, Che00]. According to the model 

shown in fig. 2.2, loop-filter turns out to be 

  
 

 
2 2

2 31

2

s

s

T s
H s

T s

  
 


 (2.9) 

An equivalent discrete-time NTF may be computed by means of impulse 

invariance method and considering a NRZ D/A and a certain ELD, using (2.6) and  

(2.7). Figure 2.7 shows discrete-time root-locus of closed-loop system when ELD varies 

form 0 to sT . 
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Figure 2.6 Second-order CT-SDM block diagram 
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Figure 2.7  NTF z  Root-locus as a function of d , where continuous-time loop-filter is given by (2.9) 

When ELD is higher than 31% (over a sampling period), NTF poles are outside 

the unit circle. However, if the modulator is simulated in idle-channel, output 

spectrum shows limit cycles when ELD is higher than 52%. 

Linear analysis does not guarantee stability, but may be improved by adding 

to the model the quantizer gain [Ard87]. 

Another example is shown in fig. 2.8, where  NTF z  root-locus is depicted 

for the CT-SDM shown in fig. 2.9 and transfer functions given by (2.10). This particular 

case is a 3rd order 3-bit CT-SDM with OSR=64. The modulator has been designed 
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according to the method reported later in chapter 7. NTF zeros are spread over analog 

input bandwidth according to [Ada97a]. Figure 2.8 shows that NTF poles are outside 

the unit circle when ELD is higher than 46%. If the modulator in fig. 2.9 is simulated in 

idle channel, output spectrum shows limit cycles when ELD is higher than 40%. The 

same simulation with 1-bit quantizer instead of 3-bit quantizer shows instability for 

every ELD. With 2-bit or 4-bit quantizer, simulations show the same limit ELD, 40%. 

Re

Im

1d sT 

1

1

0.46d sT 

 

Figure 2.8  NTF z  Root-locus as a function of d , where continuous-time loop-filter is given by (2.9) and the 

corresponding CT-SDM is shown in fig. 2.9 
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Figure 2.9 CT-SDM Block diagram corresponding to (2.10). 
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 (2.10) 

The same modulator has been redesigned for an OSR of 16. Its transfer 

functions are given by (2.11). NTF root-locus is shown in fig. and as can be seen is 

approximately the same root-locus that is depicted in fig. 2.8. If the modulator in fig. 

2.9 is simulated in idle-channel, output spectrum shows limit cycles when ELD is 

higher than 33%. The same simulation with 1-bit quantizer instead of 3-bit quantizer 

shows instability for every ELD. With 2-bit and 4-bit quantizer, simulations show limit 

ELDs of 30% and 33% respectively. 
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Figure 2.10  NTF z  Root-locus as a function of d , where continuous-time loop-filter is given by (2.11) and the 

corresponding CT-SDM is shown in fig. 2.9 
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 (2.11) 
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2.1.1 ELD analysis by means of analog phase margin 

Root-locus gives a sufficient condition to predict stability but is not a 

necessary condition, as is shown above through some examples. The system may be 

unstable although all NTF poles are inside the unit circle. In addition, a CT-SDM with 

low OSR is unstable for a lower ELD than a CT-SDM with high OSR, even when both 

modulators has been designed using the same criteria. We need a figure of merit to, 

compare the sensitivity to ELD of several modulators, and at the same time, predict 

stability. 

Consider analog phase margin of the system         2, , d
olpH s PD s H s

  
   

as a parameter useful to compare ELD sensitivity. 

When NRZ D/A is used, i.e. 0   and 1  , then  

      
2

1 s

d s

T s
T s

olp

e
H s H s e

s


 

  
    (2.12) 

And therefore 
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 (2.13) 

where 

    
  olp s

olp olp s H jw T
H jw H jw T

 
   (2.14) 

According to above equations, analog phase margin seems to be a good 

indicator of modulator sensitivity to ELD and, even, to any phase shift in general 

terms. If we consider again the examples shown in previous section, there is 1 degree 

difference in analog phase margin between the modulator with OSR 64 and the 

modulator with OSR 16. Analog phase margin increases with OSR.  
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The connection between analog phase margin and CT-SDM stability for low 

OSRs is an original contribution of this dissertation. 

2.1.2 Compensation methods 

Several researchers have looked for compensation techniques, since ELD 

increases instability. 

 There are two main compensation methods reported in technical literature. 

The former and most extended method is to force a pole-zero cancellation in discrete-

time domain [Che00]. According to (2.8), ELD in continuous-time adds an extra zero in 

discrete-time NTF, i.e.  NTF z .  The aim of the method is to cancel out this extra NTF 

zero by adding another extra zero to the continuous-time loop-filter  2H s , such that 

NTF zero is cancelled by a pole. The most extended implementation of this method is 

an additional feedback loop around the quantizer [Ben97], [Luh00]. In the family of 

architectures described in chapter 0, this additional feedback loop is represented by 

coefficient fbe . The main advantage of this implementation is the high tolerance to the 

non-linearity of this extra D/A converter. Another implementation may be a different 

feedback loop as is reported in [Che00].  

The disadvantage of this discrete-time pole-zero cancellation method is the 

high sensitivity to process variations and other non-idealities not taken into account in 

the impulse response. 

The latter method consists also of adding an extra zero to  2H s  but in a 

different frequency. Instead of looking for pole-zero compensation, the zero is placed 

at 2sf  [Luh00]. This helps to stability without imposing a high penalty on resolution 

and is more robust than previous solution. However, if ELD is high and OSR is low, 

this technique is not helping anymore. 
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2.2 Clock Jitter 

CT-SDMs have a high sensitivity to uncertainty of sampling instant, i.e. to 

clock jitter [Che00, chapter 5]. Usually there is some noise in output signal as a 

consequence of clock jitter.  This noise has an in-band power that may be higher than 

in-band quantization noise power, and/or thermal noise power, such that modulator 

resolution is limited by clock jitter. 

In essence, clock jitter noise is of a random nature and uncorrelated with the 

input signal. However the mechanism for which it couples to the modulator output is 

intricate and has forced designers to resort to time consuming simulations to define the 

jitter specifications of the clock source. 

There are two blocks that require a precise clock signal, the sampler before the 

quantizer and the D/A that generates the feedback pulse, as is shown in fig. 2.11. D/A 

converter is clocked to avoid signal dependant jitter, which is a consequence of 

quantizer metastability [Che00, chapter 5]. 

Quantizer

D/A

 s QnT T n 
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 
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H s
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 v t
 y t  v n y n

 /s D AnT T n 
 

Figure 2.11 CT-SDM with clock jitter. 

In general terms, clock signal for the DAC may not have the same timing 

errors /D AT  than the sampling clock QT . 
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2.2.1 Analysis of timing errors in the sampler 

The sampler operates at points  s Qt nT T n  . As long as  QT n is a finite 

power sequence, the sampling error caused by the sampler will be shaped by the 

modulator loop. For moderate jitter levels, this error at the quantizer has smaller 

influence in the SNR than the error introduced by the feedback D/A, which is the main 

responsible of the SNR degradation. 

2.2.2 Analysis of timing errors in D/A converters 

The contribution of feedback D/A converters to the whole sensitivity to clock 

jitter in a CT-SDM depends on specific D/A location. D/A influence on SNR 

degradation is smaller for locations closer to the quantizer. Therefore, for the following 

analysis first (or main) D/A converter is only considered, i.e. the D/A whose output 

signal is subtracted form modulator input signal, because it is the main contributor for 

SNR degradation. 

In general, DAC timing uncertainties  /D AT n  result in a wrong position of 

the feedback pulses and also in an error in its duration. In [Che00], several estimations 

of the SNR degradation are made for both Return-to Zero (RZ) and Non Return-to-

Zero (NRZ) feedback pulses. A conclusion that may be drawn in both cases for lowpass 

modulators is that what is meaningful is the error in the area of the feedback pulses for 

every sampling period. A reason for this is that the feedback pulse is at least integrated 

once in the loop filter, as is shown in fig. 2.12. This integrated value corresponds with 

the area of the pulses, and hence, only the area is significant at the sampling instants at 

sampler, instead of the actual shape of the pulse.  

For a NRZ feedback pulse, the expression of the area error is [Che00]: 

        /1 [ ]D AA n v n v n T n       (2.15) 
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Figure 2.12 Integration errors as a consequence of clock jitter 

Time dependency of the area error may be translated to an amplitude 

dependency, as is shown in fig. 2.13. Therefore, we may find the equivalent additive 

error sequence  je n  that produces the same area error in a feedback pulse train with 

the ideal temporization: 

  
 

    
 /

1
D A

j

s s

A n T n
e n v n v n

T T

 
       (2.16) 
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Figure 2.13 Area error equivalency between a time dependant model and an amplitude dependant model. 

According to above, output of the modulator and clock jitter may be 

considered statistically independent, such that, variance of  je n  may be computed as 

in [Che00]. 

 2 2 2

/2

1
ej D A dv

sT
      (2.17) 
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where 

  
   1

s

v n v n
dv n

T

 

 

  (2.18) 

The output of the modulator can be approximated by the addition of two 

components in order to compute (2.18). One component is the input signal filtered by 

STF, and the other component is the quantizer noise filtered by NTF. 

2.2.3 Fast simulation model 

One of the main bottle-neck of CT-SDM simulation is CPU time.  Simulating 

timing errors implies very small and accurate integration steps to solve partial 

derivative equations of the modulator.  

However, equation (2.16) suggests a simplified model, as is shown in fig. 2.14. 

Cuantificador

D/A

 

 
1

2

H s

H s

 u t

 v t
 y t  v n y n

11 z

T



snT

 /D AT n

 dv n je n

 v n

 

Figure 2.14 Simplified model of clock jitter influence on a CT-SDM 

This model can be implemented in Simulink. The main advantage is that 

sequence  je n  needs to be updated only at sampling instants, such that integration 

step may be increased and therefore CPU time may be decreased. As an application 

example, a 4th order CT-SDM has been selected. The Simulink model for this modulator 

is shown in fig. 2.15. 
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Figure 2.15 Simulink model of a 4th order CT-SDM. 

To compare the precision of the simulation model, SNR versus jitter variance 

is plotted in fig. 2.16, for the proposed model and for an equivalent Simulink model 

which uses a clock generator with time varying edges. The maximum difference 

between both curves is 1.5 dB. However, the simulation times for the same number of 

samples and jitter level of the proposed model are 7 times faster on the average than 

the conventional model. 
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Figure 2.16 Comparison between proposed model and conventional model. 
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2.2.4 Jitter sensitivity optimization by NTF modification 

The power of error sequence  je n  depends on jitter power and the power of 

a fictitious signal  dv n . The latter depends on signal power and quantization noise 

power.  

Assuming the linear model of the modulator, in-band quantization noise 

power should be considered independent of signal. Even more, it may be computed 

through NTF. Therefore jitter sensitivity of the modulator may be split in two terms, 

one signal dependant, and another NTF or design dependant. 

Consider a CT-SDM in idle-channel in order to evaluate the design dependant 

term. Under these conditions, the modulator is busy because of thermal noise, and the 

output signal depends on modulator architecture. Therefore, computation of  2

dv  may 

be approximated by the output of a filter with a white noise input, as follows 

    
22

2 2

0

1
1

2

j j

dv Q e NTF e d


   


      (2.19) 

where 2

Q  is the variance of quantization noise and 2 sf T    

Above expression suggests a design criterion to minimize the variance of  2

dv , 

by modifying NTF.  

In fig. 2.17.a the total area A1 of a conventional NTF design is shown, when 

multiplied by the modulus of the digital differentiation function (1-z-1). In high order 

modulators, we may use some of the NTF zeros to reduce the gain close to half of the 

sampling rate, such that the area after the differentiation function, A2, is reduced but 

NTF still keeps its stability and SNR properties. 

It may be defined a figure of merit to select the optimum NTF in terms of jitter 

sensitivity: 

    
2

2

0

1
1 j j

jitA e NTF e d


  


     (2.20) 
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Figure 2.17 Graphical example of the jitter optimization process of a CT-SDM. 

In [Her04] an application example of the proposed optimization process is 

shown. This method was also applied to the modulator reported in [Pat04b]. 

The proposed fast simulation model and figure of merit are original 

contributions of this dissertation. 
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Chapter     3 

Contributions to CT-SDM 

design methodology 

This chapter proposes a five-step design methodology, valid for CT-SDM with 

low OSR. First section describes the motivation of the new design method. Second 

section describes the method from a formal point of view. In third section some 

algorithms are given to implement the proposed methodology. Last section shows a 

Matlab tool, which has been developed to evaluate the methodology. 

The proposed methodology and the Matlab tool are original contributions of 

this dissertation. 

3.1 Using analog phase margin to stabilize and 

optimize a CT-SDM 

Existing design methodologies have some problems that were described in 

chapter 0. This work is intended to solve part of these problems by finding a new 

design methodology. 

On one hand, the design method proposed first in [Ada97a] and developed 

later on in [Che00] has difficulties to translate system-level specifications to circuit-

level specifications. The modulator designed with this method has a high sensitivity to 

ELD, process variations and clock jitter. 

On the other hand, the design methodology reported in [Bre01] is based on a 

root-locus analysis in Laplace domain, which is not sufficient to predict stability and/or 

robustness. 
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This work proposes a mixed methodology, which tries to combine the 

advantages of each method and to overcome the difficulties. This has been 

accomplished by defining two objectives.  First aim is to use parameters and/or figures 

of merit that are common use in analog circuits design, or at least, to define some 

parameters and/or figures of merit that are easy to translate between system-level and 

circuit-level models. Second aim is that the method may be able to find an optimum 

modulator in terms of robustness against process variations and other effects, and 

resolution. 

Analog phase margin has been considered a figure of merit that indicates the 

optimum modulator against process variations and ELD, for example. System-level 

design is accomplished in Laplace domain, although stability is checked on discrete-

time domain. 

3.2 Proposed design methodology 

A five-step design method is proposed in this section. The start point of the 

methodology is the setting of certain specifications, namely, dynamic range, maximum 

SNR, maximum SNDR, maximum clock frequency, technology and maximum power 

consumption. 

During the first step, oversampling ratio OSR , modulator order n , and 

number of quantizer levels M are set, in order to guarantee a certain resolution 

(computed form maximum SNR and dynamic range) and supposed that the modulator 

is feasible, taking into account the technology and power consumption. In this step it 

has to be decided also if NTF zeros should be all at DC or spread over analog 

bandwidth. Nominal amount of ELD has to be set also in this step, taking into account 

the clock frequency and the number of clock phases that are intended to be used in the 

circuit. 

During the second step, the method finds a continuous-time filter that 

stabilizes the linear model shown in fig. 3.1. This model is computed by applying 

impulse invariance method on a n -th order CT-SDM with oversampling OSR  and 
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null ELD. Quantizer gain is considered 1. The found filter is the start point of the 

optimization process that is carried out in next step. 

 H z
 u n  y n  v n

 e n

 

Figure 3.1 Discrete-time linear model. 

The third step is an optimization process. One or several quality indicators are 

considered during the optimization. These quality indicators depend on the targeted 

optimization objectives. Analog phase margin is the selected indicator of modulator 

tolerance to ELD and process variations. Output average step size is the selected 

indicator of modulator tolerance to clock jitter. After the end of the optimization 

process, a transient simulation is done, to verify predicted stability and resolution. 

The forth step is dedicated to topology selection. During this step, architecture 

coefficients are computed. 

The fifth and last step consists of exhaustive verifications of modulator 

behavior. In this step several non-linearities and non-idealities are taken into account 

and are simulated, in order to release a final set of circuit specifications. 

The main novelty of the proposed methodology is the optimization process. 

Optimization problem is formulated such that, first, a set of stable modulators are 

found, and later on, the optimum modulator is selected among them by using several 

figures of merit. In particular, the optimum is found in terms of ELD and clock jitter 

sensitivity. However, analog phase and/or gain margin may be used to include in the 

optimization other linear influences. Non-linear influences may have another figure of 

merit, which needs to be extracted for each particular case. 

A detailed description of each design step is given in following sections. 
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3.2.1 Step 1: Initial parameters setting 

Considering a DT-SDM with n  feedback loops and assuming the linear 

model, dynamic range can be computed as follows, where M  is the number of 

quantizer levels and  OSR  is the oversampling ratio. 

  
2 2 1

2

3 2 1
1

2

n

n

n
Dynamic Range M OSR



 
     

 
 (3.1) 

Above equation is a theoretical limit of achievable dynamic range, because not 

all parameters combinations yield on stable modulators. However, if the modulator is 

stable, the method described in [Ada97a] produces a similar dynamic range value for 

the same set of parameters. Error margin is around 1 bit. The method reported in 

[Ada97a] allows to set NTF infinity norm, such that the modulator gets all the benefit 

form a multibit quantizer. However, it is usual to let a margin for stability, i.e. setting a 

lower NTF infinity norm than the corresponding to maximum dynamic range.  

For single-bit modulators Lee rule imposes 1.5 maximum value of NTF 

infinity norm [Ada97a]. A conservative criterion may be setting NTF infinity norm to 

the average between 1.5 and the limit that corresponds to maximum dynamic range on 

a stable n -th order modulator with oversampling OSR  and M  quantizer levels. This 

limit value should be obtained by simulation only. 

3.2.2 Step 2: Start point search 

A continuous-time filter is computed during this step. This filter is the starting 

point for the optimization process that is carried out in next step. 

Consider the general block diagram of a CT-SDM, which is shown in fig. 3.2. 

Its open-loop transfer function (see fig. 3.3) is given by  

        2 ,
d sT s

olpH s H s P s e


 

  
    (3.2) 



Chapter 3. Contributions to CT-SDM design methodology 

 

-55- 

Quantizer

D/A

1
s

s

f
T



 

 
1

2

H s

H s

 u t

 v t
 y t  v n

 
 
 

 

 
 
 

 

1

0

2

0

v t

u t

Y s
H s

U s

Y s
H s

V s







 

 y n

d sT s
e

  

ELD
   ,

P s
 

 

Figure 3.2 CT-SDM Block diagram 

 2H s

D/A

 v t
 v n

d sT s
e

  

ELD
   ,

P s
 

 v̂ t

1
s

s

f
T



 y t  y n

 
s

olp t n T
H s

   

Figure 3.3 Open-loop block diagram 

The starting point corresponds to null ELD, i.e. 0d  . The aim is to find a 

filter  2H s  such that   21 1 H s  is causal and stable. 

Loop filter  2H s  poles are usually located either at DC or spread over the 

analog bandwidth in order to minimize in-band quantization noise power. 

Loop-filter gain 
2HG  is set at low frequency, far away from the end of analog 

bandwidth. 

  
2 2H oG H jw  (3.3) 

where 2w f . 

In order to compute this gain, another useful gain may be computed before. 

That is the rms gain value that is needed to get a certain resolution at the outout of the 

modulator. 
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[ ] 1.72

6.012
DR dB

M

rmsG
OSR




  (3.4) 

2HG  may be computed from rmsG  by using an iterative method or an 

asymptotic approximation. 

Stability of closed-loop system depends on  2H s  zero locations. They are 

intended to be at certain locations such that the following conditions are satisfied. 

 
 2

1
lim 1

1w H jw



 (3.5) 

 
 2

1
1

1 H s





 (3.6) 

  20 / 1 0k ks H s    (3.7) 

The result of this design step is a vector c


 whose elements kc  are  2H s  

zeros. 

  2/ 0k kc H c   (3.8) 

3.2.3 Step 3: Optimization process 

This step consists of two sub-steps: 

 Design and parameterize a geometric locus   that contains the set of points 

kc . This geometric locus is a characteristic function that defines kc  

locations in Laplace domain. In this way, every  2H s  zero may be moved 

in Laplace domain, without changing location ratios between zeros, by 

modifying certain parameters of the characteristic function.  The 

formulation proposed reduces the solution space that has to be explored 

during the optimization process. 
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 Find the parameters of   that locate  2H s  zeros such that the modulator 

is optimum against resolution and certain effects that usually degrades 

resolution and/or stability. 

Consider the characteristic function   defined on the complex plane and 

dependant on  1  and 2  parameters. 

    1 2: , , , 0 / Re ; Im( ); kf x y x s y s c        (3.9) 

In order to find the optimum modulator, we should define a figure of merit. 

This figure of merit may be modified depending on designer criterion. In this 

dissertation, it is proposed a figure of merit that takes into account: 

 Modulator tolerance to phase and/or gain shifts. 

 Modulator tolerance to clock jitter 

This selection includes the main contributors to SNR degradation in CT-

SDMs, namely, ELD and clock jitter. 

Modulator tolerance to phase shifts is evaluated by means of analog phase 

margin of  olpH s . Modulator tolerance rises with phase margin. 

  / 1j

olpe H jw     (3.10) 

Modulator tolerance to clock jitter is evaluated by the area of the NTF. 

Modulator tolerance rises when this area decreases.  

    
2

0

1
1 j j

jitA e NTF e d



  


     (3.11) 

where 2s sw T f T      

This area is related with average step size of the output signal of the 

modulator when is operated in idle-channel. 

The result of this design step is the solution of the following optimization 

problem. 
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 (3.12) 

where  , zC  and sC  are constants depending on quantizer levels.  

The considered restrictions are stability constraints. The first one corresponds 

to the stability condition of the linear discrete-time system  NTF z , where   is a 

security margin. The rest of restrictions correspond to experimental criteria, where zC  

and sC should be set by simulations. 

There are two options when there is no solution inside the feasible region, 

defined by the restrictions: 

 Going back to design step 2, entering with a lower resolution for the 

modulator, 

 Or adding a real zero on  2H s , located outside the analog bandwdith. Its 

location, fbew , has to be considered inside the optimization process, such 

that the formulation may be rewritten as 

  
 

 1 2

max
: , , /

min
fbe opt

jit

Objetivo w
A


 





 (3.13) 

3.2.4 Step 4: Architecture selection 

This step is dedicated to select a certain architecture for the filters  1H s  and 

 2H s , and to compute a set of coefficients. 
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Transfer function  2H s  has been defined in previous design steps, while 

transfer function  1H s  has to be defined in this step. Transfer function  1H s  

depends on STF specification. 

Consider the family of architectures described in chapter 3. The architectures 

included in this family have been classified in three categories:  

 MFF or Multiple FeedForward branches 

 MFB or Multiple FeedBack branches 

 MFF&FB or Multiple FeedForward and FeedBack branches 

The features of each category are described in next subsections. In every 

category, an initial set of coefficients needs to be specified. This set of coefficients will 

be scaled after in order to meet a certain state space.  

3.2.4.1 MFF topology 

This topology has the following ABCD matrix: 
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 (3.15) 
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Feedback coefficients 
ia  has been removed except for 1 1a  . Input 

feedforward coefficients ib  define STF according to the following rules: 
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The initial set of coefficients is computed by setting ic  to 1. Once feedforward 

coefficients id  are computed (and ig  if  2H s  poles are complex conjugate pairs), STF 

may be set by specifying coefficients ib . 

3.2.4.2 MFB Topology 

This topology has the following ABCD matrix: 
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Feedforward coefficients 
id  has been removed except for 1nd  . Input 

feedforward coefficients ib  define STF according to the following rules: 
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With this topology it can be designed an antialiasing filter, i.e. STF, up to n-th 

order. 

The initial set of coefficients is computed by setting ic  to 1. Once feedback 

coefficients ia  are computed (and ig  if  2H s  poles are complex conjugate pairs), STF 

may be set by specifying coefficients ib . 

3.2.4.3 MFF&MFB Topology 

This topology has the following ABCD matrix: 
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Both feedforward and feedback coefficients id  and ia  are assumed to be non-

null. In this topology, every coefficient id , ia  and ib  defines STF, although only input 

feedforward coefficients ib  do not have influence on NTF. 

The initial set of coefficients is computed by setting ic  to 1, and at the same 

time, by specifying STF.  

3.2.4.4 State space scaling 

Loop-filter state-space defines dynamic range of every integrator outputs such 

that it has a strong influence on distortion. State-space scaling may helps to reduces 

distortion on modulator output. The best state-space is the one that minimizes 

distortion on modulator output. 

There is a scaling procedure reported in [Nor97], which is usual in DT-SDMs. 

The procedure is as follows: 

1) Do several transient simulations with an initial set of coefficients to realize 

of maximum stable input amplitude. 

2) Register maximum stable state-space. 

3) Scale ABCD matrix such that desired state-space is set. 
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This procedure guarantees a limited dynamic range of every integrator 

output, such that distortion is kept well below a certain level. For some applications it 

is interesting to find the best state-space in terms of distortion, not only one possible 

solution. In this case, it is necessary to define a scaling criterion.  

When a linear model for  1H s  and  2H s  is considered, state-space is 

different than that of a non-linear model, that is, considering more accurate models for 

integrators. But scaling procedure is defined on the linear description of the filters.   

In addition, the range of feasible values for the architecture coefficients is 

limited by technology. 

Above restrictions and problems are solved by doing 3) iteratively, inside of 

an optimization loop [Fru04]. There is an objective function and a set of restrictions that 

defines a feasible region. An evolutive algorithm [Gol89] is used to search the optimum 

solution inside the feasible region. The algorithm starts the search from a random point 

inside the feasible region and evaluates the objective function in all neighbor points. 

Next point corresponds to that of maximum increment of objective function. The 

algorithm ends when there is no increment in any direction inside the feasible region.  

The objective function is the third harmonic, measured on modulator output 

spectrum. The output spectrum is obtained by transient simulation of the modulator 

with a test tone at the input, and considering non-linear integrators. To reduce CPU 

time in the simulations the quantizer is removed. Although the behavior of the system 

is completely different when the quantizer is removed, the model is useful to evaluate 

distortion. 

The formulation of the optimization problem is the following. 
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3.2.5 Step 5: Linear and non-linear effects simulation 

The last step in system-level design is to characterize the system against non-

idealities, among which there are some linear and some other non-linear effects. The 

influence of these effects on stability and resolution has to be investigated. The output 

of this step is a set of predicted features for the modulator and another set of circuit-

blocks specifications. 

Most common simulations include: 

 Finite bandwidth of active elements 

 Finite linearity of D/A converters 

 Clock jitter 

 Process variations (Montecarlo analysis) 
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3.3 Development of a software tool for CT-SDMs 

design 

In order to evaluate the proposed design methodology, a software tool has 

been developed. This tool covers design steps 2 and 3 completely, and part of some 

other steps. 

This section describes some algorithms that help to implement the proposed 

methodology. Next section shows a Matlab graphic interface that includes these 

algorithms. 

3.3.1 Algorithm for  2H s  pole placement (Step 2) 

The algorithm for NTF zero placement is the same that is reported in 

[Ada97a]. There are some functions inside delsig toolbox [Sch03] that may be used to 

compute NTF zero locations. These functions uses table 3.1 to spread NTF zeros over 

the analog bandwidth. 

Table 3.1 Normalized NTF zero locations that minimize in-band quantization noise power 

n  Zero locations (normalized to 
2

s
f

OSR
) 

1 0 

2 0.57735 

3 0, 0.77460 

4 0.11559, 0.74156 

5 0, 0.28995, 0.82116 

6 0.23862, 0.66121, 0.93247 
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Once NTF zero locations are computed (in discrete-time domain),  2H s  pole 

frequencies may be obtained by applying (3.26), where _ kntf c  arte NTF zeros, and sf  

is the sampling frequency. 

  ln _k k sp ntf c f   (3.26) 

3.3.2 Algorithm for initial point search (Step 2) 

The geometric locus   of  2H s  zeros has been defined and parameterized 

even before the initial point search. Several analog filter prototypes have been studied 

as geometric locus, namely, butterworth, chebysheb type I and elliptic. Table 3.2 shows 

a comparative between them. Every design has been done with the proposed 

methodology from the following data: is a 4th order modulator, with a 2-bit quantizer, 

an OSR of 12 and 20% ELD without compensation. The best resolution with best phase 

margin is the modulator designed with elliptic characteristic function.  

Table 3.2 Comparative of several characteristic functions 

Characteristic function Butterworth Chebysheb I Elliptic 

Cut-off frequency (MHz) 16 17.5 16.5 

Band-pass ripple (dB) - 0.5 0.5 

Stop-band ripple (dB) - - 25 

Dc Gain (dB) 40 40 40 

Phase margin () 10.5 21.3 23.7 

 j
NTF e





  5.1 2.8 2.6 

SNR (dB) (-2dB tone at BW/2) 0 (Unstable) 59 61 

 

The characteristic function of an elliptic filter depends on three parameters, 

namely, cut-off frequency, bandpass ripple and stop-band ripple. These parameters 
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define how is the 0dB crossing of  olpH jw . In general terms it is desired to be a first-

order shape. 

The initial point search for the optimization process of next step uses one of 

the described characteristic functions. This search starts from a cut-off frequency equal 

to the analog bandwidth of the modulator, continue increasing cut-of frequency by a 

certain step, and ends when (3.5), (3.6) and (3.7) are fulfilled. If the cut-off frequency 

reaches half of the sampling frequency without success, the search is restarted with a 

lower step and inside the analog bandwidth, close to the end of the band. 

In practice, small shifts from conditions (3.5) and (3.6) are allowed. These 

shifts should be reduced if search step is reduced. 

 

STEP 2

Cut-off freq = BW

Conditions 

satisfied*?

Increase cut-

off freq.

¿Cut-off freq. is 

fs/2?

Cut-off freq = 

BW – small 

step

Conditions satisfied*?
Decrease cut-

off freq.
Limit reached?

Register found 

cut-off freq.
Error report

END

NO

NO

YES

NO

NO

YES

YES

YES

 

Figure 3.4 Step 2 Flow diagram. (*) Conditions are  (3.5), (3.6) and (3.7) 
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3.3.3 Algorithm for optimum search (Step 3) 

The optimization problem formulated in section 3.2.3 has been implemented 

as a simple search. The simplifications are: 

 The objective function is a figure of merit that is evaluated in each iteration 

step. This figure of merit has been defined as 

 jitFOM A   (3.27) 

 To force entering inside the feasible region,  2H s  have added a zero at 

half of the sampling rate. 

 This high frequency zero is shifted to lower frequencies in each iteration 

step, up to the end of analog bandwidth. 

 The search ends when the figure of merit remains unaffected or becomes 

smaller. 

A flowchart is shown in fig. 3.5  

3.3.4 Considered topologies (Step 4) 

Among the topologies described in design step 4, there has only been 

implemented the following: 

 MFF topology with 1 1b   and 0ib   for 2.. 1i n   

 MFB topology with 1 1b   and 0ib   for 2.. 1i n   

 MFB topology with 1 1nb    and i ib a  for 1..i n , and named MFB(bi) 

inside the tool 

 MFF&MFB topology with 1 1b   and 0ib   for 2.. 1i n  , and named 

MFBMFF inside the tool 

Every set of coefficients is computed setting 1ic   for each topology. This set 

is scaled afterwards in the optimization (against distortion) tool that is named Optool 

[Fru04]. 
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STEP 3

Restrictions 

satisfied*?
Mark instability

Add extra zero 

at fs/2

Evaluate 

objective 

function*

Increment?

Extra zero freq = BW?

Restrictions 

satisfied*?

Ther was 

instability?
Error report

Recover 

previous 

iteration 

modulator

Register found 

optimum

Mark instability

END

YES

NO

YES

NO

NO

YES

NO YES

NO

YES

Decreases 

extra zero freq

 

Figure 3.5 Step 3 Flow diagram. (*) Objective function is the figure of merit (3.27) and the restrictions are (3.13) 

3.3.5 Algorithm for state-space scaling (Step 4) 

The evolutive algorithm that solves (3.25) has been programmed in Matlab. 

The graphic interface is shown in fig. 3.6. 
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Figure 3.6 Screen capture of the graphic interface of OPTOOL: A tool for optimum state-space scaling [Fur04] 

3.4 Development of a Matlab tool: ANATEST 

All the algorithms described in section 3.3 have been implemented in Matlab. 

They may be run from a graphic interface that is shown in fig. 3.7. The purpose of the 

tool is non-commercial. It was targeted to evaluate, debug and improve the proposed 

design methodology. For this reason, there is more information in the graphic interface 

than what should be needed. 

Source code of the tool has been developed in modules, such that design steps 

and algorithms can be modified and/or replaced easily. There are available several 

characteristic functions for the design of  2H s .  

There are four sections or blocks in the graphic interface, as is shown in fig. 

3.7, namely, Menu, Control, Data Entry and Output Linear Analysis.  
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Figure 3.8 shows which elements of the tool have to be used in order to follow 

the proposed design methodology. Each one of the blocks of the graphic interface is 

shown in fig. from 3.9 to 3.15. 

D A T A   E N T R Y

C O N T R O L

M E N U

O U T P U T   O F   L I N E A R   A N A L Y S I S

 

Figure 3.7 Graphic interface of ANATEST 

Step 1

Simulation

Specs

Satisfied?

Report

no

‘Sim’ Button

Menu ‘Topology’

+ Optool

Step 2

Step 3

Step 4

Report

‘Design’ Button

 

Figure 3.8 Flowchart of design process and how to follow it with ANATEST 
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Figure 3.9 Data Entry block. 

 

Figure 3.10 Control block 
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Figure 3.11 Output linear analysis block: Bode diagrams. 

 

Figure 3.12 Output linear analysis block: pole-zero map of  
2

H s  
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Figure 3.13 Output linear analysis block: pole-zero map of  NTF z  

 

Figure 3.14 Menu block: Report menu 
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Figure 3.15 Menu block: general menu1 

There has been considered three main design modes inside the tool, namely, 

Automatic, Manual and Custom. Automatic mode performs design steps 2 and 3 and a 

transient simulation without user interaction. It uses an elliptic characteristic function 

to place  2H s  zeros. Manual mode is not available with this name. In fact, a variety of 

characteristic functions is available to place  2H s  zeros. It does not use any 

algorithm. In this mode, ‘Design’ button computes all transfer functions, evaluates   

and jitA , plots pole-zero maps and Bode diagrams, and fills the reports. Custom mode 

is dedicated to research. It can be used to test new characteristic functions or new 

algorithms. 

A detailed description of every mode and some examples may be found in 

[Ber04]. 

                                                 
1
 See section 3.3.4 
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Chapter     4 

Application example: a 4
th

 

order CT-SDM 

The application example has been developed in a collaboration project 

between Infineon Technologies Design center of Villach, Austria and Carlos III 

University, Madrid, Spain. The target of the project was to find a CT-SDM competitive 

in resolution and power with pipeline solutions for high-speed applications. At the 

time of writing this document, there are three generations of high-speed CT-SDM 

fabricated and tested within the scope of this project. The results obtained from first 

generation were good enough for the purpose of pipeline comparison. This generation 

has been disclosed in [Gia03a] and [Pat04b].  

The design of modulator has been split in two main blocks: system-level 

design (architecture, coefficients, some circuit-block specifications) that was done by 

Microelectronics group in Carlos III University, and circuit-level design (all actives 

stages at transistor level, layout) that was done at Infineon Technologies. The 

fabrication of the integrated circuit and subsequent test was also done at Infineon 

Technologies, although some measurements were done by Microelectronics group 

during summer stays at Infineon Technologies in Villach, Austria. 

System-level design has been the motivation of this dissertation, while circuit-

level design has been the motivation of the dissertation presented by Antonio Di 

Giandomenico for his PhD degree [Gia03b].  
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4.1 Design Specifications 

Table 4.1 shows the specifications. Analog bandwidth and OSR are not 

completely defined because the target was to look for a competitive solution. Anyhow, 

the maximum clock frequency is set to 400MHz. 

At the end, there were two designs in this generation. The former has the 

lowest bandwidth but the highest OSR [Pat04a], and the latter has the highest 

bandwidth and the lowest OSR [Gia03a], [Pat04b]. The former has higher SNR than 

that of the latter because of the higher OSR, but is more unstable because 400MHz 

clock is used and circuit blocks were at the limit oh their nominal conditions. 

The chapter is focused on the design with highest bandwidth.  

Table 4.1 Design specifications  

Analog interface 

Input analog bandwidth 12MHz ~ 15MHz 

Input Differential 

Digital Interface 

Output Serial 

Output/Input Levels 3.3 V CMOS 

Test Interface SPI 

OSR 10 ~ 16 

Sampling clock External 

ELD 1 sampling period 

Power supply 

Core 1.2V 

Digital Input/Outputs 3.3 V 

Power consumption <80mA 11bits effective 

Technology 

Process 0.13m digital CMOS  

Performance 

SNR >68dB  

SFDR 

60dBc for 0dBFS input 

66dBc for -6dBFS 

72dBc for -12dBFS 
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4.2 Technology 

The modulator has been implemented in 6-metal 0.13m CMOS process 

without any digital special option. All MOS transistors have regular threshold 

voltages.  

Capacitors are of type ‚Grid-cap‛ and the resistors are polisilicon resistors. 

4.3 Setting of modulator order, quantizer resolution 

and OSR 

These parameters have been selected after a wide set of discrete-time 

simulations. The simulations were targeted for feasibility analysis and do not 

guarantee hat the final CT-SDM has the same SNR. As it was discussed in previous 

chapters it is preferred to obtain a robust modulator rather than an exact continuous-

time counterpart. 

Several NTFs have been designed. Every NTF has been simulated (assuming 

STF=1) with a certain quantizer and a -4dB input tone, and after SNR has been 

computed. NTF design depends on the following parameters: 

 Modulator order , 

 Choice between spreading or not NTF zeros over analog bandwidth, in 

order to minimize in-band quantization noise power. 

 OSR, and 

 NTF infinity norm. Quantizer resolution defines a limit for this value that is 

of experimental nature. 

A subset of the results has been depicted in fig. 4.1 and 4.2. In first figure (fig. 

4.1), all considered combinations have been designed such that NTF infinity norm is 

optimized for the employed quantizer. This means that the modulator is optimal in 

resolution. In second figure (fig. 4.2), all the considered combinations have 1.5 NTF 
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infinity norm. Modulators with high-resolution quantizers have a certain margin for 

stability but they have sub-optimal resolution. 
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Figure 4.1 DT-SDMs classified by SNR. NTF infinity norm is optimized en each combination for the quantizer 

resolution. 
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Figure 4.2 DT-SDMs classified by SNR. NTF infinity norm is 1.5 in every combination. 
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Multibit modulators in fig. 4.2 have a very conservative design criterion, by 

setting NTF infinity norm to 1.5. In contrast, all modulators in fig. 4.1 has low stability 

margin and will need of accurate calibration techniques. 

Averaging NTF infinity norm values obtained form both methods would 

result in a more reasonable solution.  

Average SNR is shown in fig. 4.3 Cases A and B are 4th-order, 4-bit with low 

OSR values. These seem to be feasible solutions.  

The final selection is OSR=10 to enlarge analog bandwidth. 
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Figure 4.3 DT-SDMs classified by SNR. SNR is averaged between modulators designed with 1.5 and optimized NTF 

infinity norm. 

4.4 Continuous-time loop filter 

Continuous-time filter has been obtained by using a preliminary version of 

ANATEST tool with 75% ELD. 
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The result is shown in table 4.2. A screen capture of the tool is shown in fig. 

4.4 and transient simulations are shown in fig. 4.5 and 4.6. 

Table 4.2 Design summary 

Analog bandwidth 15MHz DC gain 31 dB 

Clock frequency 300MHz Phase margin   22.6 

Quantizer resolution 4 bits 0dB crossing 58.0 MHz 

Modulator order 4 jitA  1.18 

ELD 0.75-1.25 Ts Dynamic range 68 dB 

Loop-filter poles (MHz) 
5.1j 

12.9j 
Maximum SNR 66dB 

Loop-filter zeros (MHz) 

-3.816.3j 

-11.5 

-72.0 

 

 

 

Figure 4.4 Screen capture of a preliminary version of ANATES tool 
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Figure 4.5 Dynamic Range (from preliminary version of ANATEST) 

 

Figure 4.6 Power spectral density of the output signal when the CT-SDM is simulated with a -2dB tone at 2MHz 

(from preliminary version of ANATEST) 
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4.5 Architecture selection 

The designed continuous-time loop-filter corresponds to  2H s  in fig. 4.7. 

 1H s  depends on architecture selection and STF specification. 

Quantizer
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 

 
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H s

H s

 u t

 v t
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 
 
 

 

 
 
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Y s
H s

U s

Y s
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V s







 

 y n

 

Figure 4.7 CT-SDM Block diagram 

The following restrictions have been taken into account in order to select an 

adequate architecture: 

 The architecture should be included in the family described in chapter 0.  

 For multibit quantizers  y t  should be a voltage, such that A/D flash may 

be used. 

 Signal may be added in current mode to simplify the circuit. That means 

that ia  and fbe  coefficients are current steering D/As. 

 A resistor placed on op-amp vritual ground is a more linaer solution for v-i 

conversion than transconductances. 

 State-space defines distortion on active stages. 

 Input feedforward coefficients ib  modify state-space. Usually they help to 

decrease distortion, but then STF is modified and anti-aliasing function 

may be lost. 

 Distortion level and bandwidth of active stages depends on the allowed 

power consumption. 
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 Active stages added in front of the quantizer are the least restrictive in 

terms of noise and distortion. 

 Due to multibit quantizer, a dynamic element matching technique may be 

needed to linearize D/A 

 Digital circuitry of dynamic element matching logic may increases ELD. 

According to above restrictions, the following decisions have been taken: 

 The integrators are implemented with op-amps of 600MHZ gain-

bandwidth product.  

 The architecture should be MFF or MFB but not both in order to decreases 

power consumption.  

 A MFF architecture is preferred because it uses a lower number of D/A 

converters than MFB. 

 The feedforward coefficients are transconductances, such that state-space 

addition is placed in front of the quantizer. 

4A/D 
Flash

D/A

I-V

fbe

D/A

Clk

Entrada

DQ

Latch

Salida

d1

d2

d3

d4

 

Figure 4.8 Selected architecture. 

The selected architecture is shown in fig. 4.8. ABCD matrix is given by (4.1), 

where ic  corresponds to the gain of integrator i  divided by the sampling period, and 
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ig  corresponds to the ratio between local feedback resistor and input resistor of 

resonator i . 

 

1 1 1 1

2

3 2 3

4

1 2 3 4

0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0

g c c c

c

c g cABCD

c

d d d d fbe

  
 
 
  
 
 
 
 

 (4.1) 

4.6 Coefficients setting 

According to ABCD matirx in (4.1), there are 4 degrees of freedom in the 

system. Integrator gains have been selected as parameters, with unity initial value.  

The tool and algorithm described in section 3.2.4 were developed after the 

development of this design. Therefore, the procedure described in [Nor97] was 

applied. 

Results are shown in tables 4.3 and 4.4. 

 

Table 4.3 Initial coefficients set 

Coefficients 

1c  2c  3c  4c  

1 1 1 1 

1d  2d  3d  4d  

1.27 0.45 0.17 0.02 

1g  2g  fbe  

0.073 0.011 0.7 

Maximum stable amplitude (test tone at 2MHz) 

-2dB 
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Maximum state-space 

1x  2x  3x  4x  

0.18 0.72 2.37 44.74 

 

Table 4.4 Coefficient set after scaling 

Scaled Coefficients 

1c  2c  3c  4c  

1.82 0.36 0.26 0.10 

1d  2d  3d  4d  

0.7 0.7 1.0 1.4 

1g  2g  fbe  

0.125 0.394 0.7 

Maximum state-space (computed form ABCD matrix) 

1x  2x  3x  4x  

0.324 0.463 0.395 0.765 

Maximum state-space (simulated with a -2dB tone at 2MHz) 

1x  2x  3x  4x  

0.331 0.394 0.398 0.783 

 

4.7 Sensitivity to process variations. 

Analog phase margin is the selected indicator for stability. Partial derivatives 

of phase margin may indicate tolerance to process variations. Every coefficient has 

been evaluated with nominal value to simplify the expressions. Some derivatives are 

expanded in Taylor series around nominal value. The analysis is valid for around   

20%  coefficient variation. 

 2

1 1

1

11.64 61.20 92.08c c
c


     


 (4.2) 
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 4 3 2

2 2 2 2

2

187.66 122.41 11.44 63.68 38.23c c c c
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2

156.62

2.26 2.18 3.83fbe fbe fbe




    
 (4.12) 

Coefficient fbe  has special influence on stability. Figure 4.9 shows simulated 

SNR versus fbe  variation. Transient simulations were done with a -3dB tone at 

7.5MHz. 

Figure 4.10 shows simulated SNR versus ELD variation. Transient simulations 

were also done with a -3dB tone at 7.5MHz. 
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Figure 4.9 Simulated tolerance to fbe variation. 
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Figure 4.10 Simulated tolerance to ELD 

4.8 Sensitivity to D/A non-linearity 

The target of this analysis is to specify the linearity of the main D/A converter 

and decide if a dynamic element matching algorithm is needed. 

4.8.1 Behavioral model 

D/A converter model consists of 1M   unit elements, where M  is the number 

of levels of input code.  Each element has a weight w  composed of a unitary value 

with an additive error. The errors are generated by a random variable with a normal 

distribution  0,N  . D/A uses a selection vector that accomplishes the element 
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addressing for each one of the input codes. This selection vector may be generated in 

two ways: 

 Linear addressing. This means that D/A has not memory and therefore, it 

always uses the same element pattern to generate analog output for every 

possible input-code. The element selection logic is a conventional 

Thermometer Decoder. 

 Data Weighted Averaging. D/A generates analog output using the element 

addressing algorithm described in [Her03]. This technique implements a 

first order shaping over the D/A error. 

 A Simulink model is shown in fig. 4.11. 
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Figure 4.11 Behavioral model with non-linear D/A and dynamic element matching technique. 
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4.8.2 Simulation results 

Some of the results of transient simulations are shown in fig. 4.12. Matching 

error corresponds to the prediction of the circuit. 
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Figure 4.12 Averaged output spectra among 10 8192-points simulations. 

4.9 Sensitivity to clock jitter. 

The simplified model described in section 2.2.3 has been used to investigate 

sensitivity to jitter. The model has been simulated with a -3dB test tone at 7.5MHz. 

SNR decreases 3dB with rms standard deviations around 30ps, as is shown in fig.  4.13. 
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Figure 4.13 Simulated tolerance to clock jitter. 

4.10 Circuit blocks 

Circuit blocks are described in [Gia03a] and [Gia03b]. 



-93- 

Chapter     5 

Experimental results 

5.1 Chip architecture 

The CT-SDM designed as is described in previous chapter has been fabricated 

in 0.13m CMOS technology at Infineon Technologies. In order to help the testing of 

the chip, some programmable and/or auxiliary blocks have been added, as is shown in 

fig. 5.1. 

 

Figure 5.1 Testchip architecture [Gia03a] 

Testchip lay-out is shown in fig. 5.2 
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Figure 5.2 Lay-out 

5.2 Measurements 

The PCB reproduced in fig. has been used for experimental evaluation. 

 

Figure 5.3 PCB photo. 
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There was a logic analyzer to register modulator output. Measurement data 

were post-processed in Matlab. 

The fabricated CT-SDM is stable when power supply is connected. After that, 

tuning resonant frequencies of loop-filter is accomplished, and under these conditions 

the following measurements have been taken.  

The measurements included in this chapter are only a proof of concept for the 

proposed design methodology. 

5.2.1 Dynamic Range and SNR 

There are several measurements under different conditions in this section. 

Figure 5.4 shows the output spectrum for a -10dBFS test tone located at 2MHz. 

SNR is limited by quantization noise rather than thermal noise. SNDR is 57.2dB, and 

therefore ENOB is 9.2 bits. 

 

Figure 5.4 Output spectrum with single-tone input 
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Figure 5.5 Output spectrum with two-tones input 

 

 

Figure 5.6 Measured  Dynamic Range 

Figure 5.5 shows the output spectrum for a two-tones input. Intermodulation 

products are not symmetric. 

Figure 5.6 shows the measured dynamic range for a tone located at 7.5MHz. 

Maximum SNR is 62.5dB and maximum SNDR is 61dB. Dynamic range is 67.5dB. 

A summary of the measurements is shown in table 5.1. 
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Table 5.1 Summary 

Analog bandwidth 15MHz 

Sampling frequency 300MHz 

Dynamic Range 67.5dB 

Maximum SNR 62.5dB 

Maximum SNDR 61dB 

Power Consumption 

(analog / digital) 
65mW / 5mW 

Technology 1.5V 0.13m CMOS 

 

5.2.2 Sensitivity to coefficient variation 

Stability against coefficient fbe  variation has been measured as an example of 

sensitivity to coefficient variation. 

The input of the modulator has been grounded for the measurements. The 

modulator shows activity on its output due to thermal noise.  A stable behavior is 

considered when output spectrum shows noise shaping and does not show limit 

cycles. A theoretical dynamic range is also computed on idle-channel output spectrum, 

as a full-scale tone power divided by the in-band noise power present in the spectrum. 

Measurements are shown in fig. 5.7 on grey trace, together with simulated 

results, on black trace. Simulations models have input cancelled out and a random 

signal added in front of the quantizer. Random signal has a uniform distribution 

between 1/15 . Dynamic range values have been computed in the same way than that 

of measurements.  
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Figure 5.7 Dynamic range of stable modulators against fbe  variation 

5.2.3 Sensitivity to excess-loop delay 

The same kind of measurements than that of previous section has been 

performed to evaluate ELD impact on stability. 

Measurements have been taken on idle-channel output spectrum and plotted 

in fig. 5.8 on grey trace. Black trace corresponds to simulated values. 
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Figure 5.8 Dynamic range of stable modulators against excess-loop delay variation. 

It has to be pointed out that the modulator becomes unstable for lower ELD 

values than that of simulation predictions. Even so, the modulator remains stable and 

holds a certain dynamic range for a wide range of ELD values. 
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5.2.4 Sensitivity to clock jitter 

Phase noise has been added to clock by means of a transformer and a variable 

voltage source. The amount of phase noise introduced has been measured with a jitter 

analyzer and a spectrum analyzer. 

The measurements have been taken in idle-channel mode, such that the 

modulator is in the same conditions described in 2.2.2. Theoretical dynamic range has 

been computed from idle-channel output spectrum as was described in previous 

sections. 

The result is shown in fig. 5.9. Pink trace corresponds to the measurements. 

Blue trace corresponds to simulated values with the fast model reported in 2.2.3. Black 

trace corresponds to the computation of the theoretical maximum dynamic range of the 

output of a 300MHz sampler when a full-scale tone at 15MHz is at the input of the 

sampler. A modulator with the same input cannot be placed above this curve. The 

same modulator in idle-channel mode should be placed as closer as possible to this 

curve. 
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Figure 5.9 Clock Jitter sensitivity 
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It has to be pointed out that simulated and measured curves are very close, 

with differences between 1 and 2 dB, and are also very close to the theoretical limit. 

Dynamic range decreases 3dB for 30ps rms jitter. 
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