-dNEsus

Network for Sustainable Ultrascale Computing

Proceedings of the Third International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2016)
Sofia, Bulgaria

Jesus Carretero, Javier Garcia Blas, Svetozar Margenov
(Editors)

October, 6-7, 2016

Hristov, A., Nikolova, 1., Zapryanov., G. Kimovski, D. & Vesna
Kumbaroska, V. (2016). Resource Management Optimization in
Multi-Processor Platforms. En Proceedings of the Third International
Workshop on Sustainable Ultrascale Computing Systems (NESUS
2016) Sofia, Bulgaria (pp. 23-29). Madrid: Universidad Carlos III de
Madrid. Computer Architecture, Communications, and Systems
Group (ARCOS).



Atanas Hristov, Iva Nikolova, Georgi Zapryanov, Dragi Kimovski, Vesna Kumbaroska 23

Resource Management Optimization in
Multi-Processor Platforms

AtANASs HrisTov

University of Information Science and Technology, Ohrid, Macedonia
atanas.hristov@uist.edu.mk

Iva N1xorova, GEORGI ZAPRYANOV

Technical University of Sofia, Bulgaria
inni@tu-sofia.bg, gszap@tu-sofia.bg

Dract KiMmovskr

University of Innsbruck, Austria
dragi@dps.uibk.ac.at

VESNA KUMBAROSKA

University of Information Science and Technology, Ohrid, Macedonia
vesna.gega@uist.edu.mk

Abstract

The modern high-performance computing systems (HPCS) are composed of hundreds of thousand computational nodes. An
effective resource allocation in HPCS is a subject for many scientific research investigations. Many programming models for
effective resources allocation have been proposed. The main purpose of those models is to increase the parallel performance
of the HPCS. This paper investigates the efficiency of parallel algorithm for resource management optimization based on
Artificial Bee Colony (ABC) metaheuristic while solving a package of NP-complete problems on multi-processor platform.In
order to achieve minimal parallelization overhead in each cluster node, a multi-level hybrid programming model is proposed that
combines coarse-grain and fine-grain parallelism. Coarse-grain parallelism is achieved through domain decomposition by message
passing among computational nodes using Message Passing Interface (MPI) and fine-grain parallelism is obtained by loop-level
parallelism inside each computation node by compiler-based thread parallelization via Intel TBB. Parallel communications
profiling is made and parallel performance parameters are evaluated on the basis of experimental results.

Keywords High-Performance Computing, Parallel Programming Model, Parallel Performance, Parallel Algorithm

I. INTRODUCTION

There are many open research problems in the field of high-
performance computing systems (HPCS) studied extensively
in many scientific research investigations. These systems
are composed of hundreds or thousands of computational
nodes and combine several technologies - hardware, software,
networking and programming to solve advanced problems
and performing experimental research work.

Most often the HPCS are used for high-throughput com-

puting in time-sharing mode as well as for running complex
parallel applications in space-sharing mode. One of the main
challenges in HPC is to achieve highest possible system per-
formance for a given application at optimal load balance and
utilization of the available computational resources on the
HPC platform. This causes the problem of effective resource
management.

The resource management system is responsible for al-
location of computing resources for extraordinary use and
also to determine an optimal job or task scheduling for a



24

given system topology. An effective resource allocation and
scheduling in HPCS is a subject of many scientific research
investigations. The problem is well known as NP-complete
[1], [2] and a number of approaches to different aspects of
this problem can be found in the research literature. Also,
many programming models have been proposed during the
years. The main purpose of these models is to increase the
parallel performance of HPCS. Currently, most of the HPC
systems are based on conventional sequential programming
languages as C, C++, FORTRAN. In order to achieve bet-
ter parallel performance, the flat parallel programing model
with message passing in distributed memory systems, sup-
ported by the MPI standard [3] and parallel programming
model with multithreading in shared memory systems using
the OpenMP programming interface [4] have been included
as template libraries. The main disadvantages of the parallel
programing based on conventional programming language
are: process synchronization, deadlocks, workload balancing,
and thread concurrency. In order to achieve better parallel
performance, a parallel programming model must combine
the distributed memory parallelization on the node inter-
connect with the shared memory parallelization inside of
each node.

In order to improve this situation, Intel provides a range of
tools specifically designed to help developers in parallelizing
their applications. Three sets of complementary models for
multithreading programming in shared memory systems are
supported by Intel: Intel Cilk Plus, Intel Threading Build-
ing Blocks (Intel TBB) and Intel Array Building Blocks (Intel
ArBB). The main purpose of those models is to increase the re-
liability, portability, scalability and the parallel performance
of the application during the multithreading execution [5],
[6].

The complexity class of decision problems NP-complete
can be used as a pattern for benchmarking and parallel per-
formance evaluation of multi-core and multi-machine archi-
tectures. Parallel versions of several NP-complete problems,
such as N-Queens Problem, Travelling Salesman Problem,
Sam-Loyd Puzzle etc., will be proposed in order to determi-
nate the overall parallel performance of the system.

The paper investigates the efficiency of parallel algorithm
for resource management optimization. It is proposed a
metaheuristic approach based on swarm optimization with
Artificial Bee Colony (ABC) [7] to solve the resource alloca-
tion problem for multi-core platform. The experimental work
is based on the efficiency analysis of the proposed resource
allocation scheme when solving of a package of three well
known NP-complete problems - N-Queen, Travelling Sales-
man and Sam-Loyd Puzzle on homogeneous multi-processor
platforms. Programmatically, the proposed scheme is im-

Resource Management Optimization in Multi-Processor Platforms

plemented on the basis of multi-level hybrid parallel com-
putational model using Intel TBB [8] and MPI [3] libraries.
This model combines coarse-grain and fine-grain parallelism.
Coarse-grain parallelism is achieved through domain decom-
position by message passing among computational nodes
using Message Passing Interface (MPI) and fine-grain par-
allelism is obtained by loop-level parallelism inside each
computation node by compiler-based thread parallelization
via Intel TBB.

The rest of this paper is organized as follows. An overview
of the resource scheduling problem is presented in Section
II with discussing some related works. In Section III, the
proposed resource allocation scheme, based on ABC meta-
heuristics and its parallel implementation is presented. An
experimental results and summary are offered in Section IV.

II. RELATED WORK

The resource management optimization problem has been
studied extensively in the parallel and distributed comput-
ing literature for more than two decades. Many studies
have been done in the field in order to effectively utilize
the costly high performance computing platforms. Most
of the advanced resource management systems are vendor-
specific, but often they do not comply with specific features
of a particular computing platform. Thus, they are not well
optimized to provide efficient management to reach the re-
quired for a given parallel application performance of the
implementation.

A variety of policies, strategies, schemes and algorithms
have been proposed, developed, analyzed and implemented
in a number of studies. These works investigate the problem
in terms of diverse target HPC platforms. The most com-
mon researches are done in the field of high performance
distributed computing with cluster, grid and cloud comput-
ing systems. Regardless of the conceptual closeness of these
systems, the strategies for an optimal reserving of comput-
ing resources, effective load balance and resource utilization
are different. Also, the resources that each parallel applica-
tion for distributed processing requires can be very different
from one to other and this raised the problem of finding an
optimal job and tasks schedule for a given set of parallel
resources. Taking into account the specific architectural, sys-
tem and communication characteristics of a given parallel
computer platform, finding an optimal solution of resource
management task is further complicated.

The parallel resource scheduling problem is known to be
NP-hard [1], [2]. It is usually solved by various heuristic and
meta-heuristics algorithmic schemes [9], [10] depending on
the homogeneity of the parallel system and the scheduling



Atanas Hristov, Iva Nikolova, Georgi Zapryanov, Dragi Kimovski, Vesna Kumbaroska 25

method applied - static (off-line) or dynamic (on-line) one.
Also, there are several exact algorithms with the goal to solve
small to medium size problems to optimality [11], [12].

In the schemes with static scheduling it assumes that the
total number of parallel executing tasks, as well the duration
of each task is known in advance. The decision concerning
computational resource allocation and task assignment is
made at the start of the job execution. Because the execu-
tion time for a task is dependent on the input data, static
scheduling carries some degree of uncertainty. This leads to
unbalanced load, which leads to longer parallel execution
time and low system resource utilization. With dynamic
scheduling, the number of computational resources allocated
to a job may vary during the execution. Also, the task as-
signment to the allocated resources takes place during the
execution of a job. As pointed out in [13], dynamic schedul-
ing policies are complementary to static policies in both their
advantages and drawbacks. Because they are implemented
at the execution time, dynamic policies usually incur in high
run-time overhead, which may lead to a degradation of per-
formance. Since decisions are made during job execution,
scheduling should be based on simple and constant time
heuristics. On the other hand, dynamic scheduling mecha-
nisms exhibit an adaptive behavior, which leads to a high
degree of load balancing.

In [14] the resource scheduling problem is explored in
terms of real-time jobs executing on heterogeneous clusters.
Heterogeneity in the parallel systems introduces an addi-
tional degree of complexity because, in addition to the prob-
lem of deciding when and how many computing resources
to allocate, scheduling policies have also to deal with the
choice among processor nodes of different speeds and also
with reliability issues and tasks independency in parallel
jobs. The proposed heuristic dynamic scheduling scheme
(reliability-driven algorithm (DRCD)) for a various cluster
sizes (between 4 and 18 machines) has been experimentally
tested on a real world application DSP [15] as well as syn-
thetic workloads, based on binary trees [16], lattices [17] and
random graphs [18].

The problem of resource management in large many-
core systems is addressed in [19], where a novel resource-
management scheme that supports so-called malleable ap-
plications is proposed. These applications can adopt their
level of parallelism to the assigned resources. [19] design a
scalable decentralized scheme that copes with the computa-
tional complexity by focusing on local decision-making. The
proposed algorithm is tested via simulation experiments on
different system sizes ranging from 5x5 to 32x32 cores and
synthetically generated workload consisting of 16, 32 and 64
parallel applications that is generated using the widely used

Downey model [20].

Many papers have been published to address the prob-
lem of resource allocation in Grid computing environments.
Some of the proposed algorithms are modifications or exten-
sions to the traditional distributed systems resource alloca-
tion algorithms. A survey of job scheduling and resource
management algorithms in Grid computing can be found in
[21] where various algorithms are compared on various pa-
rameters like distributed, hierarchical, centralized, response
time, load balancing, and resource utilization. The experi-
ments were conducted via simulations with help of GridSim
for number of jobs varied from 50 to 300.

In [22] resource-aware hybrid scheduling algorithm for
different type of application: batch jobs and workflows are
proposed. The performance tests are conducted in a realistic
setting of CloudSim tool [23] with respect to load-balancing,
cost savings, dependency assurance for workflows and com-
putational efficiency. Multimedia applications that consist in
both independent tasks and tasks with dependencies (work-
flows), and are both CPU intensive (they process a large
amount of data) and I/O intensive (they access remote data)
are used as test case scenarios. The experiments are per-
formed with a 1000 tasks, 1000 Processing Elements and 10
Virtual Machines.

III. PARALLEL IMPLEMENTATION OF RESOURCE
MANAGEMENT OPTIMIZATION ALGORITHM

An effective resource utilization of the modern high perfor-
mance computing (HPC) platforms is a subject for many sci-
entific research investigations. The resource management op-
timization for those platforms is an essential part for optimal
resource allocation while solving NP hard problems. An ef-
fective resource management algorithm strongly determines
the overall parallel performance of the high-performance
computing system. The proposed algorithm for resource
management optimization in multi-core and multi-machine
platforms is based on Artificial Bee Colony (ABC) meta-
heuristic. The ABC simulates the collective behavior of the
honeybees in nature. The basic approach during imple-
mentation process is building a computer model which will
simulate the collective behavior of the bees while collecting
nectar.

In the proposed algorithm, the bees are divided in two
beehives, beehive of the scout bees (beehive 1) and beehive
of the onlooker and worker bees (beehive 2). When the
algorithm is started, beehive 1 generates N number of scout
bees, where N represents the number of processors in the
system. Each scout bee checks whether a processor is free
or busy by execution of specific task on it. If a free resource



26

o B
a =
& £
o @
:
g > g
8 &

Figure 1: Parallel computing model for resource management
optimization based on Artificial Bee Colony metaheuristic

is found the scout bee record the ID of the processor into
the table of available resources and returns to the beehive 1,
where it is terminates. The main purpose of the beehive 2
is to generate M number of onlooker bees, where M is the
optimal number of parallel threads. After generation, the
onlooker bees search in to table of available resources. If
the onlooker bee finds a free resource, it takes the ID of the
processor and removes it from the table. If the onlooker bee
do not find a free resource in the table, the bee will return to
the beehive 2 and will be terminate. Once the onlooker bee
takes the available resource it starts to behave as a worker
bee. Thus obtained K number of worker bees initially turned
to the table of outstanding tasks where they taking certain
sub-problem, remove it from the table and submit it for the
performance by the processor which ID has been taken from
the table of available resources. After the processor solves a
sub-problem, it provides the solution to a worker bee. The
worker bee with the current solution returns to beehive 2,
where it is terminated.

In Figure 1, parallel computing model for resource manage-
ment optimization based on artificial bee colony metaheuris-
tic is presented. Parallel implementation of the algorithm
was realized by using MPICH-2 message passing model and
Intel TBB programming model built in Intel Parallel Studio
2010. For virtualization of resources a virtual machine of
Intel ArBB, built-in Intel Parallel Studio 2010 was used.

IV. EXPERIMENTAL EVALUATION

The experimental results were conducted by using multi-
processor platform. The platform is represented by a ho-

Resource Management Optimization in Multi-Processor Platforms

mogenous cluster composed of twelve Blade servers, HS521,
Xeon Quad Core E405 80w 2.00GHz/1333MHz/12MB L2
and hard disk drive subsystems IBM 750GB Dual Port HS
SATA HDD and Windows Server 2008 operating system.

Figure 2: CPU load while solving package of three NP-Complete
problems without the algorithm for resource management optimiza-
tion

The load of the computational resources while solving a
package of three NP-Complete problems - Traveling Sales-
man Problem, the N-queens problem, and the Sam-Loyd
puzzle are presented in Figure 2. The package is started
without algorithm for resource management optimization.
From the charts shown on the figure, it is clear that the
load of the processors is not well balanced, because only at
a certain point of the time the processors have good load
balance i.e. there are only few processors where the number
of cores corresponds with the number of active processes.
On the other hand, during the most of the time some of the
processors have less number of active processes than cores,
while some processors are overloaded i.e. the number of
active processes exceeds number of cores in the processor.

Figure 3: CPU load while solving package of three NP-Complete
problems by using the algorithm for resource management opti-
mization

In order to improve this situation, the proposed algorithm
for resource management optimization was implemented on



Atanas Hristov, Iva Nikolova, Georgi Zapryanov, Dragi Kimovski, Vesna Kumbaroska 27

the target platform. In Figure 3, the load of the processors
while solving a package of three NP-Complete problems by
using the algorithm for resource management optimization
based on ABC metaheuristic is shown.

According to the figure above, it is clear that after the
implementation of the optimization algorithm, the load of
the processors is almost optimal as the overloading of the
processors is avoided i.e. starting a bigger number of threads
than cores on single processor, while dissatisfied load is
shown only during the timeslots reserved of implementation
of the algorithm for resource planning.

Figures 4 and 5 presents the load of the cluster during the
execution of the tested package.

Cluster Load Percentages

100+
E75-100
bl 50-75
W 25-30

W0-25

Figure 4: Cluster load during the execution of a package with three
NP-Complete problems without the optimization algorithm

Cluster Load Percentages

5% 2%

100+

H 75-100
il 50-75
M 25-50

W 0-25

Figure 5: Cluster load during the execution of a package with
three NP-Complete problems by using the proposed optimization
algorithm

During the execution of package with three NP-Complete
problems without the proposed algorithm for resource man-
agement optimization, only 22,22% of the resources of the
cluster have optimal load balancing with 75-100%, while the

remaining resources are overloaded with 100%+ or not good
loaded i.e. below 75%. On the other hand, during the exe-
cution of the package by using the algorithm for resource
management optimization, 82.22% of the resources of the
cluster have optimal load balancing and only 17.77% of the
resources have poor load balance. These 17% of the resources
with poor load balance appears mainly due to the time re-
quired for implementation of the algorithm for resource
planning as well as other system costs of the platform.

V. CONCLUSION AND FUTURE WORK

An effective resource utilization of the modern high per-
formance computing (HPC) systems is a subject for many
scientific research investigations. The resource management
for those platforms is an essential part for optimal resource
allocation while solving NP complete problems. An effec-
tive resource management algorithm strongly determines
the overall parallel performance of the high-performance
computing system.

This paper suggests an innovative algorithm for effective
resource management in multi-processor platforms based on
parallel metaheuristic "Artificial Bee Colony" (ABC) optimiza-
tion. The efficiency of the proposed algorithm for resource
management in multi-processor platforms was evaluated on
the basis of the software tools of Intel Array Building Blocks
build-in Intel Parallel Studio.

Moreover, parallel programming implementations of three
NP-Complete problems: the N-Queens problem, the Sam-
Loyd puzzle, and the Traveling Salesman Problem (TSP)
have been proposed in order to evaluate the overall parallel
performance of the platform. The proposed parallel imple-
mentations were developed on the basis of Message Passing
Interface (MPI) and Intel Threading Building Blocks (TBB)
programming models.

Finally, we applied the proposed algorithm a homogenous
cluster composed of twelve Blade servers HS21. This allows
us to observe the behavior of the cluster while simultaneously
is started a package of three NP-Complete problems. From
the experimental results we conclude that in the cases when
the proposed algorithm is run on the target platform, the
cluster has very good load balance, which leads to increasing
of the overall parallel performance of the system.

Future objectives of this research include implementation
of our algorithm on very large-scale systems and on the new
generation of ExaScale machines.



28

ACKNOWLEDGMENT

This work is partially supported by EU under the COST
Program Action IC1305: Network for Sustainable Ultrascale
Computing (NESUS).

REFERENCES

[1] Ullman, J.D., 1975. NP-complete scheduling problems.
Journal of Computer and System sciences, 10(3), pp.384-
393.

[2] Hall, N.G. and Sriskandarajah, C., 1996. A survey of
machine scheduling problems with blocking and no-wait
in process. Operations research, 44(3), pp.510-525.

[3] Gropp, W., Lusk, E., Doss, N. and Skjellum, A., 1996. A
high-performance, portable implementation of the MPI
message passing interface standard. Parallel computing,
22(6), pp.789-828.

[4] Sato, M., 2002, October. OpenMP: parallel programming
API for shared memory multiprocessors and on-chip
multiprocessors. In Proceedings of the 15th international
symposium on System Synthesis (pp. 109-111). ACM.

[5] Wooyoung Kim, Voss M., 2011. Multicore Desktop Pro-
gramming with Intel Threading Building Blocks. IEEE
Software journal, Page(s): 23 aAS 31.

[6] Newburn C.J., Byoungro So, Zhenying Liu, McCool
M., Ghuloum A., Toit S.D., 2011. Intel’s Array Building
Blocks: A retargetable, dynamic compiler and embedded
language. In Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Opti-
mization, Page(s): 224 aAS 235.

[7] Karaboga, D. and Basturk, B., 2007. A powerful and
efficient algorithm for numerical function optimization:
artificial bee colony (ABC) algorithm. Journal of global
optimization, 39(3), pp.459-471.

[8] Reinders, J., 2007. Intel threading building blocks: outfit-
ting C++ for multi-core processor parallelism. " O’Reilly
Media, Inc."

[9] Haouari, M., Gharbi, A. and Jemmali, M., 2006. Tight
bounds for the identical parallel machine scheduling
problem. International Transactions in Operational Re-
search, 13(6), pp.529-548.

[10] Talbi, E.G., 2009. Metaheuristics: from design to imple-
mentation (Vol. 74). John Wiley & Sons.

Resource Management Optimization in Multi-Processor Platforms

[11] Darbha, S. and Agrawal, D.P., 1998. Optimal schedul-
ing algorithm for distributed-memory machines. IEEE
transactions on parallel and distributed systems, 9(1),
pp-87-95.

[12] Dell’Amico, M., Iori, M., Martello, S. and Monaci, M.,
2008. Heuristic and exact algorithms for the identical
parallel machine scheduling problem. INFORMS Journal
on Computing, 20(3), pp.333-344.

[13] Saha, D., Menasce, D. and Porto, S., 1995. Static and dy-
namic processor scheduling disciplines in heterogeneous
parallel architectures. Journal of Parallel and Distributed
Computing, 28(1), pp.1-18.

[14] Qin, X. and Jiang, H., 2005. A dynamic and reliability-
driven scheduling algorithm for parallel real-time jobs
executing on heterogeneous clusters. Journal of Parallel
and Distributed Computing, 65(8), pp.885-900.

[15] Woodside, C.M. and Monforton, G.G., 1993. Fast allo-
cation of processes in distributed and parallel systems.
IEEE Transactions on parallel and distributed systems,
4(2), pp.164-174.

[16] Srinivasan, S. and Jha, N.K., 1999. Safety and reliabil-
ity driven task allocation in distributed systems. IEEE
Transactions on Parallel and Distributed Systems, 10(3),
pp.238-251.

[17] Qin, X. and Jiang, H., 2001, September. Dynamic,
reliability-driven scheduling of parallel real-time jobs
in heterogeneous systems. In Parallel Processing, 2001.
International Conference on (pp. 113-122). IEEE.

[18] Ahmad, I. and Kwok, Y.K.,, 1999. On parallelizing the
multiprocessor scheduling problem. IEEE Transactions
on Parallel and Distributed systems, 10(4), pp.414-431.

[19] Kobbe, S., Bauer, L., Lohmann, D., SchrAtder-
Preikschat, W. and Henkel, J., 2011, October. DistRM:
distributed resource management for on-chip many-core
systems. In Proceedings of the seventh IEEE/ACM/IFIP
international conference on Hardware/software codesign
and system synthesis (pp. 119-128).

[20] Downey, A.B., 1997. A model for speedup of parallel
programs. University of California, Berkeley, Computer
Science Division.

[21] Buyya, R. and Murshed, M., 2002. Gridsim: A toolkit
for the modeling and simulation of distributed resource
management and scheduling for grid computing. Con-
currency and computation: practice and experience,
14(13aAR15), pp.1175-1220.



Atanas Hristov, Iva Nikolova, Georgi Zapryanov, Dragi Kimovski, Vesna Kumbaroska 29

[22] Vasile, M.A., Pop, E, Tutueanu, R.I. and Cristea, V.,
2013, December. HySARC2: hybrid scheduling algorithm
based on resource clustering in cloud environments. In In-
ternational Conference on Algorithms and Architectures
for Parallel Processing (pp. 416-425). Springer Interna-
tional Publishing.

[23] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.
and Buyya, R., 2011. CloudSim: a toolkit for modeling
and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Software:
Practice and Experience, 41(1), pp.23-50.





