Discovering common trends in a large set of disaggregates: statistical procedures and their properties

Guillermo Carlomagnoa, Antoni Espasab

Abstract

Macroeconomic variables are, in general, weighted averages of a large number of components. The objective of this paper is to design a procedure to model all the N components. Our contribution concerns cases with a large number of components, for which traditional multivariate approaches are not feasible. We extend the pairwise approach initially proposed by Espasa and Mayo-Burgos (2013) and study its statistical properties analytically. The main feature of our procedure consists of discovering groups of components that share single common trends. We also provide Monte Carlo evidence on small samples and carry out a comparison with a DFM alternative.

Keywords: Cointegration, Factor Models, Disaggregation, Pairwise tests.

aDepartment of Statistics, Universidad Carlos III de Madrid.
bDepartment of Statistics, Instituto Flores de Lemus, Universidad Carlos III de Madrid.

This paper is a more elaborated version of a part of a previous paper distributed as "The pairwise approach a large set of disaggregates with common trends".

Both authors gratefully acknowledge financial support from the Spanish Government project ECO2012-32401.
1 Introduction

Macroeconomic variables are weighted averages of a large number of components. Therefore, the usual focus on the aggregate alone implies neglecting a large amount of information. The objective of this paper is to develop a procedure to model and forecast all the components of a macro or business variable at the maximum level of disaggregation. Our strategy consists of identifying and estimating relevant relationships between the components and then exploiting those relationships in single-equation models for those disaggregates. This strategy can be useful for two purposes; a) it can produce relatively precise forecasts of the components — our major interest —, and b) it may lead to an accurate indirect forecast for the aggregate, in the sense that it is not significantly worse than direct forecasts.

There are several relevant reasons for disaggregating a macro-variable. Probably the most important one is that the analysis of disaggregated data in themselves may be of interest for decision makers. When dealing with the disaggregates of macro variables, a great heterogeneity in their dynamic patterns is observed. This heterogeneity implies that the analysis of the aggregate is irrelevant when the interest is in the components. Furthermore, even when the interest is in the ‘big-picture’, disregarding the components implies a great deal of informational losses due to the heterogeneity among the components.

Attaining purpose b) mentioned above would be an indirect validation of the strategy for achieving purpose a). But when working with an aggregate composed by a large set of disaggregates, one of the main challenges in econometric modeling is how to deal with the trade-off between informational losses (when components are not considered) and estimation uncertainty (due to the increased number of parameters to be estimated when disaggregates are used). The informational losses will increase with the differences in the statistical distributions of the components and the estimation uncertainty can be mitigated using appropriate restrictions for the data.

Giacomini and Granger (2004) and Hendry and Hubrich (2011) develop alternatives to tackle this trade-off. Giacomini and Granger work with spatially correlated series and propose to use a restricted multivariate model in which restrictions are assumed known. Hendry and Hubrich, whose objective is to model and forecast only the aggregate, propose to use disaggregate information in the model for the aggregate.

Another alternative for dealing with the informational loses vs. the estimation uncertainty
trade-off is the consideration of common features as proposed by Espasa and Mayo-Burgos (2013). The authors argue that when analyzing the components of a macro variable it is usual to observe that while some components share features such as trends or cycles, others do not, probably because they incorporate changes in technology or in the preferences of economic agents in different ways. Thus, as Espasa and Mayo-Burgos argue, a valid hypothesis may be that specific subsets of components share common features, but others do not.

To exploit the restrictions derived from the existence of those subsets, Espasa and Mayo-Burgos suggest trying to discover subsets of components that share unique common features (trends and cycles — see Engle and Kozicki (1993) for a definition of common features), and then including the restrictions implied by those commonalities in single-equation models for the components. The search for those subsets is carried out by performing common features tests in all the $N(N - 1)/2$ pairs that exist in a set of N components. In the case of common trends, this strategy is justified by the fact that in a subset of, say, n_j series which share a unique stochastic trend, there are $n_j - 1$ cointegration relationships and, hence, the series are pairwise cointegrated.

Castle and Hendry (2010) also highlight the importance of including long and short-run common features restrictions in the individual models for the components, as proposed by Espasa and Mayo-Burgos (2013).

The problem of how to discover unknown restrictions in multivariate models is also present in the Dynamic Factors Models (DFM) literature. Several authors have shown that if the data contain non-pervasive factors (factors that are common only to a reduced subset of series), the choice of the data from which the factors are extracted is not innocuous. Results are more accurate when factors are extracted from data that is informative about them (see e.g., Boivin and Ng (2006) and Beck et al. (2015)). Some proposals to deal with non-pervasive factors can be found in Karadimitropoulou and León-Ledesma (2013), Moench et al. (2013), Breitung and Eickmeier (2015), Bailey, Kapetanios, and Pesaran (2015) — BKP —, Bailey, Holly, and Pesaran (2015) — BHP —, and Ando and Bai (2015).

The closer approaches to ours are those of Ando and Bai (2015), BKP, and BHP. Ando and Bai deal with stationary series with a grouped factor structure and develop a procedure to determine the series in each group and estimate the factors. The size of the groups is assumed to go to infinity, and the usual restrictions of DFM on the crosstalk-correlation of idiosyncratic components is required. BKP and BHP also deal with the issue of non-pervasive factors. BKP
propose a measure for the degree of non-pervasiveness of the factors, and BHP develop a two-stage procedure for dealing with pervasive and non-pervasive factors at the same time. Similarly to Ando and Bai (2015), these authors restrict their attention to stationary series, the cross-sectional dimension going to infinity, and also need the usual restrictions of DFM on the cross-correlation of idiosyncratic components.

The aforementioned approaches, in principle, are not applicable for the components of macro variables, which are non-stationary and have non-pervasive common trends. Working with the components of three different CPIs, which are assumed to be $I(1)$, Espasa and Mayo-Burgos (2013) find relatively small groups of components that share single common features. Our approach provides some relevant contributions in this respect. We face the problem of identifying small subsets of components that share just one common trend. Therefore, we work with variables which are assumed to be $I(1)$ and the common trends in the set of the N components are not pervasive. Besides, the sizes of the subsets need not go to infinity, and we do not need to impose special restrictions about the idiosyncrasies cross-correlation.

A central aim of this paper — in which the consideration of common features is restricted to common trends — is to show that subsets of components sharing single common trends can be discovered by pairwise methods. Our contribution in that respect consists of providing the statistical properties of a pairwise strategy using analytic and Monte Carlo procedures.

We show that the probability of finding cointegration between all possible pairs in a subset of series with a unique common trend tends to $(1 - \varphi)$ in large samples, where φ is the nominal size used in the Johansen’s trace test for each pair (theorem 1). Monte Carlo experiments confirm this result, and show that the pairwise strategy dominates standard Dynamic Factors Models in several situations of empirical interest. This result only needs T going to infinity, but we argue that it extends to the case of both T and N going to infinity.

A related approach is that of Pesaran (2007), who develops a strategy for testing output and growth convergence across countries. For a group of N countries, the author performs unit root tests for all the $N(N - 1)/2$ differences between pairs of log GDPs. Among other details, our approach differs in that we want to discover subsets of series with single common trends, not testing if the series in a specific predefined subset share the trend.

Finally, another contribution of this paper is a comparison of the pairwise strategy’s power for discovering subsets of series that share a single common trend, with that of the Johansen’s full vector approach. In our specific framework and for relatively short samples, the former improves
the power with respect to the latter. This lead to the question — which we do not study in
this paper — that when the number \(N \) of series is small, say six or eight, and the cointegration
relationships between them do not include all the series, more powerful alternatives for small
samples than the Johansen’s approach could exist. They could be based on testing cointegration
between all the subsets of series of size two to \(N \).

The rest of the paper is organized as follows. In §2, we study the statistical foundations of
the pairwise procedure. In §3, we perform Monte Carlo experiments to confirm the results of
previous section. Besides we compare, also by Monte Carlo simulations, the performance of our
procedure with that of an alternative based on standard Dynamic Factor Models. Finally we
perform the comparison of our procedure with the Johansen’s approach in a context where this
comparison is reasonable. Next, §4 includes an initial discussion for the case of ‘general’ and
‘sectorial’ trends. Finally, §5 is devoted to the conclusions.

2 Statistical foundations of the pairwise procedure

2.1 General framework and assumptions

The general framework for the models we work with is given by a VAR model for all the \(N \)
components of an aggregate:

\[
X_t = \mu_t + \Pi_1 X_{t-1} + \ldots + \Pi_k X_{t-k} + \epsilon_t \Rightarrow \Pi(L) X_t = \mu_t + \epsilon_t, \tag{1}
\]

where \(X_t \) is a \(N \times 1 \) vector; \(\Pi_i \) are \((N \times N) \) coefficient matrices; \(\epsilon_t \) is a vector of iid with noises; \(\mu_t \)
contains the deterministic components (constants, trends and seasonal dummies if it is the case);
\(\Pi(z) \) is the characteristic polynomial; and \(L \) is the lag operator. If the system is cointegrated,
it can be rewritten as a Vector Equilibrium Correction Model (VEqM):

\[
\Delta X_t = \mu_t + \alpha \beta' X_{t-1} + \Phi_1 \Delta X_{t-1} + \ldots + \Phi_{k-1} \Delta X_{t-k-1} + \epsilon_t, \tag{2}
\]

where \(\alpha \) and \(\beta \) are \(N \times r \) matrices, with \(0 < r < N \), \(r \) is the number of cointegration relationships,
\(\alpha \beta' = -I_n + \Pi_1 + \ldots + \Pi_k \), and \(\Phi_i = -\sum_{j=i+1}^{k} \Pi_j \). The data structure for which our procedure
is designed can be summarized in three assumptions:

Assumption A The \(N \) components are generated by the VEqCM in eq. (2).

Assumption B The \(N \) components are \(I(1) \).
Assumption C There is, at least, one subset of \(n_1 \) components that share a unique common stochastic trend.

Assumption D The residuals of eq. (2) are iid and multivariate normally distributed.

Assumption B excludes systems with \(I(2) \) patterns or seasonal unit roots, and rules out the ‘trivial’ cointegration relationships that will appear when there are \(I(0) \) components. Results of seasonal unit root tests (available upon request) suggest that this is a reasonable assumption for the components of the US CPI.

Assumption C gives relevance to our objective of discovering subsets of series with a unique common trend, and assumption D is necessary for the Johansen’s maximum likelihood procedure.

Remark 1 Instead of assumption B we could assume that at least \(n_1 \) components are \(I(1) \) and the others are either \(I(1) \) or \(I(0) \). This new assumption would require proceeding as suggested by Johansen (1995); testing the significance of the cointegration relationships’ coefficients (\(\beta \)) to detect \(I(0) \) variables.

Remark 2 Assumption D is related to the residuals, not to the first differences of the components. Although this distinction is not relevant for the Monte Carlo experiments, it is important for empirical applications. By allowing for outliers and location shifts in the distribution of the first difference of the components, it would not be necessary to assume normality of \(\Delta X_{it} \). The only requirement is that normality can be achieved after correcting for a few outliers location shifts, which as argued by Juselius (2015) is a quite general assumption in VAR models.

Remark 3 Cheung and Lai (1993) show that the Johansen’s trace test is not substantially affected by skewness and/or excess kurtosis of the residuals. Therefore, even if the assumption that after admitting outliers and location shifts \(\Delta X_{it} \) is normal, is not valid, we do not expect a substantial deterioration of our procedure.

Remark 4 Apart from having all its roots outside the unit circle, there is no restriction on the polynomial \((I − \Phi_1 L − \ldots − \Phi_k L)\). Additionally, the covariance matrix of \(\epsilon_t \) has not particular restrictions.

The pairwise strategy looks for subsets of components that share just one common trend, and requires performing Johansen’s cointegration tests between all possible pairs of components. For each pair, a bi-variate VAR model has to be estimated and the lag length must be determined.
in each case. Using those results the procedure goes further by constructing, when it is possible, subsets of size \(n_j \), such that in each subset every element is cointegrated with all the others in the subset. In each one of these subsets there are \((n_j - 1) \) cointegration restrictions and we call them ‘fully cointegrated’ subsets.

With the previous results, a single equation model for each component can be estimated, including as potential regressors, when it is the case, all the possibly relevant cointegration relationships found in previous step, as well as each component’s own lags and lags of other components. The selection of the relevant regressors can be carried out by the model selection algorithm Autometrics (see Doornik (2009)). The resulting modeling procedure is something intermediate between the full vector model — which is unfeasible in our context of large \(N \) — and the univariate estimation of each component. Finally, the single-equation models can be used for forecasting all the components.

2.2 Asymptotic properties of the pairwise procedure

As we argue below, the asymptotic validity of the pairwise strategy only requires \(T \) going to infinity, \(N \) can remain fixed. In our view, this is a strength of the procedure for we do not need to assume that the number of components of an aggregate goes to infinity in order to achieve consistency. As also noted by Cubadda and Scambelloni (2015)), such an assumption could be considered as unrealistic. Nonetheless, since we want to deal with a ‘large’ number of components, we also study the behavior of the procedure when both \(T \) and \(N \) go to infinity.

Assume that we are dealing with a macro-variable composed by \(N \) basic components. The total number of pairs between them is \(N(N - 1)/2 \), and we need to perform one cointegration test for each of those pairs. In line with assumption C, we can assume further that there are \(J \) subsets of much smaller dimension (\(n_j \) elements in each subset) such that the elements in each subset share a unique common trend, and the other \(N - \sum_j n_j \) components have their own trends. Thus, there are \(J + N - \sum_j n_j \) ‘common’ trends in the system. We will use the notation \(n_j \) both, to indicate the size and to label the ‘fully cointegrated subsets’

The ideal properties of the procedure are: (1) Cointegration tests between all possible pairs in each \(n_j \) should indicate the existence of a cointegration relationship, and (2) no series outside \(n_j \) should be wrongly included in the estimated subsets of series that share a unique common trend. Abusing notation, we call these estimated subsets as \(\hat{n}_j \).

Since we are performing Johansen’s tests, the procedure inherits its asymptotic properties.
There are, however, two specific features of our procedure which deserve special attention: multiple testing and estimation of partial models.

2.2.1 The general problem of multiple testing

In the regular framework in which there is not repeated hypothesis testing, the probability of not false rejecting the null is $1 - \varphi$ (with φ being the nominal size of the test). When m tests are performed, assuming that they are independent, the probability of not making any false rejection reduces to $(1 - \varphi)^m$, and the probability of making at least one error is $1 - (1 - \varphi)^m$, which rapidly increases with m. Since in our approach m could be quite large, the problem of multiple testing could be important.

Several approaches have been proposed for controlling type I error rates in multiple testing frameworks, among which those that try to control the Family Wise Error Rate ($FWER$) seem to be the most popular (see, e.g., Benjamini and Hochberg (1995)). Defining V as the number of true null hypotheses that were wrongly rejected, $FWER = P(V \geq 1)$.

The Bonferroni correction adjusts all p-values in a single step for ensuring that $FWER \leq \varphi$. In the case of $m = 2$, with independent tests statistics we have $P(WR_1 \cap WR_2) = \varphi^2$ (where WR_j is the event of wrongly rejecting hypothesis j) and the Bonferroni correction delivers $FWER = \varphi$. When $P(WR_1 \cap WR_2) > \varphi^2$, $FWER$ is smaller than φ and the Bonferroni correction is too stringent, even if we are interested in testing whether at least one individual hypothesis is false (this is frequently called the universal null hypothesis).

A case of interest may be when $P(WR_1|WR_2) \simeq 1$ (or $P(WR_2|WR_1) \simeq 1$), such that $P(WR_1 \cap WR_2) \simeq \varphi$. In this case, $FWER \simeq \varphi$, and there is no need to adjust p-values, even if the relevant hypothesis is the universal one. This last argument can be generalized for the case of m tests. That is, if the probability of wrongly rejecting any combination of the m hypothesis at the same time is close to φ, it can be easily seen that $FWER \simeq \varphi$, and there is no need for correcting p-values.

2.2.2 Multiple testing in the pairwise approach for subsets with just one common trend

Since the pairwise procedure involves a large number of cointegration tests (e.g., 4950 for $N = 100$), it may be thought to raise the probability of false rejection. The possible multiple testing problem is different depending on the series included in the specific pair under analysis, there are three different type of pairs to be distinguished: i) Both series belong to the same
\(n_j \) so that, in the context of Johansen’s tests, the problem is rejecting the true hypothesis of \(r = 1 \) — one cointegration relationship; ii.a) only one series belongs to some \(n_j \), or both belong to different subsets, so that the problem now may be rejecting the true hypothesis \(r = 0 \); and ii.b) none of the series belongs to any \(n_j \) so that the problem again may be rejecting the true hypothesis \(r = 0 \).

Case i): false rejection of \(r = 1 \)

In the Johansen procedure, the null hypotheses \(r = 0 \) and \(r = 1 \) are usually tested sequentially. Since the asymptotic power of Johansen’s test is 1, finding no cointegration between pairs in the same \(n_j \) is not an issue in large samples. Therefore, the problem could be false rejecting \(r = 1 \) in favor of \(r = 2 \). If the tests were independent, the probability of finding one common trend between all series in the same \(n_j \) would be \((1 - \varphi)^{n_j(n_j-1)/2}\), which quickly decreases with \(n_j \). But clearly, these tests are not independent. **Theorem 1** below indicates that these tests are asymptotically equivalent in the sense that the probability of obtaining the same result in all of them tends to 1 as \(T \) goes to infinity.

Theorem 1 (Asymptotic equivalence of pairwise cointegration tests in a fully cointegrated subset). Under assumptions A, C and D, given a subset of \(Q \) pairwise cointegrated series (i.e., there are \(Q - 1 \) cointegration relationships among them and a single common trend), the probability of obtaining the same result in all the \(Q(Q - 1)/2 \) pairwise Johansen’s trace tests tends to 1 as \(T \to \infty \).

Proof See appendix A

One way to interpret this theorem could be: **transitivity is a property not only of cointegration, but also of cointegration tests.** The intuition for this result is that, asymptotically, the \(Q(Q-1)/2 \) cointegration tests are tests for one versus no common trend, which can be seen as unit root tests for the estimated common trend. Since this trend is the same for all series, we have \(Q(Q - 1)/2 \) estimations of the same trend, which tend to the same true trend as \(T \) goes to infinity.

Two relevant implications of **theorem 1**:

Implication 1 Let \(WR_{ih}^{th} \) be the event in which the null of \(r = 1 \) is wrongly rejected for the pair \((i, h)\). **Theorem 1** implies that the joint probability for any combination of \(WR_{ih}^{th} \) (for any \(i, h \) belonging to \(n_j \)) tends to \(\varphi \). Therefore, even in the case when the hypothesis of interest

1Although Johansen’s test is sequential, the probability of not rejecting \(r = 0 \) is asymptotically 0, for asymptotic power is 1.
is the universal one defined in the Bonferroni approach (i.e., false rejecting at least one of the \(n_j(n_j - 1)/2 \) hypotheses), p-values need not be corrected.

Proposition 1 Theorem 1 works both when the size of the fully cointegrated subset \((Q)\) is fixed and when it goes to infinity.

Proof See appendix B.

Implication 2 It applies to a special different case, in which the aim in a set on \(N \) series is not to discover sub-groups of series sharing a common trend, but to test if all the \(N \) series share a single common trend. This case is similar to, but less restrictive than, the hypothesis of interest in Pesaran (2007), who is interested only in cointegration relationships with unitary coefficients and no deterministic trends. Based on theorem 1, a procedure for this test could be: i) Test \(r = 0 \) vs \(r > 0 \) in all possible pairs using regular critical values — asymptotic power is 1. ii) If all hypothesis are rejected, test \(r = 1 \) vs \(r = 2 \) in all pairs, store the maximum test statistic and compare it with regular critical values. Asymptotically, this procedure delivers the correct size.

Case ii.a): false rejection of \(r = 0 \) when only one of the series belongs to a fully cointegrated subset, or each series belongs to a different \(n_j \) subset.

Under assumption B, the true number of cointegration relationships between one series inside and one series outside a fully cointegrated subset is \(r = 0 \).

Two comments are relevant for this case. First, since to include a series in \(\hat{n}_j \) we require that the cointegration tests for all the pairs between that series and every series in \(\hat{n}_j \) reject \(r = 0 \), it is evident that the universal null — relevant for Bonferroni corrections — is of no interest at all. What is relevant for the pairwise procedure is the probability of wrongly rejecting all \(r = 0 \) hypotheses, which, in any case, will be smaller than or equal to \(\varphi \).

Second, let \(X_{out} \) be a series outside \(n_j \) and let \(WR_i \) be the event of wrongly rejecting \(r = 0 \) with the \(i^{th} \) series in an estimated \(n_j \) (\(\hat{n}_j \)). Since for wrongly including \(X_{out} \) in \(\hat{n}_j \) we need to wrongly reject \(\hat{n}_j \) hypotheses, the probability of including it is \(P(WR_1 \cap ...WR_{\hat{n}_j}) \). This probability can be factorized as:

\[
P(WR_1 \cap ...WR_{\hat{n}_j}) = P(WR_1|WR_2,...,WR_{\hat{n}_j}) \times ... \times P(WR_{\hat{n}_j-1}|WR_{\hat{n}_j}) \times P(WR_{\hat{n}_j}), (3)
\]

where \(P(WR_i) \) is the nominal size of the pairwise tests (\(\varphi \)). Using the extreme assumption that all the \(\hat{n}_1 - 1 \) conditional probabilities in eq. (3) are equal to 1, the probability of wrongly
including X_{out} in \hat{n}_1 would be φ, and an upper bound for the expected number of wrong series in \hat{n}_j, $E[W]$, would be $(N - n_j)\varphi$. For $N - n_j = 100$ and $\varphi = 0.01$, $E[W] = 1$, which is quite tolerable.

Under this extreme assumption, the ratio of wrong over true elements in the estimated n_j would be:

\[
\frac{(N - n_j)\varphi}{n_j}
\]

(4)

Therefore, though we may have $N \gg n_j$, when $N \to \infty$, we would need n_j to grow at the same rate for avoiding the proportion of wrong elements to go to infinity. This implies a **pervasiveness** requirement similar to that of DFM (see, e.g., assumption B in Bai (2003)). However, as we argue below, the assumption that all conditional probabilities in eq. (3) are equal to 1 is indeed quite extreme.

Discussion about the pervasiveness requirement

Interestingly, simulation results in §3 show that the actual figures are far below what eq. (4) suggests, indicating that the assumption that all conditional probabilities in eq. (3) are equal to one is quite extreme. This observation leads us to the relax the above extreme assumption as follows:

Assumption E There is a proportion δ of the $\hat{n}_j - 1$ conditional probabilities in eq. (3) that do not exceed a fixed threshold φ_{max}, with $0 \leq \varphi_{max} < 1$. The proportion δ is assumed to satisfy the condition $\delta_{min} \leq \delta \leq 1$, with δ_{min} being some fixed value larger than zero.

Now, an upper bound for the expected ratio of wrong over true elements in \hat{n}_j is:

\[
E[W] = \frac{(N - n_1)\varphi_{max}^{\delta(\hat{n}_j - 1)}\varphi}{n_j}
\]

(5)

Still, when $N \to \infty$ we also need $n_1 \to \infty$. However, under assumption E, it can be shown that we can have both: $N/n_j \to \infty$, and a finite value in eq. (5). Thus, we would not need a pervasiveness assumption in the sense of DFM. A necessary and sufficient condition for eq. (5) to remain fixed is $n_j/log(N) \to \geq c$, where c is some positive constant (a proof of this statement is available upon request).
Case ii.b): false rejection of $r = 0$ when none of the series belongs to any fully cointegrated subset.

From Johansen’s test properties, the probability of finding one cointegration relationship between two non-cointegrated I(1) series (recall assumption B) tends to φ as $T \to \infty$. Assuming that tests are independent, we can think of the subset of series not belonging to any n_j as a random graph with edge probability equal to φ.

For a detailed analysis of random graphs see Newman (2009). In simple terms, a random graph could be defined as a symmetric $N \times N$ matrix with zeros and ones in which each cell (node) has probability p of having a one and $1 - p$ of having a zero. When the node (i, j) has a one we say that there is an edge between units i and j and they are connected. In our case, ones would appear in cointegrated pairs.

Then, a lower bound for the expected number of (wrongly) estimated fully cointegrated subsets composed by K series of the $N - \sum n_j \equiv \tilde{N}$ would be $E[K_{\text{wrong}}] = C_{\tilde{N}} K \varphi^{K(K-1)/2}$, which is almost zero for, say, $\varphi = 0.01$, $K > 3$ and moderately large \tilde{N}. Bollobás and Erdős (1976) analyze the theory of fully connected sub-graphs, also known as cliques. Cliques are sub-graphs in which all the elements are pairwise connected.

Additionally, Matula (1976) shows that the size of the maximal fully connected sub-graph (maximal clique) in a random graph with M nodes and edge probability φ has a strong peak around $2 \log(M)/\log(1/\varphi)$, which is 2 for $M = 100$ and $\varphi = 0.01$. Thus, selecting a low φ and disregarding estimated fully cointegrated subsets with three or less elements constitutes a strong protection against finding fully cointegrated subsets among these series.

Note that $E[K_{\text{wrong}}]$ is a lower bound since we assumed that tests are independent. Notably, simulation results show that the actual number of wrong fully cointegrated subsets is close to this bound, meaning that, even though we are performing tests between all the pairs of a group of series, the independence assumption is sensible for this type of pairs (see appendix C and §3).

Under the independence assumption, we can use the result in Matula (1976) about the size of maximum fully connected sub-graphs to study the behavior of the procedure when $N \to \infty$. For that purpose, an additional assumption is required:

Assumption F $\frac{T}{N^{1/\kappa}} \to c$, when $[T, N] \to \infty$, for some $c > 0$, $\kappa = -\frac{\log(N)}{\log(\varphi)}$, and φ being the nominal size of the pairwise tests.

For our case of interest, and under assumption B, the size of this fully connected sub-graph
has a strong peak at $2\log(\tilde{N})/\log(1/\varphi)$. Therefore, in order to avoid the size of the maximum false fully cointegrated subset to go to infinity we need to choose φ as an inverse function of N. Using $\varphi = N^{-1/\kappa}$, for some $\kappa > 0$, an upper bound for the maximum size will be 2κ.

In order to use the significance level $\varphi = N^{-1/\kappa}$, we need assumption F to ensure that T grows at a rate larger than or equal to that of $N^{1/\kappa}$. Since κ can be larger than 1, we can deal with the case of $N/T \rightarrow \infty$.

2.2.3 Summary and discussion of the problem of multiple testing in the pairwise approach

In the bivariate cointegration tests used to discover subsets of components which are fully cointegrated, there are three different cases — cases i), ii.a), and ii.b) described above —.

In case i) the problem could be too many wrong rejections of $r = 1$, and include too few of the correct series in a estimated subset. Theorem 1 rules out this possibility by stating that the probability of including all the correct series is $1 - \varphi$, regardless the size of the true subsets.

In case ii.a), the problem could be wrong rejecting $r = 0$ and including too many wrong series in a estimated fully cointegrated subset. We showed that the requirement of full cointegration provides a strong protection against this problem.

When N is assumed to be fixed, the extreme and unlikely assumption that all conditional probabilities in eq. (3) are equal to one, gives a quite tolerable upper bound for the expected number of wrong series to be included in a estimated fully cointegrated subset.

When N goes to infinity, we argued that we could have both; a fixed proportion of wrong series, and $N/n_j \rightarrow \infty$, meaning that we would not need a pervasiveness assumption in the sense of DFM. Under assumption E, a necessary and sufficient condition for keeping the proportion of wrong elements fixed is $n_j/\log(N) \rightarrow \geq c$, for some finite and positive c.

In the case ii.b), the problem could also be wrong rejecting $r = 0$ too many times and 'discover' false fully cointegrated subsets. We argued that choosing tight significance levels and disregarding estimated fully cointegrated subsets of small size is a strong protection against this issue. We could use a significance level of $N^{1/\kappa}$ — for some chosen $\kappa > 0$ — and disregard estimated subsets with fewer elements than 2κ. When only T goes to infinity, this strategy can be always applied. When both, T and N increase, it requires $T/N^{1/\kappa} > c$ as $[T, N] \rightarrow \infty$. Since κ can be larger than 1, previous condition includes the case $N/T \rightarrow \infty$.

13
2.2.4 Partial systems

The strategy of performing cointegration tests between all possible pairs of a big set of \(N \) series, is justified by the fact that we are looking for subsets of \(n_j \) series that share a unique common trend. In them, there are \(n_j - 1 \) cointegration relationships and, consequently, the series are pairwise cointegrated.

This strategy requires estimation of partial systems because we assume the existence of a full VAR model for all the components but estimate many partial bi-variate systems. The models considered in the pairwise procedure are partial in the sense that we consider only a subset of variables, but not in the sense of Johansen (1992) and Harbo et al. (1998). That is, we are not seeking to estimate all the cointegration parameters in the global system from many bi-variate models (which is not possible). On the contrary, under full cointegration in the \(n_j \) subsets, since every pair of variables is cointegrated, the bi-variate VAR models are complete because all relevant variables are considered endogenous.

Interestingly, when the dynamic structure of each bi-variate model is selected using some information criteria, the power of the pairwise procedure for finding the true number of cointegration relationships in the \(n_j \) subsets is improved with respect to the traditional Johansen’s trace test. This result derives from the fact that cointegration relationships are more easily detectable in systems with fewer stochastic trends (see e.g. Lütkepohl et al. (2003) and Johansen (1995)), and suggests an alternative for Johansen’s strategy for fully cointegrated systems. In §3.2 we describe this result in more detail by means of a small simulation experiment.

3 Simulation results for the Pairwise strategy

In this section, we perform two different Monte Carlo experiments. The first one (in §3.2) is designed to compare the power properties of the pairwise approach to find the true number of cointegration relationships with respect to the traditional Johansen’s trace test (see the discussion in §2.2.4). The second experiment is designed with two objectives: confirm the analytic results presented §2.2.2 (this is done in §3.3), and compare the performance of the pairwise approach with an alternative based on standard Dynamic Factor Models (§3.4). It is important to note that our objective is not making a general comparison between our approach and DFM; we do not want to extract general results. Our goal is much simpler, we just want to evaluate if the simple strategy of estimating dynamic factor models can be used in our framework of interest, namely, relatively large \(N \) and small \(n_j \).
Before presenting the simulation results, in §3.1 we describe the general design of the experiments.

3.1 General design of the experiments

We consider two classes of DGPs: VECqM and Dynamic Factor Models. For space reasons we only describe the VECqM, full details of the DGP and the simulation results for the case of DFM are available upon request.

DGP 1 - VEqM 1

The general expression for the VEqCM for the \(N \) series is eq. (2) with only one lag, \(\mu_t = \alpha c_0 \) (i.e., the series do not have deterministic trends), and \(\epsilon_t \sim N(0, I_N) \).

We simulate a situation in which a subset \(n_1 \) of the \(N \) components share a unique common trend, and the rest of the components have their own trends. Thus, we will have \(N - n_1 + 1 \) ‘common’ trends in the system. Without loss of generality, we set matrix \(\beta \) such that:

\[
\beta' = \begin{pmatrix}
\beta_2 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
\beta_3 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
\cdots \\
\beta_{n_1} & 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
\end{pmatrix}_{r \times N},
\]

where \(r = n_1 - 1 \). This normalization was suggested by Clements and Hendry (1995). Different normalizations change the exact shocks that drive the long-run behavior of the \(n_1 \) variables, but not the fact that they are determined by \(N - r \) shocks and \(r \) adjusting mechanisms. The parameters \(\beta_j \) are all equal to \(-1\), for \(j = 2, \ldots, n_1 \).

For the sake of simplicity, matrix \(\alpha \) is set to have the following structure:

\[
\begin{pmatrix}
0 & 0 & 0 & \cdots & 0 \\
-\alpha_2 & 0 & 0 & \cdots & 0 \\
0 & -\alpha_3 & 0 & \cdots & 0 \\
\cdots \\
0 & 0 & 0 & \cdots & -\alpha_{n_1} \\
0 & 0 & 0 & \cdots & 0 \\
\cdots \\
0 & 0 & 0 & \cdots & 0
\end{pmatrix}_{N \times r} = \begin{pmatrix}
\alpha^U \\
\alpha^D
\end{pmatrix},
\]
where sub-matrix α^U is $n_1 \times r$; sub matrix α^D is a matrix of zeros with dimensions $(N - n_1) \times r$; and the values α_i are taken from the uniform distribution with parameters $[0.15, 0.3]$. These parameters are motivated by results in Espasa and Mayo-Burgos (2013) for CPI series.

In the specification of a DGP, given a selection of β, the choice of α does affect the properties of the process. We are assuming that the common trend among series in n_1 is driven by a single shock, so that the first variable is exogenous and each cointegrating relation affects only one of the remaining variables.

In this first DGP, Φ_1 is a diagonal matrix whose diagonal elements are drawn from the uniform distribution with parameters $[0.5, 0.8]$.

There are two important observations about this DGP. First, at first glance, the selected structure for matrix α^U could seem too simple to be realistic. However, the complexity of the system cannot be judged from matrix α alone. For example, it can be shown that this DGP is exactly equivalent to a DGP with a ‘complete’ matrix α^U in which cointegration relationships are normalized with respect to the sub-aggregate formed by the first n_1 series. Thus, with such a normalization we would have the same system but it would not be subject to the critique that α is too simple.

Although the system does not have short run interactions (both Φ_1 and the residuals’ covariance matrix are diagonal), all bi-variate sub-systems that include at least one of the series in n_1 have invertible MA dynamics. Thus, the only bi-variate systems that can be written as pure VAR(1) models are those composed by two outsiders (for a discussion about linear transformations in VARMA models, see Lütkepohl (1984)).

DGP 2 - VEQM 2

DGP 2 is the same as DGP 1 except that we allow for some short run interactions by including non-zero coefficients in the off-diagonal elements of matrix Φ_1. To do so we first reorder the rows of matrices β and α to have the series in n_1 in positions $\lfloor iN/n_1 \rfloor$, for $i = 1, \ldots, n_1$, where $\lfloor A \rfloor$ is the operator that takes the integer part of number A. Then, denoting ϕ_{ij} the elements of Φ_1, we set:

$$
\phi_{ij} = \begin{cases}
 p_i & \text{if } i = j, \\
 u_i & \text{if } i \neq j, \text{ and } \max(i - q, 1) \leq j \leq \min(i + q, N), \\
 0 & \text{otherwise},
\end{cases}
$$
for $i, j = 1, ..., N$. Parameters p_i are taken from the uniform distribution $U_{[0.4, 0.75]}$, $|u_i|$ is taken from the uniform distribution $U_{[0.05, 0.1]}$, and

$$q = \begin{cases} 5 & \text{if } 5 < i < N - 5, \\ 10 - i & \text{if } i \leq 5, \\ 10 - (N - i) & \text{if } i \geq N - 5. \end{cases}$$

(7)

This way, each series has non-zero short-run dependence with other nine (see Bai and Ng (2002) for a similar strategy to generate short run dependence). When generating DGP 1 and DGP 2 we should obtain systems with $N - n_1 + 1$ unit roots and all the other roots outside the unit circle. Since the way we generate the series does not ensure this, we order the roots from smallest to largest and disregard cases in which the root in position $N - n_1 + 2$ is smaller than 1.01.

This DGP generates quite complex short run dynamics, and there are no bi-variate subsystems with purely finite VAR structures, all of them have invertible MA components.

3.2 Power comparisons: Pairwise vs. Johansen’s trace test

The objective of this section is to compare the performance of the pairwise strategy with that of the full system used in Johansen’s approach, in situations in which this comparison makes sense and the latter approach is feasible (see discussion in §2.2.4).

We do not intend to make a general comparison between the pairwise procedure and the Johansens’ approach, because the latter is a general procedure to find cointegration relationships in a set of N variables and the former is limited to discover subsets of n_j series that are fully cointegrated. Consequently, in what follows we consider cases with N variables in which there are $(n_j - 1)$ cointegration relationships relating a subset of n_j series. Thus, we compare the power of the pairwise procedure for finding the true number of cointegration relationships ($n_j - 1$) with that of the full system Johansen’s trace test. For DGPs 1 and 2 described above, we consider the following possibilities for $[N, n_1]$: i) $[6, 2]$. There are six variables and one cointegration relationship between two of them (five common trends). ii) $[6, 3]$. There are six variables and two cointegration relationships between three of them (five common trends). iii) $[9, 2]$. There are nine variables and one cointegration relationship between two of them (eight common trends). iv) $[9, 4]$. There are nine variables and three cointegration relationships between four of them (six common trends).
For each of these four DGPs, we perform the Johansen’s trace test and the pairwise procedure. In the trace tests, we include only one lag, which is the true number. As discussed in §2.2.4, in the pairwise procedure, the lag structure depends on the type of the pair (i.e., both series have the common trend; one has it but the other does not; neither of the series has it). Thus, we try from one to five lags and select the optimal number according to the AIC and the BIC.

Cointegration tests are made at 1% of significance, and the number of Monte Carlo replications is 500. The experiments are performed with samples of 100, 200 and 400 data points.

The Trace columns in table 1 contain the probabilities of finding the correct number of cointegration relationships by means of the Johansen’s trace test, when all the N variables are included in the model. The PW columns contain the probabilities of finding cointegration in all the pairs that are truly cointegrated when the tests are done by the trace test, but in a pairwise fashion, and the lag length is selected according to the AIC (BIC). The preferred approach is marked in bold.

The table shows that nothing is lost by proceeding in a pairwise fashion. On the contrary, the pairwise procedure outperforms the regular trace test. For large samples and a small number of series (N), both procedures provide the same results (which coincide with the theoretical ones). However, as the number of series increases or the sample size decreases, the differences in favor of the pairwise procedure become remarkable (bold entries are only in the PW columns). The largest differences are for the case with N = 9 and T = 100.

This result is closely related to those obtained by Lütkepohl et al. (2003) and Johansen (1995). The authors find that the power of cointegration tests decreases with the number of stochastic trends in the system, so that, for instance, it would be more difficult to detect a single cointegration relationship in a three-dimensional system than in a bivariate one. Note, however, that our result is not exactly the same since in table 1 we are comparing estimation and testing cointegration in a single full model with several stochastic trends vs. doing it in several bivariate models (not one) with one stochastic trend. With our strategy we provide a better alternative to the Johansen’s procedure for the case in which the cointegrated series constitute a fully cointegrated subset.

Note also the importance of lag selection for small sample sizes. The difference in the probabilities of finding all cointegration relationships with the pairwise procedure when T = 100 if we use the AIC or the BIC may be significant in favor of the latter. This is due to the efficiency losses generated by a larger number of regressors in small sample sizes (the BIC tends to select
shorter lag lengths).

An obvious limitation of this comparison is that in the DGPs the cointegration relationships are pairwise detectable, i.e., there is a subset of \(n_1 \) series that share a unique common trend. In order to make a more general comparison for small \(N \), the pairwise procedure could be generalized by testing cointegration in all possible groups of series of size \(q \), for \(q = 2, ..., N \). If cointegration relationships are detectable only in the full model (i.e., all the \(N \) variables are relevant for the \(r \) cointegration relationships of the system), we will obtain similar results as Johansen, probably with some cost for the search. However, based on our simulation results, when cointegration relationships are detectable from vectors of dimension lower than \(N \) (i.e., not all the \(N \) variables are relevant for all the \(r \) cointegration relationships of the system), we could obtain power gains in short samples. Though the study of the statistical properties of this procedure more general procedure is out of the scope of this paper, our arguments suggest that there are cases in which looking for cointegration relationships between \(N \) series could be more efficiently done by working sequentially with all possible groups of dimension lower than \(N \).

Table 1: Probability of finding all cointegration relationships. Comparison between the Trace test and the Pairwise procedure

<table>
<thead>
<tr>
<th>DGP 1: VEqCM 1 — with diagonal (\Phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 400</td>
</tr>
<tr>
<td>(N)</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DGP 2: VEqCM 2 — with non-Diagonal (\Phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 400</td>
</tr>
<tr>
<td>(N)</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Number of replications: 500. \(\text{Trace} \) columns contain the probabilities of finding the correct number of cointegration relationships by means of the Johansen’s trace test, when all the \(N \) variables are included in the model. \(\text{PW} \) columns contain the probabilities of finding cointegration in all the pairs that are truly cointegrated when the tests are done by the trace test, but in a pairwise fashion and the lag length is selected according to the AIC (BIC) criteria.
3.3 The behavior of the pairwise strategy

We now turn to the analysis of the pairwise strategy in the framework for which it has been designed: large \(N \). As discussed in §2.2, the ideal procedure will: 1) from all the \(N \) series, identify a large proportion of those that truly share the trend (those in \(n_1 \)); and 2) not include wrong series in the estimated fully cointegrated subset(s), \(\hat{n}_1 \).

Conditions 1 and 2 are closely related to what Castle et al. (2011) call potency and gauge. While gauge measures the retention frequency of irrelevant variables when selecting among a (potentially large) set of candidates, potency denotes the average retention frequency of relevant variables.

As mentioned at the beginning of §3.1 we consider four DGPs; VEqCM 1 and 2 described above and two DFM which, for space reasons, were not described. For the two VEqCMs and the two DFM (results for the latter are available upon request), we consider three scenarios. In all of them, we set \(N = 100 \), and they differ in the choice of \(n_1 \) — recall that we are using the notation \(n_1 \) both, to indicate the size of the ‘fully cointegrated subset’ and as its label. The three choices are \(n_1 = 10 \), \(n_1 = 25 \) and \(n_1 = 40 \). Scenarios 1 and 3 are motivated by results in Espasa and Mayo-Burgos (2013) about CPIs’ components, and scenario 2 is just to have an intermediate structure. Additionally, we consider three possible sample sizes: \(T = 100 \), \(T = 200 \) and \(T = 400 \).

For each DGP, scenario and sample size, we perform 500 Monte Carlo replications. In each replication we simulate a 100-dimensional model in which a subset of \(n_1 \) series share a single trend. The objective is to discover the series in \(n_1 \). To do that, we perform cointegration tests on all the 4950 bi-variate VAR sub-models that exist among the 100 series. Thus, for a particular DGP, scenario and sample size, we have 2.475 million sub-models to estimate. Since we have four DGPs (the two described above plus two DFM), three scenarios and three sample sizes, in principle, we have \((4 \times 3 \times 3) \times 2.475 = 89.1\) million sub-models to estimate. Additionally, since the lag length for each of the 4950 sub-models of a particular replication is unknown, we select it with the AIC in a model with one cointegration relationship and admitting between one and five lags in the VEqM representation, what multiplies the number of sub-models to estimate by five.

Left panels of tables 2 and 3 include the gauge and potency of the pairwise strategy (PW) for DGPs 1 and 2 respectively.
Focus first on table 2. The pairwise procedure performs reasonably well for all scenarios and sample sizes. For $T = 400$, the probability of including all of the correct series is close to 99%. This outcome is in line with theorem 1, which states that the asymptotic probability of finding cointegration in all the true cointegrated pairs is close to $(1 - \varphi)$, with φ being the nominal size of the tests (recall that we are using $\varphi = 1\%$).

On the other hand, the number of wrong series is quite low. For example, in scenario 3 for $T = 400$ the expected number of wrong series is $0.002 \times (100 - 40) = 0.12$. Recall from §2.2 that an upper bound for the expected number of wrong series in \hat{n}_1 is $E[W] = (N - n_1)\varphi$, this means 0.6 series in scenario 3. Therefore, this result shows that the actual $E[W]$ is far from this upper bound, meaning that the assumption that all conditional probabilities in eq. (3) are equal to one is quite extreme. Importantly, we did not find any other fully cointegrated set composed by outsiders, in accordance with the DGP used to generate the data.

Finally, as table 2 shows, although gauge remains rather stable when the sample size changes, potency deteriorates as T decreases. For instance, with $n_1 = 25$ (scenario 2) we go from a potency of 99% with $T = 400$ to 67% with $T = 100$. Still, in this case, we get a low gauge and capture 67% of the correct series.

In DGP 1, the only source of correlation between the series in n_1 is the common trend, and the series outside n_1 are independent between each other and with respect to those inside n_1. This restriction is removed in DGP 2 as all series have non-zero short run interactions with series inside and outside n_1. The left panel of table 3 includes the results of the pairwise approach for this DGP. Its performance is somewhat worse than in table 2, except for scenario 3 with $T = 100$ when the deterioration in terms of potency is substantial. In this situation (scenario 3 and $T = 100$) we include on average $0.26 \times 40 = 10.4$ correct series and almost no wrong ones ($0.004 \times (100 - 40) = 0.24$).

As the sample size increases, results improve both in terms of gauge and potency. For $T = 400$ the procedure almost recovers its performance of table 2 in all scenarios.

3.4 Comparison with DFM

In order to compare our procedure with DFM, we consider two estimation strategies of DFM; Principal Components (PC) and the Quasi Maximum Likelihood (QML) procedure proposed by Doz et al. (2012). The later approach is an iterative procedure that combines the estimation simplicity of PC with the efficiency of the Kalman Filter Smoother.
In both cases we extract the factors from the whole data set and keep the number of factors suggested by the information criteria IC_k and the three penalty functions detailed in Bai (2004). When each penalty function suggests a different number of factors, we choose the minimum; otherwise, we choose the mode. This procedure implies that we are not always using the same penalty function in each experiment, but it artificially helps the dynamic factors methodology to pick the correct number of factors (which is always one by construction). For the three scenarios, we proceed as suggested by Bai and Ng (2004): extracting the factors from the differenced data and integrating the results to obtain estimates of the original factors. This seems the most sensible procedure when n_1 is small compared to N, as idiosyncrasies for series outside n_1 are $I(1)$.

In order to have a proper comparison with the pairwise procedure, we compute confidence bands for the factor loadings and identify those series with statistically significant factor loadings (at 0.5% of significance). We call the subset formed by those series as the DFM counterpart of the fully cointegrated subset. Using those series, we can compute the gauge and potency of the DFM approaches. To compute the variance of the loadings estimated by PC we consider the asymptotic variance derived by Bai (2003). For the QML procedure, and also as a second alternative for PC, we use a HAC estimator with data driven bandwidth and quadratic spectral kernel (see Andrews (1991)) in the regression $\Delta X_t = \Lambda F_t + \epsilon_t$ estimated by OLS.

Therefore, we end up with three alternative DFM estimation procedures: PC_1 is PC with variances computed as in Bai (2003); PC_2 is PC with the HAC estimator of the variance; and the QML procedure of Doz et al. (2012). Since basic conclusions do not change substantially, we only report results for PC_1 (the other are available upon request). Another interesting procedure that we do not explore could be that proposed by Ando and Bai (2015).

It is important to note that we are considering DGPs for which the application of DFM probably does not have optimal properties because the trends are not pervasive. But to assess beforehand that because of that the pairwise procedure is going to perform better and disregard any comparison with DFM could be too pretentious. What matters then is not if the DGP is adequate for the DFM procedure, but if it is appropriate to approximate the type of real world contemplated in the paper. For instance, aggregates in which 25% of their components are fully cointegrated.

Focus now on the comparison between the pairwise approach (PW) and DFM. Table 2 shows that for DGP 1, the DFM procedure performs better than PW in terms of potency. The prob-
ability of including a large proportion of the true series is larger in the DFM approach (except for scenario 3 and $T = 200, 400$). However, gauge is substantially larger in scenarios 1 and 2, even for large sample sizes (except for scenario 3 and $T = 400$).

The DFM approach fails to isolate the series in n_1 for scenario 1 for all sample sizes, and in scenario 2 for $T = 100$. In scenario 1 with $T = 400$, on average, the procedure includes $0.082 \times (100 - 10) = 7.4$ wrong series. This bad performance substantially deteriorates as the sample size decreases. For $T = 100$, on average, 24.2 wrong series are included in \hat{n}_1.

In summary, the main conclusion from table 2 may be that the pairwise procedure is preferred for situations of relatively small n_1 — a conclusion that seems more evident for relatively small sample sizes. When n_1 and T become larger, DFM may be preferred. Note, however, that even in those situations (large n_1 and T) the pairwise procedure also shows a very good performance.

Focusing now on table 3 (DGP 2), though PW shows a slightly worse performance than in table 2 (except for scenario 3 and $T = 100$, when the deterioration of potency is considerable), the deterioration of the DFM approach is substantial for all scenarios and sample sizes. In scenarios 1 and 2 this approach fails in isolating the series in n_1. Still in scenario 3, in which DFM shows relatively good results, PW also shows a good performance for $T = 200$ and $T = 400$.

Thus, the main conclusion from table 3 is that PW clearly dominates in scenarios 1 and 2 for all sample sizes, and for scenario 3 it may be preferred when $T \geq 200$.

Overall, PW dominates DFM in almost all situations. In the simple DGP1 DFM could be preferred when both n_1 and T are not small, but performances of both procedures are very similar. In more complex DGPs (DGP 2) the DFM procedure fails in several situations and PW is clearly preferred in scenarios 1 and 2. These conclusions remain valid when the DGP is an exact DFM or a DFM with auto-correlated and cross-correlated idiosyncrasies.

A final comparison between the two procedures could be their forecasting performance, but the one that performs better in grouping the components with common features is, in principle, expected to dominate the forecasting exercise.
Table 2: Comparison of Gauge and Potency of the Pairwise procedure with DFM. \(\text{DGP1} (VEqCM1 - \text{diagonal } \Phi_1) \)

<table>
<thead>
<tr>
<th>T=100</th>
<th>0.4</th>
<th>77.0</th>
<th>0.2</th>
<th>67.0</th>
<th>0.2</th>
<th>63.2</th>
<th>26.9</th>
<th>94.1</th>
<th>5.1</th>
<th>97.8</th>
<th>1.0</th>
<th>87.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T=200</td>
<td>0.3</td>
<td>96.4</td>
<td>0.2</td>
<td>95.3</td>
<td>0.1</td>
<td>94.5</td>
<td>18.3</td>
<td>99.5</td>
<td>0.7</td>
<td>99.5</td>
<td>0.0</td>
<td>93.0</td>
</tr>
<tr>
<td>T=400</td>
<td>0.3</td>
<td>99.2</td>
<td>0.2</td>
<td>99.0</td>
<td>0.2</td>
<td>98.6</td>
<td>8.2</td>
<td>100.0</td>
<td>0.0</td>
<td>99.8</td>
<td>0.0</td>
<td>96.0</td>
</tr>
</tbody>
</table>

- \(\text{Gauge} = \frac{100}{N-n_1 N_{\exp}} \sum_{i=1}^{N_{\exp}} Z_{2,i} \) - \(\text{Pot} = \frac{100}{n_1 N_{\exp}} \sum_{i=1}^{N_{\exp}} Z_{1,i} \). \(n_1 = \) number of wrong series included in \(\hat{n}_1 \). \(Z_1 = \) number of correct series included in \(\hat{n}_1 \). \(N_{\exp} = \) number of experiments (500). - Scenario 1: \(n_1 = 10 \). - Scenario 2: \(n_1 = 25 \). Scenario 3: \(n_1 = 40 \).

Table 3: Comparison of Gauge and Potency of the Pairwise procedure with DFM. \(\text{DGP2} (VEqCM2 - \text{non-diagonal } \Phi_1) \)

<table>
<thead>
<tr>
<th>T=100</th>
<th>2.2</th>
<th>67.5</th>
<th>1.1</th>
<th>60.2</th>
<th>0.4</th>
<th>26.0</th>
<th>42.2</th>
<th>95.7</th>
<th>17.4</th>
<th>98.7</th>
<th>6.3</th>
<th>93.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>T=200</td>
<td>0.2</td>
<td>90.6</td>
<td>0.2</td>
<td>84.2</td>
<td>0.1</td>
<td>80.5</td>
<td>39.5</td>
<td>98.6</td>
<td>12.1</td>
<td>99.6</td>
<td>2.3</td>
<td>96.4</td>
</tr>
<tr>
<td>T=400</td>
<td>0.2</td>
<td>98.7</td>
<td>0.2</td>
<td>98.2</td>
<td>0.1</td>
<td>96.9</td>
<td>37.1</td>
<td>99.5</td>
<td>8.9</td>
<td>99.8</td>
<td>1.2</td>
<td>97.2</td>
</tr>
</tbody>
</table>

See notes to table table 2.

4 Extension to sets of series with one general and several sectorial common trends

In previous sections we focused on the specific case that the data set at hand contains several trends among which some are common to reduced groups of series, such that each of those groups have only one common trend. As argued by Espasa and Mayo-Burgos (2013) this is a sensible assumption when dealing with all the components of a macro variable. In fact, they show that the pairwise procedure leads to more accurate forecasts of different CPIs than other alternative methodologies including DFM.

Nonetheless, when dealing with a large data set of macro variables (not necessarily the components of a single one), the situation could be different. There seems to be agreement in the literature that a general factor that affects more or less all variables plus sectorial factors that affect specific subsets is a sensible assumption (see e.g., Karadimitropoulou and León-Ledesma (2013), Moench et al. (2013), and Breitung and Eickmeier (2015)).

If this is the situation, the pairwise procedure proposed in this paper will not be useful. Since
the only cointegrated pairs are those formed by series with a single common trend (e.g., series that have only the general factor and no sectorial one) the procedure will be unable to discover the ‘true’ data structure. Thus, for this situation, our approach needs to be modified.

Provided that in the set of \(N \) series there is a subset of series that have just the general trend, we can proceed as follows: i) Apply the pairwise procedure described above. This will lead to discover the subset of series that have only the general trend — call it \(n_1 \). ii) Test for cointegration in all the triplets formed by one series inside \(\hat{n}_1 \) and a pair of outsiders. For the triplets in which the outsiders have the same sectorial trend we will find one cointegration relationship — two common trends. iii) Construct a \((N - n_1) \times (N - n_1)\) symmetric adjacency matrix for the series outside \(\hat{n}_1 \) such that each cell of this matrix represents a pair of the components outside \(\hat{n}_1 \). Each of those pairs belong to \(\hat{n}_1 \) different triplets; one for each element of \(\hat{n}_1 \). Then, in each cell of the adjacency matrix put a 1 if all the corresponding \(\hat{n}_1 \) triplets have just one cointegration relationship, otherwise put a 0. iv) Look for maximal fully connected sub-graphs in the previous adjacency matrix. This will lead to discover the series in each sector.

Remark 5 By theorem 1, in point iii above it would be asymptotically irrelevant if in testing cointegration in the a given triplet formed by a pair outside \(\hat{n}_1 \) and an element inside \(\hat{n}_1 \), we do it a) with all the series in \(\hat{n}_1 \), b) with some of them, or c) with the estimated common trend of \(\hat{n}_1 \). When dealing with small samples, requiring to find one cointegration relationship in all the \(\hat{n}_1 \) triplets that contain the same pair of series outside \(\hat{n}_1 \) and each series of that subset (case a) may be too stringent. Instead, we could relax this requirement by allowing a few of those triplets to fail in showing the existence of one cointegration relationship. Nevertheless, in the simulations below we use the stringent requirement.

This procedure contributes to the literature in one relevant aspect; while the usual practice is to assume the sectorial structure as given, we can estimate it. Ando and Bai (2015) estimate the sectorial structure but for stationary variables, with size of sectors that goes to infinity (in their simulation experiments the smallest sector has 100 units), and restricted cross-correlation of the error terms. The Global VAR models proposed by Pesaran et al. (2004) are also related with our proposal. Among other relevant differences, we determine the ‘regions’ (sectors) statistically and do not have restrictions on the number of variables per region, that can be large.
4.1 Simulation results for the case of ‘general’ and ‘sectorial’ trends

As argued above, the generalization for the case of general and sectorial trends requires testing cointegration not only in pairs but also in some triplets of series. Thus, the computational cost somehow rises with respect to the pure pairwise approach. Assume a case with \(N = 100 \) and \(n_1 = 15 \) (now \(n_1 \) is the subset of series which only have the general trend). Assume also that \(\hat{n}_1 = 15 \). After testing cointegration in all the 4950 pairs, the procedure requires making other \(15 \times 85(85 - 1)/2 = 53550 \) cointegration tests. As highlighted in remark 5, this issue could be mitigated by testing cointegration only with the estimated common trend of \(\hat{n}_1 \), so that the additional tests in previous example would be only 3570. We do not explore this possibility.

Since the objective of this section is just having a robustness check for our procedure, not producing new results, we drastically simplify the simulation design. We consider only one type of DGP with two scenarios. The DGP is \(DGP1 \) described in §3.1, modified to have general and sectorial trends. Again, the number of replications is 500, and the two scenarios are described below.

Let \(s_i \) be the number of variables that in addition to the general trend also have the trend of the \(i^{th} \) sector. Using the same normalization for matrix \(\beta \) as in \(DGP1 \), without loss of generality, we normalize all cointegration relationships with respect to one of the variables in \(n_1 \). To get a simple visual example of \(\beta \)'s structure, assume \(N = 10, n_1 = 3, s_1 = 3, s_2 = 3, \) and that the remaining series has its own trend. In this case we can set \(\beta \) such that:

\[
\beta' = \begin{pmatrix}
\beta_{11} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\beta_{21} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\beta_{31} & 0 & 0 & \beta_{34} & 1 & 0 & 0 & 0 & 0 & 0 \\
\beta_{41} & 0 & 0 & \beta_{44} & 0 & 1 & 0 & 0 & 0 & 0 \\
\beta_{51} & 0 & 0 & 0 & 0 & \beta_{57} & 1 & 0 & 0 & 0 \\
\beta_{61} & 0 & 0 & 0 & 0 & \beta_{67} & 0 & 1 & 0 & 0
\end{pmatrix}
\]

(8)

An important difference with respect to \(DGP1 \) is that we cannot set the coefficients \(\beta_{ij} \) equal to \(-1\) because the series in \(n_1 \) would be cointegrated with all the other series in the system. To avoid this, we need some variation in the coefficients \(\beta_{ij} \). Thus, we take those coefficients from the uniform distribution with parameters \([-5, -0.1]\). Matrix \(\Phi_1 \) is the same as in \(DGP1 \). The structure of \(\alpha \) is also the same as in \(DGP1 \) (see eq. (6)), except that the number of columns
(r) is now $n_1 + s_1 + s_2 - 3$. With this structure the variables in n_1, s_1 and s_2 react to a single cointegration relationship that affects itself, the first series, and another series in its sector when it is the case.

We consider two scenarios just for $T = 400$. In both of them there is a single general trend, two sectors, and some series with their own trends. In scenario 1, we set $N = 35$, $n_1 = 10$, $s_1 = 10$, $s_2 = 10$, and the remaining five series have their own trends. In scenario 2 we add more noise; instead of only five series with their own trends, we have thirty. Thus, in this second scenario $N = 60$.

Table 4 includes the gauge and potency of the modified pairwise procedure for discovering the general and the sectorial trends. Figures under ‘Sectors’ columns are averages for the two sectors. As the table shows, the procedure has high potency for discovering the true series in each sector with little costs in terms of gauge.

Table 4: Gauge and potency of the ‘pairwise’ procedure for the case of general and sectorial trends

<table>
<thead>
<tr>
<th></th>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_1</td>
<td>$Sectors$</td>
<td>n_1</td>
</tr>
<tr>
<td>Potency</td>
<td>98.6</td>
<td>98.3</td>
</tr>
<tr>
<td>Gauge</td>
<td>2.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Potency</td>
<td>90.9</td>
<td>87.3</td>
</tr>
<tr>
<td>Gauge</td>
<td>1.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

$- \text{Gauge} = \frac{100}{(N-n_1)N_{\text{exp}}} \sum_{i=1}^{N_{\text{exp}}} Z_{2,i}$. $- \text{Pot} = \frac{100}{n_1N_{\text{exp}}} \sum_{i=1}^{N_{\text{exp}}} Z_{1,i}$. $- Z_2 = \text{number of wrong series included in } \hat{n}_1$. $- Z_1 = \text{number of correct series included in } \hat{n}_1$. $- N_{\text{exp}} = \text{number of experiments (500)}$. $- n_1$ is the group of series that have the general trend only. $- \text{Scenario 1: } N = 35, n_1 = 10, s_1 = s_2 = 10$. $- \text{Scenario 1: } N = 60, n_1 = 10, s_1 = s_2 = 10$. $- \text{Figures in ‘Sectors’ columns are averages for the two sectors.}$

5 Concluding Remarks

In this paper we have studied the properties of a pairwise procedure for testing cointegration between all possible pairs of the components of an aggregate at the maximum level of disaggregation. This procedure allows to discover subsets of series that share a unique common trend (fully cointegrated subsets). The main theoretical result is that pairwise cointegration tests inside those subsets are asymptotically equivalent, in the sense that the probability that all tests deliver the same conclusion tends to 1 as T goes to infinity independently of the number of series. Thus, multiple testing is not an issue for pairs of components inside a fully cointegrated subset. This result is valid both when N is fixed and when it goes to infinity. Additionally, we showed that the risk of including wrong components in the estimated fully cointegrated subsets, and the risk of wrongly discovering subsets composed by outsiders can be easily controlled. We
also showed that the pairwise approach can be extended for sets of macro variables (not necessarily components of a single one) with general and sectorial trends.

In a Monte Carlo experiment, we confirmed the asymptotic results and compared the performance of the pairwise approach with that of a standard DFM alternative. This comparison showed that the pairwise procedure dominates in situations in which the number of series that share the trend \(n_1 \) is relatively small with respect the total number of components, \(N \). The DFM alternative fails in those situations.

We also found that, in moderately short samples, the pairwise strategy leads to power improvements with respect to a regular Johansen’s test applied to a small groups of series that share a common trend. These improvements are remarkable when \(T \) is smaller than or equal to 200 and the system has more than five common trends.

Acknowledgments

Both authors gratefully acknowledge financial support from the Spanish Government project ECO2012-32401.

References

Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models. *Econometrica* 70(1), 191–221.

Appendix A Relationship between test statistics for pairs of series under the null of ‘full cointegration’

The first step in Johansen’s procedure is to concentrate the model with respect to $\alpha\beta'$, what is done by regressing ΔY_t and Y_{t-1} on $(\Delta Y_{t-1}, \ldots, \Delta Y_{t-k+1})$. These auxiliary regressions give the residuals R_{0t} and R_{1t}, respectively, and the matrices S_{ij} are defined as $T^{-1}R_iR'_j$, where R_i is a $n \times T$ matrix. For $n = 2$, the likelihood ratio test for the null $r = 1$ vs. $r = 2$ is: $-2\ln(1 - \hat{\lambda}_2)$, where $\hat{\lambda}_2$ is the smallest eigenvalue of the generalized eigenvalue problem:

$$(S_{10}S_{00}^{-1}S_{01})v = \lambda S_{11}v, \quad (A.1)$$

whose eigenvalues are the solution of $|\lambda S_{11} - S_{10}S_{00}^{-1}S_{01}| = 0$.

Let X_t be the vector containing the series in n_1. From the Granger Representation Theorem, disregarding deterministic terms, the cointegrated VAR can be written as:

$$X_t = X_0 + C(1)\sum_{i=1}^{t} \epsilon_t + C^*(L)\epsilon_t,$$

where $C(1) = \beta_{\perp}(\alpha'_\perp \Psi \beta_{\perp})^{-1} \alpha'_\perp$, has rank $n_1 - r$, and $C^*(L)$ is a stationary lag polynomial matrix. Under full cointegration, $r = n_1 - 1$ and the rank of $C(1)$ is 1. Therefore, individual series in n_1 can be written as:

30
\[X_{mt} = \delta_m C T_t + w_{mt}; \quad m = 1, ..., n_1, \]
(A.2)

where \(CT_t \) is a \(I(1) \) process and \(w_{mt} \) are stationary ones. From eq. (A.2), any series in \(n_1 \) can be expressed as \(X_{mt} = \gamma_{mq} X_{qt} + \eta_{mt}, \) with \(\eta_{mt} \sim I(0), \) and \(X_{qt} \) being other series in \(n_1. \)

Assume that the aforementioned matrices \(S_{ij} \) refer to the vector \(Y_t = [X_{1t}, X_{2t}]'. \) We now derive the test statistic for any other pair in \(n_1 \) given the one for \(Y_t. \) Let

\[
X_{it} = \gamma_{i1} X_{1t} + \eta_{i1,t},
\]

\[
X_{jt} = \gamma_{j2} X_{2t} + \eta_{j2,t},
\]

(A.3)
call \(Y_t^* = [X_{it}, X_{jt}]' \) and assume, without loss of generality, that \(p^* \geq p \) (where \(p^* \) is the lag length of the model for \(Y_t^* \), and \(p \) is the lag length of the model for \(Y_t \)). Writing the auxiliary regressions for \(\Delta Y_t^* \) and \(Y_{t-1}^* \) to obtain \(R_{0t}^* \) and \(R_{1t}^* \), and using eq. (A.3), it can be shown that the new \((2 \times 2)\) matrices \(S_{ij}^* \) are:

\[
S_{ij}^* = T^{-1} (\Gamma R_i + \epsilon_i)(\Gamma R_j + \epsilon_j)',
\]

(A.4)

where \(\Gamma = \begin{bmatrix} \gamma_{i1} & 0 \\ 0 & \gamma_{i1} \end{bmatrix} \), and \(\epsilon_i \) and \(\epsilon_j \) are stationary processes. Then;

\[
S_{11}^* = T^{-1} [\Gamma R_1 R_1' \Gamma' + \Gamma R_1' \epsilon_1 + \epsilon_1 R_1' \Gamma' + \epsilon_1' \epsilon_1']
\]

(A.5)

In eq. (A.5), all terms inside the brackets are \(Op(T) \) except for \(\Gamma R_1 R_1' \Gamma' \), which is \(Op(T^2) \).

Thus, \(S_{11}^* \) is \(Op(T) \) and its long-run behavior is dominated by \(\Gamma R_1 R_1' \Gamma' \). That is, \(S_{11}^* \rightarrow T^{-1}(\Gamma R_1 R_1' \Gamma') \) as \(T \rightarrow \infty \). The remaining \(S_{ij}^* \) are \(Op(1) \) and can be written as

\[
S_{ij}^* = \Gamma S_{ij} \Gamma + \Omega_{ij}, \quad \text{for} \quad (i, j) \neq (1, 1),
\]

(A.6)

where \(\Omega_{ij} = T^{-1} [\Gamma R_i' \epsilon_j' + \epsilon_i R_j' \Gamma' + \epsilon_i' \epsilon_j'] \) is \(Op(1) \), for \((i, j) \neq (1, 1). \)

The new eigenvalue problem is:\((S_{10}^* S_{01}^{*-1} S_{00}^*) v^* = \lambda^* S_{11}^* v^* \). Using eq. (A.5) and eq. (A.6), we get:

\[
[(\Gamma S_{10}^* \Gamma' + \Omega_{10})(\Gamma S_{00}^* \Gamma' + \Omega_{00})^{-1}(\Gamma S_{01}^* \Gamma' + \Omega_{01})] v^* = \lambda^* (\Gamma S_{11}^* \Gamma') v^*.
\]

(A.7)

Note that \((\Gamma S_{00}^* \Gamma' + \Omega_{00})^{-1}\) can be written as:
\[(\Gamma S_{00}\Gamma' + \Omega_{00})^{-1} = c(\Gamma S_{00}\Gamma')^{-1} + \hat{\Omega}_{00} = c\Gamma^{-1}S_{00}^{-1}\Gamma^{-1} + \hat{\Omega}_{00}, \quad (A.8)\]

where the equality \((\Gamma S_{00}\Gamma')^{-1} = \Gamma^{-1}S_{00}^{-1}\Gamma^{-1}\) follows from the fact that \(\Gamma\) is diagonal, \(c = |\Gamma S_{00}\Gamma'| \Gamma S_{00}\Gamma' + \hat{\Omega}_{00}|^{-1}\), and \(\hat{\Omega}_{00} = \frac{\text{Adj}[\Gamma S_{00}\Gamma' + \hat{\Omega}_{00}] - \text{Adj}[\Gamma S_{00}\Gamma']}{|\Gamma S_{00}\Gamma' + \hat{\Omega}_{00}|}\) (note that \(0 < c \leq 1\)).

Hence, plugging eq. (A.8) into eq. (A.7) and doing some algebra, we get:

\[\left[cS_{10}S_{00}^{-1}s_{01}\Gamma' + \Psi\right]v^* = \lambda^* (\Gamma S_{11}\Gamma')v^*, \quad (A.9)\]

where, \(\Psi\) is \(Op(1)\) and its expression is: \(\Psi = (\Gamma S_{10}\Gamma'\tilde{\Omega}_{00} + c\Omega_{10}\Gamma^{-1}S_{00}^{-1}\Gamma^{-1} + \Omega_{10}\tilde{\Omega}_{00})(\Gamma S_{01}\Gamma' + \Omega_{01})\).

Left multiplying eq. (A.9) by \(\Gamma^{-1}\) we obtain: \(\left[cS_{10}S_{00}^{-1}s_{01}\Gamma' + \Gamma^{-1}\Psi\right]v^* = \lambda^* (S_{11}\Gamma')v^*\). Now, let \(\Psi = \Gamma^{-1}\Psi\Gamma^{-1}\), to get:

\[\left[cS_{10}S_{00}^{-1}s_{01} + \Psi\right]\Gamma'v^* = \lambda^* S_{11}\Gamma'v^*. \quad (A.10)\]

Comparing eq. (A.10) with eq. (A.1), we can make three considerations:

i) If \(X_i \equiv X_1\) and \(X_j \equiv X_2\), we get \(\Psi = 0\), \(c = 1\) and \(\Gamma = I\), so we recover the original problem.

ii) In the extremely unlikely case that \(\Omega_{ij} = 0\) — for \((i, j) \neq (1, 1)\) —, we get \(\Psi = 0\) and \(c = 1\), so that the eigenvalue problem would be: \([S_{10}S_{00}^{-1}s_{01}\Gamma']v^* = \lambda^* (S_{11}\Gamma')v^*\), the solution of which is \(\lambda^* = \lambda\) and \(v^* = \Gamma'v\). Hence, even in small samples, the cointegration test statistic would be exactly the same as the one for the pair \((X_1, X_2)\). iii) In the general case that \(\Omega_{ij} \neq 0\), we will have \(\Psi \neq 0\) and \(c \neq 1\). Note that the eigenvalues of the problem eq. (A.10) are the solutions of the second-order polynomial in \(\lambda^* \left|\lambda^*s_{11} - (cS_{10}S_{00}^{-1}s_{01} + \Psi)\right| = 0\).

Focus on the general case that \(\Omega_{ij} \neq 0\). As Johansen (1995) shows, the test statistic \(\frac{-T\sum_{t=1}^{P} \ln(1 - \lambda_i)}{\sum_{t=1}^{P} 1 - \lambda_i}\) converges to a non-standard distribution that does not depend on \(S_{00}\). Given that \(S_{11}\) is \(Op(T)\) and the other matrices are \(Op(1)\), the asymptotic behavior of \(\lambda\) and \(\lambda^*\) is dominated by the same terms. To see this, let \(\Theta = S_{10}S_{00}^{-1}s_{01}\), and \(\Theta^* = cS_{10}S_{00}^{-1}s_{01} + \Psi\).

The original eigenvalues \(\lambda_1\) and \(\lambda_2\) (\(\lambda_1 > \lambda_2\)) are the roots of the polynomial:

\[\lambda^2|S_{11}| + \lambda(s_{12}\theta_{21} + s_{21}\theta_{12} - s_{11}\theta_{22} - s_{22}\theta_{11}) + (\theta_{11}\theta_{22} - \theta_{21}\theta_{12}) = 0, \quad (A.11)\]
where \(s_{ij} \) and \(\theta_{ij} \) are the elements of the matrices \(S_{11} \) and \(\Theta \), respectively.

Since \(B < 0 \), \(\lambda_2 = \frac{-B - \sqrt{B^2 - 4|S_{11}|C}}{2|S_{11}|} = \frac{G}{2|S_{11}|} \).

If the series are cointegrated \(|S_{11}| \sim Op(T) \), and since \(B \sim Op(T) \), the expression under the square root is dominated by \(B^2 \), and \(G \to 0 \).

Now, replace \(\theta_{ij} \) by \(\theta^*_{ij} \) in eq. (A.11) to get \(B^*, C^* \) and \(G^* \). Since \(\theta_{ij} \) and \(\theta^*_{ij} \) are \(Op(1) \), the asymptotic behavior of \(G^* \) is the same as that of \(G \), for the expression under the square root is also dominated by \(B^{*2} \), which is determined by the same \(s_{ij} \)'s as \(B \). ■

Appendix B Proof of proposition 1

When \(Q \), the size of the fully cointegrated subset, is fixed, the proof follows directly from the proof of theorem 1. For the case of \(Q \to \infty \) we need a little more elaboration. Consider first our argument of the asymptotic power for ruling out wrong not rejections of \(r = 0 \). Define \(Z_i \) as the random variable that takes the value 1 if the null of \(r = 0 \) is wrongly not rejected for the \(i^{th} \) pair among the \(Q \) series, and zero otherwise. The expected proportion of not rejections \(Q^* E(Z_i)/Q^* \) where \(Q^* \) is the number of pairs between the \(Q \) series. Since asymptotic power of Johansen’s test is 1, \(E(Z_i) \) and the expected proportion of not rejections converge in probability to 0 as \(T \to \infty \).

Consider now the test \(r = 1 \) vs \(r = 2 \). Choose a pair among the \(Q \) series (pair 0), and define \(W_i \) as the random variable that takes the value 1 if the result of the test for the \(i^{th} \) pair is different form that of pair 0, and takes the value 0 otherwise. Using theorem 1, \(E(W_i) = 0 \). Thus, using the same argument as above, it follows that the expected proportion of tests results which are different form that of pair 0 goes to zero as \(T \) goes to infinity. ■

Appendix C Monte Carlo evidence for false rejections of \(r = 0 \) when none of the series belongs to the fully cointegrated subsets

We generate \(N + 1 \) random walks, pick one of them and perform Johansen’s cointegration tests between the selected series and the remaining \(N \). Call these tests \(-2lnQ(H^*(0)/H^*(1)) \). We replicate this experiment 1000 times. The DGP is:

\[
Y_{t(N+1)×1} = Y_{t-1} + e_t, \quad \text{(C.1)}
\]
with \(e_t \sim N(0, \Sigma) \). We set \(N = 1000 \), and the sample size is \(T = 400 \). The structure of \(\Sigma \) is not relevant. We consider \(\Sigma = I \), and \(\Sigma = 0.95(I - I) + I \), where \(I \) is a \((N + 1) \times (N + 1)\) matrix full of ones. This second option is a matrix with ones in the main diagonal and 0.95 elsewhere.

If the \(N \) tests statistics of each replica where independent, they should be follow the Johansen’s distribution. To assess if this is the case, for each replica, we compute the cumulative probability at the Johansen’s quantiles and take the mean and the median across experiments.

Table C.1: Quantiles comparison. Cumulative probabilities of \(-2\ln Q(H^*(0)/H^*(1))\) at the Johansen’s quantiles.

<table>
<thead>
<tr>
<th></th>
<th>50%</th>
<th>75%</th>
<th>80%</th>
<th>85%</th>
<th>90%</th>
<th>95%</th>
<th>97.5%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma = I) Mean</td>
<td>0.48</td>
<td>0.73</td>
<td>0.79</td>
<td>0.84</td>
<td>0.89</td>
<td>0.94</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>Median</td>
<td>0.53</td>
<td>0.79</td>
<td>0.84</td>
<td>0.89</td>
<td>0.93</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
</tr>
<tr>
<td>(\Sigma = 0.95(I - I) + I) Mean</td>
<td>0.47</td>
<td>0.72</td>
<td>0.78</td>
<td>0.83</td>
<td>0.88</td>
<td>0.94</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>Median</td>
<td>0.50</td>
<td>0.80</td>
<td>0.85</td>
<td>0.90</td>
<td>0.94</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

The slight differences between the cumulative probabilities of \(-2\ln Q(H^*(0)/H^*(1))\) and those of the Johansen’s distribution confirm that the assumption of independence outside all \(n_j \) is reasonable.