This is a postprint version of the following published document:

© Elsevier 2015

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Sobolev orthogonal polynomials on product domains

Lidia Fernández, Francisco Marcellán, Teresa E. Pérez, Miguel A. Piñar, Yuan Xu

Abstract

Orthogonal polynomials on the product domain \([a_1, b_1] \times [a_2, b_2]\) with respect to the inner product

\[
\langle f, g \rangle_S = \int_{a_1}^{b_1} \int_{a_2}^{b_2} \nabla f(x, y) \cdot \nabla g(x, y) \ w_1(x) w_2(y) \ dx \ dy + \lambda f(c_1, c_2) g(c_1, c_2),
\]

are constructed, where \(w_i\) is a weight function on \([a_i, b_i]\) for \(i = 1, 2\), \(\lambda > 0\), and \((c_1, c_2)\) is a fixed point. The main result shows how an orthogonal basis for such an inner product can be constructed for certain weight functions, in particular, for product Laguerre and product Gegenbauer weight functions, which serve as primary examples.

1. Introduction

Let \(w_i(x)\) be a nonnegative weight function defined on an interval \([a_i, b_i]\), where \(i = 1, 2\). Let \(W\) be the product weight function

\[
W(x, y) := w_1(x) w_2(y), \quad (x, y) \in \Omega := [a_1, b_1] \times [a_2, b_2].
\]

The purpose of this paper is to study orthogonal polynomials with respect to the inner product

\[
\langle f, g \rangle_S = \iint_\Omega \nabla f(x, y) \cdot \nabla g(x, y) \ W(x, y) \ dx \ dy + \lambda f(c_1, c_2) g(c_1, c_2),
\]

where \(\lambda > 0\) and \((c_1, c_2)\) is a fixed point, typically a corner point of the product domain \(\Omega\).

Sobolev orthogonal polynomials of one variable have been extensively studied (see the survey [1]). In particular, polynomials that are orthogonal with respect to the one-variable analogue of the inner product (1.1) were analyzed in [2]. In contrast, the study of such polynomials in several variables is a fairly recent affair. In [3], one of the earliest studies in several variables, Sobolev orthogonal polynomials with respect to an inner product similar to (1.2) on the unit ball of \(\mathbb{R}^d\) are constructed, where the discrete part could also be replaced by the integral on the boundary of the ball. The motivation of [3]
came from a question from engineering that requires control over the gradient. Such inner products appear naturally in the analysis of spectral methods for numerical solutions of partial differential equations (cf. [4]), which motivates our study.

For the ordinary inner product on the product domain,

$$\langle f, g \rangle_W = \int \int_{\Omega} f(x, y)g(x, y) W(x, y) \, dx \, dy,$$

it is immediate that a basis of orthogonal polynomials of degree \(n \) is given by \(p_k(w_1; x)p_{n-k}(w_2; y) \), \(0 \leq k \leq n \), where \(p_k(w; x) \) denotes the orthogonal polynomial of degree \(k \) with respect to \(w \). A moment reflection shows, however, that Sobolev orthogonal polynomials with respect to the inner product (1.2) do not possess product structure. Our goal in this paper is to study the orthogonal structure for the inner product (1.2) on the product domain.

Our main result provides a way to construct a basis of Sobolev orthogonal polynomials, complemented with an algorithm that computes both orthogonal polynomials and their \(L^2 \) norm, when both weight functions \(w_1 \) and \(w_2 \) are self-coherent, which means that their monic orthogonal polynomials satisfy the relations of the form

$$p_n(x) = \frac{p_{n+1}(x)}{n+1} + a_n p'_n(x) + b_n p'_{n-1}(x), \quad n \geq 1.$$ \hfill (1.4)

Weight functions, or measures, that are self-coherent have been studied extensively and characterized (see [8,9]). They are essentially the classical measures. In [5] the authors proved that (1.4) characterizes classical orthogonal polynomials.

Our approach is to express the Sobolev orthogonal polynomials with respect to the inner product \(\langle \cdot, \cdot \rangle_5 \) in terms of a family of product polynomials, which are not, however, the product orthogonal polynomials with respect to (1.3), but product polynomials of the form \(q_k(w_1; x)q_{n-k}(w_2; y) \), where \(q_k(w) \) takes the form of the right hand side of (1.4) without the derivative. In order to keep the idea transparent, we will not work with the most general case that our method applies, but work primarily with two examples, product Laguerre weight functions and product Gegenbauer weight functions, for which we work out our algorithms explicitly.

Some of our results can certainly be extended from two variables to several variables. We choose to stay with two variables to avoid the complicated notation and keep the algorithm practical.

The paper is organized as follows. In the next section, we recall the basics for orthogonal polynomials of several variables, and describe our strategy for constructing Sobolev orthogonal polynomials for the product weight functions. The construction is worked out explicitly in the case of product Laguerre weight in Section 3 and in the case of product Gegenbauer weight in Section 4.

2. Constructing bases for Sobolev orthogonal polynomials

The basics of orthogonal polynomials in several variables are given in the first subsection. Sobolev orthogonal polynomials for product measures are described in the second subsection, and the strategy for constructing an orthogonal basis is discussed in the third subsection.

2.1. Orthogonal polynomials of two variables

Let \(\Pi^2 \) denote the space of polynomials in two real variables and, for \(n = 0, 1, 2, \ldots \), let \(\Pi^2_n \) denote the subspace of polynomials of (total) degree at most \(n \) in \(\Pi^2 \). For an inner product \(\langle \cdot, \cdot \rangle \) defined on \(\Pi^2 \), a polynomial \(P \in \Pi^2_n \) is said to be orthogonal if \(\langle P, Q \rangle = 0 \) for all \(Q \in \Pi^2_{n-1} \). Let \(\mathcal{V}^2_n \) denote the space of orthogonal polynomials of total degree \(n \) with respect to \(\langle \cdot, \cdot \rangle \). It is known that

$$\dim \Pi^2_n = \binom{n+2}{n} \quad \text{and} \quad \dim \mathcal{V}^2_n = n.$$ \hfill (2.1)

The space \(\mathcal{V}^2_n \) can have many different bases (see [7]). A basis \(\{p^2_k : 0 \leq k \leq n \} \) of \(\mathcal{V}^2_n \) is called mutually orthogonal if \(\langle p^2_k, p^2_j \rangle = 0 \) for \(k \neq j \) and it is called orthonormal if, in addition, \(\langle p^2_k, p^2_k \rangle = 1 \). Another polynomial basis that is of interest is the monic basis, for which \(p^2_n(x, y) = x^{n-k}y^k + R^2_k(x, y) \), where \(R^2_k \in \Pi^2_{n-1}, 0 \leq k \leq n \). It is often convenient to use the vector notation

$$
\vec{p}_n = (p_n^0, p_n^1, \ldots, p_n^n)^T,
$$

considered as a column vector, which we also regard as a set of orthogonal polynomials of degree \(n \). In this notation,

$$
\langle \vec{p}_n, \vec{p}_m^T \rangle = H_n \delta_{n,m}, \quad \text{where} \ H_n \ \text{is a matrix of size} \ (n+1) \times (n+1), \ \text{necessarily symmetric and positive definite. If the set} \ \vec{p}_n \ \text{contains a mutually orthogonal basis, then} \ H_n \ \text{is diagonal, and if it is orthonormal, then} \ H_n \ \text{is the identity matrix.}
$$

For \(W(x, y) = w_1(x)w_2(y) \) as in (1.1), we consider the inner product

$$\langle f, g \rangle_W = c \int \int_{\Omega} f(x, y)g(x, y)W(x, y) \, dx \, dy.$$
2.2. Sobolev orthogonal polynomials

For \(i = 1, 2 \), let \(w_i \) be a weight function defined on the interval \([a_i, b_i]\), where \(-a_i\) and \(b_i\) can be infinity. For the product weight function \(W = w_1 \cdot w_2 \) in (1.1), let \(\mathcal{V}_{2n}^2(S) \) denote the space of Sobolev orthogonal polynomials of degree \(n \) with respect to the inner product \(\langle \cdot, \cdot \rangle_S \) defined in (1.2). Most of our work will be carried out for the following two examples.

Example 2.1. For \(\alpha > -1 \), let \(w_{\alpha} \) be the Laguerre weight function

\[
w_{\alpha}(x) := x^\alpha e^{-x}, \quad x \in \mathbb{R}_+ := [0, \infty).
\]

For \(\alpha, \beta > -1 \), let \(W_{\alpha, \beta} \) be the product Laguerre weight function defined by

\[
W_{\alpha, \beta}(x, y) := w_{\alpha}(x)w_{\beta}(y), \quad (x, y) \in \Omega := \mathbb{R}^2_+.
\]

There is only one finite corner point of \(\Omega \), and we consider the inner product

\[
\langle f, g \rangle_S = c_{\alpha, \beta} \int_{\mathbb{R}^2_+} \nabla f(x, y) \cdot \nabla g(x, y) W_{\alpha, \beta}(x, y) \, dx \, dy + \lambda f(0, 0)g(0, 0),
\]

where \(\lambda > 0 \) is a fixed constant and \(c_{\alpha, \beta} = 1/ \int_{\mathbb{R}^2_+} W_{\alpha, \beta}(x, y) \, dx \, dy \).

Example 2.2. For \(\alpha > -1/2 \), let \(u_{\alpha} \) be the Gegenbauer weight function

\[
u_{\alpha}(x) := (1 - x^2)^{\alpha - 1/2}, \quad x \in [-1, 1].
\]

For \(\alpha, \beta > -1/2 \), let \(U_{\alpha, \beta} \) be the product Gegenbauer weight function defined by

\[
U_{\alpha, \beta}(x, y) := u_{\alpha}(x)u_{\beta}(y), \quad (x, y) \in \Omega := [-1, 1]^2.
\]

There are four corner points of \(\Omega \) and we consider the inner product

\[
\langle f, g \rangle_V = c_{\alpha, \beta} \int_{-1}^{1} \int_{-1}^{1} \nabla f(x, y) \cdot \nabla g(x, y) U_{\alpha, \beta}(x, y) \, dx \, dy + \lambda f(1, 1)g(1, 1),
\]

where \(\lambda > 0 \) is a fixed constant and \(c_{\alpha, \beta} = 1/ \int_{\Omega} U_{\alpha, \beta}(x, y) \, dx \, dy \).

For the inner product \(\langle \cdot, \cdot \rangle_V \) in (1.2), we denote its main part by

\[
\langle f, g \rangle_V = c \int_{\Omega} \nabla f(x, y) \cdot \nabla g(x, y) W(x, y) \, dx \, dy
\]

\[
= \langle \partial_1 f, \partial_1 g \rangle_W + \langle \partial_2 f, \partial_2 g \rangle_W.
\]

This is a bilinear form and it is an inner product on the linear space \(\mathcal{P}_2^\perp \setminus \mathbb{R} \) of polynomials having a zero constant term. Let \(\mathcal{V}_n^2(S) := \mathcal{V}_n^2(S, W) \) and \(\mathcal{V}_n^2(\nabla) := \mathcal{V}_n^2(\nabla, W) \) denote the linear spaces of orthogonal polynomials of total degree \(n \) associated with \(\langle \cdot, \cdot \rangle_S \) and \(\langle \cdot, \cdot \rangle_V \), respectively.

Let \(S_k^n \) be the monic orthogonal polynomial of degree \(n \) in \(\mathcal{V}_n^2(S) \) that satisfies \(S_k^n(x, y) - x^{\alpha-1}y^{\beta} \in \mathcal{P}_n^{\perp} \) for \(0 \leq k \leq n \). Likewise, for \(n > 1 \), let \(S_k^n \) be a monic orthogonal polynomial in \(\mathcal{V}_n^2(\nabla) \).

Proposition 2.3. For \(n > 1 \), let \(\{S_k^n : 0 \leq k \leq n\} \) denote a monic orthogonal basis of \(\mathcal{V}_n^2(S) \). Then, the monic orthogonal basis \(\{S_k^n : 0 \leq k \leq n\} \) of \(\mathcal{V}_n^2(S) \) is given by \(S_k^n(x, y) = 1 \) and

\[
\mathcal{S}_n^0(x, y) = S_k^n(x, y) - S_k^n(c_1, c_2), \quad n > 1.
\]

Proof. Since \(\mathcal{S}_n^0(c_1, c_2) = 0 \), it follows that \(\langle S_k^n, \mathcal{S}_n^m \rangle_S = \langle S_k^n, S_m^m \rangle_V \) if \(n > 1 \).}

This result shows that we only need to work with the bilinear form \(\langle \cdot, \cdot \rangle_V \) and on the linear space \(\mathcal{P}_2^\perp \setminus \mathbb{R} \). Observe that the orthogonal polynomials in \(\mathcal{V}_n^2(\nabla) \) are determined up to an additive constant \(c \). Indeed, for any constant \(c \), the polynomial \(S_k^n + c \) is also a monic orthogonal polynomial in \(\mathcal{V}_n^2(\nabla) \). By Proposition 2.3, however, we only need to determine \(S_k^n \) up to a constant. For convenience, we adopt the following notation for two functions that are equal up to a constant:

\[
f(x, y) \equiv g(x, y) \quad \text{if } f(x, y) - g(x, y) \equiv c,
\]

where \(c \in \mathbb{R} \) is a generic constant.
2.3. Strategy for constructing Sobolev orthogonal polynomials

In order to construct the polynomial S_k^n, we expand it in terms of a known basis of polynomials denoted by $\{Q_j^m : 0 \leq j \leq m \leq n\}$,

$$S_k^n(x, y) = \sum_{m=0}^{n} \sum_{j=0}^{m} a_{j,m}(k)Q_j^m(x, y), \quad (2.5)$$

and determine the coefficients $a_{j,m}(k)$ by orthogonality. Since S_k^n is determined up to a constant, the equal sign should be replaced by \equiv in (2.5).

The choice of Q_j^m clearly matters. An obvious choice is the basis of product orthogonal polynomials P_j^m in (2.1). This basis, however, is not a good choice since we need to work with derivatives of the basis elements. This is where the notion of coherent pair comes in.

A weight function w defined on the real line is called self-coherent if its monic orthogonal polynomials $p_n(w)$ satisfy the relation

$$p_n(w; x) = \frac{p_{n+1}(w; x)}{n+1} + a_n p_n(w; x), \quad n \geq 0, \quad (2.6)$$

for some constants a_n. Furthermore, w is called symmetric self-coherent, if w is an even function and its monic orthogonal polynomials $p_n(w)$ satisfy the relation

$$p_n(w; x) = \frac{p_{n+1}(w; x)}{n+1} + b_n p_{n-1}(w; x), \quad n \geq 1. \quad (2.7)$$

More generally, we can call w self-coherent if it satisfies (1.4), that is,

$$p_n(w; x) = \frac{p_{n+1}(w; x)}{n+1} + a_n p_n(w; x) + b_n p_{n-1}(w; x), \quad n \geq 1.$$

If w is self-coherent, we denote by $q_n(w)$ the polynomial of degree n defined by

$$q_n(w; x) = p_n(w; x) + a_n p_{n-1}(w; x) + b_n p_{n-2}(w; x), \quad n \geq 1, \quad (2.8)$$

where, by convention, $p_{-1}(w; x) = 0$ and we assume the last term is zero if $n = 1$. It follows directly from the definition that $q_n(w)$ is monic and

$$q_n(w; x) = np_{n-1}(w; x).$$

Notice that self-coherent orthogonal polynomials are essentially, up to a linear change of variable, the classical orthogonal polynomials (Jacobi, Laguerre and Hermite) as was proved in [5].

We now define the polynomials Q_j^m of two variables by

$$Q_j^m(x, y) := q_{n-k}(w_1; x)q_k(w_2; y), \quad 0 \leq k \leq n, \quad n = 0, 1, \ldots. \quad (2.9)$$

The derivatives of Q_j^m can be given explicitly in terms of product orthogonal polynomials P_j^m in (2.1).

Lemma 2.4. Let ∂_i denote the ith partial derivative. Then, for $0 \leq k \leq n$,

$$\partial_1 Q_j^m = (n-k) \left(P_{k+1}^{n-1} + k a_{k-1}(w_2)P_{k-1}^{n-2} + k b_{k-1}(w_2)P_{k-2}^{n-3} \right) ,$$

$$\partial_2 Q_j^m = k \left(P_{k}^{n-1} + (n-k)a_{k-1}(w_1)P_{k-1}^{n-2} + (n-k)b_{k-1}(w_1)P_{k-2}^{n-3} \right) .$$

Proof. For $1 \leq k \leq n$, it follows directly from the definition of Q_j^m that

$$\partial_1 Q_j^m(x, y) = q_{n-k}(w_1; x)q_k(w_2; y) = (n-k)p_{n-k-1}(w_1; x)q_k(w_2; y).$$

Substituting $q_k(w_2; y)$ by its definition (2.8), the identity for $\partial_1 Q_j^m$ follows from the definition of P_j^m. The other identities are proved similarly. □

Let $Q_n = (Q_0^n, \ldots, Q_n^n)^T$ and $S_n = (S_0^n, \ldots, S_n^n)^T$ denote the column vector of polynomials Q_k^n and S_k^n, respectively. Furthermore, let e_i denote the standard Euclidean coordinate vector whose ith element is 1 and all other elements are 0.

Theorem 2.5. For $0 \leq k \leq n$, there exist real numbers $a_{i,k}$ and $b_{i,k}$ such that

$$Q_k^n(x, y) \equiv S_k^n(x, y) + \sum_{i=0}^{n-1} a_{i,k} S_i^{n-1}(x, y) + \sum_{i=0}^{n-1} b_{i,k} S_i^{n-2}(x, y). \quad (2.10)$$

Moreover, in the case of $k = 0$ and $k = n$, we have, respectively,

$$S_0^n(x, y) \equiv Q_0^n(x, y) \quad \text{and} \quad S_n^n(x, y) \equiv Q_n^n(x, y). \quad (2.11)$$
In this setting, their partial derivative for $1 < \alpha < \beta$ satisfies

$$Q_n^r = S_n + A_{n-1}S_{n-1} + B_{n-2}S_{n-2},$$

where A_{n-1} and B_{n-2} are matrices of the form

$$A_{n-1} = \begin{bmatrix} 0 & \cdots & 0 \\ \tilde{\mathbf{A}}_{n-1} \\ 0 & \cdots & 0 \end{bmatrix} \quad \text{and} \quad B_{n-2} = \begin{bmatrix} 0 & \cdots & 0 \\ \tilde{\mathbf{B}}_{n-2} \\ 0 & \cdots & 0 \end{bmatrix}.$$

Here $\tilde{\mathbf{A}}_{n-1}$ and $\tilde{\mathbf{B}}_{n-2}$ are matrices of size $(n-1) \times n$ and $(n-1) \times (n-1)$, respectively.

Proof. If $k = 0$ and P is any polynomial in \mathcal{P}^2_0, then, by Lemma 2.4,

$$(Q_0^n, P)_\mathcal{V} = (np^{n-1}, \partial_1 P)_W = 0.$$

Since the space $\{\partial_1 P : P \in \mathcal{P}^2_0\}$ is \mathcal{P}^2_0, this shows that $Q_0^n \in \mathcal{V}_n^2(\mathcal{V})$ and it is equal to S_0^n as it is monic. The proof for S_n^n is similar. Moreover, if $1 \leq k \leq n-1$, it follows from Lemma 2.4 that

$$(Q_k^n, P)_\mathcal{V} = (\partial_1^k Q_n^n, \partial_1 P)_W + (\partial_2^k Q_n^n, \partial_2 P)_W = 0$$

for any polynomial P of degree at most $n-3$. Consequently, Q_k^n can be written as a linear combination of the Sobolev orthogonal polynomials of degree n, $n-1$ and $n-2$. Since both Q_k^n and Q_n^n are monic by definition, (2.10) follows. \qed

To determine the matrices A_{n-1} and B_{n-2}, we need to work with specific weight functions. The simplest cases are the product Laguerre polynomials for which $B_{n-2} = 0$ and the product Gegenbauer polynomials for which $A_{n-1} = 0$. These two cases will be worked out in detail in the next two sections.

3. The product Laguerre weight

In this section we consider the product of Laguerre weight functions and the inner product (2.2). The Laguerre polynomials are defined by (cf. [6, Chapt. V])

$$L_n^\alpha(x) := \frac{(\alpha + 1)_n}{n!} F_1(-\alpha; \alpha + 1; x) = \frac{(-1)^n}{n!} x^n + \cdots$$

and their orthogonality is given by

$$(L_n^\alpha, L_m^\beta)_{w_\alpha} := \frac{1}{\Gamma(\alpha + 1)} \int_0^\infty L_n^\alpha(x)L_m^\beta(x) w_\alpha(x) dx = \frac{(\alpha + 1)_n}{n!} \delta_{n,m},$$

where $(\alpha)_n = \alpha(\alpha + 1) \cdots (\alpha + n - 1), n \geq 1, (\alpha)_0 = 1, 1!$, is the Pochhammer symbol. Furthermore, they satisfy the relation ([6, p. 102])

$$L_n^\alpha(x) = -\frac{d}{dx} L_{n+1}^\alpha(x) + \frac{d}{dx} L_n^\alpha(x),$$

which shows that the Laguerre weight function w_α is self-coherent. Monic Laguerre orthogonal polynomial $p_n(w_\alpha)$ and its L^2 norm are given by

$$p_n(w_\alpha;x) := (-1)^n n! L_n^\alpha(x), \quad h_n^\alpha := \langle p_n(w_\alpha), p_n(w_\alpha) \rangle_{w_\alpha} = n! (\alpha + 1)_n.$$

From these relations, it follows readily that the polynomial

$$q_n(w_\alpha;x) := p_n(w_\alpha;x) + n p_{n-1}(w_\alpha;x)$$

satisfies $q_n^r(w_\alpha;x) = n p_{n-1}(w_\alpha;x)$ for $n = 0, 1, 2, \ldots$.

We are now ready to state our polynomials in two variables for the product Laguerre weight function $W_{\alpha,\beta}$ on \mathbb{R}^2_+, with $\alpha, \beta > -1$. We again denote the orthogonal polynomials by $P_k^{\alpha,\beta}$,

$$P_k^{\alpha,\beta}(x,y) := p_{n-k}(w_\alpha;x)p_k(w_\beta;y), \quad 0 \leq k \leq n.$$

It follows readily that these are mutually orthogonal polynomials and

$$h_k^\alpha := (P_k^{\alpha,\beta}, P_k^{\alpha,\beta})_{W_{\alpha,\beta}} = h_k^\alpha = (n-k)! k! (\alpha + 1)_{n-k} (\beta + 1)_k.$$

We also define the monic polynomial Q_k^n by

$$Q_k^n(x,y) := q_{n-k}(w_\alpha;x)q_k(w_\beta;y), \quad 0 \leq k \leq n.$$

In this setting, their partial derivative for $1 \leq k \leq n$ in Lemma 2.4 becomes the following:
Lemma 3.1. For $1 \leq k \leq n - 1$, the following formulas hold:
\[
\begin{align*}
\partial_1 Q^n_k(x, y) &= (n - k) [P_{k-1}^{n-1}(x, y) + k P_k^{n-2}(x, y)], \\
\partial_2 Q^n_k(x, y) &= k [P_{k-1}^{n-1}(x, y) + (n - k) P_k^{n-2}(x, y)].
\end{align*}
\]

Recall that $V^2_n(\nabla, W_{a,b})$, $n \geq 1$, is the space of Sobolev orthogonal polynomials with respect to the bilinear form $\langle \cdot, \cdot \rangle$ defined in (2.4). Let $S^0_k = x^m - ky^k + \cdots$ be a monic orthogonal polynomial in $V^2_n(\nabla, W_{a,b})$. Then relation (2.12) becomes
\[
Q_n \triangleq S_n + A_{n-1}S_{n-1}.
\quad (3.2)
\]

Our goal is to show how A_{n-1} can be explicitly computed. To this end, we need explicit formulas for the inner products of the gradients of the polynomials Q^0_n. In the following we write $\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{W_{a,b}}$.

Lemma 3.2. For $0 \leq i \leq n$ and $0 \leq l \leq m$,
\[
\begin{align*}
\langle Q^n_i, Q^m_l \rangle_{\nabla} &= \left[l(m - l)^2 h_{l-1}^{m-2} \delta_{l,l-1} + l^2 (m - l) h_{l-1}^{m-2} \delta_{l,l} \right] \delta_{n,m-1} \\
&\quad + \left[(m - l)^2 h_{l-1}^{m-1} \delta_{l,l} + 2l^2 (m - l) h_{l-1}^{m-2} \delta_{l,l} + l^2 h_{l-1}^{m-2} \delta_{l,l} \right] \delta_{n,m} \\
&\quad + \left[(l + 1)(m - l) h_{l-1}^{m-1} \delta_{l,l-1} + l^2 (m + 1 - l) h_{l-1}^{m-2} \delta_{l,l} \right] \delta_{n,m+1}.
\end{align*}
\]

In particular,
\[
\begin{align*}
\langle Q^n_n, Q^m_l \rangle_{\nabla} &= (m - 1)^2 h_{0}^{m-2} \delta_{l,1} \delta_{n,m-1} + m^2 h_{0}^{m-1} \delta_{l,0} \delta_{n,m}, \\
\langle Q^n_n, Q^m_m \rangle_{\nabla} &= (m - 1)^2 h_{m-2}^{m-2} \delta_{l,n} \delta_{n,m-1} + m^2 h_{m-1}^{m-2} \delta_{l,n} \delta_{n,m}.
\end{align*}
\]

Proof. Directly from the definition,
\[
\langle Q^n_i, Q^m_l \rangle_{\nabla} = \langle \nabla Q^n_i, \nabla Q^m_l \rangle = \langle \partial_1 Q^n_i, \partial_1 Q^m_l \rangle + \langle \partial_2 Q^n_i, \partial_2 Q^m_l \rangle.
\]

By Lemmas 2.4 and 3.1, the inner product $\langle \partial_1 Q^n_i, \partial_1 Q^m_l \rangle$ can be computed by the orthogonality of P^n_k and (3.1). For example,
\[
\begin{align*}
\langle \partial_1 Q^n_i, \partial_1 Q^m_l \rangle &= (n - i)(m - l) (P^n_{i-1} P^n_{l-1}) + l(n - i)(m - l) (P^n_{i-1} P^n_{l-1} - P^n_{i-2} P^n_{l-1}) \\
&\quad + i(n - i)(m - l) (P^n_{i-2} P^n_{l-1}) \delta_{n,m-1} + il(n - i)(m - l) (P^n_{i-2} P^n_{l-1}) \delta_{n,m-1} \\
&\quad = (n - i)(m - l) h^m_{l-1} \delta_{l,1} \delta_{n,m} + l(n - i)(m - l) h^m_{l-1} \delta_{l,1} \delta_{n,m-1} \\
&\quad + i(n - i)(m - l) h^m_{l-1} \delta_{l,1} \delta_{n,m-1} + il(n - i)(m - l) h^m_{l-1} \delta_{l,1} \delta_{n,m}.
\end{align*}
\]

The other terms are computed similarly. □

Corollary 3.3. For $0 \leq i \leq n$, $0 \leq l \leq m$, and $m \leq n - 1$ it holds
\[
\langle Q^n_i, Q^m_l \rangle_{\nabla} = \left[(l + 1)(m - l) h^m_{l-1} \delta_{l,l-1} + l^2 (m + 1 - l) h^m_{l-1} \delta_{l,l} \right] \delta_{n,m}.
\]

In particular,
\[
\langle Q^n_n, Q^m_l \rangle_{\nabla} = 0 \quad \text{and} \quad \langle Q^n_n, Q^m_m \rangle_{\nabla} = 0, \quad m < n.
\]

To determine the matrix A_{n-1}, we will need explicit forms of the following two matrices:
\[
C_n := \langle Q^n_{n+1}, Q^n_{n+1} \rangle_{\nabla} \quad \text{and} \quad D_n := \langle Q^n_n, Q^n_n \rangle_{\nabla}.
\]

Lemma 3.4. For $n = 0, 1, 2, \ldots$, D_n is a diagonal matrix
\[
D_n = \text{diag}(d^n_0, d^n_1, \ldots, d^n_m),
\quad (3.3)
\]
\[
\text{where \ } d^n_j = (n - j)^2 h^m_{j-1} + j^2 h^m_{j-1} + 2j^2 (n - j)^2 h^m_{j-1}, \quad 0 \leq j \leq n.
\]

with h^m_j as given in (3.1), and $C_n : (n + 2) \times (n + 1)$ is a bidiagonal matrix,
\[
\begin{pmatrix}
0 & 0 & \cdots & 0 \\
0 & c^n_{1,0} & c^n_{1,1} & \cdots & 0 \\
c^n_{2,1} & c^n_{2,2} & \cdots & c^n_{2,n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & c^n_{n,n-1} & c^n_{n,n}
\end{pmatrix}
\quad (3.4)
\]

\[
\frac{\delta}{\nabla}Q^n_i = \left[\begin{array}{c}
\not_{n,1,0} \\
c^n_{1,1} \\
c^n_{2,1} \\
\vdots \\
c^n_{n,n-1} \end{array} \right]
\]
where
\[c_{ni}^u = i^2(n - i + 1)h_{n-1}^{n-1}, \quad 1 \leq i \leq n, \]
\[c_{ni+1}^u = (i + 1)(n - i)^2h_{n-1}^{n-1}, \quad 0 \leq i \leq n - 1. \]

Proof. The formula for \(D_n \) follows directly from Lemma 3.2. Furthermore, by Corollary 3.3, for \(1 \leq i \leq n - 1, \)
\[\langle \nabla Q^n, \nabla Q^{n-1} \rangle = (l + 1)(n - 1 - l)^2h_{n-2}^{n-2}\delta_{i,i+1} + l^2(n - l)h_{n-2}^{n-2}\delta_{i,i}, \]
which shows that \(C_n \) is a bidiagonal matrix and its first and last rows are zero. \(\Box \)

We are now ready to determine the matrix \(A_{n-1} \) in (3.2).

Theorem 3.5. Let \(H_n^\nabla := \langle S_n, S_n^T \rangle_v \). Then \(H_n^\nabla \) satisfies the recursive relation
\[H_n^\nabla = D_n - C_{n-1}(H_{n-1}^\nabla)^{-1}C_{n-1}, \]
where the iteration is initiated by \(H_1^\nabla = I \), the identity matrix. Furthermore, for \(n = 1, 2, \ldots \), the matrix \(A_n \) in \((3.2) \) is determined by
\[A_n = C_n(H_n^\nabla)^{-1}. \]

Proof. Using the orthogonality of \(S_n \) and the fact that \(S_n^0 = Q_n \in I_{n-1}^2 \), we obtain from (3.2) that
\[\langle S_{n+1}, S_n^T \rangle_v = \langle Q_{n+1}, Q_n^T \rangle_v - A_n\langle S_n, S_n^T \rangle_v \]
\[= \langle Q_{n+1}, Q_n^T \rangle_v - A_n\langle Q_n, S_n^T \rangle_v \]
\[= \langle Q_{n+1}, Q_n^T \rangle_v - A_n\langle Q_n, (Q_n - A_{n-1}S_{n-1})^T \rangle_v, \]
where we have used (3.2) once more. Hence, it follows that
\[\langle S_{n+1}, S_n^T \rangle_v = \langle Q_{n+1}, Q_n^T \rangle_v - A_n\langle Q_n, Q_n^T \rangle_v + A_n\langle Q_n, S_n^T \rangle_v A_{n-1}^T \]
\[= \langle Q_{n+1}, Q_n^T \rangle_v - A_n\langle Q_n, Q_n^T \rangle_v + A_n\langle Q_n, Q_n^T \rangle_v A_{n-1}^T, \]
Consequently, from \(\langle \nabla S_{n+1}, \nabla S_n^T \rangle_v = 0 \) we obtain
\[A_n \left[\langle Q_n, Q_n^T \rangle_v - \langle Q_n, Q_n^T \rangle_v A_{n-1}^T \right] = \langle Q_{n+1}, Q_n^T \rangle_v. \]

Next we compute \(H_n^\nabla = \langle S_n, S_n^T \rangle_v \) by using (3.2) and the orthogonality of \(S_n \),
\[H_n^\nabla = \langle Q_n, Q_n^T \rangle_v = \langle Q_n, (Q_n - A_{n-1}S_{n-1})^T \rangle_v \]
\[= \langle Q_n, Q_n^T \rangle_v - \langle Q_n, S_n^T \rangle_v A_{n-1}^T \]
\[= \langle Q_n, Q_n^T \rangle_v - \langle Q_n, Q_n^T \rangle_v A_{n-1}^T. \]
Since \(H_n^\nabla \) is nonsingular, substituting the above relation into (3.7) proves (3.6). Furthermore, substituting (3.6) into (3.8) shows that \(H_n^\nabla \) satisfies
\[H_n^\nabla = \langle Q_n, Q_n^T \rangle_v - \langle Q_n, Q_n^T \rangle_v (\langle Q_n, Q_n^T \rangle_v (H_{n-1}^\nabla)^{-1})^T, \]
which simplifies to (3.5) from the symmetry of \(H_{n-1}^\nabla \), and therefore completes the proof. \(\Box \)

The theorem shows that \(H_n^\nabla \), hence \(A_n \), can be determined iteratively.

Since \(S_k^0 = Q_k^0 \) and \(S_k^1 = Q_k^1 \), we only need to determine \(S_k^u \) for \(1 \leq k \leq n - 1 \). This additional information is reflected in the matrix structure, as shown in Theorem 2.5 and (3.4),
\[A_{n-1} = \begin{bmatrix} 0 & \ldots & 0 \\ \tilde{A}_{n-1} & \ldots & 0 \\ 0 & \ldots & 0 \end{bmatrix} \]
and \(C_{n-1} = \begin{bmatrix} 0 & \ldots & 0 \\ \tilde{C}_{n-1} & \ldots & 0 \\ 0 & \ldots & 0 \end{bmatrix}, \)
where \(\tilde{A}_{n-1} \) and \(\tilde{C}_{n-1} \) are matrices of size \((n - 1) \times n \). These suggest a further simplification in the iteration, which we now explore.
The matrix structure shows that
\[
H_n^\nu = D_n - C_{n-1}A_{n-1}^T = \begin{bmatrix}
d_0^n & \tilde{D}_n \\
0 & d_n^n
\end{bmatrix} - \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
\tilde{C}_{n-1} & \cdots & \tilde{C}_{n-1}
\end{bmatrix},
\]
which shows that the matrix \(H_n^\nu\) takes the form
\[
H_n^\nu = \begin{bmatrix}
d_0^n & 0 \\
0 & d_n^n
\end{bmatrix} \quad \text{with} \quad \hat{H}_n^\nu = D_n - \tilde{C}_{n-1}\tilde{A}_{n-1}^T.
\]
(3.9)

Consequently, we only need to determine \(\hat{H}_n^\nu\). Let us further write
\[
\tilde{C}_n = \begin{bmatrix}
c_{n,0} & 0 \\
\vdots & \ddots \\
0 & \tilde{c}_n & c_{n,n}
\end{bmatrix} \quad \text{with} \quad \hat{C}_n = \begin{bmatrix}
c_{n,1,1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & c_{n-1,n-2} & c_{n-1,n-1} & c_{n,n}
\end{bmatrix}.
\]

It then follows from \(A_n = C_n (H_n^\nu)^{-1}\) at (3.6) that
\[
\tilde{A}_n = \tilde{C}_n \begin{bmatrix}
(d_0^n)^{-1} & \cdots & 0 \\
0 & (\hat{H}_n^\nu)^{-1} & \cdots \\
0 & \cdots & (d_n^n)^{-1}
\end{bmatrix} = \begin{bmatrix}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{bmatrix},
\]
where we have used the fact that \(c_{n,0}^n = d_0^n = n^2h_0^{n-1}\) and \(c_{n,n}^n = d_n^n = n^2h_n^{n-1}\), which follow directly from their explicit formulas. Consequently, we see that \(\tilde{A}_n\) is of the form
\[
\tilde{A}_n = [e_1 | \tilde{A}_n | e_n] \quad \text{with} \quad \hat{A}_n = \hat{C}_n (\hat{H}_n^\nu)^{-1},
\]
(3.10)
where \(e_1, e_n\) are, respectively, the first and the last vector in the canonical basis of \(\mathbb{R}^n\). Consequently, it follows that
\[
\tilde{c}_{n-1,n-1} = d_0^n e_1 e_1^T + \tilde{C}_{n-1}\tilde{A}_{n-1}^T + d_n^n e_{n-1} e_{n-1}^T.
\]

We finally conclude by (3.9) that the matrix \(\hat{H}_n^\nu\) satisfies the relation
\[
\hat{H}_n^\nu = \hat{D}_n - \tilde{C}_{n-1}\tilde{A}_{n-1}^T,
\]
where \(\hat{D}_n\) is the diagonal matrix
\[
\hat{D}_n = D_n - d_0^n e_1 e_1^T - d_n^n e_{n-1} e_{n-1}^T.
\]

Summing up, we have proved the following proposition.

Proposition 3.6. Let \(\tilde{Q}_n := (Q_1^n, \ldots, Q_{n-1}^n)\) and \(\tilde{S}_n := (S_1^n, \ldots, S_{n-1}^n)\). Then \(\hat{H}_n^\nu = (\tilde{Q}_n, \tilde{S}_n)^\nu\). Furthermore, for \(n = 2, 3, \ldots,\)
\[
\tilde{c}_n = \tilde{c}_n + [e_1 | \tilde{A}_{n-1} | e_{n-1}] S_{n-1},
\]
(3.11)
where the matrices \(\tilde{A}_n\) of size \(n \times (n - 1)\) and \(\hat{H}_n^\nu\) of size \((n - 1) \times (n - 1)\) are determined iteratively by
\[
\tilde{A}_n = \tilde{C}_n (\hat{H}_n^\nu)^{-1} \quad \text{and} \quad \hat{H}_n^\nu = \hat{D}_n - \tilde{C}_{n-1}\tilde{A}_{n-1}^T
\]
for \(n = 3, 4, \ldots,\), with the starting point \(\tilde{A}_1 = 0\).

Example 3.7. In the case of \(\alpha = \beta = 0\), the iterative algorithm gives
\[
\tilde{A}_2 = \begin{bmatrix} 1 \\ \end{bmatrix}, \quad \hat{H}_2 = [2],
\]
\[
\tilde{A}_3 = \frac{1}{4} \begin{bmatrix} 5 & 1 \\ 5 & 5 \\ 1 & 5 \\ \end{bmatrix}, \quad \hat{H}_3 = \begin{bmatrix} 10 & -2 \\ -2 & 10 \\ \end{bmatrix},
\]
\[
\tilde{A}_4 = \frac{1}{56} \begin{bmatrix} 90 & 24 & 6 \\ 53 & 72 & 11 \\ 11 & 72 & 53 \\ 6 & 24 & 90 \\ \end{bmatrix}, \quad \hat{H}_4 = \begin{bmatrix} 93 & -12 & -3 \\ -12 & 48 & -12 \\ -3 & -12 & 93 \\ \end{bmatrix}.
\]
Once the matrices \tilde{A}_n are determined, the relation (3.11) can be used to determine the Sobolev orthogonal polynomials S_n iteratively, since

$$\tilde{S}_n = \tilde{Q}_n - Q_0^{n-1}e_1 - Q_{n-1}^{n-1}e_n - \tilde{A}_{n-1}\tilde{S}_{n-1},$$

where we have used $c_0^{n-1} = Q_0^{n-1}$ and $S_{n-1}^{n-1} = Q_{n-1}^{n-1}$.

We could also determine the polynomials S_k^n directly by solving a linear system of equations. For this purpose, we fix k, $1 \leq k \leq n - 1$, write

$$S_k^n(x, y) \equiv Q_k^n(x, y) + \sum_{j=1}^{n-1} \sum_{i=0}^{j} a_j^i Q_i^{j}(x, y)$$

and determine the coefficient a_j^i by the orthogonality $(S_k^n, Q_j^m)^\nu = 0$ for $0 \leq l < m \leq n - 1$, which is equivalent to the linear system of equations

$$\sum_{j=1}^{n-1} \sum_{i=0}^{j} a_j^i (Q_j^l, Q_j^m)^\nu = -(Q_k^n, Q_j^m)^\nu, \quad 0 \leq l < m \leq n - 1.$$

By Lemma 3.2, these equations become

$$l(m - l)^2 h_{l-1}^m a_l^{m-1} + \tilde{P} (m - l) h_{l-1}^m a_l^{m-1} + \left[(m - l)^2 h_{l-1}^m + 2(m - l)\tilde{P} h_{l-1}^m + \tilde{P} h_{l-1}^{m-1}\right] a_l^m$$

$$+ \tilde{P} (m - l + 1) h_{l-1}^{m+1} a_l^{m+1} + (l + 1)(m - l) h_{l+1}^m a_{l+1}^{m+1}$$

$$= -(l + 1)(m - l)^2 h_{l-1}^m \delta_{k-1, l} + \tilde{P} (m + 1 - l) h_{l+1}^m \delta_{k, l} \delta_{m, n-1}.$$

Observe that for $m = n - 1$ the third term on the left hand side does not appear since $a_l^n = 0$ by definition. Using $h_{l-1}^m = (m - l)(\alpha + m - l) h_{l-1}^{m-2}$ and $h_{l+1}^m = (\beta + l) h_{l+1}^{m-2}$, the above equations can be simplified to

$$(m - l) a_l^{m-1} + l a_l^{m-1} + [\alpha(l + 1) + 4 l(m - l)] a_l^m$$

$$+ l(m - l + 1)(\alpha + m - l) a_l^{m+1} + (l + 1)(m - l)(\beta + l) a_{l+1}^{m+1}$$

$$= -(l + 1)(m - l)(\beta + l) \delta_{k, l} + l(m + 1 - l)(\alpha + m - l) \delta_{k, l} \delta_{m, n-1}.$$

The indexes of a_l^m are lattices in $A_n := \{(l, m) : 0 \leq l < m \leq n - 1\}$. For each (l, m), Eq. (3.13) involves a_l^m and its four neighbors, directly above and below, left and right of a_l^m in the lattice. In particular, for $l = 0$ and $l = m$ we obtain the equations

$$a_0^m + a_1^{m-1} = -\delta_{k, 1} \delta_{m, n-1}, \quad a_m^m + a_{m+1}^m = -\delta_{k, m} \delta_{m, n-1}.$$

By $a_l^n = 0$, these equations can be written in an equivalent way as

$$a_0^{m-1} = -\delta_{k, 1}, \quad a_m^{m-1} = -\delta_{k, m-1}, \quad a_m^m + a_{m+1}^m = 0$$

$$a_0^m + a_1^{m+1} = 0, \quad 1 \leq m \leq n - 2.$$

These provide the boundary relations for the lattice A_n. Together, (3.13) and (3.14) form a linear system of equations that can be solved for $\{a_l^m : 0 \leq l \leq m \leq n - 1\}$. Furthermore, the relations in (3.14) allow us to combine some of the terms in the sum (3.12). We summarize the above consideration into the following proposition.

Proposition 3.8. For $1 \leq k \leq n - 1$, the monic Sobolev polynomials are given by

$$S_k^n = Q_k^n - \delta_{k, 1} Q_0^{n-1} - \delta_{n, n-1} Q_{n-1}^{n-1} + \sum_{j=1}^{n-2} a_0^j (Q_0^j - Q_1^{j+1}) + \sum_{j=1}^{n-2} a_j^i (Q_j^i - Q_1^{j+1}) + \sum_{j=4}^{n-1} \sum_{i=4}^{j-2} a_j^i Q_i^{j-2},$$

where the coefficients a_j^i are solutions of (3.13) and (3.14).

Example 3.9. For the case of $\alpha = \beta = 0$, the monic Laguerre–Sobolev orthogonal polynomials satisfy the relation

$$S_n^k(x, y) = S_k^n(y, x), \quad 0 \leq k \leq n.$$

The following are these polynomials in lower degrees: $S_0^1(x, y) = x,$

$$S_0^1(x, y) = x(x - 2), \quad S_1^2(x, y) = xy - x - y,$$

$$S_0^1(x, y) = x(x^2 - 6x + 6), \quad S_1^2(x, y) = x^2y - x^2 - 3xy + 3x + y.$$
Remark 3.1. In the case of $\alpha = \beta = 0$ we have (see Eq. (5.2.1) in [6])

$$q_n(u_0; x) = (-1)^n n! L_n^{-1}(x) = (-1)^{n-1} (n-1) x L_{n-1}^{-1}(x),$$

and therefore the constant term in $q_n(u_0; x)$ always vanishes for $n \geq 1$. Consequently, in this case, equations that hold under \textit{modulo constant}, or $\hat{\Delta}$, in Theorem 2.5 can be replaced by the usual equal sign.

4. The product Gegenbauer weight

In this section we study the product of Gegenbauer (or ultraspherical) weight functions and the inner product (2.3). Let

$$u_\alpha(x) := (1 - x^2)^{\alpha - 1/2}, \quad \alpha > -\frac{1}{2}.$$

The classical Gegenbauer polynomials C_n^{α}, defined by ([6, Chapt. IV])

$$C_n^{\alpha}(x) := \binom{n + 2\alpha - 1}{n} \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha + 1/2) \Gamma(1/2)} \int_{-1}^{1} f(x) g(x) u_\alpha(x) dx.$$

are orthogonal with respect to the inner product

$$\langle f, g \rangle_{u_\alpha} := \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha + 1/2) \Gamma(1/2)} \int_{-1}^{1} f(x) g(x) u_\alpha(x) dx.$$

More precisely, they satisfy

$$\langle C_n^{\alpha}, C_m^{\alpha} \rangle_{u_\alpha} = \frac{2^{1-2\alpha} \sqrt{\pi} \Gamma(n + 2\alpha)}{\Gamma(\alpha + 1/2) \Gamma(\alpha)} n! \delta_{n,m}. $$

Moreover, they are self-coherent since they satisfy ([6, (4.7.29) in p. 83])

$$2(n + \alpha) C_n^{\alpha}(x) = \frac{d}{dx} \left[C_{n+1}^{\alpha}(x) - C_{n-1}^{\alpha}(x) \right], \quad n \geq 1.$$

Monic Gegenbauer orthogonal polynomials $p_n(u_\alpha)$ are defined by

$$p_n(u_\alpha; x) := 2^{-n} \binom{n + \alpha - 1}{n} C_n^{\alpha}(x),$$

and their L^2 norms are given by

$$h_n^{u_\alpha} := \langle p_n(u_\alpha), p_n(u_\alpha) \rangle_{u_\alpha} = \frac{2^{1-2\alpha-2n} \sqrt{\pi} n! \Gamma(\alpha + 1) \Gamma(n + 2\alpha)}{\Gamma(\alpha + 1/2) \Gamma(n + \alpha) \Gamma(n + \alpha + 1)}.$$

From these relations, we deduce that the polynomial

$$q_n(u_\alpha; x) := p_n(u_\alpha; x) + n b_{n-1}(\alpha) p_{n-2}(u_\alpha; x),$$

where

$$b_{n-1}(\alpha) = -\frac{(n-1)}{4(n + \alpha - 1)(n + \alpha - 2)}, \quad n \geq 2,$$

satisfies $q_n'(u_\alpha; x) = n p_{n-1}(u_\alpha; x)$ for $n = 1, 2, \ldots$.

We define the product Gegenbauer weight function $U_{\alpha, \beta}(x, y) := u_\alpha(x) y_\beta(y)$ on $[-1, 1] \times [-1, 1]$ for $\alpha, \beta > -1/2$ and define monic product polynomials

$$p_k^{\alpha, \beta}(x, y) := p_k(u_\alpha; x) p_k(u_\beta; y), \quad 0 \leq k \leq n.$$

These are mutually orthogonal polynomials and

$$h_k^{u_\alpha, u_\beta} := \langle p_k^{u_\alpha, u_\beta}, p_k^{u_\alpha, u_\beta} \rangle_{u_\alpha, u_\beta} = h_{n-k}^{u_\alpha} h_k^{u_\beta}. $$

(4.1)

We also define the monic polynomial $Q_k^{\alpha, \beta}$ by

$$Q_k^{\alpha, \beta}(x, y) := q_{n-k}(u_\alpha; x) q_k(u_\beta; y), \quad 0 \leq k \leq n.$$

In this setting, their partial derivatives for $1 \leq k \leq n$ in Lemma 2.4 become

Lemma 4.1. For $1 \leq k \leq n - 1$,

$$\partial_1 Q_k^{\alpha, \beta}(x, y) = (n-k) \left[p_{k-1}^{n-1}(x, y) + k b_{k-1}(\beta) p_{k-2}^{n-1}(x, y) \right],$$

$$\partial_2 Q_k^{\alpha, \beta}(x, y) = k \left[p_{k-1}^{n-1}(x, y) + (n-k) b_{n-k-1}(\alpha) p_{k-1}^{n-1}(x, y) \right].$$
Denote by $\mathcal{V}_2^2(\nabla, U_{\alpha, \beta})$, $n \geq 1$, the space of Sobolev orthogonal polynomials with respect to the bilinear form $\langle \cdot, \cdot \rangle_{\mathcal{V}}$ defined in (2.4), and let $S^2_k = x^{m-k} y^k + \cdots$ be the monic orthogonal polynomials in $\mathcal{V}_2^2(\nabla, U_{\alpha, \beta})$. In this case, relation (2.12) becomes

$$Q_n \leq S_n + B_{n-2} S_{n-2}. \tag{4.2}$$

To compute B_{n-2} explicitly, we need explicit formulas for the inner products of the gradients of the polynomials Q^m_n. In order to simplify the expressions, from now on we will write $\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{U_{\alpha, \beta}}$.

Lemma 4.2. For $0 \leq i \leq n$ and $0 \leq l \leq m$,

$$\langle Q^m_n, Q^m_i \rangle = \delta_{n,m+2}(m - l)^2 b_{l+1}(\beta) h_{l+2}^m - \delta_{l+2} + \delta_{n,m}(m - l)^2 b_{l+1}(\beta) h_{l+2}^m - \delta_{l+2} + \delta_{n,m}(m - l)^2 b_{l+1}(\beta) h_{l+2}^m - \delta_{l+2} + \delta_{n,m}.$$

In particular,

$$\langle Q_0^m, Q^m_0 \rangle = 2(m - 2)^2 b_{l+1}(\beta) h_{l+2}^m - \delta_{l+2} + \delta_{n,m}.$$

The proof is analogous to that of Lemma 3.2.

Corollary 4.3. For $0 \leq i \leq n$, $0 \leq l \leq m$, and $m \leq n - 1$ it holds

$$\langle Q^m_n, Q^m_i \rangle = \delta_{n,m+2}(m - l)^2 b_{l+1}(\beta) h_{l+2}^m - \delta_{l+2} + \delta_{n,m}(m - l)^2 b_{l+1}(\beta) h_{l+2}^m - \delta_{l+2} + \delta_{n,m}.$$

In particular,

$$\langle Q_0^m, Q^m_0 \rangle = 0 \quad \text{and} \quad \langle Q_n, Q^m_n \rangle = 0, \quad m < n.$$

To determine the matrix B_{n-2}, we will need explicit forms of the following two matrices:

$$C_n := \langle Q_{n+2}, Q^m_n \rangle \quad \text{and} \quad D_n := \langle Q_n, Q^m_n \rangle.$$

Lemma 4.4. For $n = 0, 1, 2, \ldots$, D_n is a diagonal matrix

$$D_n = \text{diag}(d_0, d_1, \ldots, d_n), \tag{4.3}$$

where, for $0 \leq j \leq n$,

$$d^j_n = (n - j)^2 h_{n-j}^m + j^2 (n - j)^2 b_{l+1}(\beta) h_{l+2}^m + j^2 h_{l+1}^m + j^2 (n - j)^2 b_{l+1}(\alpha) h_{l+1}^m,$$

with h_n^m as given in (4.1), and $C_n : (n + 3) \times (n + 1)$ is a bidiagonal matrix,

$$C_n = \begin{bmatrix}
0 & 0 & \cdots & 0 \\
0 & c_{1,1} & 0 & \cdots \\
0 & 0 & c_{2,2} & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0
\end{bmatrix}, \tag{4.4}$$

where

$$c_{l,1} = \langle Q^m_{n+2}, Q^m_l \rangle = l^2 (n - l + 2) b_{n-l+1}(\alpha) h_{n-l+1}^m, \quad 0 \leq l \leq n$$

$$c_{n+2,1} = \langle Q^m_{n+2}, Q^m_l \rangle = (l + 2)(n - l)^2 b_{l+1}(\beta) h_{l+1}^m, \quad 0 \leq l \leq n.$$

Proof. The formula for D_n follows directly from Lemma 4.2. Furthermore, by Corollary 4.3, for $0 \leq i \leq n + 2$,

$$\langle Q^m_{n+2}, Q^m_i \rangle = (l + 2)(n - l)^2 b_{l+1}(\beta) h_{l+1}^m + l^2 (n - l + 2) b_{n-l+1}(\alpha) h_{n-l+1}^m,$$

which shows that C_n is a bidiagonal matrix and its first and last rows are zero.

Now we can compute the matrix B_{n-2} in (4.2).
Theorem 4.5. Let $H_n^V := \langle S_n, S_n \rangle_V$. Then H_n^V satisfies the recursive relation
\[H_n^V = D_n - C_{n-2}(H_{n-2}^V)^{-1}C_n^{T}, \tag{4.5} \]
where the iteration is initiated by $H_1^V = I$, the identity matrix, and $H_2^V = D_2$. Furthermore, for $n = 1, 2, \ldots$, the matrix B_n in (4.2) is determined by
\[B_n = C_n(H_n^V)^{-1}. \tag{4.6} \]

Proof. This is similar to the proof of Theorem 3.5. Using (4.2) twice we obtain
\[\langle S_{n+2}, S_n^T \rangle_V = \langle Q_{n+2}, Q_n^T \rangle_V - B_n\langle S_n, S_n^T \rangle_V \]
\[= \langle Q_{n+2}, Q_n^T \rangle_V - B_n(\langle Q_n, (Q_n - B_{n-2}S_{n-2})^T \rangle_V \]
\[= \langle Q_{n+2}, Q_n^T \rangle_V - B_n(\langle Q_n, Q_n^T \rangle_V + B_n(\langle Q_n, Q_n^T \rangle_V B_{n-2}^T. \]
And from $\langle \nabla S_{n+2}, V S_n^T \rangle = 0$ we deduce
\[\langle Q_{n+2}, Q_n^T \rangle_V = B_n[\langle Q_n, Q_n^T \rangle_V - \langle Q_n, Q_n^T \rangle_V B_{n-2}]. \tag{4.7} \]
Next we compute $H_n^V = \langle S_n, S_n^T \rangle_V$ by using (4.2) and the orthogonality of S_n,
\[H_n^V = \langle Q_n, S_n^T \rangle_V = \langle Q_n, (Q_n - B_{n-2}S_{n-2})^T \rangle_V \]
\[= \langle Q_n, Q_n^T \rangle_V - \langle Q_n, Q_n^T \rangle_V B_{n-2}. \tag{4.8} \]
Since H_n^V is nonsingular, substituting the above relation into (4.6) proves (4.6). Finally, substituting (4.6) into (4.8) shows (4.5). \(\Box \)

The previous theorem shows that H_n^V and B_n can be determined iteratively.
Since $S_0^T = Q_0^T$ and $S_n^T = Q_n^T$, we only need to determine S_k^T for $1 \leq k \leq n - 1$. The matrix structure reflects this information, as shown in Theorem 2.5 and (4.4); in fact we have
\[B_{n-2} = \begin{bmatrix} 0 & \cdots & 0 \\ \widetilde{B}_{n-2} \\ 0 & \cdots & 0 \end{bmatrix} \text{ and } C_{n-2} = \begin{bmatrix} 0 & \cdots & 0 \\ \widetilde{C}_{n-2} \\ 0 & \cdots & 0 \end{bmatrix} \]
where \widetilde{B}_{n-2} and \widetilde{C}_{n-2} are matrices of size $(n - 1) \times (n - 1)$.
We now proceed as in Section 3 to simplify the iteration process.
The matrix structure reads as
\[H_n^V = D_n - C_{n-2}B_{n-2}^T = \begin{bmatrix} d_0^n & \cdots & 0 \\ \D_n^T & \vdots & \cdots \\ 0 & \cdots & 0 \end{bmatrix} - \begin{bmatrix} 0 & \cdots & 0 \\ \cdots & \tilde{C}_{n-2} \tilde{B}_{n-2}^T & \cdots \\ 0 & \cdots & 0 \end{bmatrix}, \]
which shows that the matrix H_n^V takes the form
\[H_n^V = \begin{bmatrix} d_0^n & \tilde{H}_n^V & 0 \\ 0 & \tilde{H}_n^V & d_n^n \end{bmatrix} \text{ with } \tilde{H}_n^V = D_n - \tilde{C}_{n-2} \tilde{B}_{n-2}^T, \tag{4.9} \]
and we only need to determine \tilde{H}_n^V. If we write
\[\tilde{C}_n = \begin{bmatrix} 0 & \cdots & 0 \\ \hat{c}_{2,0} & \hat{c}_n & \cdots \\ 0 & \cdots & \hat{c}_n \\ \hat{c}_{n,0} & \hat{c}_n & \cdots \\ 0 & \cdots & \hat{c}_n \end{bmatrix} \text{ with } \tilde{C}_n = \begin{bmatrix} c_{1,1}^n & 0 & \cdots & 0 \\ 0 & c_{2,2}^n & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & c_{n,1}^n \\ c_{n-1,n-1}^n & 0 & \cdots & c_{n-1,n}^n \\ 0 & \cdots & 0 & c_{n-1,n-1}^n \end{bmatrix}, \]
then from $\mathbf{B}_n = \mathbf{C}_n (\mathbf{H}_n^\nabla)^{-1}$ at (4.6) we conclude

$$\mathbf{\tilde{B}}_n = \mathbf{\tilde{C}}_n \begin{bmatrix} (d_0^n)^{-1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & (d_n^n)^{-1} \end{bmatrix} = \begin{bmatrix} 0 & 2b_1(\beta) & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 2b_1(\alpha) \end{bmatrix},$$

where we use

$$c_{2,0}^n = 2b_1(\beta) n^2 h_0^{n-1}, \quad d_0^n = n^2 h_0^{n-1},$$

$$c_{n,n}^n = 2b_1(\alpha) n^2 h_0^{-1}, \quad d_0^n = n^2 h_0^{-1}.$$

Consequently, we see that $\mathbf{\tilde{B}}_n$ is of the form

$$\mathbf{\tilde{B}}_n = \begin{bmatrix} 2b_1(\beta) e_2 | \mathbf{\tilde{B}}_n | 2b_1(\alpha) e_n \end{bmatrix} \quad \text{with} \quad \mathbf{\tilde{B}}_n = \mathbf{\tilde{C}}_n (\mathbf{H}_n^\nabla)^{-1}, \quad (4.10)$$

where e_2 and e_n are, respectively, the second vector and the second last vector in the canonical basis of \mathbb{R}^{n+1}. Consequently, it follows that

$$\mathbf{\tilde{C}}_{n-2}^2 \mathbf{\tilde{B}}_{n-2}^2 = 4b_1^2(\beta)(d_0^n e_2 e_1^T + 2b_1(\alpha)d_0^n e_2 e_1^T.$$

We finally conclude by (4.9) that the matrix $\mathbf{\tilde{H}}_n^\nabla$ satisfies the relation

$$\mathbf{\tilde{H}}_n^\nabla = \mathbf{\tilde{D}}_n - \mathbf{\tilde{C}}_{n-2} \mathbf{\tilde{B}}_{n-2}^T,$$

where $\mathbf{\tilde{D}}_n$ is the diagonal matrix

$$\mathbf{\tilde{D}}_n = \mathbf{\tilde{D}}_n - 4b_1^2(\beta)(d_0^n e_2 e_1^T - 2b_1(\alpha)d_0^n e_2 e_1^T.$$

Summing up, we have proved the following proposition.

Proposition 4.6. Let $\mathbf{\tilde{Q}}_n := (Q_1^n, \ldots, Q_{n-1}^n)$ and $\mathbf{\tilde{S}}_n := (S_1^n, \ldots, S_{n-1}^n)$. Then $\mathbf{\tilde{H}}_n^\nabla = \mathbf{\tilde{C}}_n (\mathbf{H}_n^\nabla)^{-1}$. Furthermore, for $n = 3, 4, \ldots$,

$$\mathbf{\tilde{Q}}_n = \mathbf{\tilde{S}}_n + \begin{bmatrix} 2b_1(\beta) e_2 | \mathbf{\tilde{B}}_n^2 | 2b_1(\alpha) e_{n-2} \end{bmatrix} S_{n-2}, \quad (4.11)$$

where the matrices $\mathbf{\tilde{B}}_n$ of size $n \times (n-2)$ and $\mathbf{\tilde{H}}_n$ of size $(n-1) \times (n-1)$ are determined iteratively by

$$\mathbf{\tilde{B}}_n = \mathbf{\tilde{C}}_n (\mathbf{H}_n^\nabla)^{-1} \quad \text{and} \quad \mathbf{\tilde{H}}_n^\nabla = \mathbf{\tilde{D}}_n - \mathbf{\tilde{C}}_{n-2} \mathbf{\tilde{B}}_{n-2}^T$$

for $n = 3, 4, \ldots$, with the initial condition $\mathbf{\tilde{B}}_1 = 0$.

Example 4.7. In the case $\alpha = \beta = 1$ we have $b_1(1) = -\frac{1}{8}$ and the iterative algorithm gives

$$\mathbf{\tilde{B}}_2 = -\frac{1}{8} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{\tilde{H}}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix},$$

$$\mathbf{\tilde{B}}_3 = -\frac{1}{20} \begin{bmatrix} 1 \\ 0 \\ 4 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{\tilde{H}}_3 = \frac{5}{16} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix},$$

$$\mathbf{\tilde{B}}_4 = -\frac{1}{880} \begin{bmatrix} 21 \\ 0 \\ 1 \\ 198 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{\tilde{H}}_4 = \frac{1}{128} \begin{bmatrix} 21 \\ 0 \\ 16 \\ 0 \\ 21 \end{bmatrix}.$$

Once the matrices $\mathbf{\tilde{B}}_n$ are determined, the relation (4.11) can be used to determine the Sobolev orthogonal polynomials S_n iteratively, since

$$\mathbf{\tilde{S}}_n = \mathbf{\tilde{Q}}_n - Q_{0}^{n-2} 2b_1(\beta) e_2 - Q_{n-2}^{n-2} 2b_1(\alpha) e_{n-2} - \mathbf{\tilde{B}}_{n-2} S_{n-2},$$

where we have used $S_0^n \triangleq Q_0^n$ and $S_1^n \triangleq Q_1^n$.

13
Example 4.8. In the case \(\alpha = \beta = 1\) the monic Gegenbauer–Sobolev orthogonal polynomials satisfy the relation
\[
S_n^m(x, y) = S_k^m(y, x), \quad 0 \leq k \leq n.
\]
The following are these polynomials in lower degrees:
\[
\begin{align*}
S_0^1(x, y) &= x, \\
S_1^1(x, y) &= x^2, \\
S_0^2(x, y) &= x \left(x^2 - \frac{3}{4} \right), \\
S_1^2(x, y) &= \left(x^2 - \frac{1}{4} \right) y, \\
S_0^3(x, y) &= x^2 (x^2 - 1), \\
S_1^3(x, y) &= x \left(x^2 - \frac{5}{8} \right) y, \\
S_2^3(x, y) &= x^2 y^2 - \frac{1}{4} x^2 - \frac{1}{4} y^2.
\end{align*}
\]

Remark 4.1. In contrast to the Laguerre case with \(\alpha = \beta = 0\), we need the modulo constant, or \(\delta\), in Theorem 2.5 for the Gegenbauer case. Note, however, that this is not a real limitation, since our main goal is to construct a basis for \(V_n^\infty(S)\), for which the additive constant does not matter, as shown in Proposition 2.3.

Remark 4.2. The analogue of Proposition 3.8 could be obtained also in the Gegenbauer case. If fact, if we fix \(k, 1 \leq k \leq n - 1\), we can write
\[
S_k^n(x, y) \equiv Q_k^n(x, y) + \sum_{j=1}^{n-1} \sum_{i=0}^{j} a^i_j Q_i^n(x, y)
\]
and determine the coefficient \(a^i_j\) by the orthogonality \(\langle S_k^n, Q_l^m \rangle_V = 0\) for \(0 \leq l \leq m \leq n - 1\), which is equivalent to the linear system of equations
\[
\sum_{j=1}^{n-1} \sum_{i=0}^{j} a^i_j \langle Q_i^n, Q_l^m \rangle_V = -\langle Q_k^n, Q_l^m \rangle_V, \quad 0 \leq l \leq m \leq n - 1.
\]
By Lemma 4.2, the previous system reduces to a linear system where every equation contains only five unknowns: \(a^i_{m-2}, a^i_{m+2}, a^i_{m-2}, a^i_{m+2}, a^i_{m}\). That system can be recursively solved starting from some boundary relations similar to (3.14) and taking into account that the polynomials \(S_k^n\) and \(Q_k^n\) contain only monomials with the same parity as \(n\) and \(k\).

Acknowledgments

The work of the first, third and fourth authors has been partially supported by DGICYT, Ministerio de Economía y Competitividad (MINECO) of Spain grant MTM 2011–28952–C02–02 and Research Project P11-FQM-7276 from Junta de Andalucía. The work of the second author has been supported by DGICYT, Ministerio de Economía y Competitividad (MINECO) of Spain grant MTM2012–36732–C03–01. The work of the fifth author was supported in part by NSF Grant DMS-1106113.

References