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Abstract

We consider the portfolio optimization problem for a multiperiod investor who seeks to

maximize her utility of consumption facing multiple risky assets and proportional transac-

tion costs in the presence of return predictability. Due to the curse of dimensionality, this

problem is very di�cult to solve even numerically. In this paper, we propose several feasible

policies that are based on optimizing quadratic programs. These proposed feasible policies

can be easily computed even for many risky assets. We show how to compute upper bounds

and use them to study how the losses associated with using the approximate policies depend

on di↵erent problem parameters.

Keywords: portfolio optimization; dynamic portfolio choice; information relaxations.



1 Introduction

Dynamic portfolio choice is one of the most important practical problems in finance since

the work of Merton (1971), which examines an investor who wishes to maximize her utility of

consumption, and has access to multiple risky assets with a constant investment opportunity

set.1 Merton’s policy indicates that an investor should continuously rebalance her portfolio

weights in order to hold a fixed proportion of her wealth on each of the risky assets. However,

continuously portfolio rebalancing requires the payment of high transaction costs. Since

Merton’s seminal work, researchers have tried to characterize the optimal portfolio policy

in the presence of transaction costs.

The case with a single-risky asset and proportional transaction costs is now well under-

stood. Magill and Constantinides (1976) first consider proportional transaction costs and

conjecture that for a finite-horizon continuous-time investor, the optimal trading policy can

be characterized by a no-trade interval : if the portfolio weight on the risky asset is inside

this interval, then it is optimal not to trade, and if the portfolio weight is outside, then it

is optimal to trade to the boundary of this interval. Constantinides (1979) studies a gen-

eral discrete-time model and demonstrates the optimality of no-trade interval policy with

CRRA power utility of intermediate consumption and single risky asset. Constantinides

(1986) considers an infinite horizon problem with proportional transaction costs, and com-

putes approximately-optimal no-trade intervals by assuming the investor’s consumption rate

is a fixed proportion of her wealth, a condition that is not satisfied in general. Davis and

Norman (1990) address the same problem, establish analogous results on no-trade inter-

val, and provide a numerical method to calculate the optimal policy. Muthuraman (2007)

develops an e�cient computational scheme for the same problem.

The case with multiple-risky assets and proportional transaction costs is generally in-

tractable analytically. With a constant opportunity set, Akian et al. (1996) prove the ex-

istence and uniqueness of the optimal portfolio policy for a CRRA investor who has power

utility with relative risk aversion between zero and one and risky-asset returns uncorre-

lated. They also present some numerical results for the two uncorrelated risky assets case.

Liu (2004) considers a constant absolute risk aversion (CARA) investor who has access to

unconstrained borrowing and faces uncorrelated risky asset returns. He shows analytically

that there exists a box-shaped no-trade region and numerically solves the case of two risky

assets with a small correlation value. Muthuraman and Kumar (2006) propose an e�cient

numerical approach to compute the no-trade region for an infinite-horizon CRRA investor

who makes decisions continuously.

1Merton also studies the case where the investor has logarithmic utility in the presence of predictability.
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In the presence of predictability, the case with multiple-risky assets and proportional

transaction costs is much more di�cult to solve, and a small number of papers deal with

this problem. Balduzzi and Lynch (1999) study the impact of return predictability on the

utility costs and the optimal rebalancing rules for a single-risky asset case. They show

the costs of ignoring predictability can be substantial for a CRRA investor with a finite

life. Lynch and Tan (2010) investigate numerically the model with two risky assets and

predictable returns for a multiperiod CRRA investor who maximizes her power utility of

intermediate consumption. Using numerical dynamic programming, they show that for

each state, there is a quadrilateral-shaped no-trade region that confines the transaction.

The numerical methods employed in their paper are based on a grid discretization of the

state space and then their approach would run into the curse of dimensionality with more

risky assets. Brown and Smith (2011) provide several heuristic trading strategies for a

finite-horizon discrete-time investor facing proportional transaction costs and multiple risky

assets in the presence of return predictability. They evaluate the optimality of the proposed

heuristics based on upper bounds obtained through a dual approach. The dual method

based on information-relaxation is initially developed in Brown et al. (2010) and it provides

a technique to construct valid dual bounds for any approximated solution.

The aforementioned papers show that, for a CRRA power utility investor facing a small

number of risky assets (up to two), the model that incorporates return predictability with

transaction costs generally admits only a numerical solution. With more risky assets, only

an approximate solution can be obtained due to curse of dimensionality. Gârleanu and

Pedersen (2013), hereafter G&P, consider a more analytically tractable framework that

allows them to achieve a closed-form solution for the optimal portfolio policy in the presence

of quadratic transaction costs. Specifically, their investor maximizes the present value of

the mean-variance utility of her wealth changes at multiple time periods, has access to

unconstrained borrowing, and faces multiple risky assets with predictable price changes.

With quadratic utility and quadratic transaction costs and no portfolio constraints, the

model is formulated as a linear quadratic control problem which is straightforward to solve.

In this paper, we consider the problem of dynamic portfolio selection in a discrete-

time, finite-horizon setting. In our model, the investor maximizes her expected CRRA

utility of intermediate consumption. We further assume that she faces multiple risky assets

with predictable returns and constraints on borrowing, and incurs proportional transaction

costs. We propose several approximate trading strategies that are based on solving simple

quadratic programs and evaluate the sub-optimality of these strategies through the dual

approach proposed by Brown et al. (2010). In order to propose these approximate strategies,

we first approximate our model for a CRRA power utility investor with the mean-variance

problem considered in G&P. But instead of a model with infinite investment horizon and
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quadratic transaction costs, we considered a more realistic framework with finite investment

horizon and proportional transaction costs. We then find some approximate solutions that

induce low utility loss for the mean-variance problem. Finally, we adapt these approximate

solutions for the mean-variance problem to the CRRA problem. Our numerical experiment

suggests that these adapted approximate strategies perform reasonably well.

We make three contributions to the dynamic portfolio choice and transaction cost lit-

erature. Our first contribution is to provide several approximate trading strategies for a

mean-variance utility investor who faces proportional transaction costs and predictability.

Specifically, these approximate trading strategies are proposed using the tractable mean-

variance framework by G&P and can be conveniently computed by solving simple quadratic

programs.

Our second contribution is to show how to adapt the strategies based on the mean-

variance framework to that based on a CRRA power utility. To do this, we consider an

investor who wishes to maximize her CRRA utility of intermediate consumption with pre-

dictable returns, in the presence of proportional transaction costs. We numerically compute

the corresponding upper bounds to the certainty equivalent of the investor and show that

the certainty equivalent losses from using these approximate policies are reasonable.

Finally, in our third contribution we show that the multiperiod portfolio selection prob-

lem with multiple risky assets in the presence of predictability and proportional transaction

costs can be tackled through the use of duality method developed in Brown et al. (2010)

based on information relaxation. The dual methods can be used to compute dual bounds

on the optimal value function of dynamic portfolio selection problem through introducing

proper penalty functions. We show these dual bounds can improve significantly the bounds

computed when no penalty function is considered.

Our work is related to Brown and Smith (2011) and DeMiguel et al. (2014). Like

Brown and Smith (2011), we propose some approximate trading strategies for a multiperiod

investor with CRRA power utility, but instead of approximating the dynamic programming

recursion (the continuation value functions) of the primal problem, we approximate the

primal problem for each period with a quadratic program that can handle problems with

more risky assets. In addition, we consider an investor that maximizes her power utility of

intermediate consumption while Brown and Smith (2011) consider an investor maximizes

her utility of terminal wealth. DeMiguel et al. (2014) consider a mean-variance investor who

faces general transaction costs and constant opportunity set. For the case with proportional

transaction costs, they give closed-form expressions for the no-trade region. In this paper,

we propose the approximate trading strategies based on their analysis on no-trade regions

but we consider a more realistic case where there is predictability.
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The reminder of this paper is organized as follows. In Section 2, we introduce the dy-

namic portfolio selection problem in the presence of proportional transaction costs and pre-

dictability. In Section 3, we describe our approximate trading policies for a mean-variance

investor and evaluate these approximate strategies under the mean-variance framework.

Section 4 describes how to adapt these approximate strategies to a CRRA power utility

framework and evaluates numerically these strategies. The evaluation is based on informa-

tion relaxations that allow to obtain dual bounds. Section 5 concludes. Appendix A contains

the tables. Appendix B contains the derivation of the aim portfolio of linear policy while

Appendix C contains the derivation of the penalty function. In Appendix D we describe

how to approximate the consumption for each period for the model with transaction costs.

2 General Framework

We now describe the basic portfolio selection problem of an investor who needs to decide the

portfolio weights for N risky assets. Assume time is discrete and indexed as t = 1, · · · , T
with t = 1 being the current period and t = T being the terminal period. There is also

a risk-free asset being traded in the market and the risk-free rate R

f

is assumed to be

constant over time. From time t� 1 to t, the risky asset returns are stochastic and denoted

by R

t

= [R
t,1, · · · , Rt,N

], where R

t,i

� 0 is the gross return on asset i. Based on the asset

returns up to t, the investor then determines the decision vector x
t

= [x
t,1, · · · , xt,N ], where

x

t,i

is the weight of the ith asset hold in period t. Throughout this manuscript, we will

use x
t

to denote the N ⇥ t vector of decision variable, [x1, · · · , xt] and we always use x to

denote [x1, · · · , xT ].

Trading costs are imposed in the problem, and we assume short selling is not allowed

for risky assets. In this paper, we will focus on the special case where transaction cost for

each period is proportional to the amount of trade. This type of transaction cost is realistic

to model small trades, where the transaction costs come from the bid-ask spread and other

brokerage fees. Let x
t,+ be the vector of allocation to the risky assets inherited from period

t, that is

x

t,+ =
x

t

·R
t+1

R

p,t

, (1)

where · denotes component-wise multiplication and R

p,t

is the portfolio return which is

defined as

R

p,t+1 = x

>
t

R

t+1 + [1� x

>
t

e� kK(x
t

� x

t�1,+)k1]R
f

, (2)

4



with e a vector of ones of length N . The term kK(x
t

� x

t�1,+)k1 is the proportional

transaction costs that the investor incurs. Here K is a N⇥N diagonal matrix with elements

in the diagonal diag(K) = [1, · · · ,N ]. Each 

i

denotes the proportional transaction-cost

rate parameter for asset i. Taking transaction costs into account, the law of motion for

investor’s wealth is given by

W

t+1 = W

t

(1� c

t

)R
p,t

, (3)

where W
t

is investor’s wealth at t, and c

t

is the fraction of wealth consumed at period t. The

above law of motion assumes that the transaction costs are paid by costlessly liquidating

the risk-free asset.

Let C

t

be the total consumption, that is C

t

= c

t

W

t

. The investor’s objective is to

maximize the expected utility of the intermediate consumption over all the periods:

max
{ct,xt}Tt=1

E1

h

T

X

t=1

⇢

t

U

t

(C
t

)
i

, (4)

where ⇢ 2 (0, 1) is the discount factor and U

t

is the power utility function

U

t

=
C

1��

t

� 1

1� �

, (5)

with relative risk aversion parameter � � 1. In (4), E1(·) denotes the expectation condi-

tioned on the information at the beginning of initial period t = 1.

Let {F
t

}T
t=1 denote the filtration generated by the risky asset returns as well as other

state variables in the model. This filtration is an indexed set that describes the investor’s

state of information that evolves over time. Each F
t

represents the set of events that

describes the investor’s state of information at the beginning of period t and we require

F
t

✓ F
t+1 for all t < T so the investor does not forget the past.

In our model, the investor must choose an x

t

from a set P

t

at each period t. Let

P (u) ✓ P1⇥ · · ·⇥P

T

denote the set of all feasible action sequences x = [x1, · · · , xT ] for any
given scenario of state variable u. A feasible policy is the one where each individual action

x

t

depends on previous actions [x1, · · · , xt�1] for all t. Let P denote the set of such policies.

Besides feasibility, in our model, the investor’s choice is also required to be nonanticipative

such that the decision choice x

t

for each period t must depend only on the information

known at the beginning of t. To make the problem realistic, we assume action x

t

satisfies

the nonanticipativity constraints. Let PF be the set of nonanticipative feasible policies.

With all of these definitions, we can now introduce the considered dynamic portfolio choice
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problem:

max
(c,x)2PF

E1

h

T

X

t=1

⇢

t

C

1��

t

1� �

i

(6)

s.t. W

t+1 = W

t

(1� c

t

)R
p,t

, (7)

x

t

� 0, c
t

� 0. (8)

Several comments are in order. When we allow the presence of predictability, this portfolio

optimization problem can be formulated as a stochastic dynamic program where the state

variables include the current wealth level and portfolio position as well as the market state

variables. Note that for power utility function, the wealth level W
t

can be factored out for

each period and let S
t

denote the vector of state variables, the Bellman equation for each

period faced by the investor is,

�

t

(S
t

, x

t�1,+)

1� �

= max
(ct,xt)2Pt(xt�1)

⇢

c

1��

t

1� �

+
(1� c

t

)1��

1� �

E
h

�

t+1
�

S
t+1, xt,+

�1��

R

1��

p,t+1

i

�

, (9)

for t = 1, · · · , T � 1. Note the above equation is solved by backward iteration, starting

with t = T � 1 and �

T

= 1. In Section 2.1, we will introduce the model for the market

state variables S
t

. Note that solving the dynamic program requires discretizing the state

variables and the iteration in (9) involves the expectation of �
t+1, while the dimension of

the state space leads to the problem of curse of dimensionality especially when there are

more than two risky assets. In Section 3.1, we introduce the G&P framework that allows

us to deal with many risky assets.

2.1 Predictability Model

Like in Campbell and Viceira (1999), we assume the dynamics of asset returns and state

variables follow a restricted first order vector auto-regression model (VAR). With this model,

the risky asset returns can be predicted by log of dividend-price ratio, which is the only

state variable needed to forecast the risky asset dynamics. The restricted VAR model is

also used in Balduzzi and Lynch (1999), Lynch and Tan (2010), Brown and Smith (2011)

and Gârleanu and Pedersen (2013).

Specifically, let r
t

be a vector consisting of log risky asset returns, r
t

= log(R
t

). Denote

D

t

the predictive variable (dividend yield) and let d
t

= log(1+D

t

). We assume that r
t

and

d

t

follow the given VAR model (expressed in terms of percentages):

r

t+1 = A

r

+B

r

d

t

+ e

t+1, (10)

d

t+1 = a

d

+ b

d

d

t

+ ✏

t+1. (11)
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Here, A
r

is N ⇥ 1 vector, a
d

is a scalar, B is a N ⇥ 1 vector and b

d

is a scalar. Moreover,

[e
t+1 ; ✏

t+1] is a i.i.d. vector of mean-zero disturbances with constant covariance matrix

⌃
e✏

. Without loss of generality, the mean of {d}T
t=1 can be normalized to 0 and the variance

to 1.

3 The Mean-Variance Approximation

In this section we propose several methods for constructing feasible sub-optimal trading

strategies for a CRRA investor with objective (6). To avoid solving the dynamic program

in (9) which may result in curse of dimensionality, we will base our feasible strategies on the

mean-variance framework adapted from G&P. Note that the performance estimates of these

strategies can be obtained through simulation and these estimates provide lower bounds to

the mean-variance utility. To test the sub-optimality of the approximate strategies, we also

compute valid upper bounds for the utility of the mean-variance model by relaxing future

information in Section 3.3.

3.1 Mean-variance Framework

As discussed in Section 2, problem (6)-(8) is di�cult to solve even numerically when there are

more than two risky assets. Heuristic trading strategies are proposed in Brown and Smith

(2011) based on solving simpler optimization problems. These heuristic strategies facilitate

the investor to solve the dynamic program more e�ciently based on an approximation in

continuation value function. But still, it requires much time to evaluate the quality of the

heuristic strategies.

Compared with the power utility framework, the framework proposed by G&P is more

analytically tractable. With quadratic transaction costs, the closed-form expressions for the

optimal number of shares can be obtained based on their framework. With proportional

transaction costs and constant opportunity set, DeMiguel et al. (2014) study analytically

the properties of optimal trading strategies and provide closed-form expression for the no-

trade regions based on the G&P framework. They also show that the certainty equivalent

loss incurred from using a mean-variance utility instead of a CRRA utility of intermediate

consumption is small. This implies that the optimal policy based on a quadratic utility spec-

ified in Gârleanu and Pedersen (2013) provides a reasonable approximation for the optimal

policy implied by a CRRA utility in the presence of transaction costs. With the presence of

predictability in price changes, the objective function for an investor with quadratic utility
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is

max
x2PF

E1

(

T

X

t=1

h

⇢

t(x>
t

µ

t

� �

2
x

>
t

⌃x
t

)� ⇢

t�1kK(x
t

� x

t�1)k1
i

)

, (12)

where x

t

denotes the number of shares, µ
t

is the conditional expectation of price change,

⌃ is the covariance matrix of price changes, assumed to be constant, and � is the absolute

risk-aversion parameter.

With proportional transaction costs, a closed-form solution still cannot be obtained.

But we can formulate the problem as a stochastic dynamic program with state variables

consisting of the current number of shares in risky assets and the expected price changes

conditional at current period. To do that, note the value function for the last period is:

V

T

(x
T�1, µT

) = ⇢

T (x>
T

µ

T

� �

2
x

>
T

⌃x
T

)� ⇢

T�1kK(x
T

� x

T�1)k1, (13)

and from (13), we can define the value functions for previous periods recursively using the

Bellman equation

V

t

(x
t�1, µt

) = max
xt2Pt(xt�1)

⇢

t(x>
t

µ

t

� �

2
x

>
t

⌃x
t

)� ⇢

t�1kK(x
t

� x

t�1)k1 + E
t

[V
t+1(xt, µt+1)] ,

(14)

for t = 1, · · · , T � 1. Still, the numerical solution is di�cult to obtain when there are more

than two risky assets. However, under the G&P framework, we only need to track the wealth

change at each period instead of tracking the evolution of total wealth. Besides, unlike the

model with power utility, the focus on price changes implies that there is no need to track

the risky-asset price evolution. Hence, instead of considering the power utility framework,

in this section, we are going to propose trading strategies based on the G&P framework,

and later, in Section 4 we are going to adapt them to the CRRA utility framework.

3.2 Approximate Strategies

To avoid the di�culties we may be confronted with when solving the portfolio optimization

model with predictability and transaction costs, we will propose several trading strategies

to approximate the optimal trading strategy for (12). As in the G&P framework, we assume

the dynamic of price changes follows the model specified in (10)-(11).
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3.2.1 Simple Policy

First, we consider a deterministic approximation that ignores model predictability and

simply follows the optimal trading strategy recommended by a deterministic model. In this

model, the investor ignores the innovations in the predictability model. The resultant model

becomes a deterministic problem which can be solved based on quadratic programming:

max
{xt}Tt=1

T

X

t=1

h

⇢

t(x>
t

µ̃

t

� �

2
x

>
t

⌃x
t

)� ⇢

t�1kK(x
t

� x

t�1)k1
i

, (15)

where µ̃

t

is the expectation of price changes conditional at the initial stage, that is µ̃

t

=

E1(µt

). The corresponding simple policy is defined as the solution to the deterministic

portfolio problem (15). It is intuitive that the simple policy will perform well in practice

when the volatility in the predictability model is small.

3.2.2 Linear Policy

Second, we consider the linear approximation where the investor trades linearly towards a

next-period target. Gârleanu and Pedersen (2013) show that for an infinite-horizon investor

who faces quadratic transaction costs and predictability, the next-period optimal number

of shares is a linear combination of the existing position and the next-period target when

transaction costs are quadratic. Moreover, the target portfolio is a linear combination of the

current optimal portfolio in the absence of transaction costs and the expected future target

portfolios. With a finite horizon and a constant opportunity set, DeMiguel et al. (2014)

show the optimal policy is a linear combination of the Markowitz portfolio, the previous

period portfolio and the next period portfolio. The combination of the Markowitz strategy

and the next period portfolio can be considered as the investor’s target for next period.

In this policy, we assume the investor has an aim portfolio at each period, and she

chooses to trade partially to this aim portfolio based on the procedure that is optimal for

the model with quadratic transaction costs. Specifically, following Gârleanu and Pedersen

(2013), define the aim portfolio for period t < T as

aim
t

= z Markowitz
t

+ (1� z)E
t

(aim
t+1), (16)

where z = c

�+c

and c =
��⇢��(1�⇢)+

p
(�⇢+�(1�⇢))2+4��⇢2

2⇢ . For t = T , define the aim portfolio

as the optimal portfolio in the absence of transaction costs; that is,

aim
T

= (�⌃)�1
µ

T

. (17)
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We define the linear policy as

x

t

= (1� c

�

)x
t�1 +

c

�

aim
t

. (18)

As in Gârleanu and Pedersen (2013), � denotes the quadratic transaction cost parameter.

Since we use (18) as an approximation to the model with proportional transaction costs,

we propose to calibrate � such that the realized utility is maximized. With the specified

dynamics of price changes in (10)-(11), the aim portfolio for each period is

aim
t

= (�⌃)�1(A
r

+ b

T�t

d

B

r

d

t

) + z(�⌃)�1
B

r

d

t

f

t

(b
d

), (19)

where f

t

(b
d

) = (1� z)b
d

f

t+1(b
d

) + 1� b

T�t

d

and f

T

= 0.

3.2.3 No-trade Region Policy

Third, we consider the no-trade region approximation where, in each period, the investor’s

portfolio choice is confined by a no-trade region. DeMiguel et al. (2014) show analytically

that the optimal trading strategies are confined by a no-trade region centered at a target

portfolio in the presence of proportional transaction costs and they give close-form expres-

sion for the no-trade region when there is no predictability. With predictability, Lynch and

Tan (2010) numerically find the optimal rebalancing rule for each period to be a no-trade

region with rebalancing to the boundary.

Following the same spirit, we consider the investor’s target position as the center of

the no-trade region. But instead of trading linearly towards the aim portfolio, the investor

will trade to the boundary of no-trade region centred at the aim portfolio. Besides, follow-

ing DeMiguel et al. (2014) and Lynch and Tan (2010), we assume the size of the no-trade

region shrinks when the number of remaining periods increases. For each period, we define

the no-trade region policy as the solution to the following optimization problem

min
xt

(x
t

� x

t�1)
>⌃(x

t

� x

t�1) (20)

s.t. kK�1⌃(x
t

� aim
t

)k1  1

⇢�

1� ⇢

1� ⇢

T�t+1
, (21)

where aim

t

denotes the aim portfolio for each period which is defined in (16), x
t�1 is the

position from previous period. Note the aim portfolio aim
t

is specified in (19) as the dynamic

of price changes follows (10)-(11).
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3.2.4 Rolling Optimize-and-Hold Policy

Finally, we consider an approximate policy that assumes the investor has a buy-and-hold

strategy at each stage. In Section 3.2.3, we assume the investor has an aim portfolio for

each period and she trades to the boundary of no-trade region centered at the aim portfolio.

Taking into account that the aim portfolio is defined as the one under quadratic transaction

costs and the optimal trading strategy for the model without predictability is a buy-and-

hold strategy, we define the rolling optimize-and-hold approximation by assuming that the

investor can trade only in the next period, but subsequently she will not be allowed to trade

until time T .

Starting with the period before the last t = T � 1, and assuming the investor does not

trade at t = T (which means x
T

= x

T�1), the value function for the last period is

V

⇤
T

(x
T�1, µT

) = ⇢

T (x>
T�1µT

� �

2
x

>
T�1⌃xT�1). (22)

The optimal strategy at t = T � 1 is the solution to the following problem

V

T�1(xT�2, µT�1) = max
xT�1

⇢

T�1(x>
T�1µT�1 �

�

2
x

>
T�1⌃xT�1)� ⇢

T�2kK(x
T�1 � x

T�2)k1

+ E
T�1[V

⇤
T

(µ
T

, x

T�1)]

⌘ max
xT�1

⇢

T�1(x>
T�1[µT�1 + ⇢µ

T!T�1]�
�(1 + ⇢)

2
x

>
T�1⌃xT�1

o

� ⇢

T�2kK(x
T�1 � x

T�2)k1. (23)

In DeMiguel et al. (2014), they show problem (23) is equivalent to the following constrained

optimization problem

min
xT�1

(x
T�1 � x

T�2)
>⌃(x

T�1 � x

T�2) (24)

s.t. kK�1⌃(x
T�1 � x

C

T�1)k1  1

⇢�

T�1
, (25)

where x

C

T�1 = 1
�T�1

⌃�1
µ

0
T�1, �T�1 = (1 + ⇢)� and µ

0
T�1 = µ

T�1 + (1 � ⇢)µ
T |T�1. Anal-

ogously, assume trading only occurs in period t, then each period the investor selects her

portfolio by solving the following optimization problem

min
xt

(x
t

� x

t�1)
>⌃(x

t

� x

t�1) (26)

s.t. kK�1⌃(x
t

� x

C

t

)k1  1

⇢�

t

, (27)
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where x

C

t

= (�
t

⌃)�1
µ

0
t

with

�

t

= (1 + ⇢+ · · ·+ ⇢

T�t)� =
1� ⇢

T�t+1

1� ⇢

�, (28)

µ

0
t

= µ

t

+ ⇢µ

t+1|t + · · ·+ ⇢

T�t

µ

T |t. (29)

In (29), each µ

t+j|t refers to the mean price changes for period t + j conditioned on the

information at period t. For each period, we define the rolling optimize-and-hold policy

as the solution to problem (26)-(27) and the investor’s transaction is confined by the no-

trade region defined in (27). Also note that the center of the no-trade region x

C

t

is a linear

combination of all future optimal portfolios conditional at current period in the absence of

transaction costs.

3.3 Evaluation

In this section, we study numerically the performance of the proposed feasible policies. For

each policy, we compare the realized utility with the upper bounds obtained from perfect

hindsight solution. Specifically, given the convexity of the objective function in (12), it is

straightforward that

max
x2PF

E1

(

T

X

t=1

h

⇢

t(x>
t

µ

t

� �

2
x

>
t

⌃x
t

)� ⇢

t�1kK(x
t

� x

t�1)k1
i

)

 E1

(

max
x

T

X

t=1

h

⇢

t(x>
t

µ

t

� �

2
x

>
t

⌃x
t

)� ⇢

t�1kK(x
t

� x

t�1)k1
i

)

. (30)

In deriving the upper bounds for problem (12), we will focus on the perfect information

relaxation that assumes the investor knows all market states and price changes before mak-

ing any investment decisions. We obtain an estimate of the upper bound given on the right

of (30) using simulation. In each trial of the simulation, we solve the following deterministic

problem

max
x

T

X

t=1

h

⇢

t(x>
t

µ

t

� �

2
x

>
t

⌃x
t

)� ⇢

t�1kK(x
t

� x

t�1)k1
i

, (31)

where we do not require x to be nonanticipative. The estimate of the upper bound is then

obtained by averaging the optimal values from the above problems across all the sample

paths.

We first generate a scenario tree for dividend yield and mean price changes. Consider

the model with T periods investment horizon, given any value of dividend yield d

t

, n

d

di↵erent values of dividend yields for next period are generated according to the specified
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predictability model. Besides, the values of mean price changes are calculated at each node

based on the specific price changes model. When evaluating the utility of each of the feasible

policies, we calculate the utility for each period at each node and then average over all the

branches for a given period. The realized utility is calculated by adding up the utilities for

each period. Notice that the scenario tree defines nT�1
d

di↵erent sample paths for dividend

yield and mean price changes, and the upper bound is then obtained by averaging the

realized utilities over all the sample path.

We assume the predictability models for dividend yield and price changes are the ones

given in (10)-(11) and that the initial dividend yield is neutral (i.e., d1 = 0). Further assume

that the investor has an initial wealth of 1 dollar. With these assumptions, the absolute

risk-aversion parameter under the mean-variance framework described in Section 3.1 is

equivalent to the relative risk-aversion parameter under the power utility framework.

As an illustrative example, we consider the model with two risky assets.2 Following the

same example in Lynch and Tan (2010), we consider a model with two risky assets where

we take 12-month dividend yield on the value-weighted New York Stock Exchange(NYSE)

index as a proxy for the predictive variable D. For these two risky assets, the first is the

monthly rate of return on the value-weighted NYSE index while the second is the high BM

portfolio which is formed from the 6 value-weighted portfolios SL,SM,SH,BL,BM and BH3.

The parameters for the predictability model in (10)-(11) are estimated using ordinary least

squares (OLS) with A

r

= [0.83; 0.54], B
r

= [0.47; 0.30], a
d

= 0, b
d

= 0.98 and stable state

covariance matrix for both risky assets ⌃ = [0.0054 0.0037; 0.0037 0.0030].

In our numerical experiment, we consider the model for annual price changes by annu-

alizing the parameters for the model of monthly price changes. Specifically, let AY

r

= 12A
r

,

B

Y

r

= 12B
r

and the slope for the annualized d

t

model be b

d

= 0.75.

3.3.1 The Base Case

For our base case, we consider a time horizon of 6 years, that is T = 7. We assume

absolute risk aversion parameter � = 5, matrix of proportional transaction cost K =

[0.0050 0; 0 0.0050], annual discount rate ⇢ = 1
Rf

, and the investor starts with holding

zero share in both assets. Let the number of branches at each node n

d

= 4. With T = 7,

we have 46 = 4096 di↵erent sample paths.

2Our approximate trading strategies can also be applied to the case with many risky assets. But the
evaluation of the approximate strategies is computationally demanding since it requires us to discretize the
state variable space for each of the assets. The resultant sample path is large especially when we use scenario
tree to capture the return dynamics.

3The notation S(B) indicates that the firms in the portfolio are smaller (larger) than 50% of NYSE stocks.
The notation L indicates that the firms in the portfolio have BM ratios that place them in the bottom 3
deciles for all stocks; analogously, M indicates the middle 4 deciles and H indicates the top 3 deciles. The
high BM portfolio is an equal-weighted portfolio of SH and BH.
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For the simple policy, the expectation µ̃

t

is µ̃

t

= E1(µt

) = A

Y

r

+ B

Y

r

b

t�1
d

d1. Given the

value of b
d

, the innovation term ✏

t+1 is with zero mean and variance 1 � b

2
d

. Notice that

with higher b
d

, there is lower volatility in d

t

.

For the linear policy, the value of � is calibrated such that it provides maximum value of

realized utility. Figure 1 depicts the utility of linear policy for values of �. For the no-trade

region policy and the rolling optimize-and-hold policy, the center of no-trade region for each

period can be calculated based on the conditional mean at each node.

For our base case, the realized utilities for the feasible policies and the associated upper

bound are reported in Table 1. We observe that the utility loss associated with adopting

the simple policy (that is, the relative di↵erence between the utility of the simple policy and

the upper bound obtained from perfect hindsight solution (30) is as much as 18.27%. This

utility loss is relatively large because the simple policy ignores the existence of volatility

in the predictability model. The utility loss associated with trading linearly (that is, the

relative di↵erence between the utility of the linear policy and the upper bound obtained

from perfect hindsight solution (30)) is 3.89%. To understand this result, it is important

to note that this policy combines the previous stage position with current stage target, and

at each period it trades at a lower rate towards the target. The no-trade region policy, on

the other hand, outperforms the other proposed strategies with the associated utility loss

less than 0.91%. This result can be explained as follows: The approximate policy takes the

target portfolio in linear policy as the center of no-trade region and the existence of no-trade

region leads to higher trading rate towards the target compared with linear policy. Finally,

the utility loss associated with using rolling optimize-and-hold policy is 2.17%. This utility

loss is relatively larger than that associated with no-trade region policy. This is because

compared with the target portfolio in linear policy, the center of no-trade region may deviate

from the true target for each period with the assumption that trade only occurs in next

period.

Table 1: Realized Utilities - The Base Case

This table shows the realized utilities for an investor with objective (12) based on the approximate
policies proposed in Section 3.2. Column 2-5 show the utilities obtained based on the simple policy(S-
P), the linear policy(L-P), the no-trade region policy(NTR-P) and the rolling optimize-and-hold
policy(ROH-P) respectively. The last column denotes the upper bounds to the utilities obtained
based on perfect perfect hindsight solution. The values of the realized utilities are reported in the
first row and the second row shows the corresponding gaps respect to the upper bounds (in %). The
gaps are computed by (U

bounds

� U

heuristic

)/U
bounds

.

Policies S-P L-P NTR-P ROH-P Bounds
Utilities 0.0893 0.1050 0.1082 0.1068

0.1092
Utility losses (in %) 18.27 3.89 0.91 2.17
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Figure 1: Utility of Linear Policy depending on �

This figure plots the realized utilities for Linear Policy depending on the value of � while the other
model parameters are fixed as  = [0.0050; 0.0050], discount factor 1

Rf
, risk-aversion parameter

� = 3 and the investment horizon T is fixed at T = 8.

3.3.2 Comparative Statics

We study numerically how the utility loss associated with ignoring predictability (i.e., with

the simple policy), trading linearly (i.e, with the linear policy), no-trade region policy

and rolling optimize-and-hold policy depends on the transaction costs parameter, the risk-

aversion parameter and the slope of predictability model for dividend yield.

Table 2 shows how the utility loss of proposed approximate policies depends on di↵erent

values of above mentioned parameter. We find that regardless of the value of b
d

, the realized

utilities decrease monotonically for all policies as  increases. The utility loss associated

with ignoring uncertainty in the predictability model (i.e., the simple policy) is high for all

the parameters we try especially when b

d

is small (i.e., high volatility in dividend yield).

Taking into account that bigger b

d

indicates lower volatility in dividend yield, we observe

the utility loss in simple policy decreases dramatically when we increase b

d

to 0.98. The

reason is that the conditional mean µ̃

t

in simple policy can approximate future means better

when there is lower volatility in dividend yield. We also find the utility loss associated with

simple policy decreases as  increases. This occurs because higher  leads to less trade in

risky assets, thus predictability plays a less important role in the model.

When there is high volatility in d

t

, the utility loss associated with trading linearly

decreases with . As it has been explained in the base case, linear policy indicates slower
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trading rate compared with the other policies. The slower trading rate leads to partial

loss in utility. As  increases, there is less trade in risky assets. Slow trading rate in

linear policy can compensate the trade amount in subsequent periods. When there is low

volatility in predictability model, the utility loss first decreases and then increases slightly

as  increases. To understand this result, it is important to recognize that there is less trade

involved in optimal strategy when  keeps increasing. The linear policy, however, incurs

extra transaction costs because it trades at every period, which leads to the increment in

utility loss.

The utility loss associated with no-trade region policy increases as  increases for both

values of b
d

. After looking into the solution, we find that for each sample path, the no-trade

region policy encourages trading more frequently compared with the perfect information

relaxation which incurs extra transaction costs. It is worth noting that the utility loss is

low in both cases, with highest loss no more than 1.5%.

When there is high volatility in dividend yield, the utility loss associated with rolling

optimize-and-hold policy is higher than that associated with no-trade region policy. Note

that in this policy, the center of no-trade region depends directly on the assumption that

there is no trade in future periods. With high volatility, the center of no-trade region defined

in this policy cannot approximate accurately the true center. We also find that the trading

rate in rolling optimize-and-hold policy decreases slower than that in the upper bound as 

increases. When there is low volatility, the center of no-trade region is more accurate, and

the utility loss comes from the extra transaction costs incurred from extra trading, which

leads to increment in utility loss as  increases.

Finally, we find that the relative utility losses associated with the approximate policies

do not depend on the risk-aversion parameter.

To conclude, the no-trade region policy and rolling optimize-and-hold policy perform

quite well for all the values of  (the utility loss is below 3% for all the values of  when

b

d

= 0.75 and below 1% when b

d

= 0.98) while simple policy results in higher utility loss

compared with the other policies, followed by linear policy. Based on the above robustness

check, the benefits of the proposed approximation can be summarized as follows:

1. For simple policy, if there is low volatility in dividend yield (hence the mean price

changes conditional at first period can predict the real conditional price changes at

each period very well), it can perform well.

2. For linear policy, it has lower utility loss than the simple policy but higher loss than no-

trade region policy and rolling optimize-and-hold policy regardless of the volatility in

dividend yield. The loss is always below 5%. So it can still be used as an approximation

to the optimal solution.
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3. For no-trade region policy, it performs constantly well for all the cases. The utility loss

for all cases is low. It can be used as a robust approximation for the optimal solution

for the mean-variance portfolio model in the presence of proportional transaction cost

and predictability. The gap between its realized utility and upper bound is relatively

small for all the cases.

4. For rolling optimize-and-hold policy, just like no-trade region policy, it can be a robust

approximation for the optimal solution for the mean-variance portfolio model in the

presence of proportional transaction cost and predictability. The gap between its

realized utility and upper bound is relatively small for all the cases.

4 Moving to CRRA Framework

We now adapt each of the approximate trading strategies that are proposed for the mean-

variance problem to the framework with CRRA power utility. Campbell and Viceira (2003)

show that when the risky asset returns are lognormal, the portfolio choices resulting from the

power utility and mean-variance frameworks are consistent. In the absence of transaction

costs, the investor trades o↵ mean against variance for a single period in both cases. In

the presence of transaction costs, DeMiguel et al. (2014) show that the certainty equivalent

loss from adapting the mean-variance framework is typically smaller than 0.5% for the case

with constant investment opportunity set.

In this section, we consider an investor who maximizes her CRRA utility of interme-

diate consumption by investing in a risk-free asset and N risky assets in the presence of

predictability, and who is subject to proportional transaction costs (i.e, with preferences (6)-

(8)). In Section 4.1, we obtain several approximate solutions for portfolio optimization

problem (6)-(8) by adapting the feasible policies proposed based on G&P framework. We

check the robustness of these approximate policies by evaluating the certainty equivalent

losses in Section 4.3.

4.1 Adapting Mean-variance Framework to CRRA Framework

Under G&P framework, the proposed feasible policies in Section 3.2 provide sub-optimal

number of shares that the investor needs to hold for each period. Besides, there is no risk-

free asset and consumption. In order to assess the robustness of these policies properly, we

make several assumptions to adapt the feasible policies to the power utility framework.

First, we assume that the investor’s consumption to wealth ratio for each period, c
t

, is

given by the model without transaction costs. Given risky asset return dynamics in (10)-
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(11), the optimal solution to model (6)-(8) in the absence of transaction costs can easily be

computed numerically using dynamic programming by discretizing market state variables.

Note that this is a conservative choice since the consumption to wealth ratio given by

this model is not optimal for the model in the presence of transaction costs. Second, we

assume that the investor has an initial wealth of $1 invested in the risk-free asset. With

this assumption, the absolute risk aversion parameter in model (12) under mean-variance

framework equals the relative risk aversion parameter for in (6)-(8) under power utility

framework. Consequently, for each period, the amount of money invested in risk-free asset

is

W

f

t

= W

t

(1� ĉ

t

)� Ŵ

t

(1� ĉ

t

)x̂>
t

P

t

� Ŵ

t

(1� ĉ

t

)kK(x̂
t

� x̂

t�1,+)k1, (32)

where ĉ

t

is the consumption to wealth ratio in the absence of transaction costs and x̂

t

=

x

t

./P

t

is the number of shares that the investor can hold when the price is P
t

instead of $1.

Here ./ refers to the component-wise division of two vectors. The investor’s wealth W

t+1 in

each period is the sum of the total holding across the risky assets and risk-free asset, i.e.,

Ŵ

t+1 = W

f

t

R

f

+ Ŵ

t

(1� ĉ

t

)x̂>
t

P

t+1. (33)

For each approximate policy, the realized power utility is

U

h = E1

h

T

X

t=1

⇢

t

ĉ

1��

t

Ŵ

1��

t

1� �

i

. (34)

To evaluate the expectation, we first generate a scenario tree with M sample paths for risky

asset returns. Starting with any given initial dividend yield d1, we generate n

d

di↵erent

values for d2 based on (11) and save the realizations for the values of ✏2. The first period

risky asset returns R2 can be generated based on (10)4. For each subsequent time period

at each node, we repeat the process until we arrive the final period t = T .

Assume the initial price for each risky asset is $1. Taking into account P

t+1 = P

t

R

t+1

for each period, the scenario tree for the price P
t

can also be generated based on the scenario

tree of risky asset returns. In each sample path, we compute the realized power utility for

each feasible policy as

U

h

(m) =
T

X

t=1

⇢

t

ĉ

1��

t,(m)Ŵ
1��

t,(m)

1� �

, (35)

4Following Balduzzi and Lynch (1999), in order to make sure dt is the only state variable to predict risky
asset returns, a regression between et+1 and ✏t+1 is designed when estimating the parameters in model (10)-
(11).
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for m = 1, 2, · · · ,M . Note that in each sample path, for any value of state variables that are

not on the grid, the consumption can be computed based on interpolation. With M sample

paths, an unbiased estimate for the utility given in (34) can be obtained by averaging the

values of Uh

(m). Let Uh

be

U

h

=

P

M

m=1 U
h

(m)

M

. (36)

The certainty equivalent for each feasible policy is defined as

CE(U
h

) = ((1� �)U
h

)
1

1��
. (37)

Given that each feasible policy provides an approximation to the optimal solution for the

portfolio optimization problem with CRRA power utility, the corresponding certainty equiv-

alent is clearly a lower bound to that of the true model. Taking into account that it is very

di�cult to solve numerically the original model, we complement these proposed feasible

policies with upper bounds on the certainty equivalent based on the dual approach which

will be explained in the following section.

4.2 Upper Bounds

Given any feasible sub-optimal policy to the portfolio selection problem (6)-(8), we can

obtain an unbiased lower bound to the optimal power utility U

⇤ by simulating di↵erent

sample paths and taking average of the realized utilities. However, since the optimal U⇤ is

not computable, we cannot evaluate the optimality of the feasible policy. In order to assess

the quality of a given feasible policy, it would be helpful if we can obtain a valid upper

bound to the optimal power utility.

In Brown et al. (2010), they show that the valid upper bound can be constructed by

relaxing future information and meanwhile imposing a penalty function. Specifically, the

upper bounds on the optimal value function can be obtained by relaxing the nonantici-

pativity constraints that require decisions to depend only on information available at the

time when the decision is made and meanwhile imposing penalty function that punishes the

violations of nonanticipativity. For each realized scenario, they show that an ideal penalty

function ⇡(x) follows

⇡

⇤(x) =
T

X

t=1

n

E
⇥

V

⇤
t+1(xt

)|G
t

⇤

� E
⇥

V

⇤
t+1(xt

)|F
t

⇤

o

, (38)
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where G
t

is a relaxation of filtration F
t

such that F
t

✓ G
t

. If we consider G
t

to be the perfect

information relaxation of F
t

, for each period the investor determines the actions with full

knowledge of future scenarios. However, it is not practical to have the real optimal value

function for each period. A natural idea is to find an approximation to the optimal penalty

function by approximating the optimal value function V

⇤
t

with V̂

t

:

⇡̂(x) =
T

X

t=1

�

V̂

t+1(xt

)� E
h

V̂

t+1(xt

)|F
t

i

 

, (39)

where in (39), we drop the conditional expectation in G
t

because when we assume perfect

information relaxation, the term inside expectation is a constant. As mentioned in Brown

and Smith (2014), weak duality implies that the upper bounds to the optimal value function

V

⇤
1 (x1) is given by

V

ub

:= E1

h

max
x2P (u)

�

T

X

t=1

I

t

(x
t

)� ⇡̂(x)
 

i

. (40)

Where I
t

(x
t

) denotes the reward function for each period. To obtain an unbiased estimate of

the expectation, we simply simulate M sample paths of the state variables and disturbances,

and solve the following maximization associated with penalty function (39) in each sample

path,

max
c,x

T

X

t=1

n

⇢

t

C

1��

t

1� �

+ E
t

h

V̂

t+1(xt

)
i

� V̂

t+1(xt

)
o

, (41)

s.t. W

t+1 = W

t

(1� c

t

)R
p,t

, (42)

x

t

� 0, c
t

� 0. (43)

The expected value in (40) is estimated by taking the average of the optimal objective

function value of problem (41) over all sample paths.

In (40), each reward function I

t

(x
t

) is concave in decision variables x, and it leads to

convexity in the original DP defined by (9). When taking penalty function into account,

the objective function (41) may not be concave and consequently, it cannot be solved com-

putationally. In Brown and Smith (2014), they study DPs that have a convex structure

and consider penalties based on first-order approximation of the approximate value function

V̂

t

(x
t�1).
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For the model with power utility and intermediate consumption, we consider Ĩ

t

(x
t

) to

be a relaxation of reward function of the original model,

Ĩ

t

(c
t

,x
t

) = ⇢

t

C

1��

t

1� �

(44)

subject to the law of motion for investor’s wealth which is defined in (3) but without

transaction costs. With this relaxation, the realized utility for the model with reward

function Ĩ

t

(c
t

,x
t

) is greater than that for the original model. Let V̂

t

(c
t�1

,x
t�1

) denote

the time t optimal value function corresponding to above reward functions. It is then an

approximation to the time t optimal function V

⇤
t

(c
t�1

,x
t�1

) for the original model. Define

the penalty function as

⇡(c,x) =
T

X

t=1

�

V̂

t+1(ct,xt

)� E
t

h

V̂

t+1(ct,xt

)
i

 

. (45)

Following Brown and Smith (2014), week duality implies that

max
(c,x)2PF

E1

h

T

X

t=1

⇢

t

C

1��

t

1� �

i

 max
(c,x)2PG

E1

h

T

X

t=1

⇢

t

C

1��

t

1� �

� ⇡(c,x)
i

, (46)

where PG denotes the set of feasible policies that are adapted to G. Like the case with

mean-variance utility, note that an unbiased estimate of the expectation on the right-hand

side of above inequality can be obtained via Monte Carlo simulation: we generate randomly

M di↵erent sample paths of risky asset returns and in each sample path, solve the inner

problem on the right-hand side of (46).

To guarantee the convex structure of the problem on the right-hand side of (46), we take

the first order linear approximation of V̂
t

so that the resultant penalty function is linear in

decision variables. Let ỹ⇤
t

= (c̃⇤
t

, x̃

⇤
t

) denote the optimal policy for the no-transaction costs

problem with reward function (44) and W̃

t

⇤
the corresponding wealth for each period. We

define the gradient penalty as follows5,

⇡(c,x) =
T

X

t=1

rĨ

t

(ỹ⇤
t

)(y
t

� ỹ⇤
t

), (47)

where rĨ

t

(ỹ⇤
t

) denotes the gradient of the reward function for each period with respect to

the decision vector c
t

and x
t

. To obtain the upper bound in each sample path, we solve

5When we take first order approximation of the approximate value function V̂t+1(ct,xt), the term which
is constant in actions

PT
t=1 V̂t+1(ỹ

⇤
t ) � Et

⇥
V̂t+1(ỹ

⇤
t )
⇤
is omitted from the penalty function ⇡(c,x). When

we calculate the upper bound for each scenario, we add the realized values for this term after (47) , which
serves as control variate, see Brown and Smith (2014).
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the following deterministic problem

max
c,x

T

X

t=1

n

⇢

t

C

1��

t

1� �

�rĨ

t

(ỹ⇤
t

)(y
t

� ỹ⇤
t

)
o

, (48)

s.t. W

t+1 = W

t

(1� c

t

)R
p,t

, (49)

x

t

� 0, c
t

� 0. (50)

Let U

p

(m) be the corresponding optimal objective function from above deterministic opti-

mization for m = 1, 2, · · · ,M and U

p

=
PM

m=1 U
p
(m)

M

. Then, U
p

is clearly an upper bound to

the utility of heuristic policy U

h

.

Given the fact that each reward function (44) is di↵erentiable in decision variables, we

can derive explicitly the penalty function in (47). Let the certainty equivalent be

CE(U
p

) = ((1� �)U
p

)
1

1��
. (51)

CE(U
p

) is clearly an upper bounds to the certainty equivalent provided by the approximate

policies.

4.3 Numerical Results

In this section, we study empirically the certainty equivalent losses associated with adopting

proposed feasible policies, as well as how those losses depend on the model parameters.

Starting with an initial value of dividend yield d1 = 0, we first generate a scenario tree

of risky asset returns and dividend yield and then evaluate the realized utilities and dual

bounds in each sample path. In the numerical experiments, we consider two risky assets

with the same model parameters that we use in Section 3.3 for annual returns. We also

consider a risk-free asset with annually rate of return of 6%.

4.3.1 The Base Case

For our base case, we consider the same parameters that are used in Section 3.3.1. That

is, the investor has a relative risk-aversion parameter � = 5, has an initial wealth of $1

invested in risk-free asset, faces proportional transaction costs of 50 basis points for both

assets, rebalances her portfolio once per year, and has an investment horizon of T = 7.

Note that with c

T

= 1, we only need to solve a six period problem for the feasible policies

to evaluate a T = 7 period problem based on CRRA power utility.

For our base case, we observe that the certainty equivalent losses associated with adopt-

ing the simple policy(S-P), the linear policy(L-P), the no-trade region policy(NTR-P) and
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the rolling optimize-and-hold policy(ROH-P) are 7.08%, 6.84%, 5.40% and 5.70% respec-

tively. The insights are similar to those in Section 3.3: the no-trade region policy is the best

approximate feasible solution to the original model among all the feasible policies, followed

by rolling optimize-and-hold policy. Compared with the utility loss under mean-variance

framework, the certainty equivalent loss associated with adopting simple policy is small, in-

dicating a flatter utility than that of the mean-variance framework. This shows that, for a

proposed feasible policy which has large (small) utility loss under mean-variance framework,

it can have small (large) certainty equivalent loss under power utility framework.

4.3.2 Comparative Statics

In this section, we study numerically how the certainty equivalent loss associated with ig-

noring volatility in predictability (i.e., with the simple policy), trading linearly (i.e, with the

linear policy), the no-trade region policy and the rolling optimize-and-hold policy depends

on transaction costs parameter, the risk-aversion parameter and the slope of predictability

model for dividend yield.

Note that the loss in certainty equivalent can be decomposed into three parts that are

not additive. The first part is the loss associated with adopting feasible policy instead of

optimal policy. The utility losses associated with employing these policies are presented in

Section 3.3. The second part is the loss from following portfolio policies that are derived

based on mean-variance framework. In DeMiguel et al. (2014), they show that the certainty

equivalent loss from following such policy is typically smaller than 0.5% when risky asset

returns are i.i.d. Finally, the third part is the loss from comparing the lower bounds on

certainty equivalent with an upper bound which is typically greater than the true optimal

certainty equivalent.

Table 3 shows how the certainty equivalent loss associated with adopting proposed

approximate policies depends on di↵erent values of above mentioned parameters. It shows

that there is significant improvement on the bounds provided based on perfect information

relaxation with penalty function.

In line with the conclusion in DeMiguel et al. (2014), the certainty equivalent loss asso-

ciated with employing the feasible policies decreases as risk aversion parameter � increases.

Given that the risk-aversion parameter has no influence on the utility loss of the proposed

approximate policies under mean-variance framework, it can be understood in the way that

as � increases, the amount invested in the risky assets decreases, and thus the optimal

amount of rebalancing decreases. Moreover, we also observe that, the higher  is always as-

sociated with higher certainty equivalent loss for NTR-P and ROH-P. This can be explained

in two ways. First, the loss in mean-variance utility increases with , and second, the pro-
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cedure we have used to augment the proposed policy to finance intermediate consumption

requires a large amount of trading on risky assets, and thus large transaction costs.

Consistent with the conclusion in Section 3.3, the approximate policy that ignores un-

certainty in predictability does not perform as well as the other heuristic policies, although

there is less loss in certainty equivalent compared with the loss in mean-variance utility.

Moreover, when there is high volatility in dividend yield, NTR-P performs better than

ROH-P. When there is low volatility in dividend yield, it performs as well as ROH-P.

Interestingly, di↵erent from the case for NTR-P and ROH-P, the certainty equivalent loss

associated with adopting simple policy and linear policy decreases as  increases. This may

be explained by the fact that the loss in mean-variance utility for these policies decreases

as  increases.

Overall, our results show that the certainty equivalent losses associated with the pro-

posed feasible policies are quite acceptable with the no-trade region policy outperforming

the other approximate strategies for most of the cases. Moreover, once given the approx-

imate strategies for the mean-variance problem, the adapted strategies allow us to handle

many risky assets simultaneously and meanwhile the portfolio weights recommended by

these adapted strategies can be determined in very short time.

5 Conclusion

We consider a multiperiod CRRA individual who faces transaction costs and who has ac-

cess to multiple risky assets in the presence of predictability. We propose some feasible

trading strategies for the individual’s multiperiod portfolio selection problem with propor-

tional transaction costs, and construct lower and upper bounds on the certainty equivalent

consumptions of these policies. In particular, we propose these feasible strategies based on

G&P framework which facilitates us to obtain the recommended portfolio weights through

a quadratic problem with constraints. Our numerical experiments show that there is very

little mean-variance utility loss, which indicates that some of the proposed strategies are

nearly optimal in G&P framework. With power utility, we find that the certainty equivalent

losses are reasonable, and in addition, we can deal with the problem with many risky as-

sets. For both cases, we have performed some comparative statics to better understand the

losses associated with the adopting the proposed approximate strategies. Moreover, we have

shown how the upper bounds to the certainty equivalent consumption can be significantly

improved through duality methods based on information relaxation.
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Appendices

A Tables

Table 2: Utilities Depending on Di↵erent Parameters

This table shows the realized utilities for an investor with objective (12) based on the heuristic policies
proposed in Section 3.2. The first three columns give the values of b

d

, the risk-aversion parameter �
as well as the proportional transaction costs parameter . Column 4-7 show the utilities obtained
based on the simple policy(S-P), linear policy(L-P), the no-trade region policy(NTR-P) and rolling
optimize-and-hold policy(ROH-P) respectively. The last two columns show the upper bounds to the
utilities obtained based on perfect information relaxation with and without penalty function. For
each row, the values of the realized utilities and the corresponding gaps respect to the upper bounds
with penalty function (in %) are reported. The gaps are computed by (U

bounds

�U

heuristic

)/U
bounds

.
The number of investment periods T = 7.

Parameters Utilities Upper Bounds
bd �  S-P L-P NTR-P ROH-P Bounds

0.75 3 0.0020
0.1504 0.1786 0.1849 0.1823

0.1864
19.29% 4.16% 0.80% 2.20%

0.75 3 0.0050
0.1488 0.1749 0.1804 0.1781

0.1820
18.27% 3.89% 0.91% 2.17%

0.75 3 0.0100
0.1460 0.1698 0.1739 0.1722

0.1759
17.03% 3.50% 1.14% 2.12%

0.75 5 0.0020
0.0903 0.1072 0.1109 0.1094

0.1118
19.29% 4.17% 0.80% 2.20%

0.75 5 0.0050
0.0893 0.1050 0.1082 0.1068

0.1092
18.27% 3.89% 0.91% 2.17%

0.75 5 0.0100
0.0876 0.1019 0.1044 0.1033

0.1056
17.03% 3.50% 1.14% 2.12%

0.75 7 0.0020
0.0645 0.0766 0.0792 0.0781

0.0799
19.29% 4.17% 0.80% 2.20%

0.75 7 0.0050
0.0638 0.0750 0.0773 0.0763

0.0780
18.27% 3.89% 0.91% 2.17%

0.75 7 0.0100
0.0626 0.0728 0.0745 0.0738

0.0754
17.03% 3.50% 1.14% 2.12%

0.98 3 0.0020
0.1425 0.1441 0.1490 0.1489

0.1497
4.83% 3.72% 0.46% 0.47%

0.98 3 0.0050
0.1408 0.1419 0.1461 0.1461

0.1469
4.13% 3.41% 0.50% 0.51%

0.98 3 0.0100
0.1381 0.1381 0.1422 0.1422

0.1430
3.42% 3.42% 0.53% 0.54%

0.98 5 0.0020
0.0855 0.0865 0.0894 0.0894

0.0898
4.83% 3.72% 0.46% 0.47%

0.98 5 0.0050
0.0845 0.0851 0.0877 0.0877

0.0881
4.13% 3.41% 0.50% 0.51%

0.98 5 0.0100
0.0829 0.0829 0.0853 0.0853

0.0858
3.42% 3.42% 0.53% 0.54%

0.98 7 0.0020
0.0611 0.0618 0.0639 0.0638

0.0642
4.83% 3.72% 0.46% 0.47%

0.98 7 0.0050
0.0603 0.0608 0.0626 0.0626

0.0630
4.13% 3.41% 0.50% 0.51%

0.98 7 0.0100
0.0592 0.0592 0.0610 0.0610

0.0613
3.42% 3.42% 0.53% 0.54%
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Table 3: Certainty Equivalent Depending on Di↵erent Parameters

This table shows the certainty equivalents for an investor with objective (6)-(8) based on the heuristic
policies proposed in Section 3.2. The first three columns give the values of b

d

, the risk-aversion
parameter � as well as the proportional transaction costs parameter . Column 4-7 show the certainty
equivalent based on the simple policy(S-P), linear policy(L-P), the no-trade region policy(NTR-P)
and rolling optimize-and-hold policy(ROH-P) respectively. The last two columns show the upper
bounds to the certainty equivalent obtained based on perfect information relaxation with and without
penalty function. For each row, the values of the certainty equivalent and the corresponding gaps
respect to the upper bounds with penalty function (in %) are reported. The gaps are computed by
(CE

bounds

� CE

heuristic

)/CE

bounds

. The number of investment periods T = 7.

Parameters CEQ Upper Bounds
bd �  S-P L-P NTR-P ROH-P Penalty No-penalty

0.75 3 0.0020
0.0691 0.0695 0.0716 0.0712

0.0778
0.0943

11.17% 10.70% 8.02% 8.53% 17.54%

0.75 3 0.0050
0.0690 0.0694 0.0712 0.0708

0.0776
0.0938

10.98% 10.55% 8.23% 8.75% 17.32%

0.75 3 0.0100
0.0693 0.0697 0.0705 0.0703

0.0774
0.0930

10.42% 9.92% 8.87% 9.11% 16.85%

0.75 5 0.0020
0.1075 0.1078 0.1097 0.1094

0.1158
0.1407

7.15% 6.89% 5.22% 5.52% 17.75%

0.75 5 0.0050
0.1074 0.1077 0.1094 0.1090

0.1156
0.1401

7.08% 6.85% 5.40% 5.70% 17.47%

0.75 5 0.0100
0.1078 0.1082 0.1090 0.1088

0.1155
0.1392

6.56% 6.27% 5.61% 5.75% 17.03%

0.75 7 0.0020
0.1248 0.1250 0.1266 0.1263

0.1317
0.1588

5.25% 5.10% 3.88% 4.08% 17.10%

0.75 7 0.0050
0.1247 0.1249 0.1262 0.1260

0.1316
0.1582

5.21% 5.08% 4.02% 4.24% 16.83%

0.75 7 0.0100
0.1251 0.1254 0.1261 0.1259

0.1315
0.1572

4.81% 4.59% 4.12% 4.23% 16.36%

0.98 3 0.0020
0.0662 0.0680 0.0690 0.0690

0.0773
0.0931

14.25% 11.96% 10.73% 10.73% 17.05%

0.98 3 0.0050
0.0662 0.0679 0.0685 0.0685

0.0771
0.0926

14.02% 11.86% 11.12% 11.12% 16.79%

0.98 3 0.0100
0.0662 0.0678 0.0679 0.0679

0.0768
0.0918

13.78% 11.70% 11.64% 11.64% 16.35%

0.98 5 0.0020
0.1051 0.1067 0.1076 0.1077

0.1153
0.1393

8.83% 7.44% 6.69% 6.68% 17.29%

0.98 5 0.0050
0.1051 0.1066 0.1071 0.1071

0.1151
0.1386

8.68% 7.38% 6.93% 6.93% 16.99%

0.98 5 0.0100
0.1051 0.1066 0.1066 0.1066

0.1150
0.1377

8.57% 7.32% 7.28% 7.28% 16.47%

0.98 7 0.0020
0.1229 0.1242 0.1249 0.1249

0.1314
0.1577

6.41% 5.41% 4.86% 4.86% 16.78%

0.98 7 0.0050
0.1229 0.1241 0.1246 0.1246

0.1312
0.1570

6.31% 5.37% 5.04% 5.04% 16.46%

0.98 7 0.0100
0.1229 0.1241 0.1241 0.1241

0.1311
0.1559

6.22% 5.33% 5.29% 5.29% 15.95%

28



B Aim Portfolio of Linear Policy

Starting from the last period, we know the aim portfolio for an investor is just Markowitz

strategy

Markowitz

T

= (�⌃)�1
µ

T

.

Given the model dynamics specified in (10)-(11), the conditional mean for each period is

µ

t

= A

r

+B

r

d

t

. The aim portfolio for the second last period is

aim

T�1 = zMarkowitz

T�1 + (1� z)E
T�1(aimT

)

= zMarkowitz

T�1 + (1� z)E
T�1(Markowitz

T

)

=
1

�

⌃�1(A
r

+B

r

b

d

d

T�1) +
z

�

⌃�1
B

r

d

T�1(1� b

d

). (B1)

Analogously, the aim portfolio for period t can be derived as follows

aim

t

= zMarkowitz

t

+ (1� z)E
t

(aim
t+1)

=
1

�

⌃�1(A
r

+ b

t

d

B

r

d

t

) +
z

�

⌃�1
B

r

d

t

f

t

(b
d

), (B2)

where f

t

(b
d

) is a polynomial of b
d

changing along period with expression

f

t

(b
d

) = (1� z)b
d

f

t+1(b
d

) + 1� b

T�t

d

, (B3)

and f

T

(b
d

) = 0.

C Derivation of Penalty Function

A brief review about duality based on information relaxation has been made in Haugh and

Wang (2014). This approach has been explained in detail in Brown et al. (2010) as well as

in Brown and Smith (2014). The following we are going to derive the expression for penalty

function based on approximate reward functions (44). Given ỹ

⇤
t

to be the optimal solution

to the problem without transaction costs, for each period the derivative for reward function

is

rĨ

t

(ỹ⇤
t

) = (
@Ĩ

t

@c1
,

@Ĩ

t

@x1
, · · · , @Ĩt

@c

t

,

@Ĩ

t

@x

t

)|
y=ỹ

⇤
t
, (C4)
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where
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��
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@Ĩ
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@x

t

= 0 (C5)

with R

e

t

the risky asset returns excess of risk-free asset. When we solve problem (48) for

each sample path, ỹ⇤
t

is computed through dynamic programming by discretizing the state

variable space. Taking into account the fact that ỹ

⇤
t

does not involve transaction costs, it

can be solved in short time.

D Approximate Consumption for the Model with Transac-

tion Costs

When we adapt the heuristic policies to power utility framework, we let the consumption

for each period to be the one for the model without transaction costs. We discretize first

the state variable space in order to implement dynamic programming procedure.

The VAR model discretized using a variation of Tauchen and Hussey (1991) Gaussian

quadrature method, which has been described in Balduzzi and Lynch (1999). The variation

is designed to ensure that d is the only state variable to predict the risky assets returns.

Specifically, let ⌘ be a N ⇥ 1 vector of coe�cients of the regression model such

e

t+1 = ⌘✏

t+1 + u

t+1, (D6)

with u

t+1 N ⇥ 1 i.i.d. normally distributed vector which is uncorrelated with ✏

t+1.

Following Lynch (2001) and Lynch and Tan (2010), the discretization is implemented

so as to match both the conditional mean vector and the covariance matrix for log returns

at all grid points of the predictive variable as well as the unconditional volatilities of the

predictive variables. We choose 19 grid points for the dividend yield and 3 grid points for

each of the stock-return innovations since Balduzzi and Lynch (1999) find that the resulting

approximation is able to capture important dimensions of the return predictability in the

data.
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In Table 4, we reproduce the quadrature method based on the estimated VAR model

given in Lynch (2001). The information indicated under the table ’DATA’ is the estimation

from the sample, while the values under the table ’QUADRATURE’ are the results obtained

from quadrature approximations.

Besides, the Bellman equation corresponding to problem (4) with utility function (5),

without transaction costs is

V

t

(d
t

)

1� �

= max
ct,xt



c

1��

t

1� �

+ ⇢

(1� c

t

)1��

1� �

E
h

�

x

>
t

R

t+1 + (1� x

>
t

e)R
f

�1��

V

t+1(dt+1)
i

�

. (D7)

Notice the above equation does not depend on previous stage position. Starting from the last

period, it costs no e↵ort to solve for the optimal consumption of each period at each node

point by backward iteration. In numerical experiments, the corresponding consumption

which is not on the grid can be computed by linear interpolation.
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