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1 Introduction

In small area estimation, the sample is extracted from a (large) finite population, but estimates

of parameters of small areas contained in the population are required. Direct estimates fail to
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provide reliable values due to the small number of observations within areas. Small-area models

improve the accuracy of direct area estimators by including via the model the information of all

sample observations and not just the ones within the corresponding area, and by making use of

auxiliary information. However, often individual information is not available because of privacy

reasons, but data aggregated to some geographical level can be found in public registers. Fay

and Herriot (1979) proposed a model for data aggregated to area level, in order to estimate

average per-capita income for small areas in U.S.

Multivariate models are useful when the interest is to estimate some descriptive measures

of several correlated variables, or a function of those descriptives. A multivariate Fay-Herriot

model was already used by Fay (1987) and Datta, Fay and Ghosh (1991). They compared

the small area estimators obtained from univariate models for each response variable with the

ones obtained by a multivariate model, showing that the precision was improved by using the

multivariate model. Datta, Ghosh, Nangia and Natarajan (1996) used the same type of model

for calculating hierarchical Bayes estimates of median income of four-person families for U.S.

states.

In the univariate set-up with a scalar parameter, Prasad and Rao (1990) gave an approxi-

mation of the mean squared error of the empirical best linear unbiased predictor (EBLUP) of

the parameter, and proposed an estimator based on the plug-in principle. But estimators of the

mean squared error obtained by resampling techniques are currently competing with analytical

approximations. For instance, Jiang, Lahiri and Wan (2002) provided jacknife estimators with

reduced bias. Butar and Lahiri (2003) used a parametric bootstrap for calculating an estimator

of the mean squared error under a mixed linear model. Pfefferman and Tiller (2002) propose

a similar estimator, but under the set-up of State-Space Models, and they propose a second

estimator based on nonparametric bootstrap. Further references on this topic can be found in

Lahiri (2003).

Here we use a multivariate extension of the Fay-Herriot model to assist the estimation of

the mean vectors of a multidimensional response in small areas (Section 2). In this case the

mean squared error becomes a matrix, referred here as mean crossed product error matrix

(MCPEM). We propose two different estimators of the variance component involved, with spelled

out expressions and good properties (Section 3). We extend the Prasad-Rao results to the

approximation of the MCPEM (Section 4). Further, in Section 5 we propose three different

bootstrap estimators. The first one is obtained applying directly the bootstrap method described

in that section. The second one uses bootstrap to estimate just the term of the MCPEM that

cannot be explicitly calculated in practice. The third estimator is just a bias-correction of the

latter. The consistency of the proposed bootstrap estimators, as the number of areas tends to
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infinity, is shown via the consistency of the Prasad-Rao-type estimator (Section 6).

In a simulation study (Section 7) we compare the finite sample properties of the Prasad-Rao

extension and the three bootstrap estimators, checking their robustness to the lack of normality

and the influence of the number of small areas in the inference problem. Finally, the number of

bootstrap iterations needed for the bootstrap estimators to become stable is analyzed.

2 Multivariate Fay-Herriot model

Let P be a finite population of size N , partitioned into D subpopulations called small areas Pd

of sizes Nd, d = 1, . . . ,D. Let Y = (Y1, . . . , Yr)
′ be the random vector of interest, whose values

in the population units are

ydj = (ydj1, . . . , ydjr)
′, j = 1, . . . ,Nd, d = 1, . . . ,D.

Let µdk = N−1
d

∑Nd

j=1 ydjk denote the mean of variable Yk for area d, k = 1, . . . , r, and let us

denote the vector of means for the d-th area by µd = (µd1, . . . , µdr)
′, with direct estimator

ȳd = (ȳd1, . . . , ȳdr)
′, d = 1, . . . ,D. The model is established by assumptions (M1) and (M2)

below.

(M1) The direct estimators ȳd, given µd, are independent, with

ȳd|µd ∼ N(µd,Σd), d = 1, . . . ,D,

where the r × r matrices Σd are known.

Assumption (M1) can be restated in the following way,

ȳd = µd + ed, ed ∼ N(0,Σd), d = 1, . . . ,D,

where the random errors, e1, . . . ,eD, are independent. Furthermore, it is assumed that the

means µdk are linearly related to p explanatory variables. Let xdk = (xdk1, . . . , xdkp) be the

vector of values of the explanatory variables associated to the k-th variable Yk, for d-th area.

Let βk be a column vector of size p. Let us define the r×rp matrix Xd = diag{xd1, . . . ,xdr} and

the rp vector of coefficients β = (β′

1, . . . ,β
′

r)
′. Let 1r and ID denote a column vector of ones of

size r and the identity matrix of order D respectively. Finally, let us introduce scalar random

effects ud representing the (random) variations between areas not explained by X1, . . . ,XD.

(M2) The vectors of area means satisfy

µd = Xdβ + 1rud, ud ∼ N(0, σ2
u), d = 1, . . . ,D, (1)

where σ2
u ∈ (0,∞) is unknown, the random effects u1, . . . , uD are independent, and also

independent of the random errors e1, . . . ,eD.
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Now let us define the vectors and matrices

y =









ȳ1
...

ȳD









, X =









X1

...

XD









, u =









u1

...

uD









, e =









e1

...

eD









.

Then the model described by (M1) and (M2) can be rewritten in the general form of a linear

mixed model

y = Xβ + Zu + e, u ∼ N(0,Σu), e ∼ N(0,Σe), (2)

where

Z = ZrD×D = diag{1r, . . . ,1r}, Σu = σ2
uID, Σe = diag{Σ1, . . . ,ΣD}.

The mean vector and covariance matrix of y are

E[y] = Xβ, V ar[y] = ZΣuZ ′ + Σe , V, (3)

where V is block diagonal; more explicitly,

V = diag{V1, . . . , VD}, Vd = σ2
u1r1

′

r + Σd, d = 1, . . . ,D.

We are interested in estimating the realized value of the mean µdk of variable Yk in small area

d, for all k = 1, . . . , r and all d = 1, . . . ,D, that is, the target parameter is the realized value of

the random vector

µ = (µ′

1, . . . ,µ
′

D)′ = Xβ + Zu.

When the covariance matrix V is completely known, Henderson (1975) calculated the BLUP

of any linear combination of fixed effects β and random effects u in a general model of the form

(2). Following his results, the BLUP of µ is given by

µ̂B = µ̂(σ2
u,y) = Xβ̂B + ZûB , (4)

where

β̂B = β̂(σ2
u,y) =

(

XtV −1X
)

−1
XtV −1y, ûB = û(σ2

u,y) = ΣuZ ′V −1(y − Xβ̂B).

But as indicated by the notation, β̂B and ûB depend on σ2
u (through V ) that is unknown. If we

calculate an estimator σ̂2
u of σ2

u and we replace it in (4), we get the Empirical BLUP (EBLUP)

µ̂E = µ̂(σ̂2
u,y) = Xβ̂E + ZûE ,

where β̂E = β̂(σ̂2
u,y) and ûE = û(σ̂2

u,y). In the following section we describe two possible

estimators of σ2
u, and we show some asymptotic properties.
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3 Estimation of σ
2
u

We use two methods for estimating the variance σ2
u, both providing spelled out expressions of

the estimators, something useful for analyzing their order of consistency.

3.1 Method of moments

Let β̃ be the ordinary least squares estimator of β in the model obtained by omitting the random

effects, that is, β̃ = (X ′X)−1X ′y, and let ũ be the vector of residuals for the same model, that

is, ũ = y − Xβ̃. Then,

ũ′ũ = y′P1y, P1 = IDr − X(X ′X)−1X ′,

where P1 is symmetric, idempotent and satisfies P1X = 0. Taking expectation, we get

E[ũ′ũ] = E[y′P1y] = σ2
utr{P1ZZ ′} + tr{P1Σe}.

From here, we get the following unbiased estimator of σ2
u,

σ̂2
u1 = σ̂2

u1(y) =
y′P1y − tr{P1Σe}

tr{P1ZZ ′} ,

where tr{A} denotes the trace of A. A more operative expression is obtained after some algebra,

σ̂2
u1 =

ũ′ũ −∑D
d=1

(

tr{Σd} − tr{X ′

dΣdXd(X
′X)−1}

)

Dr −∑D
d=1 1′

rXd(X ′X)−1X ′

d1r

. (5)

The variance of σ̂2
u1 is given by

V ar[σ̂2
u1] =

V ar[ũ′ũ]

[Dr −∑D
d=1 1′

rXd(X ′X)−1X ′

d1r]2
,

where

V ar[ũ′ũ] =
D
∑

d=1

(

tr{Σ2
d} − 2tr{X ′

dΣ
2
dXd(X

′X)−1} + tr{(X ′

dΣdXd(X
′X)−1)2}

)

+2σ2
u

D
∑

d=1

(

1′

rΣd1r − 21′

rXd(X
′X)−1X ′

d1r + 1′

rXd(X
′X)−1X ′ΣeX(X ′X)−1X ′

d1r

)

+2(σ2
u)2

[

r2D − r

D
∑

d=1

(

1′

rXd(X
′X)−1X ′

d1r + 1′

rXd(X
′X)−1X ′ZZ ′X(X ′X)−1X ′

d1r

)

]

.

The following proposition shows the order of consistency of the proposed estimator. We use

the notation f(D) = O(g(D)) for two functions f(D) and g(D) satisfying limD→∞ |f(D)/g(D)| <

∞. The notation f(D) = O(g(D)) is used for the more accurate relation limD→∞ |f(D)/g(D)| ∈
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(0,∞), and f(D) = o(g(D)) is used when the same limit is zero. Further, f(D) = Op(g(D))

and f(D) = op(g(D)) denote respectively boundedness and convergence to zero in probabil-

ity of f(D)/g(D). When f(D) is a m × n matrix whose elements are O(g(D)), we write

f(D) = [O(g(D))]m×n, and the same brackets notation is used with the rest of symbols of

asymptotic order.

Proposition 1. Under a model defined by (M1) and (M2) satisfying the following assumptions

(H1) 0 < p < ∞ and 0 < r < ∞,

(H2) |xdkℓ| ≤ x < ∞, ℓ = 1, . . . , p, k = 1, . . . , r, d = 1, . . . ,D,

(H3) the covariance matrices Σd, d = 1, . . . ,D, are positive definite and their elements are

uniformly bounded,

(H4) X ′X = [O(D)]pr×pr,

it holds

|σ̂2
u1 − σ2

u| = Op(D
−1/2). (6)

Proof. By studying the order of each term in the expression of V ar[σ̂2
u1] when D tends to

infinity, it can be proved that DV ar[σ̂2
u1] = O(1), and this result implies (6). �

3.2 Henderson Method 3

Using Henderson method 3 (see e.g. Section 5.5 in Searle et al., 1992), an unbiased estimator

of σ2
u is

σ̂2
u2 = σ̂2

u2(y) =
y′P2y − σ2

e(n − r(X))

tr{Z ′P2Z} , (7)

where r(A) denotes the rank of A,

P2 = Σ−1
e − Σ−1

e X(X ′Σ−1
e X)−1X ′Σ−1

e

and it holds P2X = 0. Let us denote Q = (X ′Σ−1
e X)−1. The variance of σ̂2

u2 is

V ar[σ̂2
u2] =

V ar[y′P2y]
[

∑D
d=1(1

′

rΣ
−1
d 1r − 1′

rΣ
−1
d XdQX ′

dΣ
−1
d 1r

]2 ,
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where

V ar[y′P2y] = 2(σ2
u)2

[

D
∑

d=1

(1′

rΣ
−1
d 1r)

2 − 2

D
∑

d=1

1′

rΣ
−1
d 1r1

′

rΣ
−1
d XdQX ′

dΣ
−1
d 1r

+
D
∑

d=1

1′

rΣ
−1
d XdQ

(

D
∑

d=1

X ′

dΣ
−1
d 1r1

′

rΣ
−1
d Xd

)

QX ′

dΣ
−1
d 1r

]

+ 4σ2
u

(

D
∑

d=1

1′

rΣ
−1
d 1r −

D
∑

d=1

1′

rΣ
−1
d XdQX ′

dΣ
−1
d 1r

)

+ 2Dr − 2

D
∑

d=1

tr{X ′

dΣ
−1
d XdQ}.

Proposition 2. Under a model defined by (M1) and (M2) satisfying assumptions (H1)–(H3)

and

(H5) X ′Σ−1
e X = [O(D)]pr×pr,

(H6)
∑D

d=1 1′

rΣ
−1
d 1r = O(D),

it holds

|σ̂2
u2 − σ2

u| = Op(D
−1/2).

Proof. It follows the same steps of the proof of Proposition 1. �

An estimator θ̂ = θ̂(y) of a parameter θ is called translation invariant when for any a ∈ IRp,

θ̂(y + Xa) = θ̂(y).

Proposition 3. The estimators σ̂2
u1 and σ̂2

u2 are translation invariant.

Proof. The proof is direct by observing that PiX = 0 and X ′Pi = 0, i = 1, 2. �

4 Analytic approximation of the mean crossed product error

The mean crossed product error matrix of µ̂E is defined as MCP E(µ̂E) = E[(µ̂E−µ)(µ̂E−µ)′],

and can be written in the form

MCP E(µ̂E) = MCP E(µ̂B) + E[(µ̂E − µ̂B)(µ̂E − µ̂B)′]

+ E[(µ̂E − µ̂B)(µ̂B − µ)′] + E[(µ̂B − µ)(µ̂E − µ̂B)′].

In this relation, MCP E(µ̂B) accounts for the error in predicting µ when σ2
u is known, and the

following term accounts for the increase in error due to estimating σ2
u. Further, following Kackar

and Harville (1984), it can be proved (using the normality assumption) that for any unbiased

and translation invariant estimator of σ2
u, the elements of the matrices corresponding to the last
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two terms are equal to zero. The mean crossed product error of µ̂B can be obtained from the

results of Henderson (1975), and it can be expressed in the form

MCP E(µ̂B) = G1(σ
2
u) + G2(σ

2
u),

where

G1(σ
2
u) = ZTZ ′, G2(σ

2
u) = (X − ZTZ ′Σ−1

e X)P (X ′ − X ′Σ−1
e ZTZ ′), (8)

and

P = (X ′V −1X)−1, T = Σu − ΣuZ ′V −1ZΣu.

Prasad and Rao (1990) obtained an approximation of E[(µ̂E − µ̂B)(µ̂E − µ̂B)′] for univariate

models (r = 1) when predicting a single area mean, but their results are easily generalizable to

the multivariate case for the parameter vector µ. For this, let µ̂B,di = µ̂di(σ
2
u,y) and µ̂E,di =

µ̂di(σ̂
2
u,y) be the di-th components of vectors µ̂B = µ̂(σ2

u,y) and µ̂E = µ̂(σ̂2
u,y) respectively.

The approximation is obtained by a first order Taylor expansion of the function µ̂di(ω,y), being

ω an admissible value of σ2
u, around the true value σ2

u at point ω = σ̂2
u, that is,

µ̂E,di − µ̂B,di = sdi(σ̂
2
u − σ2

u) + op(|σ̂2
u − σ2

u|), where sdi = ∂µ̂di(ω,y)/∂ω|ω=σ2
u

.

It is easy to see that sdi = Op(1), i = 1, . . . , r, d = 1, . . . ,D. Applying the Taylor formula to the

ℓj-th element, and multiplying both expressions, we get

(µ̂E,di − µ̂B,di)(µ̂E,ℓj − µ̂B,ℓj) = sdisℓj(σ̂
2
u − σ2

u) + op

(

(σ̂2
u − σ2

u)2
)

.

Defining the vector s = (s11, . . . , sDr)
′, we can write

(µ̂E − µ̂B)(µ̂E − µ̂B)′ = ss′(σ̂2
u − σ2

u)2 +
[

op

(

(σ̂2
u − σ2

u)2
)]

Dr×Dr
. (9)

The following theorem provides an approximation of order o(D−1) of the right-hand side

term in expression (9). It is a slight modification of Theorem A.1 of Prasad and Rao (1990).

The details of the proof can be found in Appendix.

Theorem 1. Suppose that model (M1)–(M2) satisfies (H1)–(H3) along with

(H7) (X ′V −1X)−1 = [O(D−1)]pr×pr,

(H8) σ̂2
u = k + y′Cy is an unbiased, consistent and translation invariant estimator of σ2

u, where

k = O(1) and C = diag
{

[O(D−1)]r×r, . . . , [O(D−1)]r×r

}

+
[

O(D−2)
]

Dr×Dr
.

Then, for L = ∂(ZΣuZ ′V −1)/∂σ2
u, it holds

E[ss′(σ̂2
u − σ2

u)2] = LV L′V ar[σ̂2
u] + [o(D−1)]Dr×Dr.
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Remark 1. Under the conditions of Proposition 1 (Proposition 2), the estimator σ̂2
u1 (σ̂2

u2)

satisfies assumption (H8).

From (9) and Theorem 1, the Prasad-Rao approximation of MCP E(µ̂E) is

MCP EPR(µ̂E) = G1(σ
2
u) + G2(σ

2
u) + G3(σ

2
u), (10)

where G1(σ
2
u) and G1(σ

2
u) are given by (8), and

G3(σ
2
u) = LV L′V ar[σ̂2

u].

By extension of Prasad and Rao (1990), an estimator of MCP EPR(µ̂E) is given by

mcpePR(µ̂E) = G1(σ̂
2
u) + G2(σ̂

2
u) + 2G3(σ̂

2
u),

where σ̂2
u is an estimator of σ2

u, for instance σ̂2
u1 or σ̂2

u2.

5 Bootstrap approximations of the mean crossed product error

In this section we introduce three alternative ways of approximating MCP E(µ̂E) by a simple

bootstrap procedure. Although the normality assumption is needed in order to prove the consis-

tency of the approximations, the application of the method does not require an imposed prob-

ability distribution. In Steps 1-5 we describe the procedure for computing the direct bootstrap

estimator of MCP E(µ̂E), and later we describe how to obtain the other two approximations.

Step 1. Calculate estimates σ̂2
u = σ̂2

u(y) and β̂E = β̂(σ̂2
u,y) of σ2

u and β respectively; for

example, using the method of moments or the Henderson method 3.

Step 2. Generate D independent copies of a variable W1 with E[W1] = 0 and E[W 2
1 ] = 1.

Construct the vector u∗ = (u∗

1, . . . , u
∗

D)′, with elements u∗

d = σ̂uW1. The mean vector and

covariance matrix of u∗ are respectively 0D and Σ̂u = σ̂2
uID.

Step 3. Generate r × D independent copies of a random variable W2 with E[W2] = 0 and

E[W 2
2 ] = 1, independent of W1. Construct e∗ = Σ

1/2
e W 2 with W 2 = (W ′

21, . . . ,W
′

2D)′

and W 2d = (W2d1, . . . ,W2dr)
′ for all d = 1, . . . ,D. The mean vector of e∗ is 0Dr and its

covariance matrix is Σe = diag{Σ1, . . . ,ΣD}.

Step 4. Construct the bootstrap model ȳ∗

d = µ∗

d + e∗

d, d = 1, . . . ,D, with µ∗

d = Xdβ̂E + 1ru
∗

d,

which can be rewritten in general form as

y∗ = Xβ̂E + Zu∗ + e∗. (11)
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The remaining step requires further notation. Let us denote by E∗, V ar∗, Cov∗ and MCP E∗

the expectation, variance, covariance and mean crossed product error matrix under the proba-

bility distribution supplied by bootstrap model (11), given the initial sample.

We define the bootstrap parameter µ∗ = Xβ̂E + Zu∗ by analogy with the parameter µ =

Xβ + Zu. Under bootstrap model (11), the BLUP of µ∗ is

µ̂∗

B = µ̂(σ̂2
u,y∗) = Xβ̂

∗

B + Zû∗

B, (12)

where β̂
∗

B = β̂(σ̂2
u,y∗) and û∗

B = û(σ̂2
u,y∗) = (û∗

B1, . . . , û
∗

BD)′ are the bootstrap versions of β̂B

and ûB . Now let σ̂2∗
u = σ̂2

u(y∗) be the bootstrap estimator of σ2
u, obtained from model (11).

Replacing such estimator in (12) we get the bootstrap EBLUP

µ̂∗

E = µ̂(σ̂2∗
u ,y∗) = Xβ̂

∗

E + Zû∗

E, (13)

where β̂
∗

E = β̂(σ̂2∗
u ,y∗) and û∗

E = û(σ̂2∗
u ,y∗) = (û∗

E1, . . . , û
∗

ED)′. In the same way, the bootstrap

MCPEM of µ̂∗

E is given by

MCP E∗(µ̂
∗

E) = E∗[(µ̂
∗

E − µ∗) (µ̂∗

E − µ∗)′].

The direct bootstrap estimator of MCP E(µ̂E) proposed here is MCP E∗1(µ̂∗

E) = MCP E∗(µ̂
∗

E).

In practice, this estimator is approximated via Monte Carlo as described in Step 5:

Step 5. Calculate µ∗(b) and µ̂
∗(b)
E , b = 1, . . . , B. The Monte Carlo approximation of the matrix

MCP E∗1(µ̂∗

E) is

mcpe∗1(µ̂∗

E) = B−1
B
∑

b=1

(µ̂
∗(b)
E − µ∗(b))(µ̂

∗(b)
E − µ∗(b))′. (14)

Remark 2. Observe that as B tends to infinity, mcpe∗1(µ̂∗

E) is a consistent estimator of

MCP E∗(µ̂
∗

E).

The bootstrap method is specially useful for approximating unknown quantities. Thus, it

is reasonable to apply this method for estimating only the term of MCP E(µ̂E) that cannot

be calculated in practice, namely E[(µ̂E − µ̂B)(µ̂E − µ̂B)′]. Thus, the term-to-term bootstrap

estimator is defined as

MCP E∗2(µ̂∗

E) = G1(σ̂
2
u) + G2(σ̂

2
u) + E∗[(µ̂

∗

E − µ̂∗

B)(µ̂∗

E − µ∗

B)′].

It is known that the quantity G1(σ̂
2
u)+G2(σ̂

2
u) is a biased estimator of G1(σ

2
u)+G2(σ

2
u). Thus,

we define the bias-corrected bootstrap estimator as

MCP E∗3(µ̂∗

E) = 2[G1(σ̂
2
u) + G2(σ̂

2
u)] − E∗[G1(σ̂

2∗
u ) + G2(σ̂

2∗
u )] + E∗[(µ̂

∗

E − µ̂∗

B)(µ̂∗

E − µ̂∗

B)′].

The Monte Carlo approximations mcpe∗2(µ̂∗

E) and mcpe∗3(µ̂∗

E) of the bootstrap quantities

MCP E∗2(µ̂∗

E) and MCP E∗3(µ̂∗

E) respectively are obtained in a similar way as (14).

10



6 Consistency of the Bootstrap Estimators

In this section we show that if the extension (10) of the Prasad-Rao approximation is consistent,

then the bootstrap estimators 2 and 3 proposed in Section 5 are also consistent. More concretely,

following the arguments of Section 5, the analogue Prasad-Rao approximation MCP EPR
∗

(µ̂∗

E)

of the matrix MCP E∗(µ̂
∗

E) can be obtained. Here we prove that MCP EPR
∗

(µ̂∗

E) is a consis-

tent estimator of MCP EPR(µ̂E) by the method of imitation (see Shao and Tu, 1995, p.76),

where the consistency property is defined with respect to the probability distribution provided by

bootstrap model (11). Thus, if MCP EPR(µ̂E) is a consistent estimator of MCP E(µ̂E), anal-

ogously MCP EPR
∗

(µ̂∗

E) is consistent for MCP E∗(µ̂
∗

E), and this implies that MCP E∗(µ̂
∗

E)

is consistent for MCP E(µ̂E).

The consistency is provided by the good properties of the bootstrap model (11). Observe

that the vectors u∗ and e∗ generated in Steps 2 and 3 are independent. Furthermore, the

expectation and the covariance matrix of y∗ imitate those of y,

E∗[y
∗] = E∗[Xβ̂E + Zu∗ + e∗] = Xβ̂E ,

V ar∗[y
∗] = ZE∗[u

∗u∗′]Z ′ + E∗[e
∗e∗

′

] = σ̂2
uZZ ′ + Σe = V̂ = diag{V̂d; d = 1, . . . ,D}.

(15)

Proposition 4. Under assumptions (M1), (M2) and (H1)–(H6), it holds that

E∗[y
∗] − E[y] = [op(1)]Dr×1 and V ar∗[y

∗] − V ar[y] = [op(1)]Dr×Dr.

Proof. For σ̂2
u1, the result is immediate by applying (3), (15) and Proposition 1. In the case of

σ̂2
u2, the result follows from (3), (15) and Proposition 2. �

Proposition 5 establishes the results needed for obtaining the approximation of the mean

crossed product error matrix (Theorem 2), following the arguments of Prasad and Rao (1990).

Its proof is analogous to Proposition 1 or Proposition 2 depending on the considered estimator

of σ2
u, but taking into account that the probability distribution is conditional on the initial

sample. Thus, symbols Op∗ and op∗ indicate respectively boundedness and convergence to zero

in probability, under the probability distribution given by model (11).

Proposition 5. Let model (11) satisfies assumptions (M1), (M2) and (H1)–(H4). Then

(i) |σ̂∗2
u1 − σ̂2

u1| = Op∗(D
−1/2);

(ii) assuming additionally (H5) and (H6), it holds |σ̂∗2
u2 − σ̂2

u2| = Op∗(D
−1/2);

(iii) the estimators σ̂∗2
ui (i = 1, 2) are unbiased, consistent and translation invariant for σ2

u, and

can be expressed as σ̂∗2
ui = k + y∗′Cy∗, where

k = O(1) and C = diag
{

[O(D−1)]r×r, . . . , [O(D−1)]r×r

}

+
[

O(D−2)
]

Dr×Dr
.

11



Proof. The proofs of (i) and (ii) follow the same steps of that of Propositions 1 and 2 re-

spectively. Note that the normality assumption is required. Finally, (iii) follows from the

construction of both estimators. �

Theorem 2. Let us suppose that model (11) has been generated as described in Steps 1–4 with

Wi ∼ N(0, 1) (i = 1, 2) and with an estimator σ̂2
u ∈ (0,∞) satisfying (H8). Assume further

assumptions (H1)–(H6), and (H7) for the matrix V evaluated at any admissible value of σ2
u.

Then,

E[s∗s∗′(σ̂∗2
u − σ̂2

u)] = L̂V̂ L̂′V ar∗[σ̂
∗2
u ] + [oP (D−1)]Dr×Dr,

where s∗ = (s∗11, . . . , s
∗

Dr)
′ with components s∗di = ∂µ̂di(ω,y∗)/∂ω|ω=σ̂2

u

, i = 1, . . . , r, d =

1, . . . ,D, V̂ = V (σ̂2
u), L̂ = ∂(ZΣ̂uZ ′V̂ −1)/∂σ̂2

u, and where V ar∗[σ̂
∗2
u ] is the bootstrap version

of V ar[σ̂2
u] (see Section 4).

Proof. Under the imposed conditions, taking into account the normality of Wi and the fact that

σ̂∗2
u = σ̂2

u(y∗) satisfies (H8), the proof follows similar steps to that of Theorem 1 (Appendix),

but now under bootstrap model (11). �

By Theorem 2, the quantity MCP E∗(µ̂
∗

E) can be approximated in the same sense as in

Prasad and Rao (1990), by

MCP EPR
∗

(µ̂∗

E) = G1(σ̂
2
u) + G2(σ̂

2
u) + G3(σ̂

2
u),

where

G1(σ̂
2
u) = ZT̂Z ′, G2(σ̂

2
u) = (X −ZT̂Z ′Σ−1

e X)P̂ (X −XΣ−1
e ZT̂Z ′), G3(σ̂

2
u) = L̂V̂ L̂′V ar∗[σ̂

∗2
u ].

and where T̂ and P̂ are the empirical versions of T and P , that is,

T̂ = Σ̂u − Σ̂uZ ′V̂ −1ZΣ̂u, P̂ = (X ′V̂ −1X)−1.

In the following theorems we use notation MCPEPR
ℓm (µ̂E) and MCPEPR

∗ℓm(µ̂∗

E) for the (ℓ,m)-th

element of the matrices MCP EPR(µ̂E) and MCP EPR
∗

(µ̂∗

E) respectively.

Theorem 3. Under the assumptions of Theorem 2 with σ̂2
u = σ̂2

u1 or σ̂2
u = σ̂2

u2, it holds that

|MCPEPR
∗ℓm(µ̂∗

E) − MCPEPR
ℓm (µ̂E)| = Op(D

−1/2), ℓ,m = 1, . . . , r.

Proof. By (10) and Theorem 2, we know that

MCPEPR
ℓm (µ̂E) =

3
∑

k=1

Gkℓm(σ2
u) and MCPEPR

∗ℓm(µ̂∗

E) =

3
∑

k=1

Gkℓm(σ̂2
u),

12



where Gkℓm(σ2
u) denote the (ℓ,m)-th element of Gk(σ

2
u), k = 1, 2, 3. Taking into account Propo-

sition 1 if σ̂2
u = σ̂2

u1 and Proposition 2 if σ̂2
u = σ̂2

u2, and then subtracting term to term we get,

for any pair (ℓ,m),

|Gkℓm(σ̂2
u) − Gkℓm(σ2

u)| = Op(D
−1/2), k = 1, 2, 3. �

Remark 3. Under normality, the consistency of MCP E∗2(µ̂∗

E) and MCP E∗3(µ̂∗

E) are clear

because the term E∗[(µ̂
∗

E − µ̂∗

B)(µ̂∗

E − µ∗

B)′] is consistently approximated by G3(σ̂
2
u).

7 Simulation Study

In this section we describe a simulation study designed for analyzing the accuracy of the four

presented estimators of the mean crossed product error matrix, namely the extension of the

Prasad-Rao estimator and the three bootstrap-based estimators, when the number of areas D

is finite.

We start describing how the data were simulated. The sample vectors yd = (yd1, yd2)
′,

d = 1, . . . ,D were generated following a bivariate normal mixed model with random effects

associated to areas. Two covariates were considered, each one affecting one of the dependent

variables. The values (xd1, xd2)
′ of the two covariates in the areas were generated from a bivariate

normal distribution, with means µ1 = µ2 = 10, variances σxd11 = 1 + δx(d − 1)/(D − 1) and

σxd22 = 2 + 2δx(d − 1)/(D − 1) for δx = 0, 1, and covariance σxd12 = ρx
√

σxd11σxd22, for

ρx = 0, 1/2. Random effects associated to areas ud were generated independently from a normal

distribution with zero mean and variance σ2
u = 2. The vector of values of the random errors

(ed1, ed2)
′ was simulated from a bivariate normal distribution with zero mean vector, and in a

multivariate heteroskedastic framework, where the variances and the covariance are proportional

to the values of the two covariates. More explicitly, we define weights wd =
(

x2
d1 + x2

d2

)

−ℓ/2
,

ℓ = 0, 1/2, and then the elements of the covariance matrices Σd are σdij = σ2
erij/wd (i, j = 1, 2),

for σ2
e = 1, r11 = 1, r22 = 2, r12 = ρe

√
r11r22 and ρe = 1/2. Finally, the vector of values of the

two response variables were generated, taking β1 = β2 = 1, from the model

ydk = βkxdk + ud + edk, k = 1, 2, d = 1, . . . ,D. (16)

For the sake of brevity, we only present the numerical results obtained with constant variances

(δx = 0), dependent covariates (ρx = 0.5) and in the heteroskedastic framework (ℓ = 0.5).

A preliminary simulation study was carried out in order to analyze the precision of model pa-

rameter estimates, with I = 1000 simulations of samples with sizes D = 50, 100, 200, 500, 1000.

The Monte Carlo approximations of the mean squared errors of the estimators of model param-
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eters β1, β2 and σ2
u, calculated using both the method of moments (σ̂2

u1) and Henderson method

3 (σ̂2
u2), are listed respectively in Tables 1 and 2 below.

D 50 100 200 500 1000

EMSE(β̂E1) 0.001395 0.000706 0.000366 0.000151 0.000076

EMSE(β̂E2) 0.002249 0.001018 0.000507 0.000211 0.000112

EMSE(σ̂2
u1) 2.960361 1.469272 0.723034 0.297036 0.155238

Table 1. Mean squared errors of model parameter estimators using the

method of moments, with δx = 0, ρx = 0.5 and ℓ = 0.5.

D 50 100 200 500 1000

MSE(β̂E1) 0.001396 0.000706 0.000366 0.000151 0.000076

MSE(β̂E2) 0.002249 0.001018 0.000507 0.000211 0.000112

MSE(σ̂2
u2) 2.971057 1.435667 0.689207 0.291275 0.152444

Table 2. Mean squared errors of model parameter estimators using

Henderson method 3, with δx = 0, ρx = 0.5 and ℓ = 0.5.

It can be seen within both tables that the estimates of model coefficients β1, β2 are much

more precise that the estimate of the variance σ2
u. But as it has been theoretically shown, the

precision of the variance estimator improves when the number of areas D increases. The two

estimation methods present almost the same results, but σ̂2
u2 is slightly better for moderate

number of areas (D = 100, 200).

The main simulation study, designed for comparing the proposed estimators of the mean

crossed product error matrix, followed the scheme described by items 1-5 below.

1. Generate independently I = 1000 samples y(i) = (y
(i)
11 , y

(i)
12 , . . . , y

(i)
D1, y

(i)
D2)

′ as described at

the beginning of current section, and calculate mean vectors µ(i) = (µ
(i)
11 , µ

(i)
12 , . . . , µ

(i)
D1, µ

(i)
D2)

′,

i = 1, . . . , I.

2. Calculate estimators σ̂
2(i)
u = σ̂2

u(y(i)) and β̂
(i)

E = β̂(σ̂
2(i)
u ,y(i)) i = 1, . . . , I.

3. For i = 1, . . . , I, compute predictors µ̂
(i)
Ed = (µ̂

(i)
Ed1, µ̂

(i)
Ed2)

′, and Prasad-Rao-type estimators

mcpe
PR(i)
d = mcpePR

d (µ̂
(i)
Ed), d = 1, . . . ,D.

4. From estimators σ̂
2(i)
u and β̂

(i)
E , generate B bootstrap samples as described in Section 5

with W1 and W2 generated from standard normal distributions (see Step 2-3 in Section

5), and compute the bootstrap approximations mcpe
∗a(i)
d = mcpe∗ad (µ̂

(i)
Ed), for a = 1, 2, 3.

14



5. For each area d, calculate the Monte Carlo approximations of theoretical mean crossed

product error matrix MCP Ed and of the four matrix estimators, by formulas

MCP Ed =
1

I

I
∑

i=1

(µ̂
(i)
Ed − µ

(i)
d )(µ̂

(i)
Ed − µ

(i)
d )′,

mcpePR
d =

1

I

I
∑

i=1

mcpe
PR(i)
d , mcpe∗ad =

1

I

I
∑

i=1

mcpe
∗a(i)
d , a = 1, 2, 3.

Calculate also the mean squared error over simulations of each element (ℓ,m) of the four

matrices; that is, calculate for each ℓ,m = 1, 2 and for a = 1, 2, 3,

EPR
dℓm =

1

I

I
∑

i=1

(mcpe
PR(i)
dℓm − MCPEdℓm)2, E∗a

dℓm =
1

I

I
∑

i=1

(mcpe
∗a(i)
dℓm − MCPEdℓm)2.

In small area estimation problems, the number of areas may differ considerably from one

application to another. In order to compare the estimators for different number of areas, the

algorithm described above has been run for all D ∈ D, where D = {50, 100, 200, 300, 400, 500}.
In Figure 1, the line with label MCPEd11 represents the median of {MCPEd11, d =

1, . . . ,D} for each D ∈ D, being MCPEd11 the element (1, 1) of the MCP Ed matrix. The

remaining lines correspond to the medians over areas of the Prasad-Rao estimators mcpePR
d11, and

of the three bootstrap estimators mcpe∗1d11, mcpe∗2d11 and mcpe∗3d11. Figures 2 and 3 represent the

same quantities for the elements (1, 2) and (2, 2) respectively of the same matrices. The results

were obtained by fitting the model using the method of moments estimator of σ2
u. The results

for Henderson method 3 are omitted due to the great similarity.

Relative patterns are similar in the three pictures. The medians over areas of the Prasad-

Rao estimator mcpePR
d11 and the direct bootstrap estimator mcpe∗1d11 show a negative bias for all

D. The other two estimators behave almost the same for D ≥ 100, but it is observed that the

bias-uncorrected bootstrap estimator works better that the bias-corrected estimator in median

for D = 50.
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Figure 1. Medians over areas of MCPEd11, mcpePR
d11, and mcpe∗ad11, a = 1, 2, 3, versus D.
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Figure 2. Medians over areas of MCPEd12, mcpePR
d12, and mcpe∗ad12, a = 1, 2, 3 versus D.
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Figure 3. Medians over areas of MCPEd22, mcpePR
d22 and mcpe∗ad22, a = 1, 2, 3, versus D.

In order to get more insight into the behavior of the estimators along iterations, we have

calculated, for each pair (ℓ,m) and for each D ∈ D, the medians over the D areas of the mean

squared errors EPR
dℓm, E∗1

dℓm, E∗2
dℓm and E∗3

dℓm of the estimators mcpePR
dℓm, mcpe∗1dℓm, mcpe∗2dℓm and

mcpe∗3dℓm respectively. The results are listed in Table 3. In this table we can see how for D = 50,

the Prasad-Rao-type estimator and the term-to-term bootstrap estimators have similar result,

while for D > 50 the bootstrap estimators mcpe∗2dℓm and mcpe∗3dℓm present slightly lower mean

squared error.

D EPR
d11 E∗1

d11 E∗2
d11 E∗3

d11 EPR
d12 E∗1

d12 E∗2
d12 E∗3

d12 EPR
d22 E∗1

d22 E∗2
d22 E∗3

d22

50 0.176 0.198 0.173 0.218 0.176 0.198 0.173 0.217 0.183 0.206 0.180 0.225

100 0.087 0.095 0.082 0.086 0.087 0.095 0.082 0.085 0.090 0.098 0.085 0.088

200 0.041 0.048 0.039 0.039 0.041 0.048 0.039 0.039 0.042 0.049 0.041 0.041

300 0.028 0.035 0.028 0.028 0.028 0.035 0.028 0.028 0.029 0.036 0.028 0.028

400 0.023 0.030 0.023 0.023 0.023 0.030 0.023 0.023 0.024 0.031 0.023 0.023

500 0.019 0.026 0.019 0.019 0.019 0.027 0.019 0.019 0.020 0.027 0.020 0.020

Table 3. Medians over areas of mean squared errors EPR
dℓm, E∗1

dℓm, E∗2
dℓm and E∗3

dℓm.
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A further analysis has been done attending to the percentage of areas where the Prasad-Rao-

type estimator presents smaller mean squared error than each bootstrap estimator. Thus, for

each D, we define the quantities P ∗1
ℓm, P ∗2

ℓm and P ∗3
ℓm as the percentage of the D areas where the

respective differences EPR
dℓm −E∗1

dℓm, EPR
dℓm −E∗2

dℓm and EPR
dℓm −E∗3

dℓm are negative. The results are

listed in Table 4. We can see how the Prasad-Rao-type estimator gains in all areas to the direct

bootstrap estimator for any value of D, and for D = 50 it gains in all areas to the bias-corrected

estimator mcpe∗3dℓm. However, for D ≥ 100, the latter estimator presents less mean squared error

in most of the areas. The best results are for the term-to-term bootstrap estimator mcpe∗2dℓm,

since even for D = 50 it has lower MSE for the most of areas. For D large all estimators become

very close, and the given percentages are not as representative. It is important to mention that,

as already observed in Table 3, the differences in the mean squared errors of the estimators are

small.

D P ∗1
11 P ∗2

11 P ∗3
11 P ∗1

12 P ∗2
12 P ∗3

12 P ∗1
22 P ∗2

22 P ∗3
22

50 1.00 0.22 1.00 1.00 0.20 1.00 1.00 0.18 1.00

100 1.00 0.02 0.11 1.00 0.01 0.09 1.00 0.01 0.09

200 1.00 0.06 0.07 1.00 0.07 0.07 1.00 0.07 0.08

300 1.00 0.23 0.29 1.00 0.24 0.29 1.00 0.24 0.29

400 1.00 0.20 0.20 1.00 0.20 0.19 1.00 0.21 0.19

500 1.00 0.40 0.42 1.00 0.40 0.42 1.00 0.39 0.42

Table 4. Percentage of areas P ∗1
ℓm, P ∗2

ℓm and P ∗3
ℓm where the mean squared

errors of mcpe∗1dℓm, mcpe∗2dℓm and mcpe∗3dℓm are greater than that of mcpePR
dℓm.

The normality assumption is essential for deriving the Prasad-Rao approximation, and thus

for applying the arguments given in Section 6 about the consistency of the bootstrap estimators.

However, the bootstrap procedure described in Section 5 does not require normality, and can be

used in practice even with unknown probability distribution. In this sense, it can be regarded as a

nonparametric bootstrap. In order to study the robustness of the estimators in a nonparametric

setting with absence of normality, a second simulation study was carried out. In this simulation,

the initial random effects ud were generated from a Gumbel distribution with zero mean and

variance σ2
u = 2, and the vector of random errors ed from a bivariate Logistic with mean vector

equal to zero, and covariance matrix equal to Σd = (σdij)i,j=1,2, with σdij = σ2
erij/wd, where

r11 = 1, r22 = 2, r12 = ρe
√

r11r22, for ρe = 1/2 and σ2
e = 1. The bootstrap random effects u∗

d

and the random errors e∗

d where generated as in Step 2-3 of Section 5 with W1 and W2 simulated
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from a standard normal distribution.

In the obtained results, the direct bootstrap estimator mcpe∗1d11 presented uniformly greater

mean squared errors for all areas. Thus, in Figure 4 we plotted the mean squared errors over

simulations of the remaining three estimators mcpePR
d11, mcpe∗2d11 and mcpe∗3d11. It can be appre-

ciated that in the most of areas, the two bootstrap estimators get very similar results, and both

are more accurate than the Prasad-Rao extension. For the components (1, 2) and (2, 2) of the

matrices, the figures show similar results.

0.05

0.055

0.06

0.065

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183 190 197

EPR_d11 E*2_d11 E*3_d11

Figure 4. Mean squared errors of mcpePR
d11, mcpe∗2d11 and mcpe∗3d11 by areas.

Practitioners may have the reasonable interest in knowing which number of bootstrap iter-

ations B is enough in order to get a desired precision of bootstrap estimators. Of course, the

answer to this question depends on the particular data set at hand, but in order to put some

light to this point, simulations have been repeated for increasing values of B, for D = 200 areas,

and two arbitrary areas have been selected, concretely areas with d = 60 and d = 180. The

mean squared error over simulations of the three proposed bootstrap estimators of the element

(1, 1) of MCP Ed(µ̂Ed) are shown in Figure 5 for d = 60. In Figure 6, the same results are

shown for d = 180.
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Figure 5. Mean squared errors of mcpe∗1d11, mcpe∗2d11 and mcpe∗3d11 for d = 60 versus B.
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Figure 6. Mean squared errors of mcpe∗1d11, mcpe∗2d11 and mcpe∗3d11 for d = 180 versus B.
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We observe in both figures that the mean squared error of the bootstrap estimators mcpe∗2d11

and mcpe∗3d11 may be considered acceptably stable for B = 200 bootstrap replications, while

the estimator mcpe∗1d11 becomes stable for B ≥ 600. The graphics for the rest of elements of

the matrix estimators present similar shape and not much variation has been observed when

analyzing other arbitrary areas.

In conclusion, in these simulations the Prasad-Rao type estimator performs acceptably well

even under non normality of the model. The direct bootstrap estimator works a little worse (see

Figures 1-3) but is easy to implement, being enough B = 600 replications. As alternatives to

both estimators, we have the term-to-term and the bias-corrected bootstrap estimators, which

work well in all situations, including the absence of normality of the model (see Figure 4), and

do not need many bootstrap replications (B = 200) to be precise enough.

Appendix

Using similar arguments as those in Prasad and Rao (1990), the following lemmas can be proved.

Lemma 1. Let us define the vector containing the random part of model (M1)–(M2), v = Zu+e.

Then

s = (F + L)v, (17)

where the matrices F and L are such that

(i) L = diag{L1, . . . , LD}, with Ld = [O(1)]r×r, d = 1, . . . ,D.

(ii) F = [O(D−1)]Dr×Dr.

Lemma 2. Let z be a random vector with z ∼ N(0, V ), let s1 = λ′

1z and s2 = λ′

2z be two

linear combinations of z, and let q = z′Cz be a quadratic form. Then,

E[s1s2(q − E[q])2] = Cov(s1, s2)V ar[q] + 8λ1
′V CV CV λ2.

Lemma 3. Under the conditions of Theorem 1, the variance of vector s (cf. 17) satisfies

V ar[s] = LV L′ + [O(D−1)]Dr×Dr.

Proof of Theorem 1. By Lemma 1, the components of s are linear transformations of v =

Zu + e = y − Xβ, that is, if fdi and Ldi are the di-th rows of matrices F and L respectively,

then

sdi = (fdi + Ldi)
′v, i = 1, . . . , r, d = 1, . . . ,D.
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By assumption (H8), σ̂2
u(y) = σ̂2

u(v) = k + y′Cy is unbiased and translation invariant, so that

σ̂2
u(y) = σ̂2

u(v) = k + v′Cv and σ2
u = k + E[v′Cv]. Subtracting both equations, we get

σ̂2
u − σ2

u = v′Cv − E[vCv].

From Lemma 2 with λ1 = fdi + Ldi, λ2 = f ℓj + Lℓj, s1 = sdi, s2 = sℓj and q = v′Cv, we get

E[sdisℓj(σ̂
2
u − σ2

u)2] = Cov(sdi, sℓj)V ar[σ̂2
u] + 8(fdi + Ldi)

′V CV CV (f ℓj + Lℓj).

Applying the same formula for all pairs i, j ∈ {1, . . . , r} and all pairs d, ℓ ∈ {1, . . . ,D}, and

writing the result in matrix form we get

E[ss′(σ̂2
u − σ2

u)2] = V ar[s]V ar[σ̂2
u] + 8(F + L)V CV CV (F + L)′.

From Lemma A.3(g) of Prasad and Rao (1990) with r = fdi, s = Ldi and Σ = V , we get

(fdi + Ldi)
′V CV CV (fdi + Ldi) = O(D−2), i = 1, . . . , r, d = 1, . . . ,D.

But in the mentioned lemma, the particular values of fdi and Ldi are not important, just their

asymptotic orders. Thus, it holds for any element fdi and Ldi with the required asymptotic

order, even when on the right of matrix V CV CV they have different index ℓj. Therefore

(F + L)V CV CV (F + L)′ = [O(D−2)]Dr×Dr,

and then

E[ss′(σ̂2
u − σ2

u)] = V ar[s]V ar[σ̂2
u] + [o(D−1)]Dr×Dr.

Furthermore, from Lemma 3, we have

V ar[s] = LV L′ + [O(D−1)]Dr×Dr.

Since σ̂2
u is unbiased and consistent, V ar[σ̂2

u] = o(1), then

E[ss′(σ̂2
u − σ2

u)2] = LV L′V ar[σ̂2
u] + [o(D−1)]Dr×Dr. �
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