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Abstract: Consider a portfolio choice problem maximizing the expected return and simultaneously minimizing
a general (and frequently coherent) risk measure. This paper shows that every stock (or stock index) is often
outperformed by a buy and hold strategy containing some of its derivatives and the underlying stock itself. As a
consequence, every investment only containing international benchmarks will not be efficient and the investors
must properly add some derivatives. Though there is still a controversy, this findin had been pointed out in
dynamic frameworks, but the novelty is that one does not need to rebalance the portfolio of derivatives before their
expiration date. This is very important in practice because transaction costs are sometimes significan when trading
derivatives.
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1 Introduction

There are many papers whose main purpose is to study
whether it is or it is not interesting to incorporate
derivatives in order to compose efficien portfolios
(Ahn et al., 1999, Haugh and Lo, 2001, Constanti-
nides et al., 2011, etc.). Actually, though there still
exits some controversy, it is becoming accepted that
derivatives are frequently useful. This usefulness has
been empirically pointed out by Balbás et al. (2016a),
among others. They showed that the most important
international stock indices may be outperformed (ac-
cording to the Sharpe ratio) by combinations of their
derivatives. Nevertheless, these authors dealt with a
dynamic framework, and the investor had to rebal-
ance her/his position frequently, provoking frictions
and other transaction costs.

In this paper we will prove that derivatives also
allow us to improve the portfolio (risk, return) if
one is looking for a buy and hold strategy, i.e.,
if the investment is not going to be rebalanced
within a significan time interval. Since the re-
turn variance (or the return standard deviation) is
not a good risk measure when dealing with deriv-
atives and other asymmetric securities because it is

not compatible with the second order stochastic dom-
inance (Ogryczak and Ruszczynski, 1999), we have
selected alternative risk measures such as the condi-
tional value at risk (CV aR, Rockafellar and Uryasev,
2000) the weighted CV aR (WCV aR, Rockafellar et
al., 2006), and other recently introduced risk measures
(Goovaerts and Laeven, 2008, Aumann and Serrano,
2008, Artzner et al., 1999, Rockafellar et al., 2006,
etc.). Furthermore, in order to get a model-free ap-
proach, we will also deal with worst case risk mea-
sures such as the robust CV aR (RCV aR, Balbás et
al., 2016b).1

The paper outline is as follows. Section 2 will be
devoted to fixin notations and assumptions. The buy
and hold portfolio choice problem will be presented
and studied in Section 3. The most important results
will be the necessary and sufficien optimality condi-
tions of Theorem 1 and Corollary 2, as well as the
characterization of Theorem 5, where we will show
that the absence of derivatives in the optimal strategy

1It is worth to pointing out that many classical actuarial and/or
financia problems have been revisited with the new risk measure-
ment methodologies (Kalichenko et al., 2012, Guan and Liang,
2014, Peng and Wang, 2016, Zhuang et al., 2016, etc.).
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and Xiao, 2016, etc.), the optimal investment strategy
will simultaneously maximize the expected return and
minimize the global risk. Thus, our main problem will
be 

Min ρ
(∑m

j=0 yjSj

)
∑m

j=0 yjpj ≤ 1

IE
(∑m

j=0 yjSj

)
≥ R

yj ∈ IR, j = 0, 1, ...,m

(6)

R > 1 denoting the desired expected return. Problem
(6) is convex due to Assumption 2. Bearing in mind
this assumption, (1), (2), (3) and (4), and proceeding
as in Balbás et al. (2013), one can prove the existence
of a linear dual problem characterizing the solutions
of (6). Hence, let us present the result below whose
proof will be omitted because a similar one is avail-
able in the cited reference.

Theorem 1 Consider Problem
Max Rµ− λ

IE
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Sj
pj

(z + µ)

)
= λ, j = 0, 1, ...,m

λ ≥ 0, µ ≥ 0, z ∈ ∆ρ

(7)

(λ, µ, z) ∈ IR× IR× L2 being the decision variable.
a) If Problem (6) is feasible bounded then Prob-

lem (7) is feasible, bounded and solvable, and the op-
timal values of (6) and (7) coincide.

b) Suppose that y∗ is (6)-feasible and (λ∗, µ∗, z∗)
is (7)-feasible. Then, y∗ solves (6) and (λ∗, µ∗, z∗)
solves (7) if and only if the complementary slackness
conditions below
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hold. �

The firs constraint of Problem (6) allows us to
simplify the dual problem.

Corollary 2 Consider Problem
Max (R− 1)µ− 1
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)
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(8)
(µ, z) ∈ IR× L2 being the decision variable.

a) If Problem (6) is feasible and bounded then
Problem (8) is feasible, bounded and solvable, and
the optimal values of (6) and (8) coincide.

b) Suppose that y∗ is (6)-feasible and (µ∗, z∗) is
(8)-feasible. Then, y∗ solves (6) and (µ∗, z∗) solves
(8) if and only if the complementary slackness condi-
tions below
∑m
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hold.

Proof. Suppose that λ = 1 + µ must hold for every
(7)-feasible element (λ, µ, z) ∈ IR× IR× L2. Then,
the result will trivially follows from Theorem 1 above.
Besides, the relationship between λ and µ is an obvi-
ous consequence of (3) and the firs constraint of (7)
for j = 0. �
Remark 3 Notice that the solution (µ∗, z∗) of (8)
does not depend on R > 1, and therefore this opti-
mization problem essentially remains the same if the
objective function is replaced by µ. Furthermore, due
to (3), the fi st constraint of (8) becomes obvious if
j = 0, and therefore straightforward manipulations
imply that (8) and Problem

Max µ

IE

(
Sj
z + µ

1 + µ

)
= pj , j = 1, ...,m

µ ≥ 0, z ∈ ∆ρ

(10)

are equivalent.
If (µ∗, z∗) solves (10), then Corollary 2a implies

that
ρ∗ (R) = (R− 1)µ∗ − 1 (11)

will be the relationship between the desired return
R > 1, and the associated optimal risk level ρ∗ (R).
Notice that (11) is an affin expression. This result
was already pointed out by Balbás et al. (2010) in
a more general setting. Since µ∗ is the slope of the
straight line (11), this parameter will be called the
market price of risk. �

As said in Section 2, S1 is a risky index (or share)
and the underlying asset of Sj , j = 2, 3, ...,m. Since
the (null) riskless rate may be attained with the risk-
less asset, it is natural to assume that investors will not
buy S1 for a similar or lower expected return. There-
fore, the assumption IE (S1) > p1 is natural too. Be-
sides, a positive relationship (slope) between the de-
sired expected return and the optimal risk is also con-
sistent with many classical finding in portfolio the-
ory. Thus, bearing in mind (11), it seems natural to
impose that µ∗ > 0. To sum up;
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and therefore the set{
y ∈ L2; IE (zΠy) = IE
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=
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will be a closed proper sub-space (hyperplane) of L2.
In other words, the inequality

IE (zΠy) 6= IE

(
z∗ + µ∗

1 + µ∗
y

)
will hold for most of the derivatives y ∈ L2 of S1,
and therefore (17) will very easily fail. Moreover, no-
tice that the existence of an unbounded from below
Log (zΠ) only involves the pricing rule Π of (15), and
therefore the failure of (17) will hold for every risk
measure satisfying Assumption 2 (for example, the
CV aR, theWCV aR or the RCV aR).

To sum up, Theorem 5 implies that the buy and
hold optimal strategy will contain derivatives if the
real quotations of the derivative market respect the
predictions of some important pricing model of Finan-
cial Economics, and this findin is independent of the
selected risk measure ρ satisfying Assumption 2. �

4 Numerical experiment

Let us illustrate the results of Section 3 with a very
simple example. We will deal with an arbitrage free
and almost model-independent option market. As
above, suppose that S0 = 1 is a riskless asset and con-
sider a security S1 whose behavior is given by a geo-
metric Brownian motion (GBM ) with a current price,
drift and volatility equaling one dollar, 2% and 40%,
respectively. Consider also a derivative market where
European calls and puts can be traded. The unique
maturity is one year, and the available strikes are

Calls Puts
0.5 1.2
0.7 1.5
1 1.9


Suppose that the market quotations perfectly fi the
Black and Scholes model, i.e., all of the market prices
equal the theoretical ones given by the Black and Sc-
holes formula. Accordingly, they become

Calls Puts
0.504700865 0.291880947
0.333711519 0.539261689
0.158519419 0, 912489695

 (18)

Obviously, since the Black and Scholes model is arbi-
trage free, this market is arbitrage free as well. Con-
sider an investor who is interested in composing an
efficien portfolio. The selected risk measure ρ is the
CV aRα, α being the level of confidence Suppose
that α = 85%. Despite the fact that this investor can
verify that the two matrices above lead to a constant
implied volatility σ = 0.4, and therefore the data con-
fir in this case the Black and Scholes model, let us
assume that he/she is still very ambiguous with re-
spect to that. Accordingly, he/she will accept devia-
tions between the predictions of the log-normal distri-
bution and the realized value of S1 in one year. He/she
considers that the error between the probabilities of
the log-normal distribution and the real probabilities
may become 100%. In other words, for every Borel
subset B ⊂ IR, the real probability Q (S1 ∈ B) of
the event S1 ∈ B will be laying within the spread
[0, 2IP (S1 ∈ B)], where IP (S1 ∈ B) is the theoreti-
cal probability under log-normality. In such a case,
instead of the CV aR85% risk measure, the investor
will use the robust risk measure RCV aR85%. In gen-
eral, RCV aRα (y) :=

Max
{
CV aR(Q,α) (y) ; 0 ≤ dQ

dIP ≤ 2
}
,

(19)

where Q is a IP−continuous probability measure and
CV aR(Q,α) (y) is the CV aRα of y under Q. Bal-
bás et al. (2016b) have shown that the RCV aRα (y)
above is well define for every y ∈ L2, along with
the fulfillmen of Assumption 2. Moreover the sub-
gradient (1) is composed of those random variables
z ∈ L2 satisfying the conditions

IE (z) = 1

0 ≤ dQ
dIP ≤ 2

0 ≤ z ≤ 1
1−α

(
dQ
dIP

) .

It is easy to see that the set above coincides with
{
z ∈ L2; 0 ≤ z ≤ 2

1−α , IE (z) = 1
}

={
z ∈ L2; 0 ≤ z ≤ 1

1−(1+α)/2 , IE (z) = 1
}
.

Since this is the sub-gradient of theCV aR(1+α)/2 risk
measure (Rockafellar et al., 2006),

RCV aRα = CV aR(1+α)/2 (20)

and the high ambiguity level of this example only
implies that the level of confidenc must properly
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and the investor should properly add some derivatives.
Though there is still a controversy, this findin had
been pointed out in dynamic frameworks, but a main
novelty is that one does not need to rebalance any po-
sition before the expiration date of the incorporated
derivatives. This is very important in practice because
transaction costs and other market imperfections may
provoke significan capital losses when trading deriv-
atives.
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