Corrugated stainless steels embedded in mortar for 9 years: Corrosion results of non-carbonated, chloride-contaminated samples

A. Bautista, E.C. Paredes, F. Velasco*, S.M. Alvarez

Materials Science and Engineering Department – IAA, Universidad Carlos III de Madrid, Avda. Universidad nº 30, 28911 Leganés, Madrid, Spain

HIGHLIGHTS

• 5 corrugated stainless steel grades are studied in chloride contaminated mortars.
• E_{corr} and EIS are used for monitoring, and polarizations tests are also carried out.
• Spontaneous corrosion only appears in low Ni austenitic S20430 at partial immersion.
• S32205 duplex does not show any sign of corrosion even at anodic high polarizations.

ABSTRACT

Mortar samples reinforced with 5 different corrugated stainless steels were tested for 9 years in 2 different conditions: partial immersion (PI) in 3.5% NaCl, and chloride addition to the mortar and exposure to high relative humidity (HRH). The monitoring during the exposures was carried out with corrosion potential (E_{corr}) and electrochemical impedance spectroscopy (EIS) measurements. A year before finishing (after 8 years of exposure), the reinforced mortar samples were anodically polarised to obtain more information about the pitting resistance of the passive layers formed under the different conditions. The last year of exposure was established to study the progress or repassivation of the pits. The PI is the most aggressive testing condition and it causes low intensity corrosion in S20430 austenitic stainless steel after 7 years of exposure. The S32205 duplex stainless steel shows very good corrosion behaviour.

1. Introduction

The high alkalinity of concrete creates an environment that protects steel against corrosion. However, the life expectancy of concrete structures is affected by corrosion of steel reinforcements, because of an aggressive attack of chloride ions or as a result of carbonation [1,2]. The presence of chloride in the environment increases the risk of pitting corrosion in these steels. When chloride levels are extremely high, the passive layer of the steel can be destroyed in large areas of the reinforcement and general corrosion takes place [3].

Stainless steels are more corrosion resistant to chloride than traditional carbon steel reinforcements [4]. The study of the corrosion behaviour of stainless steel reinforcements, to replace carbon steel reinforcements in highly aggressive environments, has been a subject of research in recent years [5,6]. The performance of stainless steel reinforcements in structures under dynamic loads has started to be studied in depth [7], but the majority of the research up to now is focused on the corrosion behaviour of the material. Most studies of the corrosion behaviour of stainless steel are based on the use of solutions simulating those found in concrete pores. Almost all authors agree that the high alkalinity of simulated pore solutions improves the corrosion behaviour of stainless steel in chloride contaminated environments [8–13].

Most published studies deal with the influence of alloying elements in simulated solutions. Traditionally, the UNS S30400 and S31600 austenitic stainless steel grades have been analysed [9,12,14,15]. Some researchers detect no difference between the pitting corrosion resistance of both materials in solution tests [10,16]. However, others conclude that there is a slightly better behaviour of S31600 grade [17,18].

The low alloyed, austenitic UNS S20430 stainless steel has been proposed as an economic alternative to traditional stainless steels for use in reinforced concrete structures, due to its corrosion performance [19]. Results in simulated pore solutions have shown
slightly less pitting corrosion resistance than UNS 30400 steel [20,21]. The analysis of the passive layer in alkaline environments has revealed that its composition is slightly less protective than that of traditional austenitic steels [17]. UNS S20430 could be about 35 40% cheaper than traditional austenitic S30400 grade, though the difference depends on the strong volatility of nickel price in the market.

Duplex stainless steels have appeared in the market as a note worthy option for concrete structures [11,22]. The preliminary studies in simulated solutions suggest a very good corrosion beha viour of UNS S32205 duplex grade [8,17]. This grade could result only about 5 10% more expensive than S30400, but about 30% cheaper than S31600.

The stainless steels used as reinforcing bars in concrete have suffered a heavy rolling process that strongly modifies the microstructural characteristics of their surface [13,25]. The impor tance of the forming process in the corrosion behaviour of corru gated stainless steel bars has been recently studied [13,22].

There are scarce studies on the corrosion behaviour of corrug ated stainless steels embedded in concrete or mortar, especially when compared to the large number of studies published using simulated pore solutions. There are a few old studies performed on mortar and concrete, but focused on less interesting steel grades than those used today, or on steels not processed as corrugated products in the steel concrete interface [32], which can hinder the attack.

The difficulty for oxygen diffusion is different in mortar than in solution and it often limits the corrosion rate [33]. The oxygen concentration at the reinforcement surface is a key factor that usually restricts or inhibits the attack in immersed structures. However, in aerial structures exposed to environments with moderate relative humidity (when the concrete pores are not saturated), the oxygen diffusion to the reinforcement is easier than in solution.

The resistivity of the concrete, that depends on the porosity and the water saturation level of the pores, can be much higher than the resistivity of the testing solutions. There is a correlation between concrete resistivity, the corrosion ini tiation period and the corrosion propagation [1,34]. In aerial structures, the concrete resistivity can often control the cor rosion rate when the environment is dry. When there is humidity in the air, concrete is able to absorb it, facilitating the corrosion attack. It this case, oxygen gains access to the reinforcement, since the diffusion distance through the aqueous layer is small and the environment resistivity is low [35].

The main objective of this study is to analyse the corrosion behaviour of different corrugated stainless steel grades embedded in mortar, which have been exposed to highly aggressive environ ments. The electrochemical behaviour has been monitored for 9 years, using non destructive techniques such as electrochemical impedance spectroscopy (EIS) and corrosion potential measure ments (E_{corr}). In addition, a year before the end of the exposure pe riod, anodic polarisation tests were performed to determine the probability of pitting corrosion in the steels that were still in a pas sive state. The samples were left an additional year in order to analyse the evolution of the attack provoked with these polarisa tion tests. In the present paper, results obtained in non carbonated mortar samples are shown and discussed.

2. Experimental

Five different corrugated stainless steel bars were considered in the study. The chemical composition of the stainless steels, their diameter and their tensile strength are shown in Table 1. Traditional carbon steel corrugated bars (Table 2) were also included for reference.

The corrugated bars were partly embedded in mortar with a cement/sand/water ratio of 1/3/0.6 (w/w). CEM II/B-1, 32.5N was the cement type used to prepare the mortar. The sand was standardized CEN-NORM (according to DIN EN 196–1 standard). The water/cement ratio was high, as it is quite usual in experimental tests [6,36,37]. Bearing in mind that a good quality concrete can have a water/cement ratio of about 0.4, the use of this mortar samples will imply that the capillarity porosity volume fraction will be about 2 times higher after the curing period than that of good quality material [38], and nearly 3 times higher after the complete hydration of the cement [38]. However, this type of samples allows to obtain results in a reasonable period of time and can reproduce one of the condi tions the stainless steel reinforcements are specially advised: light, porous concrete coverages.

Half of the mortar samples were manufactured with 3% CaCl₂, weighed in relation to the amount of cement (equal to 1.9% of Cl by wt. of cement). This chlo ride was selected as calcium oxide is the main compound of cement, and this way no new cations were added. Its concentration is slightly higher than those some times used to test the behaviour of carbon steel [39] or galvanised steel [40] in mor tar, and it is inside the range of that used to test some stainless steels [29].

Cylindrical mortar samples were used to minimize heterogeneities in the electric signal distribution during the EIS monitoring (Fig. 1a). The thickness of the mortar cover was always 1.5 cm, independently of the diameter of the bar (Table 1). The length from the end of the corrugated bar to the mortar cover was always 1.5 cm. The surface of the bars exposed to the mortar-air interface was isolated to avoid interference in the study (mainly carbonation) as other authors have previously done [29]. The exposed length of the bar in mortar was always 3 cm. All cross-sections of the bars embedded in mortar were previously polished to 2000 and passivated with HNO₃ (50% by wt. of acid, 50 s) in the laboratory, reproducing the process carried out on the corrugated surfaces of the bars in industry. Moreover, the cross-section of the bars are much less prone to corrosion than strained surface [40], thus assuring that all electrochemical information is related to processes taking place on the surface of the bars. This procedure mini mizes the risk of crevice that shielding the cross-sections with resin could seldom cause.

After their manufacture, the reinforced mortar samples were cured for 30 days at approximately 92–93% relative humidity (RH). After this time, for mortars as these – without any special addition or supplementary cementitious material – it could be confirmed that about the 75% of the hydration reactions of the cement have already taken place [38]. Then, they began their exposure period under two different conditions. The samples manufactured with chlorides were exposed to 92–93% RH (condition labelled as HRH). The samples without chlorides were partially immersed (PI) in 3.5% (w/w) NaCl solution (equivalent to 2.64% of Cl by wt.) and at 92–93% RH. In this case, the level of the solution was maintained at the same height as the middle of the length of the bars exposed in the mortar. Curing pro cesses and exposures were always carried out at room temperature, and two sam ples were manufactured for each material and exposure condition.

The electrochemical monitoring of the corrosion behaviour during the 8-year exposure period was carried out using Ecorr and EIS measurements. To obtain the Ecorr values, a saturated calomel electrode (SCE) was used. For the EIS measure ments, a three-electrode configuration was used. The surface of corrugated bar exposed to the mortar acted as working electrode. The reference electrode was a SCE placed on the upper part of the sample (Fig. 1b). The counter-electrode was a copper cylinder, with a diameter slightly larger than that of the mortar sample. To assure good contact between the mortar and the counter-electrode, and the mor tar and the SCE, wet pads were used. The EIS spectra were acquired using a perturbation signal of 10 mV (rms) of amplitude, from 10⁶ to 10⁻¹ Hz. 5 points/decade were measured.

After the 8-year exposure period, the reinforced mortar samples were submit ted to anodic polarisation tests. The tests started from the Ecorr, and were based on short potentiostatic steps. Each step increased the potential in 20 mV. The length of the steps close to Ecorr was of 10 min. When the potential of 100 mV vs SCE was sur passed, the length of the steps increased to 1 h. Fig. 2a shows an example of the signal obtained and of the obtained current response. The increase of the length of the steps is due to greater difficulties of stabilization of the current signal at increasing anodic overpotentials; Fig. 2b shows a detail of signals, where the shape of the cur rent transients caused by the increasing potential steps is shown. The polarisation steps finished at 900 mV vs. SCE.
Table 1
Chemical composition (w/w), diameter and tensile strength of the studied stainless steels.

<table>
<thead>
<tr>
<th>Stainless steel</th>
<th>Diameter (mm)</th>
<th>Main alloying elements (%)</th>
<th>Tensile strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNS</td>
<td>AISI EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>520430</td>
<td>204Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>C</td>
<td>Ti</td>
<td>Si</td>
</tr>
<tr>
<td>530400</td>
<td>304</td>
<td></td>
<td>1.4301</td>
</tr>
<tr>
<td>531603</td>
<td>316L</td>
<td></td>
<td>1.4404</td>
</tr>
<tr>
<td>531635</td>
<td>316Ti</td>
<td></td>
<td>1.4571</td>
</tr>
<tr>
<td>532205</td>
<td>2205</td>
<td></td>
<td>1.4462</td>
</tr>
</tbody>
</table>

Table 2
Chemical composition (w/w) and diameter of the studied carbon steel.

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>C</th>
<th>S</th>
<th>P</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>Cu</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.245</td>
<td>0.002</td>
<td>0.030</td>
<td>0.55</td>
<td>0.76</td>
<td>0.24</td>
<td>0.093</td>
<td>0.02</td>
<td>0.60</td>
<td>Bal.</td>
</tr>
</tbody>
</table>

Fig. 1. Reinforced mortar specimens manufactured for the study: (a) scheme of the samples showing the regions where the chloride content was measured (as 1–3); (b) image of the samples during the electrochemical measurements.

The current value plotted on the polarisation curves used in this study corresponds to the stabilization value of the current after each potential step. The analysis procedure of the transients was based on the potential-step method, where the contribution of the ohmic drop through the mortar can easily be distinguished from the electrochemical response of the reinforcements [41]. The length chosen for the potential steps allows us to obtain more reliable results than the traditional polarisation curves carried out at a much higher sweeping rate, as the stabilization of the current after the pulses is slower as polarizations increases. Moreover, the use of steps allow achieving potentials as high as water decomposition, not able to reach with polarisation resistance.

After the polarisation tests, the samples remained for 1 year in PI or HRH to allow progress or possible repassivation of the provoked pits. As only anodic polarisation was carried out, without backwards sweep of current, the growth of pits could be limited during the test. Then, the samples were broken. The mortar cover was carefully removed and the morphology and localization of the attack on the surface of the stainless steel reinforcements were studied by scanning electron microscopy (SEM). The last year of exposure allows a more reliable evaluation by microscopy techniques of the pits.

Moreover, the total chloride content of the mortar after the 9-year exposure was measured in 3 different regions of the samples. The localization of the studied regions is marked in Fig. 1a. The quantification of the total chloride content was carried out by X-ray fluorescence (XRF) spectrometry [42]. The obtained value is the average of at least 5 measurements in each region of the samples.

3. Results and discussion

In Fig. 3, it can be seen that the chloride concentration (in relation to the mortar weight) for samples where the depassivating ion has been added during the mortar manufacturing (HRH) remains constant in all the studied regions of the mortar (Fig. 1a). This chloride level (in relation to the mortar weight) can be comparable, for example, to those found (in relation to the concrete weight) at 7-8 cm from the surface of non submerged region of a structure exposed for 60 years in a tropical marine environment [43]. Moreover, extrapolating the results obtained by other authors [44], this chloride concentration could imply about a 3% of chloride ion in the pore solution of a structure manufactured without additions. Though the minimum chloride concentration to provoke the corrosion of the reinforcements in concrete is a controversial issue and can be influenced by factors, this chloride level is enough to hinder passivation of carbon steel and cause its active corrosion [45].

The concentration of ions in the PI exposed samples reaches also similar values in the 3 regions after 9 years of exposure (Fig. 3), although chlorides penetrate from the outer solution by the lower half of the sample. The diffusion that has taken place

Fig. 2. Example of the potential steps applied to the mortar samples at the end of the exposure and the obtained current response: (a) test carried out for a sample reinforced with S31635 after PI; (b) detail of the data shown in (a).
carbon steel reinforcements that has been included in the figures. The amount of added chlorides in this mortar (Fig. 3) is high enough to provoke corrosion. With the aim of obtaining more complete information about the corrosion performance of the samples during the exposure, they have been monitored by EIS. Representative examples of the shape of the spectra corresponding to reinforcing stainless steels can be seen in Fig. 6a and b. An adequate quality of the fitting is achieved using a two time constant cascade model, as it can also be checked in the figure. Previous EIS studies in simulated pore solutions have demonstrated that the spectrum of passive stainless steels is formed by two, very overlapped, time constants [12,17,24]. During the analysis of the spectra the resistive behaviour obtained at high frequencies in the EIS spectra corresponds to the mortar resistance (R_m). The first time constant at intermediate frequencies during the long exposure has eliminated the possibility of formation of chloride concentration cells between the submerged and non submerged region of the PI samples. The final chloride level is about three times higher than that of HRH condition.

The E_{corr} values monitored for the corrugated bars in mortar are shown in Figs. 4 and 5. The ASTM C876 standard suggests a criterion for determining the probability of corrosion for non coated carbon steel reinforcements that has been included in the figures. Factors than can sometimes limit the reliability of the information from E_{corr} of the samples exposed to HRH (Fig. 3). Previous EIS studies in simulated pore solutions have demonstrated that the spectrum of passive stainless steels is formed by two, very overlapped, time constants [12,17,24]. During the analysis of the spectra the resistive behaviour obtained at high frequencies in the EIS spectra corresponds to the mortar resistance (R_m). The first time constant at intermediate frequencies during the long exposure has eliminated the possibility of formation of chloride concentration cells between the submerged and non submerged region of the PI samples. The final chloride level is about three times higher than that of HRH condition.

The E_{corr} values monitored for the corrugated bars in mortar are shown in Figs. 4 and 5. The ASTM C876 standard suggests a criterion for determining the probability of corrosion for non coated carbon steel reinforcements that has been included in the figures. Factors than can sometimes limit the reliability of the information from E_{corr} of the samples exposed to HRH (Fig. 3). Previous EIS studies in simulated pore solutions have demonstrated that the spectrum of passive stainless steels is formed by two, very overlapped, time constants [12,17,24]. During the analysis of the spectra the resistive behaviour obtained at high frequencies in the EIS spectra corresponds to the mortar resistance (R_m). The first time constant at intermediate frequencies during the long exposure has eliminated the possibility of formation of chloride concentration cells between the submerged and non submerged region of the PI samples. The final chloride level is about three times higher than that of HRH condition.

The E_{corr} values monitored for the corrugated bars in mortar are shown in Figs. 4 and 5. The ASTM C876 standard suggests a criterion for determining the probability of corrosion for non coated carbon steel reinforcements that has been included in the figures. Factors than can sometimes limit the reliability of the information from E_{corr} of the samples exposed to HRH (Fig. 3). Previous EIS studies in simulated pore solutions have demonstrated that the spectrum of passive stainless steels is formed by two, very overlapped, time constants [12,17,24]. During the analysis of the spectra the resistive behaviour obtained at high frequencies in the EIS spectra corresponds to the mortar resistance (R_m). The first time constant at intermediate frequencies during the long exposure has eliminated the possibility of formation of chloride concentration cells between the submerged and non submerged region of the PI samples. The final chloride level is about three times higher than that of HRH condition.

The E_{corr} values monitored for the corrugated bars in mortar are shown in Figs. 4 and 5. The ASTM C876 standard suggests a criterion for determining the probability of corrosion for non coated carbon steel reinforcements that has been included in the figures. Factors than can sometimes limit the reliability of the information from E_{corr} of the samples exposed to HRH (Fig. 3). Previous EIS studies in simulated pore solutions have demonstrated that the spectrum of passive stainless steels is formed by two, very overlapped, time constants [12,17,24]. During the analysis of the spectra the resistive behaviour obtained at high frequencies in the EIS spectra corresponds to the mortar resistance (R_m). The first time constant at intermediate frequencies during the long exposure has eliminated the possibility of formation of chloride concentration cells between the submerged and non submerged region of the PI samples. The final chloride level is about three times higher than that of HRH condition.

The E_{corr} values monitored for the corrugated bars in mortar are shown in Figs. 4 and 5. The ASTM C876 standard suggests a criterion for determining the probability of corrosion for non coated carbon steel reinforcements that has been included in the figures. Factors than can sometimes limit the reliability of the information from E_{corr} of the samples exposed to HRH (Fig. 3). Previous EIS studies in simulated pore solutions have demonstrated that the spectrum of passive stainless steels is formed by two, very overlapped, time constants [12,17,24]. During the analysis of the spectra the resistive behaviour obtained at high frequencies in the EIS spectra corresponds to the mortar resistance (R_m). The first time constant at intermediate frequencies during the long exposure has eliminated the possibility of formation of chloride concentration cells between the submerged and non submerged region of the PI samples. The final chloride level is about three times higher than that of HRH condition.

The E_{corr} values monitored for the corrugated bars in mortar are shown in Figs. 4 and 5. The ASTM C876 standard suggests a criterion for determining the probability of corrosion for non coated carbon steel reinforcements that has been included in the figures. Factors than can sometimes limit the reliability of the information from E_{corr} of the samples exposed to HRH (Fig. 3). Previous EIS studies in simulated pore solutions have demonstrated that the spectrum of passive stainless steels is formed by two, very overlapped, time constants [12,17,24]. During the analysis of the spectra the resistive behaviour obtained at high frequencies in the EIS spectra corresponds to the mortar resistance (R_m). The first time constant at intermediate frequencies during the long exposure has eliminated the possibility of formation of chloride concentration cells between the submerged and non submerged region of the PI samples. The final chloride level is about three times higher than that of HRH condition.

The E_{corr} values monitored for the corrugated bars in mortar are shown in Figs. 4 and 5. The ASTM C876 standard suggests a criterion for determining the probability of corrosion for non coated carbon steel reinforcements that has been included in the figures. Factors than can sometimes limit the reliability of the information from E_{corr} of the samples exposed to HRH (Fig. 3). Previous EIS studies in simulated pore solutions have demonstrated that the spectrum of passive stainless steels is formed by two, very overlapped, time constants [12,17,24]. During the analysis of the spectra the resistive behaviour obtained at high frequencies in the EIS spectra corresponds to the mortar resistance (R_m). The first time constant at intermediate frequencies during the long exposure has eliminated the possibility of formation of chloride concentration cells between the submerged and non submerged region of the PI samples. The final chloride level is about three times higher than that of HRH condition.

The E_{corr} values monitored for the corrugated bars in mortar are shown in Figs. 4 and 5. The ASTM C876 standard suggests a criterion for determining the probability of corrosion for non coated carbon steel reinforcements that has been included in the figures. Factors than can sometimes limit the reliability of the information from E_{corr} of the samples exposed to HRH (Fig. 3). Previous EIS studies in simulated pore solutions have demonstrated that the spectrum of passive stainless steels is formed by two, very overlapped, time constants [12,17,24]. During the analysis of the spectra the resistive behaviour obtained at high frequencies in the EIS spectra corresponds to the mortar resistance (R_m). The first time constant at intermediate frequencies during the long exposure has eliminated the possibility of formation of chloride concentration cells between the submerged and non submerged region of the PI samples. The final chloride level is about three times higher than that of HRH condition.
has been simulated with a resistance R_{pl} and a constant phase element CPE_{pl}. This time constant has been identified with electrochemical characteristics of the passive layer, as other EIS studies of corrugated stainless steel in alkaline solutions [17] and in mortar [6] have previously done. The low frequency time constant is often identified with the corrosion process. In this case, R_i would be the charge transfer resistance of the electrochemical reaction and CPE_{dl} would simulate the capacitive behaviour of the double layer.

The proposed equivalent circuit (Fig. 6c) is typical of defective passive layers. It could be considered reasonable bearing in mind the non homogeneity that the passive layer should exhibit when it is formed on the surfaces of the corrugated stainless steel bars. Those surfaces exhibit different stress levels, and, particularly, highly stressed areas [40], thus limiting the protective ability of the passive oxides [13]. Other research groups have also chosen this equivalent circuit to simulate the electrochemical behaviour of active and passive stainless steel in solution and in mortar [6,48,49]. The work carried out in this study confirms that this model is useful to simulate the electrochemical behaviour of passive stainless steel corrugated bars embedded in mortar (Fig. 6a). Furthermore, the equivalent circuit is still valid when the E_{corr} of the stainless steel reinforcements decreases to the region of high corrosion risk, as during the last period of PI of S20430 (Fig. 6b). If only one constant is considered for the active behaviour, the error of the fitting dramatically increases; the weighed sum of squares, proportional to the average percentage error between original and calculated points, changes from 0.04 (two time constants) to 0.27 (for one time constant).

R_m is an important parameter that can control the corrosion rate, as mortar or concrete are electrolytes with moderate conductivity. In Fig. 7, the R_m values obtained from the simulation of the EIS data can be seen. For PI samples, R_m increases at the beginning of the exposure due to chemical processes that implies the curing of the cement [50] and that it is not completely hydrated after the curing period [38]. So, the mortar increases its density, and its electrical resistance. These processes determine the increases of R_m values during the first two years (Fig. 7a). Then, as the PI exposure extends, the migration of chloride ions inside the mortar from the solution prevails, and the R_m decreases. Other authors have observed some what similar trends for PI samples in a low quality mortar; in reference [6], R_m increases due to mortar curing during the first 3 months and then decreases due to chloride penetration. This effect is clearly visible from the third year of exposure. A certain stabilization of R_m can be guessed during the last year of exposure. This could be explained considering the fact that the chloride concentration inside the pore solution is high and the diffusion process from the external solution is hindered or slowed down.

Fig. 5. E_{corr} evolution of the PI mortar samples during the 8-year exposure. The evaluation of the corrosion risk following the standardized criteria for carbon steels has been included.

Fig. 6. Example of the experimental EIS spectra and fitting results corresponding to stainless steel reinforcements: (a) system whose E_{corr} is in the passive region (S22205 after 3 months in PI); (b) system whose E_{corr} is in the active region (S20430 after 8 years in PI); (c) equivalent circuit used to fit the experimental results.
same reasons than PI samples, and later, its value remains stable.

The \(R_m \) values that have been obtained from the simulation of the EIS spectra can be seen in Fig. 8. In the solution tests, during the first hours, an increase in \(R_m \) value has been reported due to the changes in the oxidation state on the oxides in the passive layer.

When the mortar samples are manufactured with chlorides (HRH), \(R_m \) tends to increase during the first 3 years, due to the same reasons than PI samples, and later, its value remains stable (Fig. 7b), as no entry of new chlorides takes place during the exposure.

The \(R_m \) values that have been obtained from the simulation of the EIS spectra can be seen in Fig. 7. In the solution tests, during the first months, an increase in \(R_m \) value has been observed due to the changes in the oxidation state on the oxides in the passive layer.

due to the exposure to the alkaline medium [17]. For the same type of reinforcements embedded in mortar, this trend can hardly be guessed (Fig. 8). The oscillation in \(R_m \) values can probably be related to the uncertainty that implies obtaining data from spectra with such overlapped constants. Hence, it can be assumed that, after a certain time, the chemical composition and structure of the passive film reach an equilibrium with the medium, with this process taking less than 3 months. The \(R_m \) values measured in mortar during the long term exposure are about 1 order of magnitude higher than those measured in solution after 1 day, so the transformation of the passive layer in the previous solutions tests was incomplete.

The non ideal capacitive behaviour that a CPE simulates is given by two numerical parameters [24]: the capacitance values, \(C \), and the coefficient that quantifies the deviations from the ideal behaviour, \(n \), being \(\text{CPE} = 1/[C(j\omega)^n] \). For the CPE\(_{pl}\), the \(C_{pl} \) and \(n_{pl} \) obtained values can be seen in Fig. 9. They are similar to those previously measured in solution for these bars [17]. In certain cases, a slight trend of \(n_{pl} \) to decrease its value with time could be guessed. This would correspond to an increase in the dispersion with frequency of the capacitive behaviour of CPE\(_{pl}\) that could reflect an increase of inhomogeneities in the passive layer with time. The testing conditions in mortar do not seem to introduce any relevant influence in the \(R_{pl} \) and \(C_{pl} \) values, though the more frequent dispersion in the values in Figs. 8a and 9a can be related to the higher aggressivity of the PI exposure.

The \(R_m \) values obtained from the EIS measurements are shown in Fig. 10. \(R_m \) values tend to increase during the first period of exposure. This trend has already been detected in short term solution tests [17,18], but it should be borne in mind that, during 18 h solution tests, \(R_m \) does not reach \(10^2 \) \(\Omega \) cm\(^2\). After years in mortar, \(R_m \) can be as high as \(10^6 \) \(\Omega \) cm\(^2\). That is to say, there is an improvement of the passive behaviour of the stainless steels during the first year of exposure to aggressive environments. This process seems to be faster during the PI test than during the HRH test, perhaps because of the low chloride concentration close to the reinforcements during the first months of exposure in the PI.

On the other hand, at the end of the PI exposure, a decrease of \(R_m \) values can be observed for some stainless steel grades (Fig. 10a). Low nickel austenitic stainless steel grade S20430, with \(E_{corr} \) values in the high corrosion risk zone (Fig. 5), exhibits a meaningful decrease of \(R_m \). This information seems to confirm the corrosion attack on this grade under these conditions. On the other hand, S31635 also shows a meaningful decrease of its \(R_m \) value (Fig. 10a), when its \(E_{corr} \) is only in the upper area of the uncertain corrosion region. It is difficult to obtain reliable conclusions about these results, but certain dissolution of TiN precipitates (abundant in this material) can explain the phenomenon. It has been previously demonstrated that preferential TiN dissolution occurs at high potentials in simulated pore solutions [20]. The decrease on \(R_m \) could be the consequence of a lower corrosion resistance of the surface of the reinforcement due to the surface irregularities (cavities) caused by the dissolution of the precipitates.

As has been reported for the same reinforcements in solution tests [17] and for different passive stainless steel bars in mortar [6], the \(R_m \) values (Fig. 10) are significantly higher than \(R_{pl} \) (Fig. 8). That is to say, the charge transfer is the rate limiting step for passive reinforcements. This fact allows us to identify \(R_m \) also with the polarisation resistance in the Stern Geary equation [51] and calculate corrosion intensities, \(i_{corr} \). Though a \(B \) about 52 mV has been traditionally proposed for passive steel in concrete [52], recent studies have calculated a higher value, about 75 mV, for this parameter [53]. Assuming \(B = 75 \) mV (which is the most conservative hypothesis), the \(i_{corr} \) from studied stainless steels with \(E_{corr} \) in the passive region and region with uncertain risk of corrosion (Figs. 4 and 5) would range from about 7 to nearly 0.07 nA/cm\(^2\).
Fig. 9. Time evolution of the C_{pl} and n_{pl} parameters that define CPE$_{pl}$: (a) PI; (b) HRH.

Fig. 10. Time evolution of R_C: (a) PI; (b) HRH.

Those i_{corr} are quite similar or lower than others determined for passive S30400 in concrete specimens using polarisation resistance measurements (about 0.01–0.1 μA/cm2) [23,29]. The uncertainty in the determination of the corrosion rate of passive systems is unavoidable, but it is obvious that the measured i_{corr} values are able to comply with any durability requirement of reinforced structures.

Corrugated S20430 stainless steel in PI mortar exhibits E_{corr} typical of active corrosion at the end of the exposure (Fig. 5). For active steel in concrete, values of B for 15–26 mV have been reported in the literature [52,53]. Assuming again the most conservative hypothesis, with $B = 26$ mV, the i_{corr} of the S20430 steel would always be below 0.04 μA/cm2. This corrosion rate is obviously very low and hardly represents a meaningful risk for the durability of the structure [31]. For comparison, studies of carbon steel reinforcements in similar conditions carried out in our laboratory give corrosion rates that can oscillate approximately between 0.3 and more than 3 μA/cm2, that is 1 or 2 order of magnitude higher. Moreover, for carbon steel in chloride contaminated concrete slabs, i_{corr} between 0.3 and 1 μA/cm2 have been measured [29]. Hence, the S20430 probably suffers a corrosion attack of very low intensity during the last year of the PI test.

The values obtained from the simulation of the EIS spectra for the CPE$_{pl}$ are plotted in Fig. 11. It can be checked that the values are typical of the double layer capacitance of active and passive stainless steel reinforcements in mortar [24,54], confirming the hypothesis that the low frequency time constant corresponds to the charge transfer process. No meaningful change is detected with time during the exposure, not even for S20430 or S31635.

After 8 years of exposure, the stainless steel reinforced samples were submitted to anodic polarisation tests. The objective was to obtain information about the quality of the passive layer under these conditions and to know how the pitting resistance of the stainless steel has been modified. Data similar to the typical polarisation curves can be obtained (Figure 12). The anodic polarizations
needed to reach a current density of 2×10^{-6} A/cm2 are plotted in Fig. 13 to compare different mortar samples. As has been previ-ously mentioned, this value is typical of the corrosion rate for car-bon steel reinforcements under the exposure conditions considered in the study. Moreover, it is also a value inside the range of the usual current densities used to define the pitting potential or to compare the corrosion behaviour of stainless steel reinforcements [11, 20, 29].

In spite of small differences detected by EIS for most of the stainless steels in both testing conditions (Figs. 8, 11), after polarisation tests, it is clear that PI samples are much more prone to develop pitting corrosion than the HRH samples (Fig. 13). The length of the passive region of samples exposed to HRH seems to be able to guarantee the durability of reinforced structures in chloride contaminated environments, even when low cost, low alloyed grades as S20430 are considered. The good results for this material are quite high and can be confirmed after the exposure to extremely aggressive conditions and long service life is expected.

The use of S20430 in aggressive environments can be risky in the long term and it pits in PI under absence of external polarisation (Fig. 5). Though the R_t measured at E_{corr}, are quite high (Fig. 10a), the current density can become dangerous in the presence of small anodic polarisations (Fig. 13). The possible limitations for the use of S20430 are coherent with the results of shorter test experiments carried out by other authors, also using PI mortar samples [6].

Life expectancy of stainless steel reinforcements in structures is difficult to evaluate, as chloride ingress into concrete is a complex process. Moreover, it is strongly affected by the characteristics of the basic components, the huge diversity of additives and the specific manufacturing procedure of the concrete. Results in this research can not be easily extrapolated to real conditions in terms of quantifiable durability. Tested mortar is porous due to high water/cement ratio, and corrosion takes place after three months in carbon steel, an unreal circumstance. Anyway, the good behaviour of the stainless steel bars in such a corrosive exposure condition is a guarantee of meaningful increase of the durability of the bars in practice, that it is more realistic than previous published solution results. These results confirm the advantages of using stainless steel bars for structures located in aggressive environments and their ability to dramatically extend the life expectancy of the structures. Obviously the specific characteristics of the passivity achieved by the stainless steel reinforcements would be conditioned by the specific features of the concrete structure and the environment.

After polarizations, the tested samples remained in PI or HRH to allow pit development or repassivation. Then, the mortar samples were broken to allow the observation of the reinforcements. No pits were observed in S32205 samples in both exposure conditions, neither in S30400 and S31603 after HRH exposure, which is coherent with the hypothesis that in these systems the current increase in polarisation tests is due to oxygen evolution. In addition, the corrosive attack in S31635 (where the polarisation had caused corrosion, as suggests results in Fig. 13) cannot be confirmed after SEM observations. These data suggest a certain ability of the S31635 grade to repassivate or highly limit the attack rate when it is exposed to mortars with a chloride contamination, such as those of the samples tested at HRH.

Visible localised attack is clearly observed in the other stainless steel tested reinforcements. In the samples where the corrosion starts before the polarisation tests (S20430 in PI), the direct

Fig. 12. Example of the results of the potential step tests when they are plotted as standard polarisation curves in an Evans diagram.

Fig. 13. Potentials needed for the reinforced samples after the 8-year exposure to reach anodic current values of 2×10^{-6} A/cm2.
observation of the attack in the surface shows very numerous, large and irregular pits (Fig. 14a).

On S30400 exposed at PI, numerous rounded pits can be observed, most of them with a location clearly related with the most strained regions of the surface of the bar (Fig. 14b). The influence of the forming process in the corrosion behaviour of stainless steels has been demonstrated in simulated pore solutions tests [13]. The cold working of the reinforcements cause microstructural changes that can affect the corrosion behaviour of the stainless steels [55] and these changes are much more pronounced in the corrugations than in other regions of the surface [40].

In S31603 and S31635 bars exposed to PI, the attack morphology is different, as can be seen in the example in Fig. 14c. The pits are irregular and quite shallow, and their location does not seem to be related to the corrugations or other more strained areas on the surface of the bars. This corrosion morphology seems less dangerous than that observed for non Mo austenitic reinforcements. However, the difference could not be due to chemical composition of the stainless steels. The lower strain level of these bars in comparison with the tested S30400 can easily explain this fact (the lower tensile strengths of the S31603 and S31635 bars in Table 1 correspond to a less heavy forming process). A heavy forming process could cause high densities of defects and dislocations in the corrugations, so these regions of the bars would become much more prone to corrosion [40].

After the HRH exposure, the only bar with visible signs of attack is the S20430. Anyway, the intensity of the attack is low in this environment, compared to that observed in other grades after PI and polarisation. A few isolated, rounded pits have been detected and the polarisation. A few isolated, rounded pits have been detected and the intensity of the attack is low in this environment, compared to that observed in other grades after PI and polarisation. A few isolated, rounded pits have been detected. The SEM observations proved that a few small pits also appear in the non corrugated region of the surface. This trend can be related to the strain level in the bar, which is between that of the S30400 and those of the S31603 and S31635 bars (Table 1).

4. Conclusions

The results presented in this study allow us to draw the following conclusions:

1. The partial immersion exposure in 3.5% NaCl causes a very low intensity corrosive attack in S20430 samples after 7 years of exposure.
2. The S32205 does not show corrosion in highly chloride contaminated mortar, even under partial immersion conditions and high polarizations, confirming that it is the best option for structures exposed to highly aggressive conditions.
3. No difference between the corrosion behaviour of S31603 and S30400 has been found under the studied exposure conditions.

Acknowledgements

The present work was funded by the Spanish Ministry of Science and Innovation through the Project reference BIA2007 66491 C02 02. The authors acknowledge the help of Eng. Rubén Martin with EIS spectra.

References

