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A Generative Model for Concurrent Image Retrieval

and ROI Segmentation
Iván González-Dı́az*, Member, IEEE, Carlos E. Baz-Hormigos, and Fernando Dı́az-de-Marı́a, Member, IEEE .

Abstract—This paper proposes a probabilistic generative model
that concurrently tackles the problems of image retrieval and
region-of-interest (ROI) segmentation. Specifically, the proposed
model takes into account several properties of the matching
process between two objects in different images, namely: objects
undergoing a geometric transformation, typical spatial location
of the region of interest, and visual similarity. In this manner,
our approach improves the reliability of detected true matches
between any pair of images. Furthermore, by taking advantage of
the links to the ROI provided by the true matches, the proposed
method is able to perform a suitable ROI segmentation. Finally,
the proposed method is able to work when there is more than
one ROI in the query image.

Our experiments on two challenging image retrieval datasets
proved that our approach clearly outperforms the most prevalent
approach for geometrically constrained matching and compares
favorably to most of the state-of-the-art methods. Furthermore,
the proposed technique concurrently provided very good segmen-
tations of the ROI.

Furthermore, the capability of the proposed method to take
into account several objects-of-interest was also tested on three
experiments: two of them concerning image segmentation and
object detection in multi-object image retrieval tasks, and another
concerning multiview image retrieval. These experiments proved
the ability of our approach to handle scenarios in which more
than one object of interest is present in the query.

I. INTRODUCTION

This paper considers the problem of large-scale query-by-

example image retrieval. This problem has been traditionally

tackled using the well-known Bag-of-Words (BoW) model

[1], [2], a robust and computationally affordable method. This

model involves the generation of a visual vocabulary, which

allows for associating each local descriptor of an image with

one visual word through a quantization process. As a result,

each image can be described as a histogram of word occur-

rences that is used to compute a similarity measure between

every pair of images. Since the BoW model does not take

into consideration the spatial distribution of the visual words

in the image, several geometry-aware approaches have been

proposed to improve the baseline similarity ranking provided

by the BoW model.

The last research directions on this topic can be broadly

categorized into four classes: a) those aiming to improve the

visual vocabulary; b) those performing a query expansion; c)

those optimizing efficiency and memory resources related to

image representation; and d) those improving the matching

process by taking into account geometric considerations.
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Regarding the first direction, several approaches in the

literature have proposed the use of very large vocabularies

(up to 16.7M words). Using such large vocabularies improves

the discrimination capabilities of the model by giving more

importance to image details. The most common approach

to build vocabularies is the well-known k-means clustering

algorithm [2]; however, its results usually scale poorly with the

size of the vocabulary. Consequently, more recent works have

moved towards either hierarchical approaches (such as trees),

or approximate nearest neighbor techniques [3]. Furthermore,

other authors have proposed a soft quantization approach for

the representation of the local descriptors. In this manner, the

actual distances between each descriptor and the closest words

in the vocabulary are also taken into account. In [4], a soft

quantization process was proposed that provided a notable

increase in the system performance. It is also worth mentioning

the approach suggested in [5], where a kernel-based density

estimation was used to jointly address the quantization and the

matching processes.

With respect to the second direction, query expansion tech-

niques, [6] and [4] used top-ranked images as new queries in

order to perform several iterations of the matching process.

A similar idea is explored in [7], where the authors use a

visual query expansion method to enhance the ranking results

of an initial text-based search. These methods achieved notable

improvements in retrieval performance at the expense of an

important increase in the computational time.

The third direction involves obtaining compact image repre-

sentations, either by reducing the number of detected features

per image (see [8] for an example), or by using compact image

representations, such as hashes [9], compressed representa-

tions of Fisher vectors [10], or binary vectors computed using

a Hamming embedding of GIST descriptors [11]. Furthermore,

we can also consider in this direction those approaches that

use latent topic models to obtain compact higher-level repre-

sentations, such as that presented in [12].

Finally, with respect to the use of geometric considerations,

the most prevalent approach consists of a geometric-based

post-processing step [3], [4]. However, other proposals have

also been successful in taking geometric constraints into

account. In [13], [14], the authors proposed a combined use

of Hamming embedding and weak geometric consistency to

improve the retrieval process. In [15], bundling features were

proposed so that the large regions detected by the MSER

detector [16] contained several local patches detected by the

SIFT detector [17]. In doing so, these features combine the

higher discrimination properties of larger regions with the

repeatability and robustness to occlusions of local patches. In
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[18], geometry-preserving visual phrases were proposed that

capture short- and long-range spatial relations between visual

words.

Moreover, the inclusion of geometric considerations in the

matching process generates some spatial information that can

help to detect the Region of Interest (ROI). In [3], for example,

only those matches obeying a specific transformation were

considered as true matches. This true/false match classification

provided a segmentation mask that allowed for identifying

the ROI of the query image. The model in [19] efficiently

estimated an affine transformation between every two images

by discretizing the transformation space, decomposing it into

rotation, scaling and translation. This model was then utilized

to generate spatial voting maps in the query, allowing for

bounding-box based localization of the object of interest.

Furthermore, in [20] a latent topic model named Geometric

Latent Dirichlet Allocation was introduced that takes into

consideration some geometric constraints. In particular, the

topic model was used to unsupervisely model images as

mixtures of topics hopefully associated with objects in the

scene. Then, they evaluated the performance of this approach

for image retrieval applications and, finally, demonstrated that

is possible to automatically discover and segment regions-of-

interest.

In this paper we propose a geometric-aware matching that

relies on a probabilistic mixture model to concurrently solve

both image retrieval and ROI segmentation problems. While

the model proposed in [3] uses image transformations as

the unique constraint in the matching process, our proposal

provides a unified framework that takes into account three kind

of constraints: spatial coherency between points belonging

to the same object, underlying geometric transformations be-

tween matched objects, and visual similarity between matched

points. As a result, the proposed method naturally provides a

segmentation mask identifying the ROI in the query image.

In comparison with [20], which aims to analyze a set of

images to discover objects that consistently appear in some of

them, our method focuses on the matching process between

a query image and a set of reference images. Furthermore, in

[20], the geometric transformations are estimated at the local

feature level, whereas our method models the transformation

between objects appearing in two images.

From our point of view, the proposed method provides three

main benefits with respect to traditional retrieval approaches:

first, the segmentation of the ROI may be useful in many ap-

plications (e.g. video editing); second, it improves the retrieval

process by enforcing the matches to fulfil a set of geometric

constraints; and, third, using a mixture model to represent the

matching process allows us to consider more than one image

region being matched in a reference image. As we will show

in the experimental section, it successfully addresses several

problems of interest in computer vision, such as multi-object

retrieval, detection and segmentation, or multiview retrieval.

The model presented in this paper was initially proposed

in [21]. In this paper we present an in-depth discussion

about the proposed model and a complete development of

the formulation. Additionally, we provide an comprehensive

assessment of the method in new scenarios of application.

Fig. 1. Results of the matching process between a query image and two
images of the reference database. As can be observed, the thresholds used were
very conservative so that either correctly (left) or wrongly (right) retrieved
images exhibited a relevant number of potential matches. Subsequently, the
proposed generative model is in charge of filtering out false matches and
providing a refined image ranking.

The remainder of this paper is organized as follows. In

Section II we describe the problem to be addressed and present

our probabilistic solution. In Section III we assess our proposal

in comparison to several state-of-the-art approaches. Finally,

in Section IV we discuss the results, draw conclusions, and

outline future lines of research.

II. A GENERATIVE MODEL FOR IMAGE RETRIEVAL

Given a query image Iq and a set of R reference images

{r = 1, ...,R}, the objective of an image retrieval system is to

compute a similarity measure between Iq and each one of the

reference images in order to generate a similarity ranking. The

computation of this similarity measure involves several steps

that are briefly reviewed next. Salient points (keypoints) are

detected for every image.

Subsequently, a descriptor is obtained for each keypoint.

Each descriptor depicts the appearance of a local region around

the corresponding keypoint. Then, a keypoint-level matching

process is performed for each pair of images (the query and

each one of the reference images). As a result, a set of Nr

potential matches are generated between the query image and

each reference image Ir.

This step usually relies on several thresholds on the (visual)

distance between descriptors, so that non-likely matches are

filtered out. Finally, these low-level matching results serve as

the basis for computing the similarity measure.

Usually this matching process is prone to false negative and

false positives. In this context, we propose to use a generative

model of the query image that allows us to incorporate some

assumptions that make the matching model more robust.

A. Model assumptions

Our model starts working from a set of preliminary matches.

A first subset of potentially false matches are filtered out by

means of two thresholds: one on the absolute distance between

the descriptors and another on the ratio between the distances

to the first and second neighbors. However, the values of these

thresholds are conservative enough so that the following steps

of the matching process are still responsible for deciding on

true and false matches. An illustrative example of the results

obtained at this stage are shown in Fig. 1.

In the proposed model, the query image is considered as

the result of a composition process that combines several

components coming from reference images. The use of prob-

abilistic mixture models is very common in the computer
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vision field, e.g.: Gaussian Mixture Models (GMM) [22] or

Lantent Topic Models [23]. In our case, the keypoints in

the query image and their associated matches are modeled

as a mixture of K components, 1 associated with the image

background (B), k = 1, and K−1 associated with foreground

(F) areas k = 2, ...,K − 1. Each component is defined by a

set of keypoints of the query image and their matches in

the reference images. The foreground components are then

intended to represent objects that also appear (geometrically

transformed) in any of the reference images. In contrast, the

background component will consist of false matches, i.e., those

keypoints in the query image that do not appear in any other

image in the dataset.

It is worth noticing that each detected keypoint in the query

image might generate up to R matches (one for each reference

image), which are treated as independent matches. In doing so,

the proposed model allows the query image to share some

specific areas (objects) with a reference image and to be

different in others.

More specifically, the proposed model relies on imposing

some constraints to the matching process with the aim of

identifying (more reliably) the true matches. These constraints

are based on what we call ‘the model assumptions’, which are

inspired by observations that generally hold for true matches.

Let us describe a match i between the query and a reference

image as a three-dimensional vector {xqi ,x
r
i ,di}, where x

q
i

denotes the spatial coordinates of the keypoint in the query, xri
denotes the corresponding coordinates in the reference image,

and di the matching distance. The following three assumptions

generally hold for true matches:

1) A keypoint in the query image x
q
i = (xqi ,y

q
i ,1) that has

been matched with a keypoint in the reference image

xri = (xri ,y
r
i ,1) belongs to a specific object that is also

present in the reference image. Therefore, there exists

an object-level geometric transformation that maps the

object of Ir into Iq. We model this mapping as an Affine

transformation:

x
q
i = Akrx

r
i (1)

where Akr is a 3x3 matrix that defines the geometric

transformation that the object k undergoes from the

reference image Ir to the query.

2) The object k tends to appear at a certain location of

the image. Consequently, the keypoints belonging to this

object should appear in that certain location.

3) True matches tend to produce lower matching distances.

Therefore, we suggest to reinforce those matchings

whose distances exhibit low values.

Relying on the previous assumptions, we have built a

generative probabilistic model of the matches between Iq and

Ir.

B. Proposed generative model: basic version

We will describe the model in two phases to make its

understanding easier. A basic version is described in this

subsection, and two extensions will be explained in the next

subsection. With respect to the basic version, we describe first

Fig. 2. Proposed graphical model. Nodes represent random variables
(observed-shaded, latent-unshaded); edges show dependencies among vari-
ables; and boxes refer to different instances of the same variable.

each part of the model (each one related to one of the previous

assumptions), and then the whole model resulting from the

integration of all its parts.

The model assumes that Iq has been generated as the

mixture of K components. The first part of the model defines

the ”a priori” probability of each component or, in other

words, the mixture weights. The second part describes the

location of each keypoint of the query image by means of

an Affine transformation that aims to capture the geometric

transformation that each object k undergoes to fit the same

object in the query image (transformation-based location). The

third part provides additional insight into the object location,

but now according to the expected location of the object in

the image (Spatial consistency-based location). Finally, the

forth part considers the visual similarity itself by taking into

account how likely the computed distance is, given each one

of the potential objects (visual similarity). Let us describe each

one of these parts more in-depth.

• Mixture weights: Let us define zi as a simple indicator

variable that associates a match i with a specific

component of the mixture through a probability

p(zi = k). Specifically, we have modeled these “a priori”

probabilities through a multinomial distribution defined

by a multinomial parameter π , i.e., p(zi = k) = πk is

the prior probability that the keypoint i belongs to the

component k of the mixture.

• Transformation-based location: p(xqi |k,x
r
i ,Akr,Σ

A
kr) is the

probability that the location x
q
i of the keypoint associated

with the match i has been generated by transforming

xri through the geometric transformation Akr. It is worth

noticing that, for the sake of compactness, we have used

the index k meaning conditioning on zi = k. For the F

components of the mixture, this probability distribution

is modeled by a Gaussian distribution of mean Akrx
r
i

and covariance matrix ΣA
kr . The mean Akrx

r
i represents

the expected location given the transformation, while

the covariance matrix ΣA
kr models the uncertainty of
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thetransformation.FortheBcomponent,weproposea
Uniformdistributionoverallthepossiblespatialloca-
tions(theMxN pixelsofthequeryimage).Integrating
bothterms(FandB),thecompleteformulationofthe
transformation-basedlocationdistributionisasfollows:

p(xqi|k,x
r
i,Akr,Σ

A
kr)=

Uxq(M,N) k=1
Nxq(Akrx

r
i,Σ
A
kr) k>1

(2)

•Spatialconsistency-basedlocation:p(xqi|k,µk,Σk)mod-
elsthespatialdistributionofthecomponentkinthequery
imageIq.Thistermtakesintoaccountthefactthatapar-
ticularobject(component)tendstoappearconsistentlyin
acertainareaoftheimage.Accordingly,thisprobability
distributionisusedtoimposecertainspatialconsistency
overthecomponents.Theexpectedlocationofeachof
theFobjectsisdefinedbyaGaussiandistributionwith
meanµkandcovariancematrixΣk.Forthebackground
component,weproposeaUniformdistributionoverthe
spatiallocations.Insummary,theproposeddistribution
isasfollows:

p(xqi|k,µk,Σk)=
Uxq(M,N) k=1
Nxq(µk,Σk) k>1

(3)

•Visualsimilarity:thedistributionp(di|k,λk)modelsthe
probabilityofthecomputedvisualsimilaritydi(matching
distancebetweendescriptors),giventhecomponentk,
withλkbeingthedistributionparameter.AnExponential
distributionisproposedforforegroundcomponentsanda
Uniformdistributionforthebackgroundcomponent,thus
leadingtothefollowingdefinition:

p(di|k,λk)=
Ud(0,1) k=1

fd(λk)=λke
−λkdi;λk≥0 k>1

(4)

Oncethepartsofthemodelhavebeenpresentedsepa-
rately,weexplainhowtheindividualdistributionshave
beenintegratedintoagenerativemodelthatdescribes
probabilisticallyeachpotentialmatch{xqi,x

r
i,di}.

Figure2showsthegraphical modeloftheproposed
algorithm.Followingthis model,theprobabilityofa
match,definedthroughthevariablesxqianddi,givena
potentiallymatchingkeypointxriinthereferenceimage,
iscomputedasfollows:

p(xqi,di|x
r
i,θ)=

K

∑
k=1

p(zi=k)· (5)

p(xqi|k,x
r
i,Akr,Σ

A
kr,µk,Σk)p(di|zi=k,λk)

where θistheparametervectorofthe modelθ=
{π,A,ΣA,µ,Σ,λ},andp(xqi|k,x

r
i,Akr,Σ

A
kr,µk,Σk)isthe

location-relatedprobability,whichfusesthelocationin-
formationcomingfromconsideringboththeaffinetrans-
formationandthespatialconsistency.Specifically,this
finallocation-baseddistributionconsistsoftwoparts:a
Uniformdistributionforthebackgroundcomponentand
thefollowingfactorizedconditionaldistributionforthe
foregroundcomponents:

p(xqi|k,x
r
i,Akr,Σ

A
kr,µk,Σk)=

Nxq(Akrx
r
i,Σ
A
kr)Nxq(µk,Σk)

B(xri)
(6)

whereB(xri)isanormalizingfactorthatensuresthat
p(xqi|zi=k,x

r
i,Akr,Σ

A
kr,µk,Σk)isaprobabilitydensity

function(pdf)overxqi.Furthermore,givenasetofrefer-
encekeypointsxriandtheparametersofthedistributions,
thisnormalizingfactordoesnotdependonthedataxqi
andcanbepre-computedas:

B(xri)=|2π(Σ
A
kr+Σk)|

−12· (7)

exp−
1

2
(Akrx

r
i−µk)

T(ΣAkr+Σk)
−1(Akrx

r
i−µk)

Inference:Consideringthepreviousdefinitionsofthevari-
ablesandthegraphshowninFig.2,thelog-likelihoodofa
corpusconsistingofRreferenceimagescanbestatedas:

logL∝
R,Nr

∑
r,i

log
K

∑
k=1

πkp(x
q
i|k,x

r
i,Akr,Σ

A
kr,µk,Σk)p(di|k,λk) (8)

whichisnotdirectlyoptimizableduetothesuminsidethe
logarithm.
ApplyingtheJensen’sinequality,alowerboundofthelog-

likelihoodisobtained:

logL≥
R,Nr,K

∑
r,i,k

φiklogπk+logp(x
q
i|k,x

r
i,Akr,Σ

A
kr,µk,Σk)

+logp(di|k,λk)−logφik (9)

wherep(zi=k|x
q
i,θ)=φikdenotestheposterior(giventhe

data)probabilityofakeypointibelongingtothecomponent
kofthemixture,andobeys∑Kk=1φik=1.
Weproposetheuseofthe Expectation-Maximization

algorithmtoobtainthevaluesoftheparametersthat
maximizethelowerboundofthelog-likelihood(Maximum
LikelihoodorMLvalues).

EM-Algorithm:Omittingthealgebra,intheE-stepofthe
EMalgorithmtheexpectedvaluesoftheposteriorprobabilities
φikarecomputedasfollows:

φik∝
πkUxq(M,N)Ud(0,1) k=1
πk
B(xri)
Nxq(Akrx

r
i,Σ
A
kr)Nxq(µk,Σk)fd(λkr) k>1

(10)

Inthe M-step,thevaluesofthe modelparametersthat
maximizetheLikelihoodareobtainedas:

πk=
1

R

R

∑
r=1

1

Nr

Nr

∑
i=1

φik (11)

µk=
∑Rr=1∑

Nr
i=1φikx

q
i

∑Rr=1∑
Nr
i=1φik

;k>1 (12)

Σk=
∑Rr=1∑

Nr
i=1φik(x

q
i−µk)(x

q
i−µk)

T

∑Rr=1∑
Nr
i=1φik

;k>1 (13)

Akr=
Nr

∑
i=1

φikx
q
ix
r
i
T

Nr

∑
i=1

φikx
r
ix
r
i
T

−1

;k>1 (14)

ΣAkr=
∑
Nr
i=1φik(x

q
i−Akrx

r
i)(x

q
i−Akrx

r
i)
T

∑
Nr
i=1φik

;k>1 (15)

λk=
∑Rr=1∑

Nr
i=1φik

∑Rr=1∑
Nr
i=1diφik

;k>1 (16)
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Fig.3. Proposedextendedgraphicalmodel.Newelementsareinsidedashed
boxes:inred,newsegmentation-basedlocalization(sectionII-C1);ingreen,
hyperparametersoftheconjugatepriordistributionforthecovariancematrix
ofthetransformation(sectionII-C2).

Letusrecallthatthemodelparameters,withtheexceptionof
themixingweights,onlyapplyfortheFcomponentsofthe
mixture.

C. Modelextensions

Two modelextensionsareproposedforthegenerative
model.Thefirstaimstoprovidemoreprecisesegmentationsof
theROI.Thesecondaddsflexibilitytothetransformationof
themodeltocopewithpracticalissuesfoundinrealdatabases.
Figure3showsthegraphicalrepresentationoftheextended
model.

1)ImprovingtheROIsegmentation:Wehaveproposedthe
useofaGaussiandistributionformodelingthespatiallocation
ofmatchedobjectsinthequeryimage.However,although
aGaussiandistributionworksproperlyintermsoflocation,
itobviouslyprovidesacoarseapproximationoftheobject
shape,whatleadstoimprecisesegmentationsoftheregion-
of-interest.

WiththeaimofprovidingmorepreciseROIsegmentations,
wesuggestanewprobabilitydistributionthatreliesona
previoussegmentationofthequeryimage.Sincetheregions
resultingfromthesegmentationhavemorerealisticshapes,
amuchmorepreciseestimationoftheobjectshapecanbe
provided.Inparticular,thequeryimageissegmentedbased
oncolorinformation[24]andasetofSregionsareobtained.
Then,thelocationofthekeypointassociatedwitheachmatch
iisindexedbyanindicatorvariablesithatpointstotheregion
thatcontainsthekeypoint.Andfinally,theoriginaldistribution
p(xqi|k,µk,Σk)issubstitutedbyanewdiscretedistributionwith
parameterβk:

p(si|k,βk)=1[si=j]βjk (17)

where1[si=j]meansthatthekeypointassociatedwiththe
matchiinthequeryimageliesintheregionj,andβjkdenotes
theprobabilitythatacomponentkbelocatedataparticular
regionjofthesegmentation.Thisprobabilityiscomputedas

follows:

βjk=
∑
R,Nr
r,i 1[si=j]φik

∑Sm=1∑
R,Nr
r,i 1[si=m]φik

(18)

andsubstitutespreviousequations(12)and(13)ofthebasic
versionofthe modelconcerningtheGaussiandistribution
relatedtothespatialconsistencyterm.
Inaddition,inordertoobtainasimpleanalyticalsolution,
weconsiderthenewvariablesasconditionallyindependent
ofxqigivenk.Thisassumptionallowsustofactorizetheir
probabilities.
Itisalsoworthcommentingthat,apartfromproviding
betterROIsegmentations,theinclusionofthisnewdistribution
producedslightimprovementsintheoverallperformance,as
willbeshownintheexperimentalsection.
2) Managingtheflexibilityofgeometrictransformations:
UsingaGaussiandistributiontomodelthetransformation-
basedlocationprovidescertaindegreeofflexibilitysincethe
covariancematrixΣAkrallowsustorelaxthegeometriccon-
straintsimposedbytransformationwhennecessary.However,
aswefoundinourexperiments,itwouldbedesirabletohave
controlontheflexibilityofthemodel,sothatitcouldfitto
eithermoreorlesssimilaritydemandingtasks.
Withthisrequirementinmind,weproposetointroduce
aregularizingprioroverthecovariancematrixΣAkr.Inthis
manner,althoughsmallcovariancevaluesusuallyturnoutto
bemoreappropriate,themethodisendowedwithameansthat
allowsustocontrolontheflexibilityofthetransformations.
Inparticular,wehaveconsideredaWishartdistributionofmkr
degreesoffreedom,whichistheconjugateprioroftheinverse
ofthecovariancematrix:

p(ΣAkr|Σ
A
0kr,mkr)∝|Σ

A
kr|
mkr−D−1
2 exp−

1

2
TrΣA0krΣ

A
kr
−1

(19)

whereDisthedimensionofthedata(D=2,inourcase),
Tr(·)standsfortheTraceoperator,andΣA0krandmkrare
hyperparameters.
Theinclusionofthesepriors,whichonlyapplytotheF

componentsofthemodel,leadstothefollowingMaximuma
Posteriorioptimization:

logMAP=logL+
K

∑
k=2

R

∑
r=1

logp(ΣAkr|Σ
A
0kr,mkr) (20)

wherelogLhasbeenpreviouslydefinedineq.(8).
Consequently,theupdateexpressionofthecorresponding

covariancematrixshouldchangeaccordingly:

ΣAkr=
∑
Nr
i=1φik(x

q
i−Akrx

r
i)(x

q
i−Akrx

r
i)
T+ΣA0kr

∑
Nr
i=1φik+mkr−D

(21)

Now,followingtheapproachin[25],appropriatevaluesfor
thehyperparametershavebeenchosensothatthecovariance
matrixupdateequationtakesthedesiredform.Inparticular,
thehyperparametersarechosenasfollows:

ΣA0kr=αkr̄Σ
A
0r (22)

mkr=αkr+D (23)

whereΣ̄A0rrepresentsthepriorofthecovariancematrix(the
sameforallFobjects),andαkrmanagesthebalancebetween
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the free term and Σ̄A
0kr. In addition, αkr is used for setting the

value of mkr so that the final update equation for the covariance

looks like:

ΣA
kr =

∑
Nr
i=1 φik(x

q
i −Akrx

r
i )(x

q
i −Akrx

r
i )

T +αkrΣ̄
A
0kr

∑
Nr
i=1 φik +αkr

(24)

which substitutes equation (15) of the basic version of the

model. The rest of the update equations remain unaltered as

described in subsection II-B.

In our experiments, in the absence of information we

consider the same value of αkr for all the foreground objects

in a scene; in particular:

αkr = αr =C
Nr

K
(25)

where C is a constant that has been set to C = 10, and Nr

and K had been previously defined as the number of matched

points in the reference image r and the number of components

in the mixture, respectively. Additionally, the prior value of the

covariance has been empirically set to Σ̄A
0kr = 10−3I.

D. Generating the ROI

The proposed generative model is also able to unsupervisely

discover the ROI in the query image. This region is usually

associated with an element (building, object) of special interest

in the query that is successfully matched in several reference

images. The process followed to obtain the ROI segmentation

can be summarized as follows (for simplicity, we describe the

procedure for K=2):

1) Generate a binary mask by labeling those points that

belong to the F component.

2) Perform an opening morphological operation over the

binary mask using a disk-type structuring element (we

use radius of 50 pixels in our experiments).

3) After re-labeling the generated connected components,

remove those ones whose size is relatively small (smaller

than half the size of the largest one, in our experiments).

Some visual examples of the generated ROIs can be found

in the experimental section (Figure 7).

E. Automatic selection of the number of model components K

In this section we propose a simple method to automatically

determine the value of K based on the query image content.

It consists in a splitting approach that iterates adding new

components to the mixture when necessary. In the following

paragraphs we describe the proposal in detail.

When K is lower than the actual number of objects, each

component will represent more than one object. Therefore,

we decide to associate each component with the main object

(among those represented by that component) and then look

for new ones. We start running our model with K = 2 and,

at the end of each iteration, we look for new components by

following this process:

1) For each foreground component k, we select the ref-

erence image that best represents it. To that end, for

each reference r we compute the accumulated posterior

probability χrk of the matches associated with that

component as follows:

χrk =
Nr

∑
i=1

φrk (26)

and then select that reference that produces the highest

accumulated probability.

2) For each pair foreground component-best reference im-

age, we generate the ROI of the main object (as de-

scribed in previous subsection) and save the correspond-

ing segmentation for future testing of potential new

components. As a result of these two first steps, we

achieve a segmentation of the main object associated

with each foreground component in the mixture. This

segmentation, called the ‘accumulated segmentation’,

will be used in the fourth step of the algorithm.

3) For each foreground component, steps 1) and 2) are

repeated for every reference image, generating candidate

regions that are considered as potential new components.

4) For each potential candidate component, three features

are extracted: a) % of overlapping with the segmentation

of the main object of this component; b) the relative size

of the region with respect to image dimensions; and c)

the density of points inside the region (a ratio between

the number of matches and the area of the region). The

decision whether or not to accept the region as a new

component is made using a linear classifier relying on

these features as inputs. If accepted, the associated mask

is included to the accumulated segmentation.

The linear classifier was trained on some manually generated

data.

It is worth noticing that when a reference provides an

object that actually coincides with the main object already

considered, the degree of segmentation overlapping will be

high. Hence, overlapping becomes the main measure to make

decisions in this process. Nevertheless, the relative size and

density are still useful complementary variables that help to

avoid adding new components associated with either very

small regions or sparse sets of points.

In addition, it is also worth mentioning how once the algo-

rithm decides that a candidate is is being incorporated to the

mixture, its region is added to the accumulated segmentation,

thus preventing from the addition of two candidate regions

with high degree of overlapping.

A visual example of the process is illustrated in Figure 4.

III. EXPERIMENTS AND RESULTS

In this section we describe the assessment of the proposed

generative model.

We have used various datasets for our experiments:

• The Oxford Building 5K dataset [26]: a database that con-

tains 5.062 high resolution images (1024x768) showing

either one of the Oxford landmarks (the dataset contains

11 landmarks), or other places in Oxford. The database

includes 5 queries for each landmark (55 queries in total),

each of them including a bounding box that locates the

object of interest.
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Fig. 4. A visual example of the iterative process to automatically set the value of K. First column: Output of the (K=2) first iteration of our algorithm,
with bounding boxes on detected objects (top), and segmentations (bottom). Each color represents a particular object category. Columns 2-6: detected regions
candidate to become new components. For each particular case we show: the points belonging to the component (top), the associated candidate mask (middle),
and the accumulated segmentations (bottom). If a candidate is accepted, points are shown in green, otherwise in black. Column 7: output of the (K=5) second
iteration of the method.

• The INRIA Holidays dataset [13]: a dataset with 1491

personal holiday photos, in which several transformations

or artifacts can be evaluated: rotations, viewpoint, illu-

mination changes, etc. This dataset contains 500 image

groups or scenes, with the first image of each group being

the query (500 queries).

• The ETHZ toys dataset [27]: a dataset for specific object

recognition. It contains 40 images modeling the appear-

ance of 9 specific objects, and 23 test images in which

several objects appear under different scale, viewpoint,

and occlusion conditions. This dataset, although small to

properly assess the performance of the proposed system

in an image retrieval problem, allows us to demonstrate

the model capability of handling more than one object of

interest.

• The RGB-D object dataset [28]: a large image dataset of

300 common household objects that was conceived as a

3D dataset and contains 2D images and depth maps of

every object (which was placed on a turntable to capture

images for one whole rotation). In our experiments we

have only used 2D images of the objects viewed from dif-

ferent angles, discarding depth information. We have con-

sidered images containing isolated objects as reference

dataset, and used the so-called RGB-D Scenes Dataset

as test/query dataset. The RGB-D scenes dataset consists

of video recorded at different locations containing more

than one object of interest per scene. Let us note that

many of the objects in this dataset are very homogeneous

and therefore, not suitable for a salient feature-based

recognition such as the one used in this paper. Hence,

we have restricted our experiments to a subset composed

of the 10 most-textured object categories and, therefore,

more salient features (e.g. cereals box, food box, cap,

notebook, etc.). Then, only those frames in the scenes

dataset that contained more than one object belonging to

the considered categories were selected as queries. This

process led to a query set containing 54 images, and a

reference dataset of 4314 images, which are figures very

similar to those of the Oxford dataset.

Our experiments have been divided into two blocks. First,

we assessed our model for image retrieval and automatic ROI

segmentation when each image contains only one object of

interest, following the conventional experimental protocols for

the Oxford Building and Holidays datasets, respectively. In

both datasets, since each image contains only one object of

interest, we have selected K = 2, i.e., one foreground object.

Second, we proved the usefulness of the proposed model

for K > 2 by solving three tasks: a multi-object category-

based segmentation in the ETHZ toys dataset, a multi-object

detection task in the RGB-D object dataset, and a multiview

object retrieval task on the Oxford Building dataset.

In order to establish a meaningful comparison, we followed

the feature extraction protocol described in [3]. In particular,

we detected salient points using the affine-invariant Hessian

detector [29]. Then, we described the local region around

these keypoints with a 128-dimensional SIFT descriptor [17].

Subsequently, a Bag-of-Words (BoW) model was used; in

particular, we employed the same BoW as in [3] with the

1M-sized hard-assigned vocabulary. Finally, the authors of [3]

performed a re-ranking step using RANSAC [30], an efficient

geometric-based matching technique, which we substituted by

our probabilistic generative model. Furthermore, in order to

limit the complexity of the overall process, we used a Fast

Nearest Neighbour search [31].

A. Image retrieval and ROI segmentation with one object of

interest

As a similarity metric between two images Iq (the query)

and Ir (each of the reference images), we propose a new

measure χr that can be expressed as follows:

χr =
Nr

∑
i=1

φr2, (27)
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TABLE I
SUBSYSTEM VALIDATION: PERFORMANCE EVALUATION IN TERMS OF AP
OF DIFFERENT VERSIONS OF THE PROPOSED GENERATIVE MODEL FOR

THE RE-RAKING OF 300 IMAGES.

Version AP

BM 0.6640

BM w/o spatial consistency 0.6296

BM w/o visual similarity 0.6612

BM w/o affine transformation 0.6578

EM-improved transformation 0.6810

EM-improved transformation & segmentation 0.6929

i.e., χr is the sum of the posterior probabilities φrk of the points
belonging to the foreground component (k = 2).

This new measure χr allowed us to generate a ranked

sequence of images that was then evaluated in terms of

Average Precision (AP), a measure that has been extensively

used to assess information retrieval systems. AP requires a set

of ranked images as system output and combines both recall-

and precision-related factors in a single measure, which is also

sensitive to the complete ranking. For a detailed description

of the AP measure the reader is referred to [32].

1) Validating the elements of the model: With the purpose

of validating each one of the elements of the proposed model,

we assessed separately their influence on the complete system

performance on the Oxford Building dataset. In Table I,

we show the results achieved by different versions of the

proposed system resulting from disabling the operation of

each subsystem separately. The notation used in the table for

denoting the resulting systems is described next:

• BM: Basic version of our proposal, as described in

Section. II-B.

• BM w/o spatial consistency: Basic version with the spatial

consistency-based location disabled.

• BM w/o visual similarity: Basic version with the visual

similarity disabled.

• BM w/o affine transformation: Basic version with the

transformation-based location disabled.

• EM-improved transformation: Extended version with im-

proved transformation, as described in subsection II-C2.

• EM-improved transformation & segmentation: Complete

model, including improved transformation and segmen-

taion, as described in subsections II-C2 and II-C1, re-

spectively.

The results of this experiment are shown in Table I. In

what concerns to the basic model, the spatial consistency turns

out to be most significant element, showing notably higher

relevance than the other two distributions. However, we claim

that they are still important and should not be removed from

the model. On the one hand, in what concerns the visual

similarity, it has been included in the final model due to

two reasons: a) it actually produces a slight improvement on

the performance, and 2) the computational complexity of this

element is, by far, much lower than the other two (the update

equation is linear and does not involve any complex matrix

manipulation such as inversions).

With respect to the transformation, although its contribution

was minor in the basic model, the version of the system

that adds a regularizing prior over the transformation-based
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Fig. 5. An image retrieval performance comparison for different numbers
of re-ranked images. a) Oxford dataset, (b) Holidays dataset

location produced a great improvement of the results, what

means that the covariance matrix ΣA was not initially restric-

tive enough to deal with our task.

In addition, we can see that the combination of the regular-

ization term with the other proposed extension (improvement

of the ROI segmentation) shows a notable impact on the sys-

tem performance. Hence, from now on, the complete version

of our model will be used in the rest of experiments.

Finally, it should be mentioned that these results were

obtained for the re-ranking of 300 images, and that the

performance increments due to every subsystem or extension

tend to grow with the number of re-ranked images R (due to

the increasing effect of our model on the final ranking).

2) Image retrieval: In order to assess the performance

of the proposed generative model, we have compared it to

RANSAC [30], a well-known geometric-based technique that

robustly computes transformation matrices (between each pair

of images) in the presence of outliers. In our implementa-

tion, RANSAC re-ranked images according to the number

of matches considered as inliers for the corresponding affine

transformation, i.e., according to those matches that fitted the

estimated transformation.

Results in terms of AP for different numbers of re-ranked

images R are shown in Fig. 5(a) and 5(b) for the Oxford

5K and Holidays datasets, respectively. Results of an oracle-

based re-ranking process are also included as an upper-bound

performance limit of re-ranking for each value of R.

For Oxford 5K dataset, it is worth noticing that performance

keeps increasing up to R = 2000 images, where the influence

of the previous BoW-based ranking might be almost neglected

(the oracle-based approach achieves an AP=0.93). Addition-

ally, from these results, it is easy to conclude that our approach

outperforms the RANSAC-based re-ranking. As we can see

from the figure, a relative improvement of a 2% is achieved

by our method with independence on the number of re-ranked

images, what proves the robustness of our approach when the

proportion of positive images (images showing the landmark

of the query) decreases.

In our opinion, this improvement is due to two main

reasons: first, the proposed generative model combines several

elements, some of which are not considered in the RANSAC-

based approach, in particular: spatial consistency, visual sim-

ilarity, and the extension concerning improved segmentation.

Second, our generative model jointly considers all the refer-

ence images when performing the ranking. This is an impor-

tant difference with respect to the RANSAC-based approach,
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Fig. 6. Image retrieval examples. Each row contains: (1) query image, (2-5) correctly ranked images (before first error), (6) first error (position in the ranking
is also shown).

in which the transformation estimation between the query

and each reference image is addressed independently. Hence.

the outlier detection process should be more accurate when

considering the complete reference set and, consequently, the

inferred affine transformation should be better.

Similar conclusions can be drawn from the result in Holi-

days dataset. In this case, our approach consistenly achieves

improvements with respect to RANSAC. Futhermore, these

relative improvements even grow with the size of the re-ranked

set which means that our approach better handle situations in

which the number of relevant images decreases. However, we

have found that for this dataset the performance saturates for

quite a low value of R (R=250). The rationale behind is that, in

this dataset, there is just a short number of relevant images (in

general, between 1-3) per query. This issue gives very much

influence to the quality of the previous ranking achieved by

the BoW.

Some visual results including correctly retrieved images and

also some errors are provided in Fig. 6 for the Oxford 5k

dataset. Images have been selected to show how our model

successfully handles geometric transformations and partial

occlusions.

Next, in Tables II and III, we show a comparison of our pro-

posal to other state-of-the-art techniques whose performances

were reported under this same conditions. Let us note that two

methods reported in the literature were not considered in the

comparison: a) query expansion (also known as k-nn reranking

by several authors) since it is a complementary technique

to all the compared methods (including ours), and it would

contribute to improve all the results in similar proportions,

TABLE II
A COMPARISON OF OUR PROPOSAL TO OTHER STATE-OF-THE-ART

APPROACHES IN OXFORD DATASET.

Algorithm AP

Hard BoW + RANSAC [3] 0.66

Soft BoW [4] 0.68

Soft BoW + RANSAC [4] 0.73

Kernel Density Estimation [33] 0.61

GVP + RANSAC [18] 0.71

[19] 0.75

Proposal 0.75

TABLE III
A COMPARISON OF OUR PROPOSAL TO OTHER STATE-OF-THE-ART

APPROACHES IN THE HOLIDAYS DATASET

Algorithm AP

[13] 0.75

[19] 0.76

[14] 0.78

Proposal 0.76

and b) orientations priors or manually rotation of the images,

since they are either completely database dependent or require

human manual effort to be run.

For the Oxford 5K dataset, although it is not the main

objective of this work (we aim to automatically detect the area

of interest in the query image), we present results achieved

using the bounding boxes associated with the landmarks (as

proposed in the experimental protocol described in [3]). In our

model, the location information coming from the bounding

box was incorporated on the spatial coherency-based location
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TABLE IV
SEGMENTATION ACCURACY (%)

Algorithm Acc

RANSAC 61.8

Our method 68.2

distribution.

For the Holidays dataset, we have found that, due to the

short number of relevant images per query, the influence of

the re-ranking methods is not so notable and, in addition, that

they perform better with short lists to re-rank. This gives much

importance to the initial ranked list which, in our case and due

to the low performance of classical BoW, was generated by

simply counting the number of matches between images. The

number of re-ranked images is R = 10 for Hilidays dataset.

The results prove that our approach successfully compares

to the main state-of-the-art approaches in both datasets. For the

Oxford 5k dataset, our method achieves the best results among

all compared techniques, whereas for the Holidays dataset, our

performance is very close to the best performing method. As

we have already mentioned this dataset only contains between

1-3 positives per query, what gives more importance to the

previous ranking.

3) ROI segmentation: The proposed generative model is

also able to unsupervisely discover the ROI in the query image.

This region is usually associated with an element (building,

object) of special interest in the query that is successfully

matched in several reference images. The process followed

to obtain the ROI segmentation was described in subsection

II-D.

Fig. 7 illustrates some ROI segmentation results.

Furthermore, since the same segmentation approach can be

also applied to RANSAC-based reference system, we con-

ducted a comparative experiment to assess the segmentation

performance. To that end, we have manually segmented the

foreground objects of the 55 queries in the database. The

resulting binary masks are available online1. Specifically, we

have computed a segmentation accuracy measurement as the

percentage of correctly labeled pixels over the total number

of pixels. The results are shown in Table IV and, as it can

be seen, our method clearly outperforms the results obtained

by RANSAC, the classical geometric-based method for image

matching.

B. Handling more than one object of interest

In previous experiments, since there was only one landmark

per query image, we fixed to K = 2 the number of foreground

components in our model. Nevertheless, the proposed model

provides the capability of dealing with more than one fore-

ground component. In order to assess this capability we have

conducted three different experiments, namely: a) a multi-

class category-based segmentation experiment on the ETHZ

toys dataset; b) an object detection experiment on the RGB-D

object dataset; and c) a multiview object retrieval experiment

on the Oxford building dataset.

1http://www.tsc.uc3m.es/˜igonzalez/maskqueries.zip

TABLE V
MULTI-CLASS SEGMENTATION RESULTS ON ETHZ TOYS DATASET

Algorithm Acc

RANSAC 72.4

Proposed K = 2 73.6

Proposed K = 3 72.4

Proposed K = 4 70.7

Proposed Kopt 77.9

Proposed Kaut 76.4

1) Multi-class category-based segmentation experiment on

the ETHZ toys dataset: Concerning this first experiment, it

is worth mentioning that we are interested in assessing our

algorithm in a category-based segmentation problem, rather

than in assessing individual detections (as it is more usual

for this dataset). In particular, we do not only consider the

image partition into regions, but also the correct labeling of

each region with the corresponding object. In this manner, the

fact of addressing a multi-class problem allows us to evaluate

the capability of our model to work with K > 2. Hence, we

aim not only to detect the presence of an object in an image,

but also to properly segment it. Furthermore, to be consistent

with our unsupervised approach, our method is not aware of

the category represented by each reference image. Just at the

end, for evaluation purposes, each component in the mixture

is labeled with the object-category of the most likely reference

image.

Results of this experiment are shown in Table V in terms

of pixel-wise segmentation accuracy. This table provides the

results achieved by the RANSAC-based reference method and

several versions of the proposed method; in particular:

• RANSAC: to obtain the best possible segmentation, we

have properly mixed the individual segmentations pro-

vided by RANSAC. Specifically, since RANSAC consid-

ers an individual matching problem between a query and

each reference image, when two objects were detected in

the same pixel, the class corresponding to the image with

more ’inlier’-type matches was selected.

• Proposed method with a fixed K: for each case, a maxi-

mum of K objects can be detected per image.

• Proposed method with the optimal K value (Kopt): in

order to evaluate the upper limit of the algorithm, we

have run our model for K = 1...10 and then, for each

particular test image, we have selected the optimal result

”a posteriori”.

• Proposed method with an automatically selected K value

(Kaut): the proposed algorithm using the simple iterative

method described in section II-E to automatically select

K. As mentioned in that section, the proposed method

relies on a linear classifier that, in our experiments, have

been trained using data generated from the first image

and evaluated on the whole dataset.

As can be observed, setting predetermined value of K does

not turn to be optimal for this dataset since each image

contains a different number of objects. Furthermore, since

the test images contain 1-3 objects (except for the first one,

that contains 9 objects), lower values of K perform better.
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Fig. 7. ROI segmentation examples.

TABLE VI
OBJECT DETECTION RESULTS ON THE RGB-D OBJECT DATASET

Algorithm F-score

RANSAC 45.9

Proposed K = 2 47.4

Proposed K = 3 43.6

Proposed K = 4 29.8

Proposed Kopt 61.1

Proposed Kaut 50.0

As expected, the version of the proposed algorithm using

the optimal K produces an upper bound of the algorithm

performance. However, the results obtained by the automatic

method are quite close, what demonstrates that it is possible to

automatically select a suitable value for K. Again, our proposal

provides better performance than RANSAC due to the fact

that it concurrently considers all the foreground objects rather

than solving individual matching problems between queries

and models.

2) Object detection experiment on the RGB-D object

dataset: In this dataset, precise pixel-wise ground-truth object

segmentations are not available, but bounding boxes locating

the objects are available instead. Therefore, we have relied

on these bounding boxes to provide object detection results.

To this end, our algorithm aims to provide one bounding box

per foreground component corresponding to a detected object.

Then, to assess the system performance, we have considered

as detections only those for which the relative overlap between

ground truth and retrieved bounding boxes exceeds 0.5.

Results of this experiment are shown in Table VI in terms

of detection F-score. The same methods considered in the

previous experiments have been compared again for this

second dataset. The conclusions are very similar to those found

in the previous task; in particular, the proposed automatic muti-

object retrieval method has shown to overcome RANSAC and

to achieve the closest results to the optimal case (Kopt).

3) Multiview object retrieval experiment on the Oxford

building dataset: A multiview object retrieval task, in which

several views of the same object are provided to enhance the

system performance, could be another interesting application

of our model. With that purpose, we have manually generated

11 new query images that contain five different views of each

of the Oxford landmarks. Since the Oxford Building dataset

contains 55 queries, 5 corresponding to each landmark, we

have concatenated those 5 images to end up with a composite

query in which several views of the building are provided to

improve the retrieval process. Figure 8 shows some illustrative

examples of the generated multiview query images.

For each query image we have run the proposed generative

model with K = 6 components, one of them representing back-

ground regions in images, and the others modeling foreground

components. Our experiments showed how the inference pro-

cess led to well defined foreground components, each of them

associated with one of the building views and a background

component covering those areas that cannot be consistently

matched in the reference images (see Figure for an illustrative

example). In particular, we have measured that the 96.1% of

the points belonging to each FG component are associated

with the same building view, what supports our observations.

In order to establish a ranking of the reference images, a

combined similarity measure χr was computed as the sum of

the posterior probabilities φik for all the foreground compo-

nents (k > 1):

χr =
Nr

∑
i=1

K

∑
k=2

φrk (28)

With the purpose of assessing the quality of this new ranking

obtained using K = 6, we have compared this new result to that

of our system using K = 2. Specifically, we have considered

the 5 individual rankings for each of the 5 query images of

each landmark and K = 2 and, then, averaged these results. In

this case, the average provided better performance than other

simple fusion operators such as max.

In table VII we show the obtained results for two differ-

ent numbers of re-ranked images (R = 200 and R = 2000).

From these results, we can conclude that the proposed multi-

component method attains higher performance by jointly con-

sidering all the available views of the landmark. A query-by-

query analysis shows that our method is particularly effective

when the views included in the composite query are very

diverse; for example, in the case of the bottom of Figure 8

our proposal achieved an AP increase of 0.18 with respect to

the reference (due to the high variability among query images).

A more in-depth analysis of the results demonstrates that our

method tends to assign each reference image to a particular

component in the mixture, which is in turn associated with

the most similar image in the composite query. This fact
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Fig. 8. Three examples of multiview query images.

Fig. 9. An illustrative example of the segmentations of the foreground components generated by our algorithm for K = 6 (i.e., for 5 foreground components).

TABLE VII
AP RESULTS FOR THE MULTIVIEW OBJECT RETRIEVAL

Algorithm R=200 R=2000

Proposed - K = 2 0.74 0.78

Proposed - K = 6 0.78 0.82

TABLE VIII
AVERAGE COMPUTATION TIME AND STANDARD DEVIATION PER QUERY

WITH OUR APPROACH AND RANSAC

Algorithm R=100 R=1000

RANSAC 0.58±0.34 secs 4.71±1.88 secs

Proposed 1.36±1.12 secs 8.81±3.22 secs

can be interpreted as a nice consequence of the use of just

one transformation matrix Akr, given a component k, between

the composite query and a reference image. This unique

transformation matrix avoids associating points belonging to

different views of the landmark with the same foreground

component in the mixture.

C. On the computational complexity and the scalability of the

model

In what concerns to the computational complexity of our

model, we have measured the computation time of our ap-
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Fig. 10. Illustration of the scalability properties of the proposed approach.
The datasets have been divided into several numbers of partitions P for
computational purposes. Then, the system performance has been represented
as a function of the number of partitions. a) AP for various values of P on the
Oxford Building dataset for the K = 2 image retrieval task and a re-ranking
of a total of R = 2000 images; and b) F-score for various values of P on the
RGB-D dataset for the K > 2 multi-object detection task. In both cases, for
better visualization, a log-scale of the P axis has been used.

proach and compared it with that of the RANSAC approach.

Let us note that both techniques were implemented in a high

level programming language (Matlab), they were run with

single threading, with the particular setup used in our exper-

iments, and without any specific optimization. In addition, in

order to provide a fair comparison, just the time devoted to
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the geometric re-ranking was measured (we did not consider

other previous tasks such as descriptor computation, keypoints

matching process, reading/writing files, etc.). The total time

devoted to the re-ranking process per query is included in

Table VIII for two different numbers of re-ranked images

(N=100,1000).

From these results, we can see that both RANSAC and

our method show similar behavior: the execution time shows

notable variations (standard deviation) depending on the num-

ber of detected points in the query, and approximately grows

linearly with the number of re-ranked images.

Furthermore, running our method requires approximately

twice the time than the RANSAC approach, due to the extra

elements we are including in the generative model that are not

taken into account in RANSAC. However, executions times are

still comparable and, as we have seen in the experimental sec-

tion, our method shows many advantages over the RANSAC

approach.

Considering now the scalability of the proposed model to

deal with very large image data bases, our main concern turned

to be the memory consumption. Since our proposal jointly

processes all the reference images, the memory consumption

increases with the number of references images R. Therefore,

managing all the references jointly becomes impractical. Al-

ternatively, a sub-optimal implementation of the method can

be made by splitting the reference image dataset into P subsets

that can be successfully handled by our model.

Since better performance was expected from a low number

P of large subsets, as long as many images are concurrently

handled, it was worthy to assess the sensibility of the per-

formance to this parameter and, consequently, the feasibility

of the method for working with very large databases. With

this purpose, we conducted two series of experiments: a) in

the K = 2 image retrieval scenario with the Oxford building

dataset; and b) in the K > 2 multi-object detection scenario

with the RGB-D dataset. Our objective was to test sub-optimal

implementations using different numbers of partitions P. The

results of these experiments are shown in Fig. 10, where the

system performance is depicted as a function of the number

of partitions into which the dataset was divided.

As can be observed, for the K = 2 (Fig. 10(a)) image

retrieval task, the performance of the system keeps being

high until P goes beyond 32 (log2P = 5) partitions. This

is a nice result since if P = 16 is used, which corresponds

with a partition size of 125 images, very good performance

is achieved at the same time that memory consumption is

minimized.

For the K > 2 multi-object detection experiment, it should

be noticed that the fact dividing the dataset into various subsets

entails both pros and cons: on the one hand, it is clear that,

as in the previous case, working on small subsets reduces

the potential benefits of considering the whole dataset (what

normally would lead to a better discrimination between true

and false matches). Furthermore, if the subsets became so

small that they would not contain at least one relevant sample

of each object of interest, the output of the proposed approach

would become unstable (this situation is obviously more likely

in the multi-object scenario). On the other hand, by doing

parallel executions on different subsets, we can take advantage

of the various independent detections at the detection fusion

stage; in particular, given a number of partitions P, we fuse

those detections exhibiting high degree of overlap and remove

those ones that do not appear in a predefined number of subsets

(we have heuristically set this value to 20% of the subsets). In

this manner, many false detections are filtered out according

to their lack of consistency along various subsets.

The results shown in Fig. 10(b) support these ideas: we can

see how performance improves for partitions with just a few

number of subsets (e.g. for P= 4, what corresponds to subsets

of 1000 images), and can be still considered good enough

for larger values in the range P = 8...32 (subsets of 500-134

images). However, when P is too large (P= 64), and therefore

the subsets are too small, the lack of relevant examples in many

subsets makes our approach unstable, and thus penalizes its

performance.

Hence, in general, we can conclude that, our approach

works fine and may work even better when the whole set of

data is divided into a small number of subsets. The rationale

behind this result is that the fusion stage allows us to filter out

many erroneous results when they do not appear consistently

in various executions. Just when we bring the scalability to

the extreme, i.e., when the number of subsets is too large,

the performance of the approach decreases due to the lack

of relevant examples in the reference subsets. Since, in our

experiments, we have obtained good results with subsets of

reasonable sizes (125 images for simple K = 2 image retrieval,

or 134 images for a K > 2 multi-object retrieval), it can be

concluded that our proposal would be scalable for very large

scale image-retrieval tasks.

IV. DISCUSSION

In this paper we have proposed a generative probabilistic

model that concurrently tackles image retrieval and ROI seg-

mentation problems. By jointly modeling several properties

of true matches, namely: objects undergoing a geometric

transformation, typical spatial location of the region of interest,

and visual similarity, our approach improves the reliability of

detected true matches between any pair of images. Further-

more, the proposed method associates the true matches with

any of the considered foreground components in the image

and assigns the rest of the matches to a background region,

what allows it to perform a suitable ROI segmentation.

We have conducted a comprehensive assessment of the

proposed method. Our results on two well-known databases,

Oxford building and Holidays, prove that it is highly compet-

itive in traditional image retrieval tasks, providing favorable

results in comparison to most of the state-of-the-art systems.

Regarding ROI segmentation, assessed on the Oxford database,

the proposed model outperformed RANSAC, the most well-

known geometric approach.

In our opinion these results are due to two main reasons:

first, our model jointly manages several properties of true

matches; and second, by considering the whole set of reference

images at once, the proposed method provides a robust method

for estimating the actual geometric transformation undergone
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by the objects. In particular, by computing the posterior prob-

ability that a match is considered as true (e.g. it belongs to any

of the considered foreground components), successfully rejects

outliers in the estimation of the geometric transformation.

This outlier rejection ability notably improves when all the

reference images are jointly considered in comparison to

traditional techniques where each pair of images (query and

reference) are addressed independently.

In addition, our model can also work in scenarios where

there is more than one object-of-interest in the query image.

To assess the performance of the proposed model, we have

conducted three different experiments: a Multi-class category-

segmentation experiment on the ETHZ toys dataset; a multi-

object detection experiment on the RGB-D dataset; and a

multiview object retrieval experiment on the Oxford building

dataset. For the first two cases, we developed and tested a

method for automatically selecting the number K of objects-

of-interest in the query image, with results very close to those

ones achieved with the optimal K in each case. In the third

experiment, the results showed a significant performance im-

provement when the number of foreground objects considered

by the model fitted the actual number of objects-of-interest.

These results allow us to conclude that the performance of

the retrieval process can be notable improved when different

views of the object-of-interest are available.
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