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Abstract—Bit and power loading schemes for a single-user
multiple-input multiple-output channel using a minimum mean-
square error receiver are proposed. Such schemes are derived
without the benefit of instantaneous channel state information
(CSI) at the transmitter, on the basis of only statistical CSI. They
exploit the relationships between the average bit error probability
at the receiver and the power allocation at the transmitter, in the
context of spatially correlated Rayleigh fading. The performance
of the proposed schemes is then benchmarked with respect to
both non-adaptive transmission and to an adaptive counterpart
with a zero-forcing receiver.

Index Terms—bit loading, minimum mean-square error
(MMSE), bit error rate (BER), multiple-input multiple-output
(MIMO), correlated channel.

I. INTRODUCTION

In multiple-input multiple-output (MIMO) communication,
the adaptation of modulation and coding at the transmitter
side, based on channel characteristics, is an important fea-
ture to reduce the transmission power and/or enhance the
bit rates. It is reasonable to assume that the receiver has
perfect instantaneous channel state information (CSIR). For
the case that such instantaneous CSI is also available at the
transmitter, the design of linear minimum mean-square error
(MMSE) transmitters and receivers is addressed in [1]. Other
contributions in this context include [2] and [3].

Often, the transmitter does not have such accurate chan-
nel knowledge, but only knowledge of the CSI distribution
(CDIT). Under CDIT, the spatial covariance of the optimal
Gaussian signal that achieves capacity is characterized in
[4]. From the viewpoint of implementation, the emphasis
shifts from the optimal Gaussian signals onto families of
discrete constellations, with bit loading [5] the standard way
of adapting the transmission to the channel conditions. In
[6], the authors propose some bit and power loading schemes
for single-user MIMO with CDIT and a linear zero-forcing
(ZF) receiver. In this paper, those schemes are modified to
incorporate a superior linear MMSE receiver. Altogether, this
work enables addressing the following questions:
• What bit rates can be achieved, with discrete constella-

tions, at a certain average bit error probability (BER)?
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• What is the optimum power loading?
• How much can be gained, in terms of signal-to-noise ratio

(SNR), with respect to a nonoptimized transmission or to
an optimized transmission with a ZF receiver?

In order to answer these questions, it is essential to estab-
lish relationships between the average BER after the MMSE
receiver and the powers allocated at the transmitter under the
premise of CDIT. For that purpose, our derivations leverage
two earlier results for MIMO MMSE receivers over a corre-
lated Rayleigh-fading channel. First, the characterization of the
signal-to-interference-plus-noise-ratio (SINR) at the receiver
output, furnished in [7], and second, the bit error rate (BER)
approximations for M -QAM signals, given in [8].

II. CHANNEL MODEL

Let nT and nR denote the number of transmit and receive
antennas, respectively, with nT ≤ nR. The nT × 1 transmit
vector is denoted by x = VP1/2s, where s is a vector
of independent unit-variance M -QAM symbols. The unitary
matrix V represents a linear precoder whose columns define
the signalling directions. In turn, P = diag [p1 p2 . . . pnT ]
with pj ≥ 0 is the power allocated to the jth signaling vector,
normalized such that E

[
Tr
{
xHx

}]
= Tr {P} ≤ nT. Then,

the nR × 1 received vector is

y =
√

γ

nT

HcVP1/2s + n, (1)

where n is a vector with independent zero-mean unit-variance
complex Gaussian noise samples, γ is the average signal-to-
noise ratio (SNR) per receive antenna, and Hc is the nR×nT

matrix representing the MIMO wireless channel. Allowing for
arbitrary correlations among the transmit antennas,

Hc = HwR1/2 (2)

where the (i, j)th entry of R equals the correlation between the
ith and jth transmit antennas, normalized such that Tr{R} =
nT, while Hw contains independent zero-mean unit-variance
complex Gaussian entries.



Defining an effective channel matrix

H =
√

γ

nT

HcVP1/2, (3)

=
√

γ

nT

HwR1/2VP1/2. (4)

we can simply write y = Hs + n. The output of a linear
MMSE receiver is

(
I + H†H

)−1
H†y.

For a rather general class of channel models, the precoder
V is capacity-achieving when its columns coincide with the
eigenvectors of R [4]. This same precoder is also shown in
[9] to be optimal, from an SINR standpoint, with a linear
MMSE receiver. Thus, we shall use this precoder matrix for
our derivations.

III. AVERAGE BIT ERROR PROBABILITY

It is shown in [7] that, with Rayleigh fading, the SINR
distribution corresponding to the jth signaling direction at the
output of a linear MMSE receiver is given by the sum of two
terms, Sj + Tj , where Sj is the SINR at the output of a ZF
receiver while Tj is an independent term. Furthermore:

• The term Sj follows the Gamma distribution

fSj
(s) =

sα−1e−s/θ

Γ(α)θα
(5)

with

α = nR − nT + 1 (6)

θj =
γ/nT

[P1/2V†RVP1/2]−1
j,j

(7)

where [·]−1
j,j denotes the jth diagonal entry of the inverse

of a matrix. Since our choice for the precoder V diago-
nalizes R,

θj =
pjλjγ

nT

(8)

where λj is the jth eigenvalue of R.
• The term Tj is well approximated by a Generalized

Gamma distribution. The Generalized Gamma is defined
by three parameters, herein labeled αj , βj and ξj , which
are conveniently expressed via the first three moments of
Tj . Such moments, denoted respectively by µj , σ2

j and
ηj , can be approximated by numerically solving [7]

µj =
1

nT − 1

nT−1∑
i=1

1
1 + γτi (1− υ + υµ)

(9)

σ2
j =

1
nT − 1

nT−1∑
i=1

1 + γτiυµ

(1 + γτi(1− υ + υµ))2

1 +
1

nT − 1

nT−1∑
i=1

γτiυ

(1 + γτi (1− υ + υµ))2

(10)

ηj =

2
nT − 1

nT−1∑
i=1

γτiυσ
2

(γτi (1− υ + υµ) + 1)2(
1 +

1
nT − 1

nT−1∑
i=1

γτiυ

(γτi (1− υ + υµ) + 1)2

)

+

2
nT − 1

nT−1∑
i=1

(
γτiυµ− γτiυσ2 + 1

)
(γτi (1− υ + υµ) + 1)3(

1 +
1

nT − 1

nT−1∑
i=1

γτiυ

(γτi (1− υ + υµ) + 1)2

)
(11)

where υ = (nT− 1)/nR while τi is the ith eigenvalue of
the matrix P1/2V†RVP1/2 with the jth row and the jth
column removed. For our choice of V, then, {τi}nT−1

i=1 =
{piλi}i6=j , which determines how the moments depend
on j.

From µj , σ2
j and ηj , the parameters of Generalized Gamma

distribution for Tj can then be written as

αj =
(nR − nT + 1 + (nT − 1)µj)

2

nR − nT + 1 + (nT − 1)σ2
j

(12)

βj = θj
nT

nR

nR − nT + 1 + (nT − 1)σ2
j

nR − nT + 1 + (nT − 1)µj
(13)

where θj in (13) is as defined in (8). See (14) in the next page
for ξj .

By integrating well-known instantaneous uncoded BER
expressions over the SINR distribution and using its moment
generating function, the exact uncoded average BER can be
obtained [8], [10]. Handy approximations to such uncoded
average BER are given in [8] and reflected in Table I (see
the next page), parameterized by the type of constellation and
by whether ξj is above or below unity.

Furthermore, from [6], [11], for M -QAM constellations in
conjunction with a convolutional code of rate rc = kc/nc and
minimum distance df , the BER at the output of a hard decision
decoder can be approximated, at high SNR, by

Pc ≈
1
kc
Adf

2dfP
df/2
e (15)

where Pe is the corresponding uncoded error probability while
Adf

is the number of paths in the trellis with distance df from
the all-zero path that merge with this all-zero path for the first
time. Using

D =
1
kc
Adf

2df/2πdf/4 (16)

and the uncoded approximations in [8], the average BER
corresponding to the j signaling vector with coded M -QAM
Pc,j can be approximated, at high SNR, as shown in Table I.

IV. OPTIMIZATION PROBLEMS

Letting Mj be the cardinality of the modulation applied to
the jth signaling vector in V, two dual optimization problems
can be posed.
A. Bit rate maximization. In this case, the goal is to find the

combination {Mj}nT
j=1 that solves



ξj =
2
(

1− nT − 1
nR

+
nT − 1
nR

µj

)(
1− nT − 1

nR

+
nT − 1
nR

ηj

)
(

1− nT − 1
nR

+
nT − 1
nR

σ2
j

)2 − 1 (14)

Table I
AVERAGE BER HIGH-SNR APPROXIMATIONS FOR CODED MODULATIONS. (FOR UNCODED, SET D = 1/(2

√
π) AND df = 1.)

ξj ≥ 1

P 2−PAM
c,j ≈ D exp

{
αj

ξj − 1

(
1−

(
1 + dfβjξj

)1−1/ξj
)}

P 4−QAM
c,j ≈ D exp

{
αj

ξj − 1

(
1−

(
1 +

dfβjξj

2

)1−1/ξj
})

PM−QAM
c,j ≈

4D

log2M
exp

{
αj

ξj − 1

(
1−

(
1 +

3

2 (M − 1)
dfβjξj

)1−1/ξj
)}

ξj ≤ 1

P 2−PAM
c,j ≈ D exp

{
αj

1− ξj

((
1 + dfβjξj

)1−1/ξj − 1
)}

P 4−QAM
c,j ≈ D exp

{
αj

1− ξj

((
1 +

dfβjξj

2

)1−1/ξj

− 1

)}

PM−QAM
c,j ≈

4D

log2M
exp

{
αj

1− ξj

((
1 +

3dfβjξj

2 (M − 1)

)1−1/ξj

− 1

)}

max R =
nT∑
j=1

log2Mj

s.t. Pc,j ≤ BER, 1 ≤ j ≤ nT

Tr {P} = nT, pj ≥ 0

(17)

where BER is the target average BER.
B. Power minimization. In this case, the goal is to find the

combination {Mj}nT
j=1 that solves

min Tr {P}
s.t. Pc,j ≤ BER, 1 ≤ j ≤ nT

nT∑
j=1

log2Mj =Rtot, pj ≥ 0
(18)

where Rtot is the target bit rate.

The proposed solution to the optimization problems is
an exhaustive search for the best combinations of bit (i.e.,
constellation cardinalities and coding rates when applicable)
and power loads. For each possible bit allocation, and using the
approximations in Table I that relate the BER with the power
matrix P = diag [p1 p2 . . . pnT ], the appropriate constraints
can be enforced. Clearly, for a given set of constraints, the
total number of bits with an MMSE receiver cannot be less
than with a ZF receiver. Therefore, the starting point for the
search is always the solution derived in [6] for ZF receivers,
and the search progresses from that point towards higher loads
until the constraints set in. With this choice of the starting
point, the process is usually quick and, even if truncated
before termination, it always returns a performance point that
is superior to that achieved with a ZF receiver.

V. EXAMPLES

For the performance evaluations that follow, a transmit
covariance matrix corresponding to suburban/rural outdoor
environments with small angular spreads at the transmitter is
used [12]. This matrix, given by

R =


1 ρ ρ4 · · · ρ(nT−1)2

ρ 1 ρ · · · ρ(nT−2)2

ρ4 ρ 1 · · · ρ(nT−3)2

...
. . .

...
ρ(nT−1)2 · · · ρ4 ρ 1

 . (19)

is both representative and convenient, as it is a function of a
single parameter ρ.

The following scenarios are considered in terms of modu-
lation and coding schemes available at the transmitter:
• 6 uncoded bit rates, with Mj ∈ {0, 2, 4, 8, 16, 32, 64}.

This is a realistic uncoded scenario.
• 12 bit rates with convolutional coding, where Mj ∈
{0, 2, 4, 8, 16, 32, 64}. Here, the transmission is either
uncoded or else coded with a rate-1/2 convolutional code
of generator polynomials (133, 171) and df = 10.

A. Bit Rate Maximization
Figs. 1 and 2 show the achievable bit rate R for nT = 3,

nR = 4, and BER = 10−2, with two distinct values for the
correlation parameter ρ. Fig. 1 corresponds to 6 uncoded bit
rates while Fig. 2 corresponds to 12 bit rates with convolu-
tional coding. The following observations can be made:
• Transmit correlation is seen to be beneficial at low SNR,

but detrimental at high SNR. This agrees with the impact
of transmit correlation on channel capacity [13].



• Predictably, the performance of MMSE and ZF receivers
become progressively similar as the SNR grows.

Fig. 3 illustrates the applicability of the proposed optimiza-
tion to large-dimensional settings, and specifically to the case
nT = 8, nR = 10.

B. Power Minimization

We define as adaptation power gain the difference between
the power required without and with bit load optimization for
given BER and Rtot. Hence, the adaptation power gain equals
nT − Tr{P}.

Figs. 4 and 5 portray the adaptation power gain as function
of the correlation parameter ρ for nT = 3 and nR = 4,
respectively with BER = 10−2 and BER = 10−4. The
results are parameterized by Rtot. The adaptation power gain
increases for higher ρ since the optimization allows adapting
to the fact that the output SINRs become very different in that
case. We can see a minor dependence on the values of BER.

Fig. 6 depicts two extreme cases with BER = 10−2, when
the required bit rate is either Rtot = nT or Rtot = 6nT.
These bit rates push the channel into low- and high-SNR
behaviors, respectively, revealing that for a given correlation
the adaptation power gain at low SNR is larger than at high
SNR. At high SNR, the fact that the constellation cardinalities
are capped restricts the ability to optimize the bit and power
loads.

Finally, we define as MMSE power gain the difference
between the powers required with ZF and MMSE receivers,
respectively. Leveraging the ZF results in [6], Figs. 7 and 8
present MMSE power gains as function of ρ, parameterized by
Rtot, for two distinct values of BER. We can see substantial
gains. Here the dependence on ρ is residual because both
schemes leverage the difference among output SINRs.
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Figure 1. Bit rate vs. SNR; 6 uncoded bit rates with nT = 3, nR = 4 and
BER = 10−2.

VI. SUMMARY

For either uncoded or convolutionally encoded transmission
in single-user MIMO with linear MMSE reception, a method
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Figure 2. Bit rate vs. SNR; 12 bit rates with convolutional coding, nT = 3,
nR = 4 and BER = 10−2.
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Figure 3. Bit rate vs. SNR; 6 uncoded bit rates with nT = 8, nR = 10 and
BER = 10−2.
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Figure 4. Adaptation power gain vs. ρ; 6 uncoded bit rates with nT = 3,
nR = 4 and BER = 10−2.
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Figure 5. Adaptation power gain vs. ρ; 6 uncoded bit rates with nT = 3,
nR = 4 and BER = 10−4.
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Figure 6. Adaptation power gain vs. ρ; 6 uncoded bit rates with BER =
10−2.
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Figure 7. MMSE power gain vs. ρ; 6 uncoded bit rates with nT = 3,
nR = 4 and BER = 10−2.
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Figure 8. MMSE power gain vs. ρ; 6 uncoded bit rates with nT = 3,
nR = 4 and BER = 10−4.

has been proposed to solve the two dual optimization problems
of bit rate maximization and power minimization. As shown
through simulations, higher bit rates and/or lower power con-
sumption can be achieved. The relative improvement relative
to ZF reception has also been illustrated.
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