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Abstract   

The current project consists on the design of a numerical model to solve the steady 

streaming that is produced when an oscillating flow faces solid cylinders. This model was 

created by using finite element modelling techniques through the use of Freefem++ 

software. The development of the code to solve the flow involves the implementation of 

the Navier-Stokes equations and the creation of a mesh, which define the geometry of the 

problem. Three different geometries are presented. The first one consisting on one single 

cylinder in the middle of the microdevice, the second geometry consists of two cylinders 

positioned side by side separating by a distance  𝑔𝑎 , and the last one consist of four 

cylinders, two of them positioned in the x axis and the other two positioned in the y axis. 

In this last geometry some parameters, that define the geometry, are modified, to see 

how is affected the resultant flow.  
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Chapter 1  

Introduction 

1.1 Background 

The ability to trap and confine single particles for their later analysis is increasing in 

importance in the last decade for applied science; it is a very important process in many 

microfluidic lab-on-a-chip devices. There are several methods for particle trapping; the 

most important ones are based on: magnetic, optical, electrokinetic, acoustic and 

hydrodynamic fluid flow [1]. Thanks to these methods and its functionalities, major 

advances in physics and biology in a molecular to cellular level have been possible. 

This project focuses in the hydrodynamic fluid flow method, in which trapping a particle 

is achieved through the use only of hydrodynamic forces.  The main objective of this 

work is to analyze the steady streaming flow that is produced in these mentioned before 

methods to trap particles, and how different configurations may affect to the streamlines 

or to the microeddies produced.  

Current hydrodynamic methods can be split in two categories: contact-based or non-

contact-based methods. The firs type, contact-based, use fluid flow to immobilize a 

particle against a wall, whereas the other method, non-contact-based, use fluid flow to 

create microeddies, thanks to this vortical flow, particles are confined at the center of the 

microeddie, where there is a stagnation point, (point in the flow where there is no 

velocity). 

Results of magnetic, optical, electrokinetic and acoustic methods are acceptable, but they 

are very expensive and they need very advanced equipment [2]. Methods to achieve 

particle trapping using purely hydrodynamic forces are much cheaper that those, 

moreover they have comparable trapping capabilities with methods in which there are 

special and very expensive devices. There is another advantage of using hydrodynamic 

methods, it is that the immobilization of the particle is achieved without the need for 

potentially perturbation of electric and magnetic fields [3]. 

The proposed numerical model done in this project to solve the flow  is able to predict 

without the need to perform an experimental test, where are the possible locations to 
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capture micro particles just by identifying small vortical flow regions, with enough 

trapping force to maintain them at a fixed position for their posterior analysis. This 

previous mentioned vortical flow is created as a result of a fast small-amplitude 

oscillating flow around geometric forms. This project has been specially done to solve the 

flow in the regime of high streaming Reynolds number. The reason to work in this regime 

is the relation between the streaming Reynolds number and the trapping force, since high 

Reynolds implies the trapping forces and the velocities to increase one order of 

magnitude [4].  

Trapping forces directly depend on the streaming velocity in the microeddies. These 

vortices can be generated by passing fluid through sudden expansions or contractions, 

cavities or protrusions [4]. The main disadvantage of this method of creating microeddies 

is that the trapping capacity is directly coupled to the flow rate going through the 

channel, what could compromise the controllability of the flow if there is need a big 

trapping force. For the code developed, this is not an inconvenient since the analysis of 

the flow is numerical instead of experimental, but this is neither the only option nor the 

best option.  

Therefore in this project another option to create those necessary vortices is studied. This 

option is taking advantage of the steady streaming that is developed when an oscillating 

flow face solid objects, what also crates vortical flow, and it is much easier to control the 

parameters that govern the flow. These microeddies strength does not directly depend on 

the flow rate passing through the channel, but on the streaming Reynolds and on the 

variations in the frequency and amplitude of the oscillation, which in fact, are easier to 

control than the flow rate, if it has to be very high.    

This is a project of investigation since there have not been previous authors to guide our 

steps. It is true that we are not pioneers in working with hydrodynamic fluid trapping 

methods, and there are lots of researches done about steady streaming flow about 

cylinders and how particles are trapped with these types of methods. What is really 

innovative in this project is working in the regime where the streaming Reynolds number 

has a high value, as mentioned before. 

The main problem is that this regime of 𝑅𝑠 is still unexplored in the literature on particle 

trapping applications. One of the reasons why no authors have written about this 

hydrodynamic tweezers method in high streaming Reynolds number regime could be the 

huge difficulty at the time to control the flow, when the flow is govern by a high 

streaming Reynolds, just a very small variation in the required value for a control, could 

rapidly lead to turbulent flow or undesired flow topologies [4]. 
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Therefore, to control properly the flow it is needed a high level of accuracy, since there is 

a thin line separating an inoperative device from a perfectly operative trapping device. 

Because it is an innovative method of trapping particles there is no a regulatory 

framework where all the restrictions, rules or techniques that are applicable to these 

methods appear and are specified. Due to this fact reasonable values for the parameters 

have been taken, without any type of restriction. 

 

Some of the possible uses for trapping particles could be from the diagnosis of diseases, 

DNA sequencing, to the detection of contaminants in drinking water, among others. 

 

1.2 Objectives 

 

The main goal of this project is to develop a numerical model for an oscillating flow 

around different solid surfaces, and being able to compute the solution of this flow. 

As a second objective there is the need to create microvortices, modifying the geometry 

of the problem, to be able to trap particles in those vorticial flows. 

 

To achieve these ends it was necessary to create: 

 

 Numerical tools to model the streaming flow, to model the streaming Reynolds 

number (𝑅𝑠) and the non-dimensional amplitude (ε), all this in combination with 

a superposed oscillating flow. 

 Different geometries, to prove the numerical model, in which the flow is solved. 

 

To reach those goal, it was necessary to understand: 

 

 How microeddies are created around these solid surfaces. 

 The steady streaming motion produced by the oscillating flow around these solid 

surfaces. 

 How different configurations of the position of solid surfaces may affect to the 

flow and the microeddies. 

 How FreeFem++, the software used to simulate the flow, works. 
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1.3 Planning 

The project was divided from the very beginning into different phases, each of them well 

defined and different from the others; this was done for a better understanding and a 

better track of the evolution of the project.  

These phases are explained below: 

 

 The first phase to complete this project was the collection of information, 

necessary to provide the require background of trapping particle methods, steady 

streaming flows, potential flow… 

 

 Once the first phase was complete, an exhaustive study on FreeFem++ was done 

from the basis, since this Finite Element Model and the language that this 

program uses, C++, was completely unknown for the author. 

 

 The third step was to start with the mesh in FreeFem++ of the different 

geometries to be studied.  

 

 After this, it was the turn to start working on the code, understanding the 

Navier-Stokes equations, how they could be implemented, the numerical iterative 

Newton Raphson method to solve the equation, how to define the mathematical 

problem in Freefem++… 

 

 The fifth phase was the understanding of results, in order to provide with them a 

better mesh adaptation. 

 

 Once the mesh adaptation and the code run properly, it was implemented in all 

the different geometries to solve the flow around them. 

 

 Finally, the last phase of the project was the understanding of the results. 

 

 Write the current memory. 

 

 

 

 

 

 

Table 1.1 Hours dedicated to the project 

Phases of the project Hours 

Bibliographic research 30 

Learning how to use FreeFem++ 45 

Modeling different geometries 25 

Code to simulate the oscillatory flow 100 

Mesh adaptation and implementation 30 

Report writing 80 

Meetings 30 

Total 340 
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1.4 Budget 

Following the planning of the previous section, a fictitious budget is done to simulate this 

numerical analysis of the oscillating flow due to the oscillations of cylinders. 

This is an estimation of what would have cost to carry out this project in real life, based 

on a fictitious salary of an engineer and on an estimation of the time consumed in all the 

phases excluding the time used for writing the current memory. 

The proposed salary is 30 Euros per hour of work, the license to use FreeFem++ is at its 

own name points, free, it is assumed that the company in charge of perform this project 

has already the computers with the required power to perform the job, so no additional 

expenses are taking into account. 

260 ℎ 𝑜𝑓 𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 𝑤𝑜𝑟𝑘 · 30
€

ℎ
= 7800 € 

The virtual budget to carry out this project would be of 7800 €. 
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1.5 Outline  

This project is divided in 5 chapters through which the evolution of the project and its 

phases of development are shown.  

These 5 chapters are:  

1) Introduction: a global view of the problem to be solve with this work is 

presented, why it is needed a method to trap particles, what are the methods 

commonly used, why in this project is chosen an hydrodynamic method… also in 

this first chapter are presented the objectives of the projects, the planning carried 

out to perform the work and the virtual budget that would have cost this project 

in the real life.  

 

2) Theory: in this second chapter, the description of the problem to be solved is 

presented. In addition it is also given here a theoretical background in steady 

streaming flows and potential flow. 

 

3) Numerical method: here the mathematical tools to solve the problem are 

explained. Some of these mathematical tools are: Newton-Raphson iterative 

method, what is Freefem++, how it is used and how equations are implemented 

in Freefem++… 

  

4) Models of study and results: in this fourth chapter a detailed view of the 

proposed geometries is exposed, it is shown how they are built, and how the 

meshes are refined in the critical areas to produce better and more accurate 

results. In addition here the results of solving the oscillatory flow around the 

meshes are presented with some discussions of how the different positions and 

configurations affect the resultant flow. Here in the fourth chapter it is also 

explained the validation of the model. 

 

5) Conclusion and future projects: the main conclusions extracted from all the 

work in the project are shown in this section, as well as a briefly explanation of 

how the author thinks that this project may continue or be improved in a 

possible future work. 

 

6) Bibliography: Here in this last chapter the references used to understand and 

complete all the phases of the project are listed. 
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Chapter 2 

Theory 

In the second chapter it is given a short background as well as it is detailed the problem 

definition. 

2.1 Steady streaming  

Steady streaming is defined as the time-average of a fluctuating flow often results in a 

nonzero mean. Such steady streaming can be produced by three different causes [5]: 

1. If there exists an oscillatory non conservative body force. 

2. If the force is conservative, indirectly through the action of Reynolds stresses in 

the body in contact with the fluid. 

3. If the force is conservative, the action of Reynolds stresses may act also in a thin 

boundary layer at no slip boundaries. 

These are the three ways of creating a steady streaming flow in homogeneous fluids. 

The concept of steady streaming was first discussed by Riley in 1967, he treated with 

flows around solid bodies performing periodic translational oscillations in the flow. 

The Reynolds stress is defined as “the net rate of transfer of momentum across a 

surface in a fluid resulting from fluctuations in the fluid” [6].  

In other words, the Reynolds stress is obtained from applying Navier-Stokes equations to 

take into account the fluctuations in fluid momentum, and the Reynolds stress is rate of 

momentum transfer. The Navier-Stokes equations arise from applying Newton´s second 

law to fluid motion, its solution describe the motion of viscous fluid substances by a 

velocity field. It is a velocity field, since it is defined at every point in a region of space 

and an interval of time. 

 

2.2 Problem formulation 

This project treats the oscillatory flow about different geometries. A Cartesian coordinate 

system (x,y) is created with its origin at the midpoint between the cylinders. The flow is 

symmetric about x=0 and y=0 planes.  The flow has a velocity magnitude 𝑈 · 𝑐𝑜𝑠(𝑤𝑡) , 

and is directed perpendicular to the x-axes. The characteristic lengths of the problem are: 

the radius of the cylinders (a), the distance between the centers of the cylinders (g), the 
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amplitude of displacement of the fluid particles in the fluctuating flow, 𝑑 =
𝑈

𝜔
, and the 

measure of the Stokes layer at the surface of the cylinder, 𝛿 = √
𝜈

𝜔
. 

 

       Figure 2.1 Representation of parameters d and a [1] 

Here in this figure are represented some of the parameters mentioned before, it is 

represented the amplitude of displacement of the fluid particles, d, the radius of the 

cylinder, a, and the direction of the flow velocity, perpendicular to the x axis. 

  

Figure 2.2 Representation of parameter g                                             Figure 2.3 Representation of the Stokes layer [2] 

The Stokes layer thickness is defined by Daniel T. Schwartz as a “natural scaling 

parameter for oscillating flows that describes how far viscous damping of an oscillating 

velocity gradient persist from a surface” 𝛿 = √
𝜈

𝜔
, where 𝜔 is the oscillation frequency and 

𝑣 is the kinematic viscosity. 

Here, in these two pictures are represented what is the Stokes layer thickness and, what 

is g, the distance between cylinder. It is also represented where is positioned the center of 

the reference frame. 

Thanks to the dimensional analysis in our project it is concluded that there are three 

main parameters that mostly govern the steady streaming induced by an oscillating flow 
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around an object; they defined by three dimension characteristic values of the problem,  

𝑈 as velocity, 𝜔−1 as time and “𝑎” as length: 

 The non-dimensional oscillation amplitude:  

𝜀 =
𝑈

𝜔𝑎
=

𝑑

𝑎
                                         [1] 

where d is the amplitude of oscillations, a is the characteristic length of the object in 

contact with the oscillating flow. 

 The streaming Reynolds number: 

𝑅𝑠 =
𝑈2

𝜔𝜈
=

𝜀2𝜔𝑎2

𝜈
= 𝜀 ·

𝑈𝑎

𝜈
= 𝜀 · 𝑅𝑒                                          [2] 

where ν is the kinematic viscosity of the fluid, and ω is the angular oscillation frequency. 

 The non-dimensional separation between cylinders: 

𝑔𝑎 =
𝑔

𝑎
                                                                          [3] 

being g the distance between the cylinder centers. 

There is another non-dimensional parameter important to define, it is the non-

dimensional time, represented by 𝜏 

Epsilon is the dimensionless oscillation amplitude, which is assumed in this project, to be 

very small in comparison to order unity (ε <<1).   

A time dependent steady streaming motion is created due to the fluctuating Reynolds 

stresses in the stokes layer at the surface of the cylinders; this steady streaming motion 

will persist beyond the stokes layer and will be responsible for an outer streaming motion 

with a velocity of the order ε ·U [7]. 

The second parameter governing the flow is the streaming Reynolds number 𝑅𝑠which is 

based on the latter velocity 𝜀 · 𝑈, this 𝑅𝑠  is the appropriate Reynolds number for the 

steady streaming. 

And finally the third dimensionless parameter, 𝑔𝑎, is the ratio of the gap width to the 

cylinder radius, and is assumed to be of the order unity. 

Why these parameters are important? 

Oscillation Amplitude (ε): is important because this parameter may cause the flow to be 

inviscid or not, this implies having viscous effects at the surface of the object if the flow 

is not inviscid (no viscous effects). Oscillation amplitude can also cause the flow to be 
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steady streaming. If ε is small, the flow is essentially inviscid with no viscous effects, 

while if it is one order of magnitude higher, the flow is a steady streaming whose 

velocities are on the order of εU, and U, defined before, is equal to 𝜔𝜀𝑎  [8]. When ε 

(oscillation amplitude) is too large, flow separation can occur. 

Streaming Reynolds number (𝑅𝑠): On the streaming Reynolds number depends the fact 

that the flow behaves like a Stokes flow or not, and also it affects the velocities that are 

presents in this flow, hence the trapping forces [8]. This parameter is quite important 

because our analysis is only valid if the Stokes layer is very thin, hence the inner steady 

streaming is not playing an important role in determining the flow, what actually defines 

the flow is the outer steady streaming, what is the flow outside the stokes layer. Vorticity 

is confined in this layer and it is possible to treat the flow as it was an irrotational flow.  

If the streaming Reynolds number 𝑅𝑠  is much smaller than 1, the streaming flow is 

essentially Stokes flow, and the associated velocities are very weak, what makes trapping 

forces almost inexistent. At 𝑅𝑠 ≪ 1 the Stokes layer is quite huge, the flow is essentially 

the inner steady streaming instead of the outer steady streaming, what is what is 

analyzed in this project. Microeddies are formed around the object, and the trapping 

force is directly proportional to the streaming velocities in that eddies. As the Reynolds 

increases, eddies become thinner layers. Last but not least, in the regime where 𝑅𝑠  is 

much higher than 1 is where the strongest eddies are created, and thus the highest 

trapping forces. As mentioned before the flow govern by a high streaming Reynolds is 

less controllable, just a very small variation could lead to undesired flow topologies. 

 

 

 

 

 

 

 

 

Figure 2.4 Influence on the flow of 𝑅𝑒 and 𝜀 [3] 

This figure resumes what is explained above about the parameters that are important for 

the flow control. As the oscillation amplitude increases, flow separation is more likely to 
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happen. If it is small the flow behaves like inviscid flow.  On the other hand streaming 

Reynolds number is important because it determines whether or not there is a boundary 

layer for a fixed value of the oscillation amplitude. As 𝑅𝑠 increases 2 boundary layer are 

formed, however if 𝑅𝑠 is much smaller than one there is no boundary layer, it behaves 

like Stokes flow. 

Non dimensional separation between cylinders (𝑔𝑎 ): on this parameters depend the 

different geometries proposed to be studied, and the values of the velocity and 

streamlines developed in the resultant flow. 

Coming back to the description of the problem; the dimensionless Navier-Stokes equation 

governing the oscillatory flow is written below in terms of the stream function (𝜓); the 

stream function is related to the velocity as follows:  

𝑣 = (𝑣𝑥, 𝑣𝑦), where             𝑣𝑥 =
𝜕𝜓

𝑑𝑦
      and      𝑣𝑦 = −

𝜕𝜓

𝑑𝑥
 

Navier-Stokes equation: 

𝜕

𝜕𝑡
(∇2𝜓) − 𝜀 

𝜕(𝜓, ∇2𝜓)

𝜕(𝑥, 𝑦)
= 𝜀2∇4𝜓                                             [4] 

The boundary conditions require that: 

 𝑣 = 0 on the surface of the cylinders 

 Far away from the cylinders 𝜓 = 𝑥 · cos (𝜏), what actually implies that 𝑣𝑥 = 0, 

since 𝑣𝑥 =
𝜕𝜓

𝑑𝑦
, there is only velocity in y component. 

Integrating the Navier Stokes equation subject to the boundary conditions explained 

above, gives as a result the complete temporal evolution of the flow. If the time average 

over an oscillation is performed the steady streaming motion is obtained. As 𝜏 → ∞, the 

influence of the particular initial condition vanishes, and therefore the time average over 

the next cycles is kept constant, it does not change any longer. In this project is analyzed 

this long term steady streaming behavior. Solving the time dependent problem of the 

Navier-Stokes numerically during a sufficient long time span to obtain the asymptotic 

steady streaming behavior is costly [9]. This is why an approximation method is used, this 

approximation takes advantage of the limit 𝜀 ≪ 1, in which the stokes layer thickness, of 

the order of (
𝛿

𝑎
= 𝜀 · 𝑅𝑠

−1/2
 ), becomes very small, and in which the steady streaming 

motion can be obtained by a single integration of the steady Navier-Stokes equations, 

imposing as a boundary condition on the surface of the cylinders the streaming velocity 

that persist at the edge of the stokes layer. To calculate the solution when 𝜀 ≪ 1, the 

stream function is expanded as follows: 
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𝜓(𝑥, 𝜏) = 𝜓0(𝑥, 𝜏) + 𝜀 {𝜓1
(𝑢)

(𝑥, 𝜏) + 𝜓1
(𝑠)(𝑥)} +  𝒪(𝜀2)                         [5] 

Where the steady streaming term is indicated with the superscript (s) and the unsteady 

term is indicated with the superscript (u) [9]. 

At the leading order term, (obviating terms that have epsilon) the flow is inviscid, and is 

given by: 

𝜓0(𝑥, 𝜏) = 𝜓̌0(𝑥) · cos (𝜏)                                                    [6] 

Where 𝜓̌0 correspond to the potential flow around the geometry. Then the new equation 

to solve is: 

∇2𝜓̌0 = 0                                                                      [7] 

To be solved using the same boundary conditions that were explained before, in the far 

field they are: 

𝜓̌0~  𝑥        𝑎𝑠  |𝑥| → ∞ 

At the surface of the cylinders, the no-slip condition cannot be satisfied. Instead only the 

normal part of the velocity 𝑣̃0 · 𝒏̂ is set to zero, what actually makes sense, in this way 

no fluid enters or goes out the cylinder. The tangential part is then the slip velocity,  

𝑉0 = 𝑣̃0 · 𝒕̂. This velocity is accommodate in the inner viscous stokes layer mentioned at 

the beginning. However what is studied in this project is the steady streaming part of the 

solution of the outer flow, the Stokes layer is assumed very small thanks to 𝜀 ≪ 1. An 

analysis of leading order solution of the inner stokes layer was done by Wilfred Coenen, it 

is explain in detail on the equation 3.10 of Coenen and Riley (2009) [10]. This paper shows 

that the streaming therein persists beyond the inner Stokes layer, and it is seen in the 

outer flow as a streaming velocity 𝜀 ·𝑈𝑒
(𝑠)

 at the edge of the Stokes layer, where: 

𝑈𝑒
(𝑠)

= −
3

4
𝑉0𝑡̂ · ∇𝑉0                                                            [8] 

An analytic expression for 𝑈𝑒
(𝑠)

 in a bipolar coordinate system is given by equations (3.5) 

and (3.15) in the previous mentioned paper: Coenen and Riley (2009) [10]. The steaming 

velocity 𝜀𝑈𝑒
(𝑠)

 at the edge of the stokes layer drives the outer streaming motion at 𝒪(𝜀), 

governed by the steady Navier Stokes equations with 𝑅𝑠 as Reynolds number, 

𝜕(𝜓(𝑠), ∇2𝜓(𝑠))

𝜕(𝑥, 𝑦)
+

1

𝑅𝑆
∇4𝜓(𝑠) = 0                                              [9] 

What is the same that: 
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∇ · 𝑣(𝑠) = 0                                                                               [10] 

𝑣(𝑠) · ∇𝑣(𝑠) = −∇𝑝(𝑠) +
1

𝑅𝑆
∇2𝑣(𝑠)                                                           [11] 

If the primitive variables are used, 𝑣(𝑠) = (𝑢(𝑠), 𝑣(𝑠)) and 𝑝(𝑠) 

The outer steady streaming velocity 𝑣(𝑠)  can be obtained by solving the two previous 

equations subject to the boundary conditions  

 𝑣(𝑠) = 𝑈𝑒
(𝑠)

𝑡̂  on the surface of the cylinders 

 𝑣(𝑠) → 0 far away from the cylinders 

This is the problem that has to be solved. To calculate 𝑉0, needed for equation [8] it is 

necessary to solve the potential flow, besides some of the results given to represent the 

flow will be the potential flow and the streamlines. So in the following paragraphs it is 

explained how the resultant potential flow, that later will be shown as a solution, is 

obtained.   

External flows around objects can be treated as inviscid if they are frictionless; it is 

assumed that the contact between the fluid and the object is smooth; or irrotational if 

the fluid particles are not rotating.  

∇ × V⃗⃗ = 0                                                                    [12] 

This flow can be assumed irrotational mainly because all the viscous effects are contained 

in the thin Stokes layer, as explained before. This is the assumption followed in this 

project, which is why it can be said that the external steady streaming is irrotational, 

and therefore the potential function can be obtained from this flow. 

Potential flow is defined as a function that is continuous and that satisfies the 

conservation mass, conservation of momentum laws, with the assumption of 

incompressible, irrotational and inviscid flow. 

Potential flow is then defined by the function 𝜙 = 𝜙(𝑥, 𝑧, 𝑡) , whose components in 

Cartesian coordinates are expressed as follows: 

𝑢 =
𝜕𝜙

𝜕𝑥
,      𝑣 =

𝜕𝜙

𝜕𝑦
,      𝑤 =

𝜕𝜙

𝜕𝑧
 

As the velocity has to satisfy the conservation of mass it can be written: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 𝑈                                                          [13a] 

In other words: 
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𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
+

𝜕2𝜙

𝜕𝑧2
= 𝑈                                                     [13b] 

Which is actually the Laplace equation: 

∇2𝜙 = 𝑈                                                                       [13c] 

There are lines where 𝜙 is kept constant, that lines are called potential lines, for this 

project, where only 2 dimensions are considered, potential lines are given by: 

𝑑𝜙 =
𝜕𝜙

𝜕𝑥
𝑑𝑥 +

𝜕𝜙

𝜕𝑦
𝑑𝑦                                                          [14] 

𝑑𝜙 = 𝑢𝑑𝑥 + 𝑣𝑑𝑦                                                               [15] 

What finally becomes: 

𝜕𝑦

𝜕𝑥
= −

𝑢

𝑣
                                                                       [16] 

Since, as mentioned above 𝑑𝜙 is kept constant and equal U along a potential line [10]. 

Making advantage of the fact that potential lines are perpendicular to the modulus of the 

velocity, it can be defined another function 𝜓, called streamfunction that determine the 

streamlines, they are related with potential lines by a perpendicular relationship, 

streamlines are perpendicular to potential lines, therefore they are tangent to the 

velocity, what makes the analysis much more intuitive. 

Streamlines are then defined by: 

𝜕𝑦

𝜕𝑥
=

𝑣

𝑢
                                                                       [17] 

Streamlines are always perpendicular to potential lines except in the case of a stagnation 

point, where there is no velocity. 

 

 

 

 

 

 

 



15 
 

Chapter 3 

Numerical method 

In this third chapter the software used is described, its characteristics and the advantages 

of it use. Here it is also explained briefly the method to solve the equations of the 

problem, the Newton-Raphson method. 

3.1 Software used 

FreeFem ++ as its name implies is free and is based on the finite element method. 

 

FreeFem++ is based on C++, however it has its own language, it was developed in the 

Université Pierre et Marie Curie. It runs on GNU/Linux, Solaris, OS X and MS Windows 

systems. 

FreeFem ++ is the software used to compute the flow analysis, it is a high level IDE 

(integrated development environment) capable of solving numerically a huge quantity of 

PDE (partial differential equations) in two or three dimensions, for our project only 

PDEs in two dimensions were required to be solved. This software is perfect to deal with 

finite element models due to its advanced mesh generator, which is able to adapt and 

improve the mesh once the computation has been performed. Besides this FreeFem has 

an elliptic solver interfaced with fast algorithms, for instance themulti-frontal method 

UMFPACK, SuperLU… 

A partial differential equation is an equation where there exist a relation between a 

variable or several variables and its partial derivatives. Since our problem is modeled by 

several PDEs this software is particularly interesting. The following characteristics have 

been obtained from: freefem++.doc.pdf [11] 

 

Some of the characteristics of FreeFem++ are [11]: 

 

 Problem description (real or complex valued) by their variational formulations, 

with access to the internal vectors and matrices if needed. 

 

 Multi-variables, multi-equations, bi-dimensional and three-dimensional static or 

time dependent, linear or nonlinear coupled systems; however the user is required 

to describe the iterative procedures which reduce the problem to a set of linear 

problems. 

 

https://en.wikipedia.org/wiki/GNU/Linux
https://en.wikipedia.org/wiki/Solaris_%28operating_system%29
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/MS_Windows
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 Easy geometric input by analytic description of boundaries by pieces; however 

this part is not a CAD system; for instance when two boundaries intersect, the 

user must specify the intersection points. 

 

 Automatic mesh generator, based on the Delaunay-Voronoi algorithm; the inner 

point density is proportional to the density of points on the boundaries. 

 

 Metric-based anisotropic mesh adaptation. The metric can be computed 

automatically from the Hessian of any FreeFem++ function. 

 

 High level user friendly typed input language with algebra of analytic and finite 

element functions. 

 

 Multiple finite elements mesh within one application with automatic interpolation 

of data on different meshes and possible storage of the interpolation matrices. 

 

 A large variety of triangular finite elements: linear, quadratic Lagrangian 

elements and more, discontinuous P1 and Raviart-Thomas elements, elements of 

a non-scalar type, the mini-element,…  

 

 Tools to define discontinuous Galerkin finite element formulations P0, P1dc, 

P2dcand keywords: jump, mean, intalledges. 

 

 A large variety of linear direct and iterative solvers (LU, Cholesky, Crout, CG, 

GMRES,UMFPACK, MUMPS, SuperLU…) and eigenvalue and eigenvector 

solvers(ARPARK). 

 

 Near optimal execution speed (compared with compiled C++ implementations 

programmed directly). 

 

 Online graphics, generation of, .txt,.eps,.gnu, mesh files for further manipulations 

of input and output data. 

 

 Many examples and tutorials: elliptic, parabolic and hyperbolic problems, Navier-

Stokes, elasticity, Fluid structure interactions, Schwarz's domain decomposition 

method, eigenvalue problem, residual error indicator, etc… 

 

Another mathematical tool very useful to solve the problem of analyze the flow has been 

the Newton-Raphson iterative method of solving equations. 

 

3.2 Newton method in Freefem++ 
 

Newton-Raphson method is widely used for solving equations numerically. This method 

is based in the idea of linear approximation.  
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Newton method starts with an estimation of the root, sometimes called “guess”, this 

initial estimation has to be chosen with care, since the iterative process to find the 

solution could be very quickly if the guess is close enough to it, or could be horrid if it is 

not the case. 

Once the initial estimation of the solution (𝑥𝑛) has been chosen, an improved estimation 

(𝑥𝑛+1 ) is calculated. From this new calculated estimation it is produced another one 

(𝑥𝑛+2), until the estimation is close to the actual solution or the variation between  the 

estimations is so small that is clear that we are close enough to the solution [12].  

 

 

 

 

 

Figure 3.1Newton-Raphson iterative process [4] 

This is the easy explanation when there is only one unknown, in our equations there are 

three of them, which is one of the reasons to use Freefem++, since it will help in this 

task. 

The equations to be solve with Freefem++ are: 

∇ · 𝑣(𝑠) = 0                                                                        [10] 

𝑣(𝑠) · ∇𝑣(𝑠) = −∇𝑝(𝑠) +
1

𝑅𝑆
∇2𝑣(𝑠)                                               [11] 

With the boundary conditions  

 𝑣(𝑠) = 𝑈𝑒
(𝑠)

𝑡̂  on the surface of the cylinders 

 𝑣(𝑠) → 0 far away from the cylinders 

To solve these equations and been able to get the three variables, the Newton iterative 

method is implemented in Freefem++ as follows:  

[

𝑢
𝑣
𝑝
]

𝑛+1

= [

𝑢
𝑣
𝑝
]

𝑛

− [𝐽𝑛]−1 · 𝐹 ([

𝑢
𝑣
𝑝
]

𝑛

)                                            [18] 

Where F is the function coming from [10] and [11] and the matrix J is the jacobian 

operator. 
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Equation [18] can be written in vectorial form as: 

𝑋̅𝑛+1 = 𝑋̅𝑛 − 𝐽(̿𝑋̅𝑛)−1 · 𝐹̅(𝑋̅𝑛)                                            [19] 

Where vector X is the three unknowns in vectorial form. Equation [19] is the same that: 

𝐽(̿𝑋̅𝑛)(𝑋̅𝑛+1 − 𝑋̅𝑛) = −𝐹̅(𝑋̅𝑛)                                            [20] 

Where (𝑋̅𝑛+1 − 𝑋̅𝑛) can be expressed as the minus increment in the solution, what is 

defined as: −𝑊̅𝑛 = (𝑋̅𝑛+1 − 𝑋̅𝑛) , so: 

𝐽(̿𝑋̅𝑛)𝑊̅𝑛 = 𝐹̅(𝑋̅𝑛)                                                     [21] 

In Freefem++ this can be solved introducing the operator 𝐷𝐹(𝑟𝑖)𝛿𝑖 = 𝐹(𝑟𝑖) 

Being 𝛿𝑖 = 𝑟𝑖 − 𝑟𝑖+1 

Where DF(r) is the differential of F at point r, this is a linear application such that:  

𝐹(𝑟 + 𝛿) = 𝐹(𝑟) + 𝐷𝐹(𝑟)𝛿 + 𝑜(𝛿 )                                     [22] 

What means: 𝐷𝐹(𝑢, 𝑣, 𝑝)(𝛿𝑢, 𝛿𝑣, 𝛿𝑝) = −𝐹(𝑢, 𝑣, 𝑝) 

𝐷𝐹(𝑟) =
𝐹(𝑟 + 𝛿) − 𝐹(𝑟)

𝛿
                                                     [23] 

𝛿 · 𝐷𝐹(𝑟) = 𝐹(𝑟 + 𝛿) − 𝐹(𝑟)                                                [24] 

−𝐹(𝑟) = 𝐹(𝑟 + 𝛿) − 𝐹(𝑟)                                                   [25] 

𝐹(𝑢 + 𝛿𝑢, 𝑣 + 𝛿𝑣, 𝑝 + 𝛿𝑝) = 0                                                [26] 

This at the end becomes in the following three equations to be solved: 

(𝑢 + 𝛿𝑢) ·
𝜕(𝑢 + 𝛿𝑢)

𝜕𝑥
+ (𝑣 +  𝛿𝑣) ·

𝜕(𝑢 + 𝛿𝑢)

𝜕𝑦
=

𝜕(𝑝 + 𝛿𝑝)

𝜕𝑥
+

1

𝑅𝑠
∇2(𝑢 + 𝛿𝑢)     [27] 

(𝑢 + 𝛿𝑢) ·
𝜕(𝑣 + 𝛿𝑣)

𝜕𝑥
+ (𝑣 +  𝛿𝑣) ·

𝜕(𝑣 + 𝛿𝑣)

𝜕𝑦
=

𝜕(𝑝 + 𝛿𝑝)

𝜕𝑦
+

1

𝑅𝑠
∇2(𝑣 + 𝛿𝑣)     [28] 

𝜕

𝜕𝑥
(𝑢 + 𝛿𝑢) +

𝜕

𝜕𝑦
(𝑣 +  𝛿𝑣) = 0                                            [29] 
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Chapter 4 

Models of study and results 

In this section, the design of the different models created is explained. The complexity of 

the models is increased in order to approximate the model to the final one, with 

capabilities to create microeddies where particles can be trapped.  

The main idea behind this project is to be able to predict whether a geometry is able to 

produce microeddies around solid surfaces as the flow is oscillating inside the microdevice 

with a net zero flow. This means no additional flow is injected in the device, and the law 

of conservation of mass is fulfilled, there is no a free stream inside the microdevice. 

As mentioned above, solving the time dependent problem of the Navier Stokes 

numerically during a sufficient long time span to obtain the asymptotic steady streaming 

behavior is costly; that´s why an approximation method is used. Thanks to the fact that 

the Stokes layer thickness, of the order of (
𝛿

𝑎
= 𝜀 · 𝑅𝑠

−1/2
 ), becomes smaller than 1, the 

steady streaming motion can be obtained by a single integration of the steady Navier 

Stokes equations, what makes things easier. The only thing to do is impose as a 

boundary condition on the surface of the cylinders the streaming velocity that persists at 

the edge of the Stokes layer, which actually is: 

𝑈𝑒
(𝑠)

= −
3

4
𝑉0𝑡̂ · ∇𝑉0                                                                    [8] 

This is the modulus of the velocity. To be able to solve the problem it is required also 

the direction of this velocity. So, the first thing to perform here is to define the tangent 

vectors of the boundary where this velocity is to be settled. 

Tangent vector is divided in two components, one in each direction of the defined 

geometry: 

The tangent vector in x component is defined to be: 

tx = −sin [𝜋 − tan−1 (
𝑦 − 0

−𝑥 + 𝐶𝑐𝑥
)]                                             [30] 

The tangent vector in y component is defined to be: 

ty = cos [𝜋 − tan−1 (
𝑦 − 0

−𝑥 + 𝐶𝑐𝑥
)]                                             [31] 

Where Ccx is the distance of the center of the cylinder to the origin of the 

coordinate system.  
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Once the tangent vector is defined, it is possible to calculate the u and v 

components of the velocity; the velocity in x direction, u, is calculated as it is 

explained below: 

𝑢𝑠 = −
3

4
· (

𝜕𝜓

𝜕𝑥
· 𝑡𝑥 +

𝜕𝜓

𝜕𝑦
· 𝑡𝑦)

· [𝑡𝑥 · (
𝜕2𝜓

𝜕𝑥2
· 𝑡𝑥 +

𝜕𝜓

𝜕𝑥
·
𝜕𝑡𝑥

𝜕𝑥
+

𝜕2𝜓

𝜕𝑥𝜕𝑦
· 𝑡𝑦 +

𝜕𝜓

𝜕𝑦
·
𝜕𝑡𝑦

𝜕𝑥
) + 𝑡𝑦

· (
𝜕2𝜓

𝜕𝑥𝜕𝑦
· 𝑡𝑥 +

𝜕𝜓

𝜕𝑥
·
𝜕𝑡𝑥

𝜕𝑦
+

𝜕2𝜓

𝜕𝑦2
· 𝑡𝑦 +

𝜕𝜓

𝜕𝑦
·
𝜕𝑡𝑦

𝜕𝑦
)] · 𝑡𝑥                              [32] 

On the other hand the velocity component in y direction, v, is calculated thanks to the 

next formula: 

𝑣𝑠 = −
3

4
· (

𝜕𝜓

𝜕𝑥
· 𝑡𝑥 +

𝜕𝜓

𝜕𝑦
· 𝑡𝑦)

· [𝑡𝑥 · (
𝜕2𝜓

𝜕𝑥2
· 𝑡𝑥 +

𝜕𝜓

𝜕𝑥
·
𝜕𝑡𝑥

𝜕𝑥
+

𝜕2𝜓

𝜕𝑥𝜕𝑦
· 𝑡𝑦 +

𝜕𝜓

𝜕𝑦
·
𝜕𝑡𝑦

𝜕𝑥
) + 𝑡𝑦

· (
𝜕2𝜓

𝜕𝑥𝜕𝑦
· 𝑡𝑥 +

𝜕𝜓

𝜕𝑥
·
𝜕𝑡𝑥

𝜕𝑦
+

𝜕2𝜓

𝜕𝑦2
· 𝑡𝑦 +

𝜕𝜓

𝜕𝑦
·
𝜕𝑡𝑦

𝜕𝑦
)] · 𝑡𝑦                             [33] 

Where the only difference between the two components of the velocity is the 

projection, the component in x-direction, u, is multiplied by the tangent in this 

same direction, while for v, in y-direction the same happens with the tangent in 

y-direction. 

Once the velocity of slip is calculated it is fixed in the surface of the solid bodies. 

The next step is complete the mesh definition. 

4.1 First geometry model 

The first model consists on a simulated microdevice where the flow encounters a single 

cylinder. 

In this section how the mesh, for the first model, was developed is explained. The first 

thing to keep in mind is that there are regions with more importance than others; 

therefore a more detailed mesh is done in the region near the cylinders. It is in this region 

where there are produced the biggest and remarkable variations in velocity. This is 

mainly among other causes, because of the condition imposed in the boundary of the 

cylinders. All that happens in the inner Stokes layer is simplified in such a way that all 

the influence that this layer has in the outer region, is modulated as the slip velocity 

𝑣(𝑠) = 𝑈𝑒
(𝑠)

𝑡̂, and it is assumed in the surface of the cylinder. A very tight region above 
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the cylinders is meshed with a quite huge density of nodes to have an accurate and a 

great amount of data points to analyze better what it is really happening there. Another 

mesh with lower density of nodes is done to cover the outer region of the cylinder. Then 

another mesh is done for the region of lowest interest, where there is the external flow. 

In all the borders laying in the x=0 line it is fixed a condition of symmetry, the reason 

for this is to save time, being able to avoid a computation that is known due to 

symmetry.  

                          Figure 4.1 First mesh of the first geometry 

This first mesh has a total number of triangles of 172 and a total number of vertices of 

113 

Once the code is run with this geometry, it gives the potential flow, the tangent vector 

through the surface of the cylinder, the velocity, the streamlines… 

With this primitive mesh the results obtained were not accurate enough. The reason for 

them to not be smooth is the lack of data in some points; this is because the primitive 

aspect of the mesh, more point and an adaptation of the mesh is required. Since this 

mesh is not proper for obtaining accurate results, a new code was developed to solve this 

problem. Once the results have been obtained from running the code with the primitive 

mesh, the code search for cells where the variations in velocity are bigger to divide these 

cells into a proportional number of cells according to the variations found. This turns 

into a high number of cells, each one providing a different value in a region where before 

there was only a single value. This fact implies an accurate result and a better and 

smooth representation of the resultant flow. The adaptation of the mesh is also based on 

a criterion to assign the density of nodes. This criterion is based in several coefficients, 

different one per each one of the three main regions. The value of the coefficients is 

increasing as they are close to the cylinder surface. Every region is composed by the joint 

of borders, which are defined by mathematical functions in C++, the language of 

Freefem++. The number of vertices of the triangular cells that are going to appear in 

Oscillating flow  
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each border for the new mesh is then calculated by multiplying the coefficient of the 

region times the length of the border. In this way a better and uniform mesh is generated 

taking into account the first approximation solution. 

 

The refined mesh is: 

 

Figure 4.2 Refined mesh of the first geometry 

This refined mesh has a total number of triangles of 4428 and a total number of vertices 

of 2345. Most important than the increment in the number of triangles is the fact that 

those triangles are positioned in critical regions where the variations in velocity are 

bigger.  

If all these points’ data are exported into a matrix to Matlab, it is possible to represent 

the complete geometry of the problem. 

This is possible due to the condition of symmetry imposed in the lower border of the 

mesh.  

The final result for the representation of the streamlines and potential flow are the 

following ones: 
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Figure 4.3 Streamlines one single cylinder        Figure 4.4 Potential flow one single cylinder  

Figure 4.1 represent the result for solving an oscillatory flow around a cylinder with the 

before explained values for the main parameters that define the flow. As can be see here 

there is no region where microeddies appear, that is mainly due, among other causes, to 

the lack of influence of our oscillations in the flow, what is caused by too high velocity in 

comparison with our frequency. The result for this configuration is that two jets are 

ejected from the upper and lower part of the cylinder. 

Seeing the result it is concluded that one single cylinder has not enough strength to 

influence the flow as it is desired, so this geometry is not a possible solution and a new 

one has to be developed, one with two cylinders oscillating at the same frequency, 

together, side by side. 
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4.2 Second geometry model 

 

               Figure 4.5 Refined mesh of the second geometry  

Then the new geometry is now developed. As before the mesh is created with the three 

regions of study, very close to the cylinder, to be accurate with the values of velocities, 

another one in the surroundings of the cylinder and the third one to the external flow. In 

this model where there are two cylinders it is possible to take a double advantage of the 

symmetric characteristics given in the geometry. This model has, as before, symmetry 

about the x=0 line, but also about the y=0 line. This mesh is created with the hope that 

this time the model would be able to produce the required microeddies to trap particles. 

4.2.1 Results for the second geometry model 

The results to be study in this section are the resultant potential flow, and the obtained 

streamlines that comes from solving the steady streaming flow on this model of geometry. 

The following results have been obtained for fixed values of streaming Reynolds number 

(𝑅𝑠 = 20) and the non-dimensional oscillatory amplitude (𝜀 = 0.15), unless other values 

are specified.  
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                 Figure 4.6 Streamlines second model                                      Figure 4.7 Potential flow second model 

These figures represent the potential flow and the resultant streamlines when the flow 

has reached the state of steady streaming. 

Streamlines represent the tangential velocity at every point in the flow, therefore there 

cannot be flow across them. In the Figure 4.6 it can be seen how four vortices are created 

between the two cylinders. It is in those vortices where particles can be trapped, just in 

the middle of them, where there are stagnation points, one per vortex. In that figure it is 

also plotted the variation of the velocity and pressure. If the separation between the 

streamlines is studied, it can be concluded that it gives the pressure in the zone, if the 

streamlines are very close to each other the pressure in that region will be low, what 

implies that the velocity is higher. Following this thought it can be seen how the pressure 

is decreasing from the right upper corner of the figure towards the direction of the 

cylinder. The opposite happens with the velocity, it is increased from the right upper 

corner, where there is almost no velocity, towards the closest region of the cylinder. 

Analyzing the separation the increment can be determined, if the separation is big the 

increment in velocity will be big, while if there is no a remarkable separation between 

streamlines, the difference between those two values will not be a big difference. 
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                Figure 4.8 Slip velocity assumed in the surface of the cylinders  

This is the adimensional magnitude of the slip velocity assumed in the surface of the 

cylinders, it can be seen that there are four points where the velocity is zero, one in the 

right of the cylinder at 𝜃 = 0, another in the upper part of the cylinder where 𝜃 = 𝜋/2, 

the third point with no velocity is located in the left of the cylinder at 𝜃 = 𝜋, and the 

last point is in the lower part of the cylinder, where 𝜃 = 3𝜋/2. These points results in 

stagnation points, what can be checked in the streamlines distribution.  

4.2.2 Validation of the model 

How is it possible to be confident with these results? It is necessary to validate the code 

and the obtained results somehow, to be sure that the project is able to predict the 

actual resultant flow produced by passing oscillating fluid through a microchannel where 

the flow faces solid cylinders. This validation process is required to produce meaningful 

data, otherwise no one will trust the results obtained with this code. 

Validation process is defined as:  “the confirmation by examination and the provision of 

objective evidence that the particular requirements for a specific intended use 

are fulfilled” [8] 

Validation of the model is also important to be respectful with ethical, 

commercial and regulatory commitments  

 

What is done to validate the code, and therefore to be sure that the results are the real 

ones, is to compare the resultant flow providing by the code in Freefem++, with the 

result of an experiment done in the laboratory.  

 

Increasing 𝜃 

𝜃 = 𝜋/2 

𝜃 = 0 

 



27 
 

The experiment fixes the value of the parameters, since it is more difficult to control the 

real flow than the flow in the code. 

Two experiments with this same geometry model were performed, each one with different 

parameters: 

𝑔𝑎 = 3,   𝜀 = 0.14,   𝑅𝑠 = 31  

The flow was solved with this parameters and the obtained streamlines are: 

 

           Figure 4.9 Streamlines for 𝑔𝑎 = 3,   𝜀 = 0.14,   𝑅𝑠 = 31 

As before, the streamlines for this configuration are obtained. Little variations are found 

between them. The most remarkable ones are found in the position and length of the 

eddies and the velocity variation due to the difference streaming Reynolds number. 
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Making zoom in the interest region: 

 

Figure 4.10 Zoom streamlines obtained by the code                        Figure 4.11 Streamlines obtained experimentally 

The picture in the right was provided by the tutor of this end of degree project, the 

experiment shown was performed in the laboratory of the university by him, Wilfried 

Coenen. 

 𝑔𝑎 = 5,   𝜀 = 0.14, 𝑅𝑠 = 27 

The flow was solved with this parameters and the obtained streamlines are: 

 

    Figure 4.12 Streamlines for 𝑔𝑎 = 5,   𝜀 = 0.14,   𝑅𝑠 = 27 
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       Figure 4.13 Zoom streamlines obtained by the code                        Figure 4.14 Streamlines obtained experimentally 

It can be concluded, comparing the experimental results and the numerical analysis of 

the flow, that the code is able to predict accurately the flow produced by an oscillating 

streaming flow. 

4.3 Third geometry model 

This third model consist of four cylinders, grouped in two pairs of them, one pair in each 

axis. To perform this mesh, the same procedure explained before has been followed. 

However in this mesh there are 4 regions to divide the domain. As before the most 

important zones has a high density of nodes, and it is decreased as the zone lose interest. 

There are now, two regions where the density has to be high enough to reach an 

acceptable level of accuracy. These zones are the distributed through the surface of the 

two semi cylinders represented in this mesh thanks to the advantage of symmetry. 

And then, following the same criteria than in the previous geometry, the other two 

regions with different density nodes are fixed. As occurred in the previous model 

symmetry is used about the x=0 line and y=0 line. 

For this geometry, several types of the mesh are shown, for a better understanding of the 

influence of some parameters. 

The different types of the geometry consist on modify the radius and the parameter 𝑔𝑎, 

to see how is affected the flow.  
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               Figure 4.15 Refined mesh for the third model 

This picture represent the third model to be study, with the two cylinders and the four 

regions of interest. Each one of these regions has its cells to provide later the numerical 

results. 

The parameter that fix this geometry is still 𝑔𝑎  , but in this case, as there are two pair 

of cylinders, it is needed to define another parameter  𝑔𝑎, one per pair of cylinders. From 

now on, and for this geometry  𝑔𝑎𝑥 will define the distance between centers of the pair of 

cylinders positioned in the x axis, while  𝑔𝑎𝑦 will do so with the pair positioned in the y 

axis  

4.3.1 Results for the third geometry model 

These following figures represent the resultant flow for the third proposed geometry. As 

expected four vortices have been created between the cylinders. Just in the middle point 

of each one of the vortices there is a stagnation point. 
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      Figure 4.16 Potential flow obtained for the third model                   Figure 4.17 Streamlines zoom third model                           

 

Figure 4.18 Potential flow third model 

The flow is oscillating until it becomes steady streaming, as mention in the first chapter 

of this project the velocity of the flow has a magnitude of 𝑈 · 𝑐𝑜𝑠(𝜔𝑡), therefore it is 

oscillating with time. At the initial time the velocity is 𝑈 directed upwards, and there is 

a time where this velocity changes its sense.  

A velocity field can be represented, this velocity field implies a distribution of velocity in 

the region. It is a function of the spatial coordinates and time. The velocity of the flow in 

three different non-dimensional time instants are plotted below, to represent the 

oscillatory movement of the flow. This non-dimensional time is calculated as time divided 

by period of oscillation. These three instant are when time is zero, the initial moment, 

which correspond to the first graph, when time is 
𝜋

2·𝜔
 that represent the instant where the 
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velocity is about to change its sense from going upwards to downwards, and then the last 

instant represented is when time is 
𝜋

𝜔
 in which the flow is going downwards. 

 

   Figure 4.19 Oscillating flow at time equal 0 

 

 

      Figure 4.20 Oscillating flow at time equal 𝜋/(2 · 𝜔) 
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Figure 4.21 Oscillating flow at time equal 𝜋/𝜔 

In these pictures where the oscillating flow is represented, a reduction of points to be 

represented was necessary to be done. Arrows points in the direction of the flow and has 

a length proportional to its modulus. This fact is remarkable in the second figure, where 

the flow has stopped to oscillate, and the velocity is zero. 

To calculate the mean velocity (average of the different velocities in one cycle) what have 

to be done is to calculate the velocity for several times in a period and then an average of 

those velocities. 

 

Figure 4.22 Mean velocities in the third model 
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This figure represent the mean velocities for the configuration 𝑔𝑎 = 6,   𝜀 = 0.15, 𝑅𝑠 =

20. Values represented in blue mean small values of velocity, the darkest colors means 

the smallest values. The mean of the oscillatory flow is zero, so what is plotted here is 

the streaming velocity. As can be seen there are four stagnation points in the cylinders in 

the positioned mentioned in Figure 4.8, there are also another five stagnation points, 

which four of them correspond to the stagnation points in the vortex formed in the 

steady streaming flow, the fifth one correspond to the collision of jets coming out from 

each cylinder. 

4.3.2 First modification (𝑔𝑎𝑥) and its results 

 

 
Figure 4.23 Mesh first modification for the third model 

In this mesh 𝑔𝑎𝑥 is increased up to 10, while 𝑔𝑎𝑦 is 6, this modification is done to be able 

to see how the distance between the cylinders affect the microeddies formed.  
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              Figure 4.24 Streamlines first modification                                    Figure 4.25 Potential flow first modification 

The same general results as before are obtained with this modification of increasing 𝑔𝑎𝑥 

are obtained. The potential flow is pretty much the same, potential lines comes out from 

the surface of the cylinders, what implies that velocity is tangential to the surface of the 

cylinders, perpendicular to potential lines. The main difference between previous results 

and these is the length and the position of the vortices formed between the cylinders. 

 

 
Figure 4.26 Streamlines zoom first modification 
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4.3.3 Second modification (𝑔𝑎𝑥  & 𝑔𝑎𝑦) and results 

 

Another mesh modifying 𝑔𝑎𝑥 and 𝑔𝑎𝑦 is done, in this case these parameters are 12 both 

of them. 

 

 
Figure 4.27 Mesh second modification for the third model 

As before, there are no significant changes on the resultant flow besides the change in 

position and the increment in size of the eddies. 

 

Figure 4.28 Streamlines second modification                                           Figure 4.29 Potential flow second modification 
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Figure 4.30 Dividing streamlines second modification 

Figure 4.30 shows the dividing streamline which separates the fluid coming from 

the free stream and the fluid that is oscillating in the vortex. If a particle is left in 

the region below the dividing streamline it will end in the stagnation point in the 

middle of the vortex. The streamlines represent the movement of a massless 

particle if forces like inertia or basset are not taking into account. Therefore they 

do not represent the actual movement of a particle. The real movement of a 

particle is a spiral trajectory towards the center of the eddie. On the other hand if 

the particle is left in the region above the dividing streamline, it will not be 

affected by the vortex and will not be trapped. 

4.3.4 Third modification (rx) and results 

 

             Figure 4.31 Mesh third modification of the third model 
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In this modified model one of the radius of a cylinder is doubled, the values of the 

parameters are: 𝑔𝑎𝑥 = 8,   𝑟𝑥 = 2,   𝑔𝑎𝑦 = 4,   𝑟𝑦 = 1 , where sub index x refers to the 

cylinder that lays in the x axis and y refers to the cylinder in y axis. 

Thanks to this modification the effect that has having one radius bigger than the other 

can be studied. 

      

            Figure 4.32 Streamlines third modification                                    Figure 4.33 Potential flow third modification 

    Figure 4.34 Streamlines zoom third modification                             Figure 4.35 Dividing streamline third modification 

An interesting thing happens here when the radius of a cylinder is increased, 

there are formed eight micro eddies. The number of microeddies has been doubled 

and the size has been reduced due to the increment in the radius in two out of 

the four cylinders. 
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This is mainly produced, among other causes, because of the increment in the 

zone affected by the cylinder positioned in the x-axis. Its influence zone has 

increased and it is able to affect more flow. It can be seen how the inner vortex is 

affected by the two cylinders, while the outer vortex is only affected by the bigger 

cylinder.  
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Chapter 5 

Conclusions and future projects 

The realization of the current project through the use of Freefem++ software has 

demonstrated the validity of the application of finite element method in the analysis of a 

steady streaming flow. The prediction of the streamlines are accurately obtained by 

introducing a geometry in the code, and assigning the proper conditions to the borders of 

this geometry. This method can save time for future experiments in which the resultant 

streamlines distribution could be unknown for a given steady streaming flow. Results 

obtained in this numerical procedure can be extrapolated to a real model, since 

comparing the results obtained in the finite element software with respect to the results 

obtained from two different experimental tests, both results are considered similar. The 

time saving is done by the reduction of the need of construction real models and the need 

to perform tests.  

This mathematical model is capable of solving the steady streaming flow produced by an 

oscillatory flow around any geometry and therefore it could be used as a design tool in 

this type of hydrodynamic non-contact methods for trapping particles. Design a geometry 

to trap particles in a determined position or to know before-hand the size of the eddies 

produced by the steady streaming.  

There are two parameters that mainly determine the conditions of the flow, they are the 

oscillation amplitude and the streaming Reynolds number, in this project the regime 

where 𝑅𝑠  is higher than one is studied in combination with the oscillation amplitude 

much lower than one, the reasons for this are: 

- Trapping forces are directly proportional to 𝑅𝑠. 

- Avoid the inner Stokes layer to govern the flow, making this layer to be very thin 

and concentrating all the vorticity. 

- Be able to expand the stream function as follows: 

𝜓(𝑥, 𝜏) = 𝜓0(𝑥, 𝜏) + 𝜀 {𝜓1
(𝑢)(𝑥, 𝜏) + 𝜓1

(𝑠)(𝑥)} +  𝒪(𝜀2) 

Solving for the leading order term, terms with epsilon are neglected because 

epsilon is small, at the end, in the leading order term, turns into the Laplace 

equation:  ∇2𝜓̌0 = 0  thanks to the fact that the unsteady term can be obviated 

when 𝜏 is sufficiently large. 

It is how in this way this code solve the flow in an intelligent way, since it solves the 

most interesting regime, the regime where the steady streaming is produced, thanks to 

the previous study of the parameters 𝜀 and 𝑅𝑠. 
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As future work for this project would be interesting study this same steady 

streaming flow with a superposed free stream. It could also be studied the 

influence that other geometries forms, like diamonds or squares, have in this flow 

and how are the resultant streamlines. In addition it could be studied the 

strength of the microeddies formed. It could also be done an improvement in the 

code to get a higher computation efficiency, or study another regime for the 

streaming Reynolds number. 
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