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1 Introduction

Many scholars have strived to model the dependence between financial time series. For instance,

several multivariate GARCH models have been used for stock returns and exchange rates, see

the Vector GARCH (VEC) models in Bollerslev et al. (1988) and Ding and Engle (2001), the

BEKK GARCH models in Engle and Kroner (1995) and Ding and Engle (2001), the Constant

Conditional Correlation (CCC) model by Bollerslev (1990), the Dynamic Conditional Correlation

(DCC) models in Engle (2002), Tse and Tsui (2002), Capiello et al. (2006) and Galeano and Auśın

(2010), the Orthogonal GARCH (OGARCH) models in Alexander and Chibumba and van der

Wiede (2002), and the Factor GARCH models in Engle et al. (1990), Vrontos et al. (2003) and

Lanne and Saikkonen (2007), among many others. However, these multivariate GARCH models

encounter several problems in high dimensional settings for several reasons. Firstly, traditional

dynamic correlations are not very useful in high dimensions. Secondly, the number of parameters

of these models usually explodes faster than the number of dimensions, leading to intractable

estimation problems. Thirdly, these models usually assume that standardized innovations have

either a multivariate Gaussian or a multivariate Student-t distribution. Therefore, they assume the

same parametric structure for each marginal distribution. Furthermore, the assumption that only

a few parameters account for extreme financial events can be very restrictive. Shocks often affect

to a group of assets in some circumstances rather than to each individual equally.

One possibility to avoid these issues is that of assuming a different univariate volatility model for

each individual return series and a copula model for their dependence structure, see, for instance,

Jondeau and Rockinger (2006), Patton (2006a) and Auśın and Lopes (2010), among others. Copulas

have become an essential tool for modelling non-standard multivariate distributions as they allow

for skewness and fat tails in the marginal distributions and a non-linear dependence structure.

Particularly, copulas have been frequently used in finance and econometrics, see, for instance,

Cherubini et al. (2011), Patton (2012) and Fan and Patton (2014). There are well known standard

copula families, such as the elliptical copulas and the Archimedean copulas. Nevertheless, when the

dimension is large, the use of these standard copula distributions is also problematic. For instance,

the Student-t copula is only able to fit well a few time series, see Demarta and McNeil (2005)

and Creal and Tsay (2015). Also, asymmetric dependence is often recorded when there is greater
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correlation during the bear market than during the bull market, see e.g. Erb et al. (1994), Longin

and Solnik (2001), Ang and Chen (2002) and Lucas et al. (2014).

Alternatively, one can make use of factor copula models which assumes that the dependence

structure of observable variables depends on a few latent variables. This is the approach taken

in Hull and White (2004), van der Voort (2007), Murray et al. (2013), Krupskii and Joe (2013),

Creal and Tsay (2015), Oh and Patton (2017a) and Oh and Patton (2017b), among others. In

particular, Hull and White (2004) proposed a model based on combining linearly the common

factor risk and idiosyncratic risk for the Gaussian copula for valuing tranches of collateralized

debt obligations and nth to default swaps. Andersen and Sidenius (2004) and Oh and Patton

(2017a) improve the model by considering a non-linear approach and the Student-t copula. On the

other hand, Krupskii and Joe (2013) proposed a general class of factor copulas where the copula

variables are conditionally independent given a few latent variables. The dependence structure

is determined by bivariate linking copulas between each copula variable and the latent factors.

Specifically, if bivariate Gaussian linking copulas are used, then the factor copula model can be

seen as a copula version of the multivariate Gaussian distribution with a correlation matrix that

has a factor structure. On the other hand, if bivariate non-Gaussian linking copulas are used, the

model is able to model tail asymmetry and tail dependence, that are important characteristics of

financial returns. Nevertheless, Krupskii and Joe (2013) consider the case in which the parameters

of the copula function are static.

The aim of this paper is to propose a parallel Bayesian procedure for handling a large set of

financial returns using factor copula models. For that, we use AR-GARCH processes to model the

individual returns. Then, the series of standardized innovations are converted into series of copula

observations, using inverse cumulative distribution functions, that are assumed to have a copula

distributions. Particularly, as in Creal and Tsay (2015), we consider several copula specifications

including Gaussian, Student-t and Hyperbolic Skew Student-t copulas. To handle a large num-

ber of returns, we assume a one factor structure that, first, drastically reduces the the number

of parameters as they scales linearly with the dimension, and, second, provides natural economic

interpretations. Additionally, we model the dynamic factor loadings as GAS processes, see Creal

et al. (2013) and Harvey (2013). The GAS process is an observation driven process in which the

dynamic behaviour depends on the complete density of the process rather than their first or sec-
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ond moments. Particularly, Koopman et al. (2016) find evidence of such assertion with several

simulations and empirical data analysis. Importantly, we assume that the dynamic factor loadings

equation depends on the copula density conditional on the factor rather than the unconditional

copula density. The main benefit of such approach is that it allows us to perform parallel inference

which heavily reduces the computational cost needed to obtain the conditional posterior distribu-

tions of model parameters. Finally, note that the proposed methodology allows for different tail

behaviour and asymmetric dependence among financial returns.

The rest of the paper is organized as follows. Section 2 introduces the model for univariate

marginal returns and specifies our proposal to model the dependence structure by different types

of factor copula models. We present our parallel Bayesian inference strategy in Section 3. Section

4 illustrates the performance of factor copula models with a simulated example. Then, we analyze

a large series of stock returns listed in S&P 500 in Section 5 with the proposed method. Finally,

conclusions are drawn in Section 6.

2 Factor copula models

In this section, we introduce our modeling strategy based on the spirit of Creal and Tsay (2015),

Oh and Patton (2017a) and Oh and Patton (2017b). For that, the first step is to assume a simple

AR-GARCH structure on the individual returns and then assume a one factor copula structure on

the transformed standardized innovations.

2.1 Model specification

Let rt = (r1t, . . . , rdt)
′, for t = 1, . . . , T , be a d-dimensional financial return time series. We assume

that each individual return, rit, for i = 1, . . . , d, follows a stationary AR (ki) − GARCH (pi, qi)

model given by:

rit = ci + φi1ri,t−1 + . . .+ φikiri,t−ki + ait

ait = σitηit

σ2
it = ωi + αi1a

2
i,t−1 + . . .+ αipia

2
i,t−pi + βi1σ

2
i,t−1 + . . .+ βiqiσ

2
i,t−qi
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where ci is a constant, φi1, . . . , φiki are autoregressive parameters verifying the usual stationarity

conditions, ait is a sequence of innovations or shocks, σ2
it is the volatility of the return rit, ηit is

a sequence of independent standardized innovations with continuous distribution function Fηi , ωi

is a constant, and αi1, . . . , αipi , βi1, . . . , βiqi are GARCH parameters verifying the usual station-

arity conditions. We note that the previous AR-GARCH model can be replaced with any other

appropriate specification. For instance, the autoregressive process may be reduced to a simple

constant or replaced with an ARMA process, while the GARCH specification can be replaced with

an EGARCH or a GJR-GARCH process.

Once models have been specified for all the return series, we can make use of copulas to model

their dependence structure. For that, it is well known that uit = Fηi (ηit), for each i = 1, . . . , d, is a

sequence of independent random variables with a uniform U (0, 1) distribution and the dependence

structure among the variables in the vector ut = (u1t, . . . , udt)
′ is given by an unknown copula

function. A standard approach is to assume that ut has either a Gaussian copula or a Student-t

copula distribution. Nevertheless, as mentioned in the introduction, it is questionable whether such

standard copula functions are appropriate for ut when d is large enough. One plausible alterna-

tive is to assume, as in Krupskii and Joe (2013), a copula factor model in which u1t, . . . , udt are

conditionally independent given a small set of latent variables. Nevertheless, we consider instead

an approach in the spirit of Creal and Tsay (2015), Oh and Patton (2017a) and Oh and Patton

(2017b). The idea is to focus on a family of copula models including, among others, the Gaus-

sian, Student-t and generalized hyperbolic skew Student-t copulas, which depend on a conditional

correlation matrix parameter, Rt, characterized by a factor structure, somehow coming back to

standard factor models widely analyzed in the literature. As in Creal and Tsay (2015), we model

the dynamic factor loadings as GAS processes, but we assume that the dynamic factor loadings

equation depends on the copula density conditional on the factor rather than the unconditional

copula density that allows us to perform parallel inference which heavily reduces the computational

cost needed to obtain the conditional posterior distributions of model parameters.

In the next subsections, we describe in detail our proposed dynamic Gaussian, Student-t and

generalized hyperbolic skew Student-t one factor copula models and present some of their advan-

tages over the existing alternatives.
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2.2 Dynamic Gaussian one factor copula model

In this subsection, we assume that ut follows a Gaussian copula with correlation matrix param-

eter Rt and joint distribution function C(u1t, . . . , udt | Rt) = Φd

(
Φ−1(u1t), . . . ,Φ

−1(udt) | Rt
)
,

where Φ(·) denotes the univariate standard Gaussian cdf and Φd(· | Rt) denotes the multivariate

Gaussian cdf with correlation matrix Rt. Therefore, the vector of inverse cdf transformations,

xt = (x1t, . . . , xdt)
′, where xit = Φ−1 (uit), for each i = 1, . . . , d, follows a multivariate Gaussian

distribution with zero mean and correlation matrix Rt. We assume a dynamic Gaussian one factor

copula model for xt given by:

xt = ρtzt +Dtεt, (1)

where zt, the latent factor, is a sequence of independent and identically standard Gaussian dis-

tributed random variables, ρt = (ρ1t, . . . , ρdt)
′, is the vector of factor loadings, Dt = diag

(√
1− ρ2

t

)
is a diagonal matrix whose elements are

√
1− ρ2

it, for i = 1, . . . , d, and εt = (ε1t, . . . , εdt)
′, the noise,

is a sequence of independent and identically standard multivariate Gaussian random variables. Con-

sequently, the components of the multivariate random vector xt = (x1t, . . . , xdt)
′ are conditionally

independent given the latent factor zt and the factor loading vector ρt, whose elements, ρit, rep-

resent the correlation between xit and zt, for t = 1, . . . , T . Therefore, the conditional correlation

matrix Rt = ρtρ
′
t + DtD

′
t = Id + ρtρ

′
t − diag

(
ρ2
t

)
, where Id is the d-dimensional unit diagonal

matrix and diag
(
ρ2
t

)
stands for the diagonal matrix with elements ρ2

1t, . . . , ρ
2
dt. Observe that for

the static case, the described model coincides with the one factor Gaussian copula model proposed

in Krupskii and Joe (2013). In a dynamic framework, we allow the components of the correlation

vector ρt = (ρ1t, . . . , ρdt)
′ to vary across time as follows,

ρit =
1− exp (−fit)
1 + exp (−fit)

fit = (1− b) fic + asi,t−1 + bfi,t−1

sit =
∂ log p (ut|zt, ft,Ft, θ)

∂fit

(2)

for i = 1, . . . , d, where fit is an observation driven process which fluctuates around a constant

value fic, a and b are two parameters that are assumed to be constant across assets, where |b| < 1

to guarantee stationarity, and p (ut|zt, ft,Ft, θ) is the conditional probability density function of
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ut given the latent variable, zt, the random vector ft = (f1t, . . . , fdt)
′, the set of all information

available through time t, denoted by Ft = {U t−1, F t−1}, where U t−1 = {u1, . . . , ut−1} and F t−1 =

{f0, . . . , ft−1} , and the vector of static parameters, θ = (a, b, f1c, . . . , fdc)
′. Note that ρit is assumed

to follow a modified logistic transformation, used also in Dias and Embrechts (2010), Patton (2006b)

and Creal et al. (2013), to guarantee that ρit ∈ (−1, 1). Also observe that fi,t depends linearly on

fi,t−1 and the adjustment term sit. Clearly, this model reduces to a Gaussian time invariant one

factor copula model, see Murray et al. (2013) and Oh and Patton (2017a), when a = b = 0.

The dynamic equation (2) is inspired by the GAS model, see Creal et al. (2013) and Harvey

(2013), in which the score sit depends on the complete density of ut rather than in its first or second

moment. Blasques et al. (2015) proved that the use of the score sit leads to minimum Kullback-

Leibler divergence between the true conditional density and the model-implied conditional density,

while Koopman et al. (2016) showed some empirical examples where the GAS model outperforms

other observation driven type models. In addition, we consider here the latent variable zt as a

source of exogenous information and derive the observation density conditional on this source. The

main reason for such a choice is to reduce dramatically the computation burden as the score sit has

a closed form expression that allow us to parallelize the derivation of the d processes s1t, . . . , sdt.

Specifically, as showed in Appendix A.1, sit is given by,

sit =
1

2
xitzt +

1

2
ρit − ρit

x2
it + z2

t − 2ρitxitzt

2
(
1− ρ2

it

) , (3)

for i = 1, . . . , d. Therefore, sit depends on the values of the pseudo observable xit, the latent

variable zt, and their mutual correlation ρit. The model is also attractive because, as will be shown

in the next subsections, sit has a similar structure to the given in (3) for the dynamic Student-t

and generalized hyperbolic skew Student-t one factor copula models.

The main difference of our proposed model with respect to the the dynamic GAS model defined

in Oh and Patton (2017b) is that we define the score in Equation (2) as the density derivative

conditioning on the latent variable, zt, while in Oh and Patton (2017b), the definition of sit is

not conditioned on the latent factor. As mentioned before, our proposed specification allows us

to obtain the expressions for sit in parallel for i = 1, . . . , d, reducing the computational burden.

This contrasts with Oh and Patton (2017b) where the expressions for sit are obtained by numerical

7



differentiation of the joint copula density, which is much more computationally expensive.

2.3 Dynamic Student-t one factor copula model

Next, we extend the dynamic Gaussian one factor copula model to the Student copula case. The

standard Student-t distribution depends on the degrees of freedom parameter ν, that controls the

generation of extreme events and consequently, the Student-t copula allows for tail dependencies

which are not possible with the Gaussian copula assumption. Here, we impose that the joint distri-

bution function of ut is given by C(u1t, . . . , udt | Rt, ν) = FMSt

(
F−1
St (u1t | ν), . . . , F−1

St (u1t | ν) | Rt, ν
)
,

where FSt(· | ν) denotes the univariate standard Student-t cdf with degrees of freedom ν and

FMSt(· | Rt, ν) denotes the multivariate Student-t cdf with Rt correlation matrix and degrees of free-

dom ν. In this case, the inverse cdf transformations, xt = (x1t, . . . , xdt)
′, where xit = F−1

St (uit | ν),

for each i = 1, . . . , d, follows a multivariate Student-t distribution with zero mean, correlation ma-

trix Rt and degrees of freedom ν. Then, we assume a dynamic Student-t one factor copula model

for xt given by:

xt =
√
ζt (ρtzt +Dtεt)

where zt, εt and ρt, for t = 1, . . . , T , are as in the Gaussian case, and ζt is a sequence of independent

and identically inverse gamma distributed random variables with parameters
(
ν
2 ,

ν
2

)
, denoted by

IG
(
ν
2 ,

ν
2

)
, and independent of zt, εt and ρt. Accordingly, the components of the multivariate

random vector xt = (x1t, . . . , xdt)
′ are conditionally independent given zt, ρt and ζt.

The correlation vector ρt = (ρ1t, . . . , ρdt)
′ is allowed to vary across time as in (2), but replacing

the value of the score sit with,

sit =
∂ log p (ut|zt, ζt, ft,Ft, θ)

∂fit
,

where p (ut|zt, ζt, ft,Ft, θ) is the conditional probability density function of ut given zt, ζt, ft, Ft,

and the parameters of the copula function, θ = (ν, a, b, f1c, . . . , fdc)
′. Again, this model setting is

influenced by the developments in Creal and Tsay (2015) for dynamic stochastic copulas. However,

one advantage of our proposal is that the observation driven process remains similar. As shown in
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Appendix A.2, if we let ẋit = xit√
ζt

, the score function is,

sit =
∂ log p(ut|zt, ζt, ft,Ft, θ)

∂fit
=

1

2
ẋitzt +

1

2
ρit − ρit

ẋ2
it + z2

t − 2ρitẋitzt

2
(
1− ρ2

it

) (4)

which is similar to the score function in (3). Consequently, we enjoy here the same computational

advantages described in the Gaussian case. On the other hand, this proposed model is rather

different from the Student factor copula model in Oh and Patton (2017a) and Oh and Patton

(2017b) since these authors consider different symmetric and asymmetric Student-t distributions

for zt and εt. Their models do not lead to an easy attainable conditional cdf for xt and therefore,

it is computationally expensive to derive the score sit, as mentioned before.

2.4 Dynamic generalized hyperbolic skew Student-t one factor copula model

Next, as in Creal and Tsay (2015), we use the generalized hyperbolic skew Student-t (GSt) distri-

bution proposed by Aas and Haff (2006) to extend the Gaussian and Student-t models. The GSt

distribution depends on two parameters, ν and γ, that controls the generation of extremes events

and skewness, respectively. Particularly, the GSt distribution reduces to the Student-t distribution

when γ = 0 and reduces to the Gaussian distribution when γ = 0 and ν → ∞. Additionally, the

multivariate generalized hyperbolic skew Student-t (MGSt) also depends on a correlation matrix,

Rt.

Here, we assume that the joint distribution function of ut is given by C(u1t, . . . , udt | Rt, ν, γ) =

FMGSt

(
F−1
GSt(u1t | ν, γ), . . . , F−1

GSt(u1t | ν, γ) | Rt, ν
)
, where FGSt(· | ν, γ) denotes the univariate

standard GSt cdf with degrees of freedom ν and skewness parameter γ, and FMGSt(· | Rt, ν, γ)

denotes the multivariate GSt cdf with parameters ν and γ and correlation matrix Rt. Here, the

vector of inverse cdf transformations, xt = (x1t, . . . , xdt)
′, where xit = F−1

GSt (uit | ν, γ), for each

i = 1, . . . , d, follows a MGSt with zero mean vector, correlation matrix Rt, degrees of freedom ν

and skewness parameter γ. Then, we assume a dynamic generalized hyperbolic skew Student-t one

factor copula model for xt given by:

xt = γζt +
√
ζt (ρtzt +Dtεt) (5)
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for i = 1, . . . , d, where ζt, zt, εt and ρt, for t = 1, . . . , T , are as in the Gaussian and Student-t cases.

Consequently, x1t, . . . , xdt are conditionally independent given zt, ρt and ζt.

As in the Student-t case, the correlation vector ρt = (ρ1t, . . . , ρdt)
′ is allowed to vary across time

as in (2), with sit as in (4), where the parameters of the copula function are θ = (ν, γ, a, b, f1c, . . . , fdc)
′.

As mentioned before, the score function shown in the Appendix A.3 is also similar to the previous

models,

sit =
∂ log p(ut|zt, ζt, ft,Ft, θ)

∂fit
=

1

2
x̃itzt +

1

2
ρit − ρit

x̃2
it + z2

t − 2ρitx̃itzt

2
(
1− ρ2

it

) (6)

where x̃it = xit−γζt√
ζt

. Observe that again the conditional distribution does not change which makes

easier to generate the dynamic process and reduces the computation burden.

Demarta and McNeil (2005) noted that the marginal univariate GSt only has finite variance

when ν > 4 in comparison with the Student-t distribution which requires ν > 2. They also differ

in the tail decay. While the Student-t density has a tail decay as x−ν−1, the GSt density has a

heaviest tail decay as x−ν/2−1 and the lightest tail as x−ν/2−1 exp (−2|γx|) (for γ 6= 0). We obtain

the tail dependence of the dynamic MGSt one factor copula model using numerical approximation

of the joint quantile exceedance probability, see Appendix A.4. Finally, Demarta and McNeil

(2005) suggest several extensions for more complex copula functions. For example, when ζt follows

a generalized inverse Gaussian distribution, xit is generalized hyperbolic distributed. Also, one

could propose different distributions of the type xit = γgh (ζt) +
√
ζt

(
ρitzt +

√
1− ρ2

itεit

)
, where

h (ζt) is a function of ζt. However, the properties of xit would be in general intractable.

2.5 Dynamic group generalized hyperbolic skew Student-t one factor copulas

One potential drawback of the previous models for high dimensional returns is that few parameters

control all of the co-movements which can be very restrictive. In order to relax this assumption,

our strategy is to split the d assets into G groups in such a way that returns in the same group

have similar characteristics.

Therefore, we write ut = (u′1t, . . . , u
′
Gt)
′, where ugt =

(
u1gt, . . . , unggt

)′
, for g = 1, . . . , G and∑G

g=1 ng = d. In the most general case of the MGSt copula, we define xigt = F−1
GSt (uigt|νg, γg) for
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each asset i, for i = 1, . . . , ng, belonging to group g, where g = 1, . . . , G, such that,

xgt = γgζgt +
√
ζgt (ρgtzt +Dgtεgt) (7)

where xgt =
(
x1gt, . . . , xnggt

)′
is the vector of inverse transformations in group g, ρgt =

(
ρ1gt, . . . , ρnggt

)′
is the vector of factor loadings in group g, and Dgt = diag

(√
1− ρ2

gt

)
and εgt =

(
ε1gt, . . . , εnggt

)′
are, respectively, the corresponding diagonal matrix and noise vector in group g.

Observe that the set of mixing variables ζt = (ζ1t, . . . , ζGt)
′ create G multivariate MGSt distri-

butions with degrees of freedom parameters ν1, . . . , νG and skewness parameters γ1, . . . , γG, respec-

tively. Then, the dynamic of the i-th the correlation in group g is given by:

ρigt =
1− exp (−figt)
1 + exp (−figt)

figt = (1− bg) figc + agsi,g,t−1 + bgfi,g,t−1

(8)

where the set of parameters a = (a1, . . . , aG)′ and b = (b1, . . . , bG)′ adjust the dynamic behaviour

of the correlations in each group g. Here, the i-th score in group g is clearly given by:

sigt =
1

2
x̃igtzt +

1

2
ρigt − ρigt

x̃2
igt + z2

t − 2ρigtx̃igtzt

2
(

1− ρ2
igt

)
where x̃igt =

xigt−γgζgt√
ζgt

. Note that when G = 1, the model reduces to the copula specification

proposed in the previous section.

The model becomes extremely flexible by assuming that each series has its own dynamic group.

Indeed, the model is able to capture the different behaviour in the upper and lower tails for those

assets in the same group. However, note that the assets in different groups show no tail dependence

due to the independence assumption among the components of ζt. Also, the pseudo observable

xigt = F−1
GSt (uigt|νg, γg) requires an intensive computation as long as νg and γg receive new trial

values. A parallel Bayesian algorithm is implemented in the next section to speed up calculations.
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3 Bayesian estimation

In this section, we present our parallel Bayesian estimation strategy to obtain the posterior distri-

bution of the model parameters of the dynamic one-factor copula models presented in 2.

3.1 Prior distributions

Next, we define a prior distribution for both the marginal and copula parameters. In all cases, we

use proper but uninformative prior assumptions.

For the marginal parameters, ci, φi1, . . . , φiki , ωi, αi1, . . . , αipi βi1, . . . , βiqi , we assume uniform

prior distributions restricted to the stationary region. Also, we need to define prior distributions

for the parameters describing the innovation distributions, Fηi . For example, in the empirical data

example, we assume that the standardized innovations, ηit, follow univariate GSt distributions,

defined in Section 2.4, with degrees of freedom νiη and skewness parameter γiη, for i = 1, . . . , d.

Then, as Creal and Tsay (2015) suggest, we assume prior shifted Gamma distributions for the

degrees of freedom parameters, such that νiη = 4 + ν̃iη, where ν̃iη ∼ G(2, 0.5), such that νiη > 4, to

ensure a finite variance of the GSt distribution. Also, we assume a priori that γiη ∼ N(0, 1).

For the copula parameters, we define a prior for the most general proposed model, the group

MGSt factor copula, which contains all other models as particular cases. First, we assume uni-

form priors for all the elements in fc = {figc : g = 1, . . . , G; i = 1, . . . , ng}. More precisely,

we assume a priori that figc ∼ U (−5, 5), so that the value of the mean correlations ranges be-

tween (−0.9866, 0.9866). Additionally, f11c is restricted to be positive to guarantee model iden-

tifiability. Second, as usual in GAS models, we assume uniform priors for all the elements in

a = {ag : g = 1, . . . , G} and b = {bg : g = 1, . . . , G}. More precisely, we assume a pri-

ori that ag ∼ U (−0.5, 0.5) and bg ∼ U (0, 1). Third, we assume a prior shifted Gamma dis-

tributions for all the degrees of freedom parameters in ν = {νg : g = 1, . . . , G}, such that

νg = 4 + ν̃g, where ν̃g ∼ G (2, 2.5), in order that the variance of the pseudo observations, xit,

is finite. Fourth, we assume a priori a standard Gaussian distribution for all the skewness param-

eters in γ = {γg : g = 1, . . . , G}, i.e., a priori γg ∼ N(0, 1), for g = 1, . . . , G. In the particular

case of a Student-t copula, we assume that νg follows a priori a shifted Gamma distribution with

νg = 2 + ν̃g, such that the variance of xit is finite and set the skewness parameter γg = 0.
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Finally, the latent states z = {zt : t = 1, . . . , T} are treated as nuisance independent parameters

following independent N (0, 1) distributions, as considered in the model assumptions. Additionally,

the elements of ζ = {ζgt : g = 1, . . . , G; t = 1, . . . , T} are nested as nuisance parameters for the

realization of the pseudo observations xit and depend on the respective elements of ν.

3.2 The posterior inference

Given a sample of return data, r = {rt : t = 1, . . . , T}, and the priors defined before, we are

interested in the posterior of the model parameters given by the set of marginal parameters,

ϑi = (ci, φi1, . . . , φiki , ωi, αi1, . . . , αipi , βi1, . . . , βiqi , νiη, γiη)
′, and the set of factor copula parame-

ters, ϑc = (z, ζ, fc, a, b, ν, γ)′. The likelihood is given by,

l (ϑ1, . . . , ϑd, ϑc | r) =
T∏
t=1

c(Fη1(η1t | ϑ1), . . . , Fηd(ηdt | ϑd) | ϑc)
d∏
i=1

fηi(ηit | ϑi),

where c (· | ϑc) denotes the copula density function with parameters ϑc and f·ηi(| ϑi) is the marginal

density function of the standardized innovations, ηit. Given this decomposition of the likeli-

hood, we follow the standard two-stage estimation procedure for copulas where, in a first step,

we approximate the posterior distributions of the marginal parameters, ϑi, independently for each

i = 1, . . . , d, and, in a second step, we use the posterior means of the marginal parameters, ϑ̄i, for

i = 1, . . . , d, to obtain an approximate sample of the copula observations, u = {ut : t = 1, . . . , T},

where uit = Fηi
(
ηit | ϑ̄i

)
, for t = 1, . . . , T and for each i = 1, . . . , d. Alternatively, a fully Bayesian

approach where the joint posterior distribution is approximated in a single step would be done

but the two-step approach simplifies enormously the computational burden in the high dimensional

setting that we are considering.

Now, considering the G different asset groups, we assume that the matrix sample of copula ob-

servations, u = {ut : t = 1, . . . , T}, is such that ut = (u′1t, . . . , u
′
Gt)
′, where ugt =

(
u1gt, . . . , unggt

)′
,

for g = 1, . . . , G. Then, the likelihood of the MGSt copula is given by:

l (ϑc | u) =
T∏
t=1

p (ut|zt, ζt, ft,Ft, θ)

where ft = (f1t, . . . , fGt)
′ with fgt =

(
f1gt, . . . , fnggt

)
, for g = 1, . . . , G. Recall that Ft =
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{U t−1, F t−1}, where U t−1 = {u1, . . . , ut−1} and F t−1 = {f0, . . . , ft−1}, and θ = (fc, a, b, ν, γ)′

is the vector of static parameters. Therefore, given the conditional density (10), the likelihood is

given by:

p (u|z, ζ, fc, a, b, ν, γ) =
T∏
t=1

G∏
g=1

ng∏
i=1

φ

(
F−1
GSt(uigt|ν)−γgζt√

ζgt
| ρigtzt,

√
1− ρ2

igt

)
fGSt

(
F−1
GSt (uigt | νg, γg) | νg, γg

)√
ζgt

.

As a result, the joint posterior density of the group dynamic MGSt factor copula parameters can

be written as follows:

p (z, ζ, fc, a, b, ν, γ|u) ∝
T∏
t=1

G∏
g=1

ng∏
i=1

φ(x̃igt|ρigtzt,
√

1− ρ2
igt)

fGSt (xigt|νg, γg)
√
ζgt

T∏
t=1

φ(zt|0, 1)

x
T∏
t=1

G∏
g=1

IG
(
ζgt|

νg
2
,
νg
2

) G∏
g=1

G (νg − 4|2, 2.5)
G∏
g=1

φ (γg|0, 1) ,

(9)

where x̃igt =
xigt−γgζgt√

ζgt
and xigt = F−1

GSt (uit | νg, γg).

3.3 MCMC algorithm

Here, a parallel algorithm is exploited to obtain a posterior sample of the model parameters. Due

to the fact that the conditional posterior of zt only depends on the pseudo observations at time t,

we can make parallel inference for each latent variable at time t = 1, . . . , T . Also, the conditional

posterior of ag and bg, νg, γg, and ζgt can be sampled in parallel for the groups g = 1, . . . , G, where G

is usually a moderate number. Finally, since conditional on zt, each component of xt is independent,

we can create a parallel estimation procedure for figc for i = 1, . . . , ng and g = 1, . . . , G. Thus, the

algorithm is scalable in both high dimensional and long period time series returns.

1. Set initial values for ϑ(0) =
(
z(0), f

(0)
c , a(0), b(0), ν(0), γ(0), ζ(0)

)
.

2. For iteration j = 1, . . . , N , obtain ρ
(j)
igt for i = 1, . . . , ng, g = 1, . . . , G and t = 1, . . . , T :

(a) Parallel for t = 1, . . . , T , sample z
(j)
t ∼ p

(
zt|u, a(j−1), b(j−1), f

(j−1)
c , ν(j−1), γ(j−1), ζ(j−1)

)
.
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(b) Parallel for i = 1, . . . , ng and g = 1, . . . , G, sample

f
(j)
igc ∼ p

(
figc|u, a(j−1), b(j−1), z(j), ν(j−1), γ(j−1), ζ(j−1)

)
.

(c) Parallel for g = 1, . . . , G, sample a
(j)
g ∼ p

(
ag|u, b(j−1), f

(j)
c , z(j), ν(j−1), γ(j−1), ζ(j−1)

)
.

(d) Parallel for g = 1, . . . , G, sample b
(j)
g ∼ p

(
bg|u, a(j), f

(j)
c , z(j), ν(j−1), γ(j−1), ζ(j−1)

)
.

(e) Parallel for g = 1, . . . , G, sample ν
(j)
g ∼ p

(
νg|u, a(j), b(j), f

(j)
c , z(j), γ(j−1), ζ(j−1)

)
.

(f) Parallel for g = 1, . . . , G, sample γ
(j)
g ∼ p

(
γg|u, a(j), b(j), f

(j)
c , z(j), ν(j), ζ(j−1)

)
.

(g) Parallel for g = 1, . . . , G and t = 1, . . . , T , sample ζ
(j)
gt ∼ p

(
ζg|u, a(j), b(j), f

(j)
c , z(j), ν(j), γ(j)

)
.

The conditional posteriors distributions for all the parameters are given in the Appendix B. In the

algorithm, we apply the Gibbs sampler for step 2a and the Adaptive Random Walk Metropolis

Hasting (MH) (see Roberts and Rosenthal (2009)) for steps 2b to 2f . As suggested by Creal and

Tsay (2015), we use the independent MH in step 2g to generate new values of log
(
ζ

(j)
gt

)
from a

Student-t distribution with 4 degrees of freedom with mean equal to the mode and scale equal to

the inverse Hessian at the mode. Logarithms guarantee that ζ
(j)
gt is positive. Thus, for each value

time period t, we accept ζ
(j)
gt with probability:

min

1,
p
(
ζ

(j)
g |u, a(j), b(j), f

(j)
c , z(j), ν(j), γ(j)

)
q
(
ζ

(j−1)
gt

)
p
(
ζ

(j−1)
g |u, a(j), b(j), f

(j)
c , z(j), ν(j), γ(j)

)
q
(
ζ

(j)
gt

)
 .

Observe that this Bayesian algorithm reduces to steps 2a to 2d for the dynamic Gaussian one factor

copula. Also, step 2f is omitted for the dynamic Student one factor copula since γ = 0. The codes

and implementation of the algorithm are available at https://github.com/hoanguc3m/FactorCopula.

4 Data simulation

In this section, we illustrate the proposed Bayesian methodology using simulated data from the

MGSt one factor copula. We generate a random sample of d = 100 time series with G = 10 groups

of the same size and a time length T = 1000 from (7). The value of the parameters a, b, ν, and γ are

randomized. More precisely, a is generated from a U (0.05, 0.10) distribution, b is generated from
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a U (0.95, 0.985), ν is generated from a U (6, 18) and γ is generated from a U (−1, 0) distribution.

The expected correlation between pseudo observation xt and the latent factor zt are sampled from

a U (0.1, 0.9) distribution, which results in values for figc ranging in the interval (0.2, 3).

We estimate the set of true parameters, ϑ, using 20.000 MCMC iterations where the first 10.000

are discarded as burn-in iterations. The algorithm seems to perform adequately and convergence

is fast. Practically, all the posteriors reached convergence after 1000 iterations. We retain every

10-th iterations to reduce autocorrelation. The algorithm takes around 25 minutes, 70 minutes and

90 minutes for the Gaussian, Student and MGSt one factor copula model, respectively, on an Intel

Core i7-4770 processor (4 cores - 8 threads - 3.4GHz).

Figure 1 shows the box plots of the posterior sample from the MCMC together with the true

values of the model parameters. Observe that the true values of ag, bg, νg and γg lie between the

first and the third quantile of the credible intervals in 50% of the cases and never reach out of

their whiskers. The posterior distributions of bg are skewed to the left with heavier tails. Also the

posterior samples show larger variances for higher values of the degree of freedom parameters νg.

We have observed that there is negative correlation between MCMC samples of νg and γg which

means that if the posterior mean of νg underestimates its true value, the value of γg will overes-

timate its true value. However, the effect is weakly observed. Figure 2 illustrates the comparison

between the posterior mean of figc versus its true value, for i = 1, . . . , 10 and g = 1 . . . , 10, and

zt versus its true value, for t = 1, . . . , 1000. We obtain quite accurate results. Observe that the

latent variable zt is generated from a standard Gaussian distribution and, for each t, we obtain a

symmetric posterior distribution rather concentrated around the mean. The posterior variance of

zt also reduces when the dimension increases. In general, most of the parameters which govern the

dynamic correlation in each group are correctly estimated, see the Online Appendix in the web site

https://github.com/hoanguc3m/FactorCopula for additional results.

5 Empirical data

In this section, we illustrate our approach with a series of d = 150 stock returns of companies

listed in the S&P 500 index, from 01/01/2010 to 31/12/2015. The daily data are taken from Yahoo

finance and contain T = 1509 days observed during the considered six-year period. Table 1 shows
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Table 1: Summary statistics for cross-sectional daily returns of 150 firms listed in S&P 500

Minimum 1st Qu. Median Mean 3rd Qu. Maximum

Mean -0.083 0.035 0.055 0.054 0.072 0.146
Minimum -19.970 -13.020 -10.080 -10.620 -7.962 -4.528

1. Quartile -1.599 -0.957 -0.784 -0.820 -0.645 -0.430
Median -0.082 0.035 0.062 0.060 0.084 0.160

3. Quartile 0.515 0.811 0.923 0.951 1.070 1.778
Maximum 3.961 7.144 9.510 9.743 11.530 18.470
Skewness -1.552 -0.302 -0.137 -0.155 0.053 0.552
Kurtosis 1.444 3.014 4.170 4.944 5.670 20.540

Summary statistics for cross-sectional daily returns of 150 firms listed in S&P 500 index.

The distribution of the common statistics are shown by rows label using quantiles and mean

the summary statistics for the daily stock returns. The mean of daily earnings over the 150 stocks

is 0.054%. The most extreme individual events are a worst one day crash at −19.97% and a best

one day gain at 18.47%. The average skewness is −0.155, which reflects a slight asymmetry of the

observed returns, and the average excess kurtosis is 4.944, which shows the extreme heavy tails of

the return distributions.

As described in Section 3, we use a two-stage procedure to model the dependence structure of

the stock returns. In Subsection 5.1, we fit a AR (1)−GARCH (1, 1) model for the conditional mean

and variance of marginal returns. Then, we take out the standardized innovation and transform

them into the copula observations using the corresponding cdf. In Subsection 5.2, we estimate the

one factor copula model and illustrate some empirical findings.

5.1 Marginal distributions

For simplicity, we fit an AR (1) −GARCH (1, 1) model for each marginal return series. Thus, we

assume that:

rit = ci + φi1ri,t−1 + ait

ait = σitηit

σ2
it = ωi + αi1a

2
i,t−1 + βi1σ

2
i,t−1

where the standardized innovations, ηit, are assumed to follow univariate GSt distributions, intro-

duced in Section 2.4, with degrees of freedom νiη and skewness parameter γiη, for i = 1, . . . , d.
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Then,

ηit =
(
γiξit +

√
ξitιit − µiη

)
/σiη

where ιit ∼iid N(0, 1), ξit ∼iid IG
(νiη

2 ,
νiη
2

)
. As ηit is a standarized GSt, the mean µiη and the

standard deviation σiη are adapted for ηit to have zero mean and unit variance:

µiη = γiη
νiη

νiη − 2

σiη =

√
2γ2

iην
2
iη

(νiη − 2)2 (νiη − 4)
+

νiη
νiη − 2

Bayesian inference for this model is developed in Stan (see Stan Development Team (2015)). For

each marginal, we sample 20.000 iterations from the model and discard the initial 10.000 iterations

for the burn-in period. We also retain every 10-th iterations to reduce the autocorrelation.

Table 2 shows the summary statistics for the posterior mean estimations of the univariate

AR (1)−GARCH (1, 1) model across the 150 firms. The effect of conditional autoregressive mean

is weak as the average value of φ1i is −0.021 and φ1i is insignificantly different from 0 in most of

marginals. This fact matches with other findings in the finance literature that the return levels

are unpredictable. However, the variance returns are quite predictable through the GARCH (1, 1)

setting. The average of αi1 and βi1 are significantly different from 0 for most of the marginals. On

average, the previous variance will contribute up to the 84% the value of the current variance which

creates volatility clustering. The degrees of freedom for each marginal also diversifies between 4.2

and 10 which accounts for different kurtosis. The skewness parameter ranges from −0.373 to 0.111

and most of them are not significantly different from 0.

For the second stage, the standardized innovations are taken out and transformed to copula

observations by applying the corresponding marginal cdfs. More specifically, using the posterior

mean estimations for each marginal, we obtain the standardized innovations, ηit, of the AR (1) −

GARCH (1, 1) process and transform them into the copula observations uit = FGSt
(
ηit|c̄i, φ̄1i, ω̄i, ᾱ1i, β̄1i, ν̄iη, γ̄iη

)
.

This simplifies the computational burden in the high dimensional setting in which we only con-

centrate on estimating the copula parameters. Apart from that, we check if the choice of a GSt

distribution is suitable with univariate GARCH volatilities by performing the Kolmogorov-Smirnov

goodness of fit test. All series passed the test with p-values larger than 0.05. We also tested for
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Table 2: Estimation results of AR (1)−GARCH (1, 1)-GSt for each marginal return

Mean Minimum 1. Quartile Median 3. Quartile Maximum

ci 0.071 -0.065 0.052 0.072 0.090 0.180
φi1 -0.021 -0.103 -0.041 -0.021 0.000 0.045
ωi 0.172 0.019 0.063 0.115 0.211 1.313
αi1 0.097 0.022 0.075 0.093 0.113 0.220
βi1 0.843 0.604 0.801 0.864 0.901 0.974
νiη 5.834 4.163 4.828 5.589 6.491 10.121
γiη -0.049 -0.373 -0.085 -0.042 -0.000 0.111

Summary statistics for the posterior mean estimations of the univariate AR (1) −
GARCH (1, 1)-GSt model across the 150 firms. The distribution of posterior mean es-

timations are described by mean and quantiles.

serial correlation between the innovation and did not find significant results.

5.2 Copula estimation

Next, we apply the proposed Bayesian approach to nine different one factor copula models. These

are the dynamic Gaussian, Student-t and MGSt combined with particular cases of models referred

as block equivalent mean correlation, single group and multiple-group. In the block equi-mean

correlation model, the parameter figc in (8) is restricted to be the same for the assets belonging

to the same group, i.e., f1gc = . . . = fnggc, for all g = 1, . . . , G. We classified G = 14 group

industries of assets depending on their SIC codes, as in Creal and Tsay (2015). These are Oil &

Construction , Food & Beverage, Pharmaceuticals, Plastic Material & Plant Chemical, Textile &

Papers, Steel, Home Appliances & Automobile, Electronics, Transportation, Telecommunication,

Retail & Distribution, Insurance, Finance (not contained in Insurance), Services & Others. The

detail number of firms are reported in Table 2 of Online Appendix. On average, there are 11 firms

in each sector group. In the single group model, G = 1 as described in (5), only a few number of

parameters account for tail dependence, while the correlations are allowed to be different across the

assets. Finally, the multiple-group dynamic model is the most flexible one with different behaviours

in tail and unrestricted correlation as in (8). In all cases, we generate 20.000 iterations with 10.000

burn-in for each factor copula model and every 10-th draws are taken in order to prevent the

autocorrelation of the MCMC chains.

Table 3 outlines the main estimation results for the nine one factor copula models. In particular,

the table includes the value of the AIC, BIC, and DIC model selection criteria, obtained as explained
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Table 3: Estimation results for alternative copula models

Gaussian Gaussian Gaussian Student-t Student-t Student-t MGSt MGSt MGSt
block equi 1G multi.group block equi 1G multi.group block equi 1G multi.group

(1) (2) (3) (4) (5) (6) (7) (8) (9)

AIC -139990 -140848 -141211 -168123 -153480 -168957 -168709 -153690 -169362
BIC -139766 -140039 -140264 -167825 -152666 -167935 -168336 -152871 -168266
DIC -139968 -140851 -141214 -168145 -153500 -169037 -169092 -153772 -170008

# params 42 152 178 56 153 192 70 154 206
a [0.022,0.144] 0.039 [0.023,0.140] [0.017,0.078] 0.026 [0.023,0.135] [0.017,0.062] 0.025 [0.023,0.132]
b [0.793,0.998] 0.982 [0.611,0.996] [0.901,0.999] 0.993 [0.585,0.997] [0.924,0.999] 0.993 [0.597,0.997]
ν [7.734,20.802] 35.606 [7.766,21.253] [8.242,35.468] 34.234 [8.121,35.857]
γ [-1.678,-0.058] -0.378 [-1.689,-0.036]
fc [1.303,1.767] [0.935,2.439] [0.913,2.476] [1.366,1.834] [0.953,2.521] [0.933,2.520] [1.361,1.825] [0.949,2.519] [0.907,2.518]

Posterior estimations for nine one factor copula models and model selection criteria. Three different models are considered (the block-equivalent, one
group and multiple-group) for three different copula models (Gaussian, Student-t and MGSt). The table reports only the range of the posterior means
for the group models and the point estimates for the one group model.

in Appendix C. The dynamic MGSt copula appears to show better fit over the Gaussian and

Student-t copula models. In general, the posterior means of the parameters a, b and fc are similar

across Gaussian, Student-t, and MGSt copulas, as shown for example in model (3), (6) and (9).

The block equi-mean correlation model reports a smaller posterior range for a and b. The degrees

of freedom and skewness parameters are roughly similar between the block-equivalent and the

multiple-group models. The model selection criteria shows a interesting result that the models

with more parameters accounting for extreme events are preferable over the models that have

limitations on these behaviours. For example, in Gaussian copulas, the one group outperforms the

block-equivalent due to the fact that they do not capture the extreme occurrences. However, it is

preferable to use block equi-mean correlation in the Student-t and MGSt copulas rather than one

group copula. The block-equivalent models could even be comparable with the multi-group models

in all criteria AIC, BIC, and DIC. We also obtain that the group Student-t copula yields lower

degrees of freedom than the single group Student-t copula. This finding confirms with Creal and

Tsay (2015) due to the fact that when the number of assets in a group increases, the uncertainty

reduces because the central limit theorem holds.

In Tables 4 and 5, we report respectively the detail estimations for the dynamic group Student-

t and dynamic group MGSt copulas. The posterior means of a and b shows different dynamic

behaviours in each group sector. The values of fc are depicted as interval range of the posterior

means of figc, for assets i = 1, . . . , ng belonging to each group g = 1, . . . , G. The values in

parentheses are the average values of the posterior standard deviations. The posterior means of ν

are quite different among groups as well as between models. The standard deviations of ν are small
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Table 4: Results for the group Student-t copula with time-varying factor loadings.

Oil Food & Bev. Pharma. Plastics Paper Steel Home App.

a 0.035 0.045 0.079 0.037 0.043 0.032 0.041
(0.006) (0.009) (0.031) (0.007) (0.006) (0.003) (0.009)

b 0.996 0.989 0.902 0.988 0.986 0.995 0.960
(0.002) (0.006) (0.146) (0.005) (0.004) (0.001) (0.017)

ν 12.562 13.103 7.766 14.271 14.916 17.733 15.883
(1.215) (1.207) (0.596) (1.041) (0.906) (1.005) (0.804)

fc [1.28,1.83] [1.10,1.99] [1.26,1.41] [1.21,1.97] [1.13,1.90] [1.33,2.03] [1.40,2.50]
(0.177) (0.119) (0.070) (0.096) (0.093) (0.134) (0.060)

# firms 5 6 5 8 12 13 14
λL = λU 0.031 0.022 0.072 0.026 0.019 0.019 0.038

Electronics Transportation Telecom. Retail Insurance Finance Services

a 0.135 0.042 0.061 0.023 0.052 0.051 0.034
(0.017) (0.007) (0.014) (0.003) (0.007) (0.008) (0.004)

b 0.585 0.978 0.973 0.997 0.972 0.984 0.991
(0.064) (0.007) (0.014) (0.002) (0.008) (0.006) (0.002)

ν 17.344 9.287 8.134 21.253 9.792 9.483 20.681
(1.106) (0.388) (0.470) (1.963) (0.375) (0.356) (1.013)

fc [1.39,2.35] [1.00,2.12] [0.93,2.10] [1.10,1.87] [1.30,2.48] [1.45,2.52] [1.31,2.24]
(0.049) (0.075) (0.086) (0.153) (0.074) (0.099) (0.097)

# firms 12 12 7 8 14 17 17
λL = λU 0.026 0.086 0.087 0.007 0.106 0.099 0.011

Posterior estimations for the interest parameters of the group Student-t factor copula. This includes the
posterior means and standard deviations for (a, b, ν) and the values of fc are depicted as interval range
of the posterior means together with the average posterior standard deviations. The tail dependences are
calculated using bivariate Student-t copula with the mean correlation of the assets belonging to the same
sector.

in the case of the group Student-t and seems to be higher in the MGSt model. The lowest degree

of freedom parameter in the dynamic group Student-t is in Pharmaceutical industries standing at

7.8. However, in the MGSt copula model, it is strongly negative skewed which results in a higher

posterior estimation for the degrees of freedom. While the other groups that have low degrees of

freedom such as Telecommunication, Insurance, and Finance reveal a slight skewness. Although

the posterior variation of the degrees of freedom in some industries are higher in the case of group

MGSt copula, it still supports for the hypothesis that the lower tail is heavier and the distribution

is highly asymmetric rather than there is a symmetry in both upper tail and lower tail. We show

different tail dependences in each group sector by calculating the mean correlation of all assets in

the groups and derive the upper tail and lower tail of bivariate MGSt copulas. The strongest lower

tail dependence is 0.42 from the Pharmaceutical sector despite of no upper tail dependence.

Figure 3 describes the posterior mean of the conditional correlation among time series using
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Table 5: Results for the group MGSt copula with time-varying factor loadings.

Oil Food & Bev. Pharma. Plastics Paper Steel Home App.

a 0.034 0.045 0.049 0.037 0.045 0.033 0.038
(0.006) (0.009) (0.019) (0.007) (0.006) (0.003) (0.012)

b 0.996 0.991 0.976 0.989 0.985 0.995 0.957
(0.002) (0.005) (0.023) (0.005) (0.004) (0.001) (0.036)

ν 12.971 14.069 35.857 15.368 15.248 17.982 17.012
(1.389) (1.554) (5.343) (1.504) (1.062) (1.104) (1.036)

γ -0.109 -0.237 -1.689 -0.202 -0.146 -0.173 -0.242
(0.075) (0.075) (0.163) (0.073) (0.044) (0.048) (0.043)

fc [1.27,1.84] [1.09,1.95] [1.27,1.43] [1.21,1.97] [1.12,1.89] [1.33,2.02] [1.40,2.48]
(0.174) (0.127) (0.099) (0.098) (0.092) (0.132) (0.062)

# firms 5 6 5 8 12 13 14
λL 0.047 0.056 0.423 0.051 0.035 0.039 0.086
λU 0.016 0.005 0.000 0.008 0.008 0.008 0.010

Electronics Transportation Telecom. Retail Insurance Finance Services

a 0.132 0.042 0.065 0.023 0.054 0.052 0.034
(0.017) (0.007) (0.017) (0.004) (0.007) (0.009) (0.003)

b 0.597 0.974 0.969 0.997 0.971 0.982 0.991
(0.060) (0.008) (0.019) (0.002) (0.007) (0.007) (0.002)

ν 17.560 10.220 8.121 21.196 9.845 9.405 21.333
(1.133) (1.028) (0.515) (1.885) (0.402) (0.345) (1.151)

γ -0.195 -0.214 -0.075 -0.208 -0.109 -0.036 -0.318
(0.043) (0.089) (0.035) (0.055) (0.037) (0.029) (0.040)

fc [1.38,2.33] [0.99,2.10] [0.91,2.08] [1.09,1.85] [1.29,2.46] [1.44,2.52] [1.30,2.23]
(0.049) (0.070) (0.082) (0.154) (0.074) (0.091) (0.097)

# firms 12 12 7 8 14 17 17
λL 0.057 0.200 0.130 0.016 0.176 0.119 0.035
λU 0.010 0.022 0.054 0.003 0.060 0.082 0.002

Posterior estimations for the interest parameters of group MGSt factor copula. This includes the pos-
terior means and standard deviations for (a, b, ν, γ) and the values of fc are depicted as interval range
of the posterior means together with the average posterior standard deviations. The tail dependence are
calculated numerically using bivariate MGSt copula with the mean correlation of the assets belonging to
the same sector (see Appendix A.4).
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MGSt copula. This posterior mean is calculated as the average over iterations of the mean cor-

relation between time series i and j as 1
d(d−1)/2

∑
ij ρitρjt where i, j = 1, . . . , d, i 6= j. In the top

left figure, we compare the mean correlation using block-equivalent, single group and multiple-

group MGSt copula. The correlation path generated by block-equivalent model is close to that by

multiple-group model, while the single group correlation path does not move much. Combined with

the evidence of the model selection, we conclude that few parameters controlling for the dynamic

behaviour of correlation is restrictive and the block equivalent mean correlation can approximate

well the correlation structure in comparison to the multiple-group dynamic model. In the bottom

left and bottom right figure, we illustrate the mean correlation together with the 95% credible

interval of Student-t and MGSt copulas. They are almost the same in both point estimation as

well as the confident brand. In the top right, we describe the distribution of mean correlation Rijt

across the 150 time series. The one factor dynamic MGSt copula could capture different behaviour

among the cross correlation. As we can see, a common pattern is that the correlation increased

over time in the end of 2011. This finding is similar to Creal and Tsay (2015) for stochastic copula

model because of the financial crisis in 2010− 2011.

Figure 4 shows the posterior distribution of conditional variance and conditional correlation of

several companies including PepsiCo, McDonalds, JP Morgan Chase, Morgan Stanley, Boeing, and

Exxon Mobil using MGSt copula. The first two columns illustrate the conditional variance and

the last column depicts the conditional correlation between the couple. As mentioned above, the

2010− 2011 period experienced a high volatility and a rise in correlation among all examples due

to the financial crisis. The cross correlation also goes up recently but not for every series which

might be due to the shocks to separated sectors rather than the whole economy.

6 Conclusion

In this paper, we have proposed a family of one factor copula models and developed a Bayesian

algorithm to make parallel inference on the model parameters. In our proposed models, the time

series become independent conditioning on the latent factor that allows us to introduce an estima-

tion strategy in a parallel setting. Furthermore, the factor loadings have been modelled as GAS

processes which imposes a dynamic dependence structure in their densities. Using MGSt copulas,
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Figure 3: The distribution of posterior correlation among factor copula models

The mean correlation using block equi-mean correlation, single group and multiple-group MGSt copula shown in the top left.

The top right figure shows the distribution of mean correlation across 150 time series. The two bottom figures illustrate the

mean correlation together with the 95% credible interval of multiple-group Student and MGSt copula.
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Figure 4: Posterior correlation among each time series

The first two columns describe the conditional variance and the last column depicts the conditional correlation

together with the 95% credible interval using MGSt copula. First row: PepsiCo, McDonald, second row: JP Morgan

Chase, Morgan Stanley, third row: Boeing, Exxon Mobil
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we obtain different types of tail and asymmetric dependence. The models are extendible since

the number of parameters scales linearly with the dimension. As extension, more complex copula

functions can be build based on the distribution of ζg. However, this also may require more com-

putational cost to obtain the inverse cdf. Also, we might consider factor models using the family

of Archimedean copulas, whose have only lower tail dependence, due to the empirical finding that

half of the groups only show weak evidence of upper tail dependence. Finally, one factor models

may not be enough for the high dimensional dependence as Oh and Patton (2017a) suggest. One

future direction could be to extend the proposed approach to dynamic multi factor models.
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Appendix

A Score update for one factor copula model

A.1 Dynamic Gaussian one factor copula

The conditional cdf of ut = (u1t, . . . , udt)
′, where uit = Φ (xit) , is:

F (u1t, . . . , udt | zt, ft,Ft, θ) = Pr (U1t ≤ u1t, . . . , Udt ≤ udt | zt, ft,Ft, θ)

= Pr
(
X1t ≤ Φ−1 (u1t) , . . . , Xdt ≤ Φ−1 (udt) | zt, ft,Ft, θ

)
=

d∏
i=1

Pr
(
Xit ≤ Φ−1 (uit) | zt, ft,Ft, θ

)
.

Note that, given {zt, ft,Ft, θ}, the correlation ρit is known and Xit follows a Gaussian distribution

with mean ρitzt and standard deviation
√

1− ρ2
it. Then, the conditional density of ut is,

p (ut | zt, ft,Ft, θ) =
∂dF (u1t, . . . , udt | zt, ft,Ft, θ)

∂u1t . . . ∂udt
=

d∏
i=1

φ
(

Φ−1 (uit) | ρitzt,
√

1− ρ2
it

)
φ (Φ−1 (uit) | 0, 1)

,

where φ (· | µ, σ) denotes a normal pdf with mean, µ, and standard deviation, σ. Then, the proposed

dynamic process is based on the derivative of the log conditional density wrt the dynamic fit,

sit =
∂ log p (ut | zt, ft,Ft, θ)

∂fit
=
∂ log p (ut | zt, ft,Ft, θ)

∂ρit

∂ρit
∂fit

=

∂
d∑
i=1

(
log φ

(
Φ−1 (uit) | ρitzt,

√
1− ρ2

it

)
− log φ

(
Φ−1 (uit) | 0, 1

))
∂ρit

1− ρ2
it

2

=
∂
(
−1

2 log(2π)− 1
2 log(1− ρ2

it)− 1
2

(Φ−1(uit)−ρitzt)2
1−ρ2it

)
∂ρit

1− ρ2
it

2

=

(
ρit

(1− ρ2
it)

+
zt(Φ

−1 (uit)− ρitzt)
1− ρ2

it

− ρit(Φ
−1 (uit)− ρitzt)2

(1− ρ2
it)

2

)
1− ρ2

it

2

=
1

2
Φ−1 (uit) zt +

1

2
ρit − ρit

Φ−1 (uit)
2 + z2

t − 2ρitΦ
−1 (uit) zt

2(1− ρ2
it)

,

which leads to the expression given in (3).
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A.2 Dynamic Student one factor copulas

The conditional cdf of ut = (u1t, . . . , udt), where uit = FSt (xit | ν) , is:

F (u1t, . . . , udt | zt, ζt, ft,Ft, θ) = Pr
(
X1t ≤ F−1

St (u1t | ν) , . . . , Xdt ≤ F−1
St (udt | ν) | zt, ζt, , ft,Ft, θ

)
=

d∏
i=1

Pr

(
Ẋit ≤

F−1
St (uit | ν)√

ζt
| zt, ζt, ft,Ft, θ

)
,

where Ẋit = Xit/
√
ζt. Similarly, given {zt, ζt, ft,Ft, θ} , the correlation ρit is known and Ẋit follows

a Gaussian distribution with mean ρitzt and standard deviation
√

1− ρ2
it. Then, the conditional

density of ut is,

p (ut | zt, ζt, ft,Ft, θ) =
∂dF (u1t, . . . , udt | zt, ζt, ft,Ft, θ)

∂u1t . . . ∂udt
=

d∏
i=1

φ
(
F−1
St (uit|ν)√

ζt
| ρitzt,

√
1− ρ2

it

)
fSt
(
F−1
St (uit | ν) | ν

)√
ζt

,

where fSt (· | ν) denotes the standard Student-t with ν degrees of freedom. Thus, the equation for

sit remains,

sit =
∂ log p (ut | zt, ζt, ft,Ft, θ)

∂fit
=
∂ log φ

(
F−1
St (uit|ν)√

ζt
| ρitzt,

√
1− ρ2

it

)
∂ρit

1− ρ2
it

2

=
1

2

F−1
St (uit | ν)√

ζt
zt +

1

2
ρit − ρit

(
F−1
St (uit|ν)√

ζt

)2

+ z2
t − 2ρit

F−1
St (uit|ν)√

ζt
zt

2(1− ρ2
it)

,

which leads to the expression given in (4).

A.3 Dynamic hyperbolic skew Student one factor copula

The conditional cdf of ut = (u1t, . . . , udt), where uit = FGSt (xit | ν, γ) , is:

F (u1t, . . . , udt | zt, ζt, ft,Ft, θ) = Pr
(
X1t ≤ F−1

GSt (u1t | ν, γ) , . . . , Xdt ≤ F−1
GSt (udt | ν, γ) | zt, ζt, ft,Ft, θ

)
=

d∏
i=1

Pr

(
X̃it ≤

F−1
GSt (uit | ν, γ)− γζt√

ζt
| zt, ζt, ft,Ft, θ

)
,

where X̃it = (Xit − γζt) /
√
ζt. Similarly, given {zt, ζt, ft,Ft, θ}, the correlation ρit is known and

Ẋit follows a Gaussian distribution with mean ρitzt and standard deviation
√

1− ρ2
it. Then, the
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conditional density of ut is,

p (ut | zt, ζt, ft,Ft, θ) =
∂dF (u1t, . . . , udt | zt, ζt, ft,Ft, θ)

∂u1t . . . ∂udt
=

d∏
i=1

φ
(
F−1
GSt(uit|ν)−γζt√

ζt
| ρitzt,

√
1− ρ2

it

)
fGSt

(
F−1
GSt (uit | ν, γ) | ν, γ

)√
ζt

,

(10)

where fGSt (· | ν, γ) denotes the standard generalized hyperbolic skew Student-t with ν degrees of

freedom and γ skewness parameter. Thus, the equation for sit remains,

sit =
∂ log p (ut | zt, ζt, ft,Ft, θ)

∂fit
=
∂ log φ

(
F−1
GSt(uit|ν)−γζt√

ζt
| ρitzt,

√
1− ρ2

it

)
∂ρit

1− ρ2
it

2

=
1

2

F−1
GSt (uit | ν)− γζt√

ζt
zt +

1

2
ρit − ρit

(
F−1
GSt(uit|ν)−γζt√

ζt

)2

+ z2
t − 2ρit

F−1
GSt(uit|ν)−γζt√

ζt
zt

2(1− ρ2
it)

,

which leads to the expression given in (6).

A.4 Tail dependence for hyperbolic skew Student copula

Consider the bivariate MGSt copula. We derive the tail dependence of a pair of pseudo observables

xigt and xjtg in a same group,g, from the Equation (7) as:

xigt = γgζg +
√
ζg

(
ρigtzt +

√
1− ρ2

igtεigt

)
xjgt = γgζg +

√
ζg

(
ρjgtzt +

√
1− ρ2

jgtεjgt

) (11)

Demarta and McNeil (2005) suggest that the joint quantile exceedance probability is obtained as

the integral over the nuisance parameters (zt, ζgt),

C(u, u|νg, γg) = Pr(xigt ≤ F−1
GSt(u), xjgt ≤ F−1

GSt(u))

= E

Pr

εigt ≤ F−1
GSt(u)− γgζgt√
ζgt
√

1− ρ2
igt

− ρigtzt√
1− ρ2

igt

, εjgt ≤
F−1
GSt(u)− γgζgt√
ζgt
√

1− ρ2
jgt

− ρjgtzt√
1− ρ2

jgt


= E

Φ

F−1
GSt(u)− γgζgt√
ζgt
√

1− ρ2
igt

− ρigtzt√
1− ρ2

igt

Φ

F−1
GSt(u)− γgζgt√
ζgt
√

1− ρ2
jgt

− ρjgtzt√
1− ρ2

jgt


(12)
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Then, we obtain C(u, u|νg, γg) as the numerical integral over zt ∼ N(0, 1) and ζgt ∼ IG(νg/2, νg/2)

As taking the equation to the limit, the tail dependence are,

λL = lim
u→0

C(u, u|νg, γg)
u

λU = 2 + lim
u→0

C(1− u, 1− u|νg, γg)− 1

u

Table (5) reports the tail dependence of bivariate MGSt copula at u = 0.005.

B Posterior inference

From the joint posterior of the dynamic hyperbolic skew Student factor copula model in (9), we

derive the conditional posterior for each parameters as follows:

p(zt|u, a, b, fc, ν, γ, ζ) ∝
G∏
g=1

ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)φ(zt | 0, 1)

p(figc|u, a, b, z, ν, γ, ζ) ∝
T∏
t=1

ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)

p(ag|u, b, f, z, ν, γ, ζ) ∝
T∏
t=1

ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)

p(bg|u, a, f, z, ν, γ, ζ) ∝
T∏
t=1

ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)

p(νg|u, f, a, b, z, γ, ζ) ∝
T∏
t=1

ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)

fGSt(xigt|νg, γg)

×
T∏
t=1

IG
(
ζgt|

νg
2
,
νg
2

)
G(νg − 4 | 2, 2.5)

p(γg|u, f, a, b, z, ν, ζ) ∝
T∏
t=1

ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)

fGSt(xigt|νg, γg)
φ(γg | 0, 1)

p(ζgt|u, f, a, b, z, ν, γ) ∝
ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)√

ζgt
IG
(
ζgt |

νg
2
,
νg
2

)

As the conditional posterior of zt only depends on the pseudo observations at time t, we can

make parallel inference for t = 1, . . . , T . Also, the conditional posteriors of ag, bg, νg, γg and ζgt

only depend on the pseudo observations in group g. Then, we can make parallel inference for
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g = 1, . . . , G. Finally, conditional on zt, each time series is independent, for i = 1, . . . , ng and

g = 1, . . . , G. Then, we also create a parallel estimation procedure for figc.

C Model selection

The statistics of model selection are calculated based on the average of the log-likelihood. We take

the average of the log likelihood after MCMC iterations at the posterior mean of the interested

parameters as the integral over the nuisance parameter space. The set parameters of interest is

θint = {a, b, fc, ν, γ} and the nuisance parameters are θnui = {z, ζ}.

AIC = −2Eθnui
[
log
(
p
(
u|θ̄int, f,F

))]
+ 2k

BIC = −2Eθnui
[
log
(
p
(
u|θ̄int, f,F

))]
+ k log T

DIC = −4Eθ [log p (u|θ, f,F) |u] + 2Eθnui
[
log
(
p
(
u|θ̄int, f,F

))]
where k is the number of parameters of interest.
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