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Abstract VaR minimization is a complex problem playing a critical role in many actuarial and
financial applications of mathematical programming. The usual methods of convex programming
do not apply due to the lack of sub-additivity. The usual methods of differentiable programming
do not apply either, due to the lack of continuity. Taking into account that the CVaR may be
given as an integral of VaR, one has that VaR becomes a first order mathematical derivative of
CVaR. This property will enable us to give accurate approximations in VaR optimization, since
the optimization VaR and CVaR will become quite closely related topics. Applications in both

finance and insurance will be given.
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1 Introduction

VaR has many applications in finance and insurance. Risk management, capital require-
ments, financial reporting, asset allocation, bonus-malus systems, optimal reinsurance, etc.

just compose a brief list of topics closely related to VaR. Beyond VaR, risk measurement



is an open problem provoking a growing interest and discussion in recent years. Since
Artzner et al. (1999) introduced their coherent measures of risk much more approaches
have been proposed. Very important examples are the expectation bounded measures of
risk (Rockafellar et al., 2006), consistent risk measures (Goovaerts et al., 2004 ), actuarial
risk measures (Goovaerts and Laeven, 2008), indices of riskiness (Aumann and Serrano,

2008, Foster and Hart, 2009, Bali et al., 2011), etc.

The existence of alternative risk measures implies that many risk-linked problems may be
studied without dealing with VaR. Moreover, VaR is not sub-additive (Artzner et al.,
1999), it is difficult to optimize (Gaivoronski and Pflug, 2005) and it presents some more
drawbacks which may recommend to deal with other risk measures such as CVaR (Rock-
afellar and Uryasev, 2000). Nevertheless, for several reasons VaR still plays a critical role
for many practitioners, institutions and researchers. Firstly, regulation (Basel for banks,
Solvency for insurers, etc.) still assigns a vital role to VaR. Secondly, VaR never becomes
infinity, while the rest of usual risk measures may attain this value. For instance, C'VaR
becomes infinity for random risks whose expected losses equal infinity too (for instance,
positive random variables with unbounded expectation). Infinite values may provoke an-
alytical and mathematical problems quite difficult to overcome, specially if several heavy
tails are simultaneously involved (Chavez-Demoulin et al., 2006). Heavy tails are usual in
some actuarial topics (Zajdenwebe, 1996), some operational risk topics (Mitra et al., 2015)
and other issues. Thirdly, sub-additivity may be undesirable for some actuarial and finan-
cial problems, as pointed out by Dhaene et al. (2008), who suggested the use of VaR for
some merger-linked problems, for instance. Fourthly, for very important financial problems
VaR often provides valuable solutions from both theoretical (Basak and Shapiro, 2001,
Assa, 2015) and empirical (Annaert et al., 2009) viewpoints, and VaR also facilitates the
use probabilities in both the objective function and/or the constraints of several financial

optimization problems (Dupacova and Kopa, 2014, Zhao and Xiao, 2016, etc.).

The optimization of VaR is much more complicated than the optimization of other risk
measures (Rockafellar and Uryasev, 2000, Larsen et al., 2002, Gaivoronski and Pflug, 2005,
Shaw, 2011, Wozabal, 2012, etc.). Since VaR is neither convex nor differentiable, one may
face the existence of many local minima, and they may become undetectable by means
of the standard optimization methods. There are many and quite different approaches

addressing the optimization of VaR (Larsen et al., 2002, Gaivoronski and Pflug, 2005,



Shaw, 2011, Wozabal, 2012, etc.). All of them yield interesting algorithms or optimality
conditions allowing us to find adequate solutions under different assumptions, but non of
them solves the problem in an exhaustive manner. There are many cases which cannot be

treated with the existent methodologies.

A very interesting approach may be found in Wozabal et al. (2010) and Wozabal (2012).
The authors deal with discrete probability spaces composed of finitely many atoms, and
they prove that VaR equals the difference of two convex functions. This property allows
them to provide efficient optimizing algorithms. Nevertheless, it is easy to show that the
property above does not hold for general probability spaces. Since there are many problems
involving VaR and continuous random variables (Shaw, 2011, Zhao and Xiao, 2016, etc.),

further extensions containing general probability spaces should be welcome.

This paper deals with a very simple idea. If the CVaR (also called AVaR, or average
value at risk) may be given as an integral of VaR, then VaR must become a first order
mathematical derivative of C'VaR. Consequently, an approximation of VaR must be given
by the change in CVaR over the change in level of confidence (or, in other words, by a
quotient of increments). Hence, an approximation of VaR must be given by the difference
of two convex functionals, and the result of Wozabal (2012) will become true in general

probability spaces if one takes a limit.

Ideas above will be formalized in Section 2, where it will be proved that VaR is the limit
of the difference of convex functionals. We will also explain why one does not need to
take any limit in the discrete case. In Section 3 we will consider a sequence of optimization
problems whose objective function has a limit, and we will analyze the relationship between
the sequence of solutions and the solution optimizing the limit. As a consequence, we will
establish conditions under which the optimization of VaR may be solved by optimizing the
difference of two convex functionals. In Section 4 we will focus on a methodology proposed
in Balbés et al. (2010a) and we will address the minimization of the difference of two convex
functionals in arbitrary probability spaces. Several optimality conditions will be found.
Applications in finance (optimal investment) and insurance (optimal reinsurance) will be
given in Section 5. Though the purpose of Section 5 is merely illustrative, these examples
will be general enough, since they will apply in both static and dynamic frameworks and

for discrete or continuous price/claim processes. Section 6 will summarize the paper.



2 Preliminaries and notations

We will deal with the probability space (€2, F, IP) composed of the set 2, the o—algebra F
and the probability measure IP. We can consider 1 < p < oo and the space L (also denoted
by L? (IP) or L? (Q, F,IP)) of real-valued random variables y such that [E (|y|”) < oo, [E()
representing the mathematical expectation. Recall that L? is the dual space of L”, where
1<qg<o0,1/p+1/q =1, and L™ is composed of the essentially bounded random variables

(Riesz Representation Theorem, Rudin,1987). Recall also that the usual norm of L? is

lyll, == (E(jy[")"" (1)

if 1 <p <ooand |yl := Ess_Sup(|y|), Ess_Sup denoting “essential supremum”.

For 1 < p < p’ < 0o we have that L? D L¥'. In particular, L' D L? D L™ for every 1 < p <
00. Recall also that for 1 < p < co we have that L may be endowed with the topology
o (LP, L7), which is weaker than the norm topology. Furthermore, if 1 < p < oo then every
convex, closed and bounded subset of L? is o (L?, L9) —compact (Hanhn-Banach’s Theorem
and Alaoglu’s Theorem). If Q) is a finite set then L” becomes a finite-dimensional space for
every 1 < p < oo, L? = L¥ for every 1 < p < p/ < 00, and all of the introduced topologies
of LP coincide. Further details about Banach spaces of random variables may be found in

Rudin (1973), (1987) and Kopp (1984).

The space L° containing every real-valued random variable may be endowed with the usual
convergence in probability, in which case L° becomes a metric (but not Banach) space.
The usual distance in L° is given by d(y, z) = IE (Min (1,]y — z|)), and it is known that
L' ¢ L° (Rudin, 1987).

Finally, we will deal with many topological properties. All of them may be found in Kelly
(1955).

Let us fix a confidence level 1 — € (0,1). As usual, for a random variable y € L% the

'(3) is the usual definition of VaR;_, (y) if y represents a future random wealth (or income). In many

actuarial and financial applications y represents random capital losses, in which case (3) is replaced by
VaRi—, (y) :=Sup {xr € R; P(y <) <1—p}. (2)

Throughout this paper we will deal with (3), but a parallel analysis could be implemented for (2).



Value at Risk VaR;_, (y) of y is given by
VaRi_,(y) == —Inf{zr € Ry P(y < z) > u}, (3)
and for y € L' C L° the Conditional Value at Risk CVaR;_, (y) is

CVaRy_, (y) := %/OM VaRy_; (y) dt. (4)

According to Rockafellar et al. (2006), CVaR;_, (y) may be also given by
CVaRy_, (y) = Mazx {—E(yz); 0<z<1/u, [E(z) =1}, (5)

and the set
A,i={2€L® 0<z<1/u, E(2)=1}, (6)

which does not depend on y, is called the CVaR,_,—sub-gradient, it is included in L9 for
every 1 < ¢ < oo, and it is convex and o (L%, LP) —compact for every 1 < ¢ < oo. An

obvious implication of (5) is the equality
—CVaRy_, (y) = Min {E(yz); 0<z<1/u, E(2) =1} (7)
for every y € L'. A second implication of (5) is the L'—norm continuity of the function
L'>y— CVaR,_, (y) € R, (8)
along with its o (L', L>°) —lower semi-continuity.?
Fix y € L. It is known that the function

(0,1) 3¢ — VaRi_;(y) € R 9)

21t is easy to see that LP 3y — VaR,—, (y) € R is not continuous if p =0 or 1 < p < co. Indeed, take
uw=0.1,Q=(0,1), F the Borel c—algebra, and IP the Lebesgue measure. Take the sequence of random

variables

(071)%_%(&}):{ 1, if0<w< 014 1/(2n)

0, otherwise
n=1,2,..., and take
-1, if 0<w<0.1

0, otherwise

(O,I)Bwﬂyo(W)—{

Then, Lim, o (Yyn) = yo in the norm topology of LP for 1 < p < co and in the metric topology of LY.
Besides, VaRi—, (yo) = 0 and VaR:_, (y,) = 1, for n > 0.



is non-increasing, right-continuous and (Lebesgue) integrable in (0, 1). Thus, if one consid-

ers the function

0,1) 3 p— @, (p) :==pCVaRky_, (y) € R,

which may be also given by (see (4))

Py (1) = /0 ) VaR - (y) dt,

then the First Fundamental Theorem of Calculus guarantees that

SOZF (1) =VaRy_, (y)

for every pu € (0,1), ," denoting the right-hand side derivative of ¢,.

For n € IN “large enough”, Expressions (10) and (11) suggest the approximation

+1/n)CVaRi_,—1/n — uCVaR,_
VaR_, (y) ~ (p /n) 1—p 11;71(9) K 1 M(y)’

i.€.,

VaRi_, (y) = (np+ 1) CVaRy_,_1/n (y) — nuCVaRi_, (y).

More accurately,
VaR:_, (y) = Lim,—oo ((npp 4+ 1) CVaR_y_1/n (y) — nuCVaRy_, (y))
holds for every y € L'. Consequently, if Y C L', the optimization problems
Min {VaRi,(9); y€ Y}

and

1
Min {W;: CVaRy_y1m (y) —CVaRi_, (y); y € Y}

(10)

(11)

(12)

(13)

(14)

(15)

could have “similar solutions”. Section 3 will be devoted to analyzing several relationships

between Problems (14) and (15), and some methods solving Problem (15) will be presented

in Section 4.

3 Connecting the optimization of VaR and CVaR

Many relationships between the solution of (14) and the solution of (15) may be proved

in a more general setting. Thus, let us give two general lemmas that will apply in our

particular framework.



o0

oo of real valued functions on A (i.e.,

Lemma 1 Consider a set A and a sequence (fy)
fo:A—= R, n=0,1,2,...) such that (f,),—, — fo, pointwise convergence on A. Consider

x, € A solving Min {f, (z); x € A} for everyn > 1.

a) fo(x) > Lim_ Sup,—cofn (xn) for every x € A, Lim_ Sup,—.oo fn (xn) denoting the limit

[e.o]

superior of the sequence (f, (xy)),_;.

b) Consider a vector space E and a convex cone C such that A C C C E. Suppose
that f, : A — IR can be extended to C', n = 0,1,2... and becomes positively homogeneous
(i.e., fn(Ax) = Afp(x) for x € C, X > 0 and n = 0,1,2,...). Suppose finally that Inf
{fo(z); = € Uss1 (M)} > —oco. Then, fo(z) > Lim_Supy—cofn (x,) for every x €
U (04).

Proof. a) Fix z € A. If ¢ > 0, it is sufficient to prove the expression fy(x) > —e +
Lim_Suppn oo fn (x,). Consider ng € IN such that |f, (x) — fo ()| < ¢ holds for every
n > ng. Then, fo(z) > f.(z) —e > f, (x,) — € holds for every n > ny.

b) Consider = € A and let us prove that fy (z) > 0. Indeed, otherwise we would have

Inf{fo (2); z¢ | (AA)} > Inf{\fo(x); A >0} = —o0,

A>1
contradicting the assumptions. Since fj is positively homogeneous, we have that f, () > 0
holds for every x € Uy, (AA). If Lim_ Sup, .o fn (¥,) < 0 the assertion becomes obvious,

so let us assume that Lim _ Sup, .o fn (x,) > 0. For A > 1 we have
ALim_ Supy oo fn (Tn) = Lim_ Sup, oo fn (T0) -

Consider z = Ax with € A. Assertion a) implies that fo () > Lim_ Supp—cofn (Tn).
Hence, fo (2) = Afo () > ALim_Sup, oo fn (2n) > Lim_Sup, oo fn (Tn)- O

Lemma 2 Consider a set A and a sequence (f,),., of real valued functions on A such that
(fu)oy — fo uniformly on A. Consider x, € A solving Min {f, (x); v € A} for every
n > 1.

a) Suppose that vo € A and there exists a topology on A such that xy is an agglomeration
point of (x,),~, (in particular, if vo = Lim, . (x,)) and fo is lower semi-continuous at

xo. Then, fo(xo) = Lim_ Sup, oo fn (xn) and xo solves Min {fy(x); x € A}.

7



b) (A pseudo-converse of a) also holds). Suppose that Min {fo(z); x € A} is solvable.

o0

Then, there exists a topology on A such that fy is lower semi-continuous on A and (z,),

has an agglomeration point xo € A solving Min {fy(z); x € A} and such that fy(xo) =
Lim_ Supp_.cofn (x,). In particular, if the optimization problem Min {fo (x); = € A} is

solvable then Lim_ Supy, .o fn () is its optimal value.

¢) Consider a vector space E and a convex cone C such that A C C C E. Suppose that
fn A — IR can be extended to C, n = 0,1,2... and becomes positively homogeneous.
Suppose that Inf {fo (z); v € Upsy ()\A)} > —o0. Suppose finally that xq € A, and
there exists a topology on A such that xq is an agglomeration point of (r,),—, and fo is

lower semi-continuous at xo. Then, fo(xo) = Lim_Sup, .cofn (x,) and xo solves Min

{fo(@); z €Uy AN}

Proof. a) Consider ¢ > 0. There exist a neighborhood V' of zy and ng € IN such that
fo(x) > fo(xo) — € holds for every x € V and |f, () — fo (x)| < € holds for every z € A

and every n > ng. Consequently, if x € V' and n > ny,

fo(zo) < fo(x)+e < fu(x)+ 2. (16)

Besides, there exists a natural number, still denoted by ng, such that for every m >
no there exists k& > m such that z, € V and, therefore, fy(xg) < fi(zr) + 2e. The
obvious implication is that fo (xg) < Lim_Sup, e fn () + 2¢ and, therefore, fo(z¢) <

Lim_ Supy, oo fn (x,,). Hence, the conclusion trivially follows from Lemma la.

b) It is easy to see that the family {@} U {f;' (R)} U {fy"' (z,00); = € R} of subsets
of A is a topology on A making fy lower semi-continuous. Suppose that A is compact.
Then, (z,),-, will have an agglomeration point xo € A (Kelly, 1955), which will satisfy
fo(xo) = Lim_Supy oo frn (x,) and will solve Min {fy (z); © € A} due to Lemma 2a. In

order to see that A is compact, consider a family of open sets satisfying

Acl it @ o0) = f! (U (z, oo)) = fo ' (Infyr,00),

where Inf,z is the obvious infimum. If a € A and fy(a) = Min {fo (z); = € A}, then
a € fi' (Inf.z,00) implies that fy (a) > Inf,x, so there exists (¥, 00) in the given family
of open sets such that fo(a) > Z. Therefore, a € f;' (%, 00) and, consequently, A C
fot (#,00) because fy (r) > fo(a) > 7 will hold for every z € A.

8



¢) Bearing in mind Lemma 10, it is sufficient to prove that fo (xo) < Lim_ Sup, e fn (2n)+
2¢ for every € > 0. As in the proof of a), there exist a neighborhood V' C A of z, and
ng € IN such that fo(x) > fo(zo) — € holds for every x € V and |f, (z) — fo(x)] < €
holds for every x € A and every n > ny. Consequently, if x € V' and n > ng then (16)

holds. As in a), for every m > ng there exists k > m such that z; € V and, therefore,

fo (z0) < fi (zx) + 2. 0

Next, let us see that solutions of (15) always yield a lower bound for (14).

Proposition 3 Consider Y C L' and y, € Y solving (15) for every n € IN.
VaRi_, (y) > Lim_ Sup, . ((n,u +1)CVaR_y1/n (Yn) — nuCVaRy_, (yn)) (17)

holds for everyy € Y.

Proof. This is an obvious consequence of (13) and Lemma 1la. O

Besides, under additional conditions, solutions of (15) lead to solutions of (14).

Theorem 4 Consider Y C L' and suppose that (13) holds uniformly on Y. Consider
ng € IN and y, € Y solving (15) for every n > ny.

a) Consider yo € Y and suppose that there exists a topology on Y such that yo is an

00
n=ng

yo. Then, yo solves (14) and VaRy_, (yo) equals the right hand side of (17).

agglomeration point of (y,) andY 3y — VaRi_, (y) € R is lower semi-continuous at

b) If 1 <p <oo,Y C LP is convex, closed and bounded, andY >y — VaR;_, (y) € R is

o0
n=mn

solving (14) and VaRy_, (yo) equals the right hand side of (17).

lower o (LP, L) —semi-continuous on Y, then (yn),_,, has an agglomeration point yo € Y

¢) If (yn)y,, has an agglomeration point yo € Y in the L'—norm topology of Y, then yq
solves (14) and VaR;_,, (yo) equals the right hand side of (17).

Proof. a) is a consequence of Lemma 2a. b) follows from a) if one bears in mind that

Y is o (LP, L9) —closed (Hanhn-Banach’s Theorem, Rudin, 1973) and o (L?, L9) —compact



(Alaoglu’s Theorem), and therefore (y,).., C Y has a o (LP, L?) —agglomeration point

n=ng

yo € Y (Kelly, 1955). Finally, ¢) follows from a) if one bears in mind that
Yoy—(np+1)CVaRi_,1/n (y) —nuCVaRi—, (y) € R

is L'—norm continuous (see (8)), and therefore so is Y 2 y — VaR;_, (y) € R due to the

uniform convergence of (13) on Y. O

Lemmas 10 and 2c¢ also have interesting implications in VaR optimization.

Theorem 5 Consider Y C L' and suppose that Inf {VaRi_, (y); y € Uys1 (AY)} >
—o00. Consider ng € N and y,, € Y solving (15) for every n > ny.

a) Problem
Min {VaRl—u w;:vel (AY)} (18)
A>1

is bounded and the right hand side of (17) is a lower bound of its optimal value.

b) Suppose that (13) holds uniformly on'Y . Suppose that yo € Y, and there exists a topology
on'Y such that yo is an agglomeration point of (y,),—, andY >y — VaRi_, (y) € R is
lower semi-continuous at yo. Then, yo solves (18) and VaRy_, (yo) equals the right hand
side of (17).

¢) Suppose that (18) holds uniformly on Y. If 1 < p < oo, Y C LP is convez, closed and
bounded, and Y > y — VaRi_, (y) € R is lower o (L?, L?) —semi-continuous on Y, then
(yn)zo:no has an agglomeration point yo € Y which solves (18) and VaR:_, (yo) equals the
right hand side of (17).

d) Suppose that (13) holds uniformly on Y. If (y,),—,, has an agglomeration point yo € Y

in the L*—norm topology of Y, then yo solves (18) and VaR;_, (yo) equals the right hand
side of (17).

Proof. Both VaR,_, and (np+ 1) CVaRi_,_1/n — nuCVaR;_, are defined on L' and
are positively homogeneous (Rockafellar and Uryasev, 2000). Hence, a) is a particular case
of Lemma 1b, and b) is a particular case of Lemma 2a. Besides, ¢) and d) follow from b) if

one bears in mind the same arguments as in the proofs of Theorem 4b and 4c. 0J

10



According to Theorems 4 and 5, it is important to give conditions guaranteeing the uniform

convergence of (13).

Proposition 6 a) Consider a non-increasing (and therefore Lebesque integrable) function

f:la,b] = R. For0 <h<b-—a,
1 a+h
0<f@ - [ FOd<i@-Fah),

b) Consider y € L'. Then, forn=1,2,3, ...,

0<VaRi_, (y) — ((np+1)CVaRi_y_1/n (y) — nuCVaRi_, (y))

(19)
< VaRl_u (y) - Vale,ufl/n (y) :

c¢) Consider Y C L'. If
Limy, oo (VaRl_“_l/n (y)) =VaRi_, (y) (20)

uniformly on y € Y then (13) holds uniformly ony € Y.

Proof. a) hf(a) > faﬁh f(t)dt > hf (a+ h) because f is non-increasing. Hence, f (a) >

%fanrhf (t)dt > f(a+ h). The first inequality implies that 0 < f(a) — % aa+hf (t) dt,
while the second one implies that —; faa+h ft)dt < —f(a+h) and therefore f(a) —

Lo peydt < f(a) — f(a+h).

b) The result trivially follows from a) because for h = L we have that (4) leads to

1 pth
—/ VaRi_ (y)dt = (nu+1)CVaRi_,—1/n (y) —nuCVaRi_, (y).
m
c¢) The result trivially follows from (19). O

Remark 1 Suppose that € is a finite set. Suppose that there are mno elements of ) with
null probability. We can consider the set C of couples (F,w) such that F C Q, w €
Qwéd F, Y Plw) < pand P(w)+ 3, P(w) > p. Obuviously, C is non void
and finite (notice that F = @ is accepted). Consider a random wvariable y. According

to (3), VaRi_, (y) is characterized by an element (F ,w) € C. Indeed, consider an order

11



= {wi1 () w2 (y), -, wi (Y)} on Q such that y (w1 (y)) < y(w2(y)) < .. < y(wr (¥)),
bk £ — {1 (1) 02 (5) oy ()} ith S P (s () < 1 and 571 s (1) > .
and take w = wji1(y). Then, —VaRi_,(y) = y(w). Moreover, for every 1+ 1/n <
SYENP (w; (y) one still has —VaRy_, 1m (y) =y (W), d.e., VaRy_, (y) = VaRy_u_1/n (v).
Since C is finite, there exists ng € IN such that for every n > ng and every (F ,w) € C one
has P (w) + > _c; P (wj) > p+ 1/n. Therefore VaRy_, (y) = VaRi_,1/n (y) for every
n > ng and every random variable y € L' (notice that L' = L° in this particular case).
Consequently, (19) implies that (12) holds as an equality for n > ng and every random
variable y € L. In order words, the sequence of (13) remains constant for every y and
every n > ng. It is obvious that the uniform convergence of (13) holds in the whole space
L', and therefore Theorems 4 and 5 apply. Moreover, we do not have to take any limit
because Problem (14) and Problem (15) are exactly the same problem for every Y C L' and
every n > ng. A similar result is proved in Wozabal et al. (2010) and Wozabal (2012) for
portfolio choice problems and other optimization problems involving VaR,_, and a finite
set Q. Further extensions applying for infinitely many states of nature require the use of

limits and the analysis above. 0

4 Optimizing the CVaR-linked approximations

This section will be devoted to solving Problem (15). More accurately, for & > 0, v > 0,
1—pu—ve(0,1)and Y C L', we will study Problem

Min {kCVaRy_,—, (y) —CVaRi_,(y); y € Y}. (21)

Since Rockafellar and Uryasev (2000) presented their famous method to optimize the
CVaR, many authors have extended the discussion for other risk measures and frameworks
(Ruszczynski and Shapiro, 2006, Balbés et al., 2010a, etc.). With respect to Problem (21),
Wozabal et al. (2010) and Wozabal (2012) proposed new procedures applying under dis-
crete probability spaces with finitely many atoms. In order to find optimality conditions for
Problem (21) and general probability spaces, we will follow the approach of Balbas et al.
(2010a), since it has proved to be very efficient in both actuarial (Balbds et al., 2015) and
financial (Balbéds et al., 20105, Balbés et al., 2016a or Balbés et al., 2016b) applications.

Lemma 7 Consider y* € Y. y* solves (21) if and only if there exist 0* € R and z* € L™

12



such that (y*, 0%, 2*) solves (see (6))

(01 KE (yw) >0, Yw € Ay
E(z) =1
>0
Min 6 + E (yz) o (22)
2<1/p
yey

| (,0.2) € L' x Rx L*®

(y,0,z) being the decision variable. If so, then we have that 0 = kCVaRi_,_, (y*),
E(y*2*) = —CVaR;i_, (y*), and the optimal values of both (21) and (22) coincide.

Proof. Suppose that y* solves (21), and consider (y,0,z) (22)-feasible. Take 6% =
kCVaR:_,_, (y*) and z* € A, such that (see (6) and (7)) [E(y*2*) = —CVaR;_, (v*).
(5) and (7) show that (y*, 0", z*) is (22)-feasible. Since (y, 0, 2) is (22)-feasible, (5) and (7)
show that 6 > kCVaR,_,_, (y) and —CVaR;_, (y) < [E(yz). Hence,

0+ E(yz) > kCVaRy_,_, (y) — CVaRy_, (y) >
kCVaRy_,_, (y*) — CVaRy_, (y*) = 6" + E(y*z*).
Conversely, suppose that (y*, 0%, z*) solves (22). If y € Y then (5) and (7) show existence
of z € A, with [E (yz) = —CVaR;_, (y) and the (22)-feasibility of
(y,0 = kCVaR_,_, (y),2).
Hence,
kCVaRy_,—, (y) —CVaRi_, (y) =0 +E(yz) > 0"+ E(y*2"). (23)

Let us prove that
0" =kCVaR_,_, (y"). (24)

Indeed, otherwise " could be replaced by kCVaR;_,_, (y*) < 0" and we would still have a
(22)-feasible solution due to (5). Thus, 0" + [E (y*2*) > kCVaR,_,—, (y*) + [E (y*2*) would

imply a contradiction.

Next let us prove that
E(y*2*) = —CVaRi_, (y"). (25)

13



Indeed, otherwise (7) would imply [E (y*2*) > —CVaR;_, (y*), and we could find z** € A,
with (y*, 0%, 2**) (22)-feasible and [E (y*z**) = —CVaR_, (yv*) < [E(y*z*). Thus, 0" +

IE (y*z*) > 0" + |[E (y*2**) would be a contraction again.
Finally, (23), (24) and (25) imply that y* solves (21). O

Notice that Problem (22) is linear in the §—variable and bilinear in the (y, z) —variable. In
particular, if one fixes y or z, then (22) becomes linear, and therefore it is easy to find its

optimality conditions.

Theorem 8 (Optimality conditions). Suppose that is Y convex and y* € Y solves (21).
There exists (w*, 2%, o, g, @) € Dpyy X Ay x R x LY x LY such that

.
apz* =10

a, (1/p—2)=0

Y=o+ ag—

ag >0, a2 0

E (y* (z* — kw*)) < E(y(z* — kw*)), VyeY

E (y*w*) < E (y*w), Yw € Ay

\

Furthermore, if 1 < p < oo and y* € LP, then (ap, ) € LP x LP.

Proof. There exists (y*, 0", z*) solving (22). Thus, z* € A, and (y*,0") solves the linear
problem
0+ kE (yw) >0, Ywe A4,
Min 6+ [E (yz") yey (27)
(y,0) € L' x R
As in Balbés et al. (2010a), the dual problem of (27) is
Mazx T (w)=1Inf {E(y(z*—kw)); y €Y} (28)
w e Ay 7
there is no duality gap between (27) and (28), and the complementary slackness conditions

between (27) and (28) lead to the fifth and sixth condition of (26).
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Besides, (0", z*) solves

0+ KE (y*w) >0, Ywe A4,

E(z) =1

Min 0 + E (y*2) 2>0 (29)
z<1/p

(0,2) € R x L™

\
As in Balbés et al. (2010a), the Lagrangian function of (29) is

L (z,w, a0, 0,) = E (y*2) — KE (y*w) — /Q

zap (dw) + / zay, (dw),

Q
where ap > 0 and o, > 0 belong to the dual space of L>. (z,w,ap,,) will be (29)-
dual feasible if and only if £ (z,w, ap, ) has a finite lower bound in the affine space

{z € L*=;E (z) = 1}, which is equivalent to the existence of @ € IR such that

IE (y*2) — /Qzao (dw) + /Q zay, (dw) = olE (2) .

for every z € L*°. Thus, y* — o+, = a proves the third condition of (26) and, moreover,
the complementary slackness conditions between (29) and its dual lead to the first a second

one. Finally, the first, second a third condition in (26) imply that

v o, 2F<1/p a—y*, 2>0
oy = and o, = )
0, otherwise 0, otherwise
and therefore (o, a,) € LP x LP if y* € LP. O
5 Examples

Risk optimization plays a critical role in finance and insurance. There are many classical
problems very frequently visited and revisited in the literature. We have selected two
examples. This is not at all an exhaustive list and we are aware of that, but we just
have an illustrative purpose. We would like to show how the theory of sections above may
be useful in both actuarial and financial applications. We will not completely solve the
selected examples because it is beyond the scope of this paper, whose focus is on the VaR
minimization. Nevertheless, we will see how the developed theory may enable us to find

adequate solutions.
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The first example is actuarial. We have chosen the optimal reinsurance problem (ORP)
because it was among the most studied actuarial optimization problems during many years
(Kaluszka, 2005, Cai and Tan, 2007, Chi and Tan, 2013, Balbas et al., 2015, Zhuang et al.,
2016, etc.). Similarly, our second choice, portfolio selection and asset allocation (PCAA),
was the focus of many papers during many years too (Shaw, 2011, Dupacovd and Kopa,

2014., Zhao and Xiao, 2016, Balbés et al., 2016a, etc.).

5.1 Optimal reinsurance

Consider an insurance company having to pay the random indemnification u > 0 at a
future date T'. The company can buy a reinsurance whose retained risk u, and ceded risk
u. will satisfy u = u,. + u.. The choice of u,, > 0 and u. > 0 is the focus of the ORP. Since
the solution is often achieved with a stop_loss contract u. = (u — U)" = Max {u — U,0}
for some U > 0, which could provoke reinsurer moral hazard, we will prevent the feasibility
of this contract by following the approach of Balbds et al. (2015) (see also Zhuang et
al., 2016).> Hence, consider the Banach space X composed of the out of a countable set

continuous functions x : [0,00) — IR with finite lower and upper bound, endowed with its

2

s of u

usual norm ||z||_ = Sup {|z (t)|; ¢ > 0}. If the expectation [E (u) and variance o
satisfy |[E (u) < oo and 02 < oo, IP is the probability measure generated by « on [0, 00)
(i.e., IP(B) is the probability of the event u € B for every Borel set B C [0,00)) and

J: X — L?(IP) is given by
t
T@) 0= [ s
0
then, it is easy to see that J is well defined, linear and continuous. Indeed, we will have

that .
LMMWSAMM%=WMt

for every x € X and every ¢t > 0,

AMwaPumsnm;/mﬂpwwznw;®i+mwﬁ (30)

0
for every x € X, and the result will trivially follow from properties very standard in

functional analysis (Rudin, 1973). In practice, and out of Lebesgue null sets, x may be

31f the approach of Balbds et al. (2015) is not implemented, and one deals with more classical frame-
works (Cai and Tan, 2007, Chi and Tan, 2013, etc.), then, under some straightforward modifications, the

rest of the example essentially remains the same.
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understood as the sensitivity (or first order derivative) of the retained risk with respect to
claims (Balbés et al., 2015). In fact, one can identify v with u (t) = J (1) (t) = t for every
t > 0. Thus, if # € X is the chosen reinsurance contract, then u, = J (z) and v, = J (1 — z)
will be the chosen retained and ceded risk, respectively. The reinsurer may prevent her /his
moral hazard by imposing the constraint = > h for a selected “threshold of the retained
sensitivity” h € X, h > 0. Obviously, if the reinsurer accepts stop — loss contracts, this
constraint becomes irrelevant by selecting h = 0. On the contrary, if stop — loss contracts

are not accepted, they will become infeasible by choosing h > ¢ for some £ > 0.

Let C' > 0 be a loading rate and consider the reinsurance price
(1+C)E(u.)=(14+C)E(J(1—x))

computed with the expected value premium principle. Alternative premium principles may
be considered too (Kaluszka, 2005, Balbds et al., 2015, etc.), but, as said above, we only
attempt to illustrate the interest of Sections 2, 3 and 4. The final wealth of the insurer will
be

Wx)=II-J(z)—(1+C)E(J(1—2x)) (31)

IT being the amount of money paid by the insurer clients. If VaR;_, (W (x)) reflects the

insurer risk, then the O RP may become the vector optimization problem

Mazx E(W (x))
Min VaRy_, (W (z))
reX, h<zxz<l1

Since C > 0,11 € R, (1+C)IE(J(1)) € R and VaR,_, is translation invariant (Artzner
et al., 1999), (31) implies the equivalence between this problem and

Min —E(J(z))
Min VaRi_,(=J(z)) — (1+C)E(J(x))
reX, h<xr<l1

As usual in vector optimization, this problem may be solved by means of positive weights. If
Wy > 0is the weight of [E (J (z)) and 1 is the weight of VaR;_,, (—J (z))—(1+ C) [E(J (z)),
then the objective function of ORP will be VaR,_, (—J (z)) — (1 + C + W) [E(J (2)), and
the ORP final version will become (take W = 1+C+WW, > 1 and recall again that VaR;_,
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is translation invariant)

Min VaRy_,(WE(J(x))— J (x))
reX, h<z <1

(32)

Next, let us see that the proposed methodology applies to solve (32). Indeed, first of all
notice that (32) is a particular case of (14) if

Y ={WE(J(z))—J(z); 2€X, h<z<1}.

Secondly, Y C L? (IP) and it is convex and bounded due to (30). Suppose that (13) holds
uniformly on Y. Then, the closure of Y will satisfy the conditions of Theorem 4b, and
every agglomeration point of the sequence of solutions of (15) will satisfy the conditions of
Theorem 4c. In order to see that (13) holds uniformly on Y, let us draw on Proposition 6¢

and (20). We only have to prove that
Limy oo (VaRi_—1/n (WE(J (2)) — J (z))) = VaRi_, (WIE (J (z)) — J (z))

uniformly on x € X, h < x < 1. Since VaR;_, is translation invariant for every 1 — v €

(0,1), it is sufficient to show that
Limy, (VaBy_yyjn (~J (2))) = VaRy_y (~J (z) (33)

uniformly on z € X, h < x < 1. Notice that h < z < 1 implies that J(x) and J (1 — )
are co-monotone (Assa and Karai, 2013). Since VaR;_, is co-monotone additive for every

1—v e (0,1) (Assa and Karai, 2013), we have that

VaRy y1ju (=7 (1)) = VaRy_aj (=7 (@) + VaRy_ 1y (=] (1 - 2))
VaRi_, (—J (1) = VaRi_, (—J (z)) + VaRi_, (—J (1 — z))

and therefore,

VaRi_, (=J (z)) = VaRi_—1/n (—J (2)) =
VaR,_, (=J (1)) = VaR,_, (=J (1 —x))

(VCLR1 p—tm (= (1)) = VaRi_y1/n
VaRy_, (=J (1)) = VaRi_py_1/n (—J (1)
—(VaRi_, (—J (1 —2)) = VaRi_,—1/n
VaRy ,(—J (1)) = VaRy_, 1jm (—J (1)

J(1—1))) =

(=
)
(=J(1—2))) <
)
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because (9) is non-increasing function. Thus, the uniform convergence of (33) trivially

follows from the right-continuity of (9) for y = J (1).

Once we know that Proposition 3 and Theorems 4b and 4c apply, it only remains to verify
Theorem 8 and (26). They lead to (w*,z*, o, g, vy) € Ay X Ay X R X L? x L2 2 =

z* — kw*, and

.
apz* =10

a,(l/p—2*)=0

—J (") =WIE(J (2*) + a+ oy —

ag >0, a, >0

E((WIE(J(2*) — J(z*)z*) < E(WIE(J(2)) — J(x))z*), Vh<z<l1
E((WIE(J(z*)) — J(2*) w*) < E((WIE(J (%)) — J (z¥))w), Ywe A,

(34)

\

We will not solve System (34) because it would significantly enlarge the paper. Nevertheless,
similar systems have been solved in Balbés et al. (2015) and Balbds et al. (2016b), where

the authors optimize the C'VaR by means of closely related equations.

5.2 Optimal investment

Let us introduce the PCAA by means of the Balbds et al. (2010b) approach. It is very
general because it applies for both static and dynamic frameworks, and it simplifies some

aspects by means of the stochastic discount factor (SDF).

Consider a time interval [0, 7] and suppose that marketed claims at 7" are given by random
variables on the probability space (£, F, IP). Suppose that every marketed claim y is in L?
and that the market is complete, i.e., every y € L? is a marketed claim (or reachable pay-
off). Completeness is not necessary (Balbés et al., 20100), but it simplifies the exposition
and, as said above, we only try to illustrate several possibilities of previous sections. Current
prices are given by the linear and continuous function (pricing rule) L? 3 y — II(y) =
IE (2n1y) € R. 21 € L? is the SDF and must satisfy IP (2;; > 0) = 1 in order to prevent the
arbitrage. We will also impose [E (z11) = 1 or, equivalently, the riskless rate vanishes. Once

again this assumption may be removed, but it simplifies some notations.

The PC' AA will focus on both risk and expected pay-off per invested dollar. Thus, if R > 1

is the desired expected return (notice that R = 1 can be reached with the riskless security),
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the PCAA will become

E(y) > R, E(eny) < 1

Min VaR,_, (y)
: yeL?

(35)

Sincey = (y—R)+ R, VaRy_,(y) = —R+VaR,_,(y—R),E(y) > R<E(y—R) >0
and E (zny) <1< E(zp(y — R)) <1 — R, replacing y with y — R and denoting again by

y the decision variable, (35) becomes

E(y) >0, E <_
Min VaRi_, (y) (y) 2 0, E(eny) < —a (36)
yeL?

with @« = R —1 > 0. Problem (36) is feasible under very weak conditions, but is is
often unbounded (Balbds et al., 20100). For instance, it is unbounded for the Black and
Scholes pricing model and for many stochastic volatility pricing models. If it is bounded
and solvable, then, for M large enough, the solution y* will satisfy ||y*||, < M (see (1)).

Therefore, it will also solve

IE(y) >0, [E(zny) < —a

Min VaR;_, (y)
yeL? lyll, <M

(37)

Obviously, the feasible set of (37) is closed, bounded and o (L2, L?) —compact. Therefore,
since Ay is trivially (36)-feasible if A > 1 and y is (37)-feasible, Theorem 5a will apply.
Furthermore, according to Proposition 6¢, if (13) holds uniformly on the (37)-feasible set,
then Theorems 5¢ and 5d will apply too. The uniform fulfillment of (13) in the (37)-feasible
set will not hold in general. Nevertheless, the solvability of (36) will often fail as well. If
appropriate constraints are added in (36) so as to recover solvability (for instance, if some
bounds for the usual Delta or other Greeks are imposed), then the uniform convergence of
(13) will be proved with similar arguments to those used in Example (32). With respect
to Theorem 8, as already done in (34) for Problem (32), System (26) is easily adapted to
Problem (37). As already said, this section only has illustrative purposes, and we will not

present a profound analysis of (36) because it would significantly enlarge the paper content.

6 Conclusion

The optimization of VaR is still very important in finance and insurance, among many

other fields. Though there are alternative risk measures with valuable properties, several
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authors have justified the usefulness of VaR in many applications.

The optimization of VaR is much more complicated than the optimization of other risk
measures. Since VaR is neither convex nor differentiable, the standard methods of mathe-
matical programming are frequently difficult to apply. There are many and quite different
approaches addressing the optimization of VaR. All of them yield interesting algorithms or
optimality conditions, but non of them solves the problem in an exhaustive manner. There

are many cases which cannot be treated with the existent methodologies.

This paper has proved that a VaR approximation may be given with a linear combination
of two C'VaRs with different confidence level. More accurately, VaR is a C'VaR derivative,
and therefore it is the limit of a sequence of linear combination of C'VaRs with different
confidence level. This property has been used in order to provide new methods to optimize
both VaR and linear combinations of C'VaRs in general probability spaces. Applications
in finance (optimal investment) and insurance (optimal reinsurance) have been given. They

show the practical effectiveness of the provided new methodologies.
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