
Proceedings of the Second International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2015)

Krakow, Poland

Jesus Carretero, Javier Garcia Blas
Roman Wyrzykowski, Emmanuel Jeannot.

(Editors)

September 10-11, 2015



NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Multilevel parallelism in sequence
alignment using a streaming approach

Beat Wolf1,2, Pierre Kuonen1, Thomas Dandekar2

1 University of Applied Sciences Western Switzerland, HES-SO//Fribourg
2University of Würzburg//Germany

beat.wolf@hefr.ch

Abstract

Ultrascale computing and bioinformatics are two rapidly growing fields with a big impact right now and even more
so in the future. The introduction of next generation sequencing pushes current bioinformatics tools and workflows
to their limits in terms of performance. This forces the tools to become increasingly performant to keep up with
the growing speed at which sequencing data is created. Ultrascale computing can greatly benefit bioinformatics
in the challenges it faces today, especially in terms of scalability, data management and reliability. But before
this is possible, the algorithms and software used in the field of bioinformatics need to be prepared to be used in a
heterogeneous distributed environment. For this paper we choose to look at sequence alignment, which has been an
active topic of research to speed up next generation sequence analysis, as it is ideally suited for parallel processing.
We present a multilevel stream based parallel architecture to transparently distribute sequence alignment over
multiple cores of the same machine, multiple machines and cloud resources. The same concepts are used to achieve
multithreaded and distributed parallelism, making the architecture simple to extend and adapt to new situations. A
prototype of the architecture has been implemented using an existing commercial sequence aligner. We demonstrate
the flexibility of the implementation by running it on different configurations, combining local and cloud computing
resources.

Keywords Ultrascale systems, NESUS, Template

I. Introduction

In the field of bioinformatics the advance of next gen-
eration sequencing (NGS) technologies increased the
amount of data produced at a very high speed. They
produce the sequencing data at a higher speed, with
longer sequences that have increasingly better quality.
The amount and speed at which the data is produced
increased much faster than the capacities of computers
evolved during the same time. This makes it challeng-
ing for sequence laboratories to analyse the produced
data in a reasonable amount of time. While in the be-
ginning of DNA sequencing the produced data could
still be analysed by hand, the amounts of data pro-
duced today for one sample can range from 10 giga
base pairs in whole exome sequencing to hundreds

in the case of whole genome sequencing. Powerful
computing infrastructures are needed to analyse this
type of data.

Ultrascale computing presents itself as a possible
solution to many of the issues faced in bioinformat-
ics. But to benefit from the possibilities of ultrascale
computing, many algorithms and tools used need to
be adapted to work in such a distributed environment.
While much effort is spent to distribute and parallelize
various tools, they are often tied to a specific environ-
ment, be it a grid or a cloud. In this paper we look at
the issue of sequence alignment and create a generic
way to distribute the workload over a heterogeneous
distributed system. This work can be used as the basis
of future work to bring bioinformatics data processing
to ultrascale systems.

1

Beat Wolf, Pierre Kuonen,Thomas Dandekar 121



Second NESUS Workshop • September 2015 • Vol. I, No. 1

Sequence alignment is an active topic of research,
with various approaches taken to solve the issue. The
basic idea of sequence alignment is to find the best
position of a sequenced read on an already known
reference genome. The complexity of the task comes
from the size of the reference genome, the amount of
sequences to be aligned and the fact that the sequenced
genome does not perfectly match the reference genome.
As an example, the he human reference genome is 3
Giga base pairs long. Millions of sequences with a
typical length between 100 and 1000 base pairs are
then aligned against this reference. The differences
between those sequences and the reference can range
from simple single nucleotide mismatches to compli-
cated insertions or deletions.

Various approaches exist to the problem of sequence
alignment, an overview of the different techniques can
be found at [1]. While the different alignment tools
approach the issue from different angles, they do all
have in common that they find the optimal placement
of a single sequence on the reference genome. They do
so by looking only at one sequence at a time, without
any expectations of the order at which the sequences
are aligned. This makes sequence alignment an ideal
candidate for parallel processing. Every sequenced
read can be processed independently and in any order.
The order in which they are input for the alignment
and their output order also does not matter. In fact
most alignment algorithms make use of multi-core
systems through multithreading to speed up the align-
ment. Some, like the recently released tool nvBowtie,
even use GPUs to make use of the thousands of cores
of a GPU to accelerate sequence alignment. The use
of parallel processing does not stop here, but also ex-
tends to distributed systems. Examples of such tools
are Crossbow [3], Cloudburst [4], ScalaBLAST [5] or
custom frameworks like the one presented in [6].

In this paper we explore a possible architecture
which uses parallelism on multiple levels. It is used to
distribute the sequence alignment over multiple cores,
multiple computers in the same network and cloud
resources. While several of the previously mentioned
tools support some of those approaches, none combine
all of them at once. A stream based approach is used to
distribute the workload over all the different systems.
The way a remote computer and a local thread are

integrated into the alignment process is very similar in
this architecture. A prototype of the system has been
implemented in a commercial NGS data analysis soft-
ware, GensearchNGS [9]. The proposed architecture
is verified by measuring its scalability over multiple
heterogeneous computing nodes and the flexibility of
the design is discussed. While the sequence alignment
algorithm distributed in this example is a custom one
used by GensearchNGS, the architecture and design of
the distribution is not restricted to that algorithm.

II. Methods

The implementation of the distributed sequence aligner
uses Java 6+ as the programming language. The com-
munication with remote installations is done through
DIRMI, a replacement for the by default in Java inte-
grated remote method invocation library RMI. DIRMI
was chosen over RMI as it allows for bidirectional
connections to remote objects, making it possible to
work behind a NAT while using remote computing
resources.

The developed sequence aligner can be run locally
using the multiple available cores of a machine and
distributed over multiple computers with the software
installed and running. For this prototype the installed
software is GensearchNGS. Additionally, the user can
also dynamically launch remote cloud instances of the
aligner. The integration of cloud resources, for the
moment using the Amazon AWS EC2 cloud service, is
done through the generic Java clouds library jclouds.
It allows for easy integration of cloud instances on
various clouds, making it possible to launch and de-
stroy cloud computing instances from inside Java. The
aligner which is distributed is based on the aligner
used in GensearchNGS [7]. The aligner uses a hash
based index for the initial seed detection. The seeds
are evaluated used a custom heuristic algorithm with
the final alignment being performed by the Gotoh [2]
algorithm, ideally suited for gapped alignment. While
for this implementation of the distributed alignment
we use this specific algorithm, the architecture could
also be applied to other existing alignment algorithms.

The dataset used to test the prototype comes
from the genome comparison & analytic testing
project (GCAT) [8], which provides standardized

2

122 Multilevel parallelism in sequence alignment using a streaming approach



Second NESUS Workshop • September 2015 • Vol. I, No. 1

datasets to test different NGS data analysis soft-
ware. The illumina-100bp-pe-exome-150x dataset has
been used, which is available on the GCAT website
(http://www.bioplanet.com/gcat/). The dataset con-
tains 45’038’905 read pairs with an average read length
of 100 bp. For the benchmarks in this paper, only the
first 5 million read pairs have been used.

III. Architecture

The architectural choices are based on a typical sce-
nario. Small genetic research laboratories often do
not have the required infrastructure to perform big
sequence alignments. But what they do have is a mod-
est computing infrastructure with multiple multi-core
desktop systems used for data analysis. A common
evolution for those laboratories is to start NGS data
analysis using targeted sequencing for a specific set of
genes. Later they expand to whole exome analysis and
in the end doing whole genome sequencing. While
targeted sequencing can be done using a modest desk-
top computer, moving to whole exome and especially
whole genome sequencing data quickly brings labora-
tories to their limits. Thus the goal of the proposed
architecture is to optimally use the existing resources
but also provide the option to expand the infrastruc-
ture when needed to outside resources. Possible op-
tions to expand to outside resource are, depending on
the laboratory policies, cloud computing services like
Amazon.

The core concept of the architecture is based on the
idea of using stream processing for sequence align-
ment. As shown by [6], using stream processing for
DNA sequence alignment can greatly increase the total
processing time. This comes mainly from that fact, that
uploading the data to a remote computing resource
and analysing it can be done at the same time, drasti-
cally reducing the overall analysis time.

The concept of stream processing was not only used
to integrate the remote computing resources, but to
connect all parts of the system together, including local
alignment threads. The core system, as shown in figure
1, is composed of 3 main elements: The Data reader,
the Sequence aligner and the alignment Writer. For
this implementation we choose to use BlockingQueues

to communicate between the different elements. It

Data reader

Writer

Raw data

Output le

Sequence

aligner

Output

Input

Figure 1: Overall stream based aligner architecture, connect-
ing the different system elements through queues

is this choice of using Queues for the communica-
tion between the different parts that made the archi-
tecture very flexible. The Data reader reads the in-
put data provided by the sequencer, usually in the
FASTQ file format, and puts the individual reads on
the Queue to be aligned. The different local threads
implementing the Sequence aligner take those se-
quences from the queue and align them against the
reference sequence. After having aligned a sequence,
the Sequence aligner puts the created alignment in a
different queue, the one containing the finished align-
ments. The alignment Writer takes the aligned se-
quences from the output queue and writes them into
an alignment file, typically a SAM or BAM file. All the
different elements of the system are run in their own
thread.

Using queues to communicate between the differ-
ent parts of the aligner makes it extremely flexible
and scalable. This is shown in figure 2 which ex-
pands the basic local parallelization to work in a
distributed environment. The addition of Sequence

aligner and Distributed client allow to easily dis-
tribute the work to a remote machine. In fact, Sequence
aligner and Distributed client can run simultane-
ously on the same machine, performing some align-
ment work locally while distributing other. It is even
possible to have a Distributed server which in turn
distributes the alignment workload further with its
own Distributed client. This flexibility allows for
interesting configurations which adapt to various real
life situations discussed later.

To be able to connect to a remote machine, all that
is required is that the remote machine is running the
Distributed server object, accessible by the client
machine. In the context of this prototype every user

3

Beat Wolf, Pierre Kuonen,Thomas Dandekar 123



Second NESUS Workshop • September 2015 • Vol. I, No. 1

Sequence

aligner

Output

Input

Output

Input

Network

Distributed

client

Distributed

server

Figure 2: Integration of remote computing resources

of the GensearchNGS application has the option to
let other users in the same network connect to his in-
stallation and use it to perform sequence alignment.
The different installations discover each other using a
custom automatic service discovery protocol. When
starting the sequence alignment, the different local
sequence alignment threads are created, and the re-
mote Distributed server objects are automatically
connected.

This concept has been expanded to include cloud
computing. This has been done through the integration
of the JClouds library, which allows to initialize cloud
resources on demand. When starting the sequence
alignment, the user is provided with the choice of how
many cloud instances of the sequence aligner he wants
to execute. Depending on his choice, a certain number
of cloud resources are started, running a preconfigured
image with the software preinstalled and executed
upon booting. Once connected to the Distributed

server object, there is no cloud specific code to per-
form the alignment. The system only sees an object
that takes raw sequences from the input queue and
puts aligned sequences back on the output queue.

The previously described possibility to create
Distributed server objects which in turn distribute
the workload further using Distributed client al-
lows to handle particular limitations certain cloud
providers have. In certain cloud environments it is
desirable to only start a single cloud instance with
a public IP address. Any additional cloud resource
is then instantiated in a private network inside the
cloud, only accessible from the outside through the
public instance. Instead or additionally to a local se-
quence aligner in the Distributed server object, the
Distributed server can run multiple Distributed

client objects. This allows the public cloud instance

to route the incoming raw sequencing stream from
the outside to the multiple instances in the private
network.

Another interesting side effect of this architecture
is that it allows to perform sequence alignment on
machines which are normally not powerful enough
to handle the alignment. Aligning against the human
reference sequence using the GensearchNGS aligner re-
quires approximatively 5 GB of RAM. Especially older
desktop systems do not always have that amount of
RAM. The discussed architecture makes it possible to
launch the sequence alignment locally on those ma-
chines, but without creating local Sequence aligner

objects.

IV. Results & Discussion

To demonstrate the flexibility and performance of our
architecture, we tested the prototype using multiple
configurations. To do this, four typical configurations
have been tested. The first one tested the performance
using a single laptop. The second configuration added
a second desktop computer located in the same net-
work to speed up the calculations The third configu-
ration expanded upon the second one by adding one
instance of an Amazon AWS EC2 virtual machine. The
fourth configuration uses no local alignment on the
laptop which starts the alignment process, but offloads
all of the alignment to two instances in the Amazon
AWS EC2 cloud. In this configuration, the laptop only
does the work of reading the raw data and saving
the aligned sequences in the output file. The config-
urations of the tests have been chosen to represent a
typical scenario in a small genetics laboratory. Figure
3 shows how the different computers used for the four
configurations are connected.

The work laptop is equipped with an Intel Core i7-
3520M dual core CPU, clocked at 3.6 Ghz with 8 GB
of RAM. The desktop computer uses an Intel Core I7
870 with 4 cores clocked at 3.6 Ghz, also with 8GB
of RAM. The Amazon AWS EC2 cloud instances of
the aligner are launched on a virtual server of type
c3.xlarge, which has a CPU of type Intel Xeon E5-2680
with 4 cores and 7.5 GB of RAM. The laptop and the
desktop computer are connected with a 1 Gb/s switch,
and both of them are connected to the internet with a

4

124 Multilevel parallelism in sequence alignment using a streaming approach



Second NESUS Workshop • September 2015 • Vol. I, No. 1

XX X X X X X X X X X X X
XX X X X X X X X X X X X

XX X X X X X X X X X X X
XX X X X X X X X X X X X

XX X X X X X X X X X X X

Internet

Desktop Laptop

Amazon AWS EC2

Figure 3: Topology of all elements used in the benchmark
configurations.

Figure 4: Alignment times on all 4 example configurations

100Mbs (up and down) connection.
Figure 4 shows the benchmark times for the dis-

tributed alignment on the different configurations. The
measured times contain only the time required for
the sequence alignment, not including initialization
times which is about 3 minutes. Those initialization
times contain the time required to load the reference
sequence into memory as well as starting the cloud
instances.

The raw times for the different configurations set-
tings were: 1’163 seconds for configuration one, using
only the laptop. 478 seconds for configuration 2, which
used the laptop and the desktop computer. 339 seconds
for the configuration 3, using the laptop, the desktop
computer as well as one cloud instance. Configuration
4 finished in 1’096 seconds, using the laptop as a base
station but doing all alignment work on two cloud
instances.

Looking at the benchmark results we can conclude
that the proposed architecture adapts well to all tested
configurations. In the various configurations the dif-
ferent systems were well saturated, without slower
systems badly affecting the overall performance. Load
balancing is indeed a side-effect of the chosen design
where every computing resource, be it a local thread
or a remote computer, takes sequences to align out of
a common queue. As long as I/O speeds permit, every
computing resource is provided with the amount of
work needed to saturate it.

The way remote computing resources are handled,
be it in the local network or in the cloud, also per-
mits for any amount of computers to fail. As long as
at the computer launching the alignment and at least
one computing resource which performs the alignment
keep running, the alignment will successfully finish.
This is achieved by keeping a local copy of every se-
quence sent to a remote computer. This local copy
is only deleted once a successful alignment has been
received for the sequence. If the remote computer dis-
connects, all the local copies of the sequences which
have been sent to him but for which no alignment has
been found yet, are put back in the input queue. They
are then recovered and aligned by another computing
resource which is still running.

V. Future work

While the developed prototype nicely shows the abil-
ity of the architecture to adapt to various situations
and distribute the workload over all systems in the
example configurations, there are still issues to be ad-
dressed. The first issue being the bandwidth required
to distribute the workload over multiple computers, es-
pecially if they are located in a remote cloud. While the
amount of data sent to the remote resource has already
been minimized as much as possible, including effi-
cient encoding of DNA sequences, not every possible
optimization has yet been done to reduce the band-
width requirements. A home internet connection will
quickly saturate, putting an upper limit to the cloud
instances that can be used simultaneously. While the
internet connection of a genetic laboratory is usually
higher than a standard home internet connection, the
exact bandwidth requirements and limitation still need

5

Beat Wolf, Pierre Kuonen,Thomas Dandekar 125



Second NESUS Workshop • September 2015 • Vol. I, No. 1

to be evaluated and optimized. Once this step is done,
the architecture will be compared to other distributed
aligners like the previously mentioned ones [3, 4, 5, 6].

The second issue is the one of data security and
confidentiality in distributed systems. In many data
laboratories the data privacy rules restrict or forbid
the usage of remote resources for any patient data.
This is currently an active topic of research and no
particular security measures were taken to improve
the data security in this prototype. The two main
features related to datasecurity and are planned to be
implemented are: encrypting all data sent to and from
the cloud and pooling multiple samples to be aligned
simultaneously.

VI. Conclusion

We presented a generic architecture for stream based
multilevel parallel alignment. The architecture uses
the same concepts to distribute the alignment over
multiple cores on one system and over multiple com-
puters. The implemented prototype is able to adapt
to various real life situations, using locally available
computing resources or extend them using cloud re-
sources. The effortless combination of the different
distribution methods is a unique feature of this proto-
type, showing the potential for bioinformatics software
to optimally use existing infrastructure and extend it if
needed. While the implemented prototype has been in-
tegrated into a commercial NGS data analysis software,
GensearchNGS, the proposed architecture is applicable
to other alignment algorithms. The current implemen-
tation and its source code is not publicly accessible,
but we have plans to release it at a later date under
the GNATY (GensearchNGS Analysis Tools librarY)
project. GNATY is in the process of being published
and is free of access. Future work will include the
optimization of the architecture as well as addressing
the issue of datasecurity in the cloud related to DNA
sequencing data.

References

[1] Li, H., & Homer, N. (2010). A survey of sequence
alignment algorithms for next-generation sequencing,
Briefings in Bioinformatics, 11(5), 473-83.

[2] O. Gotoh, An improved algorithm for matching bio-
logical sequences, Journal of Molecular Biology 162,
705-708, 1982.

[3] B. Langmead, M. C. Schatz, J. Lin, M. Pop and S. L.
Salzberg, Searching for SNPs with cloud computing,
Genome biology, 10:R134, 2009.

[4] M. C. Schatz, CloudBurst: highly sensitive read map-
ping with MapReduce, Bioinformatics, 25, 11, 1363-
1369, 2009.

[5] C. S. Oehmen and D. J. Baxter, ScalaBLAST 2.0:
rapid and robust BLAST calculations on multiprocessor
systems, Bioinformatics, 29, 6, 797-798, 2013.

[6] S. A. Issa et al., Streaming Support for Data Inten-
sive Cloud-Based Sequence Analysis, BioMed research
international, vol. 2013, Art.no. 791051, 2013.

[7] B. Wolf, P. Kuonen and D. Atlan, Distributed DNA
alignment, a stream based approach, Doctoral Work-
shop on Distributed Systems, Bern, Switzerland,
Proc., 39-41, 2012.

[8] G. Highnam et al., An analytical framework for opti-
mizing variant discovery from personal genomes, Na-
ture Communications, 6, Art.no. 6275, 2015.

[9] B. Wolf et al., DNAseq Workflow in a Diagnostic Con-
text and an Example of a User Friendly Implementation,
BioMed Research International, vol. 2015

6

126 Multilevel parallelism in sequence alignment using a streaming approach




