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June 2015

i



ii



Tesis Doctoral: BAYESIAN NONPARAMETRICS

FOR TIME SERIES MODELING

Autor: Francisco Jesús Rodŕıguez Ruiz
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iii



iv



A mis padres, Juan y Carmen,

porque son ellos quienes realmente

han hecho posible esta Tesis.

v



vi



“It’s a dangerous business, Frodo, going out your door.

You step onto the road, and if you don’t keep your feet,

there’s no knowing where you might be swept off to.”

J. R. R. Tolkien

(The Lord of the Rings)

“Es peligroso, Frodo, cruzar tu puerta.

Pones tu pie en el camino, y si no cuidas tus pasos,

no sabes a dónde te pueden llevar.”

J. R. R. Tolkien

(El Señor de los Anillos)
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del Whisky. Gracias también a Juanjo, profesor en la Universidad de Sevilla,

y principal responsable de que yo acabara en la UC3M. Me gustaŕıa nombrar
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ix
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una palabras a mis padres, Juan y Carmen, quienes han estado conmigo siempre
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Abstract

In many real-world signal processing problems, an observed temporal sequence

can be explained by several unobservable independent causes, and we are interested

in recovering the canonical signals that lead to these observations. For example,

we may want to separate the overlapping voices on a single recording, distinguish

the individual players on a financial market, or recover the underlying brain signals

from electroencephalography data. This problem, known as source separation, is

in general highly underdetermined or ill-posed. Methods for source separation

generally seek to narrow the set of possible solutions in a way that is unlikely to

exclude the desired solution.

However, most classical approaches for source separation assume a fixed and

known number of latent sources. This may represent a limitation in contexts

in which the number of independent causes is unknown and is not limited to a

small range. In this Thesis, we address the signal separation problem from a

probabilistic modeling perspective. We encode our independence assumptions in

a probabilistic model and develop inference algorithms to unveil the underlying

sequences that explain the observed signal. We adopt a Bayesian nonparametric

(BNP) approach in order to let the inference procedure estimate the number of

independent sequences that best explain the data.

BNP models place a prior distribution over an infinite-dimensional parameter

space, which makes them particularly useful in probabilistic models in which the

number of hidden parameters is unknown a priori. Under this prior distribution,

the posterior distribution of the hidden parameters given the data assigns higher

probability mass to those configurations that best explain the observations. Hence,

inference over the hidden variables is performed using standard Bayesian inference

techniques, which avoids expensive model selection steps.

We develop two novel BNP models for source separation in time series. First,

we propose a non-binary infinite factorial hidden Markov model (IFHMM), in

which the number of parallel chains of a factorial hidden Markov model (FHMM)
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is treated in a nonparametric fashion. This model constitutes an extension of

the binary IFHMM, but the hidden states are not restricted to take binary values.

Moreover, by placing a Poisson prior distribution over the cardinality of the hidden

states, we develop the infinite factorial unbounded-state hidden Markov model

(IFUHMM), and an inference algorithm that can infer both the number of chains

and the number of states in the factorial model. Second, we introduce the infinite

factorial finite state machine (IFFSM) model, in which the number of independent

Markov chains is also potentially infinite, but each of them evolves according to a

stochastic finite-memory finite state machine model. For the IFFSM, we apply an

efficient inference algorithm, based on particle Markov chain Monte Carlo (MCMC)

methods, that avoids the exponential runtime complexity of more standard MCMC

algorithms such as forward-filtering backward-sampling.

Although our models are applicable in a broad range of fields, we focus on

two specific problems: power disaggregation and multiuser channel estimation

and symbol detection. The power disaggregation problem consists in estimating

the power draw of individual devices, given the aggregate whole-home power con-

sumption signal. Blind multiuser channel estimation and symbol detection involves

inferring the channel coefficients and the transmitted symbol in a multiuser digital

communication system, such as a wireless communication network, with no need

of training data. We assume that the number of electrical devices or the number

of transmitters is not known in advance. Our experimental results show that the

proposed methodology can provide accurate results, outperforming state-of-the-art

approaches.
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Resumen

En multitud de problemas reales de procesado de señal, se tiene acceso a una

secuencia temporal que puede explicarse mediante varias causas latentes indepen-

dientes, y el objetivo es la recuperación de las señales canónicas que dan lugar a

dichas observaciones. Por ejemplo, podemos estar interesados en separar varias

señales de voz solapadas en una misma grabación, distinguir los agentes que ope-

ran en un mismo mercado financiero, o recuperar las señales cerebrales a partir de

los datos de un electroencefalograma. Este problema, conocido como separación

de fuente, es en general sobredeterminado. Los métodos de separación de fuente

normalmente tratan de reducir el conjunto de posibles soluciones de tal manera

que sea poco probable excluir la solución deseada.

Sin embargo, en la mayoŕıa de métodos clásicos de separación de fuente, se

asume que el número de fuentes latentes es conocido. Esto puede representar

una limitación en aplicaciones en las que no se conoce el número de causas in-

dependientes y dicho número no está acotado en un pequeño intervalo. En esta

Tesis, consideramos un enfoque probabiĺıstico para el problema de separación de

fuente, en el que las asunciones de independencia se pueden incluir en el modelo

probabiĺıstico, y desarrollamos algoritmos de inferencia que permiten recuperar las

señales latentes que explican la secuencia observada. Nos basamos en la utilización

de métodos bayesianos no paramétricos (BNP) para permitir al algoritmo estimar

adicionalmente el número de secuencias que mejor expliquen los datos.

Los modelos BNP nos permiten definir una distribución de probabilidad sobre

un espacio de dimensionalidad infinita, lo cual los hace particularmente útiles para

su aplicación en modelos probabiĺısticos en los que el número de parámetros ocultos

es desconocido a priori. Bajo esta distribución de probabilidad, la distribución a

posteriori sobre los parámetros ocultos del modelo, dados los datos, asignará una

mayor densidad de probabilidad a las configuraciones que mejor expliquen las

observaciones, evitando por tanto los métodos de selección de modelo, que son

computacionalmente costosos.
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En esta Tesis, desarrollamos dos nuevos modelos BNP para la separación de

fuente en secuencias temporales. En primer lugar, proponemos un modelo oculto

de Markov factorial infinito (IFHMM) no binario, en el que tratamos de manera no

paramétrica el número de cadenas paralelas de un modelo oculto de Markov facto-

rial (FHMM). Este modelo constituye una extensión del IFHMM binario, pero se

elimina la restricción de que los estados ocultos sean variables binarias. Además,

imponiendo una distribución de Poisson sobre la cardinalidad de los estados ocul-

tos, desarrollamos el modelo oculto de Markov factorial infinito con estados no

acotados (IFUHMM), y un algoritmo de inferencia con la capacidad de inferir

tanto el número de cadenas como el número de estados del modelo factorial. En

segundo lugar, proponemos un modelo de máquina de estados factorial infinita

(IFFSM), en el que el número de cadenas de Markov paralelas e independientes

también es potencialmente infinito, pero cada una de ellas evoluciona según un

modelo de máquina de estados estocástica con memoria finita. Para el IFFSM,

aplicamos un eficiente algoritmo de inferencia, basado en métodos Markov chain

Monte Carlo (MCMC) de part́ıculas, que evita la complejidad exponencial en

tiempo de ejecución de otros algoritmos MCMC más comunes, como el de filtrado

hacia adelante y muestreo hacia atrás.

A pesar de que nuestros modelos son aplicables en una amplia variedad de

campos, nos centramos en dos problemas espećıficos: separación de enerǵıa, y esti-

mación de canal y detección de śımbolos en un sistema multi-usuario. El problema

de separación de enerǵıa consiste en, dada la señal de potencia total consumida en

una casa, estimar de manera individual el consumo de potencia de cada dispositivo.

La estimación de canal y detección de śımbolos consiste en inferir los coeficientes

de canal y los śımbolos transmitidos en un sistema de comunicaciones digital multi-

usuario, como una red de comunicaciones inalámbrica, sin necesidad de transmitir

śımbolos piloto. Asumimos que tanto el número de dispositivos eléctricos como el

número de transmisores es en principio desconocido y no acotado. Los resultados

experimentales demuestran que la metodoloǵıa propuesta ofrece buenos resultados

y presenta mejoras sobre otros métodos propuestos en la literatura.
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1
Introduction

1.1 Background

Machine learning algorithms attempt to perform relevant tasks by inductive learn-

ing [131]. They offer a feasible and effective approach for problems where manual

programming fails. In particular, machine learning is defined as a set of methods

that can automatically detect patterns in data, and then use the uncovered pat-

terns to predict future data, or to perform other kinds of decision making under

uncertainty [91]. Machine learning (which strongly overlaps with data mining, pat-

tern recognition and predictive analytics) techniques are widely used in business,

industry, science and government.

Some motivating examples where machine learning techniques have proven to

be useful are:
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1. Topic modeling: We have an archive of the raw text of thousands of books,

which have been previously scanned and converted to text. We want to

discover the themes in the texts, organize the books by subject, and build a

navigator for users to explore the collection [22, 63].

2. Clustering gene expression data: We have measured expression levels

of a large number of genes using microarray technology, yielding time-series

data spanning some phenomenon such as development or disease progression,

and we want to cluster the time series to identify genes that are differentially

expressed between two groups, with these groups often representing normal

and diseased or tumor tissue [37, 59].

3. Face recognition: We want to automatically detect human faces on a

digital image, given a facial database consisting on a set of images with

labeled faces [142].

4. Recommendation systems: We have data from a movie website con-

taining millions of users’ histories of ratings, and we want to automatically

recommend movies to users based on this information [114, 51].

In all these examples, we have access to a real-world database and want to

perform a task given the available data as input. Furthermore, there is an inher-

ent source of uncertainty, which may come from noisy measurements, incomplete

information, or from the fact that we only have access to a subset of the data

from a larger population. Machine learning takes into account this uncertainty in

a statistical manner.

Within machine learning, probabilistic models provide a useful approach to

develop new methods in order to analyze data [72, 19, 91]. In generative prob-

abilistic models, we explicitly encode our prior assumptions about the hidden

structure of the data by including hidden variables and a probability distribution

over both the hidden variables and the observed data. The model represents, of-

ten in considerably idealized form, the data-generating process. This process and

the corresponding hidden structure can be represented in a probabilistic graphical
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model [136].

Given a probabilistic model and the observed data, we make use of an inference

algorithm to analyze the data under our assumptions and fine-tune the model. The

inference method recovers the hidden structure that best explains the observations

through exploration of the posterior distribution of the hidden variables given

the data. In descriptive tasks, like problems #1 and #2 above, the posterior

distribution helps us explore the data, with the hidden structure probabilistically

“filled in”. In predictive tasks, like problems #3 and #4, we use the posterior

distribution to make predictions about new observations.

In probabilistic modeling, choosing the model complexity is often a nuisance

because it is expensive to fit many models on large datasets. For instance, in

problem #1 above, a natural question is how many themes (or topics) we should

consider. Clearly, this quantity should grow as we collect more and more books.

Another example arises in the context of clustering, where we are interested in

finding an “informative” partition of the observations in an unsupervised manner,

but we might not know the number of clusters in advance. Again, as more and more

observations are collected, we should expect to find a larger number of clusters.

Bayesian nonparametric (BNP) models constitute an approach to model selection

and adaptation, where the complexity of the model is allowed to grow with data

size, as opposed to parametric models, which use a fixed number of parameters.

Thus, BNP models provide a useful tool for problems in which the number

of unknown hidden variables is itself unknown. Instead of specifying a closed

model, BNP priors place probability mass on an infinite range of models and let

the inference procedure choose the one that best fits the data [97, 47]. Under this

prior, the number of hidden components can be learned using standard Bayesian

inference techniques.

1.2 Motivation

Real-world processes generally produce observable outputs that can be charac-

terized as signals. The signals can be discrete in nature (e.g., characters from a
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finite alphabet), or continuous (e.g., speech or music samples). The signals are

typically corrupted by other signal sources, transmission distortions, reverbera-

tion, or noise. A problem of fundamental interest is characterizing such real-world

signals in terms of signal models. In particular, there are several signal process-

ing problems in which an observed temporal sequence can be explained by several

unobservable independent causes, and we are interested in describing the latent

model that leads to these observations. For example, we might want to distinguish

the heartbeat of twins [75], separate the overlapping voices on a single recording

[45] or the number of players and their strategies on a financial market [77], sep-

arate the contribution of each device to the total power consumed at a household

[76], or detect the symbols sent by different transmitters in a multiuser communi-

cation channel [143]. In some of these problems, the number of independent causes

are known or limited to a small range (e.g., babies in a womb), but in others that

might not be the case. For instance, the number of active devices in a house might

differ by orders of magnitude.

The problem of signal separation, also known as source separation, was first

formulated in the eighties, and is in general a highly underdetermined or ill-posed

problem [60, 29]. It was closely related to independent component analysis (ICA)

[28, 68, 67] until the late nineties, in which methods like sparse component anal-

ysis [6, 23] or non-negative matrix factorization [81, 98, 66] appeared. In general,

methods for source separation generally seek to narrow the set of possible solu-

tions in a way that is unlikely to exclude the desired solution and, hence, existing

approaches rely on independence, sparsity or structural assumptions.

However, most classical approaches for source separation assume a fixed and

known number of latent sources. In this Thesis, we address signal processing

problems from a machine learning perspective. We encode our independence as-

sumptions in a probabilistic model and develop inference algorithms to recover the

underlying sequences that combine to form the observed signal. We adopt a BNP

approach in order to avoid the model selection step and let the inference procedure

estimate the number of independent sequences that best explain the data.
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Although our models are general enough to be applied in a large variety of

problems, we focus on two specific applications: power disaggregation and blind

multiuser channel estimation. We describe these applications below.

• The power disaggregation problem consists in estimating the power draw of

each individual device given the aggregated whole-home power consumption

signal. Accurate estimation of the specific device-level power consumption

avoids instrumenting every individual device with monitoring equipment,

and the obtained information can be used to significantly improve the power

efficiency of consumers [31, 96]. Furthermore, it allows providing recommen-

dations about their relative efficiency (e.g., a household that consumes more

power in heating than the average might need better isolation) and detecting

faulty equipment.

This problem has already been tackled in other works [79, 76, 71]. However,

up to our knowledge, all previous works consider that the number of devices

is known, which may be a limitation when applied to houses that do not fit

these assumptions. We address this limitation by placing a BNP prior that

controls the number of active devices. Furthermore, we also infer the number

of states in which devices can be without restricting the precise number of

states to be bounded.

• When digital symbols are transmitted over frequency-selective channels, inter-

symbol interference (ISI) occurs, degrading the performance of the receiver.

To improve the performance, channel estimation is applied to mitigate the ef-

fects of ISI. Blind channel estimation involves channel estimation (typically

jointly with symbol detection) without the use of pilot symbols (training

data), which allows a more efficient communication as the total bandwidth

becomes available for the user’s data.

In many modern multiuser communication systems, users are allowed to en-

ter or leave the system at any given time. Thus, the number of active users is

an unknown and time-varying parameter, and the performance of the system
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depends on how accurately this parameter is estimated over time. We ad-

dress the problem of blind joint channel parameter and data estimation in a

multiuser communication channel in which the number of transmitters is not

known. In the literature, we can find several works addressing this problem

[141, 55, 143, 12, 10, 11, 134]. However, a characteristic shared by all of them

is the assumption of an explicit upper bound for the number of transmitters

(users), which may represent a limitation in some scenarios. Our BNP ap-

proach naturally avoids this limitation by assuming instead an unbounded

number of transmitters. Furthermore, we do not restrict our approach to

memoryless channels, which also differs from the existing approaches.

Although machine learning and BNP techniques have already been applied

to communication problems (see, e.g., [100, 26]), there are still many other

problems in which these methods can help improve the performance of clas-

sical algorithms. One of the goals of this Thesis is to push in that direction.

1.3 Time Series Modeling

We are interested in modeling temporal sequences by including a set of hidden

variables and assuming that the observations are conditionally independent given

these hidden variables. We assume that the state space of the latent variables is

discrete with known dimensionality.1 These properties naturally lead us to hidden

Markov models (HMMs). In this section, we briefly review the HMM, the factorial

hidden Markov model (FHMM), and the finite state machine (FSM), which are

the basic building blocks that we use throughout the Thesis. In Section 1.3.4, we

review some nonparametric extensions of classical time series models.

1.3.1 Hidden Markov Models

HMMs characterize time varying sequences with a simple yet powerful latent vari-

able model [17, 104]. HMMs have been a major success story in many fields

1In some applications, like power disaggregation, we may also be interested in learning the

number of hidden states. See Chapter 3 for further details.
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involving complex sequential data, including speech [103] and handwriting [92]

recognition, computational molecular biology [16], natural language processing

[80], and digital communications [124].

In HMMs, the observed discrete time sequence {yt}Tt=1 is assumed to depend

on a hidden sequence of variables, {st}Tt=1, where T is the number of time steps.

Each hidden variable belongs to a discrete space, i.e., st ∈ {0, 1, . . . , Q− 1}, where
Q stands for the number of states of the Markov model. Figure 1.1 represents the

corresponding graphical model.

. . .

. . .

s1 s2 sT

y1 y2 yT

Figure 1.1: Graphical representation of the HMM.

An HMM is completely characterized by: (i) the initial state probabilities,

which contain the probabilistic information of the hidden state st at time t = 1;

(ii) the transition probabilities, that describe how the latent states st evolve with

time; and (iii) the emission probabilities, which describe the likelihood of each

observation yt given the hidden state st. Thus, the probability distribution over

{st,yt} can be written as

p({st,yt}Tt=1) = p(s1)︸ ︷︷ ︸
(i)

×
T∏
t=2

p(st|st−1)︸ ︷︷ ︸
(ii)

×
T∏
t=1

p(yt|st)︸ ︷︷ ︸
(iii)

. (1.1)

Due to the discrete nature of the hidden states, the initial state probabilities p(s1 =

q) can be described by a vector π ∈ [0, 1]Q. The transition probabilities p(st =

k|st−1 = q) are denoted by aqk and can be stored in a Q×Q matrix A, whose rows

are denoted by aq (q = 0, . . . , Q−1). Hence, aq = [aq0, . . . , aq(Q−1)] corresponds to

the transition probability vector from state q. The emission probabilities p(yt|st =
q), or likelihood terms, are application-dependent, and they typically depend on

some parameters Φq.

Inference in HMMs involves estimating the sequence of hidden states {st}Tt=1

given the observed signal. This is a problem that can be solved with complexity
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scaling as O(TQ2) using the forward-backward algorithm. When the parame-

ters π, A and Φq that govern the transition and emission probabilities are also

unknown, exact inference can still be carried out using an expectation maximiza-

tion (EM) procedure [32], whose particularization for HMMs is also known as the

Baum-Welch algorithm [17]. The EM procedure alternates between the E step,

which fixes the current parameters and computes the posterior probabilities over

the hidden states st via the forward-backward algorithm, and the M step, which

uses these probabilities to maximize the expected log-likelihood of the observations

as a function of the parameters.

In a fully Bayesian context, the parameters π, A and Φq are also treated as

random variables, and standard Bayesian inference techniques (e.g., Gibbs sam-

pling) can be applied instead of the EM procedure.

1.3.2 Factorial Hidden Markov Models

FHMMs represent the observed time series with several independent parallel HMMs

[48]. These parallel HMMs can be seen as several independent causes affecting the

observations. We denote by stm the state of Markov chain m at time instant t,

for m = 1, . . . ,M and t = 1, . . . , T . Figure 1.2 shows the corresponding graphical

model.

. . .

. . .

. . .

s11 s21 sT1

s1M s2M sTM

M
ch
ai
n
s

. .
.

y1 y2 yT

Figure 1.2: Graphical representation of the FHMM.

In an FHMM, the probability distribution over the observations and the latent

states is given by

p({stm,yt}) =
M∏

m=1

p(s1m)︸ ︷︷ ︸
(i)

×
M∏

m=1

T∏
t=2

p(stm|s(t−1)m)︸ ︷︷ ︸
(ii)

×
T∏
t=1

p(yt|st1, . . . , stM )︸ ︷︷ ︸
(iii)

. (1.2)
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In this case, the independence of the parallel Markov chains ensures that the initial

state probabilities (i) and the transition probabilities (ii) factorize over m. Each

observation yt depends on all the hidden chains through the likelihood term (iii),

which induces dependencies across m in the posterior distribution of the hidden

states {stm} given the observations.

In this model, each Markov chainm can be described with a different transition

probability matrix Am of size Q×Q, such that the probability p(stm = k|s(t−1)m =

q) = amqk. (Note that Q can also be different in each of the Markov chains, but for

simplicity we assume a constant value for the number of states across chains.)

The FHMM can be interpreted as a single HMM in which each hidden state st

can take QM different values. Under this equivalent single HMM, the correspond-

ing transition matrix contains Q2M elements. In particular, this transition matrix

can be obtained as the Kronecker product of the transition probability matrices

of the FHMM, i.e.,

AHMM =
M⊗

m=1

Am
FHMM. (1.3)

Hence, the FHMM can be understood as a simplification of a hidden state transi-

tion matrix with Q2M elements intoM transition matrices, each with Q2 elements.

Exact inference in FHMMs cannot be carried out with an EM (or Baum-Welch)

algorithm due to its computational complexity. As in standard HMMs, the M step

is simple and tractable. However, the combinatorial nature of the hidden state

representation makes the E step computationally intractable. The näıve exact

algorithm which consists of translating the FHMM into the equivalent HMM before

running the forward-backward algorithm has complexity O(TQ2M ), although it

can be reduced to O(TMQM+1) by exploiting the structure of the model [48]. This

exponential time complexity makes exact inference computationally unfeasible.

As in many other intractable systems, approximate inference can be carried

out using either Markov chain Monte Carlo (MCMC) methods [109] or varia-

tional inference algorithms [73]. Within the MCMC approaches, Gibbs sampling

or blocked Gibbs sampling are the standard methods of choice, whereas mean field

or structured variational methods are the most common approaches for variational
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inference [48].

1.3.3 Finite State Machines

FSMs have been applied to a huge variety of problems, including biology (e.g.,

neurological systems), artificial intelligence (e.g., speech modeling), control appli-

cations, communications and electronics [8, 137]. In fact, the HMM is a particu-

larization of the FSM. In its more general form given in [64], an FSM is defined

as an abstract machine consisting of:

• A set of states, including the initial state and final state. Variants of this

include machines having multiple initial states and multiple final states.

• A set of discrete or continuous input symbols or vectors.

• A set of discrete or continuous output symbols or vectors.

• A state transition function, which takes the current input event and the

previous state and returns the next state.

• An emission function, which takes the current state and the input event and

returns an output event.

A deterministic FSM is one where the transition and emission functions are de-

terministic. That is, the next state and output events are completely determined

by the current state and input event. In contrast, a stochastic FSM is one where

the transition and/or emission functions are probabilistic. As an example, in the

case of HMMs, the emission function is probabilistic, and the states are not di-

rectly observable through the output events. Instead, each state produces one of

the possible output events with a certain probability. Similarly, in the HMM, the

states evolve according to some transition probabilities.

In this Thesis, we focus on stochastic finite-memory FSMs, although we refer

to this class of machines simply as FSMs for brevity. In these FSMs, the next

state only depends on a finite number of previous input events, i.e., the current

state can be represented as the vector containing the last input events. More
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formally, the FSM relies on a finite memory L and a finite alphabet X . Each

new input xt ∈ X produces a deterministic change in the state of the FSM, and

a stochastic observable output yt. The next state and the output depend on the

current state and the input. The graphical model for an FSM with L = 2 is

depicted in Figure 1.3.

. . .

. . .y1 y2 yTy3

x1 x2 x3 xTxT−1

Figure 1.3: Graphical representation of an FSM with L = 2.

Under this model, the probability distribution over the inputs xt and the ob-

servations yt can be written as

p({xt,yt}Tt=1) = p(x1)︸ ︷︷ ︸
(i)

×
T∏
t=2

p(xt|xt−1)︸ ︷︷ ︸
(ii)

×
T∏
t=1

p(yt|xt, . . . , xt−L+1)︸ ︷︷ ︸
(iii)

. (1.4)

The FSM model also requires the specification of the initial state, which is defined

by the inputs x2−L, . . . , x0. This model differs from the standard HMM in two

ways. First, in many cases, the transition probability p(xt|xt−1) does not depend

on the previous input xt−1, i.e., p(xt|xt−1) = p(xt). Nevertheless, we maintain

this dependency because it better fits the applications in this Thesis. Second, the

likelihood of each observation yt depends not only on xt, but also on the previous

L− 1 inputs.

Similarly to the FHMM, the FSM can also be converted into a single standard

HMM. In this equivalent HMM, each state st can be expressed as the L-vector

containing the last L inputs, i.e.,

st = [xt, xt−1, . . . , xt−L+1] , (1.5)

therefore yielding Q = |X |L states. In this case, the |X |L × |X |L transition prob-

ability matrix A of the corresponding equivalent HMM is a sparse matrix that

contains |X | non-zero elements per row and column, since most of the transitions
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Figure 1.4: (a) State diagram of an HMM with Q = 4 states. Each state is completely

determined by the last input event xt, and all transitions among states are allowed. (b)

State diagram of an FSM with L = 2 and X = {0, 1}. Each state can be represented

by the vector containing the last L input events. Each state can only transition to other

|X | = 2 states, depending on the input event xt. Hence, not all transitions among states

are allowed, but it is possible to reach any other state in the graph after L = 2 transitions.

are not allowed (each state can only transition to other |X | states). See Figure 1.4
for a state diagram of an HMM and an FSM.

Exact inference in FSMs is computationally intractable. The E step of the

näıve EM approach in the equivalent HMM has computational complexity scaling

as O(T |X |2L), although it can be reduced to O(T |X |L+1) by exploiting the sparsity

of the equivalent transition matrix. However, the exponential dependency on L

makes exact inference intractable for moderately large values of L.

As in FHMMs, approximate inference schemes are needed under the FSM

model, being MCMC methods or variational inference algorithms the most com-

mon methods of choice.

1.3.4 Bayesian Nonparametrics for Time Series

BNPs have appeared as a replacement of classical finite-dimensional prior distribu-

tions with general stochastic processes, allowing an open-ended number of degrees

of freedom in a model [97]. We refer to Chapter 2 for a more detailed presentation

of BNP models.

In the literature, many nonparametric extensions of standard time series mod-
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els can be found. Some examples of BNP models for time series are:

• An HMM with an infinite number of latent states is developed in [18, 119].

This model is known as infinite hidden Markov model (IHMM). As the au-

thors rely on the hierarchical Dirichlet process (HDP) to define their non-

parametric model, it is also referred to as HDP-HMM. In the IHMM, the

number of states is treated in a nonparametric fashion, i.e., Q is allowed to

tend to infinity. Even though the number of states is potentially infinite, for

a finite value of T only a finite number of them are present.

• An extension of the IHMM is the sticky HDP-HMM [45], which includes

a bias term to artificially increase the self-transition probability of states.

This has the advantage of avoiding redundant states to be created during

inference.

• Hidden semi-Markov models (HSMMs) can also avoid the rapid-switching

problem and geometric duration of the states in HMMs. A nonparamet-

ric explicit-duration HSMM can be found in [71]. This is an extension of

the IHMM that explicitly introduces the time duration of states as hidden

variables of the model.

• The reversible IHMM presented in [99] makes use of a hierarchy of gamma

processes, instead of the HDPs, to define a prior over an infinite transition

matrix that results reversible.

• The infinite factorial hidden Markov model (IFHMM) in [130] considers an

infinite number of parallel Markov chains in an FHMM and, therefore, the

number of independent causes that influence the observations is treated non-

parametrically. The IFHMM is based on the Markov Indian buffet process

(MIBP), which assumes binary states (i.e., Q = 2), being state 0 the inactive

state. In the IFHMM, there is an infinite number of parallel Markov chains,

but most of them are in the inactive state and only a finite subset of the

chains become active.
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• Hierarchical hidden Markov models (HHMMs) consider a hierarchy of stan-

dard HMMs, in which latent states are themselves HHMMs, which contain

substates, and can emit strings of observations [41]. The nonparametric gen-

eralization of the HHMM is the infinite hierarchical hidden Markov model

(IHHMM), which considers an infinite number of levels in the hierarchy [58].

• For Markov switching processes and switching linear dynamical systems, a

nonparametric construction is presented in [44]. For instance, in switching

linear dynamical systems, a potentially infinite number of dynamical models

can be assumed, and transitions from one dynamical model to another one

can occur at any time during the observation period.

1.4 Contributions

The contributions of this Thesis have also been or will be partially published in

[126, 125, 127, 113, 128]. They correspond to extensions of existing BNP models

with applications to the problems of power disaggregation and blind multiuser

joint channel estimation and symbol detection. We summarize our contributions

below.

1.4.1 Infinite Factorial Unbounded-State HMM

The IHMM in [119] considers an HMM with a potentially infinite cardinality of

the state space. The IFHMM in [130] considers instead an infinite number of

binary-state HMMs. The first contribution of this Thesis is the development of

a non-binary IFHMM, that is, an FHMM in which the number of Markov chains

M is infinite and the cardinality of the state space can take any arbitrary value,

Q. We develop two MCMC-based inference algorithms for this model, and also a

structured variational inference algorithm. We show that the non-binary IFHMM

provides more accurate results than its binary counterpart in problems in which

several states can be taken by the latent independent causes.

As a second contribution, we extend the non-binary IFHMM in order to be
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able to additionally infer the number of states, Q. We develop our model with-

out restricting Q to be bounded, and hence we refer to it as infinite factorial

unbounded-state hidden Markov model (IFUHMM). We develop an inference al-

gorithm for this model based on reversible jump Markov chain Monte Carlo (RJM-

CMC) techniques [52], and show that the IFUHMM can properly infer both the

number of parallel chains M and the number of states Q in the factorial model.

We apply these models to the power disaggregation and the multiuser chan-

nel estimation problems. For power disaggregation, we show that the non-binary

IFHMM and the IFUHMM provide better results when compared to the standard

(parametric) FHMM, and also when compared to the binary IFHMM. More im-

portantly, our fully blind IFUHMM does not require any prior information about

the number of active devices in a house, nor specific prior information about the

behavior of individual devices.

For blind multiuser channel estimation, we apply the IFUHMM to detect an

unbounded number of users with an unbounded channel length. Up to our knowl-

edge, this constitutes the first attempt to simultaneously detect both the number of

users and the channel length in a multiuser communication scheme. Our inference

algorithm provides the dispersive channel model for each user and a probabilistic

estimate for each transmitted symbol in a fully blind manner, i.e., without the need

of transmitting a sequence of pilot symbols. The obtained results are promising,

opening a new research challenge in applying BNP tools to digital communication

problems.

1.4.2 Infinite Factorial Finite State Machines

When applied to communication problems, the IFUHMM suffers from several lim-

itations. These limitations arise from the fact that the model does not take into

account some additional prior knowledge of digital communication systems. For

instance, the IFUHMM allows transitions among all the states of each HMM,

which does not fit the channel state of transmitters, in which not all transitions

among states are possible.
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In order to address these limitations, we develop the infinite factorial finite state

machine (IFFSM) model as another contribution of the Thesis. In the IFFSM

model, we incorporate specific prior information about communication systems.

The states of an FSM naturally model the channel state information (CSI) of

each transmitter. The factorial extension allows us to model several transmitters

simultaneously sending bursts of symbols, and the nonparametric version allows

us to infer the number of users in the system. We develop an MCMC algorithm

based on a combination of slice sampling [95] and particle Gibbs with ancestor

sampling (PGAS) [83].

We apply our IFFSM to the multiuser channel estimation problem, showing a

more accurate and flexible approach (when compared to the IFUHMM) to estimate

the channel coefficients, the number of transmitters and the transmitted symbols

in a fully blind manner, with no need of training data.

1.5 Organization

The remainder of this Thesis is organized as follows. In Chapter 2, we review the

basics of some BNP models. In particular, we focus on the Dirichlet process (DP),

the beta process (BP) and some of their variants that are of interest to build our

models.

The rest of chapters are devoted to our contributions. Chapter 3 introduces

the non-binary IFHMM and the IFUHMM, as well as the corresponding inference

algorithms. In Chapter 4, we introduce the IFFSM model and the associated

inference algorithm.

The applications of these models can be found in Chapters 5 and 6. In the

former, we apply the IFHMM and the IFUHMM to the power disaggregation

problem. In the latter, we apply the IFUHMM and the IFFSM for blind multiuser

channel estimation and symbol detection.

Finally, Chapter 7 is devoted to the conclusions and future research lines.
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2
Review of Bayesian Nonparametrics

2.1 Introduction

Most of machine learning problems consist in learning an appropriate set of pa-

rameters within a model class from training data. The problem of determining

appropriate model classes is referred to as model selection or model adaptation.

The model selection problem is of fundamental concern for machine learning practi-

tioners, chiefly for avoidance of over-fitting and under-fitting, but also for discovery

of the causes and structures underlying data. Some examples of model selection

and adaptation include: selecting the number of clusters in a clustering problem,

the number of hidden states in a hidden Markov model (HMM), the number of

latent variables in a latent variable model, or the complexity of features in nonlin-

ear regression. Although some recent papers show that Bayesian nonparametric

(BNP) priors are not consistent at estimating the number of components, e.g.,
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the number of clusters [90], in this Thesis we are not interested in the theoretical

properties of BNPs, but in practical applications in which we seek for meaningful

results for our problem at hand.

Nonparametric models constitute an approach to model selection, where the

model complexity is allowed to grow with data size. For example, fitting a Gaus-

sian mixture with a fixed number of Gaussians is a parametric approach for density

estimation. The nonparametric (frequentist) approach would be a Parzen window

estimator, which centers a Gaussian at each observation (and hence uses one mean

parameter per observation). Nonparametric methods have become popular in clas-

sical (non-Bayesian) statistics [138]. As an example, the support vector machine

[30] has been widely applied for many classification problems.

BNP methods provide a Bayesian framework for model selection and adap-

tation using nonparametric models. A Bayesian formulation of nonparametric

problems is nontrivial, since the dimensionality of the parameter space in a non-

parametric approach is allowed to change with sample size. The BNP solution is to

use an infinite-dimensional parameter space, ensuring that only a finite subset of

the available parameters is used for any given finite dataset. This subset generally

grows with the dataset size. In other words, a BNP model is a Bayesian model on

an infinite-dimensional parameter space that can be evaluated on a finite sample

using only a finite subset of the available parameters to explain the sample [97].

The parameter space typically consists of random functions or measures. Ran-

dom functions and measures, and more generally probability distributions on

infinite-dimensional random objects, are called stochastic processes. Gaussian

processes (GPs), Dirichlet processes (DPs) and beta processes (BPs) are some

examples of stochastic processes.

In this chapter, we provide a brief overview of some BNP priors. We focus on

models based on the DP, the hierarchical Dirichlet process (HDP) and the BP.
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2.2 Stochastic Processes

2.2.1 Dirichlet Process

The DP is a stochastic process whose realizations are random infinite discrete

probability distributions [40]. A DP is completely specified by a base distribution

G0 (which is the expected value of the process) and a positive real number α

(usually referred to as concentration parameter), which plays the role of an inverse

variance.

The weak distribution1 of the DP is as follows. Let the base distribution G0

be a probability measure on a space Φ. A random probability measure G over

Φ constitutes a DP if, for any finite measurable partition (A1, A2, . . . , Ar) of Φ,

the random vector (G(A1), G(A2), . . . , G(Ar)) is distributed as a finite-dimensional

Dirichlet distribution of the form

(G(A1), G(A2), . . . , G(Ar))

∼ Dirichlet (αG0(A1), αG0(A2), . . . , αG0(Ar)) .
(2.1)

We write G ∼ DP(α,G0) if G is a random probability measure with distribution

given by the DP. The first two cumulants of the DP are given by

E[G(A)] = G0(A), (2.2)

and

Var[G(A)] =
G0(A)(1−G0(A))

α+ 1
. (2.3)

An explicit representation of a draw G ∼ DP(α,G0) from a DP can be written

as

G =
∞∑
k=1

πkδφk
, (2.4)

where πk are atom weights, and φk ∈ Φ are atom locations defined in the parameter

space [116]. The representation in (2.4) ensures that draws from a DP are atomic

(discrete) with probability one.

Note that Eq. 2.4 defines an infinite mixture model, i.e., a mixture model with

a countably infinite number of clusters. However, since the weights πk decrease

1The weak distribution of a stochastic process is the set of all its finite-dimensional marginals.
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exponentially quickly, only a small number of clusters will be used to describe any

finite dataset. In fact, the expected number of components grows logarithmically

with the number of observations.2 In the DP mixture model, the actual number

of clusters describing the data is not fixed, and can be automatically inferred from

the data using the usual Bayesian posterior inference framework. The DP mixture

model has been widely studied in the literature [13, 38, 86].

We now describe the DP construction as an infinite limit of a finite mixture

model with particular Dirichlet priors on mixing proportions. We then turn to

the implicit construction through the culinary metaphor of the Chinese restaurant

process (CRP). Finally, we give another explicit representation of DPs using the

stick-breaking construction.

Infinite Limit of Finite Mixture Models

Many BNP models can be derived as the infinite limit of finite (parametric)

Bayesian models. In particular, the DP mixture model can be derived as the

limit of a sequence of finite mixture models, where the number of components in

the mixture is taken to infinity [93, 106].

Let us assume a finite mixture model withK components. Let π = [π1, . . . , πK ]

denote the mixing proportions, and assume that we place a symmetric Dirichlet

prior on π with parameters (α/K, . . . , α/K). Let φk denote the parameter obser-

vation vector associated with the k-th mixture component, and let φk have prior

distribution G0. Thus, we have the following model:

π|α ∼ Dirichlet(α/K, . . . , α/K),

zi|π ∼ π,

φk|G0 ∼ G0,

yi|zi, {φk}Kk=1 ∼ p(yi|φzi),

(2.5)

where yi denotes the i-th observation, and zi corresponds to its cluster allocation.

2This can be relaxed by replacing the DP with a Pitman-Yor process, in which the growth of

the number of components follows a power-law property [102].
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We define G(K) as the distribution defined by theK-component mixture model,

i.e., G(K) =
∑K

k=1 πkδφk
. As K → ∞, for every function f integrable with respect

to G0, ∫
f(φ)dG(K)(φ) →

∫
f(φ)dG(φ), (2.6)

which implies that the marginal distribution over the set of observations y1, . . . , yN

tends to the distribution of the DP mixture model [69].

Chinese Restaurant Process

Another representation of infinite dimensional models is based on de Finetti’s

Theorem. Any infinitely exchangeable3 sequence φ1, . . . , φN uniquely defines a

stochastic process, called the de Finetti measure, that makes all the φi’s iid. For

some models, it is sufficient to work directly with the φi’s and have the underlying

stochastic process implicitly defined. This implicit representation of a BNP model

is useful in practice, as it may lead to simple and efficient inference algorithms.

The implicit representation of the DP is the Pólya urn scheme [20], which is

closely related to a distribution on partitions known as the CRP [7]. Let φ1, . . . , φN

be a sequence of iid random variables distributed according to G. That is, all

variables φi are conditionally independent given G, and hence exchangeable. The

successive conditional distributions of φi given φ1, . . . , φi−1 takes the form

φi|φ1, . . . , φi−1, α,G0 ∼
i−1∑
�=1

1

i− 1 + α
δφ�

+
α

i− 1 + α
G0. (2.7)

This expression shows that φi has non-zero probability of being equal to one of

the previous draws. This leads to a “rich gets richer” effect, in which the more

often a point is drawn, the more likely it is to be drawn in the future. Let {φ�k}Kk=1

denote a sequence containing the unique values of variables φi. By defining mk as

the number of values φi which are equal to φ�k, we can rewrite (2.7) as

φi|φ1, . . . , φi−1, α,G0 ∼
K∑
k=1

mk

i− 1 + α
δφ�

k
+

α

i− 1 + α
G0. (2.8)

3An infinitely exchangeable sequence is a sequence whose probability is invariant under finite

permutations of its first n elements, for all n ∈ N.
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Despite this “richer gets richer” effect, the probability of φi being drawn from G0

(and hence being different to all previous values) is always positive, and propor-

tional to α.

Eqs. 2.7 and 2.8 can be interpreted as a Pólya urn model, in which a ball φi

is associated with a color φ�k. The balls are drawn from the urn equiprobably.

When a ball is drawn, it is placed back in the urn together with a new ball of the

same color. In addition, with probability proportional to α, a new atom (color) is

created by drawing from G0, and a ball of that new color is added to the urn.

Alternatively, this process can also be viewed as the CRP culinary metaphor.

The CRP actually defines a distribution over partitions. In the CRP, we consider

a Chinese restaurant with an infinite number of tables. Each φi corresponds to a

customer who enters the restaurant, while the distinct values φ�k correspond to the

tables at which the customers sit. The i-th customer sits at the table indexed by φ�k

with probability proportional to the number of customers mk already seated there

(in which case we set φi = φ�k), or sits at a new table with probability proportional

to α (therefore increasing K by one, drawing φ�K ∼ G0, and setting φi = φ�K). See

Figure 2.1 for a sketch of the CRP.

...

2

10

6 7

93

1 4

8 5

k

Figure 2.1: Illustration of the Chinese restaurant process. Circles correspond to tables in

the restaurant, while numbers correspond to customers sitting on tables.

sequences, {πk}k∈N and {φk}k∈N. The stick-breaking representation of the DP

Explicit representations of stochastic processes directly describe a random draw

from the stochastic process, rather than describing its distribution. A prominent

example of an explicit representation is the so-called stick-breaking construction

of the DP [116].

The discrete random measure G in (2.4) is uniquely determined by two infinite
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generates these two sequences by drawing φk ∼ G0 independently, and by drawing

a set of auxiliary variables as

vk ∼ Beta(α, 1) (2.9)

for k = 1, 2, . . . The atom weights πk are then obtained as

πk = vk

k−1∏
�=1

(1− v�). (2.10)

Note that the sequence {πk}k∈N constructed by (2.9) and (2.10) satisfies
∑∞

k=1 πk =

1 with probability one. We write π ∼ GEM(α) if π is a random probability mea-

sure over the positive integers defined by Eqs. 2.9 and 2.10 (GEM stands for

Griffiths, Engen and McCloskey) [101].

We can understand the construction of the sequence {πk}k∈N in this way. Start-

ing with a stick of unit length, at each iteration k = 1, 2, . . . a piece of relative

length vk is broken off (relative to the current length of the stick). See Figure 2.2

for an illustration.

1

. . .

k = 1

k = 2

k = 3

π1

π2

π3

Figure 2.2: Illustration of the stick-breaking construction for the DP.

2.2.2 Hierarchical Dirichlet Process

The HDP is a BNP prior which is useful for modeling grouped data [119]. The

HDP is a distribution over a set of random probability measures. The process

defines a set of random probability measures Gj (one for each group of data),

and a global random probability measure G. The global measure G is distributed

as a DP with concentration parameter α1 and base probability measure G0, i.e.,
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G ∼ DP(α1, G0). Hence, it can be expressed as

G =
∞∑
k=1

πkδφk
. (2.11)

The random measures Gj are conditionally independent given G, and they are

distributed as DPs with concentration parameter α2 and base probability measure

G, i.e., Gj ∼ DP(α2, G). Since G is a discrete probability measure with support

at the points {φk}k∈N, each probability measure Gj has support on the same set

of points and, therefore, we can write

Gj =
∞∑
k=1

πjkδφk
. (2.12)

In other words, the atom weights4 πjk are different for each group j, but the atom

locations are shared across groups j.

Let (A1, A2, . . . , Ar) be a measurable partition of Φ. Since Gj ∼ DP(α2, G) for

each j, we have by definition that the random vector (Gj(A1), Gj(A2), . . . , Gj(Ar))

is distributed as

(Gj(A1), Gj(A2), . . . , Gj(Ar))

∼ Dirichlet (α2G(A1), α2G(A2), . . . , α2G(Ar)) .
(2.13)

This will be useful to establish the connection between the weights πjk and the

weights of the global measure, πk.

Note that Eq. 2.12 defines an infinite mixture model for each group of observa-

tions j. Furthermore, all groups share the atom locations φk (which do not depend

on j), and they also share statistical strength on the weights πjk, as detailed below.

Infinite Limit of Finite Mixture Models

Similarly to the DP, the HDP can also be derived as the infinite limit of a finite

mixture model. In this section, we present a finite model that yields the HDP

4We use the notation π = [π1, π2, . . .] to refer to the atom weights of the global probability

measure G, and πj = [πj1, πj2, . . .] to refer to the atom weights of each group-level probability

measure Gj .
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mixture model in the infinite limit, although this is not the only finite mixture

model with this property [119].

Consider the following collection of finite mixture models, where π is a global

vector of mixing proportions of lengthK and πj is a group-specific vector of mixing

proportions of the same length:

π|α1 ∼ Dirichlet(α1/K, . . . , α1/K),

πj |α2,π ∼ Dirichlet(α2π),

φk|G0 ∼ G0,

zji|πj ∼ πj ,

yji|zji, {φk}Kk=1 ∼ p(yji|φzji),

(2.14)

where yji denotes the i-th observation within the j-th group, and zji represents its

cluster allocation. As K → ∞, the finite mixture model in (2.14) yields the HDP

mixture model. The random probability measure G(K) =
∑K

k=1 πkδφk
satisfies

Eq. 2.6 when K → ∞, and using standard properties of the Dirichlet distribution,

it can be shown that the relationship G
(K)
j ∼ DP(α2, G

(K)) also holds for finite

measures. Hence, as K → ∞, the marginal distribution over the observations

yji induced by the finite mixture model with K components tends to the HDP

mixture model.

Chinese Restaurant Franchise

The Chinese restaurant franchise (CRF) is the implicit distribution for the HDP,

in the same way that the CRP is the implicit distribution for the DP. In the

CRF, we have a restaurant franchise with as many restaurants as groups of data.

All restaurants offer the same menu. At each table of each restaurant one dish

is ordered from the menu by the first customer who sits there, and it is shared

among all customers who sit at that table. Multiple tables in multiple restaurants

can serve the same dish [119].

We denote by φji the parameter corresponding to the i-th observation in the

j-th group. Note that φji can only take a value in {φ�1, . . . , φ�K}. Random variables

37



CHAPTER 2. REVIEW OF BNP

φ�k form the global menu of dishes, and they are iid distributed following G0. We

also introduce variables ψjt to denote the dish that is served at table t in restaurant

j.

Additionally, let tji be the indicator of the table in which customer i in restau-

rant j is sitting, and let kjt be the indicator of the dish that is served in table t in

restaurant j. In other words, customer i in restaurant j sat at table tji, while table

t in restaurant j serves dish kjt. Regarding the notation for the counts, we write

njtk to denote the number of customers in restaurant j at table t eating dish k,

and mjk to denote the number of tables in restaurant j serving dish k. Marginal

counts are represented with dots, e.g., njt• represents the number of customers

in restaurant j at table t, and mj• represents the number of occupied tables in

restaurant j.

Following Eq. 2.8, the conditional distribution of φji given the previous vari-

ables φj1, . . . , φj(i−1) and G can be written as

φji|φj1, . . . , φj(i−1), α2, G ∼
mj•∑
t=1

njt•
i− 1 + α2

δψjt
+

α2

i− 1 + α2
G. (2.15)

In this expression, G is assumed to be given. We now proceed to integrate out the

random measure G. Since G ∼ DP(α1, G0), we can use Eq. 2.8 again to obtain

the conditional distribution of ψjt as

ψjt|ψ11, ψ12, . . . , ψ21, . . . , ψj(t−1), α1, G0

∼
K∑
k=1

m•k
m•• + α1

δφ�
k
+

α1

m•• + α1
G0.

(2.16)

Hence, if a term in the first summation of (2.15) is chosen, then we set φji = ψjt

and let tji = t for the chosen table t. Otherwise, we increment mj• by one, draw

a new value ψjmj• and set φji = ψjmj• and tji = mj•. In order to draw this value

of ψjmj• , we use Eq. 2.16. If we draw a new ψjt via choosing a term in the first

summation of (2.16), we set ψjt = φ�k and let kjt = k for the chosen k. If the

second term is chosen, then we increment K by one, draw a new φ�K ∼ G0 and set

ψjt = φ�K and kjt = K.
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Stick-Breaking Construction

The HDP also admits an explicit representation through the stick-breaking con-

struction [119]. In order to derive this construction, we first need to establish the

connection between the global stick lengths πk and the group-specific stick lengths

πjk.

Let K� = {k : φk ∈ A�} for � = 1, . . . , r. If G0 is a non-atomic measure, then

the values φk are almost surely distinct, so any partition of the positive integers

(K1, . . . ,Kr) corresponds to some partition of Φ. Thus, for each j, and following

(2.13), we have that⎛⎝∑
k∈K1

πjk, . . . ,
∑
k∈Kr

πjk

⎞⎠ ∼ Dirichlet

⎛⎝α2

∑
k∈K1

πk, . . . , α2

∑
k∈Kr

πk

⎞⎠ , (2.17)

for every finite partition of the positive integers. Hence, each πj is independently

distributed according to πj ∼ DP(α2,π), where π is interpreted here as a proba-

bility measure on the positive integers.

Variables πk of the global DP can be obtained through the stick-breaking con-

struction in Eq. 2.10, yielding

πk = vk

k−1∏
�=1

(1− v�), (2.18)

where vk ∼ Beta(1, α1). Using (2.17), we can obtain that

vjk ∼ Beta

(
α2πk, α2

(
1−

k∑
�=1

π�

))
(2.19)

and

πjk = vjk

k−1∏
�=1

(1− vj�). (2.20)

Regarding the parameters φk in (2.11), they are independently distributed as

G0. This completes the stick-breaking construction for the HDP.

2.2.3 Beta Process

The BP was defined in [61] for applications in survival analysis. However, it

became popular within the machine learning community later on, when it was
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related to the Indian buffet process (IBP) in [53]. The BP is the de Finetti mixing

distribution underlying the IBP, in the same way that the DP is the de Finetti

mixing distribution of the CRP [120].

A BP is a positive Lévy process whose Lévy measure depends on two parame-

ters: c, which is a positive function over the space Φ that we call the concentration

function, and G0, which is a fixed measure on Φ, called the base measure, with

α = G0(Φ). If c is a constant, it is also called the concentration parameter. We

write G ∼ BP(c,G0) to denote that G is a random measure distributed following

a BP.

Assuming that G0 is continuous, the Lévy measure of the BP is

ν(dφ, dπ) = c(φ)π−1(1− π)c(φ)−1dπG0(dφ) (2.21)

on Φ× [0, 1].

To draw G ∼ BP(c,G0), we can draw a set of points (φm, πm) ∈ Φ× [0, 1] from

a Poisson process with base measure ν, and let

G =
∞∑

m=1

πmδφm . (2.22)

Hence, G is a discrete random measure with probability one, similarly to the DP

and the HDP. The variables πm are the atom weights, whilst φm are the atom

locations. In contrast to the DP, the BP is an unnormalized random measure,

which means that the weights πm do not add up to one. Instead,
∑∞

m=1 πm =

G(Φ), which is a random variable.

The BP, and more specifically the IBP, are typically used as a BNP approach

for latent feature modeling. In latent feature modeling, the properties of each

object can be represented by an unobservable vector of latent features, and the

observations are generated from a distribution determined by those latent feature

values. Eq. 2.22 defines a latent feature model with an infinite number of features,

in which the probability of objects having feature m is equal to the weight πm,

and features are represented by the atom locations φm. Since the weights πm

decrease exponentially quickly, only a small number of features will be used to
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describe any finite dataset a priori.5 In fact, the expected number of features

grows logarithmically with the number of observations.

Infinite Limit of Finite Latent Feature Models

Let us assume a finite feature model with M components and N objects. In this

model, π = [π1, . . . , πM ] is a vector containing the probabilities of possessing the

latent features. The possession of feature m by object i is indicated by a binary

variable sim. We place a beta prior over πm and a Bernouilli prior over sim, i.e.,

πm|α ∼ Beta
( α
M
, 1
)
,

sim|πm ∼ Bernouilli(πm).

(2.23)

If we denote by S the N ×M matrix containing all the latent variables sim, then

the probability over S after integrating out the weights πm can be expressed as

p(S) =
M∏

m=1

α
M Γ
(
nm + α

M

)
Γ(N − nm + 1)

Γ
(
N + 1 + α

M

) , (2.24)

where nm =
∑N

i=1 sim [54].

As M → ∞, the probability p(S) vanishes. However, we are not interested

in the probability of a single matrix S, but in the probability of any equivalent

matrix to S. Two matrices S and S′ are said to be equivalent if they are equal

up to a permutation of their columns. We denote by [S] the set of matrices that

are in the same equivalence class as S. The cardinality of [S] is M !
∏2N

h=0 Mh!
, being

Mh the number of columns with history h (the history h of the m-th column is

defined as the vector corresponding to the m-th column of matrix S). Hence, the

probability distribution on [S] can be written as

p([S]) =
M !∏2N

h=0Mh!

M∏
m=1

α
M Γ
(
nm + α

M

)
Γ(N − nm + 1)

Γ
(
N + 1 + α

M

) . (2.25)

We can now take the limit of (2.25) as M → ∞. Doing so yields the following

result:

lim
M→∞

p([S]) =
αM+∏2N

h=1Mh!
e−αHN

M+∏
m=1

(N − nm)!(nm − 1)!

N !
, (2.26)

5This process can be more formally described through a Bernouilli process with base measure

G.
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where M+ is the number of non-zero columns of S and HN is the N -th harmonic

number, i.e., HN =
∑N

i=1
1
i .

The probability distribution in (2.26) corresponds to the probability given by

the IBP, described below. The underlying de Finetti mixing distribution is the

BP with c = 1 [120].

Indian Buffet Process

Similarly to the CRP, in this case there is also an implicit construction through

culinary metaphor that yields Eq. 2.26. The IBP receives its name due to Indian

restaurants in London, which offer buffets with an apparently infinite number of

dishes.

In the IBP, N customers enter a restaurant one after another. Each customer

encounters a buffet consisting of infinitely many dishes arranged in a line. The first

customer starts at the left of the buffet and takes a serving from each dish, stopping

after a Poisson(α) number of dishes as his plate becomes overburdened. The i-th

customer moves along the buffet, sampling dishes in proportion to their popularity,

serving herself with probability nm
i , where nm is the number of previous customers

who have sampled a dish. Having reached the end of all previously sampled dishes,

the i-th customer then tries a Poisson(αi ) number of new dishes. We can indicate

which customers chose which dishes using a binary matrix S with N rows and

infinitely many columns, where sim = 1 if the i-th customer sampled the m-th

dish [53, 54]. In Figure 2.3, we show a representation of an IBP matrix S.

N
o
b
serva

tio
n
s

M+ non-zero columns

M columns (features)

S =

⎡⎢⎢⎢⎣
s11 s12 · · · s1M+ 0 0 · · ·
s21 s22 · · · s2M+

0 0 · · ·
...

...
. . .

...
...

...
. . .

sN1 sN2 · · · sNM+ 0 0 · · ·

⎤⎥⎥⎥⎦

Figure 2.3: Illustration of an IBP matrix.

Using M
(i)
new to indicate the number of new dishes tried by customer i, the
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probability of any particular matrix S being produced by this process is

p(S) =
αM+∏N

i=1M
(i)
new!

e−αHN

M+∏
m=1

(N − nm)!(nm − 1)!

N !
. (2.27)

Taking into account that in this case there are
∏N

i=1 M
(i)
new!

∏2N

h=1 Mh!
matrices in the set [S]

and summing (2.27) over all the matrices in this set, we recover Eq. 2.26.

Stick-Breaking Construction

The stick-breaking construction of the BP in [117] is an equivalent representation

of the IBP prior, useful for some inference algorithms.

In this construction, a sequence of independent random variables {vm}m∈N is

first generated according to

vm ∼ Beta(α, 1), (2.28)

and the weights πm are then obtained as

πm =
m∏
�=1

v�, (2.29)

resulting in a decreasing sequence of probabilities πm.

This construction can be understood with the stick-breaking process illustrated

in Figure 2.4. Starting with a stick of length 1, at each iteration m = 1, 2, . . ., a

piece is broken off at a point vm relative to the current length of the stick. The

variable πm corresponds to the length of the stick just broken off, and the other

piece of the stick is discarded.

1

. . .

k = 1

k = 2

k = 3

π1 = v1

π2 = π1v2

π3 = π2v3

Figure 2.4: Illustration of the stick-breaking construction for the BP.
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2.3 Markov Indian Buffet Process

The Markov Indian buffet process (MIBP) is a variant of the IBP that is useful for

the construction of a factorial hidden Markov model (FHMM) with a potentially

infinite number of parallel Markov chains [130]. In the MIBP, we also consider a

binary matrix S with an infinite number of columns. Here, the t-th row represents

time step t (t = 1, . . . , T ), while the m-th column represents the states of the m-th

Markov chain (m = 1, . . . ,M). Hence, each element stm ∈ {0, 1} indicates whether

the m-th Markov chain is active at time instant t.

Similarly to the IBP, we derive the probability over S as M → ∞ in three

ways. First, we derive this probability as the infinite limit of a finite FHMM.

Second, we follow a process guided by a culinary metaphor, which in this case is

known as MIBP. Third, we give a stick-breaking construction of the process.

2.3.1 Infinite Limit of a Finite FHMM

Consider the following FHMM model, in which each Markov chain evolves accord-

ing to the transition matrix

Am =

⎛⎝ 1− am am

1− bm bm

⎞⎠ , (2.30)

where

p(stm = j|s(t−1)m = i) = (Am)ij . (2.31)

We place a beta prior over am and bm with parameters

am ∼ Beta
( α
M
, 1
)
,

bm ∼ Beta(β0, β1),

(2.32)

being α, β0 and β1 hyperparameters of the model. Each Markov chain starts with

a dummy zero state s0m = 0. The hidden state sequence for chain m is generated

by sampling T steps from a Markov chain with transition matrix Am. Figure 2.5

shows the corresponding graphical model.
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α am

s0m s1m sTm. . .

m = 1, . . . ,M

β0, β1 bm

Figure 2.5: Graphical finite model for the MIBP.

Under this model, the probability over matrix S after integrating out am and

bm can be written as

p(S) =
M∏

m=1

α
M Γ
(
α
M + nm01

)
Γ(1 + nm00)Γ(β0 + β1)Γ(β1 + nm10)Γ(β0 + nm11)

Γ
(
α
M + 1 + nm00 + nm01

)
Γ(β0 + β1 + nm10 + nm11)Γ(β0)Γ(β1)

, (2.33)

where nmqk denotes the number of transitions from state q to state k in the m-th

Markov chain, including the transition from the dummy state to the first state.

Similarly to the IBP, the probability of a single matrix S is zero whenM → ∞.

However, we are interested in the probability of the whole equivalence class of S,

denoted by [S], which consists on the set of matrices that are equal to S after

applying a permutation of the columns. The number of matrices in [S] is equal to

M !
∏2T−1

h=0 Mh!
, beingMh the number of columns with history h. Hence, the probability

over the whole equivalence class is given by

p([S]) =
M !∏2T−1

h=0 Mh!
p(S). (2.34)

In the limit as M → ∞, Eq. 2.34 yields

lim
M→∞

p([S]) =
αM+∏2T

h=1Mh!
e−αHT

×
M+∏
m=1

(nm01 − 1)!(nm00)!Γ(β0 + β1)Γ(β1 + nm10)Γ(β0 + nm11)

(nm00 + n01)!Γ(β0)Γ(β1)Γ(β0 + β1 + nm10 + nm11)
,

(2.35)

being M+ the number of non-zero columns in S, and HT =
∑T

t=1
1
t .

2.3.2 Culinary Metaphor: The MIBP

We can also derive Eq. 2.35 through a stochastic process analogous to the IBP.

In this process, T customers enter an Indian restaurant with an infinitely long
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buffet of dishes organized in a line. The first customer enters the restaurant and

takes a serving from each dish, starting at the left of the buffet and stopping

after a Poisson(α) number of dishes as his plate becomes overburdened. The t-th

customer enters the restaurant and starts at the left of the buffet. At dish m, she

looks at the customer in front of her to see whether she has served herself that

dish.

• If the customer in front of her took dish m, then the t-th customer serves

herself that dish with probability
nm
11+β0

nm
10+nm

11+β0+β1
, being nm11 the number of

previous customers who took dish m when the customer in front of them

took dish m, and nm10 the number of previous customers who did not take

dish m when the customer in front of them took dish m.

• If the customer in front of her did not take dish m, then the t-th customer

serves herself that dish with probability
nm
01

1+nm
01+nm

00
, being nm01 the number of

previous customers who took dish m when the customer in front of them did

not take dish m, and nm00 the number of previous customers who did not take

dish m when the customer in front of them did not take dish m.

The t-th customer then moves on to the next dish and does exactly the same.

After the customer has passed all dishes people have previously served themselves

from, she tries Poisson(αt ) new dishes.

If we fill in the entries of the T ×M matrix S with the number of units that

every customer took from every dish, and we denote by M
(t)
new the number of new

dishes tried by the t-th customer, the probability of any particular matrix S being

produced by this process is given by

p(S) =
αM+∏T

t=1M
(t)
new!

e−αHT

×
M+∏
m=1

(nm01 − 1)!(nm00)!Γ(β0 + β1)Γ(β1 + nm10)Γ(β0 + nm11)

(nm00 + n01)!Γ(β0)Γ(β1)Γ(β0 + β1 + nm10 + nm11)
.

(2.36)

We can recover Eq. 2.35 by summing over all possible matrices that can be

generated using this process that are in the same equivalence class. It is straight-
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forward to check that there are exactly
∏T

t=1 M
(t)
new!

∏2T

h=1 Mh!
matrices in [S]. Multiplying this

by equation (2.36) yields Eq. 2.35.

Note that this construction of the MIBP shows that the effective dimension of

the model M+ follows a Poisson(αHT ) distribution.

2.3.3 Stick-Breaking Construction

We can adapt the stick-breaking construction for the IBP in [117] to the MIBP.

This construction is useful because it allows simpler inference algorithms [130].

We first find the distribution of the parameters am, sorted in decreasing order.

We introduce the notation a(m) to denote the sorted values of am, such that a(1) >

a(2) > a(3) > . . . Since the distribution over variables am is equal to the distribution

of the weights in the standard IBP, we can write that

a(1) ∼ Beta(α, 1), (2.37)

and

p(a(m)|a(m−1)) ∝ (a(m−1))−α(a(m))α−1
I(0 ≤ a(m) ≤ a(m−1)), (2.38)

being I(·) the indicator function, which takes value one if its argument is true

and zero otherwise. Note that this construction is equivalent to the stick-breaking

construction for the IBP described in Section 2.2.3.

With respect to variables b(m), i.e., variables bm reordered to match the corre-

sponding values of a(m), we remark that the Beta(β0, β1) prior in (2.32) does not

depend on m. Thus, the variables b(m) are also Beta(β0, β1) distributed.

2.4 Inference in BNP Models

We have described two classes of BNP models: mixture models based on the

CRP and latent factor models based on the IBP. Both types of models posit

a generative probabilistic process of a set of observations that includes hidden

structure. In order to analyze data with these models, we need to examine the

posterior distribution of the hidden structure given the observations. This gives
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us a distribution over the latent structure that tells us which latent structure is

likely to have generated our data.

The main computational problem in BNP modeling (as in most of Bayesian

statistics) is computing the posterior. For many interesting models including BNP

models, the posterior is not available in closed form, therefore requiring an ap-

proximation. In this section, we give an overview on some of the most widely-used

inference algorithms that approximate the posterior. Details on the inference al-

gorithms for the models developed in this Thesis are given in Chapters 3 and

4.

One of the most widely used posterior inference methods in BNP models are

Markov chain Monte Carlo (MCMC) methods. The idea of MCMC methods is to

define a Markov chain on the hidden variables that has the posterior of interest

as its equilibrium distribution. By drawing samples from this Markov chain, we

eventually obtain samples from the posterior. A simple form of MCMC sampling

is Gibbs sampling, where the Markov chain is constructed by considering the con-

ditional distribution of each hidden variable given the rest of hidden variables and

the observations. The CRP construction is particularly amenable to Gibbs sam-

pling inference, as obtaining these conditional distributions is straightforward. A

detailed survey of Gibbs sampling for inference in DP mixture models can be found

in [94]. Gibbs sampling for the IBP is described in [54, 78]. For the HDP-HMM,

Gibbs sampling can still be applied as described in [45], although beam sampling is

a method with better mixing properties, since it allows running forward-filtering

backward-sampling (FFBS) steps as part of the inference procedure [129]. Re-

garding the infinite factorial hidden Markov model (IFHMM), a slice sampling

approach [95] that makes use of the stick-breaking construction can be applied to

allow for FFBS sweeps [130].

An alternative approach to MCMC methods is variational inference [73]. This

approach is based on the idea of approximating the posterior with a simpler family

of distributions and searching for the member of that family that is closest to it.

Hence, variational methods turn inference into an optimization problem. Unlike
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MCMCmethods, variational inference algorithms are not guaranteed to recover the

posterior, but they are typically faster than MCMC, and convergence assessment

is straightforward. These methods have been applied to DP mixture models [21]

and BP latent feature models [36]. Variational inference usually operates on the

random measure representation through the stick-breaking construction of the DP

and the BP.

2.5 Applications of BNP Models

The choice of an appropriate stochastic process depends on the problem at hand.

GPs have proven to be useful for regression and classification problems, and also for

unsupervised non-linear dimensionality reduction [107]. DPs are most commonly

applied to clustering problems in which the number of clusters is not known in

advance. The HDP has been applied as a nonparametric version of latent Dirichlet

allocation [22], in which each document corresponds to a group, and the number

of topics is potentially infinite [119]. The IBP has been used as a nonparametric

extension of independent component analysis (ICA) [53], as nonparametric latent

feature modeling [111, 112], or as a building block for more complex models [57,

140].

Regarding time series modeling, many BNP priors have been developed in the

literature (see Section 1.3.4). Two of the most common ones are the HDP-HMM

[117], also known as infinite hidden Markov model (IHMM), and the IFHMM [130].

The IHMM makes use of the HDP to define infinite-length transition prob-

ability vectors. Under this model, each vector πj corresponds to the transition

probability vector from state j. All vectors πj share statistical strength through

the global weights π, therefore ensuring that only a finite subset of the available

states in the HMM are used for any finite number of observations.

The IFHMM is based on the MIBP matrix, in which columns are Markov chains

and rows are time steps. The MIBP places a prior over binary matrices with an

infinite number of columns. In the IFHMM, state 0 corresponds to the inactive

state, while state 1 is the active state. For a finite dataset, the MIBP construction
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ensures that only a finite subset of the parallel Markov chains become active, while

the rest of them remain in the inactive state and do not influence the observations.
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3
Infinite Factorial Unbounded-State

Hidden Markov Model

3.1 Introduction

Hidden Markov models (HMMs) characterize time varying sequences with a sim-

ple yet powerful latent variable model [104]. HMMs have been a major success

story in many fields involving complex sequential data, including speech [103] and

handwriting [92] recognition, computational molecular biology [16] and natural

language processing [80]. In most of these applications, the model topology is

determined in advance and the model parameters are estimated by an expectation

maximization (EM) procedure [32], whose particularization is also known as the

Baum-Welch algorithm [17]. However, both the standard estimation procedure

and the model definition for HMMs suffer from important limitations as not con-
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sidering the complexity of the model (making it hard to avoid over or underfitting)

and needing to pre-specify the model structure. In [110], the authors proposed an

inference algorithm for HMMs based on reversible jump Markov chain Monte Carlo

(RJMCMC) techniques [52] to address the model selection problem, which can be

used to estimate both the parameters and the number of hidden states of an HMM

in a Bayesian framework.

Factorial hidden Markov models (FHMMs) model the observed time series

with independent parallel HMMs [48]. These parallel HMMs can be seen as sev-

eral independent causes affecting the observed time series or, alternatively, as a

simplification of a hidden state transition matrix into several smaller transition

matrices. However, in many cases we do not know how many causes (HMMs)

there are and how many states would be needed in each Markov chain.

In this chapter, we build a Bayesian nonparametric (BNP) generative model to

deal with time series, with the capacity of finding behavioral patterns in the data

and learning the number of agents from their effects on the observations, e.g., the

number of devices that are active in a home or the number of transmitters in a

multiuser communication scenario. We also infer the state for every agent without

limiting the precise number of states in which they can be. Our model can be

understood as an infinite factorial hidden Markov model (IFHMM) in which the

number of states in each chain is not known or bounded. We hence refer to our

model as infinite factorial unbounded-state hidden Markov model (IFUHMM). The

extension to IFUHMM is not straightforward, as we need to balance the potentially

infinite parallel chains with the number of states in each chain. We should not

only be able to explain the observations, but doing it in a meaningful way that, for

instance, help investors and policy makers understand how the market operates,

or help people in power saving by minimizing the power consumption of the most

consuming devices.

We construct the IFUHMM in two steps. We first build an FHMM in which

the number of states, Q, is a random variable drawn from an infinite discrete

probability distribution. Then, an unbounded number of parallel Markov chains

52



CHAPTER 3. INFINITE FACTORIAL UNBOUNDED-STATE HMM

are generated following a nonbinary Markov Indian buffet process (MIBP), similar

to the binary IFHMM in [130]. Hence, we can define a distribution over integer-

valued matrices satisfying three properties: 1) the potential number of columns

(Markov chains) is unbounded; 2) the number of states in the Markov chains can

be arbitrarily large; and, 3) the rows (representing time steps) follow independent

Markov processes. We develop a Markov chain Monte Carlo (MCMC) inference

algorithm that allows estimating not only the parameters of the model, but also

the number of states and the number of parallel chains of the proposed IFUHMM.

3.2 Nonbinary Infinite Factorial HMM

The model proposed in this section is a nonbinary extension of the IFHMM devel-

oped in [130]. The proposed model places a prior distribution over integer-valued

matrices with an infinite number of columns (each representing a Markov chain),

in which the values of their elements correspond to the labels of the hidden states.

Therefore, under this construction, the values of the elements of the matrix are

exchangeable. This approach differs from [121], in which the authors propose a

prior distribution over integer-valued matrices with an infinite number of columns,

but the elements are ordered according to their cardinality.

3.2.1 Finite Model

We depict the graphical model for a FHMM in Figure 3.1, in which M , Q and T

stand, respectively, for the number of chains, the number of states of the Markov

model, and the number of time steps. In this figure, stm ∈ {0, 1, . . . , Q − 1}
represents the hidden state at time instant t in the m-th chain and all the states

stm are grouped together in a T ×M matrix denoted by S. For simplicity, we

assume that s0m = 0 for all the Markov chains.

For each chain m, the states stm follow an HMM with transition probabilities

contained in the Q×Q matrix Am, whose rows are denoted by amq (q = 0, . . . , Q−
1). Hence, amq corresponds to the transition probability vector from state q in

chain m. Thus, under this model, the transition probability matrices Am are
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α

pm

amq
q = 1, . . . , Q− 1

am
am0

s0m s1m sTm. . .

m = 1, . . . ,M
γ

β0, β

Figure 3.1: Graphical model of the nonbinary finite FHMM.

independently distributed for each Markov chain m = 1, . . . ,M . As the variables

stm follow an HMM, we can write that

stm|s(t−1)m,A
m ∼ ams(t−1)m

. (3.1)

In order to be able to extend the number of parallel chains to infinity, and

similarly to the IFHMM [130], we need to consider an inactive state. When we let

M go to infinity, we have to ensure that for a finite value of T , only a finite subset

of the parallel chains become active, while the rest of them remain inactive and

do not influence the observations. We consider that the state 0 corresponds to the

inactive state and, therefore, stm = 0 indicates that the m-th chain is not active

at time t. Hence, as shown in Figure 3.1, the transition probability vectors amq are

differently distributed for q = 0 (inactive state) than for the rest of the states. We

place a beta prior over the self-transition probability of the inactive state, i.e.,

am|α ∼ Beta
(
1,
α

M

)
, (3.2)

and set the transition probability vector from the inactive state to

am0 =
[
am (1− am)pm1 . . . (1− am)pmQ−1

]
, (3.3)

where

pm|Q, γ ∼ Dirichlet(γ). (3.4)

Under this construction, the probability distribution over the vector am0 can be

easily derived by applying the linear transformation property of random variables
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from am and pm to am0 , yielding

p(am0 |Q,α, γ) = p(am00|α)p(am01, . . . , am0(Q−1)|am00, γ)
= Beta

(
am00

∣∣∣1, α
M

)
(1− am00)

2−Q

×Dirichlet

(
am01

1− am00
, . . . ,

am0(Q−1)

1− am00

∣∣∣∣γ
)
,

(3.5)

where the elements of vector am0 are denoted by am0i, for i = 0, . . . , Q−1. In Eqs. 3.2

and 3.4, α is the concentration parameter, which controls the probability of leaving

state 0, and γ incorporates a priori knowledge about the transition probabilities

from the inactive state to any other state (i.e., 1, . . . , Q− 1).

For the active states (q = 1, . . . , Q − 1), the transition probability vectors are

distributed as

amq |Q, β0, β ∼ Dirichlet(β0, β, . . . , β), (3.6)

where β0 and β model the a priori information about the transition probabilities

from states other than 0.

Similarly to the binary MIBP in [130], we can obtain the probability distribu-

tion over the matrix S after integrating out the transition probabilities, yielding

the expression in (3.7), where elements of vector amq are denoted by amqi , contain-

ing the probability of transitioning from state q to state i in the Markov chain m.

Additionally, nmqi counts the number of transitions from state q to state i in chain

m, and nmq• represents the number of transitions from state q to any other state in

chain m, namely, nmq• =
∑Q−1

i=0 nmqi .

3.2.2 Taking the Infinite Limit

As the number of independent Markov chains M tends to infinity, the probability

of a single matrix S in Eq. 3.7 vanishes in this model. This is not a limitation, since

we are not interested in the probability of a single matrix, but in the probability

of the whole equivalence class of S. Similarly to the results for the Indian buffet

process (IBP) in [54], the equivalence classes are defined with respect to a function

on integer-valued matrices, called lof(·) (left-ordered form). In particular, lof(S) is
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p(S|Q,α, β0, β, γ) =
∫
p(S|{Am}Mm=1)

M∏
m=1

(p(Am|Q,α, β0, β, γ)dAm)

=

M∏
m=1

⎡⎢⎢⎢⎢⎢⎣
α

M
Γ ((Q− 1)γ)

(Γ(γ))
Q−1

Q−1∏
i=1

Γ(nm0i + γ)

Γ

(
Q−1∑
i=1

(nm0i + γ)

) Γ(nm00 + 1)Γ

(
α

M
+

Q−1∑
i=1

nm
0i

)
Γ
(
nm0• + 1 +

α

M

)

×
Q−1∏
q=1

⎛⎜⎜⎜⎜⎜⎝
Γ (β0 + (Q− 1)β)

Γ(β0) (Γ(β))
Q−1

Γ(nmq0 + β0)

Q−1∏
i=1

Γ(nmqi + β)

Γ
(
nm
q• + β0 + (Q− 1)β

)
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦ .

(3.7)

obtained by sorting the columns of the matrix S from left to right by the history

of that column, which is defined as the magnitude of the base-Q number expressed

by that column, taking the first row as the most significant value.

Additionally, since the elements of matrix S can be arbitrarily relabeled, we

can also define a permutation function on the labels of the states in S. Specifically,

we say that two matrices S1 and S2 with elements in {0, . . . , Q−1} are in the same

equivalence class if there exists a permutation function f(·) on the set {0, . . . , Q−
1}, subject to f(0) = 0, such that, when applied to all the elements of S2 to obtain

S′
2, lof(S1) = lof(S′

2). Roughly, two matrices are equivalent if they are equal after a

particular reordering of their columns and/or relabeling of their nonzero elements.

Note that the element 0 cannot be relabeled, since it represents the inactive state

and therefore requires special treatment, as detailed earlier.

Let us denote by [S] the set of equivalent matrices to S as defined above.

There are (Q−1)!
(Q−NQ)!Nf

M !
∏QT−1

h=0 Mh!
matrices in this set, with Mh being the number of

columns with history h, NQ being the number of visited states in S, including 0,

and where Nf is the number of (previously defined) permutation functions f(·)
such that, when applied to all the elements of S to obtain S′, lof(S) = lof(S′).

Since all the matrices in [S] have the same probability, we can easily compute

p([S]|Q,α, β0, β, γ). Taking the limit asM tends to infinity, we reach Eq. 3.8, where

M+ stands for the number of nonzero columns, and HT for the T -th harmonic
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lim
M→∞

p([S]|Q,α, β0, β, γ) = lim
M→∞

(Q− 1)!

(Q−NQ)!Nf

M !

QT−1∏
h=0

Mh!

p(S|Q,α, β0, β, γ)

=
(Q− 1)!

(Q−NQ)!Nf

αM+

QT−1∏
h=1

Mh!

e−αHT

×
M+∏
m=1

⎡⎢⎢⎢⎢⎢⎣
Γ(nm00 + 1)Γ

(
Q−1∑
i=1

nm0i

)
Γ(nm0• + 1)

Γ ((Q− 1)γ)

Q−1∏
i=1

Γ(nm0i + γ)

Γ

(
Q−1∑
i=1

(nm0i + γ)

)
(Γ(γ))

Q−1

×
Q−1∏
q=1

⎛⎜⎜⎜⎜⎜⎝
Γ (β0 + (Q− 1)β)

Γ(β0) (Γ(β))
Q−1

Γ(nmq0 + β0)

Q−1∏
i=1

Γ(nmqi + β)

Γ
(
nmq• + β0 + (Q− 1)β

)
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦ .

(3.8)

number, i.e., HT =
∑T

j=1
1
j .

This model is exchangeable in the columns, in the integer labels used to denote

the elements of S, and it is also Markov exchangeable in the rows.1 The Markov

exchangeability property holds because p([S]|Q,α, β0, β, γ) only depends on the

number of transitions among states nmqi , and not on the particular sequence of

states. We recover the binary MIBP in [130] by setting Q = 2.

3.2.3 Culinary Metaphor

Following a similar procedure as in [130] for the IFHMM, we can derive the expres-

sion for limM→∞ p([S]|Q,α, β0, β, γ) in Eq. 3.8 from a culinary metaphor analogous

to the IBP. In this process, T customers enter sequentially a restaurant with an

infinitely long buffet of dishes. The first customer starts at the left of the buf-

fet and takes a serving from each dish, taking (possibly different) quantities for

each one and stopping after a Poisson(α) number of dishes. The number of units

q ∈ {1, . . . , Q−1} she takes is independently sampled for each dish from a uniform

1A sequence is Markov exchangeable if its distribution is invariant under permutations of the

transitions.
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distribution.

The t-th customer enters the restaurant and starts at the left of the buffet. At

dish m, she looks at the customer in front of her to see how many units she has

taken from that dish and proceeds as follows:

• If the (t − 1)-th customer did not take the m-th dish, she serves herself

that dish with probability
∑Q−1

i=1 nm
0i

nm
0•+1 , where nm0i is the number of previous

customers who took i units from dish m when the person in front of them

did not take the dish m. If she does, the number of units she takes is given

by i with probability
γ+nm

0i∑Q−1
j=1 (γ+nm

0j)
(i = 1, . . . , Q− 1).

• If the (t− 1)-th customer took q units from the m-th dish, the t-th customer

either serves herself i units with probability given by
β+nm

qi

β0+(Q−1)β+
∑Q−1

j=0 (nm
qj)

(with i = 1, . . . , Q − 1), or she does not take that dish with probability
β0+nm

q0

β0+(Q−1)β+
∑Q−1

j=0 (nm
qj)

, where nmqi is the number of previous customers who

took i units from dish m when the person in front of them took q units.

The t-th customer then moves on to the next dish and repeats the above proce-

dure. After having passed all dishes people have previously served themselves from,

she takes independent quantities q ∼ Uniform
(

1
Q−1 , . . . ,

1
Q−1

)
from a Poisson(αt )

number of new dishes.

If we fill in the entries of the T ×M matrix S with the number of units that

every customer took from every dish, and we denote with M
(t)
new the number of

new dishes tried by the t-th customer, the probability of any particular matrix S

being produced by this process is given in Eq. 3.9.

There are (Q−1)!
(Q−NQ)!Nf

∏T
t=1M

(t)
new!/

∏QT−1
h=1 Mh! matrices in the same equivalence

class as S, and therefore we can recover Eq. 3.8 by summing over all possible

matrices lying in the set [S] generated by this process.

3.2.4 Stick-Breaking Construction

Since the representation of the model above is similar to the binary MIBP in [130],

a stick-breaking construction is also readily available. This construction allows
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p(S|Q,α, β0, β, γ) = αM+

T∏
t=1

M (t)
new!

e−αHT

×
M+∏
m=1

⎡⎢⎢⎢⎢⎢⎣
Γ(nm00 + 1)Γ

(
Q−1∑
i=1

nm0i

)
Γ(nm0• + 1)

Γ ((Q− 1)γ)

Q−1∏
i=1

Γ(nm0i + γ)

Γ

(
Q−1∑
i=1

(nm0i + γ)

)
(Γ(γ))

Q−1

×
Q−1∏
q=1

⎛⎜⎜⎜⎜⎜⎝
Γ (β0 + (Q− 1)β)

Γ(β0) (Γ(β))
Q−1

Γ(nmq0 + β0)

Q−1∏
i=1

Γ(nmqi + β)

Γ
(
nmq• + β0 + (Q− 1)β

)
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦ .

(3.9)

using a combination of slice sampling and dynamic programming for inference.

The stick-breaking construction requires defining a distribution over the pa-

rameters corresponding to the transition probabilities am sorted in ascending or-

der, namely, a(m). For convenience, we define the complementary probabilities

c(m) = 1− a(m), such that c(1) > c(2) > . . . Hence, following a similar procedure as

in the stick breaking construction of the standard IBP in [117], we can write

p(c(1)) = Beta(α, 1), (3.10)

and

p(c(m)|c(m−1)) ∝ (c(m))α−1
I(0 ≤ c(m) ≤ c(m−1)), (3.11)

where I(·) is the indicator function, which takes value one if its argument is true

and zero otherwise.

Let a
(m)
q and p(m) be the variables corresponding to, respectively, am

′
q and pm′

sorted by chains according to the values of am
′
. Then, since am

′
q and pm′

follow

the distributions in Eqs. 3.6 and 3.4, repectively, which are independent of m′, the

sorted variables a
(m)
q and p(m) have also the same prior distributions.
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3.3 Gaussian Observation Model

We use the nonbinary MIBP as a building block for a full probabilistic model, in

which S can be interpreted as an arbitrarily large set of parallel Markov chains. We

add a likelihood model which describes the distribution over the T×D observation

matrix Y, composed of T vectors yt of length D corresponding to the available

observations at time instants t = 1, . . . , T . Note that there are three conditions

for the likelihood model to be valid as M tends to infinity: i) the likelihood must

be invariant to permutations of the Markov chains; ii) it must also be invariant to

the particular labeling of the nonzero elements of S; and iii) the distribution on yt

cannot depend on any parameter of chain m if stm = 0. Roughly, the likelihood

must be invariant for any matrix in the set of equivalent classes of S. These

are straightforward conditions that do not limit the applicability of the proposed

model.

We propose two similar Gaussian observation models. The choice of either of

them should depend on the specific application. These two likelihood models are

depicted in Figures 3.2 and 3.3. In both of them, Y is distributed as a Gaussian

random matrix with independent elements, each with variance σ2y , i.e.,

p(Y|S,Φ1, . . . ,ΦQ−1, σ
2
y) =

1

(2πσ2y)
TD
2

exp

{
− 1

2σ2y

× trace

[⎛⎝Y −
Q−1∑
q=1

ZqΦq

⎞⎠�⎛⎝Y −
Q−1∑
q=1

ZqΦq

⎞⎠]}, (3.12)

where Zq is defined as a binary T ×M matrix with elements (Zq)tm = 1 if stm = q

and zero otherwise, and Φq are M × D matrices, with M being the number of

columns in S. Thus, the mean value for yt depends on the additive contribution

of all chains at time instant t.

The difference between both models is the prior over the matrices Φq and the

noise variance σ2y . In Model #1 (Figure 3.2), σ2y is a fixed hyperparameter, and
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α

pm

amq
q = 1, . . . , Q− 1

am
am0

s0m s1m sTm. . .

. . .

q = 1, . . . , Q− 1

μq Φq

σ2
φ

β0, β

γ
m = 1, . . . ,∞

μ0, σ
2
0 y1 yT

σ2
y

Figure 3.2: Graphical observation model #1 for the nonbinary IFHMM.

α

pm

amq
q = 1, . . . , Q− 1

am
am0

s0m s1m sTm. . .

. . .

q = 1, . . . , Q− 1

Φq

β0, β

γ
m = 1, . . . ,∞

ξ

ν, τ

y1 yT

σ2
y

Figure 3.3: Graphical observation model #2 for the nonbinary IFHMM.

we place a Gaussian prior with independent elements over the matrices Φq, i.e.,

p(Φq|μq, σ
2
φ) =

1

(2πσ2φ)
DM
2

exp

{
− 1

2σ2φ

× trace

[(
Φq − 1Mμ�

q

)� (
Φq − 1Mμ�

q

)]}
,

(3.13)

where 1M represents a column vector of length M with all elements equal to one

and μq are D-dimensional Gaussian distributed column vectors with mean μ0 and

covariance matrix σ20ID, i.e.,

p(μq|σ20) = N (μ0, σ
2
0ID), (3.14)

where ID stands for the identity matrix of size D. We include the hyperparameter
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σ2φ to control the variance of the parameters corresponding to different chains

within every state q (q = 1, . . . , Q− 1). For a small value of σ2φ/σ
2
0, Φq is close to

its mean and therefore the parameters for any particular state q are similar through

all the chains. For larger values of σ2φ/σ
2
0, the parameters may seem decorrelated

for the same state at different chains.

In Model #2 (Figure 3.3), we place a normal-inverse-gamma prior over σ2y and

the set of matrices {Φq}Q−1
q=1 , i.e.,

p({Φq}Q−1
q=1 , σ

2
y |ξ, ν, τ) =

ντ

Γ(τ)

(
1

σ2y

)τ+1

exp

{
− ν

σ2y

}

×
Q−1∏
q=1

1(
2πσ2y/ξ

)DM
2

exp

{
− ξ

2σ2y
trace

[
Φ�

q Φq

]}
.

(3.15)

Note that, in Model #2, the parameters Φq for any particular state q through all

the chains are assumed to be independent, and we have also placed a prior over

the observation noise variance σ2y .

3.4 Inference

Inference in BNP models is typically addressed by MCMC methods, such as Gibbs

sampling [118, 45] or beam sampling [129]. Additionally, variational inference has

appeared as a complementary alternative to MCMC methods as a general source of

approximation methods for inference in large-scale statistical models [36, 48, 35].

In the spirit of describing a general learning algorithm, we have developed both

MCMC and variational inference algorithms, as they have different properties.

First, we put forward two MCMC methods: one consists of Gibbs sampling

and the other is a blocked sampler based on a forward-filtering backward-sampling

(FFBS) algorithm. Second, we propose a variational inference algorithm, which

can be viewed as a combination of the main ideas from the finite variational ap-

proach for the IBP in [36] and the variational inference proposed for infinite hidden

Markov models (IHMMs) in [35]. Both of them are applicable when the number

of states Q is known.
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3.4.1 Gibbs Sampling

MCMC methods have been broadly applied to infer the latent structure S from a

given observation matrix Y (see, e.g., [54, 130]). We focus on Gibbs sampling for

posterior inference over the MIBP matrix. The algorithm iteratively samples the

value of each element stm given the remaining variables, i.e., it samples from

p(stm = k|Y,S¬tm) ∝ p(stm = k|S¬tm)p(Y|S), (3.16)

where S¬tm represents the matrix S without the element stm. For clarity, through-

out this subsection we drop the dependence on the hyperparameters in the nota-

tion.

Hence, for t = 1, . . . , T , the Gibbs sampler proceeds as follows:

1. For m = 1, . . . ,M+, sample element stm from (3.16). Then, if the m-th chain

remains inactive for all the time instants, remove that chain and updateM+.

2. Draw Mnew columns of S with states stm (m = M+ + 1, . . . ,M+ +Mnew)

from a distribution where the prior is Poisson(Mnew|αT ) × 1
(Q−1)Mnew

, and

update M+. For each value of Mnew, we try all the possible states in which

the new chains can be at time t, and we restrict the possible values of Mnew

to a finite set (as in [54]).

We now derive the specific form of Eq. 3.16. The details of the computation of

the first term in (3.16) can be found in Appendix A (see Section A.1). Regarding

the second term, its form depends on the considered likelihood model:

• For the Gaussian observation Model #1, we first need to integrate out μq as

p(Φq|S) =
∫
p(Φq|S,μq)p(μq)dμq

=
1

(2π)DM+/2σ
(M+−1)D
φ (σ20M+ + σ2φ)

D/2

× exp

{
− 1

2σ2φ
trace

[
(Φq −MΦ)

�Σ−1
Φ (Φq −MΦ)

]}
,

(3.17)
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where Σ−1
Φ = IM+ − σ2

0

σ2
0M++σ2

φ
1M+1

�
M+

and the M+ × D matrix MΦ =

σ2
φ

σ2
0M++σ2

φ
ΣΦ1M+μ

�
0 . Then, p(Y|S) can be computed integrating out all ma-

trices Φq, yielding

p(Y|S) = 1

(2πσ2y)
TD/2|ΣQ−1|D/2

× exp

{
− 1

2σ2y
trace

[
(Y −MY )

�Σ−1
Q−1 (Y −MY )

]}
,

(3.18)

being MY =
∑Q−1

q=1 ΣqMq, and where the T ×T matrix Σ−1
Q−1 and the T ×D

matrices Mq can be iteratively computed as

Σ−1
q = Σ−1

q−1 −Σ−1
q−1ZqWqZ

�
q Σ

−1
q−1 (3.19)

and

Mq =
σ2y

σ20M+ + σ2φ
Σ−1

q−1ZqWq1M+μ
�
0 , (3.20)

with Wq given by

W−1
q = Z�

q Σ
−1
q−1Zq +

σ2y
σ2φ

Σ−1
Φ , (3.21)

for q = 1, . . . , Q− 1. For the first iteration, Σ0 is the identity matrix of size

M+.

• For the Gaussian likelihood Model #2, we have

p(Y|S) = ντ

(2π)
TD
2 |ΣQ−1|D2

Γ
(
TD
2 + τ

)
Γ(τ)

1

ν + 1
2 trace

[
Y�Σ−1

Q−1Y
] , (3.22)

where the T × T matrix Σ−1
Q−1 can be iteratively computed as in Eq. 3.19,

with matrix Wq given in this case by

W−1
q = Z�

q Σ
−1
q−1Zq + ξIM+ , (3.23)

for q = 1, . . . , Q− 1. Again, Σ0 is the identity matrix of size T .

3.4.2 Blocked Sampling

It is common knowledge that Gibbs sampling may present slow mixing when ap-

plied to time series models, due to potentially strong couplings between successive
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time steps [115, 130]. A typical approach to circumvent this limitation consists

on blocked sampling the latent states stm for each chain, i.e., sampling a whole

Markov chain using a FFBS algorithm, conditional on keeping all other Markov

chains fixed. In order to apply this dynamic programming step, we also need

a slice sampling algorithm [95] which adaptively truncates our model into a fi-

nite FHMM, performing exact inference without assuming alternative approximate

models [130, 129].

Here, we make use of the stick-breaking construction of the model, presented

in Section 3.2.4, and introduce an auxiliary slice variable ϑ distributed as

ϑ|S, {c(m)} ∼ Uniform

(
0, min

m:∃t,stm �=0
c(m)

)
, (3.24)

resulting in the joint distribution

p(ϑ,S, {c(m),p(m),a(m)
q }) = p(ϑ|S, {c(m)})p(S, {c(m),p(m), a(m)

q }). (3.25)

Again, the dependence on the hyperparameters has been dropped in the notation.

From (3.25), it is clear that the original model has not been altered, since it can

be recovered after integrating out the slice variable. However, when we condition

the posterior over S on ϑ, we have that

p(S|Y, ϑ, {c(m),p(m),a(m)
q })

∝ p(ϑ|S, {c(m)})p(S|Y, {c(m),p(m),a(m)
q }),

(3.26)

which forces all columns of S for which c(m) < ϑ to be zero. Our model ensures

that there can only be a finite number of columns for which c(m) > ϑ and, there-

fore, conditioning on the slice variable effectively truncates the model into a finite

FHMM. Note that the distribution in Eq. 3.24 does not need to be uniform, and

a flexible Beta distribution can be used instead [130].

Unlike the Gibbs sampler, the blocked sampling algorithm does not allow us to

integrate out the matricesΦq or the noise variance σ
2
y , and they have to be sampled

from their corresponding posterior distributions. In the case of the likelihood

Model #1, the variables μq can still be integrated out. Hence, the blocked sampling

algorithm iteratively applies these steps:
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1. Sample the slice variable ϑ from (3.24). This step may also involve adding

new chains.

2. For each represented chain m, sample the m-th column of S via dynamic

programming. Compact the representation by removing all chains in the all

zero state.

3. For each active chain,2 sample c(m), p(m) and {a(m)
q }.

4. Sample the matrices Φq (and the noise variance σ2y , if model #2 is consid-

ered).

In Step 1, ϑ is first sampled from (3.24). Then, starting from m = M+ + 1,

new variables c(m) are iteratively sampled from

p(c(m)|c(m−1)) ∝ exp

(
α

T∑
t=1

1

t
(1− c(m))t

)

× (c(m))α−1(1− c(m))T I(0 ≤ c(m) ≤ c(m−1))

(3.27)

until c(m) < ϑ. Since Eq. 3.27 is log-concave in log c(m) [117], we can apply adaptive

rejection sampling (ARS) [49]. Let Mnew be the number of new variables c(m)

that are greater than the slice variable. If Mnew > 0, then we update M+, expand

the representation of matrix S by adding Mnew zero columns, and we sample the

values of the new rows of matrices Φq from the corresponding Gaussian conditional

distributions, given either the rest of rows of matrices Φq (for model #1) or the

noise variance σ2y (for model #2). For each new chain, we also draw the new

variables p(m) and {a(m)
q }Q−1

q=1 from the prior.

Step 2 consists on a blocked sampler, which runs a FFBS sweep on one column

of S, having fixed the rest of columns [130].

In Step 3, for each chain, c(m) is sampled from [117]

p(c(m)|S, c(m−1), c(m+1)) ∝ (c(m))n
(m)
0• −n

(m)
00 −1

× (1− c(m))n
(m)
00 I(c(m+1) ≤ c(m) ≤ c(m−1)),

(3.28)

2An active chain is a chain in which not all states are zero.
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while the posteriors for p(m) and a
(m)
q (given S) are, respectively, Dirichlet distri-

butions with parameters

γ + n
(m)
01 , . . . , γ + n

(m)
0(Q−1),

and

β0 + n
(m)
q0 , β + n

(m)
q1 , . . . , β + n

(m)
q(Q−1),

where we denote by n
(m)
qi the number of transitions from state q to state i in the

m-th chain, considering the ordering given by the stick-breaking construction.

In Step 4, under Model #2, we first sample σ2y for its inverse gamma poste-

rior distribution given the data and the rest of hidden variables. Then, for both

likelihood models, all matrices Φq can be simultaneously sampled from the corre-

sponding Gaussian posterior distribution given S, Y and σ2y .

3.4.3 Variational Inference

Variational inference provides a complementary alternative to MCMC methods as

a general source of approximation methods for inference in large-scale statistical

models [73]. Variational inference algorithms are in general computationally less

expensive compared to MCMC methods, but they involve solving a non-convex

optimization problem, which implies that the algorithm may get trapped in local

optima.

HMM-specific variational inference algorithms can be found in [35, 48]. In

[35], a variational inference algorithm for the IHMM is proposed. In [48] the au-

thors develop several inference algorithms for the standard FHMM where they

include two variational methods: a completely factorized and a structured varia-

tional algorithm. While the former method uses a completely factorized variational

distribution to approximate the posterior probability of the model by assuming in-

dependence among the state variables, the structured variational method preserves

much of the probabilistic structure of the original system by considering the depen-

dencies among the states. Structured variational methods are generally preferred

since they allow reducing the number of variational parameters and, therefore, they
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correspond to coordinate-wise optimization over bigger coordinate blocks than the

completely factorized approaches. The structured variational algorithm in [48] also

requires a forward-backward algorithm within each Markov chain to implement an

efficient and exact inference.

We develop a variational inference algorithm for a finite (and large enough)

value of the number of chains, M . Thus, we consider the finite model in Sec-

tion 3.2.1. The hyperparameters of the model3 are gathered in the set H =

{Q,α, γ, β0, β, σ20, σ2φ, σ2y ,μ0} and, similarly, we denote the set of unobserved vari-

ables by Ψ = {S,amj , am,pm,Φk,μk}, for j, k = 1, . . . , Q− 1 and m = 1, . . . ,M .

The joint probability distribution over all the variables is given by pM (Ψ,Y|H),

where the subscript M indicates that the probability distribution has been trun-

cated to M Markov chains. From the definition of the model, pM (Ψ,Y|H) can be

factorized as follows

pM (Ψ,Y|H) =

(
Q−1∏
k=1

(
pM (Φk|μk, σ

2
φ)pM (μk|σ20)

))

×
(

M∏
m=1

T∏
t=1

pM (stm|s(t−1)m,A
m)

)

×
⎛⎝ M∏
m=1

⎛⎝Q−1∏
j=1

pM (amj |Q, β0, β)
⎞⎠ pM (pm|Q, γ)pM (am|α)

⎞⎠
× pM (Y|S,Φ1, . . . ,ΦQ−1).

(3.29)

We approximate pM (Ψ|Y,H) with the variational distribution q(Ψ) given in

Eq. 3.30, which is completely factorized except for the state matrix S. We use

the structured variational distribution for q(S) developed in [48], which preserves

much of the probabilistic structure of the original model while maintaining the

tractability of the inference. Thus, the variational distribution can be written as

q(Ψ) = q(S)

(
Q−1∏
k=1

(q(Φk)q(μk))

)

×
⎛⎝ M∏

m=1

⎛⎝q(pm)q(am)

Q−1∏
j=1

q(amj )

⎞⎠⎞⎠ ,

(3.30)

3For brevity, in this section we focus on the Gaussian observation model #1 in Figure 3.2.
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being

q(S) =
M∏

m=1

1

Zm
Q

T∏
t=1

q(stm|s(t−1)m), (3.31)

where Zm
Q are the constants that ensure that q(S) is properly normalized. The

specific form for every term in Eqs. 3.30 and 3.31 is given by

q(stm = k|s(t−1)m = j) ∝ Pm
jk · bmkt, (3.32)

q(Φk) =
1

(2π)MD/2|Λk|D/2

× exp

{
−1

2
trace

[
(Φk − Lk)

�Λ−1
k (Φk − Lk)

]}
,

(3.33)

q(μk) = N (ωk,Ωk), (3.34)

q(pm) = Dirichlet(εm1 , . . . , ε
m
Q−1), (3.35)

q(am) = Beta(νm1 , ν
m
2 ), (3.36)

and

q(amj ) = Dirichlet(τmj0 , . . . , τ
m
j(Q−1)). (3.37)

Inference involves optimizing the variational parameters of q(Ψ) to minimize

the Kullback-Leibler divergence of pM (Ψ|Y,H) from q(Ψ), i.e., DKL(q||pM ). This

optimization can be performed by iteratively applying the fixed-point set of equa-

tions given in Appendix A (see Section A.2).

3.5 Prior over the Number of States

The model in Section 3.2, as well as the inference algorithms in Section 3.4, assumes

that the number of states Q in the Markov chains is known. We now deal with the

case where Q is unknown and it must also be inferred from the data. Specifically,

we develop an MCMC inference method to infer both the number of states Q and

the number of parallel chains M+ that constitute the matrix S.
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Let us assume that Q is a random variable and we place a prior over it, e.g., a

Poisson distribution with parameter λ, namely,

p(Q|λ) = λQ−2e−λ

(Q− 2)!
, Q = 2, . . . ,∞. (3.38)

As shown in Eq. 3.8, the probability of the whole equivalent class of the MIBP

matrix S, denoted by [S], is conditioned on the number of states Q. In order

to obtain the marginalized (with respect to the number of states Q) probability

distribution over [S], variable Q can be integrated out, yielding

p([S]|α, β0, β, γ) =
∞∑

Q=2

p([S]|Q,α, β0, β, γ)p(Q|λ). (3.39)

We remark that the term p([S]|Q,α, β0, β, γ) vanishes if S contains any element

not included in the set {0, . . . , Q− 1}.
The summation in Eq. 3.39 is finite, as the series is convergent. To show this,

it suffices to check that

lim
Q→∞

p([S]|Q+ 1, α, β0, β, γ)p(Q+ 1|λ)
p([S]|Q,α, β0, β, γ)p(Q|λ) < 1. (3.40)

This condition holds since the limit can be simplified4 to limQ→∞
p(Q+1|λ)
p(Q|λ) , which

is less than one for every λ > 0 (indeed, the limit is equal to 0).

3.5.1 Inference

Due to the flexibility of the proposed model, the inference algorithm involves a

trade-off between the number of chains and the number of states. We need to find

out a likely combination of the values of both variables given the observed data

through the search of the MIBP matrix S and value of Q from the joint probability

p([S], Q|Y,H′), where H′ is defined as the set of hyperparameters of the model.

We propose an MCMC inference algorithm that obtains samples from the tar-

get distribution p([S], Q|Y,H′). An MCMC method dealing with HMMs can be

found in [110], where a RJMCMC algorithm is used to estimate not only the pa-

rameters of the model, but also the number of states Q of the HMM. RJMCMC

4Note that, according to Eq. 3.8, in the limit when Q → ∞, p([S]|Q+1,α,β0,β,γ)
p([S]|Q,α,β0,β,γ))

= 1.
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methods, which were first introduced in [52] for model selection, allow the sampler

to jump between parameter subspaces of differing dimensionality.

The RJMCMC algorithm for HMMs can be almost readily applied to our

model to obtain samples from the full posterior over [S], Q and the rest of latent

variables of the model, given the observations Y and the hyperparameters H′. Due

to the multiplicity of Markov chains and the high dimensionality of the proposed

IFHMM, the acceptance probabilities for transdimensional jumps under RJMCMC

techniques turn out to be extremely low, which makes convergence too slow to be

practical.

Since we can obtain the marginalized distribution p([S], Q|Y,H′), where dimension-

changing variables have been integrated out, RJMCMC methods are not needed

and we apply a standard Metropolis-Hastings algorithm instead [88, 56]. Never-

theless, we adapt the procedure in [110] to develop our inference algorithm. Hence,

our MCMC sampler proceeds iteratively as follows:

1. Update the allocation matrix S for a given value of Q.

2. Consider splitting a component into two or merging two into one.

3. Consider the birth of a new state or the death of an empty state (i.e., a state

that is not assigned in S).

The number of active parallel Markov chains is updated in the first step, as

the nonparametric nature of the model allows the sampler to infer this quantity.

The two latter steps allow increasing or decreasing the number of states Q by one.

The first step involves either a sweep of the Gibbs sampler as detailed in Sec-

tion 3.4.1, or a sweep of the blocked sampling described in Section 3.4.2. In the

latter case, the transition probabilities, the matrices Φq and the noise variance σ2y

must be sampled (Steps 3 and 4 in Section 3.4.2) before performing Step 1.

In the second step, we choose to split with probability bQ and to merge with

probability dQ = 1 − bQ. Naturally, d2 = 0, and we use bQ = dQ = 1/2 for

Q = 3, . . . ,∞. This procedure is similar to the split/merge move for the Dirichlet

process (DP) mixture model proposed in [70]. In the merge move, we start from
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a matrix S̃ and Q+ 1 states and we randomly select two of the nonzero states, q1

and q2, and try to combine them into a single state q∗, thus creating a matrix S

with Q states. In the split move, in which we start from a matrix S and Q states, a

nonzero state q∗ is randomly chosen and split into two new ones, q1 and q2, ending

with a new matrix S̃ and Q+ 1 states. The acceptance probabilities for the split

and merge moves are given by min(1, R) and min(1, R−1), respectively, where

R =
p([S̃], Q+ 1|Y,H′)
p([S], Q|Y,H′)

dQ+1P
d
select

bQP b
selectPalloc

, (3.41)

which ensures that the detailed balance condition is satisfied. In (3.41), P d
select

denotes the probability of selecting two specific components in the merge move

and is given by 2/(Q(Q− 1)), P b
select denotes the probability of selecting a specific

component in the split move and is given by 1/(Q−1), and Palloc denotes the prob-

ability of making the particular allocation of the elements in matrix S̃. Therefore,

Palloc depends on how the elements in S taking value q∗ are split into q1 and q2.

Although the simplest allocation method could consist on splitting completely at

random, other methods can be used to increase the acceptance probability. We

choose to apply a restricted Gibbs sampling scheme (as in [70]) for those states in

S taking value q∗. Rearranging and simplifying the factors in Eq. 3.41, R can be

expressed for the split and merge moves as

R =
p(Y|[S̃],H′)
p(Y|[S],H′)

p([S̃]|Q+ 1,H′)
p([S]|Q,H′)

p(Q+ 1|λ)
p(Q|λ)

dQ+12/Q

bQPalloc
. (3.42)

In the third step, we first choose at random between the birth or the death

of a state with probabilities bQ and dQ, respectively. The removal of a state is

accomplished by randomly selecting an empty component and deleting it, thereby

jumping from Q+1 states to Q. Matrix S̃ is relabeled so that its elements belong

to the set {0, . . . , Q− 1}, resulting in matrix S. In the birth move, we start from

a model with Q states and we want to create a new empty component. Matrix S

is unaltered in this process, i.e., S̃ = S. The acceptance probabilities for the birth

and death moves are min(1, R) and min(1, R−1), respectively, where in this case

R can be simplified as

R =
p([S̃]|Q+ 1,H′)
p([S]|Q,H′)

p(Q+ 1|λ)
p(Q|λ)

dQ+1

bQ(Q0 + 1)
, (3.43)
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������From

To
State 0 State 1 State 2

State 0 0.5964 0.1530 0.2506

State 1 0.2973 0.6738 0.0289

State 2 0.2463 0.2208 0.5329

(a) Chain 1

������From

To
State 0 State 1 State 2

State 0 0.6321 0.0466 0.3213

State 1 0.3205 0.4947 0.1848

State 2 0.2413 0.1262 0.6325

(b) Chain 2

Table 3.1: Transition probabilities for the synthetic toy dataset.

with Q0 being the number of empty components before the birth of a new empty

state. Note that, although the birth and the split moves seem similar, both of

them are useful. In the birth step we allow the sampler to create a new empty

state (which implicitly involves to have also new observation parameters for this

state) that may help to explain data points that could not be explained by the

existent states, while in the split move we are explaining the data in more detail

by splitting a state into two new states.

Since the detailed balance, irreducibility and aperiodicity properties are satis-

fied (see [108, 70] for further details), the sampler behaves as desired in terms of

converging to a realization from the marginalized posterior distribution p([S], Q|Y,H′).

3.6 Toy Example

We now design an example to show that the proposed model works as expected. We

randomly generate a FHMM with two chains and three states (the inactive state

and two active states). For this purpose, we randomly sample the corresponding

transition probability matrices, increasing the self-transition probabilities and the

probability of transitioning to the inactive state, yielding the matrices shown in

Table 3.1.
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(a) (b)

(c)

(d)

Figure 3.4: (a) The four base images. (b) Inferred posterior of the base images. (c) Four

observed images with the corresponding states in each of the two chains. (d) Inferred

posterior of the four images above.

The observation vector at each time instant is a 6-by-6-pixel image generated

as a linear combination of the corresponding base images shown in Figure 3.4a,

which represent the two active states in each chain. The observations are corrupted

with Gaussian additive noise with zero mean and variance σ2y = 10 (examples can

be found in Figure 3.4c). We generate 200 examples to learn the IFUHMM model.

We use the Gaussian observation Model #1 in Section 3.3. We initialize the

sampler described in Section 3.5.1 with M+ = 1, Q = 2, setting each stm = q

(q ∈ {0, . . . , Q − 1}) with probability 1/Q, and we set the hyperparameters to

α = 0.5, γ = 1, β0 = β = 1, σ20 = 100, σ2φ = 5, μ0 = 0 and λ = 5.

After running 5, 000 iterations of the inference algorithm (using Gibbs sampling

for the first step), we reach a solution with Q = 3 states and M+ = 3 chains. The
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extra chain appears due to the effect of noise, and it is active only at three time

instants. Therefore, we remove it in the plots. Figure 3.4b shows the inferred base

images for the two active states in both chains, and in Figure 3.4d we plot the

mean value of the inferred posterior probability for the four images in Figure 3.4c.
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4
Infinite Factorial

Finite State Machine

4.1 Introduction

The hidden Markov model (HMM) is one of the most widely and successfully ap-

plied statistical models for the description of discrete-time series data. Its success

mainly lies on two facts. First, it provides a model to capture non-trivial corre-

lations across the observed sequence, in such a way that the observations become

conditionally independent given a hidden sequence of states. Second, there are

algorithms that allow an efficient calculation of the relevant quantities needed for

statistical inference, like the expectation maximization (EM) or Baum-Welch al-

gorithm [17]. This algorithm makes use of a forward-backward recursion for the E

step of the inference, which yields complexity O(TQ2), being T the length of the
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sequence and Q the cardinality of the hidden states.

The factorial hidden Markov model (FHMM) [48] is an extension of the HMM

in which M parallel hidden chains evolve independently, and cooperatively gen-

erate the observed data. If the cardinality of each hidden state is Q, then the

FHMM can alternatively be represented as a single HMM in which each hidden

state can take QM different values. However, the main challenge in FHMMs is

posterior inference. Exact inference can be performed with a computational cost

of O(TQ2M ), although it can be reduced to O(TMQM+1) by exploiting the in-

dependence of the parallel chains [48]. This exponential dependency makes exact

inference intractable and, therefore, approximate inference methods are applied

instead.

The stochastic finite state machine (FSM) with finite memory is another ex-

tension of the HMM. Under this model, the next state depends only on a finite

number of previous inputs. This FSM relies on a finite memory L and a finite al-

phabet X . Each new input xt ∈ X produces a deterministic change in the state of

the FSM and an observable output. The next state and the output solely depend

on the current state and the input. The FSM can also be represented as a single

HMM, in which each state can be represented as the vector containing the last L

inputs. Performing exact inference on this model has complexity O(T |X |2L), al-
though it can be reduced to O(T |X |L+1) by exploiting the model structure. Hence,

approximate inference methods are required to avoid the exponential dependency

on the memory length L.

In this chapter, we build a generative model to deal with time sequences in

which several independent causes affect the observed data, as in the FHMM, and

each of the hidden chains can be represented as an FSM with finite memory. We

rely on Bayesian nonparametric (BNP) techniques in order to allow for a poten-

tially infinite number of parallel chains and, therefore, we refer to our model as

infinite factorial finite state machine (IFFSM). Our IFFSM model builds on the

infinite factorial hidden Markov model (IFHMM) in [130], which considers an in-

finite number of parallel Markov chains with binary hidden states. We develop
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an inference algorithm, based on a combination of Markov chain Monte Carlo

(MCMC) and sequential Monte Carlo (SMC) techniques, that avoids the expo-

nential complexity of both the FHMM and the FSM.

Although our model can be easily generalized and applied in a broad range

of real-world problems, we motivate our model on the problem of blind multiuser

channel estimation and symbol detection in a digital communication scenario.

In this problem, each user (transmitter) sends sequences of symbols to a single

receiver, and the receiver observes the superposition of the symbols transmitted

by all the users in the system. Furthermore, due to physical properties of the

communication channel, such as multipath, a symbol transmitted at time t may

affect the observations received at a future time instant t′ > t. This is equivalent

to assuming that the communication channel has memory, as it can “remember”

the last symbols sent by the transmitters. Thus, the FSM can naturally model

such communication system.

4.2 Infinite Factorial Finite State Machine

The model proposed here is an extension of the IFHMM in [130] that allows

considering a potentially infinite number of FSMs that evolve independently of

each other.

In order to be able to deal with an infinite number of FSMs, we need to consider

an inactive state, such that the observations do not depend on those FSMs that

are inactive. While active, the input symbol to the m-th FSM at time instant

t, denoted by xtm, is assumed to belong to the set A, with finite cardinality |A|.
While inactive, we can assume that xtm = 0 and, therefore, each input xtm ∈ X ,

with X = A⋃{0}. We introduce the binary auxiliary variables stm to denote

whether the m-th FSM is active at time t, such that

xtm|stm ∼
⎧⎨⎩ δ0(xtm) if stm = 0,

U(A) if stm = 1,
(4.1)

where δ0(·) denotes a point mass located at 0, and U(A) denotes the uniform
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distribution over the set A. Note that, conditioned on the auxiliary variables stm,

the input symbols xtm are independent and identically distributed.

As in the IFHMM, we place a BNP prior over the binary matrix S that contains

all variables stm. This prior is known as the Markov Indian buffet process (MIBP),

and we write S ∼ MIBP(α, β0, β1) to denote that the matrix S is distributed ac-

cording to a MIBP with parameters α, β0 and β1 (the role of each hyperparameter

is explained below). The MIBP places a prior distribution over binary matrices

with a finite number of rows T and an infinite number of columns M , in which

each element stm = (S)tm ∈ {0, 1}. Each row represents a time instant, whilst

each column represents a Markov chain. The MIBP ensures that, for any finite

value of T , only a finite value of columns in S become active, while the rest of

them remain in the all-zero state and do not influence the observations. We refer

to Chapter 2 for a more detailed presentation of the MIBP.

We make use of the stick-breaking construction of the MIBP, which is par-

ticularly useful to develop practical inference algorithms [117, 130]. Under the

stick-breaking construction, two hidden variables for each Markov chain are in-

troduced, representing the transition probabilities between the active and inactive

states. In particular, we denote with am the self-transition probability of the in-

active state, and with bm the transition probability from active to inactive of the

m-th chain. Hence, the transition probability matrix of the m-th Markov chain

can be written as

Am =

⎛⎝ am 1− am

bm 1− bm

⎞⎠ , (4.2)

and the binary auxiliary states stm evolve according to

p(stm = 0|s(t−1)m = 0, am) = am, (4.3)

and

p(stm = 0|s(t−1)m = 1, bm) = bm. (4.4)

We sort the columns of S (chains of the IFHMM) according to their values of am,

such that a(1) < a(2) < a(3) < . . ., and we work instead with the complementary
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probabilities cm = 1 − am, such that c(1) > c(2) > c(3) > . . . The probability

distribution over variables c(m) is given by

c(1) ∼ Beta(α, 1), (4.5)

and

p(c(m)|c(m−1)) ∝ (c(m))α−1
I(0 ≤ c(m) ≤ c(m−1)), (4.6)

being I(·) the indicator function [117]. With respect to variables b(m), i.e., variables

bm reordered accordingly to decreasing values of am, they are distributed as

b(m) ∼ Beta(β0, β1). (4.7)

The MIBP allows for a potentially infinite number of parallel FSMs in our

IFFSM. Eq. 4.1 and the MIBP prior over S ensure that only a finite subset of the

FSMs become active during the observation period. In the IFFSM model, each

input symbol xtm does not only influence the observation yt at time instant t, but

it has also an impact on the future L−1 observations, yt+1, . . . ,yt+L−1. Therefore,

the likelihood function for yt depends on the last L input symbols of all FSMs,

yielding

p(yt|X) = p(yt|{xtm, x(t−1)m, . . . , x(t−L+1)m}∞m=1), (4.8)

with X being the T ×M matrix that contains all symbols xtm. In our model, we

assume dummy input symbols xtm = 0 for t ≤ 0.

The resulting IFFSM model, particularized for L = 2, is shown in Figure 4.1.

Note that this model can be equivalently represented as a single HMM, as shown

in Figure 4.2, using the extended states s
(e)
tm, with

s
(e)
tm =

[
xtm, stm, x(t−1)m, s(t−1)m, . . . , x(t−L+1)m, s(t−L+1)m

]
. (4.9)

However, we maintain the representation in Figure 4.1 because it allows us to

derive an efficient inference algorithm.

4.3 Generalization of the Model

The model in Section 4.2 can be straightforwardly generalized in order to capture

additional properties of the underlying structure. We consider two ways of gener-
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α am

s0m s1m sTm. . .

β0, β1 bm

x0m x1m xTmx2m x3m . . .

s2m s3m

. . .y1 y2 y3 yT

m = 1, . . . ,∞

Figure 4.1: Graphical model of the IFFSM with L = 2.

α am

. . .

β0, β1 bm

. . .y1 y2 y3 yT

s
(e)
1ms

(e)
0m s

(e)
2m s

(e)
3m s

(e)
Tm

m = 1, . . . ,∞

Figure 4.2: Equivalent graphical model for the IFFSM.

alization that our inference algorithm in Section 4.5 can handle with minor or no

modifications.

First, we have assumed so far that the input symbols xtm belong to a finite set

X , therefore yielding |X |L possible states in each parallel chain. However, we can

also consider that the set X is either countably or uncountably infinite, implying

that the input symbols xtm are not necessarily discrete-valued. The resulting

model is no longer an IFFSM, but an infinite factorial model in which the hidden

variables affect not only the current observation, but also the future ones.

Second, regarding the temporal evolution of the input symbols xtm, Eq. 4.1

implies that xtm is independent of x(t−1)m given stm, which may constitute a limi-

tation in some applications. We can easily extend our model by letting xtm depend

on both stm and x(t−1)m, i.e., by removing the constraint that p(xtm|stm, x(t−1)m)

does not depend on x(t−1)m. The corresponding graphical model that considers

this generalization is depicted in Figure 4.3. Note that this model can still be rep-

resented as shown in Figure 4.2, but Figure 4.3 explicitly shows the relationships
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α am

s0m s1m sTm. . .

β0, β1 bm

x0m x1m xTmx2m x3m . . .

s2m s3m

. . .y1 y2 y3 yT

m = 1, . . . ,∞

Figure 4.3: Graphical model of the general infinite factorial model with L = 2.

among the hidden variables of the model.

Our model in Figure 4.3 generalizes some other models that have been pro-

pose in the literature. We can obtain some particularizations as detailed below

(Table 4.1 summarizes this information):

• We trivially recover the IFFSM model in Section 4.2 if we let X be a finite

set and we let p(xtm|stm, x(t−1)m) = p(xtm|stm).

• We recover the IFHMM in [130] by choosing X = {0, 1} (or, equivalently,

A = {1}), xtm = stm and L = 1.

• We obtain a non-binary IFHMM if we assume that X is a discrete set with

cardinality greater than 2 and that L = 1. This model is not equivalent to

the non-binary IFHMM described in Chapter 3 due to the transition prob-

ability from active to inactive. In the IFHMM in Chapter 3, the transition

probability from active to inactive depends on the current (active) state,

while under the model in Figure 4.3, this probability is given by bm, which

does not depend on xtm. In this sense, the non-binary IFHMM in Chapter 3

can capture some additional information about the hidden states.

• We obtain the independent component analysis (ICA) IFHMM model for

source separation proposed in [130] if we set X = R, we let xtm be Gaussian

distributed and we also choose p(xtm|stm, x(t−1)m) = p(xtm|stm) and L = 1.

• We obtain an “infinite factorial linear dynamical system” [74] with on/off
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Model X p(xtm|stm = 1, x(t−1)m) L

IFFSM A⋃{0} U(A) ∈ N

Binary IFHMM {0, 1} δ1(xtm) 1

Non-binary IFHMM {0, 1, . . . , Q − 1} am
jk = p(xtm = k|x(t−1)m = j) 1

ICA IFHMM R N (xtm|μ, σ2) 1

Infinite factorial linear dynamical system R N (xtm|bx(t−1)m, σ2) ∈ N

Table 4.1: Particularizations of the general infinite factorial model.

states by assuming that the variables xtm are Gaussian distributed given

x(t−1)m, X = R and L = 1. Moreover, if we let L be greater than 1, the

resulting likelihood takes into account, e.g., the echo that may be present in

the observed sequence.

4.4 A Gaussian Observation Model

The IFFSM model in Section 4.2 (and also its extension in Section 4.3) can be

applied as a building block for a full probabilistic model, in which an arbitrarily

large set of parallel FSMs influence the observations. Note that there are two

conditions for the likelihood model to be valid as the number of FSMs M tends

to infinity: i) the likelihood must be invariant to permutations of the chains, and

ii) the distribution on yt cannot depend on any parameter of the m-th FSM if

xτm = 0 for τ = t− L+ 1, . . . , t.

In this section, we propose a Gaussian likelihood model specifically designed for

our motivating application of a digital communication system. The corresponding

graphical model is represented in Figure 4.4. In such system, we have access to T

observation vectors yt of length D, which we collect in a T × D matrix Y. The

received sequence is the linear combination of the symbols transmitted by all users

in the system, weighted by the channel coefficients. In particular, the observation

vector for each time instant can be written as

yt =
∞∑

m=1

L∑
�=1

h�
mx(t−�+1)m + nt, (4.10)

being xtm the input symbol of the m-th FSM at time instant t, h�
m the channel

coefficients or emission parameters, and nt the additive noise. Both h�
m and nt are
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α am

s0m s1m sTm. . .

β0, β1 bm

x0m x1m xTmx2m x3m . . .

s2m s3m

. . .y1 y2 y3 yT

m = 1, . . . ,∞

σ2
y

� = 1, . . . , L

σ2
� h�

m

σ2
H , λ, κ

Figure 4.4: Graphical Gaussian observation model for an IFFSM with L = 2.

vectors of length D.

In digital communication systems, the observations and the transmitted sym-

bols can be complex-valued. Hence, the finite set A may contain complex-valued

elements, and we need to consider a distribution over complex numbers for the ob-

servations yt. For that purpose, we place a circularly symmetric complex Gaussian

prior distribution1 with independent elements over the observation parameters h�
m

and the noise nt, of the form

nt|σ2y ∼ CN (0, σ2yID,0), (4.11)

and

h�
m|σ2� ∼ CN (0, σ2� ID,0), (4.12)

with ID being the identity matrix of size D. Given Eqs. 4.10 and 4.11, the proba-

bility distribution over yt is also a complex Gaussian, i.e.,

p(yt|{h�
m}, {xtm}, σ2y) = CN

( ∞∑
m=1

L∑
�=1

h�
mx(t−�+1)m, σ

2
yID,0

)
. (4.13)

Here, the noise variance σ2y is a hyperparameter of the model.

1The complex Gaussian distribution CN (μ,Γ,C) over a vector x of length D is given by

p(x) = 1

πD
√

det(Γ) det(P)
exp

⎧⎨
⎩− 1

2

[
(x− μ)H, (x− μ)�

]
⎡
⎣ Γ C

CH Γ�

⎤
⎦

−1 ⎡
⎣ x− μ

(x− μ)�

⎤
⎦
⎫⎬
⎭, where

P = Γ�−CHΓ−1C, (·)� denotes the complex conjugate, and (·)H denotes the conjugate transpose.

A circularly symmetric complex Gaussian distribution has μ = 0 and C = 0.
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Regarding the variances σ2� , we place an inverse-gamma prior over each variable

σ2� with mean E[σ2� ] = σ2He
−λ(�−1) and standard deviation Std[σ2� ] = κE[σ2� ], being

σ2H , λ and κ hyperparameters of the model. By defining ν� = (τ − 1)σ2He
−λ(�−1)

and τ = 2 + κ−2, the probability distribution over σ2� can be written as

p(σ2� |σ2H , λ, κ) =
(ν�)

τ

Γ(τ)

(
1

σ2�

)τ+1

exp

{
− ν�
σ2�

}
. (4.14)

The choice of this particular prior is based on the assumption that the channel

coefficients (or observation parameters) h�
m are a priori expected to decay with

the index �, since they model the multipath effect. However, if the data contains

enough evidence against this assumption, the posterior distribution will assign

high probability mass to larger values of σ2� .

4.5 Inference via Blocked Sampling

One of the main challenges in Bayesian probabilistic models is posterior inference,

which involves the computation of the posterior distribution over the hidden vari-

ables in the model given the data. In many models of interest, including BNP

models, the posterior distribution cannot be obtained in closed form, and an ap-

proximate inference algorithm is used instead.

In BNP time series models, inference is typically carried out using either

MCMC methods, such as Gibbs sampling [118, 45], beam sampling [129], or slice

sampling [130], or variational methods, with a mean field or a structured approx-

imation [48, 35]. In this section, we develop an inference algorithm that combines

two standard tools used for Monte Carlo statistical inference: MCMC and SMC.

For IFHMMs, typical approaches rely on a blocked Gibbs sampling algorithm

that alternates between sampling the global variables (number of parallel chains,

emission parameters and transition probabilities) conditioned on the current value

of matrices S and X, and sampling matrices S and X conditioned on the current

value of the global variables. More specifically, the algorithm proceeds iteratively

as follows:
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• Step 1: Add Mnew new inactive chains2 using an auxiliary slice variable

and a slice sampling method. In this step, the number of considered parallel

chains in increased from its initial value M+ to M ‡ = M+ +Mnew (we do

not update M+ because the new chains are in the all-zero state).

• Step 2: Sample the states stm and the input symbols xtm of all the consid-

ered chains (FSMs). Compact the representation by removing those chains

that remain inactive in the entire observation period, consequently updating

M+.

• Step 3: Sample the global variables, i.e., the transition probabilities am

and bm and the observation parameters h�
m for each active chain (m =

1, . . . ,M+), as well as the variances σ2� .

In Step 1, we follow the slice sampling scheme for inference in BNP models

based on the Indian buffet process (IBP) [117, 130], which effectively transforms

the model into a finite factorial model with M ‡ =M++Mnew parallel chains. We

first sample an auxiliary slice variable ϑ, which is distributed as

ϑ|S, {c(m)} ∼ Uniform (0, cmin) , (4.15)

where cmin = minm:∃t,stm �=0 c
(m), and we can replace the uniform distribution with

a more flexible scaled beta distribution. Then, starting from m = M+ + 1, new

variables c(m) are iteratively sampled from

p(c(m)|c(m−1)) ∝ exp

(
α

T∑
t=1

1

t
(1− c(m))t

)

× (c(m))α−1(1− c(m))T I(0 ≤ c(m) ≤ c(m−1)),

(4.16)

with c(M+) = cmin, until the resulting value is less than the slice variable, i.e.,

until c(m) < ϑ. Since Eq. 4.16 is log-concave in log c(m) [117], we can apply

adaptive rejection sampling (ARS) [49] in this step. Let Mnew be the number of

new variables c(m) that are greater than the slice variable. If Mnew > 0, then we

expand the representation of matrices S and X by addingMnew zero columns, and

2An inactive chain is an chain in which all elements stm = 0.
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we sample the corresponding per-chain global variables (i.e., h�
(m) and b

(m)) from

the prior, given in Eqs. 4.12 and 4.7, respectively.

Step 2 consists in sampling the elements of the matrices S and X given the

current value of the global variables. In this step, several approaches can be

taken. A näıve Gibbs sampling algorithm that sequentially samples each element

xtm (jointly with stm) is simple and computationally efficient, but it presents poor

mixing properties due to the strong couplings between successive time steps [115,

130]. An alternative to Gibbs sampling is blocked sampling, which sequentially

samples each parallel chain, conditioned on the current value of the remaining ones.

This approach requires a forward-filtering backward-sampling (FFBS) sweep in

each of the chains, yielding runtime complexity of O(TM ‡ · 22) in standard binary

IFHMMs, or O(TM ‡|X |2) in memoryless (L = 1) FSMs. However, for FSMs with

L > 1, the complexity of the FFBS sweeps increases to O(TM ‡|X |L+1). The

exponential dependency on L makes this step computationally intractable.

In order to address this problem, we propose to jointly sample matrices S and

X using particle Gibbs with ancestor sampling (PGAS), an algorithm recently

developed for inference in state-space models and non-Markovian latent variable

models [83]. If P particles are used for the PGAS kernel, the runtime complexity

of the algorithm is O(PTM ‡L2) for the IFFSM model. Details on the PGAS

approach are given in Section 4.5.1.

Besides its non-exponential time complexity, the PGAS approach presents two

additional advantages when compared to the FFBS sweeps. First, it can be directly

applied to the general model in Section 4.3, regardless of X being a finite or infinite

set. Second, it has better mixing properties. The reason is that FFBS fixes all

but one chain at each step, therefore removing the contribution of these M ‡ − 1

chains from the observations. In contrast, the PGAS method allows sampling

simultaneously the M ‡ chains or FSMs for each time instant t = 1, . . . , T , which

avoids getting trapped in local modes of the posterior in which a chain is splitted

into several ones.

After running PGAS, we remove those chains that remain inactive in the whole
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observation period. This implies removing some columns of S and X as well as

the corresponding variables h�
m, am and bm, and updating M+.

In Step 3, we sample the global variables in the model from their complete

conditional distributions.3 The complete conditional distribution over the transi-

tion probabilities am under the semi-ordered stick-breaking construction [117] is

given by

p(am|S) = Beta (1 + nm00, n
m
01) , (4.17)

being nmij the number of transitions from state i to state j in the m-th column of

S. For the transition probabilities from active to inactive bm, we have

p(bm|S) = Beta (β0 + nm10, β1 + nm11) . (4.18)

The complete conditional distributions over the emission parameters h�
m for all

chainsm = 1, . . . ,M+ and for all taps � = 1, . . . , L are given by complex Gaussians

of the form

p(h(d)|Y,X, {σ2� }) = CN
(
μ
(d)
POST,ΓPOST,0

)
, (4.19)

for d = 1, . . . , D. Here, we have defined for notational simplicity h(d) as the vector

that contains the d-th component of vectors h�
m for all m and �, as given by

h(d) =
[
(h1

1)d, . . . , (h
L
1 )d, (h

1
2)d, . . . , (h

L
2 )d, . . . , (h

1
M+

)d, . . . , (h
L
M+

)d

]�
. (4.20)

By additionally defining the extended matrix Xext =
[
X(1), . . . ,X(M+)

]
of size

T × LM+, with

X(m) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1m 0 0 · · · 0

x2m x1m 0 · · · 0

x3m x2m x1m · · · 0
...

...
...

. . .
...

xTm x(T−1)m x(T−2)m · · · x(T−L+1)m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.21)

Σ as the L×L diagonal matrix containing all variables σ2� , and y(d) as the T -vector

containing the d-th element of each observation yt, the posterior parameters in

3The complete conditional is the conditional distribution of a hidden variable, given the ob-

servations and the rest of hidden variables.
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Eq. 4.19 are given by

ΓPOST =

(
(IM+ ⊗Σ)−1 +

1

σ2y
(Xext)HXext

)−1

(4.22)

and

μ
(d)
POST =

1

σ2y
ΓPOST(X

ext)Hy(d), (4.23)

being (·)H the conjugate transpose, ‘⊗’ the Kronecker product, and IM+ the iden-

tity matrix of size M+.

Regarding the complete conditionals of the variances σ2� , they are given by

inverse-gamma distributions of the form

p(σ2� |{h�
m}M+

m=1) ∝
(

1

σ2�

)1+τ+DM+

exp

{
−ν� +

∑M+

m=1 ||h�
m||22

σ2�

}
, (4.24)

being ||h�
m||22 the squared L2-norm of the complex vector h�

m, τ = 2 + κ−2 and

ν� = (τ − 1)σ2He
−λ(�−1).

4.5.1 Particle Gibbs with Ancestor Sampling

We rely on PGAS [83] for Step 2 of our inference algorithm, in order to obtain

a sample of the matrices S and X. PGAS is a method within the framework of

particle MCMC [9], which is a systematic way of combining SMC and MCMC to

take advantage of the strengths of both techniques.

PGAS builds on the particle Gibbs sampler in [9], in which a Markov kernel is

constructed by running an SMC sampler in which one particle trajectory is set de-

terministically to a reference trajectory that is specified a priori. After a complete

run of the SMC algorithm, a new reference trajectory is obtained by selecting one

of the particle trajectories with probabilities given by their importance weights.

In this way, the resulting Markov kernel leaves its target distribution invariant,

regardless of the number of particles used in the SMC algorithm. In order to

improve the mixing properties of the particle Gibbs sampler by alleviating the so-

called path degeneracy effect, a method denoted as particle Gibbs with backward

simulation can be applied [139, 84]. PGAS has the same purpose as particle Gibbs
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Figure 4.5: Example of the connection of particles in PGAS. We represent P = 3 particles

xi
τ for τ = {t − 1, t, t + 1}. The index aiτ denotes the ancestor particle of xi

τ . It can be

seen that, e.g., the trajectories x1
1:t+1 and x2

1:t+1 only differ at time instant t+ 1.

with backward simulation, but it is not restricted to state-space models, and can

also be applied to non-Markovian latent variable models.

In this section, we introduce the required formulation and describe the PGAS

algorithm for application under our general model in Section 4.3. We aim at

providing the necessary equations and algorithm steps, but we refer to [83] for

further details on the theoretical justification of the algorithm and rigorous analysis

of its properties.

In PGAS, we assume a set of P particles for each time instant t, each repre-

senting the hidden states {xtm}M‡
m=1 (hence, they also represent {stm}M‡

m=1). We

denote the state of the i-th particle at time t by the vector xi
t of length M

‡. We

also introduce the ancestor indexes ait ∈ {1, . . . , P} in order to denote the particle

that precedes the i-th particle at time t. That is, ait corresponds to the index of

the ancestor particle of xi
t. Let also xi

1:t be the ancestral path of particle xi
t, i.e.,

the particle trajectory that is recursively defined as

xi
1:t = (x

ait
1:t−1,x

i
t). (4.25)

Figure 4.5 shows an example to clarify the notation.

PGAS also requires an input reference particle that is held fixed. This reference

particle is given by the output of the previous iteration of the PGAS algorithm,

possibly extended to account for new inactive chains. For each time instant t, we

denote this particle as x′
t (this is also a vector of lengthM ‡). Hence, P−1 particles

are sampled during the algorithm execution, but the P -th particle is kept fixed,
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with xP
t = x′

t for all t. While the particle xP
t is fixed, the corresponding ancestor

indexes aPt are not fixed, but they are randomly drawn instead.

We need to specify how particles are propagated across time, i.e., we need to

choose a distribution rt(xt|xat
1:t−1). For simplicity, we assume that

rt(xt|xat
1:t−1) = p(xt|xat

t−1) =
M‡∏
m=1

p(xtm|stm, xat(t−1)m)p(stm|sat(t−1)m), (4.26)

i.e., that particles are propagated using the transition model in Figure 4.3 in a

simple bootstrap particle filter manner.4 Note that, under the IFFSM model

in Section 4.2, Eq. 4.26 can be further simplified, since p(xtm|stm, x(t−1)m) =

p(xtm|stm).

The resulting procedure is summarized in Algorithm 1. The algorithm involves,

for each time instant t, resampling the particles at time t − 1 according to their

importance weights wi
t−1, and then propagating the selected particles from instant

t− 1 to t according to the distribution rt(xt|xat
1:t−1). The reference particle xP

t is

held fixed, but the corresponding ancestor indexes aPt are sampled at each time

instant t according to some weights w̃i
t−1|T .

We now focus on the computation on the importance weights wi
t and the an-

cestor weights w̃i
t−1|T . For the former, the particles are weighted according to

wi
t =Wt(x

i
1:t), where

Wt(x1:t) =
p(x1:t|y1:t)

p(x1:t−1|y1:t−1)rt(xt|x1:t−1)

∝ p(y1:t|x1:t)p(x1:t)

p(y1:t−1|x1:t−1)p(x1:t−1)p(xt|xt−1)

= p(yt|xt−L+1:t),

(4.27)

being yτ1:τ2 the set of observations {yt}τ2t=τ1
. We have applied (4.26) to derive this

expression. Eq. 4.27 implies that, in order to obtain the importance weights, it

suffices to evaluate the likelihood at time t.

The weights w̃i
t−1|T used to draw a random ancestor for the reference particle

4For clarity, in this section we remove the dependency on the global variables from the notation.
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are given by

w̃i
t−1|T = wi

t−1

p(xi
1:t−1,x

′
t:T |y1:T )

p(xi
1:t−1|y1:t−1)

∝ wi
t−1

p(y1:T |xi
1:t−1,x

′
t:T )p(x

i
1:t−1,x

′
t:T )

p(y1:t−1|xi
1:t−1)p(x

i
1:t−1)

∝ wi
t−1p(x

′
t|xi

t−1)
t+L−2∏
τ=t

p(yτ |xi
1:t−1,x

′
t:T ).

(4.28)

In order to obtain this expression, we have made use of the Markov property of the

model, and we have also ignored factors that do not depend on the particle index i.

Note that the transition probability p(xt|xt−1) factorizes across the parallel chains

of the factorial model, as shown in (4.26). We also note that, for memoryless

models (i.e., L = 1), Eq. 4.28 can be simplified, since the product in the last term

is not present and, therefore, w̃i
t−1|T ∝ wi

t−1p(x
′
t|xi

t−1). For L > 1, the computation

of the weights w̃i
t−1|T in (4.28) for i = 1, . . . , P has computational time complexity

scaling as O(PM ‡L2). Since this computation needs to be performed for each

time instant (and this is the most expensive calculation), the resulting algorithm

complexity scales as O(PTM ‡L2).

4.6 Comparison of FFBS and PGAS

In this section, we design a simple experiment to compare the behavior of FFBS

and PGAS when applied in Step 2 of our inference algorithm in Section 4.5. We

show that the FFBS approach is more likely to split one underlying chain into

several ones, since it estimates the parallel chains in a sequential manner, condi-

tioned on the remaining ones. In contrast, the PGAS kernel allows sampling all

parallel chains simultaneously for each time instant, which alleviates this problem.

This limitation of FFBS for FHMMs has already been addressed in [122], where

an alternative sampling procedure with better mixing properties is proposed.

For this comparison, we generate T = 500 10-dimensional observations using 5

underlying parallel chains, each becoming active at a random initial time instant,

uniformly sampled in the set {1, 2, . . . , 250}. After activation, each chain contin-

ues in the active state for 250 consecutive time instants, with the symbols xtm
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Algorithm 1 Particle Gibbs with ancestor sampling

Input : Reference particle x′
t for t = 1, . . . , T , and global variables (transition

probabilities and emission parameters)

Output: Sample xout
1:T from the PGAS Markov kernel

1 Draw xi
1 ∼ r1(x1) for i = 1, . . . , P − 1 (Eq. 4.26)

2 Set xP
1 = x′

1

3 Compute the weights wi
1 =W1(x

i
1) for i = 1, . . . , P (Eq. 4.27)

4 for t = 2, . . . , T do

// Resampling and ancestor sampling

5 Draw ait ∼ Categorical(w1
t−1, . . . , w

P
t−1) for i = 1, . . . , P − 1

6 Compute w̃i
t−1|T for i = 1, . . . , P (Eq. 4.28)

7 Draw aPt ∼ Categorical(w̃1
t−1|T , . . . , w̃

P
t−1|T )

// Particle propagation

8 Draw xi
t ∼ rt(xt|xait

1:t−1) for i = 1, . . . , P − 1 (Eq. 4.26)

9 Set xP
t = x′

t

10 Set xi
1:t = (x

ait
1:t−1,x

i
t) for i = 1, . . . , P (Eq. 4.25)

// Weighting

11 Compute the weights wi
t =Wt(x

i
1:t) for i = 1, . . . , P (Eq. 4.27)

12 Draw k ∼ Categorical(w1
T , . . . , w

P
T )

13 return xout
1:T = xk

1:T

being uniformly sampled from the set A =
{

1+
√−1√
2
, 1−

√−1√
2
, −1+

√−1√
2

, −1−√−1√
2

}
,

and becoming inactive afterwards. The coefficients h�
m are drawn from their prior

in Eq. 4.12, assuming σ2� = 1 for all �. The observations are generated according

to the model in Eq. 4.10, with noise variance σ2y = 1.

We set the hyperparameters as σ2H = 1, λ = 0.5, κ = 1, β0 = 0.1 and β1 = 2,

and initialize the sampler with σ2� = σ2He
−λ(�−1) andM+ = 0, starting the inference

procedure by proposing new parallel chains as detailed in Step 1 in Section 4.5. For

each value of the memory length L ∈ {1, 2, 3}, we run 50 independent simulations,

each with different data. For each simulation, we run 10, 000 iterations of both an
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Figure 4.6: Box-plot representation of the inferred number of chains for the FFBS and

PGAS approaches. We depict the 25-th, 50-th and 75-th percentiles in the standard

format, as well as the most extreme values. The mean value is represented with a circle,

and the true number of chains is represented with a green star.

FFBS-based algorithm and a PGAS-based algorithm (Steps 1 and 3 of the inference

procedure are common for both methods). We obtain the inferred symbols xtm as

the component-wise maximum a posteriori (MAP) solution, considering only the

last 2, 000 iterations of the sampler.

We show in Figure 4.6 the box-plot representation of the inferred number of

chains for the three considered values of L and for both inference methods. The

Figure shows that the FFBS approach is more likely to infer a larger value for the

number of chains. For the memoryless model (L = 1), 14 out of the 50 simulations

inferred the true number of chains under the PGAS method, being this quantity

13 for the FFBS approach. However, the effect of FFBS inferring more chains is

exacerbated for L = 2, where the FFBS-based algorithm finds the true number

of chains for only 1 out of the 50 simulations, while the PGAS-based algorithm

performs well for 40 cases. For this value of L, the FFBS and the PGAS methods

infer up to 11 and 7 chains, respectively, as shown in the Figure. For L = 3, the

FFBS method did not recover M+ = 5 for any of the 50 runs, while the PGAS

approach found the true number of chains in 31 cases.

This effect is due to the fact that the FFBS algorithm gets trapped in local

modes of the posterior, in which several of the inferred chains jointly explain a

single underlying chain. This is a consequence of the sequential sampling method,
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Figure 4.7: Box-plot representation of the recovered number of chains for the FFBS and

PGAS approaches (i.e., number of chains with SER < 0.1). We depict the 25-th, 50-th

and 75-th percentiles in the standard format, as well as the most extreme values. The

mean value is represented with a circle, and the true number of chains is represented with

a green star.

which requires conditioning on all but one of the hidden chains, making it very

unlikely to merge two of them. In contrast, under the PGAS approach, each

particle is a vector containing the states of all chains for each time instant, which

allows simultaneously estimating all chains when running the inference algorithm.

In order to show that the extra chains are not just spurious chains that become

active for a few time instants, we also include Figure 4.7, which shows a box-plot

representation of the number of recovered chains. For each independent run, we

compute the number of recovered chains as the number of inferred chains which

exhibit a symbol error rate (SER) below an arbitrary threshold of 0.1. As the

memory length L increases, the FFBS-based algorithm gets more easily trapped

in a local mode of the posterior in which one chain has been split into several ones

and, hence, the number of recovered chains with error rate below 0.1 decreases.
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5
Power Disaggregation

5.1 Introduction

The power disaggregation problem consists in, given the aggregated whole-home

power consumption signal, estimating both the number of active devices in the

house and the power draw of each individual device. Accurate estimation of the

specific device-level power consumption avoids instrumenting every individual de-

vice with monitoring equipment, and the obtained information can be used to

significantly improve the power efficiency of consumers [31, 96]. Furthermore, it

allows providing recommendations about their relative efficiency (e.g., a household

that consumes more power in heating than the average might need better isolation)

and detecting faulty equipment.

This problem has been recently addressed in [76] by applying a factorial hid-

den semi-Markov model (HSMM) and using an expectation maximization (EM)
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algorithm, and in [71] using an explicit-duration HDP-HSMM. In both works, the

number of devices in the house is assumed to be known. Furthermore, the former

uses training data to learn the device models, and the latter includes prior knowl-

edge to model each specific device and ensures that all the devices are switched

on at least once in the time series.

All previous works in the literature assume a fixed number of devices, and

specific prior information about each individual device. This may represent a

limitation in houses that do not fit these assumptions. For instance, the number

of active devices in a house might differ by orders of magnitude, and the states

of devices may also be different. Our method is fully unsupervised, as it does not

use any training data to build device-specific models, and it assumes an unknown

number of devices. We believe this is the more general approach to address the

power disaggregation problem, because, if we want to apply this algorithm widely,

it is unrealistic to think that we can obtain training information for all households

and we should not expect to have a model for each potential device plugged in

each home in each city.

In this chapter, we apply Bayesian nonparametric (BNP) models to the power

disaggregation problem in order to infer both the power draws of devices and

the number of active devices. We use the non-binary infinite factorial hidden

Markov model (IFHMM) and the infinite factorial unbounded-state hidden Markov

model (IFUHMM), and compare them with the binary IFHMM in [130] and with

a standard (parametric) factorial hidden Markov model (FHMM).

In our experiments with real power disaggregation datasets, we show that the

binary IFHMM is capable of fitting the observed sequence, as well as our IFUHMM

does, but the binary parallel chains do not have direct interpretation as individual

devices and we would need to combine several of them to describe each device,

which leads to a complex combinatorial problem in real life scenarios with a large

number of causes with many states. Due to the more flexible unbounded prior,

our IFUHMM is more generally applicable.
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5.2 Experimental Considerations

In Section 5.3, we first design a small scale experiment in which we evaluate the

mixing properties of the Markov chain Monte Carlo (MCMC) inference algorithm

described in Section 3.5.1, and compare the results with the binary IFHMM in

[130] (i.e., the IFHMM with Q = 2 states) and with the standard FHMM. We

then evaluate the performance of the IFUHMM in solving the power disaggregation

problem under more realistic scenarios (Section 5.4).

Databases. We validate the performance of the proposed IFUHMM applied to the

power disaggregation problem in two different real databases, which are described

below.

• The Reference Energy Disaggregation Dataset (REDD) [79] monitors several

homes at low and high frequency for large periods of time. We consider 24-

hour segments across 5 houses and choose the low-frequency power consump-

tion of 6 devices: refrigerator (R), lighting (L), dishwasher (D), microwave

(M), washer-dryer (W) and furnace (F). We apply a 30-second median filter

and scale the data dividing by 100.

• The Almanac of Minutely Power (AMP) Dataset [87] records the power con-

sumption of a single house using 21 sub-meters for an entire year (from April

1st, 2012 to March 31st, 2013) at one minute read intervals. We consider two

24-hours segments and choose 8 devices: basement plugs and lights (BME),

clothes dryer (CDE), clothes washer (DWE), kitchen fridge (FGE), heat

pump (HPE), home office (OFE), entertainment-TV, PVR, AMP (TVE)

and wall oven (WOE). We scale the data by a factor of 1/100.

Metric. In order to evaluate the performance of the different algorithms, we

compute the mean accuracy of the estimated consumption of each device, which

is measured as

acc = 1−
∑T

t=1

∑M
m=1 |y(m)

t − ŷ
(m)
t |

2
∑T

t=1

∑M
m=1 y

(m)
t

, (5.1)
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where y
(m)
t and ŷ

(m)
t are, respectively, the true and the estimated power consump-

tion by device m at time t [79]. If the inferred number of devices M+ is smaller

than the true number of devices, we use ŷ
(m)
t = 0 for the undetected devices. If

M+ is larger than the true number of devices, we group all the extra chains as

an “unknown” device and use y
(unk)
t = 0 to compute the accuracy. In order to

compute the accuracy, as our algorithm is unsupervised, we need to assign each

estimated chain to a device. We do that by sorting the estimated chains so that

the accuracy is maximized.

Experimental setup. In our experiments, we consider the Gaussian observation

Model #1 in Section 3.3 and, furthermore, the FHMM considers that am0 follows

the prior distribution in Eq. 3.6. We set the hyperparameters to α = 1, γ = 1,

β0 = β = 1, σ20 = 0, σ2φ = 10, σ2y = 0.5, μ0 = 15 and λ = 1. For the IFUHMM, we

speed up the inference by considering the split/merge and birth/death moves once

every several iterations. We average the results provided by 20 independent runs of

the samplers (or the variational algorithm), with different random initializations.

For the variational inference algorithm, we estimate the states and observation

parameters as ŝtm = argmaxk q(stm = k) and Φ̂k = Lk.

5.3 Small Scale Experiment

In order to evaluate the mixing properties of the inference algorithm in Sec-

tion 3.5.1, we aggregate the power signals of four devices of the AMP database

(BME, CDE, DWE and HPE) for a 24-hour segment. Then, we apply our IFUHMM,

the binary IFHMM, and the FHMM (with M = 4 chains and Q = 4 states). Our

objective in this section is to analyze how increasing the flexibility of the model, by

including the number of chains (for the IFHMM) and also the number of states (for

the IFUHMM) as latent variables, changes the mixing properties of the inference

algorithm.

In order to evaluate the mixing properties of the MCMC-based inference al-

gorithms for the three models, we need to define a function that depends on all

100



CHAPTER 5. POWER DISAGGREGATION

(a)

IFUHMM IFHMM FHMM
100

101

102

103

104

N
um

be
r o

f l
ag

s

(b)

Figure 5.1: Autocorrelation plots for the small scale experiment. (a) Autocorrelation plot

for the IFUHMM. (b) Number of samples for the autocorrelation to fall below 0.1.

the latent variables in the model, and that can be applied for any given number

of states and chains. We choose the accuracy defined in Eq. 5.1 and compute it

for the last 10, 000 samples of each algorithm.

We show in Figure 5.1a the autocorrelation plot for the IFUHMM. The thick

line corresponds to the mean of the autocorrelation plot for the 20 samplers, while

the shaded area covers twice the standard deviation. In this figure, we observe

that (on average) the autocorrelation falls below a threshold of 0.1 after a few

tens of iterations. Moreover, we plot in Figure 5.1b how many samples of the

Markov chain under each model we should collect until the autocorrelation falls

below 0.1. We show the median and the 10th, 25th, 75th and 90th percentiles in

the standard box-plot format. For 50% of the cases, the IFUHMM needs only a

few tens of samples, while for the remaining 50% of the simulations it needs at

most a few hundreds of iterations. Although the median number of samples for

the IFHMM is the smallest one (below 10), it needs hundreds or even thousands

of samples for the remaining 50% of the simulations. Finally, the FHMM presents

the poorest mixing properties, needing thousands of samples for 75% of the cases.

Now, we evaluate the goodness of fit of the three models. To this end, we show

in Figure 5.2 the best (among the 20 samplers) achieved log-likelihood for the three

models. In accordance with Figure 5.1b, the IFUHMM converges faster than the

IFHMM and the FHMM algorithms. Furthermore, the IFUHMM presents the
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Figure 5.2: Evolution of the log-likelihood for the small scale experiment.

highest log-likelihood score, being the IFHMM almost as good. In addition, we

show in Table 5.1 the mean and standard deviation (over the 20 samplers) of the

accuracy provided by the three approaches, obtained after averaging the accuracy

values of the last 10, 000 samples. We can see that although both the IFUHMM

and the IFHMM reach similar log-likelihood values (i.e., they can explain the

observed data), in terms of accuracy, the IFUHMM is significantly better than the

IFHMM.

To better understand this result, we depict in Figure 5.3a the histogram for the

number of inferred chains under the IFUHMM and the IFHMM, and in Figure 5.3b

the histogram for the inferred number of states under the IFUHMM. These his-

tograms were obtained considering the last 10, 000 samples of the 20 samplers. We

observe that the IFUHMM infers four chains 60% of the times, which corresponds

to the true number of devices, also inferring that the number of states of the de-

vices is Q = 3. The binary IFHMM mostly infers between M+ = 5 and M+ = 7

chains.

This explains why, although the IFUHMM and the IFHMM present similar

log-likelihood scores in Figure 5.2, the IFUHMM provides better accuracy. While

the IFUHMM is recovering the underlying process that generates the total power

consumption (allowing us to interpret each inferred chain as a device), the IFHMM

needs to aggregate several of the inferred chains to construct the power consump-

tion of each device, leading to a deterioration in the resulting accuracy. We could

improve the accuracy of the IFHMM by combining several chains to fit each device.

However, it would lead to a complex combinatorial problem in real life scenarios
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FHMM (Q = 4, M = 4) 0.47± 0.06

IFHMM (Q = 2) 0.67± 0.10

IFUHMM 0.79± 0.08

Table 5.1: Accuracy for the small scale experiment.
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Figure 5.3: Histograms for the small scale experiment. (a) Histogram of the inferred values

of M+. (b) Histogram of the inferred values of Q under the IFUHMM.

with a large number of devices with many states. Moreover, in a real scenario in

which we did not have the ground truth, this solution for the poor accuracy of the

IFHMM would not help to know which devices consume most. This is a typical

example in which we have two nonparametric models that can explain the observed

data similarly well, but while one of them (the IFUHMM) is recovering the latent

structure of the data, the other one (the IFHMM) is just using its flexibility to

explain the data but it does not have etiological interpretation.

Regarding the FHMM, the sampler gets trapped in a local optima. This ex-

plains its low log-likelihood and accuracy, even though it has a priori knowledge

of the true number of devices.

5.4 Experiments with AMP and REDD Datasets

Now, we focus on solving more realistic power disaggregation problems. For the

AMP database, we consider two 24-hour segments and the 8 devices detailed above.

For the REDD database, we consider a 24-hour segment across 5 houses, with the

6 devices mentioned above. For both databases, we compare the results provided
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Figure 5.4: Histogram of the inferred values of Q under the IFUHMM.

by:

• A standard FHMM with Q = 4 states and perfect knowledge of the selected

number of devices.

• The IFHMM with Q = 4 states in Section 3.2.2, using the variational algo-

rithm in Section 3.4.3 truncated to M = 15 Markov chains (Var-Q4).

• The IFHMM with Q = 4 states in Section 3.2.2, using the blocked sampling

algorithm detailed in Section 3.4.2 (IFHMM-Q4).

• The proposed IFUHMM in Section 3.5.

As discussed in the previous section, the binary IFHMM tends to overestimate the

number of devices, sometimes growing above what our code can handle, specially

when computing the accuracy. As a consequence, we do not report the results with

the binary IFHMM, as it would lead to similar conclusions than in the previous

section.

Figure 5.4 shows the histograms of the inferred number of states obtained

with the IFUHMM. This figure shows that the required number of states in both

databases is between three and five. This is the reason why we set the number of

states for the FHMM and the IFHMM to four, which in turn is a typical value of

the number of states considered in the literature [79]. We also show in Figure 5.5

the histograms of the inferred number of chains obtained under the IFUHMM.
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Figure 5.5: Histogram of the inferred values of M+ under the IFUHMM.

H1 H2 H3 H4 H5

FHMM (M = 6, Q = 4) 0.54 ± 0.05 0.67 ± 0.04 0.57 ± 0.06 0.45 ± 0.05 0.47 ± 0.04

Var-Q4 0.53 ± 0.04 0.60 ± 0.05 0.49 ± 0.06 0.43 ± 0.03 0.50 ± 0.05

IFHMM-Q4 0.57 ± 0.06 0.75 ± 0.02 0.53 ± 0.08 0.46 ± 0.07 0.57 ± 0.08

IFUHMM 0.64 ± 0.06 0.77 ± 0.03 0.58 ± 0.07 0.55 ± 0.07 0.61 ± 0.09

Table 5.2: Mean accuracy broken down by house (REDD database).

Tables 5.2 and 5.3 show the mean and standard deviation of the accuracy

provided by the four approaches. We observe that the IFUHMM presents the

largest accuracy for both databases and for all days and houses. The FHMM is as

good as the IFUHMM for house 3 of the REDD database, while for house 2 the

IFHMM-Q4 provides a similar accuracy to the IFUHMM. If we now compare the

two inference algorithms, the blocked sampler (IFHMM-Q4) and the variational

algorithm (Var-Q4), we can observe that the IFHMM-Q4 presents in general better

accuracy. Hence, although the variational algorithm runs faster than the blocked

sampler, it provides less accurate results, in accordance with typical results the

literature.

Day 1 Day 2

FHMM (M = 8, Q = 4) 0.36 ± 0.05 0.37 ± 0.05

Var-Q4 0.48 ± 0.06 0.51 ± 0.06

IFHMM-Q4 0.58 ± 0.11 0.58 ± 0.07

IFUHMM 0.69 ± 0.10 0.67 ± 0.11

Table 5.3: Mean accuracy broken down by day (AMP database).
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Finally, we depict in Figures 5.6 and 5.7 the true percentage of total power

consumed by each device, compared to the inferred percentages by each approach,

for both the REDD and AMP databases. Note that assuming a fixed number of

chains can be harmful if some of the devices are not switched on at least once

during the observation period (see, e.g., the second day of the AMP database in

Figure 5.7b). If we now compare these figures to the histograms of the inferred

number of chains in Figure 5.5, we can observe that the IFUHMM always captures

the most consuming devices (see, e.g., house 1 in Figure 5.5a, which shows that

the IFUHMM captures in more than 50% of the cases the true number of devices

in Figure 5.6a, where each device consumes more than 10% of the total power).

However, when dealing with less consuming devices (see, e.g., the washer-dryer

‘W’ of house 2 in Figure 5.6b), it tends to underestimate the number of devices,

assigning the power of these less consuming devices to other more consuming

devices.

From these results, we can conclude that the IFUHMM performs much better

because it can adapt the number of states and chains to fit the data. For dif-

ferent houses or days it may choose different number of components, while the

other methods stick to a value that might not be the best in some cases. Using

a nonparametric prior allows for the flexibility enough to change the number of

components for each scenario, providing a significant improvement over fixed mod-

els, even when they use the ground truth for the number of devices or a typical

number of states.

To sum up, our IFUHMM properly detects the active devices in the time

series, and indicates that, in general, 3 or 4 states are enough to describe the

behavior of the electrical devices. The IFUHMM does not make use of specific prior

information to model each individual device but, even so, it is able to recover the

number of devices and their powers draws accurately, providing a good estimation

of the percentage of the total power that each device consumes.
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(c) House 3.
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(d) House 4.
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(e) House 5.

Figure 5.6: Percentage of total power consumed by each device (REDD database).
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Figure 5.7: Percentage of total power consumed by each device (AMP database).
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5.5 Discussion

In order to show the proper performance of the proposed inference algorithms in

Chapter 3, we have focused on solving the power disaggregation problem on two

real datasets. In these experiments, we have found that the number of devices in

the power disaggregation problem, as well as their parameters, can be inferred in

a fully blind manner. We have also obtained that inferring the number of chains

and states in the FHMM, instead of fixing them a priori, improves performance.

Hence, the proposed IFUHMM appears as a more generally applicable model than

the existing binary IFHMM [130] to find the hidden canonical causes in a time

series.

One of the limitations of the proposed approach, when used over a significant

proportion of the power grid of any city, is to find the correspondence of each

estimated chain with a specific device, as the model is blind and we do not have

individual information for each house. There are two complementary ways around

it. First, we can use statistical properties from the inferred chains: if a chain is

active for minutes or hours consuming a significant amount of power, we could

believe it represents the lighting in that house; if a chain is only active for a few

minutes consuming much power, we can think of it as a microwave; if it were on

all day long with a periodic power signal it would be the fridge; and if it were only

used for around an hour a few days per week, it might be the washing machine.

Second, we can also augment our model by considering a hierarchy, in which the

chains are shared across the houses, but their activation is individually computed

for each house. In this way, we only need to infer some representative devices that

are shared among several houses.
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6
Blind Multiuser Channel Estimation

6.1 Introduction

One of the trends in wireless communication networks (WCNs) is the increase of

heterogeneity [4]. It is not new that users of WCNs are no longer only humans

talking, and the number of services and uses are booming. Machine-to-machine

(M2M) communications and the Internet of Things will shape the traffic in WCNs

in the years to come [1, 2, 3, 82]. While there are millions of M2M cellular devices

already using second, third and fourth generation cellular networks, the industry

expectation is that the number of devices will increase ten-fold in the coming years

[33].

M2M traffic, which also includes communication between a sensor/actuator and

a corresponding application server in the network, is distinct from consumer traffic,

which has been the main driver for the design of fourth generation communication
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systems. First, while current consumer traffic is characterized by small number of

long lived sessions, M2M traffic involves a large number of short-lived sessions, typ-

ically involving transactions of a few hundred bytes. The short payloads involved

in M2M communications make it highly inefficient to establish dedicated bear-

ers for data transmission. Therefore, in some cases it is better to transmit small

payloads in the random access request itself [27]. Second, a significant number of

battery powered devices are expected to be deployed at adverse locations such as

basements and tunnels, e.g., underground water monitors and traffic sensors, that

demand superior link budgets. Motivated by this need for increasing link budget

for M2M devices, transmission techniques that minimize the transmit power for

short burst communication are needed [34]. Third, the increasing number of M2M

devices requires new techniques on massive access management [123, 62]. Due to

these differences, there is a strong motivation to optimize WCNs specifically for

M2M communications [33].

The nature of M2M traffic leads to multiuser communication systems in which

a large numbers of users may aim to enter or leave the system (i.e., start or stop

transmitting) at any given time. In this context, we need a method that allows

the users to access the system in a way that the signaling overhead is reduced.

We advocate for Bayesian nonparametric (BNP) models, because they can adapt

to heterogeneous structures and can incorporate the available information about

M2M traffic in their prior.

In this chapter, we focus on the problem of determining the number of users

transmitting in a communication system jointly with the channel estimation and

the detection of the transmitted data. This problem appears in several specific

applications. For instance, in the context of wireless sensor networks, where the

communication nodes can often switch on and off asynchronously during opera-

tion. It also appears in massive multiple-input multiple-output (MIMO) multiuser

communication systems [65, 85], in which the base station has a very large number

of antennas and the mobile devices use a single antenna to communicate within the

network. In a code-division multiple access (CDMA) context, a set of terminals
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randomly access the channel to communicate with a common access point, which

receives the superposition of signals from the active terminals only [134].

Our proposed BNP models become flexible enough to account for any number

of transmitters, without the need of additional previous knowledge or bounds, due

to their nonparametric nature. Moreover, they allow us to solve the problem in a

fully unsupervised way, with no signaling data and, therefore, they are suitable for

applicability on the random access channel, in which more than one terminal may

decide to transmit data. We assume a potentially infinite number of transmit-

ters that might start transmitting short bursts of symbols at any time, such that

only a finite subset of the transmitters become active during any finite observation

period, while the remaining (infinite) transmitters remain in an idle state (i.e.,

they do not transmit). Our approach consists in modeling all transmitters as an

unbounded number of independent chains in an infinite factorial hidden Markov

model (IFHMM), in which each chain (transmitter) has high probability of remain-

ing in its current state (either active or idle). Under this model, the symbols sent

by each transmitter can be viewed as a hidden sequence that the receiver needs to

reconstruct from the received sequence. Our experimental results show that the

proposed approach efficiently solves user identification, channel estimation and

data detection in a jointly and fully blind way and, as a consequence, they shed

light on the suitability of BNPs applied to signal processing for communications.

We focus on two BNP models for this specific application. We first apply the

infinite factorial unbounded-state hidden Markov model (IFUHMM) in Chapter 3,

and then the infinite factorial finite state machine (IFFSM) in Chapter 4. The

advantages and limitations of both models are described throughout this Chapter.

6.2 MIMO Channel

When digital symbols are transmitted over frequency-selective channels, inter-

symbol interference (ISI) occurs, degrading the performance of the receiver in

terms of symbol detection error probability. To improve the performance, channel

estimation is applied to mitigate the effects of ISI. Before detecting the transmitted
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symbols, the channel state information (CSI) needs to be estimated at the receiver

by sending pilots. Blind channel estimation involves symbol detection without

the use of training data, which allows a more efficient communication as the total

bandwidth becomes available for the user’s data. This can be accomplished either

by joint symbol detection and channel estimation or without explicit estimation

of the CSI.

We address the problem of blind joint channel parameter and data estimation

in a multiuser single-input multiple-output (SIMO) communication channel, which

can be treated as a MIMO system. Specifically, we tackle the case where the num-

ber of transmitters is unknown. In a MIMO system with Nt transmitters and Nr

receiving antennas, each receiver observes a linear combination of all the transmit-

ted data sequences, under additive white Gaussian noise. More specifically, the

Nr-dimensional observation vector at time instant t is given by

yt =

Nt∑
m=1

L∑
�=1

h�
mx(t−�+1)m + nt, (6.1)

where xtm denotes the symbol transmitted by the m-th transmitter at time instant

t (it can also take value 0), h�
m is the Nr-vector that contains the channel coef-

ficients corresponding to tap � (with � ∈ {1, . . . , L}, being L the channel length

for all the transmitter-receiver pairs), and nt is the Nr-dimensional noise vector.

We consider that the noise nt is Gaussian distributed with zero mean and co-

variance matrix σ2nINr , being INr the identity matrix of size Nr. We define the

signal-to-noise ratio (SNR) of the MIMO system as

SNR(dB) = −10 log(σ2n). (6.2)

In Figure 6.1, we show a general scheme of a flat MIMO channel.

Our goal is to infer both the number of transmitters and the transmitted sym-

bols (as well as the channel coefficients h�
m) using the observations collected during

T time steps, i.e., the observation vectors yt for t = 1, . . . , T . This is a general

scenario that represents several specific applications:

• In a CDMA context where a set of terminals wish to communicate with a

common access point (AP). Each terminal accesses the channel randomly,
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Figure 6.1: MIMO flat channel (L = 1) scheme. ‘Tx’ and ‘Rx’ are the abbreviations for

‘transmitter’ and ‘receiver’, respectively. Each channel coefficient hij � (h1
i )j represents

the gain between the i-th transmitter and the j-th receiving antenna.

and the AP receives the superposition of signals from the active terminals

only. The AP is interested in determining both the active terminals and the

transmitted symbols.

• In the context of wireless sensor networks, where the communication nodes

can often switch on and off asynchronously during operation, and a fusion

center collects the signals from a subset of them. Again, the fusion center

faces the problem of determining both the number of active sensors and the

symbols that each sensor transmits [143].

• In cooperation schemes, such as interference alignment [24], in which the

reuse of frequencies in nearby cells creates an interference channel between

the users and the base stations, being the number of users and the channel

they face unknown to the network.

• Massive MIMO [65] assumes that the base station has a very large number of

antennas and the mobile devices use a single antenna to communicate within

the network.

6.2.1 Related Work

A common assumption in frequency-selective MIMO channel estimation is that

the channel length is known [89]. As this is not true in general, the usual ap-

proach consists in overestimating it, consequentially increasing the complexity of
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the receiver, but also introducing a performance degradation that becomes more

relevant as the assumed channel length moves away from the actual one [132]. To

solve this limitation, many recent papers have addressed the problem of detecting

the channel length. In [135, 14, 39], different techniques are proposed to cope with

time-invariant channels, assuming either a unique channel length for the complete

system or one channel length per transmitting antenna. Similarly, time-varying

channels are considered in [105, 50], where a unique channel length for the full sys-

tem is assumed, or in [133], where one channel length per transmitting-receiving

antenna pair is considered. All of these works rely on the fact that the number of

transmitters is known and does not vary on time.

For a known channel length (and typically equal to one), several recent papers

addressing the problem of user activity and identification can be found in the

literature. In [141], a multiuser detector that separates the identification of the

active users from the detection of the symbols is proposed. In [55], users are allowed

to enter or leave the system only at the beginning of a data frame and, moreover,

only one user is allowed to enter at a given frame. The authors in [10] propose a

method to identify the number and identity of the active users in a direct-sequence

code-division multiple access (DS-CDMA) system, by using a set of training data.

Therefore, no symbol detection is performed in this stage. In [143], a Bayesian

approach, restricted to the case where the channel has been previously estimated,

is presented. A characteristic shared by all these methods is the assumption of

an explicit upper bound for the number of transmitters, which makes sense in a

DS-CDMA system but may represent a limitation in other scenarios.

All these works consider that either the channel length or the number of active

users is fixed and known. Our first contribution is the development of a BNP

model, namely, the IFUHMM, that can simultaneously address the channel length

estimation and the user activity detection without assuming any upper bounds for

these parameters. Our second contribution, namely, the IFFSM model, considers

a fixed value for the channel length (which can differ from L = 1), but solves many

of the limitations of the IFUHMM, as discussed below.
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6.3 Application of the IFUHMM

In this section, we apply the IFUHMM introduced in Chapter 3 to address the

problem of user activity detection and blind channel estimation. The symbols sent

by each transmitter can be viewed as a hidden sequence that the receiver needs

to reconstruct from the observations, naturally leading to a hidden Markov model

(HMM) [103]. Our approach consists on modeling all the transmitters as an infinite

number of independent chains in a factorial hidden Markov model (FHMM) [48].

However, the presence of ISI, which occurs when the channel length L in Eq. 6.1

is greater than 1, makes each observation depend not only on the current transmit-

ted symbols, but also on the previous ones. We address this issue by considering

for each transmitter the equivalent extended single HMM. Thus, in the IFUHMM,

each parallel chain represents a transmitter, and the state at each time instant in

the Markov chain corresponds to the state of the channel between that transmitter

and all the receivers, being the state of the channel determined by the set of the

last L symbols sent by the transmitter. Hence, the set of unknowns is composed of

the number of transmitters Nt, the symbols sent by each transmitter, the channel

length L and the channel coefficients h�
m. Due to its flexibility, our model becomes

flexible enough to account for any number of transmitters and channel length in

any communication scenario, without the need of additional previous knowledge

or bounds.

Under this model, the emission parameters (matrices Φq in Chapter 3) are

closely related to the channel coefficients. Specifically, each row of the matrix Φq

corresponds to the linear combination of the L channel coefficients corresponding

to a particular state q of the channel between one transmitter and all the receivers,

with q = 1, . . . , |X |L − 1. Note that the number of coefficients that are linearly

combined to obtain the matrices Φq coincides with the channel length L, which

is represented in this model by the number of states Q, such that Q = |X |L. If

we assume for simplicity a binary phase-shift keying (BPSK) constellation, i.e.,

each active symbol xtm = ±1 with equal probability, then the number of states is

Q = 3L. We should expect to recover Q = 2L+1 (one state to model the inactivity
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of the transmitter and 2L for the transmission of the BPSK symbols). Note that,

among the 3L possible states of the channel, we are ignoring the (3L−2L−1) states

corresponding to the transition from the activity to the inactivity (and vice-versa)

of a transmitter, since in the transmission of a burst of symbols, only two of these

transition states appear and, therefore, the inference algorithm will interpret them

as noise in most cases, instead of adding additional states.

6.3.1 Synthetic Data: Experiments and Results

We now generate a series of examples to illustrate the performance of the proposed

IFUHMM. To this end, we simulate a MIMO system for different scenarios, i.e.,

taking different values for the number of transmitters Nt, the number of receivers

Nr, the channel length L, and the SNR, which is defined in Eq. 6.2. In particular,

we consider four multiuser communication scenarios:

• Scenario A: Flat channel (L = 1) with two transmitters (Nt = 2) and Nr = 9

receivers, for different values of the SNR.

• Scenario B : Channel length L = 2, Nt = 2 and SNR = 0 dB, for varying

values of Nr.

• Scenario C : Channel length L = 2, Nt = 3 and SNR = 0 dB, for varying

values of Nr.

• Scenario D : Channel length L = 2, Nr = 25, and SNR = 0 dB, for varying

values of Nt.

To generate the observations, we assume a number of transmitters Nt, each

sending a burst of BPSK symbols during the observation period T = 150 (i.e.,

when the transmitter is active, each symbol xtm = ±1 with equal probability).

We assume that the transmitters sequentially become active with random initial

instant and burst duration, ensuring that the burst consists in the transmission

of at least 30 symbols since shorter bursts are unusual in a real communication

system. As we described in Section 6.2, the channel is assumed to be Rayleigh,
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i.e., the channel coefficients are Gaussian distributed with zero mean and unit

variance, and the observations are corrupted by Gaussian additive noise with zero

mean and variance σ2n. For the Scenarios A, B and C we run 500 independent

simulations for each combination of the SNR and Nr values, and for Scenario D

we run 100 simulations for each value of Nt.

We evaluate the performance of the model in terms of detection error proba-

bility (DEP), defined as the error probability of detecting both the true number

of transmitters and the true channel length. We account for an error either when

M+ differs from Nt or when Q is different than 2L + 1. Additionally, for those

cases where the true values for the number of transmitters and channel length are

recovered, we also evaluate the symbol error rate (SER), the activity detection

error rate (ADER), and the mean square error (MSE) of the channel coefficient

estimates. When computing the SER, an error is computed at time t whenever

the estimated symbol for a transmitter differs from the actual transmitted symbol,

given that the transmitter is active. Regarding the ADER, it is the probability of

detecting activity (inactivity) in a transmitter while that transmitter is actually

inactive (active). Additionally, if we denote by ĥ�
m the inferred channel coefficients,

we compute the MSE as

MSE =
1

LNtNr

∑
m,k,�

(
(h�

m)k − (ĥ�
m)k

)2
, (6.3)

where we estimate the coefficients using the maximum a posteriori (MAP) solution

of the matrices Φq.

We assume the Gaussian observation Model #2 in Section 3.3. For each exper-

iment, we run 50 iterations of our inference algorithm1 presented in Section 3.5.1,

using Gibbs sampling to infer the latent matrix S. Note that, although we have

adapted the observation model to properly fit MIMO systems, the proposed model

still suffers from several limitations because, although the number of possibles ac-

tive states in the channel is a power of two (i.e., 2L, ignoring the effects of the

inactive state), our model allows any integer value above 1. Then, we resort to an

1The hyperparameters are set to α = 1, γ = 1, β0 = 0.1, β = 10, λ = 1, τ = 1, ν = 0.1 and

ξ = 2σ2
n (the SNR is known at the receiver because it usually has a SNR estimator device).
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additional post-processing of the inference results to account for the prior knowl-

edge of the communication system. Specifically, we rearrange the elements of the

inferred matrix S, so that the inferred matrices Φq properly recover the channel

coefficients. We repeat the previous procedure, consisting on the 50 iterations of

the inference algorithm and post-processing, initialized with the results of the first

post-processing.

We compare our algorithm, denoted by IFUHMM in the plots, with two genie-

aided methods, in which the model parameters, i.e., number of transmitters and

channel parameters2 (including the channel length and coefficients), are known:

• We run the optimum BCJR algorithm [15], denoted by BCJR in the plots,

over a single HMM with a number of states equal to 3LNt , i.e., where the

constellation includes the symbol 0 (corresponding to the inactivity of a

transmitter). As the complexity of this algorithm increases exponentially

with L and Nt, it can be only run for Scenarios A and B.

• We run 1000 iterations of a forward-filtering backward-sampling (FFBS)

method [46, 25], sequentially applied in each chain of an FHMM after remov-

ing the contribution of the remaining chains in the observations. We assume

that the number of states in each Markov chain is 3L, i.e., the inactive symbol

is included in the constellation.

For the Scenario A, we show in Fig. 6.2 the DEP, the ADER, the SER and the

MSE as functions of the SNR. As expected, in all these plots we observe that the

performance of the proposed algorithm (initialized with Q = 2 states) improves

as the SNR increases. Note also that the performance of our algorithm is not far

from the optimum BCJR and is comparable to the FFBS approach. The DEP and

MSE are not reported for BCJR or FFBS algorithms, since the CSI is known in

both cases.

For the Scenario B, we show in Fig. 6.3 the DEP, the ADER, the SER and

the MSE as functions of the number of receivers Nr, initializing the algorithm

2The probability of a user remaining active or inactive is set to 0.8, being the two active

symbols equally probable.
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Figure 6.2: IFUHMM results for the Scenario A (L = 1, Nt = 2 and Nr = 9).
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Figure 6.3: IFUHMM results for the Scenario B (L = 2, Nt = 2 and SNR = 0 dB).

with Q = 6 states. Note that the behavior of our inference improves as the

number of receivers increases until Nr = 15, but for higher values of Nr the DEP

is around 10% and the ADER, the SER and the MSE also remain approximately

constant. As in this scenario there are more parameters to be inferred, the genie-

aided methods outperform our fully blind algorithm.

Let us analyze the performance of the inference algorithm in the Scenario C.

To this end, in Fig. 6.4 we plot the DEP, the ADER, the SER and the MSE as

functions of the number of receivers Nr for several initializations of the number of

states Q (denoted by Qini in the plots). The top plot shows that the DEP is much
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Figure 6.4: IFUHMM results for the Scenario C (L = 2, Nt = 3 and SNR = 0 dB).
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Figure 6.5: IFUHMM results for the Scenario D (L = 2, Nr = 25 and SNR = 0 dB).

higher when the algorithm is initialized with Qini = 2 states. This behavior is due

to the fact that the sampler gets trapped in a local optimum different from the

ground truth. In the cases in which Q is initialized to 4 or 6, we find similar results,

being Qini = 6 slightly better in terms of DEP. However, once the algorithm finds

the true values of both the number of transmitters and the number of states, the

performance of the model is similar regardless of the initialization.

Finally, for the Scenario D, we depict in Fig. 6.5 the DEP, the ADER, the

SER and the MSE as functions of the number of transmitters Nt (varying from

3 to 6), initializing the sampler with Q = 6 states. As the number of unknowns
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grows with the number of transmitters, our algorithm provides better results in

terms of DEP for Nt = 3. However, when the ground truth is recovered, we can

see that the ADER, the SER and the MSE do not highly depend on the number

of transmitters. The FFBS algorithm also exhibits this behavior.

Under Scenarios B, C and D, we observe in the SER and the ADER plots

the presence of an error floor (above 10−2) corresponding to the errors caused by

the active-to-inactive (and inactive-to-active) transitions, which are not taken into

account in our model. These error floors can be decreased by transmitting larger

bursts of symbols, i.e., they are less significant when the number of transitions

becomes negligible compared to the total number of transmitted bits.

6.4 Application of the IFFSM

In this section, we apply the IFFSM model in Chapter 4 to address the problem

of user activity detection and blind channel estimation. Similarly to the method-

ology above, we also adopt a BNP approach and consider a factorial model with

a potentially infinite number of hidden Markov chains, representing transmitters.

The key difference with respect to the IFUHMM is that we explicitly encode our

prior knowledge about the CSI through finite state machines (FSMs). Under this

model, each input xtm to the FSMs directly represents the symbol transmitted

by the m-th user at time instant t. Hence, the set of unknowns is composed of

the number of transmitters Nt, the symbols sent by each transmitter, the channel

coefficients h�
m, and the variances σ2� .

6.4.1 Synthetic Data: Experiments and Results

We run a battery of experiments to illustrate the performance of the proposed

IFFSM and the corresponding inference algorithm based on particle Gibbs with

ancestor sampling (PGAS) described in Chapter 4. To this end, we simulate differ-

ent scenarios of a multiuser communication system, considering different values for

the number of transmitters Nt, the number of receivers Nr, the SNR, the channel

memory L and the constellation order.
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To generate the observations, we assume that each of the Nt transmitters sends

a burst of symbols during the observation period of length T = 1000. Transmit-

ters use quadrature amplitude modulation (QAM) with cardinality |A|, being the

symbols in the constellation normalized to yield unit energy. We assume that each

transmitter becomes active at a random instant, uniformly sampled in the inter-

val [1, T/2], being the burst duration T/2. A Rayleigh additive white Gaussian

noise (AWGN) channel is assumed, i.e., the channel coefficients and the noise are

circularly symmetric complex Gaussian distributed with zero mean, being the co-

variances matrices σ2� I and σ
2
nI, respectively. We assume σ2� = 1 for all �, while σ2n

depends on the considered SNR, as given in Eq. 6.2.

We choose the following parameters to run our experiments: Nt = 5 trans-

mitters, Nr = 20 receiving antennas, |A| = 4 symbols in the constellation and

SNR = −3 dB. Using this base configuration, we vary one of the parameters while

holding the rest fixed. We report results with L = 1 (i.e., no memory), as well as

for higher values of L. The hyperparameters are set as σ2y = σ2n, σ
2
H = 1, λ = 0.5,

κ = 1, α = 1, β0 = 0.1 and β1 = 2. The choice of β0 and β1 is based on the fact

that we expect the active Markov chains to remain active and, therefore, the tran-

sition probabilities from active to inactive bm, which are Beta(β0, β1) distributed,

are a priori expected to be small.

Tempering procedure. We observed in our experiments that performance (in

terms of error rates) degrades with the increase of the SNR. This counter-intuitive

effect can be easily understood by taking into account the posterior distribution

and the inference procedure. When the SNR is high enough, the noise variance is

too small compared to the variance of the channel coefficients, which makes the

posterior get narrow around the true value of these coefficients. In other words,

the posterior uncertainty on the channel coefficients becomes small, and similarly

for the transmitted symbols. As a consequence, an inference algorithm based on

random exploration of the posterior needs more iterations to find the peaks of

the posterior distribution. In practice, we cannot afford such large number of

iterations.
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Instead, we propose a solution based on an heuristic to artificially widen the

posterior distribution. For that purpose, we add artificial noise to the observations,

consequently decreasing the SNR. From an “exploration versus exploitation” per-

spective, this method eases exploration of the posterior. At each iteration of the

algorithm, we slightly increase the SNR by reducing the variance of the artificial

noise, and we repeat this procedure until we reach the actual value of the SNR.

After that, we run additional iterations to favor exploitation.

In our experiments, we initialize the inference algorithm with SNR = −12 dB,

increasing this number by 0.002 dB at each iteration of the algorithm.

Evaluation. In a realistic digital communication system, the transmitted symbols

are protected with redundancy codes that allow detection and correction of trans-

mission errors at the receiver side (e.g., low density parity check codes). For that

reason, we assume that the receiver can detect and ignore those inferred trans-

mitters with high SER. For the recovered transmitters (those with SER below a

threshold of 0.1), we evaluate the performance in terms of the ADER, the SER,

and the MSE of the channel coefficient estimates. The ADER is the probability of

detecting activity (inactivity) in a transmitter while that transmitter is actually

inactive (active). When computing the SER, an error is computed at time t when-

ever the estimated symbol for a transmitter differs from the actual transmitted

symbol, considering that the transmitted symbol while inactive is xtm = 0. We

compute the MSE for each transmitter as

MSEm =
1

LNr

∑
k,�

∣∣∣∣∣∣(h�
m)k − (ĥ�

m)k

∣∣∣∣∣∣2 . (6.4)

We compare our approach (denoted by IFFSM in the plots) with three genie-

aided methods which have perfect knowledge of the true number of transmitters

and channel coefficients.3 In particular, we run: (i) The PGAS algorithm that

we use in Step 2 of our inference algorithm (G-PGAS); (ii) the FFBS algorithm

over the equivalent FHMM with Nt Markov chains and Q = |A⋃{0}|L states

(G-FFBS); and (iii) the optimum BCJR algorithm [15], over an equivalent single

3For the genie-aided methods, we use am = 0.998 and bm = 0.002.
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HMM with a number of states equal to |A⋃{0}|LNt (G-BCJR). Due to exponential

time complexity limitations, we only run the BCJR algorithm in scenarios with

|A⋃{0}|2LNt ≤ 106, and the FFBS in scenarios with |A⋃{0}|2L ≤ 106.

For each considered scenario, we run 50 independent simulations, each with dif-

ferent simulated data. We run 20, 000 iterations of our inference algorithm, finally

obtaining the inferred symbols x̂tm as the component-wise maximum a posteriori

(MAP) solution, only considering the last 2, 000 iterations of the sampler. The

estimates of the channel coefficients ĥ�
m are then obtained as the MAP solution,

conditioned on the data and the inferred symbols x̂tm. For the BCJR algorithm,

we obtain the symbol estimates according to the component-wise MAP solution

for each transmitter m and each instant t. For the genie-aided PGAS and FFBS

methods, we follow a similar approach by running the algorithms for 10, 000 it-

erations and considering the last 2, 000 samples to obtain the symbol estimates.

Unless otherwise specified, we use P = 3, 000 particles for the PGAS kernel.

Results for memoryless channels. We first evaluate the performance of our

model and inference procedure for memoryless channels, i.e., considering L = 1.

Figure 6.6 shows the results when the SNR varies from −12 dB (σ2n ≈ 15.85) to

0 dB (σ2n = 1). Specifically, we show the ADER, the SER, the MSE, a box-plot

representation4 of the inferred number of transmitters M+, and also a box-plot

representation of the number of recovered transmitters (i.e., how many transmit-

ters we recover with a SER below the threshold of 0.1). As expected, we obtain a

better performance as the SNR increases. For low values of the SNR, transmitters

are more likely to be masked by the noise and, therefore, we tend to recover a

lower number of transmitters. We also observe that the performance (in terms of

ADER and SER) of the proposed IFHMM reaches similar values to the methods

with perfect knowledge of the number of transmitters and channel coefficients.

4We depict the 25-th, 50-th and 75-th percentiles in the standard format, as well as the most

extreme values. Moreover, the mean value is represented with a pink circle, and the true number

of transmitters Nt is represented with a green star.
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Figure 6.6: IFFSM results for different SNRs (L = 1).

Figure 6.7 shows the results when the true number of transmitters Nt changes

from 2 to 6. Although a higher value of Nt implies a higher number of parameters

to be estimated, we observe that the performance is approximately constant. The

IFHMM recovered all the transmitters in nearly all the simulations, with perfor-

mance similar to the genie-aided methods.

Figure 6.8 shows the results when the number of receiving antennas Nr varies

from 2 to 30. In this figure, we observe that we need at least 8 receivers in

order to properly recover the transmitted symbols of all the transmitters. As

expected, the performance in terms of ADER and SER improves when the number

of receiving antennas increases, as the diversity in the observations helps to recover

the transmitted symbols and channel coefficients. This behaviour is similar to the

obtained by the genie-aided PGAS and FFBS, as shown in this figure. Note also

that the MSE reaches a plateau for 15-20 receivers. After this value, adding more

receivers does not improve the average MSE, but the extra redundancy in the

observed sequences helps improve the ADER and SNR.
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Figure 6.7: IFFSM results for different number of transmitters (L = 1).

Sensitivity to the number of particles. As the effective dimensionality of

the hidden space increases, we should expect a larger number of particles to be

required in order to properly estimate the transmitted symbols. To see this, we

design an experiment with Nt = 10 transmitters and SNR = −3 dB. Figure 6.9

shows the log-likelihood trace plot for 10, 000 iterations of the inference algorithm,

with a number of particles ranging from 300 to 30, 000. Although these results are

based on a single run of the algorithm, it can be seen that the best performance

is achieved with the largest number of considered particles. Additionally, this plot

suggests that P = 10, 000 particles are enough for this scenario.

We also show in Figure 6.10 the number of inferred transmitters M+, as well

as the number of recovered transmitters, for each value of P . In this figure, we

represent with a green star the true value of Nt. (Again, these results are obtained

after a single run of the algorithm.) Although we inferM+ = 10 transmitters with

only P = 3, 000 particles, Figure 6.10b shows that only 8 of them exhibit a SER

below the threshold of 0.1. In agreement with Figure 6.9, increasing the number
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Figure 6.8: IFFSM results for different number of receiving antennas (L = 1).

of particles from P = 10, 000 to 30, 000 does not seem to improve performance: in

both cases our algorithm is able to recover all the transmitters. Even the genie-

aided PGAS algorithm, which has perfect knowledge of the channel coefficients,

needs a large value of P (above 3, 000) in order to recover all the transmitters.

We can conclude from these plots that we should adjust the number of particles

based on the number of transmitters. However, the number of transmitters is an

unknown quantity that we need to infer. There are two heuristic ways to overcome

this apparent limitation. A straightforward solution is to adaptively adapt the

number of particles P as a function of the current number of active transmitters,

M+. In other words, as we gather evidence for the presence of more transmitters,

we consequently increase P . A second approach, which is computationally less

demanding but may present poorer mixing properties, consists in running the

PGAS inference algorithm sequentially over each chain, conditioned on the current

value of the remaining transmitters, similarly to the standard FFBS procedure for

IFHMMs [130]. Alternatively, we can apply the PGAS algorithm over fixed-sized
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blocks of randomly chosen transmitters.
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Figure 6.9: Log-likelihood for varying number of particles (L = 1). The initial slope is

due to the tempering procedure, in which we slightly increase the SNR at each iteration.
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Figure 6.10: Number of inferred and recovered transmitters for varying number of particles

(L = 1).

Results for inaccurate values of the channel length. So far, we have used

L = 1 to generate the data, and we have assumed this value is known at the

receiver side. We now run an experiment to show that we can properly estimate

the transmitted symbols and the channel coefficients as long as our inference al-

gorithm considers a sufficiently large value of L. For this purpose, we use our

base experimental setup with Nt = 5 transmitters and P = 3, 000 particles, and

generate data using L = 1 (i.e., memoryless channel). However, we use different

values for the channel length L for inference.

In Figure 6.11, we show the obtained results for L ranging from 1 to 5. The

obtained ADER and SER do not significantly degrade with increasing values of L,
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and we are able to recover the five transmitters in nearly all the cases. Interestingly,

the MSE improves as L increases. This is a consequence of the way we measure

it when L is larger than the ground truth, as we compare our channel estimates

with zero. The fact that the MSE becomes lower indicates that we obtain better

estimates for the zero coefficients than for the non-zero ones, which in turn implies

that our inference algorithm can properly reduce the channel variances σ2� when

needed.
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Figure 6.11: IFFSM results for different channel lengths (Ltrue = 1).

Results for larger channel lengths. We now evaluate the performance of our

model and inference procedure for channels with memory, i.e., considering L > 1.

Figure 6.12 shows the results when the SNR varies from −15 dB (σ2n ≈ 31.62) to

−6 dB (σ2n ≈ 3.98), considering L = 5 to generate the data. We use the true value

of the channel length L for inference. In the figure, we show the ADER, the SER,

the MSE, a box-plot representation of the inferred number of transmittersM+, and

also a box-plot representation of the number of recovered transmitters. As in the

memoryless case, we obtain a better performance as the SNR increases. In contrast
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to the memoryless case, in most experiments we recover the five transmitters even

for SNR = −15 dB. This makes sense, because the channel memory adds more

redundancy in the observed sequence. Our inference algorithm is able to exploit

such redundancy to better estimate the transmitted symbols, despite the fact that

more channel coefficients need to be estimated. Note that the performance in

terms of ADER and SER is similar to the genie-aided PGAS-based method.
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Figure 6.12: IFFSM results for different SNRs (L = 5).

In Figure 6.13, we show the obtained results for different values of the pa-

rameter L, ranging from 1 to 6. We use the true value of the channel length L

for inference, and we consider SNR = −9 dB in these experiments. The figure

shows the ADER, the SER, the MSE, and box-plot representations of the inferred

number of transmittersM+ and the number of recovered transmitters. Here, it be-

comes clear that our model can exploit the redundancy introduced by the channel

memory, as the performance in terms of SER and ADER improves as L increases.

The MSE also improves with L, although it reaches a constant value for L > 3,

similarly to the experiments in which we increase the number of receivers (although
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differently, in both cases we add redundancy to the observations). We can also

observe that the performance is similar to the genie-aided methods (we do not run

the FFBS algorithm for L ≥ 5 due to its computational complexity).
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Figure 6.13: IFFSM results for different values of L.

6.4.2 Real Data: Experiments and Results

With the aim of considering a more realistic communication scenario, we use WISE

software [42] to design an indoor wireless system. This software tool, developed

at Bell Laboratories, includes a 3D ray-tracing propagation model, as well as

algorithms for computational geometry and optimization, to calculate measures

of radio-signal performance in user-specified regions. Its predictions have been

validated with physical measurements.

Using WISE software and the map of an office located at Bell Labs Crawford

Hill, we place Nr = 12 receivers and Nt = 6 transmitters across the office, in-

tentionally placing the transmitters together in order to ensure that interferences

occur in the nearby receivers. Figure 6.14 shows the considered map.
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Figure 6.14: Plane of the considered office building. Circles represent receivers, and crosses

represent transmitters. All transmitters and receivers are placed at a height of 2 metres.

We consider a Wi-Fi transmission system with a bandwidth of 20 MHz or,

equivalently, 50 ns per channel tap. We simulate the transmission of 1, 000-symbol

bursts over this communication system, using a quadrature phase-shift keying

(QPSK) constellation normalized to yield unit energy. We scale the channel co-

efficients by a factor of 100, and we consequently scale the noise variance by 104,

yielding σ2n ≈ 7.96 × 10−9. We set the transmission power to 0 dBm. Each

transmitter becomes active at a random point, uniformly sampled in the inter-

val [1, T/2], and we consider an observation period of T = 2, 000. This ensures

overlapping among all the transmitted signals.

Wi-Fi systems are not limited by the noise level, which is typically small

enough, but by the users’ interferences, which can be avoided by using a par-

ticular frequency channel for each user. Our goal is to show that cooperation of

receivers in a Wi-Fi communication system can help recover the symbols trans-

mitted by several users even when they simultaneously transmit over the same

frequency channel, therefore allowing for a larger number of users in the system.

In our experiments, we vary L from 1 to 5. Five channel taps correspond

to the radio signal travelling a distance of 750 m, which should be enough given

the dimensions of the office (the signal suffers attenuation when it reflects on the

walls, so we should expect it to be negligible in comparison to the line-of-sight ray

after a 750-m travelling distance). Following the tempering procedure as above,

we initialize the algorithm with σ2y ≈ 15.85 and we linearly increase the SNR

for around 26, 600 iterations, running 3, 400 additional iterations afterwards. We

compare our IFFSM with a non-binary IFHMM model with state space cardinality

|X | = 5L using FFBS sweeps for inference (we do not run the FFBS algorithm

for L = 5 due to its computational complexity). We set the hyperparameters as
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Model
L

1 2 3 4 5

IFFSM 6/6 6/6 6/6 6/6 6/6

IFHMM 3/11 3/11 3/8 1/10 −

(a) # Recovered transmitters / Inferred M+.

Model
L

1 2 3 4 5

IFFSM 2.58 2.51 0.80 0.30 0.16

IFHMM 2.79 1.38 5.53 1.90 −

(b) MSE of the channel coefficients (×10−6).

Table 6.1: Results for the Wi-Fi experiment.

σ2y = σ2n, σ
2
H = 0.01, λ = 0.5, κ = 1, α = 1, β0 = 0.1 and β1 = 2.

We show in Table 6.1a the number of recovered transmitters (defined as the

number of transmitters for which we recover all the transmitted symbols with no

error) found after running the two inference algorithms, together with the inferred

value of M+, averaged for the last 2, 000 iterations. We see that the IFHMM

tends to overestimate the number of transmitters, which deteriorates the overall

symbol estimates and, as a consequence, not all the transmitted symbols are re-

covered. We additionally report in Table 6.1b the MSE of the first channel tap,

i.e., 1
6×12

∑
m ||h1

m− ĥ1
m||2, averaged for the last 2, 000 iterations, being ĥ�

m the in-

ferred channel coefficients. We sort the transmitters so that the MSE is minimized,

and ignore the extra inferred transmitters. As expected, for our IFFSM, the MSE

decreases as we consider a larger value of L, since the model better fits the actual

radio propagation model. However, the IFHMM fails in estimating the channel

coefficients, yielding in most of the cases a worse estimation than our proposed

model due to the poor mixing properties of the FFBS algorithm, as discussed

above.

6.5 Discussion

WCNs are becoming heterogeneous and not only at the mobile terminals, but also

at the base station end. This heterogeneity will lead to complex networks in which

we cannot assume how many users will be active or which channels they will face

or how long the communications will last. In this chapter, we have applied our

BNP models to blindly learn how many users are active and the channel they
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face in short periods of time and without requiring extremely long bursts of data.

Even in these adversarial conditions, which are typical in M2M communications,

our proposed algorithms are able to recover the network structure and provides

meaningful estimation of the transmitted sequences. We compare our results with

schemes that have complete knowledge of the network structure and parameters

and, even though we do not outperform these genie-aided methods, it is remarkable

that we are able to mimic their behavior.

When applied to this problem, the IFUHMM can infer the channel length

L, but it suffers from several limitations. For instance, each Q × Q transition

matrix is not assumed to be a sparse matrix and, therefore, all transitions among

states are allowed in the model. Furthermore, Q is allowed to take any integer

value above 1, which does not adequately model the MIMO channel, in which

the number of states can only take values equal to the constellation order raised

to some (positive) power. Another limitation that appears in the experimental

section is the mismatch in modeling the effects of the inactive state: the active-to-

inactive and inactive-to-active transitions cause an error floor in the ADER and

the SER.

In contrast, the IFFSM model assumes that the channel length L is a fixed and

known parameter, but it successfully circumvents the aforementioned limitations

of the IFUHMM. Furthermore, our inference algorithm based on PGAS avoids the

exponential runtime complexity with respect to the parameter L.

In spite of the many open issues that arise before we can consider a BNP solu-

tion to this problem as viable, the obtained results are promising, opening a new

research challenge in applying BNP tools to communication problems. Although

it is outside the scope of this Chapter, the prior information about how WCNs

are built and their typical overhead (each transmission starts in a predefined way)

could be incorporated in the model to solve the identifiability of each user and

further reduce the error rate.
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7
Conclusions

7.1 Summary

In this chapter, we summarize the contributions of this Thesis, and also describe

some possible lines for future research.

The contributions of this Thesis are twofold. On the one hand, regarding

technical aspects, we have developed new Bayesian nonparametric (BNP) priors for

time series modeling, as well as the necessary inference algorithms to approximate

the posterior distribution. On the other hand, we have provided a new approach

for the power disaggregation problem and the blind multiuser channel estimation

problem.

Regarding the technical contributions, we have extended the existent binary

infinite factorial hidden Markov model (IFHMM) [130] to allow for any number

of states in the Markov chains and developed two inference algorithms based on

135



CHAPTER 7. CONCLUSIONS

Markov chain Monte Carlo (MCMC) and a variational inference algorithm for

this model. Additionally, by placing an infinite discrete prior distribution over the

number of states, we have derived an inference algorithm that learns both the num-

ber of parallel chains and the cardinality of the hidden states in a factorial hidden

Markov model (FHMM). This algorithm resembles the reversible jump Markov

chain Monte Carlo (RJMCMC) techniques for hidden Markov models (HMMs)

but, since all the dimension-changing variables can be integrated out, we opt in-

stead for a standard Metropolis-Hastings algorithm. Our algorithm effectively

deals with the trade-off problem between the number of chains and the number of

states, avoiding the model selection, and can be useful to find the Markov structure

in the data and to explain the latent causes of the observations in a meaningful

way.

We have also developed the infinite factorial finite state machine (IFFSM),

a factorial model with a potentially infinite number of parallel Markov chains in

which each one evolves independently according to a finite-memory stochastic finite

state machine (FSM) model. Each FSM can be understood as a single HMM in

which the states are represented by the last L input symbols, and hence only a few

of the transitions among states are allowed. We have also shown that the IFFSM

model can be easily extended to a factorial model in which the hidden variables

can be either discrete or continuous. In addition, we have proposed an inference

algorithm based on particle Gibbs with ancestor sampling (PGAS) that can be

applied to this general factorial model, and that has better mixing properties

than the more standard forward-filtering backward-sampling (FFBS) approach

when applied to the IFFSM model. More importantly, our PGAS-based inference

algorithm does not suffer from exponential runtime complexity with respect to the

parameter L.

Regarding the application side, we have applied our non-binary IFHMM and

the infinite factorial unbounded-state hidden Markov model (IFUHMM) to the

power disaggregation problem. By making use of two real-world datasets (the

AMP and the REDD datasets), we have shown that the number of devices in a
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house, as well as their parameters, can be inferred in a fully blind manner, with

no prior information about the behavior of specific devices. We have also obtained

that inferring the number of chains and states in the FHMM, instead of fixing

them a priori, improves performance.

We have applied both the IFUHMM and the IFFSM model to the blind mul-

tiuser channel estimation and symbol detection problem, showing that we can

properly recover the true number of transmitters and the underlying symbol se-

quences in a fully blind way, with no need of training data. The IFUHMM can infer

both the number of transmitter and the length of the channel impulse response,

but it suffers from several limitations, e.g., considering that all transitions among

the states are allowed. The IFFSM specifically takes into account the properties

of the communication channel, therefore bypassing all these limitations, although

it requires the specification of the channel length, L.

7.2 Future Work

Our work also suggests several paths for further research, both in the technical

and application sides. We provide below a list with some of the potential future

research lines.

Other applications. Our BNP time series models are general enough to be

applied to other problems besides power disaggregation and multiuser communi-

cations. An interesting research line consists in evaluating the performance and

limitations of the IFUHMM or the IFFSM on other blind signal separation prob-

lems, e.g., for financial time series, where there is an unknown number of traders

in the market and we only observe the quotes placed by other participants. Our

models might require specific tuning or improvements for other considered appli-

cations.

Hierarchy of electrical devices. For the power disaggregation problem, a po-

tential improvement of our IFUHMM consists of considering a hierarchy, in which

the chains are shared across the houses, but their activation is individually com-
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puted for each house. In this way, we only need to infer some representative devices

that are shared among several houses.

Doubly nonparametric IFUHMM. Another extension of the IFUHMM con-

sists in developing a doubly nonparametric model, in which both the number of

states and the number of parallel chains are infinite. This model would combine the

benefits of the infinite hidden Markov model (IHMM) and the IFHMM, allowing

an inference algorithm without split and merge moves.

Semi-Markov extension of the IFFSM. Regarding the blind multiuser channel

estimation and symbol detection problem, an extension of the IFFSM based on

semi-Markov models is also of potential interest. In this way, transmitters are

assumed to send only a burst of symbols during the observation period, and a

changepoint detection algorithm may detect the activation/deactivation instants.

Header and coding schemes. In a practical implementation of a communication

system, further considerations can be taken. For instance, each transmitter can

add a fixed header at the beginning (or end) of its message. In this way, the

receiver would know in advance a subset of the transmitted symbols and would

need to focus only on estimating the payload (as well as the channel coefficients).

Furthermore, a channel coding scheme can be used in order to add redundancy to

the user’s data, effectively decreasing the resulting bit error probability.

Online inference algorithm. Furthermore, in practice, the receiver does not

have access to a fixed window of observations, but data arrives instead as a never-

ending stream. Hence, we would have to adapt our inference algorithms in order to

efficiently recover the symbols. A sensible approach may rely on a sliding window

that runs over time. For each particular position of the sliding window, we can

run a few iterations of a sampler restricted to the observations in this window,

initialized with the hidden structured inferred for the previous time window.

Time-varying channels. Our current approach for the blind multiuser channel

estimation problem is restricted to static channels, i.e., the channel coefficients do

not vary over time. A potentially useful research line may consist in taking into
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account the temporal evolution of the channel coefficients.

Scalable inference algorithms. One of the limitations of our inference algo-

rithms, as for most BNP models, is scalability. Hence, developing scalable inference

algorithms for our models would also be a significant contribution. For this pur-

pose, approaches may rely on stochastic variational algorithms [63], which have

been recently adapted to HMMs [43]. The adaptation of the algorithm in [43] to

our models is not straightforward, as they require forward-backward sweeps, which

present exponential complexity for FHMMs and FSMs.

Mixing of the FFBS. Along the same lines, improving mixing of our inference

algorithms based on FFBS also constitutes an interesting research line. In this

case, the recently developed Hamming ball auxiliary sampling scheme [122] may be

useful. Again, the adaptation of this method to our models is not straightforward,

due to their nonparametric nature. Furthermore, the adaptation of the method in

[122] to (factorial) FSMs is challenging.

EP-based inference. Another research line concerning inference consists in

adapting the expectation propagation (EP) algorithm for multiple-input multiple-

output (MIMO) communication channels in [26] to be used as part of our inference

method. The adaptation of this algorithm should consider both the memory of the

channel and the high self-transition probabilities of the inactive and active states.
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A
Inference Details for the Non-Binary

Infinite Factorial HMM

A.1 Assignment Probabilities for the Gibbs Sampler

We now derive the probability p(stm = k|S¬tm), needed in Section 3.4.1 of the

main text. This expression can be expressed, up to a proportionality constant, as

shown in Eq. A.1. Let n¬tmqi be the number of transitions from state q to state i

in chain m, excluding the transitions from state s(t−1)m to stm and from state stm

to s(t+1)m. Similarly, let n¬tmq• be the total number of transitions from state q in

chain m without taking into account state stm, namely, n¬tmq• =
∑Q−1

i=0 n¬tmqi . The

expression in Eq. A.1 takes different forms depending on the values of j = s(t−1)m

and � = s(t+1)m, yielding Eq. A.2 for j = 0 and Eq. A.3 for j �= 0.
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p(stm = k|S¬tm) ∝
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b) If j �= 0:
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A.2 Update Equations for the Variational Algorithm

Here, we provide the update equations for the variational inference algorithm

in Section 3.4.3. The variational inference algorithm involves optimizing the

variational parameters of q(Ψ) to minimize the Kullback-Leibler divergence of

pM (Ψ|Y,H) from q(Ψ), i.e., DKL(q||pM ). This optimization can be performed by

iteratively applying the following fixed-point set of equations:

Pm
jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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}
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−ψ
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(A.4)
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q(s(t−1)m = 0, stm = k), (A.9)

Ωk =

(
1

σ20
+
M

σ2φ

)−1

ID, (A.10)

ωk = Ωk

(
1

σ2φ
L�
k 1M +

1

σ20
μ0

)
, (A.11)

Λk =

(
1

σ2φ
IM +

1

σ2y
Ck

)−1

, (A.12)

and

Lk = Λk

⎛⎝ 1

σ2φ
ωk1

�
M +

1

σ2y
Q�

k

⎛⎝Y −
∑
j �=k

QjLj

⎞⎠⎞⎠ , (A.13)

where (Lk)m denotes the m-th row of matrix Lk, ψ(·) stands for the digamma

function [5, p. 258–259], δii′ denotes the Kronecker delta function (which takes

value one if i = i′ and zero otherwise), and the elements of the T ×M matrices

Qk and M ×M matrices Ck are, respectively, given by

(Qk)tm = q(stm = k) (A.14)
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and

(Ck)mm′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T∑
t=1

q(stm = k)q(stm′ = k), if m �= m′

T∑
t=1

q(stm = k), if m = m′.

(A.15)

The probabilities q(stm) and q(stm, s(t−1)m) can be obtained through a stan-

dard forward-backward algorithm for hidden Markov models (HMMs) within each

chain, in which the variational parameters Pm
jk and bmkt play respectively the role of

the transition probabilities and the observation probability associated with state

variable stm taking value k in the Markov chain m [48].
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