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ABSTRACT

In this paper, we study new algebraic and analytic aspects of orthogonal polynomials
on the real line when finite modifications of the recurrence coefficients, the so-
called co-polynomials on the real line, are considered. We investigate the behavior
of their zeros, mainly interlacing and monotonicity properties. Furthermore, using a
transfer matrix approach we obtain new structural relations, combining theoretical
and computational advantages. Finally, a connection with the theory of orthogonal
polynomials on the unit circle is pointed out.

1. Introduction

Let du be a non-trivial probability measure with an infinity support on some subset A C R, such that

/xZ"d,u(x) < oo, n>0.
A

The application of Gram—Schmidt’s orthogonalization procedure to {z"},>0 yields a unique sequence of

monic polynomials { P, },,>0,

P, (x) = 2™ 4 (lower degree terms),

and a sequence, {7V, }rn>0, of positive real numbers such that

/Pand,u = Ynln,m, m >0, (1.1)
A



where dy, ,, is the Kronecker delta. These polynomials are known in the literature as orthogonal polynomials
on the real line (OPRL, in short), also known as Chebyshev polynomials before the book of Szegd [26] when
the terminology was reserved for four special cases of trigonometric OPRL [26, Sec. 1.12].

It is very well known that the zeros of P,,, {x, x}7¢_;, are real, simple and are located in the interior of
the convex hull of the support A of the measure dp and the zeros of P, and P,y strictly interlace. The
notation for zeros is

Tpn <Tpn-1< < Tp2 < Tnpi-

We suggest the reader to consult [2,7,13,20,21,26], where a complete presentation of the classical theory of
OPRL can be found.

Associated with any sequence of OPRL there exist sequences {a,}n>1 and {b,},>1 of positive real
numbers and real numbers, respectively, such that

Poi1(z) = (x = bpg1) Pu(x) —anPp_1(z), ap:=1, n>0, (1.2)

with initial conditions P_; := 0 and Py := 1. We set P, := 0 for n < 0 and a,, := b, := 0 for n < 1, then
(1.2) holds for every n € Z. Set

z — by, —an,
Py ::[Pn+17Pn}T7 A, ::|: 1 i 0 :|

Notice that from (1.2), we get
Poj1=A, P, Poi=[P,P4],
as well as
Pny1=(An - Ag) Po. (1.3)

A, is said to be the transfer matrix. This representation will be the central object in Section 3. The converse
of the previous result is the so-called Favard’s theorem or Spectral Theorem in the OPRL theory. In other
words, given a sequence of polynomials, {P, },,>0, generated by (1.2) with recurrence coefficients {a, },>1
positive real and {b,},>1 real numbers, then there exists a nontrivial probability measure du supported on
the real line so that the orthogonality conditions (1.1) hold. Moreover, if {a, }n>1 and {b, }»>1 are bounded
sequences, then du is unique. From now on, we will assume that the recurrence coefficients always satisfy
the hypothesis of Favard’s theorem.

The theory of OPRL has attracted an increasing interest from the pioneer works of Legendre, Gauss,
Jacobi, Chebyshev, Christoffel, Stieltjes and Markov, among others. The construction of new sequences of
OPRL by modifying the original sequence is a powerful tool, with many applications to theoretical and
applied problems, such as asymptotic analysis, zero behavior, integrable systems, birth-and-death process,
quadrature, and quantum mechanics, among others. In particular, the study of the properties of new se-
quences of OPRL with respect to finite modifications (by changing or shifting) of the recursion coefficients
is a classical topic. For example, associated polynomials appear in Stieltjes’ works [23,24] related to the
convergence of certain continued fractions. Given the sequences {a,}n>1 and {b,},>1, one defines for a
fixed positive integer, k, the associated polynomials of order k, {P,sk)}nzo, by the recurrence relation

P® (@) = (= by 1) PP (@) — ap i P (2), 0 >0, (1.4)



with initial conditions Pfkl) =0 and Pék) := 1. As previously, we set P,gk) =0 forn <0 and a, :=b, :=0

for n < 1, then (1.4) holds for every n € Z. General results on such associated polynomials can be found
in [3,27].

On the other hand, OPRL associated with finite perturbations of recurrence coefficients, in what follows
denoted as co-polynomials on the real line (COPRL, in short), are firstly considered by Allaway [1] and
Chihara [6], who studied the case when only the first recursion coefficient b; is perturbed by adding a
constant. This kind of perturbations is not artificial in any sense. We recall that the modification of a finite
number of the recurrence coefficients corresponding to Chebyshev’s polynomials of second kind leads to
Bernstein—Szegd’s polynomials [26]. Some results concerning finite perturbations of Chebyshev’s polynomials
can be found in [19]. The algebraic and analytic properties of general COPRL have been studied mainly by
Marcelldn, Dehesa and Ronveaux [15], Maroni [16], and Peherstorfer [18], see also [1,8]. Some applications
can be also found in [9,10,14,22].

The goal of our research is to study new properties of the polynomials which satisfy a recurrence relation
as (1.2) with new recurrence coefficients, perturbed in a (generalized) co-dilated and/or co-recursive way,
{en}n>1 and {d, }n>1, i€,

Unt1(2) = (& — dpg1)un(z) — cptin_1(z), co:=1, n >0,

with initial conditions u_; := 0 and ug := 1. In other words, we consider arbitrary single modifications of
the recurrence coefficients as follows:

Cn = )\i”’kan, A >0, (co-dilated case) (1.5)

dp =bp + Tktr10n k41, Te+1 €R (co-recursive case) (1.6)

where k is a fixed non-negative integer number. Moreover, we will consider the finite composition of the
above perturbations. In Section 2, we study some new inequalities for the zeros of COPRL by following the
approach presented in [5] for the study of the monotonicity of zeros of a class of para-orthogonal polynomials
on the unit circle including the Askey hypergeometric polynomials o Fy (—n,a + bi;2a;1 — 2), a,b € R. In
Section 3, we obtain a new structural relation based on a transfer matrix approach proposed recently in [4]
for similar perturbations in the theory of orthogonal polynomials on the unit circle (OPUC, in short). Finally,
in Section 3 we point out the connection with the OPUC.

2. Zeros and inequalities

It is very well-known that the orthonormal version of (1.2), for recurrence coefficients depending on a
parameter €, can be written in an operator form by using a symmetric Jacobi matrix, J(e),

b dy
di by d
J(e) = 1 02 dz 7

dy b3 d3

where d2 = a,, (for simplicity, we omit here the dependence of €). In a matrix form,

rp = J(€)p,

where p, = Yo Y 2Pn and p = [po,p1,---]T. According to a version of Hellmann-Feynman’s theorem
[13, Sec. 7.3], it OJ,(€)/0e is strictly positive (resp. negative) definite, then the zeros of the correspond-
ing OPRL are strictly increasing (resp. decreasing) functions of €. But for some cases related with COPRL,



we can obtain more information on the behavior of zeros following a different approach recently proposed
in [5].

In [15], using the theory of difference equations, the authors deduced the explicit expression of the COPRL
associated with the perturbation (1.5) and/or (1.6) in terms of the initial OPRL and their associated
polynomials of order k.

Let us define

Un Un

D(up,vy,) = , (2.7)

unJrl 'UnJrl

the Casorati determinant associated with two arbitrary sequences {uy}n>1 and {v,}n>1. From the theory
of linear difference equations, we know that if the Casorati determinant is different from zero for every n,
then these two sequences are said to be linearly independent [17]. Notice that {Pék_)k}nzo, is a solution of
the recurrence relation (1.2). It is easy to verify that

k k
{Pnﬂ PTE_)M] _ { P PO, }
Pn Pr(Lli)k ! Pny P:i)kq

Hence,
k k
D(P,, P™.) = a,D(P,_1, PP, ).

Let X denote the set of zeros of Pr_1. From the above equalities, we get

n
D(P, PPy = | T aj | Pr-1s (2.8)
j=k

which means that P, and P:i)k with n > k, are linearly independent in C \ X. If we denote by

{Prn(*; Ay Tmt15 + + 5 Ak Tkt 1) >0 the COPRL associated with the finite composition of perturbations (1.5)
and (1.6) from order m to order k, m < k then, after elementary calculations, for m = k we have

Theorem 2.1. For x € C\ X the following formulas hold:

Pn(x;)\k;quLl) :Pn(x)v TLS ka
P (3 My Teg1) = Polz) — Qu(@)PM (2), n >k,

where Qi(x) = Ti1 Pe(x) + ax (A — 1) P ().
As a consequence of the last result, we get
Corollary 2.1. P,(:; A\, Tk+1) and P, share at most the zeros of Qy and Pyx_1.

Proof. Suppose that P,(-; A\g, 7k+1) and P, have a common zero, «, different from the zeros of @ and
Py_1. Let Y denote the set of zeros of Q. Since aw € C\ (X UY'), Theorem 2.1 implies P(k_)k(a) =0, a

n
contradiction. 0O

From the interlacing property of two consecutive OPRL, we can easily deduce that Qy, Py, and Pyx_1 are
coprime. But we can go a step further.



Proposition 2.1. Let us assume A\ # 1 and 711 # 0 and define ¢ := (A, — 1) /7h41. Let {yr j(c)}s_, be the
zeros of Q. The following statements hold:

i) If ¢ >0, then
Tp—1,j—1 < Yr,j(c) < Tpj; Tp—1,0 := —00.

Moreover, yi i(c) (for a fized value of j) is a strictly increasing (resp. decreasing) function of A

(resp. Th+1)-
ii) If ¢ <0, then

Tpj < Yki(€) < Tp—1j; Th—1k = 0O.
Also, yi,j(c) (for a fized value of j) is a strictly decreasing (resp. increasing) function of Ay (resp. Try1)-
Furthermore,

i Ui (€) = T3, Tkilfgoo Yk.j(c) = Tho1.

Proof. The interlacing in the first part of the theorem follows in a straightforward way from [7, Ch. 1,
Ex. 5.4]. Furthermore, in the same way, the monotonicity is a consequence of the interlacing property for
the zeros of Q and P,_1. Let

Qr(x;€) := Pp(x) + (¢ + €)ag Pr—1(x), €>0.
Hence,
Qr(z;€) = Qr(x) + earpPy_1(x),

and the expected result on monotonicity follows as previously. The second part of the theorem is a direct
consequence of Hurwitz’s theorem [26, Thm. 1.91.3]. O

We recall that the zeros of the polynomial Q lie in (a,b), with the exception of the extreme zeros.
The location of the extreme zeros with respect to the orthogonality interval A can be given by using [26,
Thm. 3.3.4].

The next theorem has direct consequences in the interlacing and monotonicity of zeros of COPRL.

Theorem 2.2. Let xy, j41 and x, ; be two consecutive zeros of Py, then the following holds. If there are no
zeros of Qi Py in I; == (Ty j+1,%Tn,;) that are not zeros of Py (-; Ak, Tk+1), then the interval I; contains at
most an odd number of zeros of P, (+; A\, Ti41). Moreover, if there are zeros of Qi Py in I; that are not zeros
of Pp(+; Ak, Tk+1), then the interval I; contains at most an even number of zeros of Py (-; Ak, Te+1)-

Proof. With the notation of Proposition 2.1, we can assume ¢ > 0 without loss of generality. In such a
situation

D(Pp(x), Po(z; Mg, Tht1)) = Pn(@) P (T Ay Tog1) — P (@5 Ak, T 1) Py (2),
= anD(Pn—l(-T)v Pn—l(z§ >\k77-k’+1))7



S

Fig. 1. Graphs of Qj and Py for ¢ > 0 and k = 4.

yields

d(z) = D(Po(@), Pu(z: A1) = — | [ a5 | Qul@)Pr(2). (2.9)
Jj=k—

1

Obviously, (=1)7 P41 (x5, ;) > 0. Now, there are two cases depending on the sign of d to be considered.
Denote by S_ the system of intervals indicated by thick solid lines in Fig. 1. According to our assumptions
and Proposition 2.1, we first consider the case for which d(I;) > 0, i.e., I; C S_.

By (2.9), —P(zn,j; Aks Tkt1) Pnt1(@n,;) > 0, which yields

(=17 Py (2 5 My Thr1) > 0.

Therefore, in this situation the theorem holds.
On the other hand, a similar result can be obtained for I; C S, where S is the system of intervals not
indicated by thick solid lines in Fig. 1. The rest of the proof follows directly from the previous analysis. O

Note that the previous result contains as a particular case the interlacing obtained in [6]. Let us consider
the co-recursive case, that is, A\ := 1. In this situation, the system of intervals satisfies S_ = {0}, or

equivalently S = {0}. Hence we have the following interlacing property.

Corollary 2.2. Let | < k be the number of no common zeros between P,(:;1,7x+1) and P,. Denote by
{ymj(l,T]H_l)}é»:l and {ymj}é-:l, these zeros. If Tp+1 < 0, then

yn,,n(177k+1) < Yn,l < yn,l—l(177k+1) < yn,l—l <0 < yn,1(177—k+1) < yn,ly (210)

where the role of the zeros {yn,j(l,'rk_l'_l)}.lj:l and {yn,j}ézl, is reversed when T4 > 0.
Corollary 2.3. The zeros of the polynomial P, (+; 1, Tkx1; 1, Tka2) (for a fized value of k and n > k) are strictly

increasing functions of k41 and Tr4o.

The previous results for the co-recursive case reduce and give more information than Hellmann—-Feynman’s
theorem. Notice that the existence of cases for which det(9J,(e)/0¢) = 0, mentioned at the beginning of
the section, could imply strictly monotonicity of zeros. We recall that Corollary 2.3 was also perceived in [5]
from the perturbation theory for symmetric matrices.
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Fig. 2. Graphs of Péz‘l) (continuous line), Ps(z’l)(-; 1,0.2;1,0.25) (small-dashed line), and P5(2’1>(-; 1,0.3;1,0.3) (large-dashed line).

Example 2.1. It is well known [7] that the monic Jacobi polynomials {P,(La’ﬁ)}nzo satisfy for any real value

of o and S, the recurrence relation (1.2) where

dn(n+ o) (n+ B)(n + o+ B)
2n+a+B-1)2n+a+B+1)(2n+a+ B)?’

a8 —
b(a7ﬂ) — BQ — Oé2 .
T Onta+B)2n+a+f+2)

P

Furthermore, if o, 8 > —1 the polynomials are orthogonal with respect to the weight (1 —)®(14)? on the
ated with two consecutive modification (1.6). Fig. 2 is obtained by using Wolfram Mathematica® 9.0 with the

interval [—1, 1]. In order to illustrate Corollary 2.3, we consider a new sequence of Jacobi polynomials associ-
(2,1)

aid of the function JacobiP[n, «, 8,x] and the recurrence relation (1.2), and shows the polynomials
(+;1,0.2;1,0.25) (small-dashed line), and P5(2’1)(~; 1,0.3;1,0.3) (large-dashed line).

(continuous line), 5(2’1)
Observe that the zeros behave in accordance with our result. In other words, the monotonicity is ‘strict’

and it is not something that can be guaranteed by Hellmann—Feynman’s theorem.

According to Fig. 1, a general result in the previous direction is more complicated because the zeros have

different behavior depending on the intervals S_ and S where they are located. In any case, for some sets

of extreme zeros we can obtain more information.
Theorem 2.3. With the notation of Proposition 2.1, let us define y1 := max{xy 1, yx,1(c)}. Let us denote by

{zn,;i (Mg, T]H_l)}j:l the zeros of the polynomial Py, (+; Mg, Tk+1). If ¢ > 0, then

Tt < Tn (A, That)s
for all the zeros of Py (+; A\, Tkt1) and P, in R\ [—00,y1], where the role of the zeros x,,; and Ty (Mg, Tkt1)

1s reversed when ¢ < 0.

1 Wolfram Mathematica is a registered trademark of Wolfram Research, Inc.
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Fig. 3. Graphs of L‘(:l) (continuous line) and L‘(:l)(-; 1.4,4) (dashed line).

Proof. Without loss of generality we can assume, as in the proof of Theorem 2.2, ¢ > 0. Hence, y1 = 41,

see Fig. 1. By (2.9), P(2n1; Ak, Tkt1) Pry1 (2n,1) > 0, which yields
(_1)an(xn,l; /\kv 7-k-i-l) > 0.

O

The result can be deduced as above.
The usual tool dealing with the inequalities concerning the largest (or the smallest zero) of OPRL is the

Perron—Frobenius Theorem [13, Thm. 7.4.1]. Notice that the previous result gives more information.

Example 2.2. The monic Laguerre polynomials {L,({X)}nzo, satisfy, for any real value of «, the recurrence

al® =n(n + a),

bgfg1=2n+1+a.

relation (1.2) where

Furthermore, if @ > —1 the polynomials are orthogonal with respect to the weight *e~" on the interval
[0,00). In order to illustrate Theorem 2.3, we consider a new sequence of Laguerre polynomials associated
(4)

4

with the modifications (1.5) and (1.6). Fig. 3 is obtained by using Wolfram Mathematica® 9.0 with the
aid of the function LaguerreL[n, a,x] and the recurrence relation (1.2), and shows the polynomials L

(continuous line) and Lff) (+;1.4,4) (dashed line). Observe that for this case with ¢ = 0.1, all the zeros greater
than y; = 2.7965 behave in accordance with Theorem 2.3. Notice that, the Perron—Frobenius Theorem can

guarantee this result only for the largest zero.

3. A transfer matrix approach
Theorem 2.1 has been successfully used in the study of zeros of COPRL but presents two main constraints.
First, the structural relation is not useful if we are interested in the finite composition of perturbations,
mainly from a computational point of view. Second, the structural relation is not valid on the whole complex
plane. The aim of this section is to use a transfer matrix approach to avoid these constraints.
(3.11)

Using the matrix notation (1.3), we have
P (2 M, Tht1) = (Ap o A1) ANk Tig1) (Ag—1 -+ - Ag) Po,



where

T —bpt1 — Ter1  —Arag

Ap( Nk, Thg1) = 1 0

Combining (1.3) and (3.11), we can deduce that the following formula holds on C

P (@A k) = (Ap - A1) Ak, T )AL (Ag -+ A1) ™ Prga (2).

The previous equation has some computational advantage as compared to Theorem 2.2 and it holds in C.
But we can improve this result by using an auxiliary sequence of polynomials.

Of course, the so-called first kind associated polynomials {r, },,>0 are the unique solution of the recurrence
relation (1.2) with initial conditions r_; := —1 and rg := 0 or, equivalently, 9 := 0 and r; := 1/a;. Note
that r,, is a polynomial of degree n — 1. We define R,, := v, 1r,, = P,si)l which is a monic polynomial.

Theorem 3.1. The following formulas hold in C:

k
P, PA P,
Haj [ 1 (25 Ay Ty 1) ] — M, { 1 () } >k
i —Rp1(@5 Aks Tt 1) —Ryi1(2)

where My, is

k

H aj | + QrRx Qr Py

_ j=1
Mk — k )
Ry Ry H aj | + RiPy
j=1
with ﬁk = —Tp+1Rx — ()\k — 1)akRk,1.
Proof. Let us introduce the matrix B,, 41, given by
Pn+1 _RnJrl
B, = .
1 |: Pn _Rn
Since
D(Ppi1,~Rnt1) = andet B, = [ [ a5
j=1
then B, is a nonsingular matrix.
We now apply the previous argument again, in order to obtain
B,i1=A,B,=A, Ay, (3.12)

the product of the transfer matrices for the associated polynomials of order k. Let us denote by
B,+1(+; Ak, Tk+1) the polynomial matrices corresponding to the COPRL associated with the perturbations
(1.5) and (1.6), and Bgi) i the product of transfer matrix for associated polynomials of order k. Since



from (3.12), we get

k1 1.
Bflj(,jﬂ) — B, 1B A}, (3.13)
Boi1( Ak, Thy1) = Bgﬁi}gﬂ)Ak()\kﬁkﬂ)Bk. (3.14)

From (3.13) and (3.14), we get
B 1 (M Ter1) = (Ak(Mk, Te41)Br) T (ALBR) B, (3.15)

where

(A (Mg, The1)Be) T = { Prg1 (25 Mgy Tt 1) Py(z) } 7

—Rpy1 (25 Mgy Topr)  —Re(w)

k
_ —R, —P
a; | (ApBg) T = [ }
jI;[l 7 | (AxB) Rit1 Prya
Then it is easy to check that
(Ak(Ae, T41)Bi) T (AxBg) ™" = My, (3.16)

which, after some elementary calculations, proves the theorem. O

Example 3.1. In this case [6], we have COPRL associated with the modifications (1.6) for k := 0. By (2.8),
Theorem 2.1 and Theorem 3.1 are equivalent. It is easy to check that

P,H_l(x; 1, 7'1) = Pn+1(l‘) — Tan-i-l (l‘)
Next we give a relation between the COPRL associated with two modifications of different levels.

Corollary 3.1. Let k,m be two fixed non-negative integer numbers with m < k. Then, the following relation
holds

k
P, ; Ak - P, 5 Ams Tm
I o [ +1(25 Ay Tht1) } :Mkal{ +1(2; A T 1)

n > k.
—Ryp1 (23 A, Thg1) —Rpg1 (23 Ay Trng1)

Jj=m+1
Proof. The proof is a straightforward consequence of (3.15) and (3.16). O
For a finite composition of perturbations we have the following result.

Theorem 3.2. For 0 < m < k < 0o and for n > m the following relation holds:

kE J k
Prg1 (23 Ams Tmg1s -+ 5 Ak P,
[T Lo | [ S tmmesseiernee) T (g | [ o) .
j=m "

i 10 =Ry 1 (25 Ay T 15+ -5 Ak, Tho1)

Proof. Since My, depends only on the first k& + 1 original recurrence coefficients and the perturbed aj and
bi+1, we have

10



k
T
H n+1 )‘ka Tk+1) = Man+17 n> k?

T
H aj | Byt Mk Thp, A1, Tk) = My 1By (g, Tep), no>k— 1,

m
T
H n-l,-l >\ka7—k+17"'7)\ma7m+1) :MmBn+1()\k7Tk+17"'7)\m—1a7—m)7 n>m.

Clearly,

T T
Bn+1()‘k77—k+17 ceey )\mva+1) = Bn+1()\ma7-m+1, ey )\kaTk+1)'

Thus,

HHal n+1 maTm+17~- )\kaTk+1 (HM) n+1> n>m,

j=ml=0 i=m

and the result follows. O
4. Connection with the unit circle case

In [25], see also [26, Sec. 11.5], Szeg8 pointed out the relation between OPRL on [—1,1] and some
sequences of OPUC, by using the Joukowsky transformation mapping the exterior of the unit circle onto
the exterior of the interval [—1,1] by the modification of the corresponding measure of orthogonality. For
more details, see [26].

The monic OPUC, {®,,},,>0, is generated by the forward recurrence relation

Py1(2) = 2Pn(2) — G P, (2),

with initial condition ®q := 1. Here, ®%(z) = 2"®, (27 !) is the reversed polynomial and the complex num-
bers {a, }n>0, an = —P,41(0), are known as Schur or Verblunsky coefficients. The best general references
on OPUC are the monographs of Geronimus [11,12] and Simon [21]. Let us denote by D the boundary
of the open unit disk D := {z € C;|z| < 1}. The Verblunsky theorem or Spectral Theorem in the OPUC
theory states that when |, | < 1, n > 0, then {®,,},>0 is a sequence of monic orthogonal polynomials with
respect to a unique nontrivial probability measure supported on 9D.

In [5], the author studied the effect on OPRL when the Verblunsky coefficients {a,,}n>0 are perturbed
in the following way:

ﬁnzz{ﬁkem’ n =k (4.17)

Qs otherwise.

Here, k is a fixed non-negative integer number. The polynomials associated with the perturbed Verblunsky
coefficients (4.17) are known as co-polynomials on the unit circle (COPUC, in short). In the next result we
consider the inverse situation.

1"



Theorem 4.1. Let {Q,, } >0 be the Verblunsky coefficients for the corresponding COPUC, {®,(*; Ak, Tk+1) tn>0,

associated with (1.5) and (1.6) through the Szegd transformation. Let us define S, :=

S (@3 My Te1) = Prg1 (@5 Ay Thg1) / P (25 Mgy Tig1) . Then,
a27L—1 = Q2p—1 t Cn, a2n = aop + dna

where

Cn = Sn(l) - Sn(_l) + Sn(_l; >\ka Tk+1) - Sn(L )\ka Tk+1)7
d, =2 ( Sp(=1) Sn(_1§/\k77'k+1)) .

gn 1 +1 Qg +1

Proof. Tt is very well-known [26, Sec. 11.5] that
D2 (0) = Sn(1) = Sn(=1) =1, P241(0) =
Since,
Sp(1) + 5, (1) = $3,(0) + 25, (—1) + 1,

we have

@2, (0) +25,(—1) + 1
®5,(0) + 1

_ Doy, (0; Ak, Thg1) + 250 (=15 A, Tor1) + 1

D9,1+1(0) — Pont1(0; g, Teg1) =

Do (05 Ak, Thp1) + 1

and thus the theorem is proved. O

)

i1/ Pn and

Note that the modifications (1.5) and (1.6) imply through the Szeg¢ transformation the modification of

all the Verblunsky coefficients greater than k. By the properties of zeros of OPRL, in order to obtain the

value of the polynomials Sy, (-; Ag, Tk+1) at —1 and 1, we can use Theorem 2.1.

Remarks 4.1. From now on, we adopt the notation = used in [5], i.e., for the homography mapping

ar +b
= — d—0b
V=t a @ c# 0,

we will write

a b
= A A= .

The Stieltjes or Cauchy transformation of the orthogonality measure dpu,

mu(a:)z/d'u—(y), reC\A

y—x
A

has a particular interest in the theory of OPRL.
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By a spectral transformation of the m-function m,, we mean a new m-function associated with a mea-
sure do, a modification of the original measure du. We refer to pure rational spectral transformation as a
transformation of m,, given by

me = Amy, (4.18)

where a, b, ¢, and d are non-zero polynomials that provide a ‘true’ asymptotic behavior to (4.18), see [28].
Let us denote by m,(-; A, Tk+1) the m-function associated with the perturbations (1.5) and (1.6).

Theorem 4.2. m,,(-; A\, Tk41) 5 a pure rational spectral transformation of m,,, given by
My (25 Ay Te1) = (JoMpd2) my(x),
where
0 1
Jo = .
=[1 o
Proof. From Theorem 3.1, we get

My)a,1 — (My)20 —t=2
7Rn+1(1';)\k,7-k+1) . ( k)271 ( k)2,2

1 n+1(37; )\Im 7k:+1)
M — M —_—
( k)l,l ( k)l,QP .

and the theorem follows from Stieltjes’ Theorem [26,21]. O
Note that the previous result was also obtained in [15].

Corollary 4.1. m,(-; A, Tint15 - - - Ak, Tht1) 8 @ pure rational spectral transformation of m,, given by

k
mu(x;Am,Terl;...;)\k,Tk+1) = J2 H Mng m#(:r)

Jj=m

On the other hand, the Riesz—Herglotz transform of a nontrivial probability measure supported on 0D,

F(z) = / YE2 4o (y),

y—z
oD

is the so-called C-function in the OPUC theory. This function plays an analogous role to the m-function in
the OPRL theory. We recall that there is also a relation between the corresponding m—function for OPRL
in [-1,1] and C-function, as follows

1—22
F(Z) = 2z m#(x)a
or, equivalently,
F(z)
m,(x) = ,
o) = =

with2z =2+ 21 and z =z — V22 — 1.

13



Theorem 4.3. Let F(; A\, Tint15- -3 Ak, Te+1) e the C-function associated with the finite composition of
perturbations (1.5) and (1.6) through the Szegd transformation. Then,

k
F(2 Ay T 155 M Thpt) = [ T2 [ MyJ2 | F(2),

j=m
with 2z = z + 2z~ L.
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