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Abstract

Human mobility is key in fields like urban planning, protocols for mobile networks, or
service personalization, among others. Besides, a large number of studies emerged in the
last years thank to more complete mobility data sets, coming from the use of mobile phones
as mobility proxies that continuously record their owners’ locations. Traditionally, many of
the applications of human mobility, like service personalization, were based on the current
location of the user. However, this focus has recently started to shift to the user’s mobility
habits and her future location. This change allows having time in advance to provide
services related to the usual habits of the user.

This thesis focuses on broadening the understanding of human mobility through the
analysis of the location data recorded by mobile devices, and finding ways to increment
the probability of making right predictions about their future locations. To confront this
challenge, it is divided into three stages: the mobility data collection, the extraction and
analysis of the mobility features reflected into the recorded data, and the analysis of a set of
prediction algorithms to propose some improvements. The intrinsic privacy risks associated
to the disclosure of the location and mobility data of the user are also considered.

In the first stage, the analysis of the sensors available in mobile devices and the re-
quirements of the thesis lead to choose the cellular network as the source of mobility data.
After analyzing the existing data sets containing this kind of data, it is decided to carry
out a new mobility data collection campaign to obtain a more complete data set.

The second stage is focused on extracting mobility features from the data chosen in
the previous step, and spot the biases introduced by the data collection scheme. In order
to eliminate these biases, several filtering techniques are proposed to delete the maximum
number of events not representing the movement of the user.

For the next stage, the specific family of LZ-based prediction algorithms is chosen to
analyze their results when using mobility data obtained using different schemes and then fil-
tered. By leveraging the mobility features studied in the previous stage, and based on their
relationship with the prediction results, several modifications of the original algorithms are
proposed to increase the fraction of right predictions.

Finally, in the privacy preservation plane, the shift from disclosing static location pro-
files to mobility profiles leads to the proposal of a new privacy metric, based on the concept
of entropy rate. The goal is to consider both the spatial as well as temporal information in
a mobility profile. Some privacy-enhancing perturbation techniques are tested with both
location and mobility profiles using the new privacy metric, which unveils the noticeable
amount of information stored in the temporal correlations.
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1.1 Motivation

The human need for mobility has driven the development of communication technolo-
gies such as wireless networks, which fast growth and evolution during the last decades
demonstrates the need for keeping on seamlessly communicating in any possible way (calls,
messaging, Internet access, e-mail, etc.) while moving. As an example, cellular telephony
networks have grown until reaching 7.53 billion mobile connections, including machine-
to-machine (M2M) connections1, which exceeds the worldwide population, which reaches
around 7.27 billion of inhabitants2. Focusing on just the number of unique mobile sub-
scribers, the numbers drop down to 3.74 billion unique mobile subscribers3, which means
more than half of the planet population carrying a mobile device with them. The penetra-
tion of mobile devices is so high, and they have evolved so quickly in terms of computational
capabilities, as well as in the number and variety of integrated sensors, that they have be-
come a powerful tool to monitor their original driving force: human mobility.

Mobile devices have demonstrated to be key mobility sensors that allow to investigate
global mobility-related topics such as the spread of infectious biological [27, 57] and mobile
viruses [149], the habits of people around a city [9], or the impact of mobility on wireless
communications [113, 80], among many others. Mobility at individual level also unveils
interesting information, since the subsequent locations a person visits define her in many
ways. For instance, the location data of a user provide many clues about her usual activ-
ities (dining out, going to theaters, sport centers, church, hospitals, etc.), if she moves to

1According to the statistics published by https://gsmaintelligence.com as of October, 2015.
2According to the statistics published by http://www.census.gov/popclock/ as of October, 2015.
3According to the statistics published by https://gsmaintelligence.com as of October, 2015.
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many places or mainly stays home, if she travels, etc. For this reason, location is usually
one of the main elements of the context used to tailor the behavior of applications to each
specific user. Personalization is key for applications and services to be attractive for users,
and location is a multifaceted reference to personalize applications: from the most typical
example of searching restaurants or other venues close to the current user’s location, or
finding routes from that current location to a destination, to different configurations depen-
dent on the location (e.g., silent mode at work). This type of location-based services (LBSs)
focused in the current location, which is considered independently to any other previous or
future location, have been very popular so far. However, LBSs are already evolving: the
focus has started to shift from the current location of the user to the sequence of visited
locations and mobility patterns in general, considered as the current location together with
the whole implicit and explicit details enclosed in the mobility tracking data. The current
location provides just a small piece of information, but continuously tracking the user and
appropriately mining the resulting sequence of locations disclose much more information
than just the visited, isolated, locations: how much or far away the user moves (to man-
age battery consumption); the places the user visits consistently (such as the work place,
children’s schools, hospitals, religious or political venues), which provides information far
beyond the visited locations; the routes to get to those places (which can serve to prevent
the user from getting into traffic jams or pubic transport breakdowns, and let choosing
a different route in advance); or when the user falls out form her usual habits (meaning
she may need some assistance through maps, or warning data about a suspicious behav-
ior). There already exist some applications taking advantage of this type of knowledge,
like Google Now4. This application performs data mining over the mobility information
collected through the mobile phone usage (location, calendar, contacts, maps, etc.), thus
being able to inform the user how much time it will take her to get from home to work,
which means that the application previously learned which location corresponds to her
home and her job, and her usual route between these places. However, the application
does not provide this information on weekends because it learnt the days in which the user
follows this home-job route, and the days in which she does not. This is clearly an evolu-
tionary step with respect to the classical LBSs. However, in order to intelligently provide
this tailored information, an evolution on the underlying foundation technologies, to mine
the mobility patterns and predict the most probable next locations, is required as well.

With all the new data captured by mobile phones about user mobility, it became clear
that classical mobility models, such as Random Walk [103] or Random Waypoint [64],
among others, fall short to capture the real features driving human mobility [14, 113]. Thus,
this huge amount of location data captured using mobile devices as monitoring tool needs
to be carefully considered to determine which mobility-related information is able provide,
and their limitations, so that more accurate conclusions about mobility can be derived
from it. Moreover, it is demonstrated that people behave somehow similarly, yet existing
noticeable differences between individuals’ behavior that must be captured to personalize
services for each specific user. This task requires different metrics to faithfully capture the
user-specific mobility aspects. In order to provide services like the ones mentioned before,

4Accessible at https://www.google.com/landing/now/, as of October, 2015.

https://www.google.com/landing/now/
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it is not enough to consider general features, but also transient ones: where the user is
now, and where she is most likely to go to next. This task is performed by what is known
as location prediction algorithms, which need to sharpen their prediction accuracy, aiming
at getting as close as possible to the maximum accuracy they could achieve, depending on
the specific mobility features of the user.

Mobile devices are the proxies that reveal the location of the individual. They offer
several ways to obtain the location-related data associated to them, allowing to collect this
data by themselves or letting third parties (base station transceivers, BTSs, access points,
APs, or external Internet servers) to perform the collection task. However, the location
tracking (obtaining the individual’s location at certain intervals) needs to be done by the
terminals, as they are the ones carried by the user. These devices keep on increasing their
computing capabilities, as well as adding more sensors and communication interfaces able
to, among other duties, locate the individual. Unfortunately, one of the main components in
a mobile device, the battery, cannot follow this development rate, and power consumption
is still one of the main concerns. Besides this constraint, in order to be useful for different
services and applications, location prediction must work in an online fashion such that the
user can use the associated services right on time (e.g., not receiving a warning about a
traffic jam in the near future route when the user is already in it, but sometime in advance
to explore and choose other alternative routes). This requirement leads to continuous
mobility tracking and data mining, where the continuous component is critical. Thus,
not all tracking and prediction methods are suitable, but their selection is constrained to
their resource consumption. It must be taken into account that user mobility produces a
considerable amount of data per day, that pile up as time goes by. Either the location data
collection and prediction are made by the terminal or by an external entity, the selected
approach faces the problem of processing continuous flows of data, searching for patterns
in the continuously growing data set, with the requirement of having immediate useful
results such that, as soon as the user moves, she can take advantage of the next location
prediction. Thus, tracking and prediction methods that require low battery consumption
and low computational complexity are key so that, whichever entity is the one in charge
of these tasks, it can continuously and appropriately perform them.

The challenges associated to dealing with present and future user locations goes further
than this. As mentioned before, either the mobile phone or an external entity can collect
the user’s visited locations and predict her future whereabouts. Of course, considering
third parties to deal with location data automatically triggers an alert on the privacy
preservation of the user. However, even if the mobile phone is chosen to collect the data
and estimate the predictions, which means that all the sensitive location information is kept
in the mobile device, it is not enough to preserve the user’s privacy. If these predictions
are used to feed some service (e.g., traffic alerts) in order to get the personalized response,
there is an unavoidable leakage of location data, since the predicted location needs to be
sent to an external service that will have the associated information that wants to be
retrieved. Actually, there is no need to address the prediction case. Nowadays, a mobile
device gets the user location, but it immediately sends it to a third party in order to obtain
the corresponding LBS: personalized news, weather information, directions in a map, etc.
Whenever location wants to be used as context data for location or tracking-related services,
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it leads to their systematic disclosure. As argued before, a wide range of information can be
extracted from user mobility records, beyond the visited locations by themselves: home or
job locations, or other venues such as hospitals, which disclose different potential sensitive
data about the user. Therefore, a need for having some control over the disclosed data
emerges, in order to be aware of the amount of sensitive data revealed and, hopefully, to
decrease the potential negative effects this unintentional data disclosure leads to.

1.2 Objectives

As discussed so far, studying and leveraging individuals mobility may serve to provide
useful and diverse innovative services that go beyond the limited LBSs users enjoy right
now. However, many challenges and constraints must be faced before, which are the
driving force of the present dissertation. This thesis is focused on the study of individuals
mobility by means of the location data provided by mobile devices, aiming at extracting
conclusions that can be applied to the specific application of future mobility prediction in
order to improve its performance. From this general target and the previous motivation,
multiple fronts to tackle emerge. In order to logically organize them, Figure 1.1 can help
to understand the stages to address. Each stage is represented by a block, whilst the
different challenges associated to each objective are enumerated next to each block. The
combination of the stages and their challenges represent the goals to achieve throughout
the thesis.

Mobility
data 

collection

Mobility
features 

extraction

Mobility 
prediction
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- Continuous tracking
- Extensive and diverse set of users
- Complete mobility data

- Low computational requirements
- Real time predictions
- Impact of mobility features

- How to measure in the collected data
- Detecting mobility data biases 
- Reducing mobility data biases

- Independent locations
- Mobility patterns

Figure 1.1: Main stages representing the objectives of the thesis, together with their main
challenges.

• Mobility data collection. In this first objective, the aim is to inspect the available
mobility data sources and data sets, and determine their suitability for continuous
tracking, and their potential to accurately reflect the real mobility of the user’s mo-
bility. The target data sets would be as extensive as possible to be able to obtain
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statistically meaningful conclusions, with the most up to date and appropriately sam-
pled data, leading to complete mobility information, and which mobility traces come
from people with different mobility habits to avoid potential biases. These properties
aim at guaranteeing a good quality set of mobility data that allows to assess the
mobility features and the prediction algorithms considered further in.

• Mobility feature extraction. With the data sets obtained in the previous stage,
the second goal is directed towards the extraction of the mobility information en-
closed in the data. To that purpose, the existing indicators about individual mobility
will be explored, focusing first on the characteristics of the data used to analyze
them, and second, on the potential impact they might have in the prediction process.
These two aspects will determine the set of mobility features that will be thoroughly
analyzed, using the data sets previously obtained. The main goal is to determine if
the conclusions on the mobility features of the users can be extracted independently
of the mobility data used, as extensively done in the literature so far. In order to
do so, the possible existing biases associated to the data collection schemes will be
exposed, together with several proposals to reduce them.

• Mobility prediction. The first target at this stage is to acquire a deep under-
standing of the working principles of a specific family of next location predictors.
As discussed in the motivation, the algorithms considered in this dissertation will be
characterized by low computational requirements, and the capability of generating
accurate next location predictions right in time, as the individual moves. The second
and main goal at this stage is the improvement of the fraction of correct predictions
the algorithms can currently achieve. In order to do so, several modifications of
their working principles are proposed, based on the initial analysis of their perfor-
mance, and on the relationship between some of the mobility features analyzed in
the previous stage and the predictions results.

• Location data privacy. Since disclosing location data risks user privacy, and seems
to be unavoidable in order to enjoy nearly any LBS that relies on information pro-
vided by an external entity, the last objective of the thesis aims at measuring how
much of this privacy is compromised by using the information theory concept of en-
tropy. In order to cope with the shift in the working principles of the LBSs devised
in the motivation, two approaches will be considered: the privacy loss derived from
disclosing independent location samples, representing the threats associated to the
current LBSs; and the privacy loss coming form revealing location samples shar-
ing temporal correlations among them, which represents the threats related to the
mobility patterns of a user.

1.3 Outline

The previous objectives are addressed along this dissertation following the structure de-
scribed next.
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Chapter 2 provides an overview of the state of the art concerning the topics covered
in this thesis. It will also include some background on one of the main building blocks in
which the thesis is based on, the estimation of the entropy of finite sequences, key concept
for further chapters.

Chapter 3 describes, first, the mobility data source chosen, to focus later on the data
sets that will be used. First, the available mobility data set to be used will be described,
which will be followed by the reasons that led to run a new data collection campaign carried
out for the research, as well as final data captured during the experiment.

Chapter 4 deals with the following step in the process, which is focused on extracting
the interesting features out of the data sets described in the previous chapter. A review of
the main metrics to be used will be done, from which follows an analysis on how mobility
data collected in different ways lead to very different conclusions about mobility features,
and a proposal on how to pre-process the data in order to avoid systematic biases in the
conclusions.

The next step, location prediction, is covered in Chapter 5. The proposals on im-
provements and new algorithms will be presented, together with the results obtained after
processing the data described in the initial chapters.

The privacy aspects accompanying the use of location data will be presented in Chap-
ter 6. More specifically, this chapter will propose a privacy metric based on different
entropy-related concepts, which will allow to analyze the impact that perturbing location
data has on the privacy and data utility preservation.

Lastly, Chapter 7 collects the main conclusions and contributions derived from the
dissertation, along with some of the many interesting research challenges that remain open
for further investigation.

Two additional appendices are also included. Appendix A explains the details of the
application developed for the data collection campaign described in Chapter 3, and Ap-
pendix B includes the demonstrations of privacy preserving mechanisms described in Chap-
ter 6.
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Before diving deeper into each of the objectives described in Chapter 1, a review of
the works related to each of them will be exposed in this chapter. The literature review
exposed in the present chapter covers the three first objectives of the thesis. As can be
seen in Figure 1.1, privacy is not another step in the flow, but appears as a parallel topic
throughout the whole process, in a parallel plane. For the sake of clarity, the state of
the art associated to location privacy will be covered in Chapter 6, so that the aspects
concerning that objective, which are not directly but tangentially related to the process,
do not confuse the reader along the mobility analysis process.

Besides the literature review, the chapter includes a section on a topic that will show to
be key along the thesis: the entropy of a finite symbol sequence. This information theory
concept will be tightly related to the mobility features extraction, the proposal of mobility
prediction improvements, and the privacy metrics considered. For this reason, it seems
convenient to understand first what entropy is, as well as the available estimators for finite
symbol sequences like the ones representing the mobility traces of individuals.

7
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2.1 Related Works

This section provides a review of the state of the art on each of the different stages described
in Figure 1.1, which will be the building blocks of the thesis.

2.1.1 Mobility Data Sources in Mobile Devices

The very first step in understanding human mobility consists in having data representing
such mobility in order to extract characteristics from them. Therefore, it is important that
the data reflects as faithfully as possible the information related to mobility. It can be
inspected from many different perspectives, again, depending on the application.

• The are different mobility levels: general (all the movements of the user), medium-
small scale (mobility inside a campus), or indoor (inside a building, floor, room, etc.),
among others.

• Accuracy might be key (for indicating a friend where we are, or to locate ourselves
in a foreign city), or can be a relaxed requirement (when looking for restaurants
nearby).

• Locating the user might be enough (for applications with just the current location
attached to each request), or the user might need to be tracked. In this last case, the
tracking frequency is also another parameter to decide.

Next, an overview of the technologies available in mobile devices to track their owners
location is presented. The three features mentioned before will be specially considered.
In particular, Global Positioning System (GPS), Wi-Fi networks, and cellular telephony
networks are compared, and also a new tracking mechanism that has emerged with the
advent of location-based social networks (LBSN).

• Global Positioning System (GPS). The great majority of new mobile devices
integrate a GPS system. When a user wants to obtain her location using this tech-
nology, first she enables the GPS of the terminal, then the device searches for the
satellites and synchronizes with them and finally, once the synchronization is set, the
user can perform location requests.

– Location data accuracy. This is the main strength of this technology, since the
location data accuracy is close to 10 meters [36] [159].

– Coverage. GPS has global coverage, but does not reach indoor environments,
thus not being possible to track mobility inside buildings and similar scenarios.

– Power consumption. This is one of the main weaknesses of GPS, since location
requests greatly drain the battery of the device [28]. Although there are works
that try to minimize the power consumption by proposing different location
acquisition schemes [67, 68, 69], the decrease in the battery consumption comes
at the cost of reducing the accuracy of the location data obtained.
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• Wi-Fi-based location. By monitoring the Wi-Fi access point (AP) the user’s
device is attached to as she moves, her mobility patterns can be indirectly tracked.
The mapping between the AP medium access control (MAC) address and its location
is needed in order to know the zone where the user is at all times. This indirect
mobility tracking method has the following characteristics:

– Location data accuracy. It is related to the AP coverage area, which is usually
close to 100 meters radius. Therefore, a device attached to certain AP is located
somewhere within a 100 meters radius circle [55], which made the accuracy worst
than GPS case, but bounded.

– Coverage. Wi-Fi networks provide indoor coverage, but only on local areas.
Therefore, the users’ mobility can only be tracked on bounded areas such as
buildings, campus, or similar scenarios.

– Power consumption. Since location tracking using Wi-Fi only needs to know
the AP MAC address (no need for data transferring), the power consumption
of having the Wi-Fi antenna working, scanning the radio environment looking
for new Wi-Fi networks, and being attached to some AP is low (the main power
consumption of Wi-Fi connections is due to data transferring [45]). However,
depending on the method for translating the MAC address of the AP to the
corresponding coordinates, there may exist an extra power consumption if an
Internet connection is needed.

– Additional comments. The main weakness of this system is the translation from
MAC address to coordinates, since Wi-Fi APs may easily change its location.
Therefore, the mapping should be updated frequently or it may lead to erroneous
locations. On the other hand, the location accuracy may be improved by means
of triangulation methods [159, 7, 73].

• Cellular telephony network-based location. The working principles of this
system are very similar to those of Wi-Fi case. The user mobility is tracked by
knowing the network base transceiver station (BTS), also referred to as cell, the
device is attached to as the user moves. In this case, a translation from BTS (cell)
information to coordinates is also needed. The main features of this location system
are the ones below:

– Location data accuracy. This is the worst feature of this system since the ac-
curacy depends on the user’s location. A cell from Global System for Mobile
Communications (GSM) network ranges from 200 meters radius in urban areas
to up to several kilometers in rural scenarios [159], thus the accuracy being much
worse than GPS or Wi-Fi systems and unbounded.

– Coverage. This is the main advantage of this technology since it provides global
coverage, even in indoor environments.

– Power consumption. The power consumption due to cellular telephony network
connection is the lowest one, since it is the basic feature of a mobile phone (both
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Wi-Fi and GPS consumptions are added to this basic one). But as in the Wi-Fi
case, there is an additional consumption due to the translation step, that will
depend on how this translation is done.

– Additional comments. There is an advantage of this approach over the Wi-Fi
case due to the fact that cellular telephony networks are much more stable in
terms of BTS locations with respect to AP locations.

• Location-Based Social Networks (LBSN). This new type of social network is
based on each of its users indicating (check-in) the place (restaurant, airport, sport
center. . . ) where she is at every moment, like in Foursquare1. Therefore, the location
history can be directly obtained by taking the sequence of check-ins made by the user.
The main features of this approach are the following ones:

– Location data accuracy. The accuracy depends on the honesty of the user: if
she checks-in where she really is, then she will be located inside the place she
says to be, and depending on the size of the place, the accuracy will be higher
(if the place is small, like a restaurant), or lower (if the place is big, like a mall).
However, if the user lies about the location, the accuracy is totally unbounded.

– Coverage. This is an advantage of this system. It provides global coverage,
both in outdoor and indoor environments, since the social network provides the
whole map for the user to check-in where she is.

– Power consumption. The power consumption needed for each check-in is as-
sociated with the data connection required to connect to the Internet. It will
depend on the technology used (Wi-Fi or cellular telephony network), and the
duration of the connection.

– Additional comments. Although this emerging type of social network provides
global coverage, the location tracking completely depends on the user, since she
needs to actively check-in in every place she goes. Unfortunately, supposing
that every user will check-in every single place she visits is unrealistic. For the
purposes of this thesis, the tracking process needs to be independent of the user’s
will to collect precise mobility information about herself to precisely capture her
mobility patterns at all times of the day and week.

Once the data sources are exposed, the next step is to explore the mobility data sets
coming from the different sources exposed above and used in the literature.

2.1.2 Mobility Data Sets Used in the Literature

Human mobility has received much attention during the last decade. The growth of
mobility-related studies stems from overcoming the barriers holding the mobility data col-
lection process back. The first data sets were originally collected by surveys. One of the
first studies on human mobility not relying on surveys was performed by analyzing the

1Accessible at https://foursquare.com, as of October, 2015.

https://foursquare.com
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circulation of bank notes in the United States [16], but was demonstrated, years later, that
the conclusions could hide a correlation of population-based heterogeneity and individual
human trajectories due to the nature of the data collected. Thus, it was obvious that the
mobility data that can be obtained was not enough to have statistical significant results,
or biased depending on the collection technique used.

This situation was completely turned upside-down with the tremendous growth of the
use of mobile phones. Nowadays almost every person carries a mobile device with her, all
day long, everywhere she goes. Thus, the mobile device is the perfect proxy to track user’s
mobility. This fact was rapidly acknowledge by the research community, who took advan-
tage of the increasing number of sensors as well as the available application programming
interfaces (APIs) of the different operating systems, which incredibly ease the use of the
systems and sensors in the devices, to develop applications capable of tracking the user’s
movements.

Among the several systems integrated in the mobile devices that can be leveraged
as location proxies, the most popular ones are GPS, as it is the only one providing real
location coordinates, and also Wi-Fi and the cellular telephony network. There are other
systems, like Bluetooth and Radio-frequency IDentification (RFID), which are also used
in some specific scenarios to locate people in small size environments. However, since the
thesis is focused on the global mobility of users, these systems fall short to capture such
global behavior, and thus will not be considered in this literature review, nor in the rest of
the dissertation. As explained in next sections, this thesis will be focused on using GSM-
based location data due to its global coverage and low battery impact during the collection
process. Thus, the next review will be focused on the data sets based on the data coming
from this technology. Nonetheless, a great number of studies [113, 87, 84, 85, 48, 160, 161,
79, 95, 70, 83, 121] based on GPS or Wi-Fi can be found in the literature, yielding also
interesting conclusions in human mobility-related research.

Focusing on GSM-based data, there is a large number of mobility-related studies han-
dling this type of data sets. However, as described in next sections, there are different
ways to capture cellular telephony-based location data. The most used approach is to
use the data stored in the network nodes themselves, which record the BTS to which the
device is connected when the user is making or receiving a call, or sending or receiving an
short message. These records are known as call-detail records (CDR). These data sets are
characterized by their high number of users and long duration, since the data is recorded
anyways for billing purposes, and thus is widely available (although not easily accessible,
since it depends on the network operators permission). Some of the works using these data
sets are used to study the trajectory of users in spatial and temporal terms [50], studying
the predictability in human mobility [134, 88], running large-scale studies to characterize
the behavior of mobility in cities [138, 10, 42, 60, 58, 59, 95, 61, 9, 37], modeling scaling
properties of human mobility [133] or improving public transport [11], and even examples
from individuals who published their own recorded CDRs [46, 137]. And there are also
some works [106] questioning the validity of CDRs to capture human mobility features.

In order to answer such question, other data collections are possible using cellular data.
The second methodology to collect this location-related data is recording the cell to which
the device is attached every moment. This can be done from the mobile device itself,
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Data Set Technology
GSM

sampling
Users Duration Date Available

Nokia Data
Challenge

GSM,
Wi-Fi, GPS

CDR 200
24

months
2011

By
request

MIT
GSM,
Wi-Fi

Cell change 95
9

months
2005 Yes

Michael
Ficek

GSM CDR 1 142 days 2012 Yes

Malte Spitz GSM CDR 1
6

months
2011 Yes

PlaceLab
GSM,

Wi-Fi, GPS
Wardriving - 2 hours 2004 Yes

Rice
Context

GSM,
Wi-Fi

Cell change 14 3 weeks 2003 Yes

Table 2.1: Summary of the public available mobility data sets in the literature.

and thus, the data available is much less extensive. This collections method implies the
users installing a dedicated application that collects the data continuously and sends it to
certain server from time to time. Thus, these data sets are not already available, like in
the previous case, but they are much harder to obtain. Among the related works using
this type of data set, some are focused on prediction of the next location [41], some others
focus on studying predictability of users [62] or context-related studies [105]. As can be
checked, the number of this type of data sets is much lower than the CDR-based ones.

Besides these data sets, there are some others which gather location-related information
coming from different sources, and are probably the most popular data sets. The MIT
Reality Mining data set [43] is one of them, which will be study more in depth in next
sections, but there are also others like the data coming from the Nokia Data Challenge [72,
78], the PlaceLab data set [77] and the NetSense data set [140].

Thanks to the generosity of the contributors to the data sets and to communities like
CRAWDAD2, many of these data sets are publicly available. Table 2.1 details the data
sets publicly available and their main characteristics.

2.1.3 Study of Human Mobility Features

The resurgence of the interest on human mobility has generated a myriad of works analyzing
an extensive set of features, extracted from distinct mobility data sources and data sets,
exposed in the previous section. Focusing now on the features extracted from these data
sets, this section presents a review of some, for the sake of brevity, of the most significant
works in the framework of the objectives of the thesis.

The studies surveyed can be roughly classified, mainly, into two groups, depending on

2Accessible at http://crawdad.org/, as of October, 2015.

http://crawdad.org/
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the perspective form which mobility is analyzed. On the one hand, many works hold a
perspective centered on the environment where mobility is studied, generally at city-level.
Its main goal is to uncover how mobility shapes the environment or vice versa, but with the
central aspect being mobility in the environment. The opposite perspective is user-centric,
that is to say, the goal in this case is to characterize the individual or group behavior, but
having the person as the center piece instead of the environment.

2.1.3.1 Mobility Features from a Location-Centric Perspective

Considering the case of location-centered mobility, sometimes known as urban dynamics,
many works have appeared in the last years in line with the advent of smart cities and
the corresponding need to understand the inhabitants flows defining the scenario [139] to
help in planning and provision of municipal facilities and services, provide better public
transportation [11] and road usage [150]. This type of studies were not possible until
traditional approaches, like surveys, were replaced by the data provided by cellular network
operators, which disclose more than just snapshots of people movements, but where the
spatial extent and temporal correlations are wider than the ones provided by previous
studies.

One of the first works using cellular telephony data to characterize urban-related fea-
tures was carried on by the MIT in collaboration with Telecom Italia [109]. The study
divided Rome into pixels and chose six different locations of one pixel each. The Erlang
daily traffic distributions were studied, to group them by degree of similarity and map them
to hot and cold areas of activity along the day, week and month. This work was taken as
reference by Sun et al. [141], who also divided a southern city in China into pixels, and by
using the CDRs collected in such city, analyzed the population distribution based on the
cellphone usage data from the CDRs in each pixel. Their study, using principal component
analysis, revealed the low dimensionality needed to characterize the structure as well as
a temporal stability and dominance of periodic trends. Both at pixel and group level,
three categories were detected, namely regular or predictable patterns, unusual patterns
and insignificant patterns, being the predictable patterns the dominant ones.

More recent works, like [10], use CDRs to capture the city dynamics by determining
the residential areas where work people live and the residential areas of late-night peo-
ple, thus demonstrating that clustering people based on cellphone usage is possible, even
without taking into account temporal correlations. Follow up works [60, 58, 59] extended
the former study by finding mobility patterns in New York and Los Angeles regions, such
as identifying important locations, who travels further, who travels more distances, when
people move more and at what season, among others, using a metric called daily range,
which corresponds to the maximum distance traveled in a single day. This kind of metrics
are only possible when the location of the BTSs recorded in the CDRs are known. Yet
another follow up work [61] using the same data set models the movement of large pop-
ulations within different metropolitan areas, aiming at producing synthetic CDRs taking
into account the probabilities of being at home or the work place, and the probabilities
of a call being made or received at certain location (cell) or at certain time. Another
related work [95], this time using GPS and Foursquare data, uncovers variations in hu-
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man mobility in different cities due to different distribution of places. Yet another work
comparing different cities [53] perform a clustering analysis and compare human activities
in urban environments based on the detection of mobile phone usage patters (number of
calls, messages, data traffic events). The analysis leads to identifying locations with similar
patterns within a city, where their core financial centers all share similar activity patterns
and commercial or residential areas present more city-specific patterns.

In [65] the authors use CDR data from eight cities in Chine to investigate how human
mobility patterns inside cities are impacted by the compactness and size of cities, using
displacement and radius of gyration. As in previous studies, they found out that the
distribution of displacements, in this case in intra-urban scenario, follows exponential laws,
whilst the exponents vary from city to city, thus confirming that the city sizes and shapes
impact mobility (which follows the intuition that individuals living in large cities have to
travel further). The dependency of the parameters of the model on the specific city is
again highlighted in [138]. This work uses CDRs of several million users during one month
to characterize the footprint of the users in the city, disregarding temporal or spatial
features. In order to do so, they use clustering techniques and a geometrical construct
called minimum area bounding rectangle (MABR) that delimits the daily movement range
of a user. The results indicate that, whilst the area, average trajectory length, and area
of clusters follow the same distributions, the distributions of the MABR skew or angle, or
the number of clusters depend on the locale.

One of the most common studies regarding cities is to uncover which are the different
regions of the city, like the one previously mentioned [58] or in [157]. In this last work,
the authors try to complement the knowledge of points of interest (POIs) of a city with
the information provided by CDRs to differentiate the intensity of each function in each
region or location (e.g., a small restaurant has a different impact than a big attracting one,
even when the two of them are considered POIs). Another study featuring different urban
areas [158] uses hourly time series representing the dynamic mobility patterns in different
urban areas and use dynamic time warping algorithm to measure the similarity between
time series to classify different urban areas, which allows to investigate outliers urban areas
through abnormal mobility patterns, differentiate weekends from weekdays and to locate
commercial zones. Analyzing this same aspect, [37] uses mobile telephony data to visualize
the regional flows of people across the Republic of Ireland, using Markov chains to rank
significant regions of interest to mobile subscribers.

As can be expected, mobile phones can help in demographic research, as demonstrated
in [99], where the authors describe the pilot study “Human Mobility Project (HMP)” that
explores the use of mobile phones in demographic research and tests dynamic, location-
based surveys. They use GPS and GSM data to determine where people live, where they
spend time when not at home and what are their trajectories.

2.1.3.2 Mobility Features from a User-Centric Perspective

The second standpoint of mobility is user-centric, referring to the works aiming at char-
acterize the intrinsic features of human mobility, disregarding the specific scenario where
they move.
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In the survey elaborated by Lin et al. [84], they review relevant results in some of the
main areas studied in human mobility studies: inferring important locations, detecting
modes of transport, mining trajectory patterns, and recognizing location-based activities.
They also classify mobility analysis into two main areas: mining mobility patterns and
constructing mobility models. These two big blocks were also pointed out in [66], inside
a bigger framework that also includes data collection and the final applications where the
mobility results and models are applied as additional areas conforming the big picture of
human mobility study.

Regarding the identification of salient locations, Eagle et al. [41] analyzed CDRs of 215
individuals recorded during 5 months to cluster the most used BTSs (i.e., locations) and
validated the results using data coming from Bluetooth beacons placed in the individuals
homes, aiming at predicting subject’s next movements. In [161], the authors use GPS
data from 107 users taken during a year to mine interesting locations, as well as classical
travel sequence, for travel recommendation. These salient locations are important, due to
the asymptotic characteristic human mobility behavior, studied by Song et al. [133], of the
individuals returning systematically to some preferred places, and just sometimes exploring
new areas. Boldrini et al. [14] identify also the preference to spend time in a limited number
of popular locations, and together with the preference to select short distances over longer
ones, and the sociability of users, meaning the larger the social network the higher the
mobility, they propose a mobility model based on these three properties for reproducing
accurately the behaviors of users in mobile ad-hoc networks (MANETs), opportunistic and
delay tolerant networks.

On the motion mode detection, Zheng et al. [160] used GPS data from 65 people
recorded during 10 months to detect transportation modes, for which they focus on heading
change rate, stop rate or velocity change rate, all of which show to be more robust than
velocity and acceleration.

Another of the main features analyzed is the displacements of the users. In the first
works studying human mobility using real data, bank notes in this case [16], the authors
already found out that the distribution of the traveling distances decays as a power law,
and that the probability of remaining in small, spatially confined regions for certain period
of time is dominated by long tails, properties that will be found once and again in all
the future works. In [50, 144] the authors use the CDRs of 100,000 users collected during
6 months to study the basic laws driving human motion. They found out that human
trajectories show a high degree of temporal and spatial regularity, since each individual is
characterized by time-independent travel distance and a significant probability to return
to a few highly frequented locations. The distribution of the distance covered in the
displacements suggests that human motion follows a Levy Walk, and the calculation of
the radius of gyration (i.e., the distance traveled by the user when observed up to time t)
follows a truncated Levy Flight distribution also. These results were backed up by the work
of Rhee et al. [113], where GPS data were used instead of CDRs, but leading to the same
heavy-tailed distribution of the distances covered by the individuals in their displacements.
These behaviors, widely detected in several different data sets and populations, is in line
with the exploration and preferential return model proposed in [133]. Some other works
use different data sets, like in [24], where the authors use information from a location-based
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social network and cell phone data to conclude the same features seen before with other
data sets: human mobility is a combination of periodic movement geographically limited
and eventual random jumps, correlated with social network. They go a step further by
determining that there is some sort of short-ranged periodic travel, that explains 50-70% of
the behavior, which is spatially and temporally not affected by the social network structure,
whilst there is also a long-distance travel more influenced by social network ties, which
explains 10-30% of the movement. In [162] the authors complement the observation of
power-law distributions observed in the displacements with the observation of this same
distributions in the inter-arrival and dwell times, using cellular data collected during one
month. A novel finding is the two types of individuals found in [100], where the authors
split the population into the so called returners (people who only visits a very limited set of
locations) and explorers (people who travels to many more different and distant locations
than the most usual ones), and explain the role of both types of individuals in the spread
of diseases and social networking.

Song et al. went a step further by proposing a new metric for mobility [134]. In their
study, they used CDR data of 50,000 individuals recorded during 3 months, and study
their entropy and entropy rates (by using Shannon entropy and Grassberger entropy rate
estimators, described in Section 2.2), to finally propose a new metric, the predictability,
which sets the upper bound on the best accuracy a location prediction algorithm could
ever achieve, depending on the specific user entropy rate and different number of locations
visited. They show that predictability is largely independent from the radius of gyration,
and that the average predictability is centered in the 93% of correct predictions. After its
proposal, predictability has been widely studied. In [62], the authors extend Song’s work
using a more detailed data set including data from multiple sensors (GSM, GPS, Bluetooth,
and Wi-Fi) and with higher temporal resolution, comparing how different time scales affect
predictability. Lin et al. [85] used high resolution GPS data to measure the predictability
of the users’ trajectories using different scales, checking that the high predictability is still
present at very high resolutions, being independent of the overall mobility area covered,
and with an invariance respect spatial resolution, meaning that the predictability decreases
if the spacial precision increases. In [86] the authors further extend their analysis by
proposing a new Markovian mobility model addressing what they consider the two driving
forces modelling human mobility: travels governed by occasional exploration of new places
and preferential return to some highly frequented locations (as exposed in [50, 134, 133]),
and the high predictability showed by human mobility sequences, which were not addressed
before for mobility modeling. This new model yields predictability values much lower than
93%, which can be in line with the results that will be shown further in this chapter. In [88],
the authors calculate this metric in a data set made of the CDRs of 500,000 individuals
during 5 months, specifically targeting the predictability of population displacement after
the 2010 Haiti earthquake, in order to improve the response to disasters and outbreaks
under extreme events.

Lin et at. [87] test two widely accepted assumptions: the stationarity and dependency
of visited locations and the preference for revisiting locations according to the visitation fre-
quency. The first assumption was studied by comparing the correlations in the sequences,
which uncovers daily and weekly patterns. The second assumption was tested by com-
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paring the entropy rate of the movement histories with respect to sequences drawn from
independent identically distributed and Markov processes. Using a combination of GPS
and GSM data, they claim Markov chains of order 1 to be the most similar ones to the
actual movement histories in terms of entropy results.

Among the future research lines on human mobility, some studies like [84] mention
further study about predictability, since it depends on how the data is collected (e.g., a
fixed sampling rate, as the one used in many of the previous studies, may condition the
results since many samples are going to be taken at the same location, thus increasing
the predictability, but not accounting for the real movement of the user); model the pro-
cess of mobility and construct more accurate mobility models; and determine which data
compression algorithm is more suitable for modeling individuals’ mobility sequences and
how to tailor the algorithms based on the special characteristics of individuals’ mobility
behaviors. This last aspect is precisely the main focus of this thesis.

Focusing on the possible biases in the features studied in the previous works, in [106,
125] the authors raise their concern on the potential bias introduced due to the use of
CDR-based data to study human mobility. In their reasoning, they claim that the users
usually chosen to conduct the studies are those with high voice-call frequency, which may
not be representative of the real situation. They conclude that this kind of data sets
can infer home and work locations, but provide poor results for overall spatio-temporal
properties, such as the set of significant locations (those concentrating 90% of the visits)
and the entropy and radius of gyration.

Another shortcoming, treated separately for being a very specific problem of certain
data such as GSM or Wi-Fi-based location data sets, is the ping pong effect, which is
studied in [79]. The authors detect this effect in Wi-Fi networks, and consider two ping
pong scenarios, between two and three coverage areas. When the ping pong is detected, the
coverage areas implicated are clustered into a new one, and then compare the number of
transitions after and before. In [153] another offline method to filter ping pong is proposed,
in which more information is collected in order to check if the sequence labeled as ping
pong sequence is in reality a ping pong sequence, and then removes it. In next sections,
these works will be extended by considering different detection and filtering approaches,
that could be applied online, as well as a more extensive study on the mobility features
observed in the traces before and after filtering.

2.1.4 Mobility Prediction Algorithms

Location prediction is a topic largely studied. Plenty of different methods, using varied
types data and aiming at predicting distinct aspects of the individuals future whereabouts,
have been proposed in the literature. This section contains an overview of the most sig-
nificant works. The present analysis covers the research carried out with diverse types of
data, since the methodologies and conclusions drawn form them can be sometimes applied
to location prediction in general, regardless of the nature of the input location data.

The main focus of the review is set in two perspectives: the differences in prediction
when different data types are used, and the diverse approaches followed to calculate pre-
dictions, including those based or helped by leveraging human mobility features.
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2.1.4.1 Prediction using Different Location Data Types

As the review on the previous sections shows, different data sources can be used to describe
individuals’ movements. These different sources can be, then, used as input data of different
location prediction algorithms. The main classification regarding the input data splits these
prediction algorithms into two groups: the ones using the location physical coordinates,
and the ones using sequences of symbols representing the visited locations.

All the works using GPS data fall in the first group. In [124], Scellato et al. proposed
NextPlace, a location predictor that first used the residence time at each input GPS location
to identify salient locations. After that, the algorithm assumes that the period of 24 hours
strongly determines human behavior, thus basing the prediction of the next movement on
what happened in the previous periods of 24 hours. Ashbrook et al. [6] also use the time
spent at different GPS locations to group them into significant places, but in this case
Markov models of order 1 and 2 were used to perform the prediction. Monreale et al. [93]
followed the same strategy of mining trajectories based on time information, to use then a
prefix tree of trajectory patterns.

In [71, 25], the authors also use GPS data, but in this case the location recognition
is carried out through the G-means clustering technique, to further apply hidden Markov
models (HMMs) for path classification. Alvarez-Garcia et al. [3] followed a similar ap-
proach, extracting GPS trajectories by clustering destination points and then applying a
HMM to detect the invisible process (destination) through visible observations (the se-
quence of significant points detected). Again, Ying et al. [155] performed a clustering
process for extracting significant GPS locations and movement together with a probabilis-
tic model for predicting the time at which the next movement will happen.

In [94], the authors uses the coordinates of the different locations, but the data set
is synthetically generated, although the process is the same than in real data studies:
mining the location logs to discover frequent trajectories which are further transformed into
movement rules by using prefix trees. The authors of [19] also used location coordinates,
although in this case the data comes from the AirSage service, which provides physical
coordinates from CDR and Wi-Fi data. Besides, they divided the space into a grid and
predicted the user location at time k using the information at times k − T , k − 2T , etc.

In general, GPS data face the problem of location recognition as the first step in the
prediction process. This problem comes from the fact that the GPS receiver provides many
diverse coordinates, slightly different among them every time a location is visited, when
the individual is in one single location. The most used solutions are grids and spatial or
temporal clustering approaches, most of them performed in an offline phase.

Another type of location data is that coming from location-based social networks (LB-
SNs). Despite their drawbacks (as discussed in Section 2.1.1, these data depends on the
willingness of the user to indicate her location, which is not equal for all the locations she
visits), this kind of studies are becoming hot topics nowadays [96, 82, 151]. Their strongest
point is that with this data there is no need to identify the location form the coordinates,
since the user already points out the exact locations she is at.

The last location data usually considered for location prediction comes from Wi-Fi
and cellular telephony networks. The most current works are already using data from
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the Long Term Evolution (LTE) network, collecting events not from the user’s phone yet,
but from the LTE network infrastructure itself [89, 54], knowing the exact location of the
nodes collecting the data. On the opposite side, there are some works using synthetic data,
like [154, 4], which do not reflect the ping pong effect that shown to heavily impact the
resulting location trace.

In other cases, like in [135], where the authors aimed at predicting the time of the next
move of a user, they use Wi-Fi data and leverages also the ping pong sequences since their
goal is to predict the next connection.

In [76], the author performs first a location recognition procedure, based on clustering.
However, in this case the clustering is made leveraging the ping pong effect usually detected
in cellular networks. Once the locations are detected, they are divided into regular locations
and bases (i.e., locations where the time spent by the individual is above certain threshold),
aiming at predicting which the next base will be. Both the location recognition and base
learning processes are carried out offline. The same happens in [1], where the authors filter
the ping pong effect by clustering cells and combining all clusters that have shared cells,
in an offline fashion.

2.1.4.2 Prediction using Different Approaches

When considering the approaches followed to calculate the predictors, the variety of meth-
ods proposed in the literature is even wider than when considering the input data type. The
most classical approaches have relied on different machine learning algorithms to use them
as predictors. Other widely used approaches are based on Markov models and state-based
techniques, pattern matching algorithms, or time-series analysis. On the other hand, the
newest works on prediction shifts the attention from the classical approaches to the consid-
eration of human mobility features observed in real users to apply them on the prediction
improvement.

Location prediction based on machine learning methods is perhaps the most common
approach, and includes clustering techniques, Bayesian models and neural networks, among
other alternatives. The general working principle in these cases is that the algorithm trains
a system, called classifier, to classify observations in order to predict unknown situations
based on a history of patterns. In [63], the authors propose to use predictors based on
clustering of the mobility data collected by all the users, and detecting the mobility in-
formation of similar users to predict the next location of one of them by using bayesian
models. The authors of [4] use also clustering techniques, k-nearest neighbors (K-NN) in
their case, together with decision trees to build a trajectory classifier and, further, a loca-
tion predictor based on short-term historical data. In [25, 71] the authors use a different
clustering technique, G-means, applied also to the trajectory clustering, combined this time
with a HMM for path classification. In [3], clustering is used once again to extract the
destination points, whilst a HMM is applied to detect the destination (invisible process)
through the sequence of significant points (visible observations). Clustering is combined
with HMM also in [91], but the clusters are, in this case, constructed according to the
temporal period in which the visits to the different locations are made. Ying et al. [155]
made use of clustering, but combined with semantic data to mine significant locations,
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which are stored in a tree that facilitates a similarity calculation of the current pattern
with respect to the previous stored ones. In [76], the author uses also clustering to group
similar paths and use additional temporal data to make the predictions.

Besides clustering, other machine learning techniques are used as well. In [1] the authors
used a hybrid technique, combining bayesian inference in artificial neural networks.

Markov models are also a popular option for many prediction algorithms. Some of these
works use the classical Markov models of low order (generally, 1 or 2), like in [6] or even
in the most recent works like in [89, 54]. In [21], the authors use Markov models under
the observation that movement changes over time and that movements are affected by
individual and collective properties, thus needing to consider three different levels—global,
personal, and regional—that are adequately modeled by Markov models. Some other
algorithms are based on HMMs, where the invisible states (generally, the final destination
of the trajectories), are calculated through the visible observations (i.e., the locations that
build the trajectory). Some works like [25, 71, 3, 91] follow this approach, combined with
clustering methods, as described before. A slightly different approach is the use of state-
based predictors, like in [13], where the authors estimate a user’s transition probabilities
between discrete locations using transition frequencies counts estimated from other similar
users. A evolved family of algorithms based on the working principles of Markov models
are LZ-based algorithms [163, 12, 51]. In this case, instead of using a model of fixed order,
the algorithms dynamically compute the optimal order to minimize the uncertainty about
the next location of the user, depending on the input mobility history.

Pattern matching techniques are similar to Markov or state-based models in general,
since in most of the cases the sequences of states are concatenated to build a string or
pattern representing the trajectory followed by the individual. These strings or patterns
are usually stored in trees, sometimes referred to as prefix-trees. The work presented
in [104] is an example of the use of Markov models in the form of trees to further apply
pattern matching techniques such as prediction by partial matching (PPM) [26].

Lately, the research on movement prediction has shifted the foundation of the newest
proposals of the algorithms to the newest mobility features extracted mainly form the
CDR data sets, like the ones described in [133, 134, 50]. The most used feature is the
similarity of a user’s trajectories with respect to her closes acquaintances, or even to a
global scale collection of trajectories [63, 121, 93, 19, 151]. Time periodicity is also a clearly
characteristic of human movement, in which there exists a strong correlation between events
separated one day, or one week. Works like [124] try to leverage this feature over salient
locations identified by applying first a 2-D Gaussian distribution weighted by the residence
time, whilst in [19], the authors divide the space into a grid and predict the person’s
location at time k by using information at k− T , k− 2T , etc., being T one day, one week,
etc. Finally, in order to tackle the problem of predicting the next location of a user who is
going to visit a new place not seen before, the latest works have tried to use the exploration
and preferential return model proposed in [133], like in [82], whose authors proposed an
exploration predictive model aiming at predicting if the user’s next location exists in the
location history considering how much she is likely to explore, and considering collaborative
social knowledge and geographical influence for seeking candidate locations to explore.

Several comparatives among different models can be found in [136, 8].
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2.2 Background

The remaining of this chapter is devoted to a concept that will be key in subsequent
chapters: the entropy of a symbol sequence. The next sections provide an overview of the
theoretical definitions and the practical meaning of this concept, and will analyze different
estimators applied to finite symbol sequences, and more specifically, to location sequences
that will be the case treated along the thesis.

Before starting with the formal definitions, it is convenient to set the notation that will
be used throughout the thesis. The convention of uppercase letters for random variables
and lowercase letters for particular values they take on will be followed. For simplicity,
all random variables take on values in a finite alphabet, since in the specific scenario of
mobility there is a finite number of locations. Probability mass functions (PMFs) are
denoted by p, sub-indexed by the corresponding name of the random variable when not
understood from the context. For instance, the PMF of a random variable X at x will be
denoted by pX(x), or simply by p(x).

2.2.1 Entropy and Entropy Rate Basics

Before diving into the applications of calculating the entropy of specific mobility data
sequences in the following chapters, this section provides an introduction to the concept of
entropy and its practical interpretation. A wider review on this topic can be found in [49,
29]. Starting with the basics, next we introduce the definition of what is known as Shannon
entropy in the information theory domain, introduced by Claude E. Shannon [128].

Definition 2.1. Let X be a discrete random variable taking values on an alphabet X ,
being |X | the cardinality of the alphabet, and with PMF Pr (X = x) = p (x) , ∀x ∈ X .
Then, the entropy can explicitly be written as:

HS (X) = −
∑
x∈X

p(x) log2 p (x) (2.1)

where the base 2 logarithm denotes that the resulting entropy value is measured in bits.

Paying attention to the practical meaning of entropy, H (X) measures the expected
“surprise” or uncertainty enclosed by the random variable X. For instance, consider the
case of tossing a coin with fair probabilities of coming up heads or tails. One cannot guess
what it is going to come up next, since both events have the same probability. In this
case, the uncertainty is maximum and thus, the entropy of the discrete random variable
representing the outcome of tossing the coin is maximum too. On the other hand, if the
coin is not fair and one event (e.g., coming up heads) has a higher probability than the
opposite one, there exists less uncertainty of what is going to come up next. Thus, the
entropy is lower. The extreme case is when the coin has heads in both sides and, therefore,
it is always going to come up heads. In this case, there is no uncertainty at all about the
outcome and thus, the entropy would be zero. Figure 2.1 illustrates this example. Let
X be the random variable representing the outcome of tossing the coin, taking values on
the alphabet X = {a, b} where a represents heads and b represents tails. For instance,
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Figure 2.1: Shannon entropy for different probability mass functions of the Bernouilli
distribution.

a fair coin corresponds to the case in which p (a) = p (b) = 0.5, whilst a coin with heads
in both sides corresponds to the case p (a) = 1, p (b) = 0. In the figure, the x-axis of the
figure shows the probability of the coin coming up heads, p (a), whilst the y-axis shows
the entropy associated to each of this probabilities. As can be observed, the entropy is
maximum for p (a) = 0.5 (heads and tails have the same probability), and it decreases until
zero when p (a) = 1 or p (a) = 0 (when it always or never comes heads, respectively), when
there is no uncertainty about the outcome.

The Shannon entropy is a member of a wider family of entropy functions, known as the
family of Rényi α-order entropy functions, which general expression is the following one:

Iα (X) =
1

1− α
log2

∑
x∈X

pα (x)

The Shannon entropy corresponds to the case in which α→ 1. Another special case, α = 0,
will be also considered. This case is known as Hartley or maximum entropy, which
will be a useful normalization parameter along the thesis, and can be expressed as follows:

HH(X) = log2|X | (2.2)

This initial definition can be further extended to the case of the joint entropy of two
discrete random variables, and also to the case of conditional entropy.

Definition 2.2. Let X and Y be two discrete random variables, taking values on alphabets
X and Y , respectively, and with a joint probability mass function Pr (X = x, Y = y) =
p (x, y). Then, the joint entropy can be expressed as:

H (X,Y ) = −
∑
x∈X

∑
y∈Y

p (x, y) log2 p (x, y) (2.3)
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Definition 2.3. Let X and Y be two discrete random variables, taking values on alphabets
X and Y , respectively, with a joint probability mass function Pr (X = x, Y = y) = p (x, y)
and conditional probability mass function Pr (X = x|Y = y) = p (x|y). Then, the condi-
tional entropy can be expressed as:

H (X|Y ) =
∑
y∈Y

p (y) H(X|Y = y) = −
∑
y∈Y

∑
x∈X

p (x, y) log2 p (x|y) (2.4)

With the initial concept of entropy it can be hard to measure the real randomness of a se-
quence of events. To illustrate that fact, the sequence of events ababababababababababab . . .
will be considered. Applying expression (2.1), and estimating P (X = a) = 0.5 = P (X = b),
then H (X) = 1, since both events have the same probability. However, can the sequence
be considered as a completely random process, as the value of H (X) suggests? The answer
is clearly no, since at each step the next event to happen is easily known. Besides the
probability of each symbol, there exists information regarding the temporal correlations
among one sample and the previous ones: the symbol at position i is the same one than
in position i − 2. In order to account for these correlations that may significantly reduce
the uncertainty of a random process, the concept of stochastic process is introduced. Let:

(Xn)n∈N = X1, X2, X3, X4, X5, . . .

be a stochastic random process with samples defined on a common alphabet X . Then, in
order to calculate the entropy of the stationary process, instead of considering the outcome
of each random variable in the process independently, the average block entropy can be
calculated using the joint entropy previously defined, leading to the following sequence:

{H (Xn)}∞n=1 =

{
1

n
H (X1, . . . , Xn)

}∞
n=1

Taking this definition of the average block entropy sequence, an evolved concept of
entropy can be foreseen, which takes into account the correlations among the samples of
the observed stochastic random process: the entropy rate.

Definition 2.4. Let (Xn)∞n=1 be an stochastic process taking values on the alphabet X .
The entropy rate, HR, of (Xn) is defined as the limit, if exists, of the sequence of average
block entropy when the length of the block tends to infinity:

HR (Xn) = lim
n→∞

1

n
H (X1, . . . , Xn) (2.5)

A related entropy measurement is the following one.

Definition 2.5. The conditional entropy rate of a stochastic process (Xn) is defined as:

H′R (Xn) = lim
n→∞

H (Xn|X1X2 . . . Xn−1) (2.6)

if the limit exists.



24 2. RELATED WORKS AND BACKGROUND

If (Xn) is also stationary, then the following theorem applies:

Theorem 2.1. For stationary stochastic processes, both sequences
{

1
n H (X1, . . . , Xn)

}∞
n=1

and H (Xn|X1X2 . . . Xn−1) are non-increasing and have a common limit, called entropy
rate:

HR(Xn) = lim
n→∞

1

n
H (X1, . . . , Xn) = lim

n→∞
H (Xn|X1X2 . . . Xn−1)

For n large, either of these entropy quantities constitutes an arbitrarily accurate ap-
proximation to the entropy rate of the process. Stationarity also implies that the samples
of the process are identically distributed according to a common PMF. When, in addition,
they are statistically independent, the process, or the samples thereof, is then called in-
dependent, identically distributed (i.i.d.). More colloquially, a process with independent
samples is called memoryless or without memory. For an i.i.d. process, entropy rate and
the entropy of individual samples coincide, that is H(Xn) = HR(Xn). For a general sta-
tionary process, H(Xn) 6 HR(Xn), with equality if and only if the process is memoryless.
The highest entropy rate is attained by processes with independent, uniformly-distributed
samples, that is HR(Xn) 6 log |X |, with equality if and only if the process is uniformly
distributed and memoryless.

These results are important in the context of the thesis, since the mobility model of a
user will be defined as an stationary stochastic process, which allows to apply the equations
presented above (see Chapter 3).

Since entropy rate emerges from considering the joint probability mass function of the
different random variables of the stochastic process, it reflects also the correlations among
such random variables, if any. The following chapters will reflect that this evolution with
respect to the Shannon entropy allows to accurately estimate the randomness of users
mobility by taking into account the temporal correlations (i.e., mobility patterns) in their
movement histories.

It should be noticed that for any entropy calculation described so far, the probability
mass functions of the random variable or stochastic process are needed. Unfortunately,
this is one of the missing pieces in the human mobility puzzle: the accurate statistical
description of a user mobility model is still unknown. Thus, in the following section some
estimators helping to cope with this problem are presented.

2.2.2 Entropy and Entropy Rate Estimators of Finite Sequences

The previous section exposed the main entropy definitions that will be used in subsequent
sections: maximum or Hartley entropy, Shannon entropy, and entropy rate. However, the
probability mass function of the random variables or stochastic processes to be analyzed
(i.e., the mobility model of the user) are largely unknown. For this reason, the need for
using entropy estimators emerges. These estimators are obtained based on the available
information: the movement history of the user, i.e., the observed outcomes of a realization
of the stochastic process. This section describes some available estimators and justifies the
choice of the ones that will be used throughout the following chapters.

Let (Xn) be an stochastic process, taking values on the alphabet X , with cardinality
|X |. Let S = s1s2 . . . sn . . . sN , be the finite sequence of observed outcomes of a realization
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of (Xn), of length N . Therefore, the set of different values that sn can take on, S , is a
subset of X , S ⊆X , with cardinality |S | ≤ |X |.

The estimation of the Hartley entropy, HH (Xn), is straightforward, just considering the
cardinality of the alphabet X as the number of different symbols observed in the available
sequence, S:

ĤH (Xn) = HH (S) = log2 |S | (2.7)

For calculating the Shannon entropy estimator, the analogous process to the previous
one is applied to equation (2.1). Since the probability mass function p (sj) is not available,
it is approximated by a maximum likelihood estimator based on the observable data. Let
N (sj) be the number of elements, sn, of the observed sequence, S, that are equal to s:
N (s) = |{n ∈ {1, 2, . . . , N} : sn = s}|. Then, the estimator of p (sj), is then calculated as
follows:

p̂ (s) =
N (s)

N
,∀s ∈ S (2.8)

Therefore, the estimator for the Shannon entropy can be expressed as:

ĤS (Xn) = HS (S) = −
∑
s∈S

p̂ (s) log2 p̂ (s) (2.9)

Since the estimations are calculated based on a finite sequence of events, S, of length N ,
it must be considered the quality of the estimation based on the available data. Figure 2.2
shows the entropy values ĤH (Xn) and ĤS (Xn), respectively, for sequences of different
lengths, drawn from uniform distributions taking values in alphabets with different cardi-
nality. To perform this experiment, six random variables were considered, taking values
on alphabets of cardinality, |X | = {2, 10, 50, 100, 500, 1000} each; and for each variable,
six different sequence lengths were considered, N = {100, 500, 1000, 5000, 50000} symbols.
Then, 100 different realizations of the process (observable sequences, S) were generated
for each possible combination of alphabet cardinality and sequence length. Applying equa-
tions (2.7) and (2.9), the values for HH (Xn) and HS (Xn) were estimated using the avail-
able data, S, to further average the results of the 100 realizations for each case. Since
the uniform probability distribution is well-known, the real value of entropy is known and
can be compared to the estimations. For the specific case of uniform random variables,
HH (Xn) = HS (Xn) = log2 |X |. Thus, the estimations should be as closed as possible
to {1, 3.32, 5.64, 6.64, 8.97, 9.97}, respectively regarding the cardinality considered in each
case. From the figures it can be observed that for low cardinality values (2, 10 symbols),
the estimators reach always the theoretical values, independently of the sequence length.
However, the higher the cardinality, the longer sequences must be in order to correctly es-
timate the entropy values. Otherwise, there is an underestimation of the real value because
not every different symbol may have appeared in the sequence (i.e., the cardinality of the
observed S, is lower than the cardinality of the real process, Xn, |S | ≤ |X |), or not every
symbol in the alphabet X has appeared with equal frequency.

Estimating the entropy rate of a finite sequence is more complex. In fact, the complexity
stems from the problem of not having enough samples of the sequence so as to completely
capture the probability mass function describing the model underneath. A first approach
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Figure 2.2: Behavior of Hartley and Shannon entropy estimators for different combinations
of alphabet cardinality, |X |, and sequence length, N .

could be using the equation (2.3) and extending it with the well-known property of entropy:

H (X,Y ) = H (X) + H (Y |X) (2.10)

Taking into account the available data, this leads to the estimation of the entropy rate by
calculating block entropies of size k:

ĤR (Xn) = HR (S) = lim
n→∞

1

n

n∑
k=1

H (Sk|S1, . . . , Sk−1) (2.11)

Applying the equation (2.4):

H (Sk|S1, . . . , Sk−1) = −
∑

s1...sk−1∈S k−1

p (s1 . . . sk−1)
∑
sk∈S

p (sk|s1 . . . sk−1) log2 p (sk|s1 . . . sk−1)

(2.12)

In order to apply the previous equations, the corresponding probability mass functions
need to be estimated using the available data provided by S. Let N(s1s2 . . . sk) be the
number of blocks s1s2 . . . sk of length k of the observed sequence, S, that are equal to some
{s}k, this is, to a block of k possible values of S . The number of blocks of length k in
the observed sequence, S, of length N is N − k + 1. Then, the estimator of the joint and
conditional probability mass functions are expressed as:

p̂ (s1 . . . sk−1) =
N (s1 . . . sk−1)

N − (k − 1) + 1
,∀s1 . . . sk−1 ∈ S k−1 (2.13)

p̂ (sk|s1 . . . sk−1) =
N (s1 . . . sk)

N (s1 . . . sk−1)
, ∀sk ∈ S , s1 . . . sk−1 ∈ S k−1 (2.14)
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And, considering that S is finite, the HR, sometimes known as block entropy, needs to be
estimated by a finite number of blocks of different sizes:

Ĥ
m
R (Xn) = Hm

R (S) =
1

m

m∑
k=1

H (Sk|Sk, . . . , Sk−1) ,m ∈ [2, N ] (2.15)

using the probability mass function estimators in equations (2.13) and (2.14). As can
be expected, the larger m, the more accurate the estimation, and also the harder the
calculation process.

Figure 2.3 shows the Ĥ
m
R (Xn) = Hm

R (S) values calculated using the previous estimator
for a uniform process, for different cardinality of the alphabet and sequence length, and
choosing m = 2 and m = 3 for illustrative purposes. The expected results, considering
the uniform distribution driving Xn, are the same ones than in the Hartley and Shannon
entropies, since for uniform distributions all entropy and entropy rate values are the same.
However, as can be seen, the behavior of this entropy rate estimator for the uniform
distribution case makes no sense. Since all the possible blocks have the same probability,
for each cardinality, there are |S |2 and |S |3 possible blocks of length 2 and 3, respectively
(the maximum length considered by the entropy estimator). For random variables with
alphabet of cardinality 2, the entropy estimations match the real value, but when the
cardinality grows, the number of possible blocks (all equally probable) is so high that there
are not enough samples in the sequence so that every block can appear. In these cases,
p(s1 . . . sm−1) = 0 for a big portion of the possible blocks, leading to Ĥ

m
R ≈ 0. The figure

also shows that for m = 2, the results are slightly better than for m = 3, due to the rapidly
increasing number of possible blocks not appearing in the sequence. Thus, if m keeps on
increasing, the quality of the estimations would keep on decreasing.

In these examples, different cardinality values up to 1,000 different symbols and se-
quences up to 10,000 symbols were considered. It should be noted that these calculations
will be further applied to the mobility sequences of different individuals. Considering that
the cardinality of the alphabet representing the set of visited locations by an individual
is, in many cases, even higher than in the values considered in these examples, it can
be foreseen that these estimators are unable to calculate accurate approximations to the
real entropy rate of the sequences of locations visited by any individual. Besides that, a
mobility model of a user has both short and long-range correlations of unknown order.
Therefore, the optimal value of m to correctly capture all these correlations is unknown.
For these reasons, another alternative estimator for ĤR (Xn) needs to be used in order to
obtain more accurate estimations despite the finite length of the sequences.

An alternative entropy rate estimator is found in Grassberger et al. work [52, 74]. The
authors propose an entropy estimator based on block lengths:

Definition 2.6. The Grassberger entropy rate estimator is expressed as:

ĤR (Xn) = HR (S) =

(
1

N

N∑
i=2

Λi
log2 i

)−1
(2.16)

where Λi is the length of the shortest substring starting at index i of the sequence, S, that
did not appear in the range [1, i− 1], and N being the length of the whole sequence.
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Figure 2.3: Behavior of the entropy rate estimators for m = 2 and m = 3 for different
combinations of alphabet cardinality, |X |, and sequence length, N .

Figure 2.4 shows ĤR(Xn) calculated with the Grassberger estimator for the same cases
than before. Although the estimations for the process drawn from alphabets of high car-
dinality are still not accurate, the behavior is more consistent than with the previous
estimator for all the cases.
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Figure 2.4: Behavior of the Grassberger entropy rate estimator for different combinations
of alphabet cardinality, |X |, and sequence length, N .

With these estimators—ĤH , ĤS , and ĤR given by Grassberger’s formula—all the anal-
ysis related to entropy that will be presented in the next chapters can be finally performed,
and the important differences between entropy and entropy rate, both in calculation and
meaning, haven been exposed. In the next chapters, the generic symbol sequences used
for the previous illustrative examples and definitions will be replaced by the sequences
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representing the movement of the individuals.

2.3 Conclusions

Leaving aside the explanation of the entropy and entropy rate foundation, practical mean-
ing and available estimators, all of them aspects that will become handy in many points of
the following chapters, the rest of the chapter offered an overview of the main topics that
this dissertation focuses on.

The first step is to choose the most convenient mobility data source. Four options
were presented at the beginning of the chapter, namely GPS, Wi-Fi, cellular telephony
networks, and LBSNs. The choice will be based on the parameters evaluated for each of
them (coverage, location data accuracy, and battery consumption) and the requirements
of the study to be performed, which will be presented in the next chapter.

Many different mobility data sets have been used in the literature to carry on different
analysis. The ones reviewed in the previous sections included the most extensive and used
ones. As can be observed, they come from different data sources and were collected using
diverse collection schemes or sampling rates. Along with choosing the most convenient
mobility data source, Chapter 3 will consider these available data sets, checking if they
can provide the data needed for the analysis that will be carried out throughout the thesis.
This evaluation will lead to propose a new data collection campaign to cover the gaps of
the current available data sets that can potentially impact further analysis. These gaps
are mainly two: first, the available data were taken, in some cases, many years ago and
may not reflect the current users’ behaviors; and second, the mobility data comes in many
cases from participants with potential similar mobility patterns that do not represent the
real differences of users’ movement behaviors.

The literature review also shown the wide variety of human mobility-related studies,
mainly classified into location or user-centric perspectives. These studies propose an ex-
tensive set of mobility features to characterize the movement of individuals. However, each
study uses a different data set with no mention to how using each specific set of data
influences the quantitative or qualitative conclusions drawn from the study. Chapter 4
will study the potential impact that the specific data used might have in the obtained re-
sults, and will propose several methods to cope with some of the mentioned biases already
spotted by other researchers, such as the ping pong effect in cell-based mobility data.

The review of mobility prediction algorithms provides a similar conclusion than the
review of studies on human mobility: there exists an extensive variety of algorithms, but
there is a lack of metrics that allow to evaluate if the announced improvements on pre-
diction come from the prediction algorithm itself or from the specific data used for the
evaluation, due to their source, collection scheme, or mobility features of the individual
generating such data. In Chapter 5, a specific set of prediction algorithms are evaluated
with data coming from individuals with different mobility features, collected using different
schemes, to show how these factors impact the resulting prediction performance. Besides,
the mobility features considered will be used to design different modifications that aim to
improve the prediction accuracy.
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Chapter 3

Collection and Description of
Human Mobility Data based on
Cellular Networks

Contents
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3.2.1 Mobility Data from the Literature: the MIT Data Set . . . . . . . 36
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3.2.3 Overall Comparison of the Data Sets . . . . . . . . . . . . . . . . . 41

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

As argued in Chapter 1, one of the most interesting ways to personalize the behavior of
applications is to take advantage of one of the components of user’s context: the location.
This aspect, both in their spatial and spatio-temporal perspectives, makes it possible to
filter searches, locate interesting places around the user, infer her mobility behavior, check
if she often visits a hospital (thus being plausible that she has some illness), church (she
probably practices the corresponding religion), political building (she supports certain po-
litical group), school (she has children), among others. Therefore, an application knowing
the mobility data of a user can benefit of a varied data collection that can be used to
improve the service provided, by tailoring it to perfectly fit every specific user.

The first step to be able to design such services, is to have mobility data available, in
such a way that it can be analyzed to extract the mobility features of the users, which can
be further leveraged to fine tune the design of the applications. Collecting mobility data
used to be a difficult task, and its was driven mainly by surveys, which involved a non trivial
selection of participants that could probably bias the results, since the amount of people
surveyed could not be very extensive, and because the detail of the mobility behavior that
could be extracted from the survey was not enough to extract robust conclusions about
mobility. This scenario has completely changed over the last decade, due to the enormous

31
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growth of the use of mobile phones. They are not only a communication device, but they
can also record extensive data collections about many aspects, mobility among them, due
to the varied set of sensors integrated on them. Mobile phones overcame many of the
shortcomings of previous data collection approaches.

However, the variety of sensors and systems integrated in the devices capable of col-
lecting mobility data poses the question of which one to use. In order to ask this question,
it must be taken into account the potential data that each one can provide and also the
limitations of each system. This chapter describes the data source that have been used
in the research described in this thesis, considering the options described in Chapter 2.
Furthermore, three different approaches for data collection will be presented. Finally, the
actual data sets to be used later in next chapters are presented. Among the variety of
data sets presented in the related works on mobility data, the most complete so far, the
MIT Reality Mining Data Set is described. However, after examining this data set, some
shortcomings were noticed. Since any of the available data sets in the literature contained
all the information required for the analysis done in next chapters, a new data collection
campaign was launched, resulting in what was called UC3M data set. This campaign will
be described, along with a comparative of the preliminary statistics comparing both the
MIT and UC3M data sets.

3.1 Mobility Scenario Definition

Section 2.1.1 started by enumerating the main features to analyze when considering the
mobility data source to use for mobility analysis:

• The environment where mobility wants to be considered: general mobility, or mobility
restricted to certain bounded area.

• The static or dynamic dimension of mobility data, by considering just independent
sparse locations, or a continuous tracking of the individual.

• The accuracy of the locations reported by the user.

Among the available choices described in Section 2.1.1—GPS, Wi-Fi networks, cellular
telephony networks, and LBSN,—the cellular telephony network will be used throughout
the thesis. Since at the moment of the experiments exposed along this work the LTE
network was starting to be deployed, there are no data with this technology, and only
GSM or Universal Mobile Telecommunications System (UMTS) will be considered. For
simplicity, both cellular or GSM network will be used, interchangeably. Despite being the
worst choice regarding location accuracy, the main reasons to choose this option are the
following ones:

• The global coverage that allows to collect data both in outdoor and indoor environ-
ments (as opposed to GPS), and also in not populated areas (as opposed to Wi-Fi
networks) like the commute paths people travel everyday (e.g., highways).
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Figure 3.1: Instantaneous and average power consumption of different technologies used
for location tracking.

• The lowest power consumption that allows a continuous mobility tracking (as opposed
to GPS), thus generating data sets collecting frequent data without missing any
visited location. Figure 3.1 shows the instantaneous and average power consumption
of having enabled only the cellular telephony network connection, only the Wi-Fi
antenna scanning for Wi-Fi networks, and only the GPS system requesting location
fixes. The experiment was carried out with an HTC Desire mobile phone, with
full battery and screen bright dimmed. Each experiment was run for more than 5
minutes (in order to avoid transitional periods) and repeated 10 times. In the figure
it is shown the average of the 10 realizations, both for the instantaneous (thin traces)
and average over time (thick traces) power consumption. As shown in the figure, the
GPS consumption is much higher than both GSM and Wi-Fi ones, thus leading to a
quick battery drain that does not allow to keep the tracking mechanism running for
more than 4 hours without completely run out of battery.

• The data collection process does not depend on the user (as opposed to using LB-
SNs), thus existing no locations filtered out for any other reason than the possible
constraints of the technology itself, in other words, the user cannot select which
locations to report and which ones to hide.

In the cellular network scenario, the whole space is split into different areas correspond-
ing to the coverage area of each BTS providing the cellular telephony service. Each of these
areas, also known as cells, has their own identifier, called Cell Identifier (CellID). For net-
work purposes, the cells are grouped into what is known as location areas, each of them
labeled also with different Location Area Code (LAC). Thus, each cell is uniquely identified
by its LAC and CellID. For simplicity, the unique pair (LAC, CellID) that represents each
cell will be referred to as CellID.



34 3. COLLECTION AND DESCRIPTION OF HUMAN MOBILITY DATA

With this scenario, there are several ways to describe the location of a user, based on
the BTS her phone is attached to, and depending on the domain:

• Considering the physical domain, the location of the user can be approximated using
the coordinates of the BTS her mobile phone is attached to.

• Considering the symbolic domain, the user location can be identified by the CellID
of the BTS (or cell) her mobile device is attached to.

Since all the mobility analysis and applications considered throughout this work use
symbolic locations as input, we will use the symbolic domain. However, as can be observed,
the translation from one domain to the another one can be easily done if the correspondence
between CellIDs and BTSs locations is known.

Therefore, the movement history of a user will be represented by a sequence of symbols
(CellIDs), each of them representing a different BTS or cell visited by the user. From
now on, when referring to the locations visited by the user, the terms cell, BTS, and
location will be used interchangeably. The movement history is a deterministic sequence,
describing what happened in the past. It is just one possible realization of the statistical
process describing the mobility model of the user. However, the goal of mobility research
is to construct the mobility model of the user in order to be able to foresee her future
movements. In order to do so, the mobility model of a user can be initially defined as
follows:

Definition 3.1. The mobility model of a user is a stationary stochastic process

(Ln)n=1,2,... = L1, L2, . . . Ln . . .

representing the sequence of locations over discrete time instants n = 1, 2, . . . The corre-
sponding location Ln at time n is a discrete random variable on the alphabet L , corre-
sponding to the set of different locations (or CellIDs) visited by the user.

Stationarity means that the process is invariant with respect to time shifts:

Pr {L1 = l1, L2 = l2, . . . , Ln = ln} = Pr {Lm+1 = l1, Lm+2 = l2, . . . , Lm+n = ln}

Then, the location history, movement history, or trace, l = l1l2l3 . . . lN , is a finite
time series of length N , extracted from one realization of (Ln), representing the locations
already visited by the user in time instants 1 to N , ln ∈ L .

Finally, having the scenario and mobility model defined, the last step is to decide how
to actually collect the sequence of CellIDs that will represent the movement history of the
user, l. Both the cellular network and the user’s mobile device are aware of the cell the
device is attached to, but in different ways. Thus, different data collection schemes are
possible, resulting in different types of trace:

• Every mobile device knows the CellID of the cell it is attached to at every moment.
Therefore, in this case the location history collects every cell change experienced by
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Figure 3.2: Events recorded by each location data collection scheme.

the device. This approach will be referred to as baseline data collection scheme.
The cases when the mobile device cannot connect to the network (e.g., no coverage in
a specific place, network problems. . . ) are not part of the trace, since these cases do
not represent any place, just a particular state of the network itself. Only one symbol
per location is recorded, thus no two consecutive equal CellIDs can be captured in
the history. In the case represented in Figure 3.2a, the location history of the user
would be lbaseline = afebdihgkjnml, i.e., every cell change detected by the device
(represented by black spots).

Put mathematically, let L be the set of CellIDs corresponding to the different cells
visited by the user. The complete movement history or trace, lbaseline, is defined as
the temporal sequence of cells, ln ∈ L , the device was attached to as the user moves,
n ∈ [1, N ], being N the length of the trace:

lbaseline = l1l2l3 . . . lN , ln ∈ L , li �= li+1∀i (3.1)

• The mobile telephony network collects information regarding the cell the user’s device
is attached to every time the user sends or receives voice calls and text messages.
This information is stored in what is known as CDR. Therefore, the CDR-based
data collection scheme records a different version of the mobility trace of the
user, where only the CellIDs of the cells the device was attached to when the user
performed some network event (calls, messages). In this case, there could be two (or
more) subsequent CellIDs which are equal, since the user could make a call today
and the next one tomorrow at the very same place. With this approach, the user in
Figure 3.2b would have a location history like lCDR = ehjm, which corresponds to
the sequence of cells where a voice call (or a message event) took place.

Put mathematically, let L be the set of CellIDs corresponding to the different cells
visited by the user. The CDR-based movement history or trace, lCDR, is defined as
the temporal sequence of cells, ln ∈ L , the device was attached to as when the user
sent or received a phone call or text message, n ∈ [1, C], being C the number of
CDR-related events (calls or messages):

lCDR = l1l2l3 . . . lC , ln ∈ L (3.2)
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It is worth to notice that lCDR is a sampled version of lbaseline, which sampling
frequency depends on the call frequency of the user: the more calls or messages she
sends or receives, the more complete lCDR we would get.

• The mobile telephony network also collects information regarding the cell the user’s
device is attached to every time the user transfers data (through an Internet con-
nection using the telephony network). This information is also stored in a location
history that will be referred to as Data Detail Record (DDR)-based trace. It
contains a different version of the location history of the user, where only the CellIDs
of the cells the device was attached to when the user performed some data transfer-
ring event. With this approach, the user in Figure 3.2b would have a location history
like lDDR = abdgkn, which corresponds to the sequence of cells where the user used
her Internet connection through the telephony network.

Put mathematically, let L be the set of CellIDs corresponding to the different cells
visited by the user. The DDR-based movement history or trace, lDDR, is defined as
the temporal sequence of cells, ln ∈ L , the device was attached to as when the user
used the data connection, n ∈ [1, D], being D the number of DDR-related events:

lDDR = l1l2l3 . . . lD, ln ∈ L (3.3)

It is worth to notice that lDDR is a also a sampled version of lbaseline, which sampling
frequency depends on the frequency of the data connection usage: the more frequently
the data connection is used, the more similar lbaseline and lDDR would be.

As mentioned above, the use of each data collection scheme generates traces, l, with
different characteristics in terms of the locations recorded in them. As can be expected,
these differences will impact the mobility features reflected, which will be described in the
next chapter. However, in order to make such analysis, it is not enough with the previous
definitions, but some real data is needed. In the next section, the data sets that will be
used throughout the thesis will be described.

3.2 Description of the Mobility Data

As previously said, the first step in analyzing mobility and proposing related applications
is to collect a data set representing the mobility features of the users involved in the data
sample. The goal of this section is to select and describe the two data sets used throughout
this work: one taken from the data sets available in the literature, reviewed in Section 2.1.2,
and a new one generated in the framework of the thesis, which collection campaign will be
also described next.

3.2.1 Mobility Data from the Literature: the MIT Data Set

In Section 2.1.2, many of the data sets used in the literature on human mobility were
reviewed. Focusing on the ones collecting GSM data and that are available for their public
use, listed in Table 2.1, only two of them use the baseline data collection scheme: the MIT



3.2. Description of the Mobility Data 37

and Rice Context data sets. They have also available the timestamps of call, message and
data events, so that the CDR and DDR-based traces can be inferred. The MIT data set
is comprised of 95 traces collected during 9 months, whereas the Rice Context data set
gathers 14 traces of 3 weeks of duration. The rest of the data sets capture only CDR-based
data. Considering the sample size and duration in each of the two cases, the MIT data set
was chosen.

It was collected back in 2004 for the the MIT Reality Mining Project [43]. It includes
information about 75 students of faculty in the MIT Media Laboratory, and 25 incoming
students at the MIT Sloan business school adjacent to the Media Laboratory. To the best of
our knowledge, the Reality Mining experiment was the first to collect tracking information
of a significant amount of people and during a long period through their mobile phones.

The experiment consisted on providing a Nokia 6600 mobile phone to each of the
100 participants during 9 months. The mobile phones were equipped with several pieces
of software in charge of continuously collecting information related to the mobile phone,
including call logs, Bluetooth devices nearby, CellID of the cells to which the phone was
attached to, application usage, data traffic events, and phone status.

Although the complete data set is made of 106 users, the location information based
on CellIDs is only available for 95 of them. Therefore, the data set finally handled is the
one made up of these 95 users. The data was recorded during an academic year, but the
length of the traces vary from one user to another. Figure 3.3 shows the duration of the
MIT traces in the temporal context.
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Figure 3.3: Time span of the location histories included in the MIT data set.

3.2.2 New Mobility Data Collection Campaign: the UC3M Data Set

Although the MIT data set was very useful in analyzing mobility, it was collected several
years ago when the cell phone usage was different. For instance, at that time, data traffic
in mobile phones was very rare, whilst phone calls were probably more frequent. Besides
that, the subjects conforming the study were all MIT students or faculty, who may have
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followed similar patterns (since they study or work in the same environment, and have
similar timetables). There is not enough information in order to confirm these hypothesis
nor to discard them. Therefore, aiming at having a different data set, more recent and
whose subjects were not related in locations nor habits, a new mobility data collection
campaign was launched in the framework of this thesis, which is described in this section.

3.2.2.1 Subject Pool and Campaign Duration

The call for participation in the mobility data collection campaign was launched to ap-
proximately 65 people in our closest network, including colleagues and also many people
not related to the department nor the university. Fortunately, 25 people out of the 65
initially asked, kindly accepted to participate in the campaign. Among them, there are
people living in 5 different countries, and working in completely different and independent
places, thus not sharing the same space or specific timetables, like in the case of the MIT
data set.

It must be noted that the subjects volunteered to become part of the experiment under
no conditions nor rewards. This fact potentially led to two consequences: a lower participa-
tion, and a variable duration of the subjects collecting data. Figure 3.4 shows the duration
of the collected traces. As can be observed, it ranges from several weeks to approximately
a year and a half. All the users who stopped using the application reported the cause as
having changed the device, and forgetting to reinstall the application in their new device.
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Figure 3.4: Time span of the location histories included in the UC3M data set.

3.2.2.2 Monitoring and Logging Application

As mentioned in Chapter 1, mobile phones are the vehicle that allows a massive data
collection of several aspects related to human mobility, given that they go with their owners
practically all day long. For this reason, all the data collected during the campaign comes
from the mobile device of each participant. They were asked to download and install
the monitoring application in their devices, which keeps on continuously running on the
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background. This application, described more in detail in Appendix A, monitor all the
cell changes, call, and data traffic events, among others, to record them into a file and
finally send the file to an e-mail account where all the data is stored for further processing.
Every two weeks, the participants were notified to send the new data to the e-mail account,
which could be done in two screen touches in order to make it extremely easy and avoid
more inconveniences to the user. The final result was positive, since no data was lost and
the participants did not complain about the method, nor do they reported stop using the
application because of this reason.

3.2.2.3 Data Description

The data collected includes the CellID of the cells to which each subject’s device was
attached at all times, call events, and data traffic events, which are the main information
that will be used in the thesis. However, additional data was collected. Table 3.1 describes
all the events registered by the mobile phone application, providing also examples of the
collected traces. As can be observed in the examples, JavaScript Object Notation (JSON)
was the selected format to encode the information.

Each record has three fields: the type of event, the information about the event, and a
timestamp. Depending on the event type, the information varies. For some of the events,
it is just an identifier indicating different states, as specified in the table. In other cases,
the information is more complex. For instance, for cell change events, the information
includes the type of network (GSM or CDMA), and the data about each cell detected by
the mobile phone, meaning the one it is connected to and the neighboring ones from which
it receives signal. These data include the CellID, LAC, Mobile Country Code (MCC),
Mobile Network Code (MNC), the signal strength received, the specific type of network
(GSM, UMTS, HSPA. . . ), and a flag indicating if the cell is the one to which the device is
registered or not. Another event with more complex information associated is the service
state. Unfortunately, by processing the information associated from this event coming from
all users, it was found out that each device code the information of this event in completely
different ways, thus making it impossible to parse the information due to the lack of fixed
structure and content. Regarding the screen events, they were captured to make sure that
the devices were still collecting data even when the screen is off. This checking measure was
taken after observing problems to keep monitoring events when the device had the screen
off in past versions of Android. Luckily, these problems were fixed when the application
was developed and launched among the subjects.

3.2.2.4 The UC3M Mobility Data Set

The raw data collected by the mobile devices were processed to obtain the final data set
used in the following chapters. For each user, three sequences of pairs {timestamp, CellID}
were extracted, corresponding to the baseline, CDR and DDR-based traces. The baseline
trace is extracted directly from the cell change events, just by collecting the LAC and
CellID from each cell, together with their timestamp. In order to simplify, an auxiliary
table mapping each pair {LAC,CellID} to a unique identifier was also stored for each user,
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Event Type (Id) Event Info (Id) Example

Application (1)
Stop (0) {"timestamp":1383585792577,"eventInfo":1,
Start (1) "eventType":1}

Data Traffic (2)

None (0) {"timestamp":1383585793740, "eventInfo":0,

In (1) "eventType":2}
Out (2)

Inout (3)

Dormant (4)

Cell Change (3)

network type,
[{cellId, lac, mcc,

mnc, signal
strength, network

type,
registered},. . . ]

{"timestamp":1383585803570, "eventInfo":

{"networkType":0, "cellsInfo": [

{"mCellSignalStrengthGsm": {"mAsu":18,
"mDbm":-77, "mBitErrorRate":0},
"mCellIdentityGsm": {"mMcc":214,
"mCid":18062,

"mPsc":149, "mLac":1158, "mMnc":3},
"mNetworkType":10, "mRegistered":true},
{...},...]}, "eventType":3}

Screen (4)
Off (0) {"timestamp":1383585792577,"eventInfo":1,
On (1) "eventType":4}

UserMessage (5)
Message written

by user
{"timestamp":1383582993740,
"eventInfo":"train", "eventType":5}

ServiceState (6)
{operator name,

roaming/
home,. . . }

"0 home simyo 21403 (manual) HSPAP CSS

not supported -1 -1 mDataState0̆03d0

RoamInd0̆03d-1 DefRoamInd0̆03d-1

EmergOnly0̆03dfalse mIsVoiceSearching0̆03dfalse

mIsDataSearching0̆03dfalseDual carrier0"

Call Off (0) {"timestamp":1383585792577, "eventInfo":1,

Forwarding (7) On (1) "eventType":7}

Call State (8)

Idle (0) {"timestamp":1383585793772,"eventInfo":2,
Ringing (1) "eventType":8}
Offhook (2)

Disconnected (0) {"timestamp":1383585793739,
Data Connecting (1) "eventInfo":{"networkType":15, "state":2},

Connection (9) Connected (2) "eventType":9}
Suspended (3)

Table 3.1: Set of different event types, their associated data, and examples of each in a
trace recorded in the UC3M data collection campaign.
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Cell Mapping Baseline Trace CDR Trace DDR Trace

Id LAC CellID Timestamp Id Timestamp Id Timestamp Id

1 3 30646 t1 2 t’1 2 t”1 5

2 3 31116 t2 3 t’2 2 t”2 4

3 8 14953 t3 5 t’3 4 t”3 5

4 59 21582 t4 3 t’4 2 t”4 3

5 70 7006 t5 1 t’5 3 t”5 1

. . . . . . . . . . . .

Table 3.2: Structure of the UC3M data set extracted from the collection campaign.

then using the unique identifiers in the traces. The CDR-based traces were generated by
collecting the CellID of the cell to which the device was registered during the timestamps
associated to call states ringing or off-hook. Finally, the DDR-based traces were extracted
by collecting the CellID of the cell to which the device was registered during the timestamps
corresponding to data traffic events in, out or inout. From these traces, the consecutive
CellID repetitions detected, caused by many data traffic events in the same cell, were
filtered out. However, in the CDR-based traces, the repetitions were only filtered if the
time difference was lower than a minute (which corresponds to a call retry).

The set of traces and the mapping table are stored in a Matlab structure array, where
each structure corresponds to the data of a participant, with a format like the one shown
in Table 3.2. In this case, the timestamps were stored in Matlab format in order to make
it easier to handle them in further analysis.

3.2.3 Overall Comparison of the Data Sets

In order to initially compare both data sets, Table 3.3 shows the values providing a first
glance to the main differences among the traces collected in each data set. First of all, the
dates are 10 years apart, which leads to noticeable differences in the communication habits
of the users. Although the number of average calls per day is still similar, the number
of data traffic events greatly differs. The UC3M data set shows the main shift in the use
of mobile phones, given by the massive use of data traffic nowadays, showing an average
number of data events of 42, whilst the MIT data set has an average value of 3. Thus,
it would be interesting to study if the DDR-based traces can capture individual mobility
features better than CDR-based traces, now that they collect seven times as many events
as the CDR-based ones.

The number of participants is also different, being the MIT data set the one with a
more extensive set of subjects, and thus, registering a higher number of cumulative days
among all the users. In average, 153 days per user were collected in the MIT data set,
whilst this quantity increases up to 229 days for the users in the UC3M data set. Thus, a
lower number of traces have been collected, but with longer lengths.

The cell changes and different cells per day are also quite different. However, since there
is no knowledge about the deployment of the BTSs for any trace, it can not be concluded
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Feature MIT data set UC3M data set

Dates 2004/01 - 2005/07 2013/10 - 2015/07
Total duration (days) 14,487 5,716
Number participants 95 25

Average cell changes per day 238 159
Average different cells per day 31 43

Average call events per day 9 7
Average data events per day 3 42

Table 3.3: Summary of the general features of the MIT and UC3M data sets

if these differences are founded on the density of BTS in the region, or because of different
behaviors of the users.

In the following section, more metrics like the randomness of the users in each data set
will be analyzed, and thus it could be confirmed if the MIT users share common patterns,
as suggested by the subject pool selected in that case.

3.3 Conclusions

The first step when studying mobility is to carefully select the best data source that pro-
vides the most faithful and complete mobility data, considering any potential constraint
of the application at hand. In the case of mobility prediction in mobile devices, the main
constraint, besides the computational capabilities of these devices, is the battery consump-
tion. Thus, continuously tracking the user using the GPS of the device becomes the worst
option due to its high consumption. Therefore, other sources that can provide informa-
tion which can be translated into mobility data are considered. Among these options, the
wireless networks are a popular approach. Aiming at being able to continuously track the
user locations, cellular telephony network is selected due to its global coverage (as opposed
to Wi-Fi, Bluetooth and other small range wireless networks) and the lowest impact on
battery consumption.

When using the mobile network, three different data collection schemes can be con-
sidered to retrieve the location data: baseline scheme, when the user’s device is in charge
of recording every single cell change it experiences; CDR-based when the location data is
extracted from the operator’s CDRs, thus collecting just the cell the device was attached
to during calls or messages; and DDR-based, when the mobility data is retrieved from the
equivalent to CDRs for data traffic. The main advantage of the last two ones is that net-
work operators store these records containing the mobility-related information for millions
of users, which makes further studies based on them statistical significant. However, the
quantity of locations based on cell data might be not enough to faithfully reflect mobility
features. The baseline movement histories, on the other hand, record all possible mobility-
related data, but the available volume of data gathered this way is much smaller, due to
the difficulty of getting a wide set of users installing applications to collect these data,
even if the application executes seamlessly in their devices. The next chapter will focus on
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analyzing how well each of the three approaches reflect the mobility features of the users
taking into account the constraints of each one.

In order to conduct such analysis, some data sets are needed. The analysis performed
along this dissertation is based on the best data set found so far in the literature, which
provides all the data needed for the study—the MIT data set. However, after processing
these data from several perspectives, it was found that it presents some shortcomings:
it was recorded more than 10 years ago, when the calls and data traffic profiles were
quite different than nowadays and, besides, the data set is comprised of traces from users
studying or working in the very same institution, which raised the suspicions of potential
correlations (same campus, timetables, academic calendar, etc.) that might bias the results
of the analysis that will be presented in the next section. For this reason, it was decided
to collect new data from users geographically distributed, and with completely diverse
occupations. This initiative led to the UC3M data collection campaign, from which a new
data set was generated. The UC3M data set includes data about the cell changes, calls,
data traffic, among other events which can be interesting for other studies. All these data
were combined to obtain the baseline, CDR and DDR-based traces used for all the research
carried out along the thesis.

With this diverse and updated data, together with the MIT data set, a mobility study
will be presented in the next chapter, from which it is expected to derive useful conclusions
helping to understand and improve the prediction algorithms considered in the thesis.
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Going back to the flow diagram depicted in Figure 1.1, the previous chapter covered
its first block, focused on the mobility data collection. The output of this first stage is
composed of two mobility data sets, presented in Section 3.2. These mobility data allow to
advance towards the next step of the diagram: the extraction and analysis of the mobility
features reflected on them. The goal at this stage is to unearth interesting information on
how human mobility works through the mobility features reflected, but apparently hidden,
in the users’ movement histories.

45
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Section 2.1.3 thoroughly reviewed many of the human mobility-related studies existing
in the literature. This analysis shown the wide variety of features that can be studied from
different perspectives, as well as some of the concerns raised by the research community
about the shortcomings and potential biases of the current studies. With these ideas in
mind, the next sections focus on selecting the specific features that will be considered in
the chapter. Then, the results of analyzing each feature extracted from the available data
sets are presented. Recalling Section 3.1, three collection schemes were presented, namely
baseline, CDR-based, and DDR-based, thus the comparison of the results extracted from
the data collected using each collection scheme will be highlighted. The focus of this
comparison will be placed on determining if the conclusions on the users’ mobility features
remain the same independently of the mobility data used, as some of the existing studies
suggest.

By carefully inspecting the traces coming from the baseline collection scheme, and
according to previous works found in the literature, the so-called ping pong effect was
noticed in the data. In order to prevent the potential bias this effect introduces, different
filtering techniques are proposed and evaluated, based on the features reflected in the
traces coming from the baseline collection scheme and the ones extracted form the filtered
traces. These comparisons raise a discussion on the importance of a wise choice of the
mobility data to be analyzed and its potential effects on the prediction phase, exposed in
the conclusions of the chapter.

4.1 Human Mobility Features in the Symbolic Domain

As discussed earlier in Chapter 3, the mobility data to be considered along this work is
based on the CellID identifiying the BTS the user’s mobile device is attached to as she
moves. When using the mobile telephony network for mobility-related purposes, mobility
is not reflected in a physical domain described by longitude and latitude coordinates, and
thus the mobility features to be studied must be translated from the usual physical domain
to the symbolic one.

The related works discussed in Section 2.1.3 presented a wide variety of mobility features
that can be considered. Since mobility prediction, which will be studied in the next chapter,
is focused on the mobility of each individual, the features to be considered are the ones
concerning user-centric mobility, thus neglecting other aspects related to city, campus, or
building mobility perspectives, among others.

Among the numerous user-centric mobility features considered in the literature (refer to
Section 2.1.3.2 for their review), some of them can be translated into the symbolic domain
for their study. As mentioned in Section 3.1, the mobility data considered in this thesis
is made up of symbolic locations, with no physical coordinates. Therefore, the mobility
features to be studied will be those that own a translation to the symbolic domain, as
explained next:

• The concept of amount of movement is usually measured as the distance travelled
by a person during certain reference time period, say an hour or a day. Many of
the works in the literature focus on the distribution of the distance covered during
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the individuals’ displacements. However, since the real coordinates of each BTS (i.e.,
each cell) of the available data sets are completely unknown, in this thesis the amount
of movement will be approximated by the number of cells visited per reference time
period.

• A different perspective comes from focusing on the area covered by the person’s
displacements during certain reference period of time. This measurement allows to
distinguish a person who travels certain amount of kilometers per day by going back
and forth from home to work several times, from another person traveling the same
distance, but visiting five different places. In this last case, the visited places are be
more diverse, and thus the next location more difficult to predict. In the reviewed
literature, this features is represented by the radius of gyration of the user, that
measures the diameter of the area covered by the user. Again, due to the lack of
real coordinates, this diversity of the visited locations will be represented in
the symbolic domain by the number of different cells visited during certain period of
time.

A slightly different standpoint is the rate at which the person visits new places never
seen before in her movement history. This feature seems potentially useful, as it
points out time periods in which no prediction can be ever trusted, since there is no
past information about these new places from which predictions can be built. This
concept is directly translated as the number of cells not visited before per amount of
time.

• Many works studied the distribution of the time spent at different locations, also
described as the detection of the salient locations visited by an individual. Since
this is one of the most analyzed aspects of mobility in the literature, it will be also
considered in this thesis. In this case, the salient locations visited by the user will
be measured by the fraction of the total number of visits paid to each of the different
visited cells.

• There is even a different perspective about people mobility related to their random-
ness. Two people can travel the same distance per day among the same number
of different places. Keeping the snapshot of one day, they both can seem similar in
terms of mobility. However, if one of them takes always the same route to visit those
places, whilst the other person visits those places in a different order each day, then
the behavior of both individuals is very different. The movement of the first one is
easy to predict since her patterns are always the same, whereas the movement of
the second person encloses a higher uncertainty. There is one well-known concept in
information theory used to measure, precisely, this uncertainty: the entropy of a se-
quence of symbols (refer to Section 2.2 for more details on the entropy concepts used
along the dissertation). This concept will be used to characterize the uncertainty of
the movement history.

• Predictability, already mentioned among the related works in Section 2.1.3, di-
rectly relates to the previous concept of movement uncertainty. This measurement
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is clearly tied to the movement predictions that will be studied in Chapter 5, since
predictability sets the upper bound of the prediction accuracy that any algorithm
could ever achieve, depending on the movement history. Song et al. [134] defined this
concept with the following expression, based on Fano’s inequality:

HR(Ln) = −Pmax log2(Pmax)− (1− Pmax) log2(1− Pmax) + (1− Pmax) log2(|L | − 1)
(4.1)

where Pmax is the maximum predictability of the user, HR is the entropy rate of her
movement history, and |L | is the number of different locations visited by the user.

In the next section, the data sets presented in Section 3.2 are analyzed under the set
of features just described, stressing out the impact of considering the different movement
histories (lbaseline, lCDR, and lDDR) on the features observed.

4.2 Impact of Mobility Data Collection Schemes into Ob-
served Human Mobility Features

The previous section described the set of mobility features with potential impact on the
prediction process. But before checking its relationship with prediction, which will be
covered in Chapter 5, an analysis of the features enclosed in the mobility data sets presented
in Section 3.1 is carried out in this section.

Most of the research carried out so far regarding user-centric mobility gravitates around
the topics covered in Section 2.1.3.2: most visited locations, distribution of displacements,
etc. However, each of these studies was conducted by using a single type of data, without
taking into account the bias introduced by the type of data used. The question arising
here is if the mobility features are equally reflected in all location data types, or if the
conclusions on human mobility can depend to some extent on the data used. This section
is in charge of answering this question by considering some of the most used data sets
in the existing literature, CDRs-based data, in contrast with more complete data coming
from the baseline traces or from DDR-based data.

Specifically, the aim is to explore the impact of collecting mobility information using the
three different approaches described in Section 3.2. Recall that these approaches generated
the movement histories lbaseline, lCDR, and lDDR, respectively, which will be considered for
each user in the MIT and UC3M data sets. The results drawn from the analysis would help
to determine the data collection approach that most faithfully reflects the user mobility,
since it would be the one providing the best movement history to serve as data source to
further predict next movements of the user.

4.2.1 Amount of Movement

To start the analysis, the focus lies on the daily amount of movement performed by the
users. In order to have a general idea of the distribution of this metric in the two data sets
considered, each movement trace is split into days and the number of cell changes performed
during each day is accounted. Days with no cell changes are neglected because the focus is
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on the movement features that have potential impact in the prediction process that will be
studied in a further chapter. Since the prediction algorithms considered work when each
new CellID is recorded into the movement history, when there are no cell changes, there is
no useful information for these algorithms and, for this reason, this no cell change situation
is not considered in any of the analysis done throughout this section.

Figure 4.1 shows the distributions drawn from the aggregation of all days for all users in
each data set, independently, namely MIT data set in subfigure 4.1a and UC3M data set in
subfigure 4.1b. For each subfigure, three plots are presented, displaying the results of the
metric when calculated over the movement histories resulting from collecting the mobility
data using the baseline approach, lbaseline, the CDR-based approach, lCDR, and the DDR-
based approach, lDDR, explained in Section 3.1. First, focusing on the differences among
data collection approaches, it becomes clear that they severely impact the mobility features
reflected into the resulting movement histories. lbaseline shows a much wider distribution
ranging from 1 to around 2,000 cell changes per day (refer to Table 4.1 for specific statistical
values of the distribution). lCDR and lDDR lead to more than one order of magnitude
smaller maximum values. The reason behind these facts roots in the way the mobility data
are collected in each case. What lCDR and lDDR are really reflecting is not the amount of
movement, but rather the number of calls or data transfer events per day, which is usually
smaller compared to the cell change rate due to movement of the user (except for the cases
in which the user does not move), reflected by lbaseline. Taking a closer look at the average
values, the median of cell changes per day reflected by lCDR is 6 and 4, depending on the
data set, which seems a reasonable number of calls a person can make during one day.
Regarding the value corresponding to lDDR, it is worth to recall that when the MIT data
set was collected, data traffic in mobile phones was not very spread yet, which leads to
the median value of 1 event per day in this data set. For the UC3M data set, this value
increases up to 27 events per day. Considering the frequent use of data connections in the
mobile phones nowadays, this value can seem low to represent the number of data events
per day. It should be noted that data traffic has a bursty behavior, meaning that when a
user performs data traffic-related activities with the mobile device, they make an intensive
use during certain period of time (say minutes or up to hours), and then stop using it for a
while. Thus, during the period of time the user is generating data traffic, there are many
data events every few seconds. That leads to having many subsequent events with the same
associate CellID, which do not represent the movement of the user. Therefore, in order
to make the analysis, when two subsequent events have the same CellID associated, the
last one is filtered out to delete this deception coming from the data traffic behavior. Note
that when considering call events, there exists a similar side effect, but coming from very
different behavior. In this case, people tend to make calls in the same places (e.g., home,
work place, etc.). For this reason, when visually inspecting the CDR-based movement
traces, they show also a large amount of repetitions. However, the time space between
them is of hours and even days. Therefore, some movement happened in between but
it was not captured by the movement history, lCDR. In this case, the repetitions were
not filtered out since, in many cases, the number of events after this filtering were too
small to be meaningful, and because there might been some movement between events
with the same CellID with separation of hours or days between them. Even by considering
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(b) UC3M data set.

Figure 4.1: Distribution of the cell changes per day reflected in the traces collected with
each data collection scheme—(from top to bottom) baseline, CDR, and DDR-based—of
the data sets considered.

repetitions, the median is 6 and 4 for the MIT and UC3M data sets, respectively, which
provides an idea of the limited power of lCDR to reflect real mobility features of the users.

An interesting aspect reflected by the results of lbaseline is the long tail of the distribu-
tion. Figure 4.1 does not show the complete long tail distribution for visualization reasons
(the tail for the baseline approach is much longer than the one form CDR and DDR-based
approaches, thus only the most significative part of the distributions are displayed to make
the comparison possible). To provide the whole picture of the distribution drawn from the
baseline approach, Figure 4.1 shows it together with the known distributions that best fit
the empirical data. This long-tailed distributions are in line with the long-tailed distribu-

Data Set l Max Min Mean Median Mode

MIT

lbaseline 1853 1 237.92 203 4

lCDR 228 1 8.27 6 1

lDDR 129 1 2.14 1 1

UC3M

lbaseline 2026 1 158.11 88 57

lCDR 84 1 6.22 4 2

lDDR 769 1 41.02 27 11

Table 4.1: Summary of the main statistics related to the distribution of cell changes per
day of the MIT and UC3M data sets.
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tions observed and described in the literature [113] when measuring the distances covered
by people during their displacements. This fact reinforces the selection of the number
of cell changes per time period as a way to translate the amount of movement into the
symbolic domain. Besides, this long-tailed behavior is the reason that drives the use of
the median to compare the results coming form both data sets. Finally, comparing the
results for MIT and UC3M users, it can be observed that MIT users seem to move more
than UC3M participants. However, this initial observation will be reconsidered later in
this chapter under a different perspective that will provide a different conclusion.

4.2.2 Diversity of the Visited Places

Changing the focus to the next mobility feature, Figure 4.3 shows the distribution of
the number of different cells visited per day. Again, the two subfigures 4.3a and 4.3b
represent the MIT and UC3M results, respectively, whereas each of the three plots of
each subfigure shows the results reflected by each movement history, from top to bottom,
lbaseline, lCDR, and lDDR. Starting again by comparing the results obtained for each data
recording approach, the same differences than in the previous case can be identified, even
more intensified. The distribution of values reflected by lCDR is notably narrower than that
drawn from the baseline and even DDR-based approaches. As commented before, people
usually make calls in the same places, which according to the median value for both data
sets (see Table 4.1 for the actual statistical values of the distribution), are just 2 different
places per day. Again, those data raises the concern on the quality of the mobility data
gathered by the CDR-based approach. Even the DDR-based approach seems to better
capture the mobility-related data. The median value for the UC3M data (recall that the
MIT data set has very few data traffic samples) is 15 out of the 29 for the lbaseline case,
whereas the maximum value is 267 with respect to the 532 of the lbaseline case. The big
difference in the maximum value comes from the fact that when a high number of different
cells are visited per day it means that the person is making a long trip. Generally, during
long trips, and even more if they made by car, data connections are fewer (hopefully people
driving should not be constantly consulting the device). However, the median is not that
distant, which means that lDDR collects a great deal of the locations visited throughout
the day.

Once again, the distribution of the data coming form lbaseline shows a long-tailed be-
havior. Due to visualization purposes, as before, Figure 4.3 just shows the distribution
spanned up to 100 different cells visited per day, but in Figure 4.4 the whole distribution
for the baseline approach of each data set can be observed. Like in the cell changes per
day metric, the different cells visited per day concentrate mainly around low values, not
greater than 100, but the distributions have a long tail reaching up to 900 and 550 different
cells visited per day in the MIT and UC3M data, respectively. That leads to mean values
displaced to higher values. As in the previous metric, this is directly related to the human
behavior described in [113] of usual short displacements mixed with occasional long trips
that add up having an important weight that make them worth to be taken into account.

Regarding the comparison between data sets, whereas the cell changes per day shown a
higher median value for the MIT than for the UC3M users, when considering the number of
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(a) MIT data set.

(b) UC3M data set.

Figure 4.2: Probability distributions best fitting the number of cell changes per day re-
flected in the baseline traces of the data sets considered.
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Figure 4.3: Distribution of the number of different cells visited per day reflected in the
traces collected with each data collection scheme—(from top to bottom) baseline, CDR,
and DDR-based—of the data sets considered.

different cells visited per day the scenario is the opposite one: UC3M users visit a median
of 29 different cells per day, compared to the 17 of the MIT users. Considering that the
MIT users are all students and stuff of the same university, whilst the UC3M users have
different jobs and even reside in different countries, it can be normal that MIT users visit
less different locations since all of them share the same closed environment.

The combination the two metrics analyzed so far provides different perspectives on the
users’ mobility. The analysis presented is focused on general features, measured by the
aggregated data of all users. Instead, Figure 4.5 shows the temporal evolution of different
metrics for a user from the MIT data set (subfigure 4.5a) and another user from the UC3M
data set (subfigure 4.5b). The upper subplot represents the number of cell changes per day

Data Set l Max Min Mean Median Mode

MIT

lbaseline 954 1 30.24 17 11

lCDR 21 1 2.63 2 1

lDDR 91 1 1.80 1 1

UC3M

lbaseline 532 1 42.85 29 12

lCDR 23 1 3.23 2 1

lDDR 267 1 23.61 15 8

Table 4.2: Summary of the main statistics related to the distribution of the number of
different cells visited per day of the MIT and UC3M data sets.
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(a) MIT data set.

(b) UC3M data set.

Figure 4.4: Probability distributions best fitting the number of different cells visited per
day reflected in the baseline traces of the data sets considered.

and the number of different cells per day. These data give an idea of the temporal evolution
day by day, but it seems noisy. However, when dividing the number of different cells of
a day by the number of cell changes in that same day (for all the days recorded in the
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(a) MIT data set user.
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(b) UC3M data set user.

Figure 4.5: Temporal evolution of three mobility features of two users (from top to bottom):
Number of cell changes per day and number of different cells visited per day; ratio of
different cells per cell changes, per day; and cumulative new cells visited per day.

movement history), the results leads to the middle subplot. This ratio will be high when
the number of different cells visited gets closer to the number of cell changes. Looking at
this subplot, clear peaks are devised along both users’ movement histories. Unfortunately
for the MIT user, it was not possible to asses the events behind those peaks. However,
it was possible to check that for the UC3M every single peak above 0.4 corresponds to a
long trip (i.e., occasional trips to further places than usual), and that no long trips made
during the whole time span of the movement history were not reflected by some of these
peaks. It is probable that something similar happens with the MIT user, since some of the
main peaks happen around the end of December (coinciding with Christmas holidays), but
it cannot be verified. Therefore, this metric that combines the two previous ones, can be
very useful to determine long occasional trips that might potentially affect the prediction
accuracy. Another interesting aspect is determining the first time a user visits certain
place. These situations can be easily detected by measuring the number of new CellIDs
never seen before visited per hour. The bottom subplot shows the temporal evolution
of the cumulative CellIDs never seen before per day. The steps that can be observed in
these subplots of both users correspond to some of the peaks in the middle subplot, which
reinforce the hypothesis of those peaks corresponding to long occasional trips. However,
there is a subtle difference between these two metrics. The rate at which CellIDs never seen
before are discovered unveils moments when the user is visiting totally new places (thus,
impossible to foresee and predict). However, the ratio of different cells by cell changes just
uncovers potential long trips, which in many cases headed to new visited places, but in
some other cases are just occasional trips to places already visited before. Checking the
plots of the UC3M user with the information provided, it can be observed that the last
peaks in the middle subplot do not coincide with an increase in the new cell discovery rate
shown in the bottom plot, since they correspond to occasional long trips to places already
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(b) UC3M data set.

Figure 4.6: Aggregated fraction of visits as a function of the fraction of different visited
cells, for the two data sets.

visited before. The same behavior is observed in the trace of the MIT user. The peaks
in the middle subplot do not lead to such big steep increases in the new cell discovery
rate in the lower plot, probably because they correspond to trips to already known places,
although, again, this could not be verified.

4.2.3 Distribution of Visits

The next feature under study is the fraction of the total number of different cells visited
by a user that concentrate different fractions of visits. Figure 4.6 shows the cumulative
distribution for the aggregated population of the MIT (subfigure 4.6a) and UC3M (sub-
figure 4.6b) data sets. In order to calculate these curves, all the visited cells were sorted
out from the most to the least visited one, for each user. Then, the fraction of cumulative
visits (out of the total ones for a user) was calculated for each cell, which represents certain
percentage out of the total number of different visited cells by that same user. Finally,
all the data from each user were aggregated and the curve fitting tool of Matlab was used
to get the parameters defining the power curves with with a 95% confidence. This same
process was performed independently for the lbaseline, lCDR, and lDDR. The results remind
of a Pareto distribution, where 20% of the different visited cells concentrate 80% of the
total visits in the CDR and DDR-based approaches for both data sets, whereas for the
baseline approach this 20% of different visited cells concentrate up to the 90% of the total
visits. Thus, some few cells are much more visited, like home or work, whilst the majority
of locations just slightly add up to the total number of visits.

Another way to visualize this characteristic is by inspecting the visit probability of the
most visited cells, which is shown in Figure 4.7. Although taking a look at the cumulative
visits distribution depicted in Figure 4.6 it may seem that both lCDR and lDDR are very
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Figure 4.7: Average probability of visiting each of the 20 most visited cells, for each of two
data sets.

similar with respect to the visit distribution, Figure 4.7 demonstrates that the cumulative
distribution might be misleading. Both lCDR and lDDR shares almost the same curve
for the cumulative distribution, but the visit probability to the most visited cell in the
lCDR approach is more than twice higher than the corresponding probability for the lDDR

case (recall that the DDR data in the MIT data set was scarce and thus not meaningful,
so it is not analyzed here). This effect comes from the small number of events in the
lCDR approach and the already mentioned fact that people tend to make calls always
from the same locations. However, the cumulative distribution masks this fact, showing
a behavior similar to the DDR-based approach. In the lDDR case, though, the two most
visited locations have a slightly higher probability than the third and remaining cells,
so that the probability is more equally distributed. It should be noted that these plots
represent the probability of visiting the 20 most visited cells, but each movement history
gathers more than 20 different cells (see Table 4.2 to check just the number of different cells
visited per day, which is already higher than 20). Therefore, the CDR-based results show
a much narrower probability distribution (thus, the high probability of the most visited
cell), whilst both baseline and DDR-based histories enclose many more different cells, and
thus the probability distribution is wider. Nonetheless, the baseline approach shows a fast
decrement of the probability of visit, which drops to half already in the fourth most visited
cell in both data sets, which reinforces the concern about possible biased predictions due
to this noticeable difference between a small group of cells with respect to the rest.
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4.2.4 Mobility Randomness

The next feature to analyze is the uncertainty about user mobility. Section 2.2 already
presented the information theory concept of entropy as a way to quantify uncertainty of
symbol sequences. Besides, this uncertainty can be quantified in terms of time-uncorrelated
samples, through the use of the Shannon entropy, or in terms of stationary processes, thus
factoring the time dimension in, which required the use of entropy rates and, in particular,
of a specific entropy rate estimator known as Grassberger entropy rate. Figure 4.8 shows
the aggregated entropy and entropy rate values calculated at each sample of, from top to
bottom, lbaseline, lCDR, and lDDR, for both the MIT (subfigure 4.8a) and UC3M (subfig-
ure 4.8b) data sets. In order to be able to compare these entropies for different users (who
can display very different entropy values), all the entropy and entropy rate absolute values
are normalized by the maximum entropy value corresponding to each step of the movement
history considered, value obtained by calculating the Hartley entropy (refer to Section 2.2
for more details). The analysis focuses first on the comparison of the three data collection
schemes. Regarding the distribution of entropy, the baseline approach leads to a distri-
bution located at slightly lower values than in the CDR or DDR cases. This means that,
without taking into account temporal dependencies, the uncertainty enclosed by lbaseline

about the next movement of the user is slightly lower than in the CDR or DDR cases. But
what is really significant is the decrease of this uncertainty as soon as temporal correla-
tions (i.e., movement patterns) are considered, that is to say when entropy rate is used
to measure the uncertainty. For all the cases in both MIT and UC3M data, the distribu-
tion of entropy rate values is clearly located at much lower values than the distribution of
entropy. This is an indicator of the great influence of mobility patterns in the movement
histories. If locations are considered as independent events, the uncertainty about what
the next location will be is much higher than when locations are considered as a sequence
of interrelated events, which occur following certain order and this order is consistently
observed along the whole history of the user.

These results are in consonance with the ones presented in [134]. However, in such work
the data considered came from lCDR of an extensive population whereas Figure 4.8 shows
the results for the three data collection approaches, showing noticeable differences between
the baseline and CDR collection schemes. For MIT users, the entropy rate distribution
is concentrated in the range between 0 and 0.2, whereas for the CDR case is much more
spread, spanning form 0 to 0.5 values with an irregular distribution. It should be also
noted that MIT users were all people working or studying in the same university, which
can lead to this concentrated distribution in the baseline case due to similar timetables
and academic calendars. However, the UC3M users were much diverse and that is reflected
into the entropy and entropy rate distributions, which show a much more irregular shape,
and in the case of the entropy rate, a wider distribution than in the MIT case. The subplot
representing the results drawn from the CDR-based movement histories of the UC3M data
set has a very specific distribution concentrated around 0 (people that always make calls
from the very same places, thus having no uncertainty on where the next call will be made),
and then, larger values than the baseline case (since CDR-based movement history skips all
the data between calls, it is much more difficult to record the mobility patterns responsible
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(a) MIT data set. (b) UC3M data set.

Figure 4.8: Distribution of the entropy and entropy rate values at each step of the traces
contained in the two data sets considered.

for the low values of entropy rate in the baseline case). The behavior of the DDR-based
results might be the most surprising ones. They could be expected to behave similarly to
the baseline case but, however, its distribution follows the same two focus shape than the
entropy rate distribution of the CDR case. Although surprising, the explanation for it will
come in next sections (no analysis on the DDR-based case of the MIT data set is described
due to the small number of samples).

4.2.5 Mobility Predictability

The last feature under examination, the predictability, is tightly coupled with the entropy
rate. As explained in Section 4.1, predictability measures the maximum percentage of
right predictions that the best prediction algorithm would ever attain, taking into account
the entropy rate and number of different cells visited by the user. Figure 4.9 shows the
distribution of the values of such metric for the MIT (subfigure 4.9a) and UC3M (subfig-
ure 4.9b) data sets and, from top to bottom, when considering lbaseline, lCDR, and lDDR.
In this case, the predictability at every single step of each movement history could not be
calculated due to the high computational cost, and thus subsequent time needed to process
the whole set of available data. For this reason, 2,000 samples were randomly chosen over
the entire movement history of each user. This way, all possible situations (more random
ones, like holidays, and less random ones, like labor days) were aimed to be captured, thus
depicting a low biased image of the general distribution of predictability values. Starting
by comparing the different data collection approaches, in the MIT data set there is a more
clear difference among them. The distribution in the baseline case is narrower centered
around 93% (as in [134] for the CDR data). However, for CDR-based data, the distribution
is wider and more weight is concentrated in lower predictability values. The results for the
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(a) MIT data set. (b) UC3M data set.

Figure 4.9: Distribution of the predictability values at some steps of the traces contained
in the two data sets considered.

UC3M data set, however, are more irregular (just like the entropy rate distribution). For
the baseline case, there is not a single value clearly concentrating the majority of values.
Since the users follow much more different patterns, the predictability of the population
varies greatly. In the CDR case, the two sides distribution noticed when analyzing the
entropy rate are clearly reflected in the predictability too: one side of the distribution
concentrated around high values (people making calls from the same places), and the other
side of the distribution located at lower values than the baseline case, due to the lack of
information about mobility patterns. The DDR case presents also a wide distribution,
even wider than the baseline case, with no clear value concentrating a high frequency of
occurrences, again showing the diversity of the users in this data set.

After studying all these data, it seems that the data collection approach that most
faithfully reflects the mobility features of the user is the baseline one. However, it should
be noted that this approach is not perfect either. It is just an indirect way to collect
data representing mobility based on the cellular telephony network. Thus, it suffers from
side effects of using such network. Next section focuses on these side effects and proposes
different ways to try to diminish their impact on the observed mobility features.

4.3 Impact of Filtering Mobility-Unrelated Data on the Anal-
ysis of Human Mobility Features

Using an indirect data source to collect mobility histories has some drawbacks. Recalling
Section 3.1, a movement history could be collected from the user’s device or from the
network. In the first case, every single cell change detected by the mobile phone is recorded
into the movement history, lbaseline, whilst in the second case, only the cells the phone is
attached to when making or receiving a call, or during data transfers, are reflected into the
movement history, lCDR or lDDR, respectively. But in the first case, is every cell change a
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direct reflection of the user mobility? The reality is that there are cell changes due to the
user mobility, but there are also many other cell changes due to diverse network-related
causes that do not reflect any aspect of the user mobility: received signal degradation
and consequent change of BTS to another one from which the received signal has better
quality, load balance, etc. These cell changes can be observed in the movement histories
in the form of long sequences of repeated changes between two or three cells mainly, as
for example, lbaseline = ...fgabababcbabacabcabcba...., from where it takes the name of
ping pong or oscillation effect. These sequences should be filtered out so that they do
not interfere or bias the mobility features reflected or the behavior of the applications
based on the movement histories to perform their services. This section proposes a two-
steps mechanism to detect and filter out these network-related events, that will be further
evaluated based on the mobility features previously studied.

4.3.1 Ping Pong Sequence Detection and Filtering Proposals

As explained in Chapter 3, the reference scenario of human mobility corresponds to a GSM
network. Attending to a typical hive network cell distribution, the coverage shape of each
BTS is not perfectly hexagonal, but it suffers from time-variant coverage area radius. The
two most common cases where the ping pong effect takes place are when user is in the
intersection of two or three cells [79]. These two ping pong cases are represented by the
dotted and dashed circles in Figure 4.10.
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Figure 4.10: Coverage areas provoking ping pong sequences.

If the user is in the intersection of two cells, as in the case when the user is inside the
dotted circles in Figure 4.10, her device might be oscillating between cells b and e, even if
the user is not moving. This situation leads to movement sequences of the form:

lbaseline = . . . lnln+1lnln+1lnln+1lnln+1 . . .

For example, the user inside both dotted circles could record a trace like lbaseline =
. . . bebebe . . .. Therefore, a ping pong effect between two cells is detected when finding
a sequence of events where

lbaselinen = lbaselinen−2



62 4. ANALYSIS OF HUMAN MOBILITY FEATURES

until a different symbol from lbaselinen and lbaselinen−1 appears in lbaseline. However, this
may result in a relaxed requirement that leads to filtering real locations. For instance, if
the user records a trace like lbaseline = aebea, it can mean that the user went from a to b
and back, but it can also mean that the user went from a to e and back, but a ping pong
event occurred in the meantime. For this reason, a more flexible definition of the detection
of 2-cell ping pong effect is proposed. The 2-cells ping pong sequence will be detected if
only two different CellIDs are present in, at least, p consecutive symbols of the sequence:

|lbaselinei,i+p−1 | = 2

where lbaselinei,i+p−1 is the sequence from step i to step i+ p− 1, and the operator ||̇ represents
the number of different locations found in the considered sequence.

In the case in which the user is in the intersection of three cells, as shown in Figure 4.10
for cells j, n and o, the oscillation behavior produces fake movement sequences like:

lbaseline = . . . lnln+1ln+2lnln+2lnln+1 . . .

For example, the user inside both dotted circles could record a trace like lbaseline =
. . . jnojojnojn . . .. Therefore, a ping pong sequence between three cells will be detected
when encountering a sequence of events where the following three conditions applies:

lbaselinen = lbaselinen+3 , lbaselinen 6= lbaselinen+1 , lbaselinen+1 6= lbaselinen+2

until a different location from to any of lbaselinen , lbaselinen+1 , and lbaselinen+2 appears in lbaseline.
Notice that the three locations must be neighbors for the ping pong sequence to happen.
For instance, the sequence lbaseline = . . . lnln+1lnln+3 . . . (ln+1 6= ln+3), is not considered
a ping pong sequence, unless there is some previous information indicating that ln+1 and
ln+3 are neighbors (i.e., there exist previous transitions between them two). Otherwise,
not all possible transitions are present in the potential oscillating sequence (the transitions
lnln+1 and lnln+3 are possible, but ln+1ln+3 is not). As in the case of 2-cell oscillations,
determining the occurrence of a ping pong effect among three cells as soon as the previous
condition is met might result in filtering out data that is actually not a ping pong sequence.
For this reason, a more configurable 3-cell ping pong effect detection scheme is proposed,
in which the ping pong sequence is detected if only three different neighboring cells are
present in, at least, q consecutive symbols of the sequence:

|lbaselinei,i+q−1 | = 3

The complete ping pong detection scheme combines these two mechanisms with the
appropriate parameters, (p, q), to determine all the ping pong sequences in a trace, so they
can be filtered out.

In order to have a preliminary idea on the impact of different values of p and q on
the ping pong detection process, the movement history of a user, lbaseline, is processed to
detect ping pong sequences using different detection schemes, (p, q). Table 4.3 shows in
the second column the percentage of events which were detected as ping pong sequences.
With the most restrictive scheme, (p, q) = (3, 4), 86.98% of the CellIDs in lbaseline are
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(p,q) Total Ping
Pong

Events [%]

Ping pong
Events
during

week [%]

Ping pong
events

matching
movement

[%]

Events
during

Movement
Matching
ping pong

[%]

Events
during no
movement
Matching
ping pong

[%]

(3,4) 86.98 89.71 8.64 86.95 89.98

(4,6) 68.28 74.77 7.82 65.61 75.67

(4,8) 60.41 67.07 7.78 58.50 67.91

(6,8) 53.09 61.45 7.28 50.20 62.55

(8,10) 43.42 53.17 7.99 47.63 53.71

Table 4.3: Summary of the fraction of ping pong events detected in the trace of a user in
the UC3M data set during specific week, for different detection schemes, in three situations:
in the whole week, matching movement periods, and matching no-movement periods.

considered to belong to mobility unrelated events, which represents an enormous percentage
of all the available data recorded in the movement history. By relaxing the scheme to be
(p, q) = (4, 6) (i.e., as soon as the ping pong is detected in double number of the ping
pong cells, 4 for 2-cells and 6 for 3-cells ping pong), the percentage drops down to 68.28%,
which represents more than half of the cells in the history, but it is 20% lower than in
the previous setup. From there, by increasing p and q, the percentage keeps on decreasing
but in a more gradual way. Increasing both parameters in 2 units, the percentage drops a
15% more, and finally when nearly doubling p and q, the percentage of detected ping pong
events decreases around 25%. Therefore, the most dramatic decrease occurs when relaxing
p in 1 unit and q in 2 units with respect to the most restrictive scheme.

Still, it is difficult to be able to ascertain what really is a ping pong sequence and what
is just a real movement of the user. Thus, a different approach to its determination was
carried out. The starting hypothesis is that ping pong sequences happen mainly when
the user is not moving, whilst the device is switching from one cell to another one due
the user movement, and thus those cell changes are not ping pong sequences but just the
result of the location change. To check this hypothesis, the same user, which lbaseline was
analyzed with different (p, q) schemes, provided data about the specific time periods she
spent moving and stationary for a whole week. These data were compared against the
ping pong detection results in the following way. Each CellID in lbaseline is accompanied
by its corresponding timestamp and a flag indicating if it belongs (true) or not (false) to a
ping pong sequence (one flag per each different detection scheme was provided). Then, for
each CellID recorded in lbaseline during the week under study, it is checked if it corresponds
to a period of movement or a stationary period. Under the initial assumption, ping pong
events should not occur during movement periods, thus all ping pong events should happen
during stationary periods. The third column of Table 4.3 shows the percentage out of the
total number of ping pong events that occur during a movement period. The values for
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Data Set (p,q) Max [%] Min [%] Mean [%] Median [%]

MIT
(3,4) 99.63 85.16 93.58 93.71

(4,6) 98.59 71.18 84.92 84.44

UC3M
(3,4) 91.45 48.89 75.25 78.00

(4,6) 82.17 25.13 52.73 53.08

Table 4.4: Summary of the statistics of ping pong events in the whole set of MIT and
UC3M traces for two different detection schemes: (3,4) and (4,6).

all detection schemes are very similar, around 8%. This may lead to think that, actually,
ping pong events happen mainly during stationary periods. However, a deeper look must
be taken to assert where this low value comes from. The fourth column of the table shows
the percentage of the total number of CellIDs recorded during the movement periods that
coincide with ping pong events. The last column shows this same metric applied to the
case of stationary periods. The reason why the percentage of ping pong events matching
movement periods is so low is that the number of CellIDs recorded during movement
periods is much lower. This means that most of the recorded CellIDs correspond to just
ping pong effects instead of movement. This fact raises an important concern when making
predictions, since it should be carefully considered which predictions are really useful, that
is to say which predictions are actually predicting the next movement of the user rather
than the next event, which most probably will be related to network issues. The results of
this preliminary analysis seem to indicate that the hypothesis set out to determine what
really is a ping pong sequence, and thus avoid further filtering out no ping pong events
is not valid. Thus, two schemes will be chosen to perform the next analysis, based on
the notion of the most restrictive detection scheme, and the one that by slightly relaxing
the most constrained parameters, notably reduces the percentage of ping pong detections:
(p, q) = (3, 4) and (p, q) = (4, 6), respectively.

Since there are ping pong events both during stationary and moving stages, the detec-
tion cannot be made following this criteria. Therefore, the aim would be to detect as many
ping pong sequences as possible. Thus, the two first schemes, namely (3, 4) and (4, 6) are
selected for further analysis. These two schemes were applied to the data sets considered,
obtaining the statistics about the number of ping pong events detected in each case shown
in Table 4.4. The statistics show that the MIT traces are made of more ping pong events
than the UC3M data: whereas for the MIT data the percentage of ping pong events in
average is 93.58% for the (3, 4) detection scheme, and 84.92% for the (4, 6) scheme, these
values just reach 75.25% and 52.73% in the UC3M data set, respectively. In the comparison
among the different schemes, UC3M still shows the 20% drop from the most constrained
to the more relaxed detection scheme, whilst in the MIT case the decrease is only around
10%, probably due to the huge percentage of ping pong events collected.

The next question is how to perform the filtering itself. The three following methods
are proposed to that purpose:

• Representative technique. Replace the whole ping pong sequence by one of the



4.3. Impact of Filtering Mobility-Unrelated Data on the Analysis of Human Mobility
Features 65

symbols of the sequence, the representative symbol. Among the symbols of the
sequence, the one that concentrates a higher number of visits is chosen. The reason
behind this choice is that, if there is no ping pong effect, the most probable symbol to
be observed at that location is the one with the highest probability of being visited,
i.e., the one with a highest number of visits along the location history. This way, the
real visit distribution is tried to be preserved.

The problem of this approach is that it does not take into account the adjacency
of cells. For example, if the individual in Figure 4.10 has a history location l =
. . . kjnojonjnojonm . . ., and the most visited location is o, the filtered sequence
would be lrepresentative = kom, but there is no real transition between ko or om, since
those pairs of cells are not adjacent.

• Limits technique. Replace the whole ping pong sequence by entry symbol →
exit symbol, where entry symbol and exit symbol are the first and last symbols,
i.e., the limits of the ping pong sequence. In previous the example, the filtered
sequence would be llimits = kjnm, where every pair of consecutive cells are adjacent.
This case solves the problem of the representative technique.

However, since ping pong sequences appear very frequently, both delimiting symbols,
entry symbol and exit symbol, accumulate a large number of visits, whilst the most
visited location of the sequence might be ignored. This may change the real prob-
ability of visiting each location, and lead to a situation where the symbols limiting
the ping pong sequences have more visits than the originally most visited locations.

• Hybrid technique. Replace the whole ping pong sequence by entry symbol →
representative symbol → exit symbol. If entry symbol or exit symbol is equal to
representative symbol, this last one is neglected. In the example above, the filtered
sequence would be lhybrid = kjonm, which merges the advantage of the previous
techniques.

4.3.2 Analysis of the Mobility Features Reflected in the Filtered Traces

Next, the filtering techniques previously proposed are evaluated by applying them to the
data sets explained in Chapter 3, to see how the mobility features extracted from the
resulting movement histories are impacted. The analysis of the mobility features reflected
in the filtered traces starts again with the comparison of the number of CellIDs recorded in
lbaseline per day with respect to the number of CellIDs per day remaining in the movement
histories after different filtering techniques and detection schemes are applied to lbaseline.
Figure 4.11 shows the distribution of cell changes per day for the MIT data (subfigures 4.11a
and 4.11b) and for the UC3M data (subfigures 4.11c and 4.11d), for the two selected
detection schemes, namely (p, q) = (3, 4) and (p, q) = (4, 6), respectively, and considering,
from top to bottom, the baseline movement history as a reference and then the three
filtering techniques: representative, limits, and hybrid. Focusing on the filtering techniques
first, the figure shows that the representative technique is the one deleting more mobility-
unrelated events, since the final distribution of CellIDs recorded per day is the narrowest
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(a) MIT data set, (p,q)=(3,4). (b) MIT data set, (p,q)=(4,6).

(c) UC3M data set, (p,q)=(3,4). (d) UC3M data set, (p,q)=(4,6).

Figure 4.11: Distribution of the number of cell changes per day reflected in the baseline
trace and the traces filtered using two detection schemes and the three filtering techniques,
for the two data sets considered.

and placed at the lowest values. The results for the limits and hybrid techniques are very
similar, reducing also the values around which the resulting distribution is centered around,
although not as much as the representative technique. This behavior holds for both data
sets and detection schemes.

Taking a look at the actual statistical values of the distributions, displayed in Table 4.5,
there are some interesting details to notice. Recalling the comparative between the me-
dian value drawn from the UC3M and MIT data sets, users from the MIT set seemed to
move much more (median of 203 cell changes per day) than the UC3M users (median of
28 cell changes per day). However, after filtering the traces applying the representative
technique (i.e., replacing each ping pong sequence by just one CellID, which is the most
simplified version of the trace), the resulting median values are just the opposite: UC3M



4.3. Impact of Filtering Mobility-Unrelated Data on the Analysis of Human Mobility
Features 67

Data Set (p,q) Filter Max Min Mean Median Mode

MIT

Baseline 1853 1 237.92 203 4

(3,4)

Representative 846 1 32.71 18 6

Limits 940 1 79.45 61 36

Hybrid 944 1 84.85 66 2

(4,6)

Representative 1009 1 49.08 29 2

Limits 1039 1 73.64 54 38

Hybrid 1046 1 82.32 62 2

UC3M

Baseline 2026 1 158.11 88 57

(3,4)

Representative 516 1 49.60 29 4

Limits 825 1 85.05 49 30

Hybrid 796 1 86.34 50 27

(4,6)

Representative 679 1 76.38 45 13

Limits 803 1 89.67 52 20

Hybrid 841 1 94.01 55 20

Table 4.5: Summary of the main statistics related to the distribution of the number of cell
changes per day reflected in the baseline trace and the traces filtered using two detection
schemes and the three filtering techniques, for the two data sets considered.

users move almost double (median values of 29 and 45 cell changes per day for the (3, 4)
and (4, 6) detection schemes, respectively) than MIT users (median values of just 18 and
29, respectively). However, since the limits and hybrid techniques add more symbols per
ping pong sequence detected, and the MIT data set has such a high amount of these se-
quences, then the median values greatly decrease (from 203 to 61 and 54 for the limits
technique and two detection schemes, and to 66 and 62 for the hybrid technique and two
detection schemes), but they are still greater than the values for the UC3M data set (29
and 52 for the limits technique, and 50 and 55 for the hybrid technique, and both detection
schemes). Once again, this fact highlights the impact of such high number of ping pong
events in the movement histories. Another interesting observation is that regardless of the
decrease in all the statistics, the long-tailed behavior still remains, as can be checked by
the noticeable difference between the mean and median values, and the long tail of the
distributions depicted in Figure 4.1, which reinforces the idea of usual short trips with
eventual long travels (i.e., the occasional high number of cell changes per day is not due to
just ping pong effects, but when these are filtered out, this behavior remains).

Regarding the number of different cells visited per day before and after filtering, Fig-
ure 4.12 shows the distribution of the metric for the same cases considered before. In
this metric, the differences between the distribution before and after filtering are not very
significative. It can be observed a really slight displacement of the distributions to lower
values, whilst the shape and width remain practically unchanged. Comparing both data
sets, the same properties observed before are present now: UC3M users have a more wide
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(a) MIT data set, (p,q)=(3,4). (b) MIT data set, (p,q)=(4,6).

(c) UC3M data set, (p,q)=(3,4). (d) UC3M data set, (p,q)=(4,6).

Figure 4.12: Distribution of the number of different cells visited per day reflected in the
baseline trace and the traces filtered using two detection schemes and the three filtering
techniques, for the two data sets considered.

distribution, before and after filtering, than MIT users, which now seems to be coherent
with the number of cell changes after filtering. Looking at the actual statistical values,
exposed in Table 4.6, it can be checked that, indeed, the median values for UC3M users
for all detection schemes and filtering techniques are higher (almost double) than for MIT
users. With respect to the differences before and after the filtering phase, the reduction of
the statistical values is much smoother than in the case of the cell changes per day. For
the MIT users, the median drops to half of the value in the baseline case when using the
representative technique, and the most restrictive detection scheme, whereas for the rest
of cases, it just decreases up to 4 different cells less. In the case of UC3M data, the reduc-
tion attains up to 8 different cells less in the representative technique and (3, 4) detection
scheme, and for the rest up to 4 different cells less. These results seem to indicate that
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the filtering phase respects the diversity of the users movement, and just filters out events
that do not provide any mobility-related useful information.

Data Set (p,q) Filter Max Min Mean Median Mode

MIT

Baseline 954 1 30.24 17 11

(3,4)

Representative 832 1 20.76 9 5

Limits 882 1 27.42 15 9

Hybrid 878 1 26.67 14 9

(4,6)

Representative 920 1 26.07 13 8

Limits 947 1 28.83 15 10

Hybrid 948 1 28.83 15 9

UC3M

Baseline 532 1 42.85 29 12

(3,4)

Representative 442 1 32.48 21 8

Limits 476 1 39.27 26 10

Hybrid 472 1 38.37 25 12

(4,6)

Representative 510 1 40.05 26 9

Limits 522 1 41.81 28 14

Hybrid 521 1 41.79 28 14

Table 4.6: Summary of the main statistics related to the distribution of the number of
different cells visited per day reflected in the baseline trace and the traces filtered using
two detection schemes and the three filtering techniques, for the two data sets considered.

In order to provide a complementary perspective on the effect of the different filtering
techniques over the two analyzed features, Figure 4.13 shows the number of cell changes per
hour versus the number of different cells visited per hour for the baseline case and the three
filtering techniques, for the (3, 4) (subfigure 4.13a) and (4, 6) (subfigure 4.13b) detection
schemes. The diagonal of these plots represent hours in which all the CellIDs recorded in
the movement history are not repeated, so there is continuous movement among different
places. Ping pong sequences are characterized then for low number of different cells with
respect to the number of cell changes experienced, that is to say values far away from the
diagonal. As can be observed, the representative technique is the one erasing or displacing
these values far from the diagonal towards it, even more significantly when combined with
the (3, 4) detection scheme. The limits and hybrid techniques clean also the zone far away
from the diagonal, very similarly both of them, but not as much as the representative
technique.

Recalling Figure 4.5 from the initial comparison between baseline and CDR and DDR-
based approaches, two potentially interesting metrics regarding further predictions were
the different visited cells over cell changes per day ratio, and the rate at which new cells
never seen before are discovered per day. What happens with these two metrics after
filtering? Figure 4.14 answers this question. Before filtering, the number of cell changes
per day is much higher and greatly contrasts with the real number of different visited cells.
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(a) (p,q)=(3,4). (b) (p,q)=(4,6).

Figure 4.13: Comparison of the number of cell changes per hour versus the number of
different cells visited during the corresponding hour, for one user of the UC3M data set,
considering the baseline case and the three different filtering techniques, for two detection
schemes.

Therefore, the ratio of these two features instantly highlights the temporal moments in
which the number of cell changes gets closer to the number of different cells (there are
more changes due to actual movement). After filtering, these moments become much less
clear, and the resulting ratio seems quite noisy, as can be observed in the top subplot.
Thus, the baseline movement history results more useful for detecting these high mobility
moments. Regarding the new cells discovery rate, as previously shown in Figure 4.12 and
Table 4.6, the different visited cells metric does not significantly changes after filtering.
Therefore, it could be expected that the new cell rate discovery rate remains practically
unchanged, as the lower subplot of Figure 4.14 shows. Thus, any of the filtered movement
histories could also be used to detect moments in which long trips or visits to unknown
locations so far are taking place.

When focusing on the fraction of visits concentrated by different percentages of distinct
cells, Figure 4.15 shows tendencies similar to the ones drawn from the original movement
histories. Even after filtering out ping pong sequences, which add many virtual visits to
certain locations, the 80-20 relation is still present. When using the hybrid or limits filters,
the result is 20% of the different visited cells concentrating close to 80% of the visits, both
for MIT and UC3M data sets. The representative technique, on the other hand, leads to a
slightly different result, depending on the data set. Due to the enormous number of ping
pong events in the MIT data set, after filtering with the representative technique, 20% of
the different visited cells concentrate around 70% of the visits, and 80% of the visits are
attained with the (3, 4) detection scheme, whilst that percentage of different cells climbs
up to 25% for the (4, 6) detection scheme. Thus, very few cells concentrating a significative
percentage of visits is an inherent property of human mobility, that is only intensified by
ping pong, which make the case sharper for the baseline movement history (20% of cells
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Figure 4.14: Temporal evolution of two mobility features of a user from the UC3M data
set (from top to bottom): Ratio of different cells per cell changes per day; Cumulative rate
of new cells visited per day.

(a) MIT data set. (b) UC3M data set.

Figure 4.15: Aggregated fraction of visits as a function of the fraction of different visited
cells, for the two data sets reflected in the baseline trace and the traces filtered using two
detection schemes and the three filtering techniques, for the two data sets considered.

concentrate around 90% of visits for both data sets).

Again, the visit probability of the 20 most visited cells represented in Figure 4.16
serves to reinforce these observations. But this figure also unveils how this difference in
the cumulative distributions shown in Figure 4.15 is actually translated into individual
cells. As can be seen, the high probability of the most visited cells is clearly diminished
in the two detection schemes and for both data sets, which leads to think that a great
deal of the ping pong sequences happened in these most visited cells. Still, the 4 most
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(a) MIT data set, (p,q)=(3,4). (b) MIT data set, (p,q)=(4,6).

(c) UC3M data set, (p,q)=(3,4). (d) UC3M data set, (p,q)=(4,6).

Figure 4.16: Average probability of visiting the 20 most visited cells when considering the
baseline trace and the traces filtered using two detection schemes and the three filtering
techniques, for the two data sets considered.

visited cells are dominants in terms of visit probability. Another interesting observation,
regarding the comparison among the different filtering techniques is that both the limits
and hybrid ones lead to a lower decrement in the probability of the 4 most visited cells.
Recall that these two techniques respected the basic structure of the ping pong sequence
by keeping the cells at the limits of the sequence, which correspond to added cells recorded
in the movement history with respect to the representative case. These added cells affect
mainly the visit probability of the most visited cells, thus reinforcing the hypothesis of the
ping pong sequences mainly being among these most visited cells.

The next feature to analyze is the uncertainty of next movements before and after the
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(a) MIT data set, (p,q)=(3,4). (b) MIT data set, (p,q)=(4,6).

(c) UC3M data set, (p,q)=(3,4). (d) UC3M data set, (p,q)=(4,6).

Figure 4.17: Distribution of the entropy and entropy rate values at each step of the baseline
trace and traces filtered using two detection schemes and the three filtering techniques, for
the two data sets considered.

filtering phase. The distributions of the corresponding entropy and entropy rate values are
represented in Figure 4.17. The most significative effect of filtering is a clear increase of
the uncertainty, that can be observed by the shift of both entropy and entropy rate dis-
tributions to higher values. This effect is understandable due to the certainty introduced
by ping pong sequences: they are sequences easy to identify and also easy to determine
which will be the next CellID when they are happening. Thus, the entropy values decrease,
even more taking into account the high percentage of ping pong events. But again, this
may lead to deception when the goal is to correctly predict the next CellID to appear that
represents movement. Thus, it can be roughly said that the entropy values of the filtered
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traces represent the uncertainty of the real movement of the user. Another interesting
observation about the MIT data specifically, is how the entropy and entropy rate distribu-
tions flatten leading to much more uniform distributions than the resulting distribution of
the baseline case. That corresponds to users behaving differently among them, and along
their own movement histories. Ping pong sequences might also mislead this observation,
since those sequences have the very same repetitive behavior for all users and represent a
great percentage of the whole movement history. The uniformity obtained by the repre-
sentative filtering technique disappears when using the limits or hybrid filters. As pointed
out before, these two techniques respect the ping pong sequence structure and just reduce
its length to the minimum. However, the basic structure is always the same, which leads
to small versions of ping pong sequences, and thus slightly lower values of entropy and less
uniform entropy rate distributions. The results drawn form the UC3M data are different,
due mainly to the original distributions of entropy and entropy rate for the baseline move-
ment history. Since the original distributions are much spread and irregular due to the
very different users participating in this data set, the distributions drawn after filtering are
also quite spread, although they present also the shift to higher values than in the baseline
case. With these results, it becomes critical to look for useful correct predictions about
real movements, since the effect of ping pong sequences can easily lead to deception.

Finally, the comparison among of the distributions of the predictability of the base-
line and filtered versions of the traces is presented in Figure 4.18. The differences among
the filtered and original are in consonance with the entropy rate results. The distribution
of predictability of the filtered traces shifts to lower values, meaning a decrease of the
maximum fraction of correct predictions that can be estimated. As explained before, the
misleading high predictability of the baseline traces was supported by the striking effect of
the ping pong sequences. But once they are filtered out, the predictability does not exceed
values of 0.9, contrasting with the 93% value where the maximum of the distribution was
centered at in the case of MIT traces. Besides, the representative filtering technique pro-
vides a flattening effect over the predictability distribution, widen also the shape. Both the
limits and hybrid techniques narrow again the distribution, peaking around 0.8 and 0.85,
respectively. Regarding the UC3M data set, the filtering process narrow the distribution,
specially when using the (4, 6) detection scheme. But in any case, the most significant ef-
fect is the shift to lower values that will be directly translated into the predictions results,
as will be shown in the next chapter. However, it should be noted that this does not mean
a poorer performance of the prediction algorithms, it just means that predicting the real
movement of the user is more difficult because the real movements are much more random
than when external effects, like ping pong sequences, which does not incorporate any useful
mobility data are included in the traces.

4.4 Conclusions

The analysis carried out throughout this chapter has shown the many perspectives from
which mobility can be considered. Each of them would be more dominant depending on
the application at hand, but none should be disregarded. What is more important is that
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(a) MIT data set, (p,q)=(3,4). (b) MIT data set, (p,q)=(4,6).

(c) UC3M data set, (p,q)=(3,4). (d) UC3M data set, (p,q)=(4,6).

Figure 4.18: Distribution of the predictability values at some steps of the baseline trace
and traces filtered using two detection schemes and the three filtering techniques, for the
two data sets considered.

studying such features is worth it, but it is even more important to think on which mobility
data is being considered to foresee the constraints it may have in order to reflect the real
mobility features of the user. Chapter 3 introduced three different approached to obtain
the movement history of the user based on cellular telephony network, namely baseline,
CDR-based and DDR-based approaches, which reflects mobility very differently. CDR-
based approach greatly simplifies the real features of mobility due to the general scarce
CDR events (calls or messages). Thus, for instance, the number of different locations
visited per day extracted from CDRs is reduced to a maximum of 4 different locations per
day. This value might be enough to describe the most important places (e.g., home, work),
but lacks on reflecting the routes followed by the user to reach them. This fact has direct
implications in urban planning, traffic forecasting and, in general, in the understanding of



76 4. ANALYSIS OF HUMAN MOBILITY FEATURES

the routes followed by the users. In a dense populated city, people going to and back from
work visit many more locations, but they will rarely appear in CDRs if the user is driving
and cellphones are not allowed, or if there is no coverage in the public transportation used.
Plenty of works about user mobility [138, 133, 134, 106] are focused mainly on entropy
and predictability. Almost all of them use CDR-based traces, since it is easy to obtain
them from a large population. However, the above results suggest a re-consideration of the
conclusions drawn from those works. This raises a concern about the trade-off between
the number of traces available using certain collection scheme, with respect the quality of
the data collected. Considering DDRs could improve this trade-off, since the movement
histories based on these records are more complete, in terms of mobility, than CDRs.

Nevertheless, it was also demonstrated that the baseline technique alone is not perfect
either. However, in this case, the problem is just the opposite one: with the baseline
approach, many additional events not reflecting real movements are registered into the
movement history. And, as seen in the previous results, the volume of these events, nick-
named as ping pong effect, is extremely high, thus having an enormous impact on the
mobility features extracted right directly from the baseline movement histories. Thus,
filtering out these ping pong sequences should not be neglected.

In this chapter, the filtering phase has been proposed as a two-stage process: first,
detecting the ping pong sequences, and then, replacing those detected sequences by the
corresponding CellID, thus filtering them out. The proposal on the detection stage sug-
gests a configurable approach to avoid filtering sequences that might seem at first like
ping pong ones, but that are just real movement of the user. This flexibility comes from
the difficulties found to determine what is really a movement and because ping pong se-
quences also happen during movement periods of the user. In fact, by slightly changing the
most restrictive detection scheme, the percentage of detected ping pong events decreases
notably. Regarding the filtering stage, three different techniques were proposed, namely
representative, limits and hybrid one. The representative technique shown to provide the
most simplified “movement-pure” histories. However, if the application at hand requires
to maintain the real locations structure (e.g., cells adjacency), then the limits or hybrid
techniques provides similar results and also a noticeable filtering capacity.

As for the purposes of this dissertation, after studying the biases introduced by the
baseline approach when collecting mobility data, it becomes clear that special attention
needs to be taken in the next chapter when analyzing the prediction results. At first sight,
the results drawn from prediction might seem better than they really are because predict-
ing ping pong sequence is fairly easy. However, it must be noted that those predictions
do not foresee movement, but network related issues that are probably worthless for the
applications where the mobility predictions are being used.
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The previous chapter described the main mobility indicators considered in this work to
characterize the mobility features of an individual. These features demonstrated to reflect
many details of the individual’s life, which directly reflects on mobility, such as trips, or
changes of the habits. As discussed earlier, all those indicators can help in determining
the context of the user and, thus, being able to tailor the behavior of the services or
applications to that specific user behavior. The approach followed to capture the location
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data, and the noise attached to the useful information, have shown to impact the mobility
features encoded by the traces. Therefore, a careful processing of the raw information
should be carried out prior to any further analysis or use. The previous chapter shown
some proposals on how to detect and filter this noise in an online manner, comparing the
noticeable differences between the original and filtered traces.

All these efforts were carried out in order to prepare the path to study the impact
of the mobility data used and the observed mobility features on the prediction of future
locations. By reviewing the literature and comparisons among different prediction algo-
rithms, exposed in Section 2.1.4, it can be noticed that the results obtained in each study
are not contextualized with the type of mobility data or with the mobility features of the
individuals in the data set used. However, these factors might have some impact on the
prediction results, beyond the effect that using a particular algorithm has in the prediction
process itself. In the analysis carried in this chapter, the goal is to analyze both how the
prediction algorithms selected—the LZ family—work, and also their relationship with the
data itself and the intrinsic mobility features defined in Chapter 4.

First, a proposal to divide and mix the algorithms of the family up is presented and
evaluated, aiming at finding the best combination. Next, the central part of the chapter
will focus on the prediction results obtained and its relationship with the mobility features
studied in Chapter 4. The conclusions extracted from this analysis are next used to propose
some improvements in the algorithms, which will be further evaluated with the data sets
presented in Chapter 3.

5.1 Background

As described in Section 2.1.4, there exist a myriad of location prediction algorithms, based
on many different approaches and data sources. Even narrowing the variety down to those
algorithms using location data based on symbolic locations (e.g., Wi-Fi or cellular net-
works), the range of possible predictors is wide. Therefore, a specific family of prediction
algorithms needs to be selected first, in order to concentrate the efforts around a concrete
prediction methodology. Specifically, this thesis is focused on a particular family of com-
pression algorithms, known as LZ family, which is comprised by three algorithms: LZ, LeZi
Update, and Active LeZi. They are based on Markov models, which will be also considered
along the work as reference. The reasons behind this choice are the following ones:

• The input data of these algorithms must be a sequence of symbols. This
constraint perfectly fits the scenario considered in this thesis, described in Section 3.1,
where the space is divided into different regions, each represented by a unique iden-
tifier. This option is opposed to the algorithms that focus on direction, velocity and
similar physical magnitudes. It should be noted that in order to use such prediction
approaches, GPS data would be needed, which implies a continuous tracking of the
individual using this technology in her mobile phone, and the subsequent battery
drainage.

• The LZ algorithms detect and continuously integrate changes of the indi-
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vidual’s behavior. These algorithms continuously update the individual’s mobility
model with each new symbol they process. Therefore, if the individual being tracked
usually visits certain places in a given order and, at some point in time, she changes
the order in which she visits these places, the routes among them, or simply she
starts visiting some other different locations, these algorithms realize the changes in
the routine, record them into the mobility model, and make the predictions according
to the new information. This working principle contrasts with the wide set of algo-
rithms that need an initial offline training stage, after which the parameters of model
built by the training phase are set and fixed, thus being not possible to incorporate
changes in the individual’s mobility habits.

• Their execution does not imply a high resource consumption. These al-
gorithms work in a sequential and incremental manner. The mobility model they
gradually build is conveniently stored in a tree data structure, so that look-ups are
fast and the memory needed for storage as compact as possible. These characteristics
are important, since the user is continuously tracked, thus reporting several locations
per day. In Chapter 4, Table 4.1 and 4.5 show an average number of location records
per day (cell changes per day in the particular case of this thesis) ranging from 30
with the most restrictive filter, up to more than 200 for the baseline case. Considering
the increasing volume of data that must be analyzed to make each prediction, the
ability of the algorithm to generate predictions in a timely manner becomes critical.
Thus, wether the prediction stage is performed by the mobile phone or by a third
party, the sequential and incremental behavior, and the compact storage needed is
key to be able to continuously generate the predictions during long time periods.

The general working principles of the algorithms considered here are simple. The input
data is the movement history of the user, this is the sequence of locations represented by
symbols, l, as explained in Section 3.1. This sequence is parsed by the algorithms in order
to discover mobility patterns and to estimate, based on the frequency of the locations
following each of the detected patterns, which is the most probable next location. The
specific details of how each algorithms performs the pattern discovery and next location
prediction will be explained next. The description will start with the foundation of the LZ
algorithms—the Markov models. Then, each of the algorithms pertaining to the LZ family
will be described along with its relationship with Markov models.

5.1.1 k-order Markov Model

An order-k Markov model (or Markov O(k) model) [23] can be used to forecast the next
location that will be visited by an individual based on what is called prediction context,
c. This prediction context is the sequence of the k most recent symbols (i.e., locations)
recorded in her movement history, l.

The Markov O(k) model consists of:

• A finite set of states, which represent each possible prediction context.
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γ

a:4

b:4

b:5

c:1d:1 a:2 d:1 b:1

c:2 d:2

c:1 a:1

Figure 5.1: Markov O(1) tree after parsing the example movement history.

• The transitions among states and their corresponding probability, representing the
possible locations the individual could visit given the current context, meaning the
k most recent locations visited by the individual (state).

This information can be stored by means of a tree data structure. This data structure
provides a compact storage that allows to speed up the prediction contexts look-ups. For
example, the tree corresponding to the movement history l = abababcdcbdab is the one
shown in Figure 5.1. Each level of the tree contains a set of nodes representing all the
contexts, c, of order k equal to that level, considering the root as level zero. The symbols
making up each context in the tree can be obtained by concatenating the k symbols tra-
versed from the root to the corresponding node. The number accompanying each symbol
corresponds to the number of times that the context was recognized in l. For instance,
Figure 5.1 shows four contexts of order-1, corresponding to the four nodes a level 1 of the
tree. The children of each context represents the events that happened after that context,
and with which frequency. For instance, the node a : 2 at level 2 means that location a
has been visited twice after being at location b, which occurred 5 times in total.

In order to make it easier to understand how each algorithm parses l step by step
and how the tree is built, Table 5.1 shows the tree nodes added or which frequency is
incremented when each new symbol is recorded in l.

l a b a b a b c d c b d a b

a b a b a b c d c b d a b

Markov O(1) ab ba ab ba ab bc cd dc cb bd da ab

LZ a b a ab a ab abc d c b bd a ab

a b a b a b c d c b d a b

LZU ab ab bc bd ab

abc

ALZ Window a b a ab ba ab abc bcd cdc dcb cbd bda dab

a b a b a b c d c b d a b

ALZ ab ba ab bc cd dc cb bd da ab

abc bcd cdc dcb cbd bda dab

Table 5.1: Comparison of the example movement history parsing done by each algorithm.
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In order to make predictions, the interesting information in this model is the probability
of the next location being each of the ones contained in L , given the current context. Thus,
the most probable next location will be the one with the highest transition probability.
Transitions among states, or the probability of the next location to be ln+1 given the
current prediction context, c, is expressed by equation (5.1):

P (Ln+1 = ln+1|c) =
N(cln+1, l)

N(c, l)
, ∀ln+1 ∈ L (5.1)

where N(cln+1, l) is the number of times the context c has been followed by symbol ln+1 in
the whole movement history l, and N(c, l) is the number of times the context c is contained
in l.

An increment in the order of the model may suggest an improvement in the prediction
accuracy, since the model deals with more different and concrete contexts, thus adapting
better to each particular situation. However, as the order of the model increases, the
frequency of the tree leaves decrements significantly. This is due to the fact that the number
of possible prediction contexts grows exponentially: with an alphabet L of cardinality |L |,
the number of different contexts of size k grows as |L |k. Therefore, for a given trace length,
N , there are more different contexts as k increases, and thus, less samples of each context
and its corresponding next locations. This fact makes the probability estimation worse,
since there are less samples with which the calculations can be made. In [12], the authors
state that the entropy of a mobility model built by Markov O(k) algorithm decreases as k
increases, meaning that the uncertainty the model encloses about the next location of the
user decreases, as explained in Section 2.2. However, it does not decrease indefinitely, but
there is a value of k above which it is not possible to obtain a lower entropy. Therefore,
the question that follows from this fact is: which is the optimal order, k, and how to
dinamically figure it out based on each specific movement history? The answer is given
by the LZ-based algorithms. They build a similar model to Markov ones (represented by
means of a tree like the one depicted in Figure 5.1), but with a variable order, k, that grows
or remains constant depending on l. The main advantage of these algorithms is that the k
value is granted to be always optimal, meaning that the entropy of the model will always be
minimal. This implies that the uncertainty about the next event in the movement history
of the user will be minimal too. Next sections will describe each LZ-based algorithm in
detail.

5.1.2 LZ Algorithm

This is the basic algorithm of LZ family and works as follows [163]. Let γ be the empty
string and l the input movement history. The LZ algorithm takes l and splits it into sub-
strings s0s1 . . . sm such that s0 = γ and for all j ≥ 1 the prefix of substring sj , meaning
all but the last character of sj , is equal to some previous si, for all i < j. It is impor-
tant to notice that the division is made sequentially, so when each si is determined the
algorithm then considers only the remaining trace. Taking the following example history,
l = abababcdcbdab, the division will be as follows: γ, a, b, ab, abc, d, c, bd, ab.
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γ

a:4

b:3

c:1

b:2

d:1

c:1 d:1

Figure 5.2: LZ tree after parsing the example movement history.

In order to store these substrings (also referred to as patterns), the LZ algorithm builds
a tree, called LZ tree, which grows dynamically during the analysis and division of the
movement history. Each tree node represents a substring and stores the number of times
that substring appears among the patterns parsed by the algorithm. Figure 5.2 depicts the
LZ tree resulting from parsing the example movement history. For example, the node b : 3
corresponds to substring ab, which have appeared 3 times among the substrings parsed by
LZ algorithm: ab, abc, ab. Table 5.1 shows how l is parsed by the LZ algorithm and stored
in the tree step by step.

Each time a symbol is processed, the first step is to update the tree as explained above.
The next step is to calculate the probability for each known symbol to be the corresponding
to the next location. In order to do that, the LZ algorithm uses an approach proposed by
Vitter [147] that can be expressed as in equation (5.2):

P (Ln+1 = ln+1|l) =
NLZ(cln+1, l)

NLZ(c, l)
, ∀ln+1 ∈ L (5.2)

where c is called prediction context and corresponds to the last substring that has been
parsed by LZ algorithm (e.g., looking at Table 5.1, it can be seen that the context, c, in
step 6 is ab and in step 12 is a); NLZ(cln+1, l) represents the frequency of the substring
cln+1 (i.e. the prediction context followed by symbol ln+1) in the LZ tree and NLZ(c, l)
represents the frequency of the substring c also in the LZ tree. Finally, the LZ algorithm
chooses the symbol with the highest probability of being the next location.

Observing behavior of this basic algorithm, three drawbacks can be spotted:

• The patterns between two detected substrings are lost. In the example, dc is followed
by b, but cb is not in LZ tree.

• The patterns within substrings parsed by the LZ scheme are also lost. For instance,
the abc pattern is in the LZ tree, but bc is not.

• The Vitter calculation method presents problems when a pattern is detected for the
first time, since it has not enough information and is not able to make any prediction

The two next algorithms try to overcome these limitations.
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a:4

b:3

c:1

b:5

c:1d:1

c:2 d:2

Figure 5.3: LZU tree after parsing the example movement history.

5.1.3 LeZi Update Algorithm

Bhattacharya and Das [12] proposed an heuristic variation in order to include patterns
within the substrings parsed by LZ algorithm. The LeZi Update algorithm applies the
same parsing made by the LZ algorithm, but instead of adding only the substrings resulting
from the LZ parsing, the LeZi Update also adds to the so called LZU tree all the suffixes
of each substring. Analyzing the former example, LeZi Update parses l as follows: γ, a, b,
ab{b}, abc{bc, c}, d, c, bd{d}, ab{b}, where the substrings outside the brackets correspond
to the output of the LZ parsing process, and the ones inside the brackets are the additional
ones added by the modifications introduced by the LeZi Update algorithm. In Table 5.1 it
can be seen which LZU tree nodes are added or updated when each new symbol is recorded
on l, and the final LZU tree is shown in Figure 5.3.

Regarding the probability calculation method, the LeZi Update algorithm uses Pre-
diction by Partial Matching (PPM) [26]. This approach solves the problems arising from
using the Vitter approach and the probability estimation is made up from much more
information. PPM works as follows. First, the longest prediction context c, needs to be
determined. In this case, c corresponds to the longest substring (starting by the last sym-
bol of l) already included in the LZU tree. In the former example, the longest prediction
context is order 2 (k = 2), c2 = ab, since there is no substring dba (immediate higher order
prediction context) in the LZU tree yet. With the current prediction context, a table like
Table 5.2 can be built. It gathers the frequency of each substring that has followed the
prediction contexts of order 2 (c2 = ab), order 1 (c1 = b) and order 0 (c0 = γ). In this
table it is also included what is called escape event, which refers to the number of times
a pattern is not followed by any symbol. For example, the substring ab has a frequency
equal to 3 but it has a child whose frequency sums 1 event, and thus there are 2 escape
events. This happens because the first time ab is parsed, the next symbol is not consid-
ered, and because the last substring of the trace is also ab, and the symbol following it is
still unknown. Besides, LeZi Update applies what is known as exclusion technique. This
means that it only considers one-symbol substrings (as the goal is only to predict the next
location), excluding the remaining ones. For instance, for c0, only the contexts a : 1, b : 3,
c : 2, and d : 2 would be considered.

Once having the table filled, the probability is calculated as shown in equation ((5.3)):
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c2 = ab c1 = b c0 = γ

c:1 c:1 esc:3 a:1 abc:1 bc:1 c:2 esc:0

esc:2 d:1 ab:2 b:3 bd:1 d:2

Table 5.2: Frequency of the substrings following each context, ck, when the LeZi Update
algorithm parses the example movement history.

P (Ln+1 = ln+1) = Pk(ln+1) = P (ln+1|ck) + P (esc|ck) · Pk−1(ln+1),∀ln+1 ∈ L (5.3)

which translated to the example, and taking ln+1 = c as the target symbol which probability
is wanted to be known, results in Eq. (5.4):

P (Ln+1 = c) = P2(c) =
P (c|ab) + P (esc|ab) · P1(c) =
P (c|ab) + P (esc|ab) · {P (c|b) + P (esc|b) · P0(c)} =
P (c|ab) + P (esc|ab) · {P (c|b) + P (esc|b) · P (c|γ)}

(5.4)

and applying the data in Table 5.2 results in Eq. (5.5):

P (Ln+1 = c) = 1
3 + 2

3 · {
1
5 + 3

5 ·
2
13} (5.5)

Despite the improvements introduced by this algorithm, the patterns between consec-
utive parsed substring are still undetected, and thus not included into the corresponding
tree. The following algorithm addresses this pending drawback.

5.1.4 Active LeZi Algorithm

The algorithm proposed by Gopalratnam [51] is intended to consider the substrings among
consecutive parsed patterns when building the so called ALZ tree, thus solving the remain-
ing problem of the LZ algorithm. In order to achieve this, the Active LeZi algorithm uses
a window of variable length, which is determined by the longest pattern parsed by the
LZ algorithm at each step. This scheme works as follows. When the algorithm detects
a new symbol, it makes the same parsing as the original LZ algorithm. Once the length
of the new parsed pattern is known, the window length is updated (if needed) and the
new symbol is added to the window. Finally, all the suffixes of the window are added
to the tree. Table 5.1 shows the evolution of the window (row labeled as ALZ Window)
and the substrings that are added or updated at each step to the ALZ tree represented in
Figure 5.4.

The probability calculation process is based on the PPM algorithm as before, so ex-
pression (5.3) still applies. However, instead of using the exclusion method, in this case the
PPM method takes into account the symbols (not substrings) that are children of a given
context, as shown in Table 5.3. The Active LeZi algorithm solves all the initial problems at
the expense of increasing the information stored, and therefore memory and time resources
required.
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a:4

b:3

c:1

b:5

c:1d:1

a:1 d:1

a:1 d:1

c:1 d:1

b:1

c:2 d:2

c:1 a:1

b:1b:1

Figure 5.4: ALZ tree after parsing the example movement history.

c2 = ab c1 = b c0 = γ

c:1 a:1 d:1 a:4 c:2 esc:0

esc:2 c:1 esc:2 b:5 d:2

Table 5.3: Frequency of the symbols following each context, ck, when the Active LeZi
algorithm parses the example movement history.

5.2 Combining LZ-based Location Prediction Algorithms

The previous section detailed the working principles of the prediction algorithms under
study. In order to provide a first overview of their prediction performance, the MIT and
UC3M data sets will be used as input mobility data, to analyze the baseline prediction
accuracy of each algorithm.

But first, it is worth to take an even deeper look into the working principles of each
algorithm. By examining them carefully, it can be noticed that they share a common
structure. Every algorithm takes each new symbol, processes it to update the mobility
model stored in corresponding tree, and finally, using the transition probabilities enclosed
in the frequencies of each node of the tree, calculates some probabilities to determine
the most probable next location. Therefore, two different and independent stages can be
distinguished, as shown in Figure 5.5:

1. Tree updating scheme. This phase is in charge of learning and building up the
mobility model of the user. In order to do that, the algorithm processes each new
symbol together with the current context at each step, looking for mobility patterns.
The patterns can be sequences of symbols already seen before, and also sequences not
seen before but that can potentially be new patterns. In order to save the mobility
model of the user in a compact way, so that further pattern look-ups are fast, the
parsed location sequences are added to the corresponding tree, which contains the
mobility model of the user.

2. Probability calculation method. The second step is the one actually providing
the location prediction. For this task, each algorithm uses the updated tree resulting
from the previous stage (i.e., the mobility model of the user). The model contains the
probability transitions between states, and thus by performing certain calculations,
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Figure 5.5: Internal division in two stages of the LZ-based prediction algorithms.
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Figure 5.6: Available combinations when splitting the algorithms into two independent
stages.

the probability of each known symbol to be the corresponding to the next location
can be estimated. The estimation is based on the individual’s current context, this is,
the most recent locations, together with the current one. Once all the probabilities
are calculated, the prediction will be the symbol with the highest probability.

Figure 5.6 shows that this division gives rise to nine combinations. This procedure
allows to study which combination shows the best prediction accuracy, and to analyze the
impact of each stage in the prediction process. The next section covers the evaluation of
the combinations proposed here.

5.2.1 Evaluation of the Basic Combinations

The division of the original LZ-based algorithms into two independent stages generates nine
different combinations that will be evaluated in this section. First, focusing on the number
of right predictions with respect to the total number of predictions made attained by each
combination (which will be referred to as accuracy), Figure 5.7 shows the percentage of
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users (y-axis) that attain, at least, the corresponding fraction of correct prediction (x-axis),
for the baseline, CDR and DDR-based traces of the MIT and UC3M data sets. Besides,
in order to compare the results with the individuals’ mobility characteristics considered in
these data sets, one of the human mobility features studied in Chapter 4 will be considered:
the mobility predictability. As described in Section 4.1, the concept of predictability
measures the maximum fraction of correct predictions that any prediction algorithm can
ever achieve when considering a particular movement history. It is determined by the
randomness of the user’s mobility, quantified in terms of the entropy rate of the trace (see
Section 2.2 for more details about the concept and calculation of the entropy rate of a
finite symbol sequence). Thus, the predictability provides an idea of how far the prediction
accuracy of each algorithm could reach, given the particular users considered (which will
never be a 100%).

Comparing first the probability calculation methods (lines with the same color), Fig-
ure 5.7 shows that PPM without exclusion (PPMw/o) works best with any of the tree
updating schemes, for the three data sources. Regarding the results derived from us-
ing Vitter method, they are very close to those attained by the PPM without exclusion
approach when combined with the ALZ tree in both cases, even being a much simpler
calculation method, and thus consuming less resources. However, the Vitter calculation
method does not work well when using the LZ or LZU trees, since they lack much infor-
mation about the movement patterns to provide a good prediction if a simple method, like
the Vitter approach, is used. Lastly, PPM with exclusion (PPMw) provides poor results
when combined with the ALZ tree, even when this tree is the one storing the maximum
number of patterns. This fact may be surprising, but taking a deeper look into the working
principles of the PPM with exclusion method, the reason of this behavior becomes clear.
Let l = abababcdcbdab be the movement history of a user and the ALZ tree represented
in Figure 5.4 be the one corresponding to such movement history built by the Active LeZi
algorithm. Table 5.4 is the table that the PPM with exclusion method builds when an-
alyzing that tree, where ck are the different contexts PPM uses for calculating the next
symbol probabilities.

c2 = ab c1 = b c0 = γ

c:1 a:1 da:1 a:1 ba:1 bda:1 cd: 1 dab:1

esc:2 c:0 esc:0 ab:2 bc:0 c:0 cdc:1 dc:0

cd:1 abc:1 bcd:1 cb:0 d:0 dcb:1

d:0 b:3 bd:0 cbd:1 da:0 esc:0

Table 5.4: Frequency of the substrings following each context, ck, when the Active LeZi
algorithm parses the example movement history.
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(a) MIT data set, baseline. (b) UC3M data set, baseline.

(c) MIT data set, CDR-based. (d) UC3M data set, CDR-based.

(e) MIT data set, DDR-based. (f) UC3M data set, DDR-based.

Figure 5.7: Fraction of users in the MIT and UC3M data sets attaining, at least, the
corresponding fraction of right predictions (or less), for each algorithm combination, when
considering the baseline, CDR, and DDR-based data collection schemes.
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By taking the one-symbol substrings (the ones representing the next location), it can
be seen that most of them have frequency 0 due to the fact that the Active LeZi algorithm
adds all the substrings whose length is equal to the window length at each step to the ALZ
tree. Therefore, most of the intermediate tree nodes are only part of longer substrings
instead of being a substring parsed by themselves. For example, substring dcb has been
added in one step, and therefore the PPM with exclusion method only considers it as a
complete substring dcb, without noticing about intermediate nodes dc or d. Therefore, as
the PPM method considers shorter contexts (c1 = b, c0 = γ), the symbol frequencies are
lower (being 0 in many cases) because all or most instances of those nodes are probably
part of longer substrings that have been added in one step. This phenomenon entails two
conclusions:

• PPM with exclusion does not seem to be very appropriate in the scenario covered in
this thesis, since the focus is on predicting the next event (instead of the sequence of
future events).

• The lowest orders are barely taken into account, since the PPM with exclusion al-
gorithm quantifies these frequencies in such a way that they turn to be very low or
even 0. This fact is specially critical since the lowest orders have the highest number
of samples, thus potentially providing more accurate predictions.

With respect to the comparison of updating schemes (same line types), thus fixing
the probability calculation method and applying different updating schemes, the Active
LeZi algorithm is the best choice when working with Vitter and PPM without exclusion,
although the differences in the last case are very small. LeZi Update works better with
PPM with exclusion because of the reasons previously discussed. Without taking into
account the combination of Active LeZi with PPM with exclusion method, the results are
coherent with those shown in [136]. This conclusion could be foreseen since the patterns
information gathered by the ALZ tree is greater with respect to the LZU tree, and the
same applies to the LZU tree with respect to the LZ tree.

Regarding the results with the CDR and DDR-based traces, the results when comparing
the algorithms are different. For the case of CDR-based data, the PPM without exclusion
approach is still the best probability calculation method, but in this case, the PPM with
exclusion method works equally well. The Vitter method is the one performing the worst,
for all the tree updating schemes. This fact gives an idea of the different type of information
enclosed by the traces collected following the CDR-based approach with respect to the
baseline case, which makes it difficult to compare different prediction algorithms if they
are evaluated with data coming from different sources, as usual in the literature.

As mentioned in Chapter 3, the DDR-based data in the MIT data set is scarce, so
the results shown in Figure 5.7e cannot be taken into account due to the small amount of
data from which they come from. However, the DDR-based traces of the UC3M data set
complement this information, showing a similar behavior of all the algorithms combinations
with respect to the baseline case: PPM without exclusion is again the calculation method
providing the best results, whereas ALZ tree is the updating tree scheme that performs
best. The main difference stems from the maximum prediction accuracy values, which are
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much lower than in the baseline case, as well as the predictability values. Later on this
chapter, these results will be re-considered again, unveiling the real similarity between the
DDR and baseline schemes in the prediction results.

The comparison between the results obtained with each data set provides also inter-
esting insights. In all cases, the prediction accuracy and the predictability share a very
similar shape. However, in the UC3M data set, the prediction accuracy is further away
from the upper bound set by the predictability than in the MIT case. Therefore, in order to
evaluate predictions algorithms, the data set used need to be evaluated first, before coming
to any conclusion. In all plots it can be observed that a decrease in the predictability
implies an even lower prediction accuracy. Both lines are not exactly parallel, but their
distance shrinks as the value of the predictability increases. Therefore, knowing this pa-
rameter of human mobility is key to assess the performance of the algorithm, isolating this
performance from the specific data features.

5.2.2 Evaluation of the Useful Predictions

In Section 4.3, it was shown that the traces of both the MIT and UC3M data sets include
a high number of ping pong events, especially those of the MIT data set. In that section,
different detection and filtering techniques were proposed in order to eliminate these events,
which do not represent any real movement of the user, and which shown to bias the real
mobility features reflected in the traces. Therefore, if the mobility features are noticeable
biased by these ping pong events, the learning and prediction processes can be potentially
biased as well. This section analyzes this hypothesis and shows the results of making
predictions using the filtered traces obtained in Section 4.3, comparing the results with the
ones corresponding to the baseline traces, exposed in the previous section.

Recalling the ping pong detection procedure described in the previous chapter, it de-
pended on two parameters, p and q, which delimited the number of samples needed to
determine if a ping pong sequence among 2 or 3 cells, respectively, was taking place. The
output of this procedure was just a sequence indicating if the cell record at each position
of the movement history corresponded to a ping pong sequence or to a real movement.
For instance, if the movement history l = abcbcbcdeababa is considered, the output of the
detection procedure would be 01111110011111, where 1 indicates the existence of a ping
pong sequence. Therefore, with this sequence indicating the symbols (locations) recorded
into the location history and pertaining to ping pong sequences, it can be determined the
number of correct predictions corresponding to ping pong sequences, and the number of
right predictions indicating the most probable next real location of the user. This last
aspect will be referred to as useful predictions, since among all the predictions provided
by the algorithms, the actual interest lies in those predicting the real movement of the user.
Figure 5.8 shows the fraction of correct predictions attained for the baseline case, as well
as the fraction of useful predictions of the MIT and UC3M traces, when using two ping
pong detection schemes, (p, q), corresponding to (3, 4) and (4, 6). The fraction of correct
useful predictions is calculated considering the number of events in the trace that do not
belong to a ping pong sequence.
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(a) MIT data set, baseline. (b) UC3M data set, baseline.

(c) MIT data set, (p, q) = (3, 4). (d) UC3M data set, (p, q) = (3, 4).

(e) MIT data set, (p, q) = (4, 6). (f) UC3M data set, b(p, q) = (4, 6).

Figure 5.8: Fraction of users in the MIT and UC3M data sets attaining, at least, the corre-
sponding fraction of right predictions (or less), for each algorithm combination, when con-
sidering the baseline case and the useful predictions, for two ping pong detection schemes,
(p, q).
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Starting with the MIT results, it can be observed that, whereas for the baseline traces
50% of the users can attain 60% of correct predictions, when considering the fraction of
right useful predictions for both schemes collapse to values where 50% of the users do not
even obtain 20% of right predictions about real movements. This is due to the observed
high number of ping pong events, already described in 4.3.2. Therefore, the most part of the
correct predictions in the baseline traces correspond to ping pong sequences. In the UC3M
case, the fraction of correct predictions drops from around 35% for 50% of the users, to 10%
or 15%, for each detection scheme, (3,4) and (4,6), respectively. The decrease is not as big
as in the MIT case, corresponding to a lower number of ping pong effects, as already noticed
in Section 4.3. In general, for both data sets, the noticeable difference of the prediction
accuracy when the ping pong effect is considered or not responds to the fixed structure
of those ping pong sequences—two or three symbols, continuously repeated. Thus, it is
extremely easy to predict the next symbol of the ping pong sequence, just by knowing
the one or two previous symbols. However, although easy to predict, this predictions are
useless to foresee the future location the user will visit.

Therefore, the next question to investigate is the real fraction of right predictions
achieved when considering the filtered traces coming form the three filtering techniques
proposed in Section 4.3—representative, limits, and hybrid. Figure 5.9 shows these results
for the case of the detection scheme (3, 4), considering both the MIT and UC3M data sets.
The results and conclusions obtained are just the same ones than for the (4, 6) detection
scheme, so the plots corresponding to that case are neglected to avoid redundancy. It
is worth to emphasize the difference between this case and the results of considering the
useful predictions, studied so far. In this later case, each baseline trace is used as the input
of the prediction algorithms in order to obtain the predictions of the next location at each
step. Then, considering the ping pong events considered in each trace, the predictions
corresponding to ping pong events are neglected, since they are not useful for movement
prediction purposes. However, the case analyzed next provides a different perspective.
The baseline traces are first filtered with the procedures described in Section 4.3, thus
generating three different filtered traces for each baseline one. These filtered traces are
the ones used now as input of the prediction algorithms, to obtain the corresponding
predictions. The goal is to check if the prediction accuracy improves when no ping pong
sequences are included as part of the mobility model of the user (stored in the corresponding
tree), and thus just movement patterns are detected and learnt. That would mean that
the real movement of the user are better predicted by using the filtered traces instead of
the baseline ones as input of the prediction algorithms.

In all subfigures of Figure 5.9, the upper bound determined by the predictability of the
resulting traces in each case is also represented. The predictability values in the filtered
traces are substantially lower than in the baseline case, shown in Figure 5.8, because the
ping pong sequences contribute to decrease the randomness of the trace (i.e., the perceived,
but unreal, randomness of the individual’s mobility). Thus, by eliminating this effect, the
randomness increases and the predictability decreases. However, the prediction results fall
down even more than the predictability, and the gap between both of them is wider than
in the baseline case. As mentioned before, the lower the predictability, the bigger is the
difference between its value and the prediction accuracy. In the case of the representative
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filtering technique, the prediction accuracy achieves the lowest value because this technique
completely deletes all ping pong sequences, leaving just one symbol as representative of
the sequence. Thus, the technique is not adding any fixed structure than can be easily
predicted. However, in the limits and hybrid techniques cases, both of them add some
more overhead (the limits of the sequence), thus decreasing the impact of the complete
ping pong sequences, but leaving some reminiscence of it. This can be observed in the
prediction accuracy achieved in both filtered traces sets, where the prediction accuracy is
higher than in the representative filtering case.

Regarding the prediction algorithms performing best, it can be noticed that, unlike
in the baseline case, there is a combination performing clearly better than the rest: the
Active LeZi with PPM without exclusion. That means that the amount of information
this algorithm stores in its tree is critical in this case, since the results of the rest of up-
dating schemes are further away to the results obtained by when using the ALZ tree, when
combined with the PPM without exclusion method. Besides, this probability calculation
technique shows to play an important role also, since the combinations closest to this best
one are those combined with PPM without exclusion method.

Comparing the prediction results of the filtered traces with respect to the useful predic-
tions, shown in Figure 5.8, it can be noticed that filtering the traces improves the prediction
accuracy. In the MIT case, whereas the fraction of right prediction was around 15% for
50% of the users, it increases up to around 25% for the representative case and close to
30% in the limits and hybrid cases. In the UC3M traces, the improvement is less notice-
able. Whilst obtaining around 15% of correct useful predictions for 50% of the users, this
percentage increases up to 20% when filtering the traces with the representative technique,
and to close to 25% when using the other two filtering techniques. It can also be observed
that, even after the filtering process, the UC3M traces show a lower predictability than
the MIT ones. This leads to think that the set of users considered in the MIT data set are
indeed more predictable due to the common working or studying environment. However,
the UC3M data set was composed of traces coming from users with varied occupations
and frequented places. Thus, their predictability is much lower, which implies also a lower
prediction accuracy. These results obtained after filtering the original traces reinforce the
importance of a previous analysis of the data, before assessing any prediction algorithm.

Finally, it is worth to notice the similarity between the prediction results derived from
the filtered and the DDR-based traces, depicted in Figure 5.7 (for the UC3M data set).
As mentioned in the previous section, the DDR-based traces led to a prediction accuracy
much lower than the baseline case. However, as can be seen now that the filtering process
was applied, this decrease observed in the DDR case came from neglecting the ping pong
effects introduced in the baseline traces. The noticeable similarity between the results of
the filtered and DDR-based traces suggests that the DDR-based collection scheme can be
also a good candidate to capture the mobility of the user, better than the widely used
CDR-based one.
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(a) MIT data set, representative (3,4). (b) UC3M data set, representative (3,4).

(c) MIT data set, limits (3,4). (d) UC3M data set, limits (3,4).

(e) MIT data set, hybrid (3,4). (f) UC3M data set, hybrid (3,4).

Figure 5.9: Fraction of users in the MIT and UC3M data sets attaining, at least, the
corresponding fraction of right predictions (or less), for each algorithm combination, when
considering the baseline case and the three predictions techniques combined with the de-
tection scheme (3,4).



5.2. Combining LZ-based Location Prediction Algorithms 95

5.2.3 Comparison with Classical Markov Models

As stated in the literature review in Section 2.1.4, many works use Markov models, mainly
of orders 1 or 2, as prediction algorithms of the future movements of the user. Although
these models are simpler than the LZ-based ones, as discussed in Section 5.1, the LZ-
based models should, theoretically, outperform Markov models because they store more
information in their trees. As previously described, the main feature of the LZ family is that
the algorithms are able to dynamically compute the optimal order of the model underneath,
so that the entropy, and thus uncertainty about the next location, is minimized. However,
some works in the literature, like [136], show how an order-2 Markov model achieves better
results than the LZ or LeZi Update algorithms when applied to prediction purposes. These
results pose the question on why a Markov model of low order can perform better than a
LZ-based algorithm that, theoretically, achieves minimum entropy and uncertainty values.

In order to ask this question, the MIT data set has been used to feed three Markov
models or orders 1 to 3, in order to check their prediction accuracy. Figure 5.10 shows
the comparison of the fraction of right predictions attained by these Markov models, with
respect to the ALZ tree combined with the PPM without exclusion method. It can be seen
that for the baseline case, the order-2 Markov model provides the best results, slightly out-
performing the LZ-based solution. However, when considering the filtered traces, meaning
that no ping pong sequences are present, the results are quite different. The Markov mod-
els perform worse than the LZ-based solution, whilst the difference of prediction accuracy
among them decrements as more repetitions are added to the trace. The traces filtered
by the representative technique show a larger gap between the Markov and LZ results,
whilst the traces filtered by the limits and hybrid methods, which add some fixed repeated
patterns representing the ping pong sequences, show a narrower gap between the results
of the different prediction approaches.

It can be deducted that the order-2 Markov model can easily and accurately predict
the next symbol in every sample of a ping pong sequence (or any sequence with a fixed
structure), since these sequences are composed of two or three symbols continuously re-
peated. However, as soon as those effects are deleted, Markov models show to fall short to
represent the movement patterns of the user. This result contrasts with many works in the
literature, where Markov models are used due to the good results they seem to offer, thus
inviting to reflect on the data used in such studies and the potential data-related effects
that might lead such good results when using Markov models.

5.2.4 Using Several Symbols as Prediction Output

The evaluation done so far considered as prediction the symbol with the highest probability
to be the next one (i.e., the symbol with the highest probability in Figure 5.5). However,
as mentioned in Chapter 4, a drawback of using the cellular telephony network is that
even if the individual is not moving, her mobile phone can be switching the connection
among several cells due to reasons others than movement, mainly related to the network
initiative (load balance, better signal reception due to weather conditions, etc.). Therefore,
sometimes a location can be equally represented by more than one cell, and thus, the
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(a) Baseline. (b) Representative (3,4).

(c) Limits (3,4). (d) Hybrid (3,4).

Figure 5.10: Fraction of users in the MIT data set attaining, at least, the corresponding
fraction of right predictions (or less), when considering the baseline case, and the original
Active LeZi algorithm compared to the Markov models of order 1, 2, and 3.

prediction can be equally useful if it is either of the cells representing the location.

Figure 5.11 shows the increment in the percentage of correct predictions when using
the two and three symbols with the highest probability of being the next one, with respect
to the case of considering only the most probable symbol. It can be seen that using just
two symbols improves greatly the prediction accuracy, whilst using three symbols does not
provide such a significant improvement.

The increment in the prediction accuracy can be specially observed in the baseline case,
as well as the filtered traces using the limits and hybrid techniques. On the other hand,
the traces filtered with the representative technique are the ones less improved by the use
of two symbols, and using three symbols provide a barely noticeable improvement. Recall
that in this case no ping pong sequences are present in the trace, thus the use of two
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(a) MIT data set, original traces.
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(b) MIT data set, filtered traces.

Figure 5.11: Fraction of right predictions for each of the users in the MIT data set, when
using the original Active LeZi algorithm and considering as prediction the one, two or three
most probable next symbols, for the baseline, CDR and DDR-based traces, as well as the
traces filtered with the three filtering techniques and relying on the (3,4) detection scheme.

symbols is not that critical as in the other cases.

Still, the fact that the user can connect equally to more than one cell when moving in
the same direction due to differences in the signal strength received at every moment or
because load balance issues, gives rise to an uncertainty not only about the movement of
the user, but also in the network behavior. Thus, using two symbols can help to tackle
this problem, inherent to the use of cellular networks as proxies of the user movement, and
which can be extended to the use of other wireless networks.

5.3 Relationship between Prediction Accuracy and Mobility
Features

Once the prediction performance of the original algorithms has been assessed, the next
step is to relate that performance with some of the mobility features studied in Chapter 4.
The analysis will focus on potential relationships that can be further leveraged to improve
the prediction performance achieved so far by the original LZ-based algorithms. Since the
results have shown to be equivalent for both the MIT and UC3M data sets, only the figures
corresponding to the first one will be shown, to avoid redundancy.

The first mobility feature to focus on is the amount of movement, which, recalling
the definitions in Section 4.1, roughly corresponds to the number of cell changes when
translated to the symbolic domain. Figure 5.12 shows the relationship between the fraction
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(b) Representative (3,4).
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(c) Limits (3,4).
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(d) Hybrid (3,4).

Figure 5.12: Fraction of right predictions as a function of the number of cell changes, when
using the original Active LeZi algorithm and considering the baseline traces as well as the
traces filtered with the three filtering techniques relying on the (3,4) detection scheme.

of correct predictions and the number of cell changes recorded so far when each prediction
is calculated. Due to the high number of total cell changes of the movement history of each
user and in order to reduce the volume of data shown in the figure, 1,000 samples have been
randomly selected for each user, excluding the first 500 ones to avoid the learning phase
of the algorithms that may mislead the results. No significant relationship can be seen
in any of the cases—baseline, and traces filtered using representative, limits and hybrid
techniques with the (3,4) ping pong detection scheme,— where a wide range of possible
prediction accuracies are equally likely to happen for all the span of number of cell changes.

The same lack of relationship can be observed when considering the number of different
cells visited with respect to the fraction of right predictions. However in this case, this
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(a) Baseline.
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(b) Representative (3,4).
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(c) Limits (3,4).
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(d) Hybrid (3,4).

Figure 5.13: Fraction of right predictions as a function of the number of different visited
cells, when using the original Active LeZi algorithm and considering the baseline traces as
well as the traces filtered with the three filtering techniques relying on the (3,4) detection
scheme.

result is somehow surprising because the more different cells are known to be places visited
by the user, the algorithms need to select the next location among a wider set of possible
choices. This could suggest at first a decrease in the prediction accuracy as the number of
different visited cells increases. However, taking a look at Figure 5.13 it can be checked
that this theoretical effect does not take place. The fact that only a limited number of cells
can be visited next considering the current cell the user’s device is connected to eradicate
this hypothesis, which would apply if all the locations would be equally probable to be
visited given any current location, or if the algorithms would have no memory.

Regarding the entropy and entropy rate of the movement histories of the users, and
recalling Section 4.2, there was a noticeable difference in their distribution, as well as their
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(b) Entropy rate.

Figure 5.14: Fraction of right predictions as a function of the entropy and entropy rate
values, when using the original Active LeZi algorithm and considering the baseline traces as
well as the traces filtered with the three filtering techniques relying on the (3,4) detection
scheme.

value, being the entropy values higher than the entropy rate ones. However, when analyz-
ing their relationship with the fraction of right predictions achieved, it can be seen that the
initial differences go beyond the value. Figure 5.14 shows the relationship between the frac-
tion of right predictions and entropy in subfigure 5.14a, and entropy rate in subfigure 5.14b.
The results for the baseline and filtered traces are shown together in both cases, in different
grey colors. As can be observed, even when both entropy concepts measure in some way
the randomness of the user movements, the relationships with the prediction behavior are
very different. In the case of entropy, for the same range of values, the fraction of right
predictions varies greatly, and seems to depend on the data used: for the same entropy, the
fraction of right predictions with the baseline data is higher than with the filtered traces.
However, subfigure 5.14b clarifies that the dependency is not on the data itself, but on its
entropy rate. Although the four data sets share some span of entropy values, the baseline
data reflects a much lower entropy rate than the filtered traces, being almost disjoint sets
to that respect, as shown in Figure 4.18. It seems to be precisely the entropy rate the one
determining the fraction of right predictions, as can be seen in Figure 5.14b. The tendency
is clearly decreasing, meaning that a higher entropy rate value (i.e., higher user mobility
randomness) leads to a lower prediction accuracy, as can be expected. Therefore, the re-
sults seem to indicate that the key to improve the prediction behavior of the algorithms
relies on reducing the entropy rate, being the rest of parameters not that important.

5.4 Prediction Improvement Proposals

After analyzing the interplay between the prediction results and the intrinsic mobility
features of the users whose future movements are predicted, some conclusions on how
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these mobility features impact prediction can be extracted. In the previous section it was
shown that the feature with the deepest impact on prediction accuracy is the randomness
of the user’s movements, this is, her entropy rate. Thus, by focusing on this feature, it
might be possible to improve the prediction results. In this section, some improvements
based on the observations done in the previous sections to achieve better prediction results
are proposed, to further evaluate.

5.4.1 Extended LeZi Algorithm

In the previous section it was concluded that the randomness of the user’s mobility, reflected
into the entropy rate of her trace, seems to be the decisive feature impacting the fraction
of right predictions attained by any prediction algorithm. Thus, it seems reasonable to
focus on this aspect to try to improve the amount of right predictions. In fact, a reasoning
similar to this one was already followed in [12]. In this work, the authors discussed that the
improvement on prediction accuracy achieved by the LeZi Update algorithm they proposed
came from reducing the entropy rate enclosed in the mobility model represented by the
LZU tree, with respect to the entropy rate shown by the original LZ tree. Therefore,
it seems that by reducing the entropy rate enclosed by the mobility model built by the
algorithm (i.e., the entropy rate enclosed in the corresponding tree), the prediction accuracy
increases. Therefore, the first improvement proposal is precisely based on this observation:
to design a tree updating scheme that allows to reduce the entropy rate of the mobility
model represented by the resulting tree.

In order to design the new prediction algorithm, it is required to have a method that
allows to quantify such entropy rate. In [12], the authors describe a method that is easy
to apply for short traces, and thus small trees. But it becomes too complex when the
trace length increases and the tree becomes more complex. Therefore, a new entropy
rate estimator, easier to calculate at each step of long traces, and based on Grassberger’s
estimator described in Section 2.2, is proposed to evaluate the entropy rate enclosed in the
trees built by the original algorithms and the newly proposed one, which will be described
further on.

5.4.1.1 Quantifying the Entropy Rate of a LZ-based Mobility Model

As mentioned before, in order to reduce the entropy rate of the mobility model enclosed
in the corresponding tree, the first problem to tackle is how to quantify such entropy
rate. Recalling Section 2.2, the entropy rate of a finite symbol sequence can be estimated
using Grassberger’s estimator. Applied to the mobility model, Ln, that corresponds to
the stationary stochastic process which entropy rate will be estimated, and the trace, l,
corresponding to the specific finite time series of length N coming from a realization of
such mobility model, expression (2.16) turns into:

ĤR (Ln) = HR (l) =

(
1

N

N∑
i=2

Λi
log2 i

)−1
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where Λi is the shortest substring starting at position i that has not previously appeared
in the trace from position 1 to i− 1.

Observing the working principles of the LZ-based algorithms, described in Section 5.1,
their behavior is similar to Grassberger’s estimator. The LZ-based algorithms divide the
trace in patterns such that each substring is different in at least one symbol to some previous
substring. This is equivalent to searching the shortest substring not seen before. In fact, in
Section 5.1 it was already mentioned that the LZ-based algorithms dynamically compute
the optimal order, k, (this is, the optimal Λi) at each step to minimize the entropy rate
of the mobility model they build (represented by the corresponding tree). The question is
how to quantitatively estimate this entropy rate.

Considering how Grassberger’s estimator and the LZ-based algorithms look for the
shortest pattern not seen before, there is one main difference: the sequential behavior.
Grassberger’s estimator considers all the known trace in order to compute each Λi. There-
fore, if a new symbol is recorded into the trace, l, the estimator needs to recompute all Λi
from beginning to end. On the other hand, the LZ-based algorithms compute the optimal
order, k—the equivalent to Λi—at each step, independently of the next symbol that will
be next recorded into l. Thus, when a new location is recorded, the LZ-based evaluate the
new symbol (parsing a new subpattern or recognizing an already seen one), without recom-
puting the previously parsed patterns. Each new pattern is added to the corresponding
tree, and depending on how the parsing is done, the tree will contain more or less patterns,
as can be observed when comparing the LZ, LeZi Update and Active LeZi versions. The
more patterns the tree contains, the more probable the different length substrings formed
with the new recorded symbol are already in the three, and therefore, the more probable is
to search for a longer substring not stored by the tree yet. The longer the substring finally
parsed, the higher the Λi value, and thus, the lower the entropy rate. Thus, the LZ-based
algorithms are a sequential approximation to Grassberger’s approach. Considering this ap-
proximation, the challenge falls on finding a way in which the LZ-based algorithms can be
used to actually estimate the entropy rate value reflected by the patterns each algorithm is
able to parse. In order to do so, the new estimator will be based on Grassberger’s formula,
but adapting it to work sequentially with the patterns parsed by the LZ-based algorithms
at each step, which are contained in the corresponding tree, instead of processing the whole
trace at once.

First, in order to compute the entropy rate at each step of the trace, the initial formula is
slightly modified. The authors of [92] proposed the concept of instantaneous entropy, which
refers to the entropy rate, based on Grassberger’s estimator, applied to each of position, i,
of the trace. With this proposal, the idea is to calculate Hi

R(Ln) in an instantaneous way,
as new symbols are recorded into l, using the following expression:

Hi
R(Ln) = H i

R(l) =

1

i

i∑
j=2

ΛIj
log2 j

−1 ,∀i ∈ [1, N ] (5.6)

where ΛIj (where I represents instantaneous) corresponds to the length of the shortest

substring from j−ΛIj +1 to j that did not appear in the sequence from index 1 to j−ΛIj , for
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Figure 5.15: Elements of Λ calculation for each entropy estimator.

each sample of the trace. This way, only the samples from 1 to i are analyzed. Figure 5.15
shows the difference between Grassberger’s and instantaneous entropy rate estimators.

Now, in order to actually consider entropy rate determined by the content of each tree,
the general idea relies on using the tree built by each algorithm to estimate the entropy
rate, in such a way that at each step, the elements of the summation of equation (2.16)
will be determined by the length of the shortest substring not stored in the corresponding
tree so far.

To complete the elements needed to apply the LZ tree entropy estimator, a sliding
window, entropyWindow, is defined as shown in Figure 5.15. Its length, h, is equal to
the longest substring parsed by the prediction algorithm we are considering (i.e., its tree
height). Therefore, the entropyWindow slides when the tree height does not change from
one step to the next one (e.g., the window is ab at i = 4, and it slides to be ba at i = 5),
whilst it is increased when the tree height changes (e.g., the window is ab at i = 6 and it
increases to be abc at i = 7).

The proposed entropy rate estimator works as follows. At each step, Λalgj is calculated,
where alg = {LZ,LZU,ALZ}, for each positions j within the window (j ∈ [i− h + 1, i]).

In order to calculate Λalgj , the substring starting at position j up to position i, lj,i, is looked

up in the tree considered. Then, Λalgj would be the longest substring matching lj,i plus one
(which is the length of the shortest substring not stored yet).

The reason to recalculate Λalgj of the positions j within the entropyWindow (instead

of just calculating Λalgj for the last position, i) is that it might be the case in which Λalgj
is different before and after adding the next symbol to the trace. Taking as reference the
example in Figure 5.15, and applying the Active LeZi algorithm, the ALZ tree at step i = 13
would be the one in Figure 5.4. Thus, at the last step, i = 13, entropyWindow = dab, and
ΛALZ11 = 2, ΛALZ12 = 3 and ΛALZ13 = 2. Then, two cases can happen:

• If a new symbol, l14 = c, is detected, then: entropyWindow = abc, ΛALZ12 = 4,
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ΛALZ13 = 3 and ΛALZ14 = 2.

• If the new symbol is l14 = e, then: entropyWindow = abe, ΛALZ12 = 3, ΛALZ13 = 2 and
ΛALZ14 = 1.

Therefore, if the first estimates of ΛALZ12 or ΛALZ13 are not recomputed, they might be not
accurate, depending on the next symbol that will be recorded in the sequence. The most
accurate Λj considering the corresponding tree at each step is obtained when j = i−h+ 1,
i.e., for the first position of the entropyWindow. The estimator could only get the highest
possible value of Λj in this case, and it is guaranteed that, considering the corresponding
tree at that step, it is not possible to find any longer pattern with the information up to that
moment. Therefore, Λj at the positions j older than the ones within the entropyWindow
will not change.

Since the values of Λalgj for j ∈ [i−h+1, i] (i.e., the positions within the entropyWindow)
might change, the summation in expression 5.6 is split into two parts:

• A finalSum, which is the sum of all the terms Λalgj outside the entropyWindow
(i.e., j ∈ [2, i−h]). This finalSum is updated every time the windowEntropy slides

through the trace with the value of Λalgi−h, which is the last value Λalg which will not
be recalculated anymore.

• A nonFinalSum, which sums all the terms Λalgj within the entropyWindow (i.e.,
j ∈ [i− h+ 1, i]).

Algorithm 1 describes how the LZ tree entropy rate estimator works when each new
symbol, li, is recorded into the trace, l

Since with this approach is based on the substrings parsed by the LZ-based algorithm
chosen, this entropy rate estimator has the same drawback than the algorithms: not all
the patterns are detected due to the increasing length of the considered patterns and the
sequential behavior. Thus, when the entropyWindow length is increased, the previous
patterns of such length are neglected. This means that the trace is not revisited, which
contrasts with Grassberger’s estimator behavior that continuously revisit the whole trace to
calculate each Λi. This results in existing patterns not parsed by the LZ-based algorithms
that might impact the estimation of Λi. The entropy rate estimation would be better as
the corresponding LZ-based algorithm is able to detect longer mobility patterns. In next
sections, a comparative of the estimation done with each LZ-based algorithm with respect
to the results obtained using Grassberger’s approach will be presented.

5.4.1.2 Extended LeZi Algorithm Proposal

Once being able to estimate the entropy rate enclosed in the mobility model stored in the
tree generated by each LZ-based algorithm, the next step is to design a new tree updating
scheme, which will be called Extended LeZi, capable of detecting more existing patterns,
thus reducing the entropy rate of the resulting model. As seen in previous sections, this
could potentially improve the fraction of correct mobility predictions done by the algorithm.
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Algorithm 1 Entropy Rate Estimation of a LZ-based tree when processing trace l

Input: l = l1l2 . . . li . . . lN
Input: alg={LZ, LeZi Update, Active LeZi}
Output: entropyRateV alues[]
1: i← 1
2: tree← γ
3: Λ[∗]← 0
4: h← 0
5: entropyRateV alues[∗]← 0
6: for i = 2 to N do
7: newSymbol← li

{1. UPDATE entropyWindow}
8: if h==(entropyWindow length) then
9: finalSum← finalSum+ Λ[i− h]/ log2(i− h)

10: entropyWindow=li−h+1,i

11: else
12: increase entropyWindow length in 1
13: entropyWindow=li−h,i

{2. CALCULATE Λj ,∀j ∈ [i− h+ 1, i]}
14: j ← i− h+ 1
15: while j <= i do
16: Λ[j]← 1+ length of longest string starting at position j of entropyWindow found

in tree
17: nonFinalSum← nonFinalSum+ Λ[j]/ log2(j)
18: j ← j + 1

{3. UPDATE TREE}
19: tree← update tree with newSymbol applying alg
20: h← (tree height)

{4. CALCULATE H i
R(l)}

21: entropyRateV alues[i]← i/(finalSum+ nonFinalSum)
22: i← i+ 1
23: return entropyRateV alues[]
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a b a b a b c d c b da c b a
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Figure 5.16: Comparison of maximum length calculation, k, for the four LZ-based algo-
rithms.

In order to propose this new scheme, it is precise to carefully examine how the updating
tree scheme of the three LZ-based algorithms existing so far—LZ, LeZi Update, and Active
LeZi—work. Going back to Section 5.1, although each LZ-based prediction algorithm has
its own peculiarities, the maximum length of the parsed substring at each step is determined
in the same way: given the sequence of locations, l, the LZ-based algorithms split it into
substrings, s0 . . . sm such that s0 = γ, being γ the empty string, and si 6= sj , ∀j ≥ 1 and
i < j. In other words, every substring sj is different in at least one symbol with respect to
all the previous parsed si.

As explained in the previous section, this behavior is parallel to that of Grassberger’s
entropy estimator. The main difference stems from the sequential operation of the LZ-based
algorithms. That operation mode leads to parse the trace in subsequent, not overlapping,
substrings. That means that, whereas Grassberger’s approach evaluates the longest sub-
string, Λi, for every single position of the trace, i ∈ [1, N ], the LZ-based approaches only
evaluates Λi at the starting symbol of each parsed pattern, si. The rest of the symbols
composing every si, that could potentially be the starting points of longer substrings to
parse, are neglected. Consequently, the entropy rate value might be overestimated, since
longer patterns are neglected, which leads to Λi values lower than possible. The Extended
LeZi algorithms aims at overcoming this limitation of the behavior of the LZ-based pre-
diction algorithms, by releasing the constraint set by the original LZ-based algorithms, as
shown in Figure 5.16. As explained, the three original LZ-based algorithms parse the trace
in subsequent and not overlapping substrings. Thus, only patterns up to three symbols
are detected, as shown in dotted lines. However, the Extended LeZi scheme neglects this
limitation, and evaluates the longest substring not seen before at every position of the
trace. This way, patterns up to 4 symbols are detected, as the dashed lines show.

The idea is to mimic the behavior shown by Grassberger’s approach, without fully
loosing the best properties of the LZ-based approaches: their sequential behavior, and the
compact storage and fast look-up process provided by the use of tree structures to store
the parsed patterns. In order to do so, a sliding window of variable size, w, is used. This
window will always have the length of the longest substring parsed so far, k. For each
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position delimited by the window, the algorithm will check the longest substring, starting
at that position up to the end of the window, already parsed, and thus, stored in the
corresponding tree.

Let l be the mobility history or trace, l = l1l2 . . . lN , and w a window of variable
length, k, such that w = lj,j+k, where lj,j+k represents the subsequence of symbols in l
from position j to j + k. The initial value of w is the empty string, γ, and thus the initial
value of k is 1. The subpatterns enclosed in the window correspond to every substring from
position j up to position j + k: {lm,j+k} , ∀m ∈ [j, j + k]. For instance, if w = abcd, then
the subpatterns contained in w are {abcd, bcd, cd, d}

A tree data structure is also defined, that will be referred to as ELZ tree from now on.
This tree will hold the patterns parsed by the Extended LeZi scheme, as the equivalent
trees do in the LZ, LeZi Update and Active LeZi algorithms.

When a new symbol is recorded into the movement history, l, the window w slides to
include the new symbol. Then, for each subpattern enclosed in the window, the algorithm
checks if it was already parsed, i.e., if it is in the ELZ tree. If the subpattern is not in the
tree, it is added; otherwise, the frequency of the tree node representing such subpattern
is increased. If the longest subpattern in the window (i.e., the whole sequence of symbols
enclosed by the window) is already in the tree, it means that the length of the longest
substring not parsed yet is greater than the window length, meaning that k increases. In
such situation, after updating the corresponding tree node, the length of the window is
also incremented in one, so that it remains equal to k. Incrementing the window length
allows to capture this new longest subpattern just detected. Thus, when the next symbol
is recorded, the window will not slide but just enclose also that new symbol.

Following the previous description, it is possible to parse the longest substring starting
at position j that did not appear from position 1 to j + k, ∀j ∈ [i − k + 1, i], being i
the number of symbols recorded in l so far. However, recalling the original algorithms,
the goal is to find the longest substring that did appear form 1 to j − 1. For instance,
in Figure 5.17, the algorithm is parsing at position i = 9. The window at that point is
w = aba, where j = 7 and k = 3. In the past, the substring aba was already parsed in step
i = 7, and is thus stored in the ELZ tree. Therefore, when the algorithm looks-up for the
first substring of the current window, aba, it is going to find it in the tree, thus making k to
increase. However, it must be noticed that the substring aba already parsed corresponds to
positions [5, 6, 7], whereas the substring being currently considered corresponds to position
[7, 8, 9]. Thus, the symbol at position 7 creates an overlap. Following the principles of the
LZ-based algorithms, the new substrings to be parsed, in this case, the ones starting at
position j = 7, have to be compared with those appearing from position 0 up to j−1, which
in this case is j − 1 = 6. Therefore, in this case k should not increase its value, because
the longest substring starting at position 7 which have already appeared from position 0
to 6 is size 2, ab, and thus the shortest substring not seen for this case is k = 3.

In order to comply with this constraint, for each position of the window, there is an
associated list of substrings. The list, referred to as pending substrings list, corresponding
to each position of the window contains all the substrings parsed by the first time (i.e., just
added to the tree) which last symbol is the one in the position of the list. In other words,
when the substring starting at position j is found in the ELZ tree, it is also searched in
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Figure 5.17: Overlap problem of the Extended LeZi algorithm.

Figure 5.18: Elements involved in the Extended LeZi scheme.

the pending lists of positions j to j + k. All the substrings stored in these lists appeared
from position 1 to j+ k, ∀j ∈ [i− k+1, i], and thus they must be considered as not parsed
yet, even if the algorithm finds them in the tree. This way, the final result resembles to
comparing the current substring with respect to those appearing from position 1 to j − 1.
As the window slides or increases its size when new symbols are recorded into l, the pending
substrings lists update the same way: if the window slides, the list corresponding to the
first position of the window is removed and a new one is created, corresponding to the new
last position; when the window grows, a new list is added at the end.

Figure 5.18 shows the working principles of the Extended LeZi algorithm. It can be
shown how the window, w, which goes from position i−k+1 to i, slides or grows depending
on the case, as explained before. It has a set of lists storing the pending substrings. At the
previous step from the current one i = 10, the window, comprising positions from 5 to 7,
have one list at position 5 with the string ba. Then, when the window slides to positions
6 to 8, that previous list is deleted (the substring ba can be considered as stored in the
tree when looking for new substrings to parse). Position 7 has an associated list containing
substrings abc, bc, and c, which were parsed for the first time in the previous step. Position
8 has also an associated list containing the substrings bcd, cd, and d, which were parsed
for the first time in the current step. Therefore, when the window keeps on sliding, if the
algorithm finds in the new window any of these substrings, they will not be recognized
as parsed before, even if they are stored in the ELZ tree, since they did not appear from
position 1 to j − 1. Algorithm 2 summarizes the behavior of the algorithm.
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Algorithm 2 Extended LeZi

Input: l = l1l2 . . . li . . . lN
Output: ELZtree
1: ELZtree← γ
2: w ← γ
3: k ← 1
4: pendingNodesLists[∗]← γ
5: for i = 1 to N do
6: newSymbol← li

{1. UPDATE w and pendingNodesLists[]}
7: if k==(w length) then
8: w ← li−k+1,i

9: slide pendingNodesLists
10: else
11: w ← li−k,i
12: increase pendingNodesLists length in 1

{2. UPDATE ELZ TREE}
13: j ← 1
14: while j < k do
15: startingIndex← i− k + j
16: if lstartingIndex,i is not in ELZ tree OR is in pendingNodesLists[j − k] then
17: if lstartingIndex,i is not in ELZ tree then
18: add lstartingIndex,i to ELZ tree
19: add lstartingIndex,i to pendingNodesLists[j]
20: else
21: increase frequency of ELZ tree node corresponding to lstartingIndex,i
22: else
23: increase frequency of ELZ tree node corresponding to lstartingIndex,i
24: if j == 1 then
25: k ← k + 1
26: j ← j + 1
27: i← i+ 1
28: return ELZtree



110 5. IMPROVEMENT PROPOSALS OF MOBILITY PREDICTION ALGORITHMS

5.4.1.3 Evaluation of the Extended LeZi Algorithm

In order to assess the Extended LeZi algorithm, the first step is to evaluate the decrease of
the entropy rate enclosed by the mobility model represented by the ELZ tree, with respect
to the previous proposals, ALZ, LZU and LZ. Using the entropy rate estimation procedure
previously described, the entropy rate of the mobility models stored in the trees generated
by these four tree updating schemes is calculated for the MIT data set. Then, the difference
between the entropy rate value estimated by each of these four LZ-based algorithms and
that estimated using Grassberger’s approach is shown in Figure 5.19. As reference, it is
also shown the error with respect to the instantaneous entropy estimator. Each of the
subfigures represents the distribution of the absolute and relative errors, considering the
Grassberger estimation as the real value and normalization factor. The estimations are
calculated for each sample of all the movement histories.

As can be observed, the distribution of the error in the ELZ case is shifted towards
lower values, although still far away from the error values obtained by the instantaneous
estimator. Thus, although the ELZ tree captures more information that allows to reduce
the entropy rate enclosed by the mobility model built, it is far away from the optimal value.
Table 5.5 provides the statistical values of the error distribution for each case. It shows a
decrease of a 15% in average of the ELZ approach with respect to the ALZ one, which was
the LZ-based approach yielding the lower error up until now.
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Figure 5.19: Comparison of the absolute and relative error distribution of the entropy esti-
mation achieved by using each of the LZ-based algorithms, with respect to the Grassberger
estimator.

Considering these results in the entropy rate estimation, an improvement in the fraction
of right predictions achieved by the ELZ algorithm could be expected, based on the results
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Algorithm Max Min Mean Median Var

Realtime 0.843 0 0.004 (0.63%) 0.001 0.00019
LZ 2.534 0 0.800 (97.91%) 0.790 0.04788

LZU 2.366 0 0.716 (88.74%) 0.701 0.03855
ALZ 1.679 0 0.290 (43.22%) 0.252 0.02449
ELZ 1.539 0 0.180 (28.30%) 0.150 0.01500

Table 5.5: Summary of the main statistics related to the distribution of the entropy es-
timation error achieved by using each of the LZ-based algorithms, with respect to the
Grassberger estimator.

shown in Figure 5.14b. When evaluating the original algorithms it was shown that the LeZi
Update algorithm achieved a better prediction accuracy than the LZ approach, matching
the decrease in the entropy rate estimation error. The same happens when considering the
Active LeZi algorithm, which improvement is even higher with respect to the two other
original approaches, as it is also the difference between its entropy rate estimation error
with respect to that achieved by the LZ and LZU choices.

Figure 5.20 shows the comparison of the prediction accuracy achieved by the ALZ and
ELZ trees combined with the Vitter and PPM without exclusion technique, for the baseline
case and the three filtering techniques combined with the (3, 4) ping pong detection scheme.
Surprisingly, the plots show that the improvement in the entropy rate estimation, and thus,
the increase in the number and length of the patterns stored by the ELZ tree, did not yield
a prediction accuracy improvement for any of the for traces considered. This fact suggests
that it is not the entropy rate enclosed in the mobility model built by the algorithms which
increases the fraction of right predictions, but the entropy rate of the mobility model itself,
depending on the user’s behavior. The tree updating schemes can increase the number
of correct predictions by storing more and longer patterns, but only until certain point in
which an improvement on their capacity to better estimate the entropy rate does not yield
any further improvement in the prediction task. The Active LeZi scheme already reaches
that saturation point, and thus, the better entropy rate estimation done by the Extended
LeZi version does not impact the prediction results.

5.4.2 Probability Calculation Improvement Proposals

In the previous improvement proposal it was checked that lowering the entropy rate of
the mobility model enclosed in the tree built by the algorithms, does not lead to a higher
prediction accuracy indefinitely. This fact seems to indicate that the prediction accu-
racy improvement is not about detecting and storing longer mobility patterns of the user.
Therefore, the next improvement proposal will be focused on how the pattern information
already stored can be better used to increment the number of correctly predicted next
locations.

To that purpose, tt must be noticed that as the length of the contexts increase, the
number of times it can be detected in the movement history, and thus stored in the tree,
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(b) Representative (3,4).
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(c) Limits (3,4).
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Figure 5.20: Fraction of users in the MIT data set attaining, at least, the corresponding
fraction of right predictions (or less), when considering the baseline case, and the three
filtering techniques combined with the ping pong detection scheme (3,4), and applying
the original Active LeZi and Extended LeZi schemes, combined with the PPM without
exclusion algorithm.

decreases. The first reason is that the longer the context considered, the less number of
blocks of the length of the context can be extracted from the trace. Second, given an
alphabet with cardinality C, the number of different possible blocks of size n is given by
Cn. Thus, as n increases, the number of different possible blocks increases as well, and
there would be less samples of each possible block. Third, the LZ-based algorithms start
with context length equal to 1, and it increases the movement history is parsed. Then, the
shortest contexts have more samples, since the algorithms start to parse longer substrings
when many symbols in the trace have been already analyzed.

For these reasons, the number of samples of the longest contexts stored in the corre-
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sponding trees are very low. Taking into account that Vitter and PPM without exclusion
assign the highest weight to those longest context (or consider only them in the case of
Vitter technique), it is possible that the predictions are impacted by the low number of
samples available for the probability calculation. Thus, the proposal for the probability
calculation methods is to consider the contexts that have a minimum number of samples.

Figure 5.21 shows the results of applying this proposal to the Vitter technique and
different values of the minimum number of samples required to take the prediction context
into account. Only 3 values are represented since they are the ones providing the most
significant results. It can be observed that for the baseline case, there is a noticeable
difference when using the original Vitter technique with respect to using it but taking
into account contexts with frequency of at least 10 samples. This last case improves the
prediction accuracy for the whole population of the data set. When increasing that number
to 20, there is still some improvement in the results, but lower than the ones obtained with
the value set to 10. For the case of the traces filtered with the representative technique, the
differences are very small and differ depending on the specific user, whereas for the traces
filtered with the limits or hybrid techniques, the results are also better using the modified
version of the Vitter technique.

The same procedure is applied to the PPM without exclusion technique. However, in
this case the results are quite different. For the baseline traces, the accuracy obtained both
with the original and the modified version are very similar, but when the modified version
is applied to the filtered traces, the prediction accuracy drops down to a 10%. This effect
can be due to the fact that PPM without exclusion considers not only the longest context,
but all the contexts from the longest to the shortest one. Therefore, if the longest context
has a low number of samples, the potential poor probability estimation is corrected by
the estimations coming from the shorter contexts, whereas if the probability estimation is
right, it is leveraged to provide more accurate predictions.

Finally, comparing the results of the best Vitter and PPM without exclusion ap-
proaches, the prediction results are the ones shown in Figure 5.23. Surprisingly, using
the modified version of the Vitter technique, the results outperform those obtained with
the PPM without exclusion in the baseline case and also in the traces filtered with the lim-
its and hybrid filtering techniques. In the case of the traces filtered with the representative
technique, PPM without exclusion keeps on being the best option, although the results
obtained from the Vitter case are very close.

5.5 Conclusions

Despite the wide variety of location prediction algorithms described in Section 2.1.4, the
focus on the specific family of LZ-based prediction algorithms allowed to study them from
different perspectives, trying to better understand their working principles and improve
their results.

The first proposal was to divide the algorithms into two independent phases, namely
the tree updating scheme, in charge of detecting and learning the patterns conforming
the mobility model of the user, and the probability calculating technique, which uses the
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Figure 5.21: Fraction of users in the MIT data set attaining, at least, the corresponding
fraction of right predictions (or less), when considering the baseline traces as well as the
traces filtered by the three filtering techniques combined with the ping pong detection
scheme (3,4), using different depths of the Vitter method.

information of the mobility model updated in the previous phase to estimate the most
probable next symbol. By evaluating all the possible combinations of these two phases,
the results pointed to the probability calculation technique as the main factor in obtaining
higher fractions of right predictions.

One of the more striking results was derived from considering the ping pong sequences
of the movement histories, already studied in Chapter 4. Evaluating the predictions of
real locations (i.e., leaving out the symbols belonging to ping pong sequences), the fraction
of right predictions drops from at least 60% for 50% of the users, to a 20% for 50% of
the users. The network-related effect disclosed in Chapter 4 has a huge impact on the
prediction process. The traces filtered with the three filtering techniques described in such
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(b) Representative (3,4).
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(c) Limits (3,4).
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(d) Hybrid (3,4).

Figure 5.22: Fraction of users in the MIT data set attaining, at least, the corresponding
fraction of right predictions (or less), when considering the baseline traces and the traces
filtered with the three filtering techniques combined with the ping pong detection scheme
(3,4), using different depths of the PPM without exclusion method.

chapter were also processed with all the combinations of the prediction phases enumerated
above, reaching a percentage of right predictions of at least 30%-40% for 50% of the users,
depending on the filtering technique used. The representative technique leads to the worst
results, since the resulting filtered traces have no block repetition at all. The limits and
hybrid techniques, despite filtering out the great part of the ping pong sequences, introduce
blocks with certain fixed structure (the limits of the ping pong sequence, or the limits plus
the representative symbol), which leads to an increased prediction accuracy. These ping
pong sequences lead also to the delusion of simpler predictive models, like Markov models
of order 2, outperforming the results obtained by the LZ algorithms. However, as soon
as the traces are filtered, the results coming from the prediction based on Markov models
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(c) Limits (3,4).
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Figure 5.23: Fraction of users in the MIT data set attaining, at least, the corresponding
fraction of right predictions (or less), when considering the baseline traces and the traces
filtered with the three filtering techniques combined with the ping pong detection scheme
(3,4), comparing the best Vitter and PPM without exclusion approaches.

show to achieve a lower fraction of right predictions than the combination of Active LeZi
and PPM without exclusion algorithm. Again, due to the fixed structure highly repeated
of the ping pong sequences, Markov models learn those sequences and perfectly predict
what symbol comes next. However, as soon as those sequences disappear, these models fall
short to capture the longer mobility patterns of the users.

Another of the problems derived from using the cellular network as a proxy for the
individuals mobility is that their mobile phones can connect to either of two or three BTSs
even being at the same concrete location. When the applications where the next location
predictions are going to be applied are not critical, using the two most probable next
locations as predictions has shown to be an effective way to greatly increase the fraction
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of right predictions, whilst the use of the third more probable locations is not noticeable.
The analysis of the relationship between the prediction accuracy of the original algo-

rithms and the mobility features showed that entropy rate (i.e., the randomness of the user
mobility behavior) is undoubtedly the feature impacting the most in the prediction success.
For this reason, the first prediction improvement was aimed at lowering the entropy rate
of the mobility model enclosed in the tree built by the corresponding algorithm. For that
purpose, an algorithm to sequentially calculate the entropy rate of the tree as it is updated
was proposed. This algorithm helped to estimate the entropy rate of the trees built by
the LZ, LeZi Update and Active LeZi, and compare it to that of the tree built by a newly
proposed algorithm, called Extended LeZi. The entropy rate of the ELZ tree showed to be
a 15% lower than the entropy rate of the ALZ tree. With this result, it was expected an
improvement of the prediction results of the Extended LeZi algorithm combined with some
of the probability calculation techniques. However, comparing the results of the Extended
LeZi algorithm with those of the Active LeZi one, they are practically the same. There-
fore, it can be concluded that an increase in the information stored by the tree beyond the
patterns stored by the Active LeZi algorithm does not improve the prediction accuracy.

Since the main determining factor to increase the prediction success seemed to be
the probability calculation technique, the next proposal was focused on improving the
algorithms of this phase. Under the observation of the decreasing number of samples of
the longest patters stored in the corresponding trees, the Vitter and PPM without exclusion
techniques were modified so that they start taking into account the longest patterns with
a frequency higher than certain threshold. Trying different values of the threshold, it was
found out that the modified version of Vitter obtained the best results with a value of 10
samples, whereas PPM without exclusion does not provide better results with any value of
the threshold. By comparing the best options of both techniques, the modified version of
Vitter with threshold equal to 10 showed an improvement in the baseline traces and those
filtered with the limits and hybrid techniques, whereas the results for the traces filtered
with the representative technique are very close to the original PPM without exclusion,
but being a much faster approach.
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Chapter 6

Contributions to Privacy Metrics
in Human Mobility Scenarios
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The previous chapters analyze human mobility through various stages, aiming at under-
standing individual dynamics to improve the predictions of future locations the individual
will visit. Besides this application, the study of human movement can be applied to several
others such as understanding the spread of infectious viruses, the urban dynamics of a
city, the behavior of wireless networks, among others, as mentioned in Section 1.1. How-
ever, it would be naive to consider just this perspective, without noticing that information
about human mobility can lead to not so honest purposes. When using location-based
services (LBSs) in mobile phones—such as weather, traffic, or news widgets—the user’s
phone sends, quite frequently, a service request together with the user location, aiming
to obtain the most up to date service information associated to that location. Therefore,
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the LBS provider might end up with a location history made up of the sequence of lo-
cations attached to the service requests. This location history is not very different from
the ones considered in Section 3.1: the sampling rate would be, in general, lower than the
baseline case but, for some users, it might be higher than the CDR case. As discussed
in Section 2.1.3, an extensive share of the research on human mobility use these CDR-
based location histories, since they carry enough mobility data so as to, for instance, infer
the user work or home locations. But the implicit information contained in the collected
locations may reach beyond, unveiling details such as if the individual has children (the
number of visits to a kindergarten or school is high), if she may suffer from some chronic
disease (the number of visits to a hospital is high), if she travels much (there are visits
to locations located in many different countries), among others. Therefore, if the location
history obtained by collecting the locations attached to the service requests might be even
more complete, the LBS provider ends up knowing much mobility-related features about
the user, without any guarantee on how this information could be used (or to whom it may
be disclosed).

In general, many LBSs, and other services using the user location as data source, build
upon the creation of user profiles, which combined across several information services pose
evident privacy and security risks. On the other hand, as exposed in the previous chapters,
it is precisely the availability to a system of such sensitive information what enables such
intelligent functionality. Therefore, the need for preserving privacy without compromising
the utility of the information emerges naturally. The existence of this inherent compromise
is a strong motivation to develop quantifiable metrics of privacy and utility, and to design
practical privacy-enhancing, data-perturbative mechanisms achieving serviceable points of
operation in this privacy-utility trade-off.

This chapter describes a new privacy metric based on one of the mobility features that
have demonstrated to be key in the study of human mobility: the entropy rate. There
will follow an study on how to apply data-perturbative methods to the location histories of
individuals to preserve the level of privacy, as measured by the new metric, while preserving
the utility of the data.

6.1 Privacy-Enhancing Technologies and Metrics for Loca-
tion Profiling Scenarios

As exposed in [152], the evolution of LBSs and the associated location techniques leads
to a privacy degradation. Anonymous location traces can be identified by correlation
with publicly-available databases, thus increasing the possibility of disclosing sensitive
data, such as home and work locations [32] or specific points of interest of the user [47].
Therefore, users are exposed to different kinds of attacks (e.g., tracking, localization or
meeting attacks, among others [130]) with the available information collected by LBS
providers, which can disclose a great deal of the mobility profile of the user. For this
reason, privacy enhancement is key in order to tackle the increasing new threats that arise
from the evolution of LBSs.

The following is a brief overview of the state-of-the-art on privacy-enhancing technolo-
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gies and privacy metrics related to LBSs and user mobility profiling.

6.1.1 Privacy-Enhancing Technologies for LBSs

Many different privacy-enhancing techniques focused on LBSs and location profiling can
be found in the literature. The statistical disclosure control (SDC) community proposed
many of them, aiming to prevent the disclosure of the contribution of specific individu-
als by inspecting published statistical information. k-anonymity [123, 122] is one of the
proposed techniques. A specific piece of data on a particular group of individuals is said
to satisfy the k-anonymity requirement if the origin of any of its components cannot be
ascertained, beyond a subgroup of at least k individuals. The concept of k-anonymity is a
widely popular privacy criterion, partly due to its mathematical tractability. However, this
tractability comes at the cost of important limitations, which have motivated a number of
refinements [145, 142, 90].

In the context of statistical databases appears also the concept of differential privacy [40,
56, 22]. The idea behind this approach is to guarantee that, after adding random noise to a
query, if it is executed on two databases that only differ on one individual, the same answer
must be generated with similar probabilities in both databases. Differential privacy is used
for LBSs when aggregated location data are published. However, the scenario considered
in this thesis is that of a single user sending requests to an LBS provider, which is a slightly
different case. In order to cope with this difference, the concept of geo-indistinguishability
has emerged recently [15, 20]. It is a variant of differential privacy for the specific case of
LBSs based on the principle that, the closer two locations are, the more indistinguishable
they should be. In other words, given two close locations, they should generate the same
reported location to the LBS provider with similar probabilities. Since the concept of
distance is present, this case is not applicable to the case of symbolic locations, since there
is no distance information associated to them.

Other widely used alternatives, known as user-centric approaches, rely on perturbation
of the location information and user collaboration. In this last context, the authors in [131]
propose the collaboration of the users to exchange context information among the interested
user and another one who already has that piece of data. This way, many interactions
with the LBS provider disappear, thus increasing the location privacy by avoiding as many
requests (with the user’s location attached to it) to the provider as possible. On the other
hand, users’ interactions pose in some cases additional privacy risks. That is the case of
the effect of co-location in social networks, as demonstrated in [98]. In these situations,
even if the user does not disclose her location, she might reveal her friendship and current
co-location with a user who does disclose her location. The authors then quantify the
impact of these co-location data, deriving an inference algorithm.

Hard privacy [30] is one of the existing privacy-enhancing techniques (PETs) [35] that
consists in the preservation of the privacy by the user itself by minimizing, obfuscating or
perturbing the information released, without the requirement of trusted intermediaries. In
principle, by perturbing the confidential data prior to its disclosure, users attain a certain
degree of privacy, at the expense of degrading the system performance (or utility). A wide
variety of perturbation methods for LBSs has been proposed [39]. In [38], locations and
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the adjacency between them are modeled by means of the vertices and edges of a graph,
assumed to be known by users and providers, rather than coordinates in a Cartesian plane
or on a spherical surface. Users provide imprecise locations by sending sets of vertices con-
taining the vertex representing the actual user location. Alternatively, [5] proposes sending
circular areas of variable centers and radii in lieu of actual coordinates. Finally, we sketch
the idea behind [156]. First, users supply a perturbed location, which the LBS provider
uses to compose replies sorted by decreasing proximity. The user may stop requesting
replies when geometric considerations guarantee that the reply closest to the undisclosed
exact location has already been supplied. Besides these approaches, a number of hard-
privacy mechanisms relying on data perturbation have been formulated in an application
context wider than LBSs, primarily including online search and resource tagging in the
semantic web. Indeed, an interesting approach to provide a distorted version of a user’s
profile of interests consists of query forgery. The underlying principle is to accompany
original queries or query keywords with bogus ones, in order to preserve user privacy to a
certain extent. The associated cost relates to traffic and processing overhead, but on the
other hand, the user does not need to trust the service provider nor the network. Building
on this simple principle, several protocols, mainly heuristic, have been proposed and im-
plemented, with various degrees of sophistication [75, 44, 129]. A theoretical study of how
to optimize the introduction of bogus queries from an information-theoretic perspective,
for a fixed constraint on the traffic overhead, appears in [110]. The perturbation of user
profiles for privacy preservation may be carried out not only by means of the insertion of
bogus activity, but also by suppression [101]. These approaches constitute the basis of the
present chapter.

Finally, going a step further by preserving not only privacy related to locations under-
stood as a set of independent samples, but also the correlations among locations, the most
recent works on location privacy, like [143], take into account the sequential correlation be-
tween locations, aiming at protecting the present, past and future locations, as well as the
transitions between locations. The authors tackle the problem as a Bayesian Stackelberg
problem and use the attacker’s estimation error as the privacy metric.

6.1.2 Privacy Metrics for Data Perturbation against User Profiling

Quantifiable measures of performance are essential to the evaluation of privacy-enhancing
mechanisms described before. As the focus will be placed on those mechanisms relying
on data perturbation, the metrics to be reviewed will be focused on these mechanism, in
terms of both the privacy attained and any degradation of utility. In a recent study on
privacy metrics [112], it is shown that many of them may be understood from a unifying
conceptual perspective that identifies the quantification of privacy with that of the error
in the estimation of sensitive data by a privacy adversary, this is, privacy is construed as
an attacker’s estimation error.

Of particular significance is the quantity known as Shannon entropy [29], a measure of
the uncertainty of a random event, associated with a probability distribution across the
set of possible outcomes, already defined in Section 2.2.

Some studies [126, 34, 33, 97, 148, 2] propose the applicability of the concept of entropy
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as a measure of privacy, by proposing to measure the degree of anonymity observable by
an attacker as the entropy of the probability distribution of possible senders of a given
message in an anonymous communication system. More recent works have taken initial
steps in relating privacy to information-theoretic quantities [110, 111, 81].

6.2 Entropic Measures of User Privacy

As discussed at the beginning of the chapter, when an individual uses LBSs through her
mobile phone—such as weather, traffic, or news widgets—the device sends, quite frequently,
a service request together with the user location, aiming to obtain the most up to date
information related to the current location. For this kind of services, it is sufficient to
know a coarse precision location, thus cell-based location being accurate enough to obtain
a reasonable result. The LBS provider may, then, collect or disclose to third parties sensible
data related to the locations visited by the user. The main difference of the contributions
of the work described in this chapter with respect to previous works is the distinction
of two types of profile that can be built from the collection of locations sent to the LBS
provider. The first profile to be defined will be the location profile, which consists of
the set of locations visited by the user and the visit frequency to each one. This profile
may disclose implicit information related to the user: her home and work locations; if she
has children (the number of visits to a kindergarten or school is high); if she may suffer
from some chronic disease (the number of visits to a hospital is high); if she travels much
(there are visits to locations located in many different countries), among others. In these
cases, an attacker aims at obtaining the most accurate estimation of the real probability
distribution of the visits to each location. Then, it would be easier for the attacker to derive
the implicit information enclosed in the location profile if some few locations concentrate
many more visits, i.e., if the location profile is as different as possible than an uniform
distribution. There exist several metrics to measure privacy in this type of scenarios where
a set of labeled data exposes the user profile. Some of them are based on the concept of
entropy of a set of independent samples, but as far as the literature reviewed indicates, it
has never been applied to the specific case of sequences of cell-based locations.

Furthermore, a second type of profile is defined, the mobility profile, which can be
built by taking advantage of the frequent and ordered LBS requests mobile phones usually
send to obtain the updated information related to their location. It is defined as the
temporal sequence of locations visited by the user. Therefore, the stress in this profile
lies on the temporal correlations among the visited locations, instead of considering the
locations as independent events. In this case, an attacker will aim at correctly predict the
next location of the user, given her past history of locations. With this profile the adversary
could derive more refined information due to the knowledge of temporal dependencies. An
innocent example of personal mobility information disclosure might the following one. If
the untrusted LBS provider knows, by inspecting the mobility profile, that the user goes
from home (first most visited location) to work (second most visited location) and then to
a third location near a supermarket, the provider might infer that the user regularly buy
products at that supermarket. Therefore, the LBS provider might leak this data to other
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related services which can start sending advertisement or offers of different establishments
offering the same products right before the user goes to her usual supermarket. This
behavior, which might result very effective for advertisement, is more persuasive when
adding the temporal component to the locations profile to transform it into a mobility
profile. The problem arising in this situation is that not only the set of visited locations
and their visit frequency are target of a privacy attack, but also the correlations among
the visits to those locations constitute a privacy threat.

As demonstrated in [134] and in the previous chapters, the correlations among location
samples enclose a great deal of information when aiming at predicting the next location of
a user. Since this is the target of an adversary, it is necessary to measure privacy taking
into account such correlations. However, the classical concept of entropy used for the
location profiles does not work on processes with memory, because it is only applicable to
sequences of independent samples. Therefore, applying privacy metrics based on entropy
to a mobility profile does not reflect the real privacy level, since the temporal correlations
among locations visits, which represent the main component of a mobility profile, remain
ignored.

Next, the different profiles considered will be formally defined, and then, the use of
entropy and entropy rate as privacy measures for each case will be discussed.

6.2.1 User Mobility Profiling and the Adversary Model

Users of a LBS disclose trajectories, i.e., sequences of locations, to a service provider. With
a small loss of generality for the purposes of user profiling on the basis of behavior, those
positions are assumed not to be treated in the form of space coordinates, but categorized
into a predefined, finite set of labeled symbolic locations corresponding to the different
BTSs the individual’s device connects to. As explained in Section 3.1, as the individual
moves, the locations are recorded into what is known as location history. Further, the data
contained in this location history allows to define two types of user profile, the location
profile and the mobility profile. In the following subsections, these two types of profiles
are defined, along with their corresponding adversary models and their connection to the
concepts of entropy and entropy rate as privacy criteria.

6.2.1.1 Location Profile

The location profile is defined as the probability distribution of the visits to each of the
locations in the set of visited locations of the user, i.e., the relative frequency of visits of
the user’s visited location set. This is analogous to the histogram of the relative frequency
of the different search categories, in the case of the web search presented in [110, 102].
This profile reveals information related to different locations, independently of the rest
of the visited locations and correlations among them. For instance, an attacker may be
interested in knowing the probability distribution of the visits in order to know several
pieces of related data, such as: home or work locations, which are demonstrated to be very
easy to derive [50, 134], even when the attacker has access to just a few LBS requests [31];
if the user travels to many different countries; if the user usually visits (the relative visit
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frequency is high) some hospital, religious or political organization, children school, sports
center, among others. The attacker, say the LBS provider or a third party to whom
the provider relinquishes the user location profile, might use this information to provide
personalized advertisement or vary prices depending on the user’s demand (e.g., if the
frequency of the cumulative visits to locations in a different country to the one with the
highest number of visits is high, it can be derived that the user travels frequently, thus she
will be prone to book flights at higher prices, because traveling might be part of her work).
A high number of visits to a hospital or a religious or political-related venue can have also
an impact when looking for jobs or insurances.

• Definition (location profile): Let L be a random variable representing the location
of a given user, taking values from an alphabet of predefined location categories L
(the set of BTSs the user’s device has connected to). The time of the location referred
to is chosen uniformly at random. The location profile of the user is modeled as the
probability mass function, p(l), of the discrete random variable L. Thus, p(l) is the
probability that the user is at location l ∈ L at any given time. In other words, p(l)
represents the relative frequency with which the user visits this location.

• Adversary model: The adversary model for the location profile is, in this case,
estimating the visit probability distribution as accurately as possible, by inspecting
the locations attached to the LBS requests. To this end, the adversary could utilize a
maximum likelihood estimate of the distribution, directly as the histogram of relative
frequencies, simply by counting observed locations, or any other well-known statistical
techniques for the estimation of probability distributions, such as additive or Laplace
smoothing.

An intuitive interpretation of Shannon entropy as privacy metric stems from the
observation that the higher the entropy of the distribution, informally speaking,
the flatter the distribution and the less information the attacker could derive about
predictable locations. In other words, if all of the locations have the same visit
frequency, the attacker can know the visited locations, but not which of them are
visited more frequently.

6.2.1.2 Mobility Profile

The mobility profile is defined as the joint probability of visited locations over time or,
equivalently, as the sequence of conditional probabilities of the current location, given
the past history of locations. In this case, locations are not considered independently
as in the user’s location profile, but the most important component is the correlation
among different locations, i.e., the short- and long-range temporal dependencies among
them. In this case, an attacker will aim at predicting the next location that the user
will visit, given the past history. The predictions about future locations provide a further
refinement for advertisement purposes: the advertiser knows not only which product might
be most interesting for the user regarding her visited locations, but also when to offer it
for maximizing the impact of the ad. For instance, suggesting some entertainment activity
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might be more effective if, by inspecting the mobility profile, the attacker finds out that
the user did not go from home to work, as usual, which might indicate a weekend or
holiday. The adversary’s goal is then to be able to predict as accurately as possible the
next location of the user, given her past mobility history. There exists many prediction
algorithms that can be used to do so, as discussed in Chapter 5, and their success depends
on the predictability of the mobility history. As already discussed in Chapters 4 and 5, and
demonstrated in [134], the temporal dependencies among the locations visited by the user
enclose information that noticeably increases the predictability of the mobility. It must be
recalled the concept of predictability, closely linked to the entropy rate of the sequence,
that constitutes an upper bound on how much of the time the next location of the user
can be correctly predicted, given her past mobility history.

• Definition (mobility profile): More precisely, for each user, we define a stochastic
process (Ln)n=1,2,... representing the sequence of categorized locations over discrete
time instants n = 1, 2, . . . The corresponding location Ln at time n is a discrete
random variable on the alphabet of predefined location categories L introduced
earlier. The mobility profile of the user is then defined as the joint probability
distribution of locations over time,

p(l1 l2, . . . , ln−1, ln, ln+1, . . . ),

which may be equivalently expressed, by the chain rule of probabilities, as the se-
quence of conditional probability mass function of the current location, Ln, given the
past location history, Ln−1, Ln−2, . . . , i.e.,

p(ln | ln−1, ln−2, . . . ).

To be consistent with the location histories described in Section 3.1, discrete times
are defined as times relative to a change in the BTS the user’s device is connected
to, so that the actual logged data are the order of the given locations in time, but
not their duration.

• Adversary model: The mobility profile, characterized by the probability distribu-
tion of categorized locations across time, serves to effectively model the knowledge
of an adversary about the future locations of a user and raises the concern that mo-
tivates the contribution of the work described in this chapter. Since predictability
is directly linked to the entropy rate of the mobility profile (the higher the entropy
rate, the lower the predictability, as shown in [134]), this information theory concept
could be used in order to quantify the privacy of the user mobility profile in such a
way that the less predictable a user is (the higher her entropy rate is), the higher her
mobility profile privacy will be.

6.2.2 Additional Discussion on the use of Entropy and the Entropy Rate
as Privacy Measures

Along this chapter, an abstract privacy model is considered, in which individuals send
pieces of confidential data, related to each other in a temporal sequence, to an untrusted
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recipient. This intended recipient of the data is not fully trusted. In fact, it is regarded as
a privacy adversary capable of constructing a profile of sensitive user interests on the basis
of the observed activity or prone to leaking such observations to an external party who
might carry out the profiling. Disclosure of confidential data to such untrusted recipient
poses a privacy risk. However, it is precisely the submission of detailed data on preferences
and activity that enables the desired, intelligent functioning of the underlying information
system. Although this abstraction is readily applicable to a wide variety of information
systems, the exposition done is focused on the important example of LBSs.

More sophisticated user profiling may be carried out if the privacy adversary exploits
the statistical dependence among location samples over time, in order to infer temporal
behavioral patterns. This responds to the observation that the disclosure of a sequence
of user locations poses a clear privacy risk, especially when these locations are viewed in
conjunction and time is factored in. Examples include answers to questions, such as: Where
does a user commonly go after work, before heading back home? On a typical weekend,
what is the user’s preferred activity after leaving their house? What route does the user
usually follow to get to work or back home?

The natural extension of the measurement of privacy by means of entropy to the case
at hand, namely random processes with memory, is the entropy rate, formally defined in
Section 2.2. Because the definition of the entropy rate is approximated by the entropy of a
large block of consecutive samples (normalized by the number of samples), the very same
argument in favor of entropy can be extended to the entropy rate, the latter more suitable
to user profiling in terms of trajectory patterns rather than individual locations.

As already mentioned, an intuitive justification in favor of entropy maximization is that
it boils down to making the perturbed, observed user profile as uniform as possible, thereby
hiding a user’s particular bias towards certain visited places. Less informally, the fact that
entropy is a lower bound on the optimal (Huffman) code length enables to regard it as
a quantifiable measure of the effort of a privacy adversary in obtaining additional bits of
information in order to narrow the current uncertainty down to a deterministic outcome.
Consistently, Fano’s inequality lower bounds the probability of estimation error in terms
of a conditional entropy, in the sense of maximum a posteriori (MAP) estimation, which
can be readily applied to the entropy rate, written as the conditional entropy of a future
location of a user given the past history. Here, MAP estimation might be construed as the
action taken by a smart privacy attacker.

The arguments above justifies the use of entropy and of the more general information-
theoretic quantity known as the entropy rate, as formal, quantitative measures of the effort
of a privacy attacker in order to characterize and predict its behavior.

6.3 Data Perturbation Mechanisms

Following the reasons previously stated, particularly motivated by the advantages of hard
privacy against the reliance on trusted intermediaries, two data-perturbation strategies
prior to the disclosure of trajectories would be investigated theoretically and experimen-
tally, in order to trade-off usability for privacy. In the first strategy, referred to as uniform
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replacement from now on, with certain probability, samples are replaced with values drawn
according to a uniform distribution over the alphabet of possible categorized locations. In
the second mechanism, which will be called improved replacement, the same fraction of
samples is replaced, although a more sophisticated policy is employed. Precisely, the re-
placing samples are drawn from the distribution obtained from the solution to the problem
for optimized query forgery developed in [110]. It should be noted that because the opti-
mization carried out was originally intended for memoryless processes and anonymity was
measured by means of entropy instead of the entropy rate, the aforementioned improved
solution need not be optimal whenever the privacy attacker exploits existing statistical
dependencies over time. Consequently, both mechanisms are merely heuristics chosen to
evaluate the previous proposed metrics.

The probability of replacement is indicative of the degradation in data utility and the
theoretical analysis is equivalent for sample replacement and addition. In this last case,
the utility degradation is understood as an increase in the information sent to the LBS
provider, thus incrementing the energy consumption of the mobile device and, potentially,
the economic cost derived from data traffic. The applications that could benefit from
the privacy enhancement coming from sample addition must be able to send location
samples to the corresponding LBS more frequently than in a normal situation (i.e., where
no privacy-enhancing method is applied) with no impact over the service provided (e.g.,
sending more requests to a weather or news service do not alter the quality of the service
obtained). That would allow the user to send fake locations together with the original ones
without degrading the service provided, only increasing the cost associated with a more
intensive communication. From now on, the description will focus on sample replacement,
but keeping in mind that it could be extended to sample addition, by slightly changing
what is understood by utility in that case. Because sample values may occasionally be
replaced by themselves, especially if the number of location categories is small, counting
the number of effectively perturbed values is a more adequate measure of utility. While
there is ample room for the development of more sophisticated metrics of utility reflecting
the quality of the LBS response, the necessarily limited scope of this contribution prefers
to cover the aspects of privacy and perturbation, as the first insightful step towards the
problem of privacy-enhanced perturbation of processes with memory.

Let (Xn)n∈Z be a stationary random process with samples distributed on a common
finite alphabet X . Two alternative privacy-enhancing data perturbation mechanisms are
proposed, in which individual samples of the random process Xn are replaced with X ′n,
with probability ρ and independently from each other, as follows.

• Uniform replacement: X ′n is drawn uniformly from X .

• Improved replacement: X ′n is drawn according to the distribution obtained as the
solution to the maximum-entropy problem of [110].

Even though [110] was meant for sample addition rather than replacement, the mathemat-
ical formulation turns out to be completely equivalent. However, it should be noted that
the optimality guarantee of the cited work applies to the entropy of individual samples,
but not entropy rates in general processes with memory. Consequently, the two alternative
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mechanisms described above are merely heuristic in the current context. In both cases, the
resulting perturbed process (X ′n)n∈Z is stationary.

Let ρ be the replacement rate. Because sample values may be conceivably replaced with
themselves, a different utility measure will be proposed, which more accurately reflects
the actual impact of the data perturbation mechanism. Precisely, the perturbation rate
δ = Pr{Xn 6= X ′n} is defined, constant with n on account of the stationarity of the processes
involved, and observe that δ 6 ρ, as only replaced samples may be effectively perturbed,
that is, actually different.

Even in the heuristic called improved replacement, the samples to be replaced are cho-
sen randomly and replaced independently of their original value. A truly optimal strategy,
however, should choose which samples to replace, exploit the statistical model of the mem-
ory of the process, and be optimized for δ rather than ρ as a measure of utility. The scope
of this work is limited to the analysis of the heuristic mechanisms described, as a first
step towards shedding some light on the problem of designing perturbative strategies for
processes with memory and with a truly optimal privacy-utility trade-off (or privacy-cost
qualitatively talking if we would consider sample addition).

6.3.1 Uniform Replacement

Uniform replacement on stationary processes with a strictly positive replacement rate is
proved to always increase the entropy rate, unless the original process is already uniformly
distributed and memoryless.

Lemma 6.1. Let S and U be independent random variables, the latter uniformly distributed
on the alphabet of the former. Let T be a third random variable, in general statistically
dependent on S. Take S′ = U with probability ρ, independently from S and T , and S′ = S
otherwise. Then, H(S′|T ) > H(S|T ), with equality if and only if either ρ = 0, or else S is
uniform and independent of T . (Refer to Section B.1 for the demonstration)

Theorem 6.1. Let X = (Xn)n∈Z be a stationary random process with samples distributed
on a common finite alphabet X . Although the process X itself need not be independent,
each of its samples Xn is altered completely independently as follows. Each sample Xn

is replaced by another random variable Un, uniformly drawn from the alphabet X , with
probability ρ, and left intact otherwise. Let X ′ = (X ′n)n∈Z be the resulting process, also
stationary. Then, for any m > 0,

HS(X ′0|X ′−1, . . . , X ′−m) > H(X0|X−1, . . . , X−m),

with equality if and only if either ρ = 0, or else X0 is uniform and independent of
X−1, . . . , X−m. The same inequality holds in the limit of m → ∞ yielding entropy rates,
that is, HS(X ′) > HR(X), with equality if and only if either ρ = 0, or else X is uniformly
distributed and memoryless. (Refer to Section B.2 for the demonstration)

6.3.2 Improved Replacement

In the case of memoryless processes not originally uniform, it is proved that improved
replacement will require a lower replacement rate to achieve maximum entropy than that
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demanded by uniform replacement. It will also be shown that when the cardinality of the
alphabet is large, the perturbation rate approaches the replacement rate.

In the perturbative mechanisms described earlier, the critical replacement rate ρcrit is
defined as the replacement rate ρ required for the entropy rate HR(X ′) of the perturbed
process (X ′n)n∈Z to attain its maximum possible value log |X |, achievable only when X ′

becomes memoryless and uniformly distributed. Denote by δcrit the corresponding, critical
perturbation rate. Write

pmax = max
x∈X

p(x) > 1
|X | ,

with equality if and only if X is uniformly distributed.

Theorem 6.2. Assuming the nontrivial case in which the original process X is not already
independent, uniformly distributed.

In uniform replacement,

δ = ρ
(

1− 1
|X |

)
,

ρcrit = 1,

δcrit = 1− 1
|X | .

In improved replacement, for any ρ > 1− 1
|X |pmax

,

δ = (1− ρ)
∑
x

p(x)2 + ρ− 1
|X | .

If the original process is i.i.d.,

ρcrit = 1− 1
|X |pmax

,

δcrit = 1− 1
|X | −

1
|X |pmax

(
1−

∑
x

p(x)2

)
.

Otherwise, in the general case of processes with memory,

ρcrit = 1 and δcrit = 1− 1
|X | .

(Refer to Section B.3 for the demonstration)

Observe that in the case of uniform replacement, a large alphabet |X | implies that
the perturbation rate will approach the replacement rate, that is, δ ' ρ, because of the
unlikelihood of replacing a sample by itself. In the case of improved replacement, the
approximation requires not only |X | � 1, but also

∑
x p(x)2 � 1, and only holds for

sufficiently large ρ.



6.4. Experimental Study 131

6.4 Experimental Study

The previous section formulated the theoretical problem of privacy-enhancing in processes
with and without memory and how we tackle it. In [110] the authors show some results
when the mechanisms proposed are applied to web queries, memoryless process, and using a
small number of categories. In this section, it will be shown what happens when the scenario
switches to the use of LBSs, where the number of categories increases, the probability model
underneath becomes more complex, and time starts playing an essential role. The first
part of the section exposes the privacy gain obtained after applying the privacy enhancing
mechanisms to different processes, both synthetic and real, and the last part discusses the
differences that using real location data brings to the generic problem.

6.4.1 Experimental Results

This section collects the results drawn from applying the perturbation mechanisms de-
scribed in the previous section to two different data sets. On the one hand, synthetic data
coming from several symbol sequences generated by Markov processes and basic alphabets
of 2 symbols. These data will allow to check the performance of the perturbation meth-
ods in simple ideal conditions, and to observe the influence of an increase of the process
memory. On the second hand, real mobility data, taken from the MIT data set, will be
processed and compared with the results of the synthetic Markov processes, since the real
scenario can be considered as an extrapolation of simple Markov processes in terms of
memory and cardinality of the alphabet. More precisely, the location history considered
collects the sequence of locations visited by a user during an academic year, whose mobile
device was attached to more than 500 different cells (symbols) and performed more than
10,000 cell changes (number of samples of the location history).

In order to show the privacy enhancement evolution, each process is perturbed from 0%
of replaced samples (i.e., the original symbol sequence) to 100% of replacements (all samples
are replaced), as explained in [110]. For each process and percentage of replacements, 10
realizations are averaged. As a general rule, the original process corresponds to ρ = 0,
and therefore the original (and minimum) entropy value. As ρ increases, the process starts
to become a uniform distribution, situation reached when ρ is maximum, i.e., when all
samples are replaced by another one using the perturbation methods previously described,
and therefore for the maximum value of ρ, the entropy value should be equal to HH . It
should be noticed that ρ is the percentage of replacements, but the real replacement rate
is δ, since the replaced sample is sometimes equal to the original one.

First, the influence of an increase of the process memory in the entropy estimation will
be studied, as well as the consequences of the process becoming less uniformly distributed,
both in terms of entropy and entropy rate. For this last case, two entropy rate estimators
will be compared: the block entropy and the Grassberger estimator (see Section 2.2.2 for
the definition of both estimators).

Figure 6.1 shows the privacy enhancement at different values of ρ for the processes de-
scribed below. Each process, Ln, will be considered as location profile, thus using Shannon’s
entropy, HR, to asses the privacy improvement, an as mobility profile. When considering
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ρ

HH = log|L|= 1

(a) Uniformly distributed,
memoryless process.

ρ

HH = log|L|= 1

(b) Not uniformly distributed,
memoryless process.

ρ

HH = log|L|= 1

(c) Not uniformly distributed
process with memory.

ρ

HH = log|L|= 8.765

(d) Real location history
from MIT data set.

Figure 6.1: Privacy enhancement at different values of ρ for different processes.

mobility profiles, two entropy rate estimators will used to evaluate the privacy improve-
ment: the block entropy in expression (2.15), HB

R, and Grassberger’s estimator, HG
R. The

different processes considered, composed of 10,000 samples each, comes from the different
distributions described below:

• An almost uniform distribution, memoryless, drawn from an order-1 Markov process.
A Markov O(1) process has only two states, and thus |L | = 2. This Markov process
is determined by the following probabilities: p(1|0) = 0.45, p(0|1) = 0.55, p(1) =
0.55. Since the sequence is drawn from a well-known probability mass function, the
real values of the maximum entropy, entropy and entropy rate are known: HH =
log2 |L | = 1 ≈ HS = HR = 0.993. This configuration represents the baseline case.
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• An independent and identically not uniformly distributed (i.i.d.) process, drawn from
an order-1 Markov process with p(1|0) = 0.8, p(0|1) = 0.2, p(1) = 0.8. The real values
for the maximum entropy, entropy and entropy rate in this case corresponds to HH =
log2 |L | = 1, HS = HR = 0.772. In this case, the process is still memoryless (which
holds true since p(1) = p(1|0) and p(0) = p(0|1)), and the probability distribution of
the possible symbols is slightly different than in the previous case, such that one of
the two symbols of the alphabet is more likely to happen than the other one.

• A not uniformly distributed process with memory, drawn form an order-1 Markov
process, in which p(1|0) = 0.2, p(0|1) = 0.05, p(1) = 0.8. The real values of maximum
entropy, entropy and entropy rate corresponds to HH = log2 |L | = 1, HS = 0.772,
HR = 0.374. In this case, the process shows some memory, keeping the same cardi-
nality and probability distribution with respect to the second case.

• A real mobility trace taken from the MIT data set. Only an estimation of the
maximum entropy can be known, which corresponds to HH = 8.765 (drawn from
the cardinality of the alphabet, i.e., the number of different symbols representing the
BTSs the user’s device connected to). Since the underlying probability distribution
is unknown, neither the entropy nor the entropy rate real values are available. The
use of the location history also means an increase both in the cardinality and the
memory of the process, due to the long range dependencies of human mobility.

For each process, the entropy and entropy rate evolution with respect to the replacement
rates is represented. The samples are replaced using the uniform perturbation method,
i.e., choosing the new sample from the original alphabet of the sequence with the symbols
uniformly distributed. Each process has been generated 10 times, and the results shown
here are the average value of the entropy calculated in each repetition.

In the first case shown in Figure 6.1a, the original process without replacements is
already very close to a uniformly distributed one, therefore there is no evolution in none of
the entropy estimates. When the process is not uniform but still memoryless., such as the
one in Figure 6.1b, HS and HR coincide, as there is no temporal information that can be
captured by HR to lower the uncertainty. Besides, both entropy and entropy rate values
are lower than HH for ρ = 0, since the original process is not uniformly distributed, and
their values increase as the replacements turn the process into a uniform one.

Figure 6.1c shows what happens when the process is not memoryless anymore. In this
case, for ρ = 0 HR is lower than HS , since it the entropy rate leverages the temporal
information present now in the original process to lower the uncertainty.

Finally, Figure 6.1d shows what happens when the number of different symbols (i.e.,
the cardinality of the alphabet) increases, as well as the memory of the process. In this
case, |L | = 500 different symbols, what leads to 5002 = 250, 000 possible blocks of m = 2
symbols to compute HR using block entropy (the blocks are of two symbols to compare
with respect to the Markov processes). Since the number of possible blocks is so high and
the number of samples is only of 10,000, more different blocks of two symbols come to
scene as the process becomes uniform. With this number of samples not every different
block can appear in Ln, which probability would be p(l1, . . . , lm) = 1

250,000 = 4 ∗ 10−6.
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HH = log|L|= 1

δ

(a) Not uniformly distributed
process with memory.

δ

HH = log|L|= 8.765

(b) Real location
history.

Figure 6.2: Comparison of perturbative methods for different privacy measures for different
processes.

Therefore, when computing HR(Ln), the values of the elements of the summation are very
small, due to the scarcity of occurrences of each possible block. This scarcity becomes
more severe as the process tends to uniformity. Thus, HR(Ln) decays to near zero as the
number of replaced samples increases, as shown in the figure. As explained in Section 2.2.2,
this entropy estimation is biased by the small number of samples available in the location
history of the user (even when it comes from a year of location tracking). This is the
reason behind considering a different estimator like the one proposed by Grassberger et.
al and described in Section 2.2.2, represented by H ′

R in the figure. Figure 6.1d shows how
this estimator obtains more reasonable results. Both HR(Ln) and H ′

R(Ln) are equal for
the original sequence (ρ = 0). However, in order to analyze the privacy improvement, an
estimator that works well for all the replacement rate span is required.

Once the role of memory in the processes and how entropy rate is able to capture it by
using an appropriate estimator are understood, the perturbative methods proposed in the
previous section will be analyzed under the entropy and entropy rate-based privacy metrics.
Figure 6.2 represents the privacy level obtained using the perturbative methods described
in Section 6.3, for the synthetic not uniform process with memory described before, and
for the location history drawn from the MIT data set. For each case, four plots can be
distinguished: the privacy enhancement in terms of entropy and entropy rate values, for
the two perturbative methods considered, uniform and improved replacements.

For the case of the synthetic process in Figure 6.2a, it is observed that the privacy
enhancement is faster for the improved perturbation method, mainly when no correlations
are considered, this is, when the privacy metric is based on entropy measurements. That
highlights the fact that preserving the information enclosed in those correlations is more
difficult, using any of the replacement methods. This fact is reinforced by observing that
the privacy level measured by the entropy rate reaches the maximum value when 35% of
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samples are replaced, value that lowers up to 25% when the improved perturbation method
is used and the privacy metric is just the entropy of the sequence, thus not taking into
account temporal information.

When this same analysis is applied to the mobility trace, the results are quite different,
as shown in Figure 6.2b. In this case, since the cardinality of the alphabet is so high, a 100%
of replacements are required in order to obtain the highest privacy level, when measuring
privacy by means of the entropy of the sequence. Besides, the maximum entropy is only
achieved when no temporal correlations are considered. In order to get the maximum value
for sequence-based data, this is, using the entropy rate-based privacy metric, many more
samples would be needed in order to have a precise entropy estimation. In this case it
could be checked that the improved perturbation method does not provide faster privacy
enhancement for any case, thus opening up an interesting research line to find perturbative
methods that improve this result.

6.4.2 Discussion

In the previous figures it could be observed the great difference between theory, with simple
Markov processes, and real scenarios, such as users’ mobility profiles. But, where do these
differences stem from? Although the high cardinality of the alphabet and the complexity
of the short and long term dependencies of location histories play an important role, the
probability distribution underneath the mobility trace is also crucial. A great majority of
visits are concentrated in two or three locations, corresponding to home, work and the main
points of interest of the user, as already discussed in Section 4.2. Therefore, the probability
distribution is very biased toward certain locations. The improved perturbation method
is based on flattening the underlying distribution with as few replacements as possible in
order to get closer to a uniform distribution, and thus to maximum entropy (i.e., privacy).
When the number of different locations is not very high and the probability distribution
is not very biased to certain few categories, it is easier to flatten it, as in the case of the
Markov processes shown. However, in order to flatten the mobility traces, the visits to 2 or 3
locations would be needed to be compensated through the rest of the 500 different locations
visited along the year. Although there are more than 10,000 samples, the cardinality is
still very high, and would need many more samples to be flatten. This issue is even more
critical when considering not the distribution of the visits, but the sequences of locations.
By considering just the short-term dependencies (short mobility patterns), longer mobility
patterns are being neglected, and even in this case the number of combinations is too high
to compensate the number of occurrences of the most repeated sequences. Considering
long-term dependencies (long mobility patterns) leads to so many combinations that there
are not enough samples to even calculate a good entropy estimate, even worse if the block
probability distribution is trying to be flatten.

The bias in the visits probability distribution carries an important consequence: for
an attacker, it is quite easy to analyze a set of locations and determine where the main
points of interest of the user are. Therefore, these become sensible data that must be
masked. The bias can be leveraged in such a way that, instead of trying to flatten all
the distribution, it could be enough to focus on the set of the most visited locations and
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just flatten their number of visits, leaving the least visited ones as they are. This way
the uncertainty of which of the most visited locations is home or work increases with few
number of replacements. If the number of replacements is not critical, or the locations to be
disclosed can be faked, the approach could be to select some of the least visited locations
and increase their number of visits to make it comparable to the most visited places.
However, as mentioned before, this strategy will require a great number of replacements or
additional fake locations. Again, it should be noted that adding fake locations incurs in a
battery and data traffic increase, thus being utility-related factors to be taken into account
when deciding which data perturbation approach to follow.

In the case of location sequences, where the focus is on preserving the privacy of the
correlations among locations, improving such privacy without compromising the data util-
ity (or avoiding additional cost when adding fake samples instead of replacing the original
ones) is more complicated and depends heavily on the application at hand. As can ob-
served in the figures, in order to obtain high privacy levels, the fraction of location samples
to change grows fast. Furthermore, the replacements should be done wisely. For exam-
ple, let be a user walking in Madrid. If during the user’s location sampling done by the
corresponding mobile application communicating with the LBS provider (done every few
minutes) the system replaces a location in Madrid by another one in New York city (or
just adds the location in New York city in the mobility profile), an attacker could easily
detect that it is not possible for a user to make this large jump in such a short period of
time. Therefore this replacement/addition might seem to theoretically improve greatly the
privacy level (it is an unexpected movement, thus the entropy rate of the mobility profile
would increase) with little disruption of the utility of the result (because just one location
was replaced/added, and the system can ignore the result of the associated request, by
knowing it is a fake one). However, it would be easy for an attacker to notice the impos-
sibility of the jump, due to the recent past history, and ignore the location in New York.
This happens when considering a mobility profile, since location profiles by their own just
account for the number of visits to each place, leaving unnoticed this kind of impossible
large jumps between locations in a short period of time. It can be devised then a seman-
tics and scale-related problem. What data wants to be preserved? For instance, if only
the work/home locations are the ones to be protected, the perturbation methods should
focus on replacing or adding samples of the same city repeatedly, so that their frequency is
comparable to the one of home/work locations. Since the places could be nearby, it would
be more difficult for an attacker to distinguish among the real and fake ones. However, if
the target is to preserve the country where the user is, the perturbation mechanism needs
to be more sophisticated to make the attacker believe the user might be at any of several
countries by creating equally believable location profiles.

6.5 Conclusions

This chapter has analyzed privacy-enhancing mechanisms based on information theory
concepts, such as entropy and entropy rate, applied to locations and mobility profiling
scenarios. Starting with synthetic and simple processes, it has been shown that the the-
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ory applicable to these low alphabet cardinality, memoryless processes cannot be directly
applied to more complex cases, such as mobility profiles of users. Therefore, the remark-
able results obtained in the simpler case get degraded until little privacy enhancement is
observed, unless utility is completely lost.

The main reasons leading to these results are the increase in the alphabet cardinality
(from a few categories to hundreds of visited places by a user), and the temporal depen-
dencies introduced by the fact of considering mobility profiles instead of set of independent
samples (location profiles). This last reason leads to the need of using general privacy
metrics, such as the one proposed in this chapter, based on the information theory con-
cept of entropy rate. This concept allows to to consider the temporal dependencies of the
mobility profiles. Moreover, the probability distribution defining the mobility profile of a
user is highly biased toward certain frequently visited places, which makes it difficult to
hide these locations just by replacing the rest of samples by random locations.

As discussed earlier, careful replacement methods should be studied for these special
cases. An interesting future research line might be to investigate how to replace samples
taking into account the current and past locations, in order to provide reasonable replace-
ments, and to exploit the biases toward the most visited locations to flatten the probability
distribution, since these locations and their visitation profile are the keys to identify the
user behind such profiles.
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Along the dissertation, the objectives described in Chapter 1 have been addressed in
each of the chapters. This final chapter collects the main conclusions derived from the
work carried out on the pursuit of each of them. Besides, some of the work described
along this document has been published in different scientific dissemination sources and
interacted with different research projects. Thus, the chapter includes also a reference
of the publications derived from this thesis, together with the related research projects.
Finally, some of the many ideas emerging from the work started with this thesis and that
can extend it in the future are depicted in the end of the chapter.

7.1 Conclusions

Recalling the thesis proposal, it focus on studying the individuals’ mobility by means of the
location data provided by their mobile devices, aiming at extracting conclusions that can
be applied to improve mobility prediction. This aim was tackled from the very first step
of the process, the mobility data collection, all the way to the prediction process, going
through the analysis of the mobility data, and accompanying the process by considering
the privacy issues related to the disclosure of a person’s mobility data. Each of these steps
led to several conclusion, that are summarized next.

The research on the mobility data that best suit the purposes of the thesis resulted in
the next conclusions:

139
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• The mobility data source selected among the available ones (GPS, Wi-Fi, cellular
telephony network, and LBSN) is the cellular telephony network. The choice is sup-
ported by the following reasons: Its global coverage, both in indoor and outdoor
environments; its low power consumption, which allows to continuously track the in-
dividual without draining her device battery; and the autonomous location tracking,
without requiring the individual explicit participation. These characteristics make
this data source the best candidate to collect the most complete mobility data history,
although location accuracy is sacrificed.

• When using the cellular telephony network, three different ways to capture data
that can be directly translated into mobility information are exposed. The baseline
approach refers to the mobile device capturing the BTSs to which the user’s mobile
phone is attaching to as she moves. The CDR-based approach retrieves the BTSs
to which the user’s mobile phone was attached to when the user made or received a
voice call or message. And the DDR-based approach is the equivalent to the CDR
one, but based on data traffic events (sending to or receiving data from the Internet
through the mobile network). The first scheme generates the most detailed movement
history, but it is difficult to collect these histories from an extensive set of users. The
two last schemes collect less detailed histories, but the set of users is more extensive
because this information is collected by operators for billing purposes, and thus all
users from an operator are indirectly tracked using these two schemes.

• An extensive literature review revealed that there exist many works using different
sets of mobility data based on cellular telephony network. However, only one of
them with a significant amount of users providing data from the three approaches
described above is available: the MIT data set. It was collected back in 2005 among
a group of 95 persons working or studying in the same campus. Although being a
very useful mobility data information, two main factors were spotted, which can lead
to future deceiving mobility conclusions: the data set was collected a few years ago,
when the data traffic connections were not very popular yet, thus providing poor
DDR-based data; and the subjects contributing to the data set share the place where
they spend most of their days, thus there is a high probability of the individuals
sharing timetables, calendars and spatial mobility patterns.

• In order to have an additional mobility data source, more updated and with mobility
data coming from people not sharing temporal nor spatial patterns, a new data set
has been collected in the framework of the thesis: the UC3M data set. It collects
baseline, CDR and DDR data from 25 users living in different countries and with
no relationship among all of them, during more than a year. The data collection
campaign shown to be difficult to be extended to more people, and the subjects
participating varied in the time they continued with the data collection process, even
when the application collecting the data in their mobile phones demonstrated to
have a negligible battery consumption and be unobtrusive to the normal usage of the
device.
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Once having the most suitable mobility data sets, their analysis to characterize the
users movements features disclosed the following ideas:

• The literature review shown the wide variety of data used to study human mobility, as
well as the variety of features studied to characterize how people move. However, no
comparisons among the features reflected by each type of mobility data were found in
the research published so far, thus generating an uncertainty on the potential biases
the different mobility data might introduce into the conclusions on mobility features.

• To clear up such uncertainty, a comparison among the mobility features enclosed
in the baseline, CDR and DDR-based data were carried out, using both the MIT
and UC3M data sets. Such comparison unveiled big differences in the number of
cell changes experienced per day, the number of different cells visited per day, the
entropy rate or randomness of the users, and the resulting predictability of the user’s
movements. These results invite to a reflection on the generalizations usually made
in the mobility studies found in the literature, which should be put into context
considering the data used for the study.

• Although the data coming from the baseline approach shown to be the one most
faithfully capturing the user’s real mobility features (independently of their network
usage), it was also shown that it introduces certain bias due to a network-related
issue known as ping pong effect. This effect causes the user’s mobile phone to switch
continually between mainly two or three cells while not moving. This effect heavily
impacts the data, as it introduces a very high number of cell changes not related to
movements.

• In order to alleviate this problem, an online filtering algorithm was proposed. It
is based on a detection scheme and a filtering stage. The detection scheme is in
charge of rapidly determining whether the current cell represents a real location
or is part of a ping pong sequence. This scheme can be configured to delimit the
number of cell changes to be analyzed in order to determine the existence of a ping
pong sequence. For the filtering stage, three different techniques were proposed:
representative, limits, and hybrid. They differ in how the original ping pong sequence
is substituted in the movement history: by the most visited symbol, by the limits of
the ping pong sequence, of by the limits and the most visited symbol, respectively.

• The representative technique shown to provide the most simplified histories. However,
if the application at hand requires to maintain the real locations structure (e.g., cell
adjacency), then the limits or hybrid techniques are better choices that provide similar
results and also a noticeable filtering capacity. In any of the three cases, the impact of
the ping pong sequences on the mobility features reflected on the movement history
is clearly decreased. The mobility feature most affected is the entropy rate (i.e., the
randomness of users’ movements), which increases in the case of the filtered traces,
meaning that the movement of the user is more random that it seemed when the ping
pong sequences were taken into account. The reason behind this fact is that ping
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pong sequences have a fixed structure continuously repeated, which add a virtually
deterministic behavior.

The prediction process used all the previous knowledge to provide the following outputs:

• The review of an extensive set of existing location prediction algorithms revealed
many different approaches to perform predictions about the future location of a user.
Among the many alternatives, a family of algorithms was found that allow for online
execution (i.e., no training phase), low computational requirements that make it
possible to be executed with the continuously growing mobility data, and adaptive
ability that allows to learn changes in the mobility behavior of the user. This family,
known as LZ family, is comprised by the LZ, LeZi Update and Active LeZi algorithms.

• By carefully inspecting the three algorithms, a division into two independent phases
is proposed, which allows for combinations among them. The first phase, the tree
updating scheme, is in charge of building and storing the mobility model of the user in
the form of a tree. The second phase, the probability calculation method, takes care
of combining the information of the mobility model to estimate the most probable
next location, considering the current context (i.e., last visited locations).

• The evaluation of the different combinations of these two phases revealed that the
most impacting phase is the probability calculation technique, since selecting the
best instance of this phase, the PPM algorithm without exclusion, the prediction
accuracy results are very similar for the three different tree updating schemes. The
small differences among these three schemes are owed to the amount of patterns
stored on the corresponding trees or models.

• When considering the useful predictions, meaning the predictions not corresponding
to ping pong sequences, it can be seen that the prediction accuracy suffers a noticeable
decrease. Thus, most of the part of the right predictions are the ones corresponding
to the ping pong sequences, since as said before, these symbols are easy to predict
due to the fixed structure of the sequence.

• As previously observed in the mobility features reflected in the baseline and filtered
traces, the entropy (i.e., randomness) of the filtered ones is higher than in the baseline
case. Thus, it directly translates into a decrease of the prediction accuracy obtained
when processing the filtered movement histories. The representative case is the one
with the lowest fraction of right predictions, whilst the limits and hybrid ones provide
similar results, slightly better than the ones coming from the representative filtered
traces.

• Markov models of orders 1 or 2 are widely used in the literature. However, the analysis
done with the baseline and filtered traces reveals that, whilst Markov models achieve
the best results in the baseline case, these results are virtually better due to the ping
pong sequences. When Markov models are applied to predicting the next locations
of the filtered traces, they show to perform worst than the Active LeZi algorithm.
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• In order to tackle the intrinsic problem of the mobile phone connecting equally to
either of two or three cells, the two most probable next locations can be used. It has
been shown than using two symbols greatly improves the prediction accuracy, whilst
the improvement of using three symbols is not that noticeable. This result holds
for both the baseline and filtered traces, which means that the effect of the network
in the collected data goes beyond the ping pong sequences. There is an additional
noise coming from the network behavior because of which when a user follows a fixed
route from point A to B, the cells to which her mobile device connects to during the
route can be different every time the user follows it. At each location, the device
receives the signal coming from several near BTSs, connecting to the one from which
it receives better signal strength. This cell is not always the same, but varies mainly
between two choices, as suggested by the results obtained. Unfortunately, for this
kind of noise, the solution is not as easy as for the ping pong sequences, because
there is no fixed structure that can be easily detected.

• The analysis of the prediction accuracy results with respect the mobility features
previously studied revealed that the entropy rate is clearly the feature driving the
prediction success. Whilst the prediction accuracy and entropy shows a slightly
decreasing relationship, the dependence of the accuracy with the entropy rate is also
decreasing, but much stronger. Thus, by reducing the entropy rate of the mobility
history of a user, the number of correct predictions increases.

• Under the previous conclusion, a new tree updating scheme is proposed: the Extended
LeZi algorithm. It is based on the principle of collecting more significant patterns that
allows to reduce the entropy rate of the mobility model representing the user behavior.
An auxiliary algorithm to calculate the entropy rate enclosed in the mobility model
represented by the tree built by these algorithms was also proposed. It shows that
the mobility model built by the Extended LeZi algorithms has a lower entropy rate
than the model built by any of their ancestors–LZ, LeZi Update, or Active LeZi–.
However, when the Extended LeZi tree updating scheme was applied to prediction
purposes, it obtained the same results than the Active LeZi algorithm in terms of
prediction accuracy. This leads to think that it is not enough to decrease the entropy
rate of the built model, but also that of the movement history itself. Thus, the
prediction algorithm used is an important choice, but the mobility data itself takes
on a critical importance in light of these results.

• In order to improve the probability calculation methods, it was taken into account the
low number of samples collected by the longest patterns stored in the corresponding
tree. To overcome the poor estimation that would potentially come from considering
such subsampled patterns, Vitter and PPM without exclusion were modified in order
to take into account patterns with a frequency above different thresholds. This
modification did not provide any improvement on the PPM case. However, when
applied to the Vitter method, the results were improved up to the ones provided
by PPM, and even beyond in some cases. This is a great results considering that
Vitter method implies a much lower computational complexity, and thus, a shorter
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processing time for each prediction.

Finally, the concern about the preservation of the privacy of the user permeates any
use of mobility data due to its sensitive nature. Under the research on the privacy metrics
covered in the thesis, the main conclusions can be summarized as follows:

• The review of the state of the art on privacy metrics related to the location profiles of
the users revealed a high focus on preserving the locations visited by the user when
considered independently from each other. However, little attention has been paid to
the effect of disclosing sequences of locations, with not only spatial but also temporal
correlations that discloses the mobility patterns of the user.

• To cope with the potential privacy threats coming from this new perspective of mo-
bility profiles, a new privacy metric based on the entropy rate of the user’s movement
history is proposed. As exposed along the thesis, the entropy rate is tightly coupled
with the right predictions fraction that can be attained. Thus, increasing the en-
tropy rate leads to a decrease in the capability that a potential attacker might have
to foresee the future movements of the user. Thus, entropy rate is used as privacy
measure for location and mobility profiling scenarios.

• Two perturbative techniques were also proposed to be applied in these scenarios,
showing that preserving the privacy of mobility profiles (i.e., not independent loca-
tions, but location sequences) is way more difficult than preserving the privacy of
location profiles, without loosing the utility of the data.

7.2 Contributions

Besides the conclusions discussed in the previous section, four main contributions can be
extracted from the work carried out in this thesis:

• A mobility data collection campaign was carried out. It generated an updated mo-
bility data set, comprised by 25 users living in different countries and following com-
pletely independent lives, and thus, following completely different mobility patterns.
The data collected includes, among other information, the GSM and UMTS cell the
user’s cellphone is connected to at every time instant and the timestamps of all calls
and data traffic events. This data set allows to provide comparisons between the
results obtained when using the data collected by the users’ mobile devices (more
complete, but with smaller data set population) with respect to the results observed
when the data is collected by the operator (less complete, but with a more extensive
population).

• A thorough analysis of the mobility features reflected in the data collected by the
mobile phone with respect to the data collected by operators, pointing out their
striking differences. To address the biases detected in the data collected by mobile
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phones, several filtering techniques were proposed and evaluated regarding the mobil-
ity features reflected before and after the filtering process, unveiling also noticeable
differences not mentioned in the literature before.

• A dissection of the prediction algorithms coming from the Markov and LZ families,
which shown that Markov models are not always the best choices, as largely stated in
the literature. This analysis also unveils the importance of, not just the method, but
the quality of the input data. Their specific characteristics must be carefully studied
first to avoid delusional results.

• A method for calculating the entropy of the mobility model built by each algorithm
was proposed, as well as two modifications of the algorithms: a new LZ-based mobility
model construction that reduces the entropy of the resulting model, and a variation in
the probability calculation methods. The new mobility model revealed that reducing
the entropy rate of the mobility model does not guarantee the improvement of the
prediction accuracy, but the reduction of the real entropy rate of the mobility sequence
does. The variation in the probability calculation method leads to equal or better
results, at a lower computational cost.

• A new privacy metric was proposed to deal with the disclosure of the user location.
This metric aims at measuring the privacy loss when disclosing, not just independent
locations (as largely studied in the literature), but also the locations as a sequence,
which discloses also the mobility patterns of the user. By using two data pertur-
bative methods, it was demonstrated the difficulty to preserve the privacy of this
new dimension brought by the concept of pattern, compared to the relatively ease to
preserve the privacy of independent locations.

7.3 Impact of the Thesis

7.3.1 Publications and Conferences

Part of the work carried out during this thesis has been published in different scientific
dissemination venues. The following list collects those publications:

• The contributions on the analysis of the mobility features reflected in the mobility
data records coming from different data sources were published in:

– Alicia Rodriguez-Carrion, Sajal K. Das, Celeste Campo, and Carlos Garcia-
Rubio. Impact of location history collection schemes on observed human mo-
bility features. In Proceedings of the 2014 IEEE International Conference
on Pervasive Computing and Communications Workshops (PERCOM
Workshops), 254–259, 2014. [115]

• Different analysis of the prediction performance of the algorithms analyzed in this
thesis were published in:
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– Alicia Rodriguez-Carrion, Celeste Campo, and Carlos Garćıa-Rubio. Recom-
mendations on the Move. Book: Recommender Systems for the Social
Web, 23:179–194. Springer Berlin Heidelberg, 2012. [114]

– Alicia Rodriguez-Carrion, Carlos Garcia-Rubio, Celeste Campo, Alberto Cortés-
Mart́ın, Estrella Garcia-Lozano, and Patricia Noriega-Vivas. Study of LZ-based
location prediction and its application to transportation recommender systems.
Sensors, 12(6):7496–7517, 2012. Impact factor as of 2012: 1.953. JCR(8/57),
Q1, category: Instruments& Instrumentation. [117]

– Alicia Rodriguez-Carrion, Celeste Campo, Carlos Garcia-Rubio, Alberto Cortés-
Mart́ın, Estrella Garcia-Lozano, Patricia Noriega-Vivas. Analysis of location
prediction performance of LZ algorithms using GSM Cell-based location data.
In Proceedings of the 5th International Symposium on Ubiquitous Com-
puting and Ambient Intelligence (UCAmI 2011), Mexico, 2011. [118]

– Alicia Rodriguez-Carrion, Carlos Garcia-Rubio, and Celeste Campo. Perfor-
mance evaluation of LZ-based location prediction algorithms in cellular net-
works. IEEE Communications Letters, 14(8):707–709, 2010. Impact factor
as of 2010: 1.060. JCR(29/80), Q2, category: Telecommunications. [116]

• The contributions on the proposal of an entropy estimator for mobility models built
by LZ-based algorithms were presented in:

– Alicia Rodriguez-Carrion, Carlos Garcia-Rubio, Celeste Campo, and Sajal K.
Das. Analysis of a fast LZ-based entropy estimator for mobility data. In Pro-
ceedings of the 2015 IEEE International Conference on Pervasive Com-
puting and Communication Workshops (PerCom Workshops), 451–456,
2015. [119]

• The contributions on the privacy metrics for location profiles based on entropic mea-
surements were published in:

– Alicia Rodriguez-Carrion, David Rebollo-Monedero, Jordi Forné, Celeste Campo,
Carlos Garcia-Rubio, Javier Parra-Arnau, and Sajal K. Das. Entropy-Based
Privacy against Profiling of User Mobility. Entropy 17(6): 3913–3946, 2015.
Impact factor as of 2014 (the last published JCR): 1.502. JCR(34/78), Q2,
category: Physics, multidisciplinary. [120]

7.3.2 Research Projects

This thesis has been carried out in the framework of the research projects described below:

• INRISCO: INcident monitoRing In Smart COmmunities

– Organization: Science and Innovation Spanish Ministry.

– Duration: January, 2015 - December, 2017.
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– Partners: University Polytechnic of Catalonia, University of Vigo, Galician Re-
search and Development Center in Advanced Telecommunications (Gradiant).

– Contribution or Influence: In order to monitor incidents by using the data
collected by the mobile phones of the citizens, the experience extracted from
the data collection campaign carried out during the thesis will be used. Since
any incident is an unusual event, the techniques based on measuring the entropy
rate of a sequence of events and its increment can be used to rapidly detect this
type of situations.

• EMRISCO: EMergency Response In Smart COmmunities

– Organization: Science and Innovation Spanish Ministry.

– Duration: January, 2014 - June, 2015.

– Partners: University Polytechnic of Catalonia, University of Vigo, Galician Re-
search and Development Center in Advanced Telecommunications (Gradiant).

– Contribution or Influence: Considering citizens as mobile sensors, they could
collect data that can be used to detect emergency situations. The data collec-
tion campaign carried out for this thesis provides knowledge and experience on
how to perform the data collection using mobile phones. Besides, the entropy
rate estimators studied allow to detect unusual patterns that complement other
indicators in the task of early detection of emergency situations.

• TransITS: Modeling Public Transport Passenger Flows in the Era of ITS

– Organization: COST - European Cooperation in Science and Technology. COST
Action TU1004

– Duration: May, 2011 - May, 2015.

– Website: https://sites.google.com/site/costtransits/

– Partners: Transport&Telecommunication Institute Latvia, LogistikCentrum AB
sweden, The University of Sydney Australia, Royal Institute of Technology Swe-
den, ENPC France, University of Malta, TU Delft Netherlands, University of
Rome “Tor Vergata”, University of Cantabria (Spain), PTV Austria, TU Graz
(Austria), Napier university (United Kingdom), Universitat Stuttgart (Ger-
many), Leeds University (United Kigndom), University Carlos III of Madrid
(Spain), University of Rome “La Sapienza” (Italy), EPFL (Switzerland), Ak-
deniz Universitesi (Turkey), ICOOR (Italy), University Polytechnic Madrid
(Spain), Transport Analysis (Sweden), City University London (United King-
dom), Road and Bridge Research Institute (Poland), Budapest University of
Technology and Economics Muegyetem (Sweden), Transport and Logistic Cen-
tre (Hungary), Krakow University (Poland), Gifu University (Japan), University
of Stavanger (Norway), Molde University College (Norway), Ohio State Univer-
sity (United States), University of Thessaly (Greece), University of Stavanger
(Norway), PTV AG (Germany), University of Porto (Portugal), Universita

https://sites.google.com/site/costtransits/
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Mediterranea di Reggio Calabria (Italy), University of Hawaii at Manoa (United
States), Autoritat del Transport Metropolità (Spain), TU Dresden (Germany),
KU Leuven (Belgium), TfL (United Kingdom), University of Luxembourg, MTU
Harjumaa Ühistranspordikeskus (Estonia), MIT (United States).

– Contribution or Influence: Presentation of mobile phones as a key alternative to
collect data from public transports, to get over the problems coming from using
surveys, video-surveillance or tickets.

• MONOLOC: Indoor Positioning and Mobile Network Management

– Organization: Science and Innovation Spanish Ministry

– Duration: September, 2011 - December, 2014.

– Website: http://monoloc.creativit.com/eng/index.html

– Partners: University Polytechnic Madrid, University of Malaga, Alcatel-Lucent
España S.A., Innovati S.L.

– Contribution or Influence: Apply data collection methods and knowledge ob-
tained along the thesis, to capture individuals mobility in indoor environments,
taking into account the limited resources of mobile phones.

• CONSEQUENCE: Continuity of Service, Security and QoS for Trans-
portation Systems

– Organization: Science and Education Spanish Ministry

– Duration: January, 2011 - April, 2015.

– Website: http://consequence.it.uc3m.es/index.html

– Partners: University Polytechnic of Catalonia.

– Contribution or Influence: Collaboration with the privacy research group at
University Polytechnic of Catalonia to design and propose a privacy metric to
preserve location-related information of the users.

• España Virtual

– Organization: Science and Innovation Spanish Ministry. CENIT Program

– Duration: February, 2008 - December, 2011

– Website: http://www.xn--espaavirtual-dhb.org/

– Partners: University Polytechnic Madrid, University of Zaragoza, UNED, Uni-
versity Polytechnic of Catalonia, University Jaume I, University of Valladolid,
Universitly of Illes Baleares, University of Malaga, University Polytechnic of Va-
lencia, University Pompeu Fabra, Barcelona Media, Vicomtech, Elecnor Deimos,
Geographical Information National Center, Indra Espacio S.A., Androme Iber-
ica S.L., GeoSpatiumLab S.L., Designit, Prodevelop, Telefonica I+D.

– Contribution or Influence: Study of prediction algorithms able to foresee the
future whereabouts of the user, executed in mobile phones.

http://monoloc.creativit.com/eng/index.html
http://consequence.it.uc3m.es/index.html
http://www.xn--espaavirtual-dhb.org/
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7.4 Future Works

Despite having addressed all the objectives set at the beginning of this thesis, the work
carried out during the process has also opened many interesting paths to explore that can
be considered as new objectives to focus on.

• The study of mobility features can be applied to many fields. Location prediction is
one of them, but another very popular application of the analysis of human mobility is
the development of mobility models that can help to provide realistic synthetic traces.
The main advantage of these synthetic movement histories is that the model allows
for certain personalization. That means that, whilst in the real world people cannot
be configured to have certain features, mobility models allow to tune parameters so
that it is possible to generate traces of more or less random users, who travel more
or less distance, visit more or less different locations a day, etc., always maintaining
the main mobility features of real users. This ability to configure the main mobility
features can help to better understand the behavior of certain network protocols or
similar applications depending on mobility under certain scenarios. One of the main
future lines is the proposal of a mobility model able to create movement histories
made up of the BTSs the synthetic user connects to as she moves. It can help to
improve services based, not on the coordinates of the user, but on her location based
on the cellular network. This line has been already started by using a well known
mobility model called SLAW [80], which shows to faithfully represents the mobility
of users as compared to their real mobility traces, in terms of real coordinates. The
current work is focused on tuning this work to be applied in a BTS map, and matching
the mobility features reflected in the MIT and UC3M data sets.

• The prediction algorithms exposed along the dissertation can be extended in many
directions. One of them is to consider the prediction of further locations beyond the
next one. The works in the literature show low prediction accuracy to this respect,
that can definitely be very interesting for pervasive applications aiming at knowing
what the user wants before she does, and applied to the location part of the user
context, knowing where she wants to go before she starts the trip. Another possible
direction is related computational cost of the prediction. It must be taken into
account that the mobility information keeps on increasing daily and, thus, the entity
performing the prediction will at some point run out of memory to keep storing and
processing it. Even using LZ-based trees, which store the mobility patterns in a very
compact way, some pruning strategies need to be designed. Based on one of the
features revealed in the human mobility study done in the thesis, the concentration
of the most part of the visits to a reduced number of locations, methods to delete
locations or paths rarely transited to bound the data stored to those paths that will
concentrate most of the visits (and thus, most of the potential right predictions) can
be tested.

• The mobility data collection process described in this work can be extended to other
areas, such as transportation, as proposed in the framework of the COST project
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mentioned before. When studying transportation models, some real data is needed
in order to calibrate and validate the model. However, obtaining such data is usu-
ally costly, both economically and in terms of time, and sometimes its availability
depends on the decision of third parties. The usual surveys need a previous study
of the sample size and take a non-negligible time to perform them. Besides that,
the selection of people is an important step, and even after a careful selection, it is
possible to obtain biased results due to common features of the sample individuals,
which were not supposed to affect the analysis but they actually do. Data obtained
from transportation infrastructure (ticketing, video-surveillance) face these problems
because it collects the information of all passengers, so that the results are more
general and reliable. However, obtaining such data sets requires the permission of
the transportation operator, and this is not always an easy task. If we want to cover
multi-modal trips, the process becomes even harder.

In the project, the use of some wireless communication technologies (mobile telephony
system, Wi-Fi, or Bluetooth) was proposed as a tool to record data related to the
usage of public transportation: start and finish stops of bus users, waiting time at
bus stops, as well as routes and combinations in subway trips. The use of these
technologies potentially provides important benefits: the low cost, since there is no
need to install new infrastructure; the sample size, which is remarkable due to the
huge penetration of mobile phones providing access to such technologies; and the
short time needed to obtain the data, that can even be collected in real time.

– Mobile telephony network has been widely used as location and tracking
technology for several applications, such as deriving origin-destination (O-D)
matrices [17, 132], mapping geographical cell phone usage at different times of
the day for urban analysis and planning [107, 127, 108], estimating general traffic
data [18] or studying human mobility patterns [50]. It can be also extended for
tracking bus journeys. The bus stops sequences corresponding to each line are
usually described in terms of the geographical location of each stop. This can
be translated to the mobile network domain by mapping each bus stop with
the BTSs (cells) from which a user receives signal from that stop, and adding
fictitious stops when two consecutive real ones are far apart, so as to ease the
tracking. Then, when a user takes a bus, the sequence of BTSs her device is
being attached to as the bus moves can be matched with the database to see
which bus line the user has taken. Some post-processing is needed in order to
detect when the user is actually taking and leaving the bus, or to improve the
matching. The main advantage of this method is the complete independence
from third parties, both transportation and network operators.

– Wi-Fi technology can also be used for data collection purposes, inferring when
a user takes or leaves a bus or the trip made by train or subway, taking advantage
of the Wi-Fi access provided by some transportation operators in these modes
(e.g., Madrid bus lines or New York subway). The raw data obtained (from
the Wi-Fi routers or users’ phones) should be processed in order to filter events
such as users near the bus who are connecting to the bus Wi-Fi network, or
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take somehow into account users who do not connect to the AP right when they
take the bus, among others. Two main drawbacks derive from this solution.
The collaboration of the corresponding transportation operator is required in
order to obtain the router logs or, at least, the correspondences between router
identifier and the concrete bus (with its timetable and the bus line it corresponds
to) carrying that router. The sample size would also be smaller than when using
the mobile phone network, as not every mobile phone is Wi-Fi enabled and not
every person with a Wi-Fi-enabled phone actually connects to the transportation
Internet services.

– The last example of wireless technology that can be leveraged for information
collection purposes is Bluetooth. Its main feature is the short range, below 10
meters. This allows tracking actions that require more location accuracy. For
example, if we would like to know when a user arrives to a bus stop and when
she leaves, the coverage area of a BTS or AP is too wide as to be sure of when
these events happen. However, with a Bluetooth device installed in each bus
stop, as in Madrid bus lines, we could infer that a user arrives at a stop when
the stop Bluetooth receiver detects the user’s phone and that she leaves when
the mobile phone becomes out of range. The main drawback is shared with
Wi-Fi technology and related to the sample size, as Bluetooth is not included
in every phone, nor used by all people.

The previous examples highlight wireless communication technologies as alternatives
to the traditional data collection task. The low cost and effort required, the short
time needed to collect the data and the great number of potential passengers that
could be involved in the data sets, make of these approaches interesting and feasible
techniques that could improve the process and provide data remaining uncovered
until today.



152 7. CONCLUSIONS AND FUTURE WORK



Appendix A

Mobility Data Collection
Application
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In Chapter 3, the mobility data collection campaign carried out and conducting to the
UC3M data set was described. In order to make the data collection possible, an application
for mobile devices in charge of collecting the corresponding data was developed. This
appendix describes the main design requirements followed, as well as the most interesting
details and issues found during its implementation and use.

A.1 Requirements

The main goal of the application is to detect and record all the events concerning changes
in the network state, cell changes, received or sent calls, and data traffic events. But the
main challenge comes from making this process seamless for the user, both in terms of
processing needs and battery drainage. Thus, the most impacting factors to determine the
requirements of the application are two: the application should be totally unobtrusive for
the user, and it must collect the data without loosing any piece of it.

With these ideas in mind, the resulting requirements of the application are the following
ones:

• The application must detect all the events related to the network state, cell changes,
incoming and outgoing calls, and incoming and outgoing data traffic.

• The application must record all the data related to each event, together with the
timestamp of the moment in which the event happened.
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• The application must perform the aforementioned tasks continuously, and it must be
executed right after the device in which it is executing is powered on.

• The data collected must be recorded in a compact, yet easy to parse format.

• The data must be frequently sent to a centralized entity that will backup the infor-
mation of all the users.

• The application must run seamlessly, without disrupting the normal usage of the
device.

• All the tasks will be performed consuming as few resources as possible, mainly in
terms of battery and processing needs.

A.2 Mobile Phone Platforms

The two main mobile platforms leading the market—Android and iOS—were considered
as candidates to develop the application with the requirements previously defined.

The study of Android capabilities revealed the existence of many APIs, some of them
used in previously developed applications [117] that allow to detect and record the events
under study in background, thus without interfering with the normal use of the device.
Since the terminals of the users can be very varied, the minimum version for which the
application works if version 8, so that anyone can install it in her device.

An analysis of the iOS platform [146], however, unveiled the impossibility of developing
an application like the one required for iPhone devices, except if they are for developer
purposes. The APIs related to cell and network information are private, meaning that they
are prohibited to be used in applications thought to be available for the general public.
Thus, this platform was finally discarded.

A.3 Implementation Details

Once the application requirements and mobile platforms have been analyzed, an Android
application was designed. Its main blocks are depicted in Figure A.1, and commented next.

• The service is the central part of the application. It is one of components provided by
Android, which main characteristic is that it can keep on running on the background,
even if the user is not actively interacting with the application. This component allows
to continuously run the monitoring and collection process, to capture and store all
the events.

• The event listeners block comprehend all the elements actively listening for events.
They are configured in such a way that when an event takes place, the corresponding
listener is triggered and collects the current timestamp and the data associated with
the event. The different listeners included in this block are the following ones:
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Figure A.1: Block diagram of the data collection application.

– Phone state listener. Actively listens for service state, call, cell changes,
signal strength, and data traffic events.

– Screen state listener. It gets notified every time the screen goes on or off.
This listener was included to check if the monitoring and recording process kept
on executing when the device screen is off.

– Power connection listener. In this case, the function of the listener is not to
collect data, but to detect when the suer connects the device to the power line
to try to send the recorded data (if at least two weeks have past since the last
data upload). This way, the user will not notice the battery drain coming from
sending data, aiming to comply with the seamless working requirement.

• The event data containers block includes all the containers to which each event
data is dumped. These containers hold the data until it is further formatted and
recorded into the corresponding file.

• The storage block contains all the functionalities needed to write the data regarding
each event in a file and transfer it to a centralized entity. These functionalities can
be classified as follows:

– JSON formatter. One of the requirements of the application was to record
the data in a compact format, easy to be parsed by other applications later on.
In order to comply with this, JavaScript Object Notation (JSON) format was
selected. Some of the data to be captured, like the data of the different cells
from which the device receives signal strength, is variable. Besides, as shown in
Table 3.1, different events contain diverse data. for these reasons, JSON seemed
a good choice: more compact than eXtensible Markup Language (XML), more
readable than Comma Separated Values (CSV), and flexible enough to reflect
the different data to be captured. It was also decisive the fact that there exist
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JSON parsers for many platforms, like Matlab for instance, which is the one
used to further analyze the data collected.

– File management. All the functionalities to manage files and dump the col-
lected data into them are included in this block.

– Data compression. Considering the increasing size of the file that registers
the data associated to the events, these data are compressed before sending
them to the centralized entity. In order not to loose data, and relying on the
large storage capacity of the current devices, no data is ever deleted. Thus,
in case there is an error when sending the data to the centralized entity, no
data will be lost because it will be sent again with the next upload. For this
reason that complies with the no data loss requirement, and aiming at making
the data uploading process as fast as possible to save time and battery, the file
is compressed into a zip file using the functionality provided in this block.

– Data uploading. In order to obtain the data form the users with their minimal
interaction, and guaranteeing that it will not be lost, it was decided to send it to
an e-mail account provided by a trusted company. This option guarantees high
availability (anyone can send her data at any moment of any day), and no data
loss, with a minimum maintenance. In the user’s side, once every two weeks, a
reminder pops up in the device, inviting the user to send the data. By tapping
the notification, the corresponding e-mail application (included by default in all
Android devices) opens up with the e-mail and the attached data ready to be
sent by just tapping on the send button.

• User interface. A simple user interface is provided to manually start or stop the
application when needed, and to allow the user to record personal messages into the
file.

A.4 Usability and Working Issues Reported by the Users

Before making the application available for all the subjects participating in the collection
campaign, a smaller test was performed during two months with a subset of 5 subjects.
This initial test led to some modifications:

• In the first version of the application, the data coming form the accelerometer was
also recorded every time a new cell changes was detected. This version shown to
significantly increase the battery consumption, and thus the accelerometer data col-
lection was discarded.

• The format of the data was modified to obtain a version easier to parse.

• It was checked that the Android issues that did not allow to monitor events when the
screen was off had been fixed. Therefore, the continuous data collection was possible.

After this test, the final version was distributed among the participants. There were
no reported issues on battery consumption nor usability. The people who stopped using
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the application reported to have done so because of a change of device or a reset of the
original one, and forgetting to reinstall the application.
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This appendix gathers the mathematical demonstration of the lemmas and theorems
formulated in Chapter 6, concerning the privacy preserving mechanisms proposed in a joint
work between out research group and the Security Group of the University Polytechnique
of Catalonia [120].

B.1 Proof of the Lemma 6.1

Proof. For each t (with p(t) > 0) and each s,

pS′|T (s|t) = (1− ρ) pS|T (s|t) + ρ 1
k ,

where k is the cardinality of the alphabet of S. Due to the concavity of the entropy and
the fact that uniform distributions maximize it, for all t,

H(S′|t) > (1− ρ) H(S|t) + ρ log k > H(S|t),

where H(S|t) denotes the entropy of S given T = t, and similarly for S′. Taking expecta-
tions on t, H(S′|T ) > H(S|T ). Clearly, equality holds only when ρ = 0, or else, when S
given t is uniformly distributed, regardless of t, i.e., p(s|t) = 1

k = p(s).

B.2 Proof of Theorem 6.1

Proof. We prove the statement for the nontrivial case when ρ > 0. In Lemma 6.1, take
S = X0, S

′ = X ′0 and T = (X−1, . . . , X−m), thus

H(X ′0|X−1, . . . , X−m) > H(X0|X−1, . . . , X−m),

159
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with equality if and only if X0 is uniform and independent of (X−1, . . . , X−m). Next,
observe that X ′0 and (X ′−1, . . . , X

′
−m) are conditionally independent given (X−1, . . . , X−m).

Apply the conditional-entropy form of the data processing inequality to write

H(X ′0|X ′−1, . . . , X ′−m) > H(X ′0|X−1, . . . , X−m),

with equality if and only if X ′0 and (X−1, . . . , X−m) are conditionally independent given
(X ′−1, . . . , X

′
−m). Combine both inequalities to immediately conclude the assertions in the

theorem regarding m past samples. The claims on the limit of m for entropy rates follow
the same proof, with S = X0, S

′ = X ′0 and T = (X−1, X−2, . . . ).

B.3 Proof of Theorem 6.2

Proof. In uniform replacement, a sample Xn will be effectively perturbed when replacement
occurs, with probability ρ, and the replacement sample Un does not match the original one.
Precisely,

δ = Pr{Xn 6= X ′n} = ρ(1− Pr{Xn = Un}).
Because Xn and Un are independent and Un is uniform,

Pr{Un = Xn} = EXn Pr{Un = Xn|Xn} = 1/|X |.

If the original process X is not independent, uniformly distributed, all samples must be
replaced to make it so, thereby maximizing the entropy rate. Consequently, ρcrit = 1, and
δcrit can be obtained from the relationship between ρ and δ above, simply by setting ρ = 1.

As for improved replacement, we resort to Theorem 2 in [110] and the concept of critical
redundancy, which takes on the value 1− 1

|X |pmax
in the notation of this work. According

to this, for any ρ > 1− 1
|X |pmax

, the PMF of the replaced samples Rn is

r(x) =
1

ρ

1

|X |
+

(
1− 1

ρ

)
p(x).

Proceeding as in the first part of this proof,

δ = ρ(1− Pr{Xn = Rn}),

but now
Pr{Xn = Rn} =

∑
x

p(x) r(x),

from which the expression for δ in the second part of the theorem follows.
For i.i.d. processes, the problem is mathematically equivalent to that formulated in [110],

and ρcrit becomes the critical redundancy defined shortly before Theorem 2 in the cited
work, in the form expressed in the statement of the theorem we prove here.

The case for processes with memory requires complete replacement to achieve inde-
pendence of the samples, not merely uniform distribution, just as in the case of uniform
replacement. But for ρ = 1, the replacement strategy Rn becomes uniform, and the analysis
for uniform replacement above applies here as well.
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GSM Global System for Mobile Communications

HMM Hidden Markov Model

HSPA High Speed Packet Access

JSON JavaScript Object Notation

LAC Location Area Code

LBS Location-Based Service

LBSN Location-Based Social Network

LTE Long Term Evolution

M2M Machine-to-Machine

MABR Minimum Area Bounding Rectangle

161



162 LIST OF ACRONYMS

MAC Medium Access Control
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[111] D. Rebollo-Monedero, J. Forné, and J. Domingo-Ferrer. From t-closeness-like privacy
to postrandomization via information theory. IEEE Transactions on Knowledge and
Data Engineering, 22(11):1623–1636, November 2010. 123

[112] D. Rebollo-Monedero, J. Parra-Arnau, C. Diaz, and J. Forné. On the measurement
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