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Nothing in life is to be feared, it is only to be understood.

— Marie Curie —

Malware is definitely not an exception.
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Abstract

Smart devices equipped with powerful sensing, computing and networking capa-

bilities have proliferated lately, ranging from popular smartphones and tablets

to Internet appliances, smart TVs, and others that will soon appear (e.g., watches,

glasses, and clothes). One key feature of such devices is their ability to incorporate

third-party apps from a variety of markets. This poses strong security and privacy is-

sues to users and infrastructure operators, particularly through software of malicious

(or dubious) nature that can easily get access to the services provided by the device

and collect sensory data and personal information.

Malware in current smart devices—mostly smartphones and tablets—has rock-

eted in the last few years, supported by sophisticated techniques (e.g., advanced

obfuscation and targeted infection and activation engines) purposely designed to

overcome security architectures currently in use by such devices. This phenomenon

is known as the proliferation of smart malware. Even though important advances

have been made on malware analysis and detection in traditional personal computers

during the last decades, adopting and adapting those techniques to smart devices

is a challenging problem. For example, power consumption is one major constraint

that makes unaffordable to run traditional detection engines on the device, while

externalized (i.e., cloud-based) techniques raise many privacy concerns.

This Thesis examines the problem of smart malware in such devices, aiming at



vi Abstract

designing and developing new approaches to assist security analysts and end users in

the analysis of the security nature of apps. We first present a comprehensive analysis

on how malware has evolved over the last years, as well as recent progress made to

analyze and detect malware. Additionally, we compile a suit of the most cutting-edge

open source tools, and we design a versatile and multipurpose research laboratory for

smart malware analysis and detection.

Second, we propose a number of methods and techniques aiming at better an-

alyzing smart malware in scenarios with a constant and large stream of apps that

require security inspection. More precisely, we introduce Dendroid, an effective sys-

tem based on text mining and information retrieval techniques. Dendroid uses static

analysis to measures the similarity between malware samples, which is then used to

automatically classify them into families with remarkably accuracy. Then, we present

Alterdroid, a novel dynamic analysis technique for automatically detecting hidden or

obfuscated malware functionality. Alterdroid introduces the notion of differential fault

analysis for effectively mining obfuscated malware components distributed as parts

of an app package.

Next, we present an evaluation of the power-consumption trade-offs among differ-

ent strategies for off-loading, or not, certain security tasks to the cloud. We develop

a system for testing several functional tasks and metering their power consumption

called Meterdroid. Based on the results obtained in this analysis, we then propose a

cloud-based system, called Targetdroid, that addresses the problem of detecting tar-

geted malware by relying on stochastic models of usage and context events derived

from real user traces. Based on these models, we build an efficient automatic testing

system capable of triggering targeted malware.



Finally, based on the conclusions extracted from this Thesis, we propose a number

of open research problems and future directions where there is room for research.





Resumen

Los dispositivos inteligentes se han posicionado en pocos años como aparatos

altamente populares con grandes capacidades de cómputo, comunicación y

sensorización. Entre ellos se encuentran dispositivos como los teléfonos móviles in-

teligentes (o smartphones), las televisiones inteligentes, o más recientemente, los

relojes, las gafas y la ropa inteligente. Una característica clave de este tipo de dis-

positivos es su capacidad para incorporar aplicaciones de terceros desde una gran

variedad de mercados. Esto plantea fuertes problemas de seguridad y privacidad para

sus usuarios y para los operadores de infraestructuras, sobre todo a través de softwa-

re de naturaleza maliciosa (o malware), el cual es capaz de acceder fácilmente a los

servicios proporcionados por el dispositivo y recoger datos sensibles de los sensores

e información personal.

En los últimos años se ha observado un incremento radical del malware atacando

a estos dispositivos inteligentes—principalmente a smartphones—y apoyado por so-

fisticadas técnicas diseñadas para vencer los sistemas de seguridad implantados por

los dispositivos. Este fenómeno ha dado pie a la proliferación de malware inteligente.

Algunos ejemplos de estas técnicas inteligentes son el uso de métodos de ofuscación,

de estrategias de infección dirigidas y de motores de activación basados en el con-

texto. A pesar de que en las últimos décadas se han realizado avances importantes

en el análisis y la detección de malware en los ordenadores personales, adaptar y

portar estas técnicas a los dispositivos inteligentes es un problema difícil de resolver.



x Resumen

En concreto, el consumo de energía es una de las principales limitaciones a las que

están expuestos estos dispositivos. Dicha limitación hace inasequible el uso de mo-

tores tradicionales de detección. Por el contrario, el uso de estrategias de detección

externalizadas (es decir, basadas en la nube) suponen una gran amenaza para la

privacidad de sus usuarios.

Esta tesis analiza el problema del malware inteligente que adolece a estos disposi-

tivos, con el objetivo de diseñar y desarrollar nuevos enfoques que permitan ayudar a

los analistas de seguridad y los usuarios finales en la tarea de analizar aplicaciones. En

primer lugar, se presenta un análisis exhaustivo sobre la evolución que el malware ha

seguido en los últimos años, así como los avances más recientes enfocados a analizar

apps y detectar malware. Además, integramos y extendemos las herramientas de có-

digo abierto más avanzadas utilizadas por la comunidad, y diseñamos un laboratorio

que permite analizar malware inteligente de forma versátil y polivalente.

En segundo lugar, se proponen una serie de técnicas dirigida a mejorar el análisis

de malware inteligente en escenarios dónde se requiere analizar importantes cantidad

de muestras. En concreto, se propone Dendroid, un sistema basado en minería de

textos que permite analizar conjuntos de apps de forma eficaz. Dendroid hace uso

de análisis estático de código para extraer una medida de la similitud entre distintas

las muestras de malware. Dicha distancia permitirá posteriormente clasificar cada

muestra en su correspondiente familia de malware de forma automática y con gran

precisión. Por otro lado, se propone una técnica de análisis dinámico de código,

llamada Alterdroid, que permite detectar automáticamente funcionalidad oculta y/o

ofuscada. Alterdroid introduce la un nuevo método de análisis basado en la inyección

de fallos y el análisis diferencial del comportamiento asociado.



Por último, presentamos una evaluación del consumo energético asociado a dife-

rentes estrategias de externalización usadas para trasladar a la nube determinadas

tareas de seguridad. Para ello, desarrollamos un sistema llamado Meterdroid que per-

mite probar distintas funcionalidades y medir su consumo. Basados en los resultados

de este análisis, proponemos un sistema llamado Targetdroid que hace uso de la nube

para abordar el problema de la detección de malware dirigido o especializado. Dicho

sistema hace uso de modelos estocásticos para modelar el comportamiento del usua-

rio así como el contexto que les rodea. De esta forma, Targetdroid permite, además,

detectar de forma automática malware dirigido por medio de estos modelos.

Para finalizar, a partir de las conclusiones extraídas en esta Tesis, identificamos

una serie de líneas de investigación abiertas y trabajos futuros basados.
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1
Introduction

Smart devices are rapidly emerging as popular appliances with increasingly pow-

erful computing, networking, and sensing capabilities. Perhaps the most suc-

cessful examples of such devices so far are smartphones and tablets, which in their

current generation are far more powerful than early personal computers (PCs). One

of the key differences between such “smart” devices and traditional “non-smart” ap-

pliances is that they offer the possibility to easily incorporate third-party applications

through online markets (Figure 1.1 depicts such differences).1

The popularity of smart devices—intimately related to the rise of cloud-computing

paradigms giving complementary storage and computing services—is backed by re-

cent commercial surveys, showing that they will very soon outsell the number of PCs

worldwide [Dediu, 2012, 2013]. For example, the number of smartphone users has

rapidly increased over the past few years. In 2011, global mobile handset shipments

reached 1.6 billion units [Juniper, 2012] and the total smartphone sales reached 472

million units (58% of all mobile devices sales in 2010) [Goasduff and Pettey, 2014].

1Although some early feature phones—such as Java ME—allowed the installation of third-party
software, their functionality and the support given to both users and third-party developers is relatively
limited in comparison to smartphones and other smart devices.
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Figure 1.1: Appliances evolution towards smart devices.

In 2012 the smartphone users penetration increased 68.8% and at the end of 2013

reached 1.43 billion units [eMarketer, 2014]. In fact, the number of Android OS and,

iOS users is also increasing profusely [Nielsen, 2012]. Specifically, the global mobile

OS market share shows that Android OS reached 69.7% at the end of 2012, racing

past Symbian OS, BlackBerry OS and iOS as depicted in Figure 1.2. Furthermore,

the number of worldwide smartphone sales is expected to keep increasing at least

until 2017 [Dediu, 2014b], the average number of applications per device increased

from 32 to 41 and the proportion of time spent by users on smartphone applications

almost equals the time spent on the Web (73% vs. 81%) [Nielsen, 2012].

New smart devices are appearing at a steady pace, including TVs [Samsung, 2014],

watches [Sony, 2014], glasses [Google, 2014b], clothes [CuteCircuit, 2014] and cars

[Newcomb, 2014]. This is not only playing a key role in bringing to reality much-
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Figure 1.2: Main smartphone platforms by market share from 2007 to 2012 [Dediu et al., 2014].

discussed paradigms such as wearable computing or the Internet of Things (IoT),

but also finding innovative and very attractive applications in critical domains such

as, for example, healthcare. Both medical staff and patients are increasingly taking

advantage of such devices, from regular tablets and smartphones [Larner, 2012] to

smart pillboxes [IIH-uBox, 2014], and the new generation of smart wearable systems

(SWS) for health monitoring (HM) or implantable medical devices (IMDs) [Chan

et al., 2012], among others.
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1.1 Smart Malware and Smart Devices

In many respects, smart devices present greater security and privacy issues to users

than traditional PCs [Chin et al., 2012]. For instance, most of such devices incorpo-

rate numerous sensors that could leak highly sensitive information about users loca-

tion, gestures, moves and other physical activities, as well as recording audio, pictures

and video from their surroundings. Furthermore, users are increasingly embedding

authentication credentials into their devices, as well as making use of on-platform mi-

cropayment technologies such as Near Field Communication (NFC) [Fenske, 2012].

One major source of security and privacy problems is precisely the ability to in-

corporate third-party applications, primarily from available online markets but also by

other means. There are currently two established models of smart devices according

to how users can access such markets [Husted et al., 2011]. In the open-market

model, users are free to install applications from any online market, whereas the so-

called walled-garden market model restricts the market from which users can install

applications.2 Many market operators carry out a revision process over submitted

apps, which presumably also involves some form of security testing to detect if the

app includes malicious code. So far such revisions have proven clearly insufficient for

several reasons:

• First, market operators do no give details about how (security) revisions are

done. However, the ceaseless presence of malware in official markets reveals

that operators cannot afford to perform an exhaustive analysis over each sub-

mitted app.

2In spite of this, users have found ways of circumventing such restrictions by modifying the device
so that other markets will be accessible too.
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• Second, determining which applications are malicious and which are not is still

a formidable challenge. This is further complicated by a recent rise in the so-

called grayware [Felt et al., 2011c], namely apps that are not fully malicious

but that entail security and/or privacy risks of which the user is not aware.

• Finally, a significant fraction of users rely on alternative markets to get access

for free to paid apps in official markets. Such unofficial and/or illegal markets

have repeatedly proven to be fertile ground for malware, particularly in the form

of popular apps modified (repackaged) to include malicious code.

The reality is that the rapid growth of smartphone technologies and its widespread

user-acceptance have come hand in hand with a similar increase in the number and

sophistication of malicious software targeting popular platforms. Malware developed

for early mobile devices such as Palm platforms and feature mobile phones was iden-

tified prior to 2004. The proliferation of mobile devices in the subsequent years

translated into an exponential growth in the presence of malware specifically devel-

oped for them (mostly Symbian OS), with more than 400 cases between 2004 and

2007 [Dunham, 2008; Shih et al., 2008]. Later on that year, iPhone and Android

OS were released and shortly became predominant platforms. This gave rise to an

alarming escalation in the number and sophistication of malicious software target-

ing these platforms, particularly Android OS. For example, according to the mobile

threat report published by Juniper Networks in 2012, the number of unique malware

variants for Android OS has increased by 3325.5% during 2011 [Juniper, 2012]. A

similar report by F-Secure reveals that the number of malicious Android OS apps

received during the first quarter of 2012 increased from 139 to 3063 when compared

to the first quarter of 2011 [F-Secure, 2012], and by the end of 2012 it already



6 1. Introduction

���������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������

�

�����

�����

�����

�����

�����

�����

�����

Figure 1.3: Cumulative Android Malware Samples from November 2010 to January 2014 [Sophos,
2014c].

represents 97% of the total mobile malware according to McAfee [McAfee, 2013].

More recently, Sophos Mobile Security Threat Report [Sophos, 2014c] showed that

the cumulative Android OS malware samples almost reach 700 thousands reported

units by 2014 as depicted in Figure 1.3.

The main factors driving the development of malware have swiftly changed from

research, amusement and the search for notoriety to purely economical—and politi-

cal, to a lesser extent. The current malware industry already generates substantial

revenues [Schipka, 2009], and emergent paradigms such as Malware-as-a-Service

(MAAS) paint a gloomy forecast for the years to come. This admits a simple ex-

planation from an economic point of view: all in all, attackers seek to minimize the

cost required to achieve their goals and, therefore, aim at obtaining the maximum

revenues with minimal efforts. For example, the inequality

Cost(Attack)< Potential Revenue (1.1)

is used in [Guido and Arpaia, 2012] to give a cost-benefit analysis of mobile attacks.

This fits perfectly the case of smart devices such as smartphones, where malware is
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Figure 1.4: Correlation between the number of malware cases and platform market share during
a) 2009-2010 [McAfee, 2011], b) 2010 [Juniper, 2012], and c) 2011 [Juniper, 2012].

rather profitable due to (i) the existence of a high number of potential targets and/or

high value targets; and (ii) the availability of reuse-oriented development methodolo-

gies for malware that make exceedingly easy to produce new specimens. Both points

are true for the case of Android OS and explain, together with the open nature of

this platform and some technical particularities, why it has become such an attractive

target to attackers—see for example Figure 1.4, where the correlation between the

market share and the number of unique malware cases reported is straightforward.

Correlations—if not causations—such as those discussed above are paramount

to understand future tendencies and threats, not only in the case of smartphones

or tablets but also in other devices that soon will likely proliferate. For instance,

it has been recently reported that medical devices are plagued with malware [Clark

et al., 2013; Vockley, 2012]. Furthermore, it has been shown that RFID-based

systems, such as the ones used in several medical devices, are a great infection

vector [Rieback et al., 2006]. In the near future, it is quite plausible that similar risks

will affect vulnerable IMDs [Burleson et al., 2012], leaving users and patients exposed

to exfiltration of highly-sensitive medical information or even malicious manipulation

[Halperin et al., 2008a].
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Thwarting malware attacks in smart devices is a thriving research area with a

substantial amount of still unsolved problems. In the case of smartphones, one

primary line of defense is given by the security architecture of the device, one of

whose foremost features is a permission system that restricts apps privileges. This

has proven patently insufficient so far. For example, in the case of Android OS apps

request permissions in a non-negotiable fashion, in such a way that users are left

with the choice of either granting the app everything it asks for at installation time

or it will not be possible to use it. Most users simply do not pay attention to such

requests; or do not fully understand what each permission means; or, even if they do,

it is hard to figure out all possible consequences of granting a given set of privileges.

For example, applications requesting permission to access the accelerometer of a

smartphone or a tablet are rather common. However, it has been demonstrated

that it is possible to infer the keys pressed by the user on a touchscreen from just

vibrations and motion data [Cai and Chen, 2011]. Thus, using such a permission in

conjunction with Internet access—another rather common privilege—could lead to a

serious risk of data exfiltration. On top of that, the problem aggravates in platforms

where apps can interact with each other and share information, as one needs to

consider the privileges acquired by potential collusions.

1.2 Motivation and Objectives

This Dissertation deals with the problem of analyzing smart malware for smart devices,

providing specific methods for improving their identification. The Dissertation is

strongly biased towards smartphones, since they currently are the most extended

class of smart devices and the platform of choice for malware developers and security
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researchers. However, our discussion and conclusions apply to other devices as well,

and can help to better understand the problem and to improve upon current defense

techniques.

We next describe the main motivation and objectives of this work. Firstly, we

state that current methods aiming at analyzing smart malware are ineffective and

we question the role that security analysts play during the study of large amounts

of complex software. Secondly, we establish the need of systematic approaches and

automated tools for analyzing smart malware.

1.2.1 Motivation

This Dissertation identifies two fundamental open issues where research is needed:

There is more malware than ever before, and it is increasingly sophisticated.

P1: Sustained growth in the number of malicious apps targeting smart de-

vices.

As discussed before, malware has become a rather profitable business due to the

existence of a large number of potential targets and the availability of reuse-oriented

malware development methodologies that make exceedingly easy to produce new

samples. The impressive growth both in malware and benign apps is making increas-

ingly unaffordable any human-driven analysis of potentially dangerous apps. This

is especially critical as current trends in malware engineering suggest that malicious

software will continue to grow both in number and sophistication. As a result, market

operators and malware analysts are overwhelmed by the amount of newly discovered

samples that must be analyzed. This is further complicated by the fact that determin-
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ing which applications are malicious and which are not is still a formidable challenge,

particularly for grayware.

This has motivated the need for automated analysis techniques and instruments

to alleviate the workload of performing intelligent security analysis of software. For

instance, when confronted with a continuously growing stream of incoming malware

samples, it would be extremely helpful to differentiate between those that are minor

variants of a known specimen and those that correspond to novel, previously unseen

samples. Grouping samples into families, establishing the relationships among them,

and studying the evolution of the various known “species” is also a much sought after

application.

P2: Increase in the sophistication of malicious apps and the rise of a new

generation of smart malware.

Malware for current smartphone platforms is becoming increasingly sophisticated and

developers are progressively using advanced techniques to defeat malware detection

tools. On one hand, smartphone malware is becoming more and more stealthy

and recent specimens are relying on advanced code obfuscation techniques to evade

detection. These techniques create an additional obstacle to malware analysts, who

see their task further complicated and have to ultimately rely on carefully controlled

dynamic analysis techniques to detect the presence of potentially dangerous pieces

of code. On the other hand, the presence of advanced networking and sensing

functions in the device is giving rise to a new generation of smarter malware. These

malware instances are characterized by a more complex situational awareness, in

which decisions are made on the basis of factors such as the location, the user

profile, or the presence of other apps.
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This state of affairs has consolidated the need for smart analysis techniques to aid

malware analysts in their daily functions. This challenge has to be tackled by novel

methods to efficiently support market operators and security analysts. In some cases,

this problem cannot be solved by market operators alone or by enhanced security

models, as they really depend on each user’s privacy preferences. For example, a

leakage of data such as one’s location or the list of contacts might well constitute a

serious privacy issue for many users, but others will simply not care about it.

The situation described above inevitably leads to the need for more sophisticated

analysis techniques. This, however, poses an important challenge: many devices

suffer from strong limitations in terms of power consumption, so certain security tasks

executed on the platform may be simply unaffordable. External analysis performed

on the cloud in near real time can constitute an alternative. Such a strategy seeks

to save battery life by exchanging computation and communication costs, but it still

remains unclear whether this is optimal or not in all circumstances. Furthermore, the

rise of targeted—user-specific—malware poses one additional challenge: conducting

particularized analysis for specific user and execution context.

1.2.2 Objectives

The main goal of this Thesis is to study methods, tools and techniques to assist

security analysts and end users in the analysis of untrusted apps for smart

devices and automate the identification of smart malware.

To achieve this goal, we will focus in the following three general objectives:

• Study the evolution and current state of malware for smart devices, as well as

recent progress made to analyze and detect it.
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• Develop techniques aiming at better analyzing malware in large scale software

markets, with particular emphasis on intelligent instruments to automate parts

of the analysis process.

• Facilitate the analysis of complex smart malware in scenarios with a constant

and large stream of apps on target. Examples of such sophistication include

malware targeting user-specific actions, malware hindering detection with ad-

vance obfuscation techniques, or malware exploiting the battery limitations of

current devices, to name a few.

1.3 Contributions and Organization

This Thesis provides several contributions in the field of smart malware detection

for smart devices aligned with the goals discussed in the objectives above. These

contributions are grouped into four related areas, which corresponds to the four

central parts of this document: (i) Foundations & Tools, (ii) Static-based Analysis,

(iii) Dynamic-based Analysis, and (v) Cloud-based Analysis.

Foundations and tools. Part I presents the current state of malware analysis and

provides a framework for investigating different analysis and detection strategies for

untrusted or malicious code. The following two contributions are presented:

1. A comprehensive analysis of the evolution of untrusted code for smart

devices and current detection strategies. Chapter 2 provides a characteriza-

tion of current malware’s main features together with an in-depth analysis of

both malware and grayware evolution. We identify exhibited behaviors, pursued
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goals, infection and distribution strategies, etc. and provide numerous exam-

ples through case studies of the most relevant specimens. This chapter also

includes a careful review of current detection techniques and presents a taxon-

omy that provides a comprehensive analysis of their strengths and weaknesses.

The comprehensive study described in in this chapter suggest the need of a

versatile and multipurpose research laboratory for smart malware analysis and

detection. Thus, Chapter 3 presents a new generation lab and describes the

three building-blocks of its architecture: (i) static-, dynamic-, and cloud-based

analysis system. Each system is built on a number of open source tools that

facilitate the extraction of security features from apps—static features from

the apps’ components and also dynamic characteristics obtained from their

execution. The lab incorporates both physical and virtual devices. These de-

vices are instrumented with cutting-edge tools for monitoring a great number

of features: ranging from (i) hardware-based signals, such as the battery con-

sumption, to (ii) kernel-based features such as the system calls. The lab also

includes a dataset composed of a sizable number of apps crawled both from

legitimate online markets and malicious public and private repositories. This

new generation lab is shown to be paramount for the evaluation of all contri-

butions presented in this Thesis, and extremely useful for automating malware

analysis for smart detection.

Static-based Analysis: Part II exploits the use of static features to assist the

security analyst in the large scale analysis of malware families:

2. A text mining approach for analyzing and classifying malware families.

Chapter 4 analyzes several statistical and semantic features to facilitate the
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identification of malicious code components and their similarity to other apps.

This Chapter shows how static analysis can be used to classify malware with

a technique named Dendroid. Dendroid a system based on text mining and

information retrieval techniques used for automating parts of the malware anal-

ysis process. This approach is motivated by a statistical analysis of the code

structures found in a dataset of Android OS malware families, which reveals

some parallels with classical problems in information retrieval domains. To

this end, we adapt the standard Vector Space Model [Salton et al., 1975] and

reformulate the modeling process followed in text mining applications. This

enables us to measure similarity between malware samples, which is then used

to automatically classify them into families. We also investigate the application

of hierarchical clustering over the feature vectors obtained for each malware

family. The resulting dendrograms resemble the so-called phylogenetic trees

for biological species, allowing us to conjecture about evolutionary relation-

ships among families. In fact, this contribution reveals that current malware

families abuse from a reuse-oriented development methodology, which boosts

static-based detection strategies.

Dynamic-based Analysis. Part III compiles efforts based on the dynamic execution

of untrusted code and the analysis of its resulting behavior. The following fundamen-

tal contribution is tackled:

3. Differential fault analysis of obfuscated malware behavior. Obfuscated

malware provides attackers with the ability to evade static analysis. Chapter

5 introduces a dynamic-based detection technique called Alterdroid for identi-

fying obfuscated malware on large-scale analysis scenarios. Alterdroid provides
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security analysts with a framework capable of automating the identification of

obfuscated components distributed as parts of an app. The key idea in Al-

terdroid consists of analyzing the behavioral differences between the original

app and a number of automatically generated versions of it where a number of

modifications (faults) have been carefully injected. Observable differences in

terms of activities that appear or vanish in the modified app are recorded, and

this signature is finally analyzed through a pattern-matching process driven by

rules that relate different types of hidden functionalities with patterns found in

the differential signature.

Cloud-based Analysis. Part IV contains two contributions related to the use of the

cloud to offload detection strategies from devices. The first contribution explores

the question of offloading—or not—general anomaly-based detection strategies. The

second contribution stands over the conclusions extracted from the first one, and

approaches the detection of targeted malware using a cloud-based strategy. We next

summarize each one:

4. Power-aware anomaly detection in smartphones. Many recent works simply

assume that on-platform detection is prohibitive and suggest using offloaded

(i.e., cloud-based) engines. Chapter 6 studies different security tasks involved

in the detection of malware in built-in detection systems. Specifically, it focuses

on machine learning based anomaly detection systems, as they are widely used

to build both static and dynamic detection techniques. This chapter studies

the power-consumption trade-offs among different strategies for off-loading, or

not, those security tasks. It also shows that outsourced detection strategies

are clearly the best option in terms of power consumption when compared to
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on-platform detection. This contribution also points out noticeable differences

among different machine learning algorithms, and provides separate consump-

tion models for functional blocks (data preprocessing, training, test, and com-

munications) that can be used to obtain power consumption estimates and

compare detectors.

5. A stochastic behavioral-triggering model for targeted malware detection.

Targeted malware challenges current dynamic-based detection strategies as an-

alysts must reproduce very specific activation conditions to trigger malicious

payloads. Furthermore, the consumption model presented in Chapter 6 shows

that the use of detection techniques built in the device is unaffordable. Chapter

7 proposes a cloud-based system, called Targetdroid, to facilitate the detection

of this type of malware. The contribution presented in this chapter relies on au-

tomatically learned stochastic models of usage and context events derived from

real users. This chapter reveals several interesting particularities of apps usage

patterns that allow for an efficient generation of testing patterns. This contri-

bution shows that testing patterns automatically is feasible, specially when this

is done in conjunction with a cloud infrastructure.

Finally, Part V presents the main conclusions, analyzes the contributions of this

Thesis and the published results, and discusses open research problems and future

work. This part also comprises the references and appendices.
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2
Evolution, Detection and Analysis of

Malware for Smart Devices

2.1 Introduction

This chapter presents a comprehensive study of the evolution and current state of

malware for smart devices and techniques proposed to thwart malware attacks. We

first describe current smartphone security architectures and discuss a number of

research works that have recently proposed enhanced models to provide protection

against malicious applications (see Section 2.2). We then provide in Section 2.3 a

characterization of the various categories of malware developed for smart devices by

identifying possible attack goals, distribution and infection strategies, and exhibited

behavior. Other authors (e.g.,[Felt et al., 2011c; Zhou and Jiang, 2012]) have

previously discussed similar issues for smartphone malware, but not to the extent

covered by this work. Furthermore, our taxonomy is used to analyze the evolution

of malware using a representative sample of specimens that have gained notoriety

over the last few years. Finally, Section 2.4 analyzes and discusses malware detection
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approaches specifically developed for smart devices. Again, we first identify a number

of features according to which each technique can be classified and use them to

provide a systematic review of the most relevant works proposed so far. Among our

contributions, we identify an extensive number of indicators that can be monitored to

detect the presence of malware and that apply to any kind of smart device—not only

smartphones or tablets. Additionally, we correlate these features with our malware

characterization, pointing out how each class of malicious behavior manifests in terms

of observable indicators.

2.2 Security Models in Current Smart Devices

In this section we provide an overview of the security models and protection measures

incorporated in current smart devices, with particular emphasis on smartphones. The

two major mobile platforms—iOS and Android OS—are built upon traditional desk-

top Operating Systems (OS) and inherit some security features from them. However,

they also employ more elaborated security models designed to better fit the architec-

ture and usage of these devices.

2.2.1 Security Features

A number of recent works (e.g., [Asokan et al., 2013; Enck, 2011; Kostiainen et al.,

2011; Li and Clark, 2013]) have provided detailed account of the major security fea-

tures incorporated in smartphones. In what follows we restrict ourselves to highlight

the fundamentals about:

1. security measures implemented at the market level;
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2. security features incorporated in the platform; and

3. an overview of recently proposed security mechanisms

with particular emphasis on the protection against malware that they provide.

2.2.1.1 Market Protection

A primary line of defense against malicious software consists of preventing it from

entering available distribution markets. To this end, two basic security measures are

applied at the market level:

• Application review. Some official markets analyze submitted apps before

making them available for download and install. Operators do not give details

about the particularities of such reviews, but it is generally understood that

some form of security testing is carried out. Furthermore, in walled-garden

models devices can only access some markets, which presumably only distribute

reviewed apps.

• Application signing. Most markets force authors to sign their apps. This

allows authors to claim authorship and also has some technical consequences

in certain platforms (e.g., apps signed with the same certificate can share

resources). Thus, a device can be sure about the integrity of an app by verifying

the associated signature against the corresponding certificate authority.

Both measures have proven so far insufficient to combat malware. Manually

reviewing applications is a a difficult and time-consuming task, impossible to per-

form in full extent due to the massive number of applications being submitted every
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day. Automated approaches have been recently explored as an affordable alternative

[Batyuk et al., 2011; Gilbert et al., 2011; Lockheimer, 2014; Zhou et al., 2012b].

For instance, in 2012 Google announced an application approval tool named Google

Bouncer [Lockheimer, 2014] for Android OS. Also in this line, Zhou et al. proposes

DroidRanger for detecting smartphone malware in Android markets [Zhou et al.,

2012a,b]. Their analysis shows that the infection rate in alternative marketplaces

is one order of magnitude higher than the official marketplace. Additionally, they

found that about 0.1% of the 204.040 analyzed applications are malicious. We how-

ever believe that such a fraction is much higher for two reasons. On the one hand,

samples were taken during a two-month period in the first and third quarter of 2011.

However, according to McAfee Threat Report [McAfee, 2012], the number of An-

droid OS malicious samples experimented an exponential growth of 400% during the

fourth quarter of that year. On the other hand, the detection heuristics used by

authors present a high false negative rate, ranging from 5.04% to 23.52%.

Even if application review processes were perfect, many devices install applications

through unofficial markets in which there are no guarantees whatsoever about the

trustworthiness of such apps. Application signing can give users some assurance

about the integrity of software downloaded from a questionable source, particularly

when such software claims to be an unmodified copy of the same available in official

markets. But most of the time users do not perform such verifications, nor it is

possible to do so in many cases as signatures are stripped off.
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2.2.1.2 Platform Protection

Current platforms incorporate a number of mechanisms to confine and limit the

actuation of malicious apps once installed in the device:

• Permissions. Most platforms provide a permission-based system aimed at

restricting the actions that an app can execute on the device, including access

to stored data and available services (e.g., networking, sensors, etc.). Au et

al. [Au et al., 2011] examine the permission system of several smartphone OS,

focusing on:

1. The amount of control users have over app permissions. Depending on

the granularity offered by the OS, users can grant privileges using precise

or coarse permissions. Additionally, such permissions cannot always be

individually enabled or disabled.

2. The information they convey to the user. Several platforms offer the users

specific information about how applications are using resources. While

some OS only inform of what resources the application may use, others

track the actual use of permissions throughout execution.

3. The interactivity of the system. Some permission systems require a heavy

intervention of the user. Typically, fine-grained permissions require more

interaction than coarse-grained. Furthermore, permissions can either be

requested only once (assuming they will remain the same) or they can be

requested periodically.

A summary of their analysis is shown in Table 2.1. These results will be further

discussed later on Section 2.2.2 when discussing the security features of the
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Platform #Perm. Control Information Interactivity

Android OS 75 Medium High Low
Windows Mobile 15 Medium Medium Low
iOS 1 Low Low Low
BlackBerry OS 24 High High High

Table 2.1: Permission models in the main Smartphone platforms [Au et al., 2011].

most important platforms. A recent study by Felt et al. [Felt et al., 2011b,d,

2012] on the effectiveness of app permission systems concludes that they are

rather effective at protecting users. However, in the case of Android OS it

points out that many apps request a significant amount of permissions identi-

fied as potentially dangerous and that frequent exposure to warnings drastically

reduces effectiveness. Furthermore, authors also conclude in [Felt et al., 2011b]

that apps are often over-privileged due to a lack of documentation and develop-

ment bad practices. In this regard, Barrera et al. [Barrera et al., 2010] propose

a methodology for analyzing permission-based security models and suggest to

increase the expressiveness without maintaining the total number of permis-

sions.

• Sandboxing. Sandboxing is a security mechanism used by some platform ar-

chitectures to isolate running applications based on mandatory access control

policies. Sandboxing can provide protection against malicious applications to

a certain extent, but are ineffective if users overlook the permissions entitled

to installed apps [Felt et al., 2012]. Furthermore, sandboxing do not prevent

apps from exploiting system or kernel vulnerabilities and, besides, can also be

bypassed in some cases [Davi et al., 2011a]. In this regard, several works [An-

drus et al., 2011; Gudeth et al., 2011; Husted et al., 2011; Lange et al., 2011;

Wu et al., 2014] propose the use of hypervisors that run directly on the hard-
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ware. Other authors (e.g., [Russello et al., 2012]) have focused on optimizing

the virtual machine manager, as virtualization introduces a trade-off between

security and performance [Xu et al., 2010].

• Interactions between apps. Some platforms provide the developer with a rich

inter-application communication system to facilitate component reuse. Such

Inter Component Communication (ICC) systems introduce several security is-

sues. For example, in a compromised device messages exchanged between

two components could be intercepted, stopped, and/or replaced by others, as

they generally are not encrypted or authenticated. Additionally, two or more

malicious applications can collude to violate app security policies, such as for

example in the so-called re-delegation attacks [Felt et al., 2011a]. Chin et al.

[Chin et al., 2011] have recently identified a number of security risks derived

from the app interaction system in Android OS. Their reported results show

that 97% of the analyzed applications are exposed to activity hijacking; 57% to

activity launch; 56% to broadcast injection; 44% to broadcast theft; 19% to

service hijacking; 14% to service launch; and 13% to system broadcast without

action check.

• Remote management. Some market and network operators, as well as plat-

form manufacturers, are empowered with the ability to remotely remove apps

from the device and even repair damages caused by malware. This can be seen

as an extension of other functionalities already present, such as for example

updating the OS or applying patches. However convenient, this feature can be

seen by many users as too intrusive and is not exempt from risks, both privacy-

wise but also in case of compromise of the remote management function.
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2.2.1.3 Other Proposals

Over the last few years there has been an explosion of proposals suggesting enhanced

security models and alternative policy languages to improve upon the limitations

discussed above. The interested reader can find a summary in recent surveys, such

as for example [Enck, 2011]. The majority of them fall in one or more of the next

categories:

1. Rule driven policy approaches [Bugiel et al., 2011a; Conti et al., 2011; Enck

et al., 2009a; Ongtang et al., 2009; Titze et al., 2013] propose richer languages

based on rules, aiming at palliating insufficient policy expressibility on current

protection systems.

2. High-level policy protection techniques focus on enforcing information flow

throughout the system. Several approaches focus on applying different labeling

systems [Mulliner et al., 2006], while others enforce full isolation based on

distinct security profiles [Russello et al., 2012] or policies [Russello et al., 2013]

within a single device.

3. Platform hardening aims at simplifying underlying platform layers, i.e., boot-

loader and kernel, to mitigate the risk of unpatched vulnerabilities [Husted et al.,

2011]. SELinux-based systems [Shabtai et al., 2010a] and remote attestation

[Nauman et al., 2010] approaches can be applied to improve trusted computing

base protection.

4. Multiple-users protection assumes scenarios where different users share the

same device. Several approaches focus on applying different access control
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mechanisms such as DifUser [Ni et al., 2009] or RBACA [Rohrer et al., 2012]

(a Role Based Access Control for Android).

Most of these proposals would certainly provide enhanced protection against ma-

licious apps. However, in many cases they ultimately rely on richer—and more

complex—policies that users must specify. But users generally lack security exper-

tise [Kraemer and Carayon, 2007], and developing complete and consistent security

policies is far from being an easy task even for experts with the appropriate back-

ground. It can be argued that devices could use policies created by others, but it is

unclear to what extent “one size fits all.” Furthermore, there is an incipient interest

on intentionally bypassing the platform protection mechanisms to gain full control of

the device and, for example, install apps otherwise forbidden.

2.2.2 Security Features in Dominant Platforms

When compared with traditional PCs, smartphone platforms have taken an innovative

approach to securing the device and the distribution of software. We next provide an

overview of some of the security features present in the five platforms that currently

dominate the market.

2.2.2.1 Symbian

Symbian OS security model is based on a basic permission system. Phone resources

are controlled by the OS using a set of permissions called “capabilites”. Furthermore,

applications run in user space, while the OS run in kernel space. Those applications

requiring access to protected resources must be signed by Symbian or the device
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manufacturer, while all others can be self-signed [Kostiainen et al., 2011]. There is

very little information about protection at the market level.

2.2.2.2 BlackBerry

BlackBerry security model is based on a coarse-grained permission protection model.

Applications have very limited access to the device resources and, as in the case of

BlackBerry OS, they must be signed by the manufacturer (RIM) to be able to access

resources such as, for example, the user’s personal information. Additionally, applica-

tions must get user authorization to access resources such as the network. However,

once the user grants access to an application to use the network, the application can

both send SMSs and connect to Internet [O’Connor, 2006]. Although applications

are not executed in a sandbox, some basic process and memory protection is offered.

For instance, a process cannot kill other processes nor access memory outside the

app bounds.

2.2.2.3 Android

Google’s Android OS security model relies on platform protection mechanism rather

than on market protection, as users are free to download applications from any

market. Applications declare the permissions they request at installation time through

the so-called manifest. If the user accepts them, the operating system will be in

charge of enforcing them at running time.

Many researchers have pointed out that Android OS’s permissions are overly

broad and have proposed alternatives and extensions [Fang et al., 2014]. For exam-

ple, Ongtang et al. propose a fine-grained permission model called Saint to limit the
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granularity at which resources are accessed [Ongtang et al., 2009]. Similarly, Jeon

et al. [Jeon et al., 2011] propose a framework that enhances Android OS’s security

policies and extends permission enforcement both an installation time and during

runtime. Schreckling et al. introduced in [Schreckling et al., 2012] Constroid, a

framework to define data-centric security policies for access management. Security

policies are here defined for each individual resource, instead of specifying permis-

sions for each app. Furthermore, such definition can be done at a fine-grained level,

allowing users to, for example, grant an app access to a part of the address book

only. A major consequence is that security policies are therefore defined by the user,

not by the developer. However, this approach can easily overwhelm users as they are

held responsible of specifying security and privacy policies.

Additionally, Android OS uses sandboxing technique and Address Space Layout

Randomization (ASLR) to protect applications from malicious interference of others

apps. Although Android OS isolates each running process, apps can still communi-

cate with each other using ICC, a rich functionality that, however, introduces risks

such as those discussed before. Bugiel et al. introduce a security framework called

TrustDroid [Bugiel et al., 2011b] to separate trusted an untrusted applications into

domains, firewalling ICCs among these domains. Similarly, Dietz et al. propose Quire

[Dietz et al., 2011], a signature scheme that allow developers to specify local (ICC)

and remote (RPC) communication restrictions. Other proposals such as TaintDroid

[Enck et al., 2010], AppFence [Hornyack et al., 2011] or XManDroid [Bugiel et al.,

2011a] closely monitors apps to enforce given security policies. The first two uses

dynamic taint analysis to prevent data leakage and protect user’s privacy, while the

last one extends Android OS’s security architecture to prevent privilege escalation

attacks at runtime. The main difference between TaintDroid and AppFence is that
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the latter tries to covertly anonymize private information prior to blocking leakages.

Furthermore, all Android OS applications must be signed with a certificate to

identify the developer. However, the certificate can be self-signed, in which case no

certificate authority verifies the identity of the developer.

Several articles discuss Android OS security model [Enck et al., 2009b; Shabtai

et al., 2010b], providing a deep understanding of android architecture. Enck et al.

[Enck et al., 2011] also present a study of Android security by analyzing 1100 free

applications. We refer the reader to these works for further details.

2.2.2.4 iOS

Apple’s iOS security model [Apple, 2012] relies on market protection mechanisms

rather than enforcing complex permission polices on the device at installation time.

Apple’s App Store is a walled-garden market with a rigorous review process. Those

processes are essential for preventing malware from entering the device, as runtime

security mechanisms are limited to sandboxing and user supervision. iOS isolates

each third-party application in a sandbox. However, most of the device’s resources

are accessible1 and misuse of a few of them—such as GPS, SMS, and phone calls—

can only be detected by the user after installation.

Specific details on Apple’s App Store application review are unknown. In July

2009 Apple revealed that at least two different reviewers study each application

[Apple, 2014]. However, it is probable that Apple uses also static and dynamic

analyses.

1In iOS version 5, although Apple is likely to introduce some modifications in iOS version 6.
Specifically, the new version will restrict access to most of the device’s resources [Chubb, 2014].
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Applications distributed on Apple’s App Store must be signed by a valid certificate

issued by Apple. Developer certificates are issued to individuals and/or companies

after obtaining a verified Apple credential. iOS dynamically verifies that the applica-

tion is signed, and therefore it is trusted, before executing it. Nevertheless, iOS can

be tampered with (jailbroken) to install applications from alternative markets. This

practice violates Apple policies, causes the device to lose its warranty, and allows the

distribution of piggyback malware repackaged together with the original app.

Latest versions of iOS provide a number of features to protect user data based

on master encryption keys and protected by a passcode. The entire file system is

encrypted using block-based encryption and can only be decrypted when the phone

is unlocked. Additionally, iOS supports ASLR and Data Execution Prevention (DEP)

to prevent the execution of arbitrary code at runtime.

2.2.2.5 Windows Mobile

Microsoft’s market protection model for Windows Mobile systems is based on appli-

cation review. Developers are also validated prior to application’s approval. Platform

protection in Windows Mobile is similar to Android OS. It uses a trusted boot com-

ponent and code signing to protect the integrity of the operating system. It also

provides signed drivers and applications through the Windows Phone Store online

market.

Latest versions of Microsoft’s smartphone OS (Windows Phone 7 and 8) incorpo-

rate isolation among different sandboxes [Microsoft, 2012], and each app is executed

in its own sandbox, named “chamber”. Chambers are defined and implemented us-

ing system policies, which restrict the access to other chambers. While chambers
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are defined and implemented using a number of system policies, each security policy

defines what permissions are given to an app, known as capabilities. In this regard,

users are informed of the capabilities of an application prior to install.

2.3 Malware in Smart Devices: Evolution, Character-

ization and Examples

Malicious applications for smart devices—notably smartphones—have rocketed over

the last few years, evolving from relatively simple apps causing annoyance to complex

and sophisticated pieces of code designed for profit, sabotage or espionage. In this

Section we first provide a brief overview of such evolution from early mobile platforms

to current devices. We subsequently propose a number of features that can be used

to classify, characterize and better understand malware for smart devices.

2.3.1 Evolution

As in the case of traditional PCs, where malware evolution was intimately connected

to the increase in computing resources and the advent of the Internet, the complex-

ity and hostility of malicious software has intensified from early mobile handsets to

the current generation of smart devices. In the early 2000s, Palm platforms were

affected by malicious software that mimicked strategies well-known in PC malware.

For example, Symb/Liberty, Symb/Vapor and Symb/Skuller were popular Trojans

at the time, i.e., applications that perform some useful function while simultaneously

conducting malicious activities. Others such as Symb/Phage employed classical virus

propagation strategies to infect additional programs present in the handset. Their
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malicious payload varied, but in all cases it was sought to inflict damage over user

information or corrupt system files in order to cause a device failure.

The rise of feature mobile phones brought about a variety of distinctive infection

vectors when compared to traditional PCs, primarily through the communication

and networking functions offered by 3G, Wi-Fi, EDGE, Bluetooth, the SMS/MMS

messaging system, and NFC [Fleizach et al., 2007; Verdult and Kooman, 2011]. For

instance, Symb/Cabir was one of the first Symbian OS worms using Bluetooth to

infect other devices. Additionally, when handsets were given Internet connectivity and

the possibility to easily install third-party applications, more sophisticated infection

strategies appeared. One early example was Symb/Yxes, which used the SMS channel

and support from remote servers to propagate and configure itself.

The availability of mobile networking and pay-per-use services contributed to

a rapid escalation of the malware phenomenon, both in feature phones and smart-

phones. Examples such as Android/YZHCSMS.A andWinCE/Fakemini send premium-

rate SMSs without the user’s knowledge, which results in very significant revenues

for the owner of the registered number. Others such as Android/Smspacem have

been also driven by economic incentives: sending spam through SMSs.

In recent years, the proliferation of smartphones with improved sensing and net-

working capabilities has translated into more sophisticated threats. For example,

Android/DroidKungFu and iPhone/FindAndCall steal a variety of personal informa-

tion stored in the device and exfiltrate it through the network to a remote server.

Other pieces of malware such as Android/Spybubble, Android/Nickispy and FinSpy

Mobile2 have evolved into fully fledged spy instruments with the ability to monitor,
2FinSpy is a surveillance component part of a commercial surveillance toolkit called FinFisher,

designed to spy over a wide range of mobile platforms. The mobile version is capable to monitor apps,
emails, text messages, etc. on Android, iOS, BackBerry, Symbian, etc.
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record and exfiltrate the device’s current location, ongoing and past phone calls and

SMS logs to name a few. Although more illustrative examples are provided later on

this section, readers interested in a more in-depth study are referred to the recent

work of Zhou and Jiang [Jiang and Zhou, 2013; Zhou and Jiang, 2012], where a

study of more than 1200 malware samples is presented.

It is plausible to believe that similar threats will soon affect other smart devices

such as smart TVs or IMDs. For example, Auriemma [Auriemma, 2014] has recently

shown that several versions of Samsung’s Smart TV [Samsung, 2014] are vulnera-

ble to buffer-overflow attacks that could allow an attacker to remotely control the

device. Many security vendors are already releasing security frameworks for smart

TVs, including antimalware products [Sophos, 2014a]. The situation may become

similar for medical devices too, particularly for those designed to remotely monitor

a patient’s condition and/or control body functions. We are only aware of a few

cases of malware reported so far that affects existing IMDs or other medical smart

devices [Clark et al., 2013], although researchers believe that malicious programs will

certainly rock soon [Clark et al., 2013; Halperin et al., 2008b; Vockley, 2012].

2.3.2 Malware Characterization

Current malware for PCs have evolved into complex and reuse-oriented pieces of

software. Traditional classifications have focused on factors such as the propagation

strategy (e.g., viruses vs. worms) or the malicious activity carried out (trojan horses,

spyware, adware, rootkits, etc.), among others [F-Secure, 2014; Felt et al., 2011c;

Symantec, 2014; Zhou and Jiang, 2012]. However, these categories are rather im-

precise and do not contribute to a better understanding in terms of detecting the
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presence of malware, particularly in current times where most malware present mul-

tiple and constantly changing features.

We next identify several criteria according to which malware in smart devices can

be described and classified. Each provided criterion will be subsequently associated

with some observable behavior in one or more features of the device. Thus, our

classification will serve both to better understand the functionality of malware, but

also to point out where to look for detecting malicious activities. We believe this

can be of help to improve upon current detection strategies.

We classify malware for smart devices in terms of the following three features (a

graphical summary is provided in Figure 2.1):

• Attack goals and behavior: Identifying malware’s motivation on smart devices

is paramount to have a better understanding of its behavior and can be used to

develop targeted detection strategies. Such goals range from fraud and service

misuse driven by economic incentives, to spamming, espionage, data theft and

sabotage.

• Distribution and Infection: Malware creators can use a variety of techniques

to distribute malicious applications and infect devices, from self-propagation

mechanisms based on vulnerabilities and misconfigurations, to simply tricking

the user into installing it by means of social-engineering techniques.

• Privilege acquisition: Once the malicious code is installed on the device, it

often needs to acquire enough privileges to carry out its goals. This is automatic

in many cases, as the user might already have granted them to the app, whereas

in other cases technical vulnerabilities and/or misconfigurations are exploited.
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Figure 2.1: Malware characterization for smart devices.

In the remaining of this section we describe each criterion in detail and discuss

some illustrative examples.

2.3.3 Attack Goals and Behavior

Felt et al. [Felt et al., 2011c] analyze the main incentives behind iOS, Android OS,

and Symbian OS malware using a dataset containing 46 specimens found between

2009 and 2011. According to their analysis, the most common malicious activities

are related to the exfiltration of personal information and user credentials (44%),

followed by premium-rate SMSs (33%) and, to a lesser extent, research, novelty,

or amusement purposes. It is also pointed out that the majority of the analyzed

pieces exhibited behaviors related to more than one incentive, and that they often

incorporate secondary goals such as SMS advertisement, spamming, search engine

optimization and, in a few cases, ransom. About the 33% of the studied malware

changed their behavior based on commands received from a Command and Control

(C&C) server.

More recently, new pieces of malware such as Android/NotCompatible [Look-

out, 2014] are demonstrating that attackers’ interests are not only limited to the

scope of a smartphone and its user, but to large private networks. By turning an
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infected device into a TCP relay/proxy—capable of forwarding network traffic—,

smartphones can be used to support many infection vectors. For instance, an at-

tacker could establish an encrypted point-to-point session via HTTP with a device

located behind the firewall. Using such tunnel, the attacker might be able to probe

the private network and run exploits against assets within the corporation. Thus,

malware such as Android/NotCompatible opens new opportunities for penetrating

corporate networks.

Understanding the motivations behind malware can lead to a better identification

of its behavior. Figure 2.2 presents the relation between most common incentives

and the behavior associated with them. Common behaviors can be classified in

monitoring (eavesdropping, profiling, etc.), service misuse (SMS, call, email, other

services used for spamming, etc.), sabotage (draining the battery, deleting critical

files, etc.), data exfiltration, and fraud. Note that some behaviors could affect two

or more categories. For example, the unauthorized use of SMSs for spamming might

well be both a service misuse and a fraud.

2.3.3.1 Example: Smartphone-based Botnets

A botnet is a collection of compromised devices that can be remotely controlled

by an attacker (i.e., the bot master). As the number of smartphones is rapidly

approaching the number of PCs, botnets for such platforms have gained momentum

using a variety of distribution strategies to harvest as many devices as possible.

Traynor et al. [Traynor et al., 2009] were among the first to study the poten-

tial theoretical impact of mobile-phone botnets in cellular networks. As far as we

are aware, the first mobile botnet—named SymbOS/Yxes—appeared in 2009 and
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Figure 2.2: Main attack goals, associated incentives, and exhibited behavior for malware in smart
devices.

targeted Symbian OS platforms, using a rudimentary HTTP-based command and

control (C&C) channel. iPhone/Ikee appeared later on that same year, infecting

around 21000 iPhones within two weeks. One remarkable feature of Ikee was that it

showed how easy it can be to hijack a smartphone platform when root exploits are

available. Specifically, it exploited iPhones that were left with the SSH port open

and a default password after having been jailbroken. Such simple but very effective

attack vectors can enable an attacker to control thousands of devices through an

easy-to-implement C&C mechanism, as Ikee.B did [Porras et al., 2010].

C&C resilience is essential for a botnet to survive. In this regard, smartphones are

very attractive devices, as they offer multiple communication alternatives that can be
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leveraged to implement a C&C channel, including rather non-standard means such

as SMSs [Mulliner and Seifert, 2010]. Mulliner et al. implemented and evaluated

an iPhone-based mobile botnet named iBot and demonstrated that thwarting them

is more challenging than in computer networks, in particular because of employing

multiple C&C channels (HTTP, SMS, etc.) in a peer-to-peer (P2P) fashion.

Android/Andbot [Xiang et al., 2011] introduced a new energy-aware C&C strat-

egy named URL Flux for Android OS botnets. Android/Andbot uses URL Flux

to eliminate the single point of failure problem present in Ikee.B and also reduces

the SMS fees incurred by iBot. URL Flux is a domain name conversion used by

Confiker—a Windows worm that infected millions of computers between 2009 and

2011—based on a domain generation algorithm seeded with a public key. Recently,

more advanced iOS rootkit-like malware such as iSAM [Damopoulos et al., 2011]

integrates multi-functional tools also capable of self-propagating to other iPhone

devices in ways similar to Ikee’s.

Obfuscation is becoming popular in botnets, both by encrypting communications

exchanged over the C&C channel and also local resources that might facilitate detec-

tion through static analysis, such as server names and URLs, keywords, file names,

etc. AnserverBot makes extensive use of some of these techniques, and also relies

on posts made on public blogs to retrieve code updates and communicate with other

members of the botnet.

2.3.3.2 Example: Grayware

The so-called grayware apps gather potentially sensitive user and/or device infor-

mation, sometimes without user knowledge, and use it for dubious purposes or in
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contexts that the user might well not approve. For example, Aurora Feint is an app

that sends the whole address book to an unknown destination and was quickly de-

listed from Apple’s market in July 2008. Similarly, the author of Storm8—a popular

game—was sued for collecting users’ phone numbers, and Twitter has been widely

criticized for sending the phone’s contact list without informing the user.

Most grayware apps claim to retrieve such information for legitimate purposes

and that it is crucial to improve the quality of the service offered to users. This,

however, has recently become a major privacy threat for users’ privacy, as apps

collect excessive amounts of personal information and it remains unclear whether

the service provider will use that data for legitimate purposes or not. Some platform

manufacturers are increasingly deploying measures to prevent this. For example, in

iPhone a strict control is carried out to guarantee that personal information is not

sent to the cloud unless really needed.

2.3.4 Distribution and Infection Strategies

Malicious programs employ a number of distinctive techniques to distribute them-

selves. We next discuss the most relevant and propose a taxonomy to classify

them according to the channel used to enter the device. Distribution techniques

are primarily influenced by malware in desktop computers, although the emergence

of app markets have opened new possibilities. Two main approaches exist: (i) self-

propagation and (ii) social engineering. A self-propagating piece of malware can use

different strategies to automatically install the payload into a device, whereas social

engineering-based distribution strategies exploit the security unawareness of users to

trick them into manually installing the application (e.g., Andr/Opfake-C by Sophos
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[Sophos, 2014b], which spreads via Facebook and, once installed, allows the attacker

to perform premium-rate calls).

We have identified six different distribution vectors that can be used to infect

devices:

• Market to Device (M2D): This propagation strategy is based on market-borne

attacks. An attacker uploads a malicious application to a market, sometimes

using a stolen identity. Users can only get infected if markets accept such ma-

licious apps and users install them. Open markets, in particular those perform-

ing little or no security revisions, are particularly vulnerable to this distribution

method. For instance, malware using devious exploits (e.g.: Android/Droid-

KungFu3), might compromise the device by these means.

• Application to Device (A2D): This propagation strategy is based on application-

borne attacks. An attacker might rely on a specific, vulnerable application to

spread itself. For instance, instances such as Andr/Opfake-C can use Face-

book to post links with a copy of the malicious code. The main difference with

M2D is that attackers assume the presence of other installed applications (pre-

sumably “goodware”) to achieve infection. In this regard, even walled-garden

models can be vulnerable to this type of infection vector.

• Web-browser to Device (W2D): W2D uses web-borne attacks to propagate

the malware in way similar to A2D. In this regard, we can consider W2D an

specific type of A2D. The difference is that A2D strategies are limited by the

possibilities offered by the application, whereas in W2D malware can exploit

3Android/DroidKungFu uses an exploit called ‘Rage Against The Cage” [Kramer, 2010] for privi-
lege escalation
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general drive-by-download strategies. This attack vector has recently gained

popularity due the widespread use of vulnerable multi-platform components

such as WebView [Luo et al., 2011].

• SMS to Device (S2D): This strategy is used by malware that propagates via

SMS or MMS or attacks that distribute a malicious payload by these means.

• Network to Device (N2D): This propagation strategy is based on exploiting

vulnerabilities or misconfigurations in the device. We distinguish between:

– Device to Device (D2D): When distribution is driven by another device

in a P2P-fashion, and

– Cloud to Device (C2D): When distribution is done by a powerful com-

puter such as a workstation or a server.

• USB to Device (U2D): This strategy is used by malware that enters the device

through a port (typically a cable) when connected to an infected PC.

2.3.4.1 Example: Repackaging

One of the most common distribution strategy for smartphone malware consists of

repackaging popular applications and distributing them through alternative markets

(M2D) with additional malicious code attached. Repackaging is not a phenomenon

exclusive of the current generation of smartphones, although the proliferation of these

platforms and the impressive growth in available apps have certainly contributed to

make it a popular infection strategy. As far as we know, M2D repackaging started

with Symbian OS Trojans such as SymbOS/Skuller and SymbOS/Dampig, which

replaced system applications and antivirus files with modified ones. The focus has
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recently shifted towards Android OS apps, particularly by repackaging popular games

and tools [NakedSecurity, 2014], including banking apps. For example, Android/-

FakeToken trojan implements a man-in-the middle attack to forward SMS messages

with mTANs (Mobile Transaction Numbers).

Zhou et al. present in [Zhou et al., 2012a] a systematic study of six popular

third-party marketplaces for Android OS. Their report concludes that between 5%

and 13% of all available apps online are malware using repackaging, and the most

common incentive is fraud in the form of replaced in-application advertisements to

re-route revenues. The study also identifies a few cases with planted backdoors and

other malicious payloads.

2.3.4.2 Example: Malicious Code Transference via Network

In some cases, malware creators do not repackage an app with the full malicious code.

Instead, the modified app only encloses a short piece of code that downloads and

install the malicious payload once the app is installed on the device. One example

of this variant—sometimes known as update attacks [Zhou and Jiang, 2012]—is

Android/DroidKungFuUpdate. Remarkably enough, repackaged apps can enter the

device without the user being aware of it. By exploiting some technical vulnerabilities

and misconfigurations, some malware samples have even been able to replace another

installed app by a repackaged version of the same one.

Repackaged apps often rely on obfuscation techniques to avoid detection and

to make static analysis harder [Apvrille, 2011]. For example, in the case of update

attacks the transferred payload is often encrypted. In other cases, encryption is

applied to malicious components that are distributed together with the repackaged
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app, usually as if they were class files, images or other raw resources. For instance,

Android/RootSmart and Android/Fjcon use AES to hide domain names and URLs;

Android/Geinimi conceals URLs by encrypting them with DES; and Android/OpFake

simply makes an XOR with a predefined key.

2.3.5 Privilege Acquisition

Exploitation strategies comprise a variety of techniques used by malware to gain the

privileges required to achieve its goals. We distinguish two broad classes:

• User Manipulation: In many cases, privileges are directly granted by users

who are not aware of the potential repercussions of doing so. These strategies,

which rarely involve any technical sophistication, can be surprisingly effective

and very damaging. Common forms of user manipulation include:

– Social engineering.

– Malware and/or grayware installed by novice users who do not understand—

or do not pay attention to—the permission model.

– Repackaged applications found in alternative markets.

As in other similar security problems in computing, these methods can be pre-

vented by raising awareness about the dangers of malicious apps.

• Technical Exploitation: In other cases the malicious app can escalate by

exploiting technical vulnerabilities or misconfigurations of the platform. Even

though the particular technical means greatly depend on each platform, the

most common current attacks include [Chin et al., 2011; Davi et al., 2011a]:
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– API vulnerabilities.

– Buffer overflows.

– Code injection attacks.

– ICC vulnerabilities.

– Return-oriented Programming (ROP) and ROP without return flaws

– System vulnerabilities.

– Networking protocol flaws.

– Bootloader vulnerabilities.

– Rooted device-based vulnerabilities.

2.3.5.1 Example: Rootkits

Current smartphone platforms are becoming increasingly complex, including not only

the operating system itself but also dozens of libraries that give support to the services

offered by the device. Kernel-level rootkits similar to those known for traditional

PCs have recently appeared with identical purposes, namely to hide the existence

of malicious software from the operating system. Most rootkits infect devices via

N2D vectors, but app markets—official or not—are increasingly playing a key role.

For example, it is pointed out in [Zhou and Jiang, 2012] that repackaged apps that

implement technical exploits to gain root access once installed in the device do exist.

Such exploits are often distributed with the repackaged app or acquired from a remote

server as they become available. Contrarily, other exploits involve user manipulation

to acquire privilege escalation. For example, iPhone/Mobileconfigs [Skycure, 2014]

allows an attacker to remotely hijack the device by installing malicious system-level

settings into the device through social engineering.
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Root exploits in iPhone are often quickly patched by Apple and it is difficult

to find malware samples exploiting these vulnerabilities [Seriot, 2010]. The first

exploit known for iOS was identified as early as 2007 and exploited a buffer over-

flow in the libtiff library. Other known exploits affected the SMS service—SMS

fuzzing, presented at Black Hat USA 2009 by Miller and Mulliner—and PDF-related

functionalitites—as the one used by iPhone/JailbreakMe to root iOS 4.3.3 and ear-

lier versions via a web browser. Later in 2011, Miller submitted iPhone/InstaStock

[Goodin, 2014], which, after being approved, disclosed a hidden payload endowing

InstaStock with remotely controlled root capabilities.

Hypervisors are a common strategy to counteract rootkits. Although there are

some approaches to incorporate them on smartphones, such architectures are heavy-

weight and not widely available yet. Bickford et al. [Bickford et al., 2010] imple-

mented three proof-of-concept rootkits for Android. Firstly, they rootkit the GSM

Linux Kernel Module (LKM) in a way that a remote attacker can listen to the vic-

tim’s conversations. Secondly, they rootkit the GPS LKM so that the attacker

compromises the victim’s location privacy. And thirdly, they exploit a number of

power-intense services so that the battery is drained in two hours. They conclude

that there is currently no effective nor efficient technique to detect infection by

rootkits.

2.3.6 Discussion

Table 2.2 (see page 47) shows a representative set of smartphone malware and

provides, for each one of them, sought attack goals and the distribution and privilege

acquisition strategies implemented. Various conclusions can be drawn:
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Attack Goals Distribution / Infection P.A.
PPPPPPPPPApp

Charact.
Theft Misuse Sabotage SPAM Fraud M2D A2D W2D N2D U2D S2D User Exploit

FinSpy Mobile • � � – – – • • • • • • •
Symb/Cabir ♦ ♦ ♦ ♦ ♦ – – – • – – • –
Symb/Skuller � � • � � • – – – – – • –
Symb/Yxes • – • – – • – – – • • –
Sym/ZeusMitmo • � � � � • – – – – – • •
BB/FlexiSpy • – – – – • – – – – – • –
BB/BBproxy – • – – – • – – – – – • –
BB/ZeusMitmo • � � � � • – – – – – • •
And/YZHCSMS • – – – • • – – – – – • –
And/SpyBubble • – – – – • – – – – – • –
And/SimChecker • – – – – • – – – – – • –
And/BaseBridge • – – – – • – – – – – • –
And/GinMaster • – – – – • – – – – – • –
And/DroidKungFu • – – – – • – – – – – • –
And/AutoSPSubs – – – – • • – – – – – • –
And/Nickispy • – – – – • – – – – – • –
And/Smspacem – • – • – • – – – – – • –
And/Crusewind • – – – – • – – – – – • –
And/Zsone – • – – – • – – – – – • –
And/GGTracker • • – • – • – – – – – • –
And/AdSMS • • – – – – – • – – – – •
And/Fakeplayer – • – – – • – – – – – • –
And/Bgserv • – – – – • – – – – – • –
And/Lightdd • – – – – • – – – – – • –
And/Rootcager • – – – – • – – – – – • •
And/Opfake – • – – – • • – – – – • –
And/OneClickFraud – – – – • • – – – – – • –
And/FakeToken – – – – • • – – – – – • –

iP/MogoRoad – – – – • – – • – – – – •
iP/JailbreakMe – ♦ – – – – – • – – – – •
iP/InstaStock ♦ ♦ ♦ ♦ ♦ • – – – – – – •
iP/FindAndCall • – – • – • – – – – – • –
iP/Mobileconfigs � � � � � – – • – • – • –
iPJ/iKee.A ♦ ♦ ♦ ♦ ♦ – – – • – – – •
iPJ/iKee.B � � � � � – – – • – – – •
iPJ/Dutch 5e – – – – • – – – • – – – •
iPJ/Privacy.A • – – – – – – – • – – – •
WinCE/Duts.A ♦ ♦ ♦ ♦ ♦ • – – – – – • –
WinCE/Fakemini – • – – – • – – – – – • –
WinCE/Pmcryptic – • – – – – – – – • – • –
WinCE/Terred – • – – – • – – – – – • –
WinCE/ZeusMit. • � � � � • – – – – – • •

Legend:
Symb: Symbian iPJ: Jailbroken iPhone iP: iPhone
And : Android WinCE : Windows Mobile BB: BlackBerry

•: The referred characteristics are applied to the application.
♦: Proof-of-concept for demonstration, novelty or amusement purposes.
�: Multi-purpose malware having multiple goals.

Table 2.2: Samples of smartphone malware for the main OS and their most relevant charac-
teristics. Malware having multiple goals might exhibit selected characteristics depending on the
specimen.
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• M2D strategies clearly dominate other distribution and infection strategies.

This conforms the study conducted in [Zhou and Jiang, 2012] over 1200 sam-

ples of Android OS malware, which points out that 86% of them use repack-

aging techniques.

• Privileges are mostly acquired by simple user manipulation, i.e., by simply asking

the user to grant them to the app. This is certainly worrisome and motivates

many recent works dealing with enhanced permission models and novel ways

of communicating requested privileges to users. Even though repackaging is

nowadays the primary entry point for malware, it is pointed out in [Zhou and

Jiang, 2012] that 36.7% of studied specimes attempt to leverage technical

exploits to obtain root privileges.

• In terms of behavior, malware with just one goal is rare. Most samples spy

on users and steal personal data, but also attempt to commit fraud or misuse

services. A possible explanation for this is the reconfigurable nature of most

malware specimens through updates, as in the case of botnets. Thus, attackers

basically seek to plant a basic bot engine in the device, and then to provide

it with instructions and further code to perform specific tasks. Again, this

conforms similar studies carried out recently. For example, in [Zhou and Jiang,

2012] it is pointed out that 90% of the samples turn the compromised device

into a bot; almost half of them (45.3%) try to misuse SMS or call services to

obtain financial profit; and 51.1% harvest user information. Finally, sabotage

is quite unusual, with only a few examples that drain the device’s battery or

remove selected files.

• There are remarkable differences between Android OS and iPhone malware in
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the three criteria of our taxonomy

– First, most Android OS malware is distributed by markets, notably in

the form of repackaged applications. iPhone barely suffers from such

infection vectors, and the majority of malware enters via web and network

exploits. In part, this is a consequence of the walled-garden model of

Apple’s market.

– The differences in their respective permission models and the way of grant-

ing privileges also show up: while a significant fraction of Android OS

malware is entitled with sufficient privileges by the user—even if it later

escalates by other means—, in iPhone most specimens depend on techni-

cal exploits.

– Finally, in contrast with Android OS malware, most iPhone specimens

discovered so far have been created for demonstration or amusement pur-

poses.

A word of caution is appropriate, though: because of its openness, Android OS

is the de facto platform-of-choice for security research in smartphones, which

may have also negatively contributed to the malware phenomenon; and, fur-

thermore, Apple follows a less communicative strategy about iPhone malware.

2.4 Malware Detection and Analysis

As detailed in the previous section, current malware pose severe threats to security

models in smart devices. In this section we classify and describe the most significant

advances in malware detection systems for such devices [Shahzad et al., 2012]. More
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Figure 2.3: Taxonomy of malware detection techniques for smart devices.

precisely, we show how such systems build their foundations based on a variety of

detection techniques. These techniques aim at identifying where and how malware

manifests by constantly monitoring various device-based features. We also show how

detection systems are driven by these features, as they represent the key elements for

malware identification. We believe that this comprehensive study is paramount for

researchers and practitioners in order to facilitate the construction of new detection

systems.

2.4.1 A Taxonomy of Detection Techniques

Malware detection is a complex process pulling together monitoring, analysis and

identification tasks. In order to organize and better understand current detection

systems, we next propose a taxonomy based on the following seven characteristics

(see Figure 2.3 for a graphical summary):

• Type of Detection (ToD) There are two common types of malware detection

techniques according to how code is analyzed:

– Static analysis: this type of technique attempts to identify malicious code

by unpacking and disassembling (or decompiling) the application. This
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technique is a relatively fast approach and it has been widely used in

preliminary analysis to search for suspicious strings or blocks of code.

– Dynamic analysis techniques seek to identify malicious behaviors after de-

ploying and executing the application on an emulator or a controlled device.

These techniques require some human or automated interaction with the

app, as malicious behavior is sometimes triggered only after certain events

occur.

Static analysis techniques are well known in traditional malware detection and

have recently gained popularity as efficient mechanisms for market protection.

As a major drawback, these techniques fail to identify malicious behavior when

it is obfuscated or distributed separately from the app. Contrarily, dynamic

analysis are arguably more powerful in these cases. In fact, the only way of

learning what the app is really doing necessarily requires to run the code and

observe its actions. However, the inputs generated by most dynamic analysis

tools are generally produced by using random streams of user events, which

might not trigger the execution of the malicious payload, resulting in malicious

apps that avoid being detected. This particular shortcoming can be tackled by

modeling users’ behavior and providing human-like inputs. Dynamic analysis

can be used both in the cloud for market protection or directly in the device,

although resource consumption is certainly a issue (see later discussion on this

in Chapter 6).

• Type of Monitoring (ToM) Malware can be detected by analyzing various

features that serve to tell apart benign from malicious activities. A monitoring

system can collect user-level, kernel-level, or hypervisor-level activity, depending
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on the type of features that will be extracted. Monitoring approaches include

the collection of: (i) system calls (SYS); (ii) network activity (NET); (iii)

event logs (EL); (iv) user activity; (v) instructions (I); (vi) permissions (P); or

(vii) program traces (PT); to name a few. Each type of monitoring activity

requires the deployment of different instruments to intercept and format the

corresponding events. For instance, SYS requires the use of a system trap

technique with root privileges, while NET requires capturing all packets from

the network interface. Additionally, monitoring any of these features when the

app is run in an hypervisor requires the introspection of a virtual environment.

Monitoring can be potentially expensive in terms of resource consumption, par-

ticularly if a large number of events is collected directly over the platform being

monitored. As far as we are aware, no power consumption analysis has been

carried out yet, but practical experience suggests that intensive monitoring is

prohibitive for current smart devices.

• Granularity of Detection (GoD) A point related to the ToM discussed above is

how collected data is filtered in order to select the detection scope. Monitoring

can be carried out at different levels:

– Per App: features related to a specific application are monitored and an-

alyzed independently from other apps in the system. This type of feature

classification presents good performance when malware is a stand-alone

application.

– Per group of apps: in this case, data from a collection of applications is

gathered and analyzed. This is potentially useful when malware’s goals

are achieved in a distributed way by several collaborating apps.
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– Per device: detecting certain types of malware, such as for example rootk-

its, requires a more general detection approach focused on monitoring the

device itself rather than particular apps executed on it.

• Type of Analysis (ToA) The monitored information is subsequently analyzed

to extract evidence on the presence of malware. Such analysis can be carried

out by a human expert (E), although this possibility is becoming increasingly

unaffordable, at least without the support of automated analysis tools. There

are several types of techniques for analyzing data obtained after monitoring,

including: Clustering (CL), Support Vector Machines (SVM), Self-Organizing

Maps (SOM), other general Machine Learning (ML) algorithms, Control Flow

Graphs (CFG), Data Flow Graphs (DFG), Program Dependency Graphs (PDG),

etc.

• Type of Identification (ToI) Depending on the type of identification carried

out, detection systems can be classified as either anomaly -based (A), misuse-

based (M), or specification-based (SPEC) system. This feature refers to the

principle guiding the identification of malicious activities and follows the same

ideas explored in Intrusion Detection Systems [Estévez-Tapiador et al., 2004;

Garcia-Teodoro et al., 2009].

– Anomaly-based identification attempt to model the “normal” behavior of

the monitored system, classifying as anomalous any other behavior re-

ported. Anomaly detection techniques have the potential to detect pre-

viously unseen malware. However, they generally present a high rate of

false positives, i.e., they are prone to detect rare legitimate behaviors as

malicious.
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– Misuse-based identification—also known as signature-based—aims at iden-

tifying known malicious activity by means of predefined patterns of signa-

tures. Thus, only “malicious” behaviors are modeled here. The main

benefit of misuse detection lies in its accuracy detecting well-known at-

tacks. Generally, for each known malicious behavior, misuse systems are

equipped with one or more signatures. In this regard, maintaining an

up-to-date database with a massive amount of signatures poses a major

challenge. Furthermore, resource-constrained devices are not capable of

processing big amount of signatures.

– Specification-based identification works on the basis of predefined autho-

rized behaviors (specifications) and assumes that any activity deviating

from them violates the system policy and, therefore, is malicious.

• Place of Monitoring and Identification (PoMI) Monitoring, analysis, and

identification techniques are generally resource-intensive tasks that cannot be

afforded in battery-constrained devices. As a consequence, in recent years it

has been proposed to externalize many of such tasks to more powerful plat-

forms, even though some processing still needs to be taking place in the device.

We distinguish three main classes of detection schemes according to where

monitoring and identification takes place:

– In the device: both monitoring and identification are placed locally in the

device. This requires very lightweight approaches and their scope may be

quite limited. There are two types of local monitoring or identification

techniques according to where the monitoring is taking place:

∗ Local out-line (L): this type of technique aims at monitoring the de-
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vice by installing itself in one of the lower layers of the device’s archi-

tecture, and generally require root privileges.

∗ Local in-line, also known as Inline Reference Monitor (IRM): this type

of technique rewrites untrusted applications so that the monitoring

code is embedded into the app, and does not require root privileges.

– Distributed (D) among other devices. Performs any monitoring, analysis

or identification task in a cooperative way among different trusted devices.

– In the cloud (C). Uses virtual environments for running several devices on

a single server machine without reducing the battery life.

∗ Sandbox (SB): uses a tightly controlled set of resources for running

dynamic analysis over target apps.

∗ Replica in the cloud (RC): uses remote security servers for hosting

exact replicas of the device. Monitoring and identification techniques

that are placed on the replicas require complex synchronization sys-

tems to ensure that the replica is at all times identical to the actual

device, as well as collaboration with the service provider (e.g., the

internet provider for general purpose devices or phone provider for

smartphones).

• Place of Analysis (PoA) Finally, depending on where the analysis component

is placed—i.e., locally or in the cloud—the approach used poses different chal-

lenges. On one hand, cloud-based approaches require local preprocessing of

the monitored traces, transmitting them to the cloud, and waiting for the re-

sults. Finally, results may be included for further identification of malware. On

the other hand, local approaches might accelerate the delay in obtaining the
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response, especially when traces are too big and/or the connection is very slow.

2.4.2 Monitorable Features in Smart Devices

According to the monitoring approaches discussed above, we next identify and classify

a number of device-based features that can provide evidence of malware activities.

We subsequently explore how the behavior of some representative classes of mali-

cious activities manifest in subsets of these features. Specifically, we analyze those

features against: (i) botnets–like malware, (ii) Denial of Service (DoS) attacks, (iii)

technical exploitations, i.e., SMS–of–death, (iv) user manipulation such as Phishing

or Pharming, (v) information theft via monitoring, and (vi) service misuse such as

SMS or (Quick Response) QR codes. A summary of this taxonomy—excluding the

full list of features for each class—is given in Figure 2.4.

• Hardware: this kind of features identify the state of the hardware (HW) com-

ponents of the device. We group HW features in three subclasses: (i) battery,

(ii) input/output HW, and (iii) device info. Table 2.3 provides a detailed list of

features for each subclass. The state of the battery or the access to the unique

device identifier can be used to detect a specific type of malware. For instance,

some botnets check first that the battery is charging before performing heavy

operations. Another example of the use of HW-based features for malicious

purposes is access to the IMEI of a smartphone with the goal of exfiltrating it.

• Communications: communications represent an essential infection vector in

smartphones. They include the following features: (i) phone and internet calls,

(ii) phone and internet messaging, and (iii) network usage (data other than

calls and messaging), as identified in Table 2.4.
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Figure 2.4: Taxonomy of monitorable features for smart devices.

• Sensors: on-platform sensors allow the device to interpret the physical con-

text of a user [Knappmeyer et al., 2013]. Currently the most common sensors

are: (i) accelerometer, (ii) GPS, (iii) compass, (vi) gyroscope, (v) microphone,

(vi) touch sensors, (vii) speakers, and (viii) camera, as illustrated in Table 2.5.

Access to sensors can be monitored to identify malicious use. For instance, pro-

filing malware will typically access the user’s current location. Thus, if an ap-

plication is constantly accessing the GPS and sending this information through

the network, it could be an indication of malicious—or, at least, potentially

dangerous—usage.

• System: access to system resources can be used to identify malicious behaviors
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Battery

Charging_Enabled • – – – – – – –
Battery_Voltage • • – – – – – –
Battery_Current • • – – – – – –
Battery_Temp • • – – – – – –

Battery_Level_Change • • – – – – – –

I/O

LED – – – – – – – –
USB_Connection – – – – – – – –
Coverage_Range – – – – – – – –

Press_Key – – – – – • • –

Device Info.

IMEI – – – – – • – –
Device_Id – – – – – • – –
SIM_Card – – – – – • – –

Phone_State – – – – – • – –
UID_Access – – – – – • – –
UID_Removal – – – – – • – –

Table 2.3: Monitorable HARDWARE features and examples of attacks that could affect them.

by monitoring: (i) processes, (ii) storage, (iii) memory, (iv) package manage-

ment, and (v) scheduler, as identified in Table 2.6.

• User: there are a number of features that generally involve user interaction and

that could also provide evidence of malicious behavior. We identify (i) user-

permissions frequency requests (applications can be classified into categories

by monitoring the frequency at which they request permissions [Rassameeroj

and Tanahashi, 2011]), (ii) third-party apps, (iii) built-in apps, and (iv) other

actions, as detailed in Table 2.7.

2.4.2.1 Discussion

Malicious apps—as any other app—rely on the device’s system and sensors to achieve

their goals. Different components of the device are therefore interrogated by the mal-
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Calls
Phone

Phone_Outgoing – • – – – • – –
Phone_Incoming – • – – – • – –
Phone_Missed – • – – – • – –

Phone_Privileged – • – – – • – –

Internet
SIP_Incoming – • – – – – – –
SIP_Outgoing – • – – – • – –

Msg.
Phone

SMS_Incoming • • • – – • – –
SMS_Outgoing • • – – – • – –
SMS_Read • • – • – • – –

SMS_Privileged – • – – – • • –
MMS_Incoming • • • – – • – –
MMS_Outgoing • • – – – • – –
MMS_Read • • – • – • – –

MMS_Privilege – • – – – • • –

Internet
XMPP_Incoming • – – – – • – –
XMPP_Outgoing • • – – – • – –

Net.

Byte

WiFi_TX_Bytes • – – – • • – –
Phone_TX_Bytes • • – – – • – –

Bluetooth_TX_Bytes • • – – – • – –
WiFi_RX_Bytes • • – • – • – –
Phone_RX_Bytes • • – – – • – –

Bluetooth_RX_Bytes • • – – – • – –

Packets

WiFi_TX_Pckts • • – – • • – –
Phone_TX_Pckts • • – – – • – –

Bluetooth_TX_Pckts • • – – – • – –
WiFi_RX_Pckts • • – • – • – –
Phone_RX_Pckts • • – – – • – –

Bluetooth_RX_Pckts • • – – – • – –

Connections

WiFi_CX • • – • • • – –
Phone_CX • • – • • • – –

Bluetooth_CX • • – • • • – –
DNS_Resoluc. • • – • • • – –

Table 2.4: Monitorable COMMUNICATIONS features and examples of attacks that could affect
them.

ware to operate. For instance, the behavior of botnets is deeply related to almost any

kind of communication feature as all bots rely on a C&C back-end. Additionally, they

could also require some system interactions in order to store and update themselves.

However, they are not likely to access any sensor—unless the master commands it
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Accelerometer
Access_Accelerometer – – – – – • – –

Current_Roll_Pitch_Yaw – – – – – • – –
Orientation_Changing – – – – – • – –

GPS
Access_Location – – – – – • – –
Current_Location – – – – – • – –
Location_Changing – – – – – • – –

Compass
Access_Compass – – – – – • – –

Current_Cardinal_Orientation – – – – – • – –
Cardinal_Orientation_Changing – – – – – • – –

Gyroscope
Access_Gyroscope – – – – – • – –

Current_Angular_Moment – – – – – • – –
Angular_Moment_Changing – – – – – • – –

Microphone
Record_Audio – – – – – • – –
Access_Audio – – – – – • – –

Touch
Touch_Screen_Preasure – – – – – • – –
Touch_Screen_Area – – – – – • – –

Speaker
Access_Speakers – – – – – • – –

Play_Audio – – – – – • – –

Camera

Take_Picture – – – – – • – •
Access_Picture – – – – – • – •
Record_Video – – – – – • – –
Access_Video – – – – – • – –

Calculate_Depth (RGDB) – – – – – • – –

Table 2.5: Monitorable SENSORS features and examples of attacks that could affect them.

through a remotely transmitted payload. Another interesting example is given by

fraud attacks such as Phishing or Pharming. In these cases, the malware is likely to

use network connections in order to get to the victim, access to SMS messages to

steal, for example, One Time Passwords (OTPs), or change the DNS resolution of

the device, but it will definitely not access sensors.

Accessing those components in a stealthy manner is still, to the best of our knowl-

edge, a limitation for attackers. Nevertheless, there are some technical exploitation

vectors that allow a malware to root the device, which could thwart detection at



2.4. Malware Detection and Analysis 61

XXXXXXXXXXXXFeatures
Attacks

B
ot
ne
t

D
oS

&
D
D
oS

SM
S–

of
–d
ea
th

P
hi
sh
in
g

P
ha
rm

in
g

M
on
it
or
in
g

M
is
us
e
SM

S
se
rv
ic
e

M
al
ic
io
us

Q
R
C
od
e

Processing

CPU_Time – • • – – – – –
Runnable_Entities – • – – – – – –
Context_Switching – – – – – – – –

Wakelocks – – – – – – – –
Processes_Changing – • – – – – – –

Storage

File_Open • – – – – – – –
File_Reads • – – – – – – –
File_Writes • – – – – – – –

File_Read_Bytes • – – – – – – –
File_Write_Bytes • – – – – – – –

Memory

Dirty_Pages – – – – – – – –
Active_Pages – – – – – – – –

Anonymous_Pages – – – – – – – –
Page_Activations – – – – – – – –

Page_Desactivations – – – – – – – –
Page_Faults – – – – – – – –

DMA_Allocations – – – – – – – –
Garbage_Collections – – – – – – – –

Page_Frees – – – – – – – –
Inactive_Pages – – – – – – – –
File_Pages – – – – – – – –

Mapped_Pages – – – – – – – –
Writeback_Pages – – – – – – – –

Pkg Mgmt

App_Load_Time • – – – – – – –
Install_Packages • – – – – – – –
Delete_Packages • – – – – – – –
Change_Package • – – – – – – –
Restart_Package • – – – – – – –
Master_Clear • – – – – – – –

Scheduler

Yield_Calls – – – – – – – –
Schedule_Idle – – – – – – – –
Running_Jiffies – – – – – – – –
Waiting_Jiffies – – – – – – – –

Table 2.6: Monitorable SYSTEM features and examples of attacks that could affect them.

some levels. In those cases, access to hypervisor-level monitoring is paramount to

identifying such cases.

Tables 2.3 through 2.7 present various examples of malicious activities and the
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User–permissions #_requests • • • • • • • •

Third Party Apps
Apps_Installed • – – – – – – –
Apps_Usage • – – – – – – –
Apps_Delete • – – – – – – –

Built–in Apps

Address_Book – – – – – • – –
History – – – – – • – –

Bookmarks – – – – – • – –
Calendar – – – – – • – –
Feeds – – – – – • – –
Email – – – – – • – –

Other Actions
Push_Notifications – – – – – • – –

Unlock • • • • • • • –

Table 2.7: Monitorable USER features and examples of attacks that could affect them.

features that would likely allow a detection system to identify them. The mapping

between the monitorable features and the attacks has been extracted analytically

based on the criterion and the expertise of the authors. Based on this, several

conclusions can be drawn:

• Monitoring can be a very heavy consuming task. Thus, identifying a monitoring

strategy as well as an appropriate type of features is crucial to reduce workload

and improve detection efficacy. For instance, if a user is interested in using

his device in a Bring-Your-Own-Device (BYOD) context, avoiding exfiltration

of sensitive information may be critical, and therefore monitoring only some

specific features would be a good strategy.

• From all eight cases studied, the most relevant group of features affects com-

munications (Table 2.4). In this regard, it is also interesting to identify adaptive

monitoring strategies based on the appropriate amount of features. Thus, if
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a detection system can likely identify the most popular malware by only mon-

itoring, say, 40% of the features, then monitoring the remaining ones can be

eventually switched off, e.g., when the battery is lower than a given threshold.

Finally, we emphasize that the list of detection features presented in Tables 2.3

through 2.7 are only an excerpt of all those that can be used by a detection system.

However, . In general, each type of device will offer a more or less exhaustive list of

available features for each category given above.

2.4.3 Overview of Detection Systems

In the last few years several works have been proposed to detect malware on smart

devices—mostly smartphones and, more specifically, for Android OS platforms. We

have classified the 20 most representative detection systems according to the taxon-

omy provided above. The result, shown in Table 2.10, summarizes current research

directions.

Even though all detection systems are strongly interrelated, some general char-

acteristics are evident. For example, while some techniques are more versatile and,

therefore, are used more often, others are used mainly for certain detection systems.

Thus, both static and dynamic analysis are used for device and market protection.

However, it is more frequent to use dynamic analysis for device-oriented detection

and static analysis for market protection. Despite this, dynamic analysis is becoming

an important technique for market detection as well, as new paradigms based on

Security-as-a-Service, such as Replicas in the Cloud, are gaining popularity.

For the sake of organization, in the remaining of this section we describe current

research proposals grouped into three main categories:
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i) Device monitoring systems.

ii) Automatic app-review systems for market protection.

iii) Attack-specific malware identification systems (both for user and market protec-

tion).

2.4.4 Device-based Monitoring Systems

Device-based malware detection systems have received much attention lately. They

mostly use dynamic analysis techniques, although some combine them with static

analysis to improve the detection strategy. In this regard, both anomaly and misuse

detectors are proposed.

2.4.4.1 Anomaly Detectors

Schmidt et al. [Schmidt, 2011] leverage both static and dynamic analysis for detect-

ing malware in Symbian OS and Android OS devices. On the one hand, function

calls are first extracted, and monitored data is then analyzed using decision trees.

Classifiers are trained to recognize normal and malicious apps. On the other hand,

an anomaly-based malware detection is used for dynamic analysis. Features such as

free RAM memory, CPU usage, SMS count, etc. are monitored for further analyz-

ing behavior. Analysis is done in the cloud using machine learning algorithms such

as Artificial Immune Systems (AIS), Self-Organizing Maps (SOM), Support Vector

Machines (SVM), and Tree Kernels.

A somewhat similar approach is Andromaly [Shabtai et al., 2012], which uses dy-

namic analysis for periodically monitoring a number of features and machine learning
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LEGEND

Platform Type of Monitoring (ToM) Type of Analysis (ToA)
Place of Monitoring and
Identification (PoMI) and
Place of Analysis (PoA)

And: Android SYS: System calls E: Expert L: Local Outline
Win: Windows NET: Network ML: Machine Learning IRM: Local Inline (IRM)
Sym: Symbian EL: Event Log CL: Clustering C: Cloud

I: Instructions DG: Dependency Graphs DB: Distributed
Type of Detection (ToD) P: Permissions ST: Statistical HP: Honeypot

S: Static PT: Program Traces PRO: Probabilistic Models RC: Replica in the Cloud
D: Dynamic PCB: Process Control Block SB: Sandbox

API: API Calls Type of Identification (ToI) H: Hybrid
Other K: Kernel-level A: Anomaly

/0: Unavailable U: User-level M: Misuse
SPEC: Specification

Detection Approach
Plat. ToD ToM ToA ToI PoMI PoA Consump. Features Attack Observations

App
Profiler
(2013)
[Rosen
et al.,
2013]

And
S,
D

API,
PT

E M L
L,
C

Not
available

Permissions,
and API
Calls

Privacy
leakage

API calls are ana-
lyzed statically using
signatures and apps
are traced dynami-
cally through taint-
ing analysis

Apps Play-
ground
(2013)
[Rastogi
et al.,
2013a]

And D
SYS,
PT

/0 /0 C C
Not ap-
plicable

Taint trac-
ing, SYS
call, etc.

Any kind

Heuristic-based UI
interaction based
on contextual
exploration

Secloud
(2013)
[Zonouz
et al.,
2013]

And * * * * RC C

Device
con-
sump-
tion not
available

Any kind Any kind

Detection tech-
niques: AV scanning,
file integrity check-
ing, SYS call mon-
itoring, or network
intrusion detection
and response

TStruct
Droid
(2013)
[Shahzad
et al.,
2013]

And D PCB
ST,
ML

A L L

Performance
degrada-
tion of
3.73%
on
average

Frequencies
of 99 pre-
liminary
parame-
ters.

Any kind

Type of analysis:
theoretic analysis,
time–series feature
logging, segmen-
tation and freq.
component analysis
of data, and ML
classifier

Andromaly
(2012)
[Shabtai
et al.,
2012]

And D * ML A L L

≈ 8.8%
RAM,
5.52%
CPU,
and 10%
Battery
(unclear)

Detection
Method:
monitoriza-
tion of a
subset of
88 initial
features

Any kind of
anomaly

Training Method:
Classification with
labelled data. Exper-
imental evaluation

AppGuard
(2012)
[Backes
et al.,
2012]

And D PT /0 M IRM C
Not
available

Program
traces and
generated
events

Privacy
leak-
age and
user–level
misuse

Analysis is done off-
line, prior to repack-
aging the app, i.e., in
the cloud

Table 2.8: Malware detection systems (I/III).
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Plat. ToD ToM ToA ToI PoMI PoA Consump. Features Attack Observations

Elish et al.
(2013) [El-
ish et al.,
2013]

And S I DG /0 C C
Not ap-
plicable

Data event–
specific control

Component
hijacking
for infor-
mation
leakage
and unau-
thorized
access

Uses DDG to track
the user’s private in-
formation

DroidScope
(2012)
[Yan and
Yin, 2012]

And D * /0 /0 SB C
Not ap-
plicable

Any kind Any kind

ToM: Syscalls, etc.
Ad–hoc plugins for
monitoring features
and analyzing data
(authors provide sev-
eral proof of con-
cepts, e.g.: tainting)

MADAM
(2012)
[Dini
et al.,
2012]

And D
K,
U

ML A L L

Overhead
of 3%
memory,
7%
CPU
and 5 %
battery

K: SYS, proc.,
memory, CPU
usage. U:
user–state, key
strokes, called
numbers, SMS,
NET

Any kind of
anomaly

K-NN (with K=1)
for classification. 10
malicious apps and
50 benign. 93% de-
tection rate and 5%
FP

Peng et
al. (2012)
[Peng
et al.,
2012]

And S P PRO
N,
A

C C
Not ap-
plicable

Permissions
Effectiveness
of apps per-
missions

RiskRanker
(2012)
[Grace
et al.,
2012b]

And S
I,
P,
API

DG M C C
Not ap-
plicable

Vulnerability sig-
natures, permis-
sions, API calls:
crypto, dynamic
code, IPC, and
JNI, etc.

Any kind

Checks a pre-defined
set of malicious oper-
ations (e.g.: known
exploits) to rate the
severity of stealthy
applications

SmartDroid
(2012)
[Zheng
et al.,
2012]

And H * * * SB SB Unavailable Any
UI–based
obfusca-
tion

Improved detec-
tion by generating
UI-based trigger
conditions. Any
kind of detection
system might be
plunged, but no
further details are
given

Schmidt
et al.
(2011)
[Schmidt,
2011]

Sym,
And

S,
D

SYS CL A L
C,
DB

Not
available

Free RAM,
User Inactivity,
Process count,
CPU usage,
SMS, etc.

Any kind of
anomaly

Training method:
SVM–light and
user’s statistical
data

Crowdroid
(2011)
[Burguera
et al.,
2011]

And D SYS CL A L C
Not
available

System calls per
application

Any kind of
anomaly

Training Method:
Clustering with k–
means: i) malware,
and ii) goodware.
Evaluation: Exper-
imental and wild
malware

Table 2.9: Malware detection systems (II/III).
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Plat. ToD ToM ToA ToI PoMI PoA Consumption Features Attack Observations

Woodpecker
(2012)
[Grace
et al.,
2012a]

And S
I,
P

DG /0 C C

Time consum-
ing analysis:
1 hour per
phone image

Executing
paths and
13 repre-
sentative
privileged
permissions

Capability
leaks and
confused
deputy
attacks

Uses CFG for detect-
ing explicit capability
leakages and permis-
sions for implicit

CHEX
(2012)
[Lu et al.,
2012]

And S I DG /0 C C
Not applica-
ble

User’s data

Component
hijacking for
information
leakage
and unau-
thorized
access

Uses system de-
pendence graphs
to track the user’s
private information

AASandbox
(2010)
[Blasing
et al.,
2010]

And D * CL M SB C
Not appli-
cable

Not avail-
able

Any kind

Training method:
Unspecified type of
clustering. Evalua-
tion: Self–written
malware

Paranoid
Android
(2010)
[Portoka-
lidis et al.,
2010]

And D * * * RC C

Discussed.
Apparently
larger than
expected

Not avail-
able

Any kind

Training method:
Dynamic analysis
and AV Analysis.
Evaluation: Not
performed

TaintDroid
(2010)
[Enck
et al.,
2010]

And D PT E M L L

Uses 14%
CPU and
4.4%
memory
overhead.
Power
consump-
tion not
available

Variables,
methods,
file, and
message

Explicit
informa-
tion flow
leakage

Type of monitoring:
label-based tracking
of variables, meth-
ods, files and IPC
via dynamic taint-
ing, and enforced by
the user. Tainted
variables are propa-
gated according to
data flow rules

Kim et
al. (2008)
[Kim
et al.,
2008]

Win D HW ST M L
L,
C

Not avail-
able

Energy
consump-
tion

Energy-
depletion
attacks

The consumption
is monitored using
physical hardware
(HW) and the analy-
sis is done either at
the phone or at the
server (no perfor-
mance comparison is
provided)

Table 2.10: Malware detection systems (III/III).

anomaly-based detectors for classifying apps as goodware or malware. In Andromaly,

however, classification is done locally in the device. The scheme monitors various

system features such as CPU consumption, number of network packages, number of

running processes and battery level. Redundant features are first eliminated using

three feature selection algorithms: Chi-Square, Fisher Score, and Information Gain.
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Furthermore, collected observations are classified using K-Means, Logistic Regres-

sion, Histograms, Decision Trees, Bayesian Networks and Naive Bayes. Evaluation

was performed testing a small number of self-implemented malware samples, and

results show a detection rate accuracy ranging from 44% to 100%. More precisely,

they show that Fisher Score with 10 top features selected, and using Naive Bayes

and Logistic Regression, perform better than the other classifiers. Although no real

malware is studied, their experiments help to understand which machine learning al-

gorithms are superior as well as their degradation. In fact, their experiments show

a 10% of performance degradation in the worst scenario, i.e., 8 different classifiers

with 30 features. However, it is not clear how this performance has been measured

and whether the consumption exhibited is in the same conditions with the malware

detector or without it.

Similarly to Andromaly [Shabtai et al., 2012], MADAM [Dini et al., 2012] uses

dynamic analysis for periodically monitoring a number of features, and machine learn-

ing anomaly detectors for classifying goodware and malware, locally in the device.

However, MADAM is evaluated using real malware samples, and consequently needs

a higher number of features to model user behavior. Furthermore, collected obser-

vations are classified using K-Nearest Neighbor (K-NN) with K = 1 (1-NN). The

evaluation was carried out with more than 50 goodware applications and 10 malware

samples along with several user behaviors, improving the detection accuracy (93%)

with respect to the same classifier used in Andromaly [Shabtai et al., 2012]. The

results show an average number of number of 5 false positives per day. The reported

performance overhead is 3% of memory consumption, 7% of CPU overhead and 5%

of battery.

More recently, TStructDroid [Shahzad et al., 2013] presents a real-time malware
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detection system for Android OS devices. The proposed system monitors Process

Control Blocks (PCB) and uses theoretical analysis, time-series feature logging, seg-

mentation and frequency component analysis of data, and a learned classifier to

analyze monitored data. Evaluation shows a 98% accuracy and less than 1% false

alarm rate, together with a 3.73% of performance degradation.

Finally, Crowdroid [Burguera et al., 2011] is another anomaly-based malware de-

tection system for Android OS devices. The main difference with Andromaly [Shabtai

et al., 2012] and MADAM [Dini et al., 2012] is that authors analyze the monitored

featured in the cloud, whereas the other two approaches train their classifiers locally

in the device. Collected observations are classified using K-Means. Evaluation was

also carried out using a self-implemented set of malware samples, showing a detection

rate of 100%. Additionally, they also test their system with two malware instances

observed in the wild, showing a detection rate of 85% and 100% respectively. A

key limitation in their study is that they assume that outsourcing the analysis should

present a lower battery degradation than approaches that classify locally. However,

we consider that this assumption has to be formally proven as some detection ap-

proaches are quite lightweight and might consume less than continuously transmitting

all traces through the network.

2.4.4.2 Misuse Detection

AppGuard [Backes et al., 2012] is a malware prevention system for Android OS in

which the monitoring system is placed inline (IRM) with the application. Applica-

tions are manipulated using the repackaging technique, and the monitoring system

is, therefore, inserted inside the applications. Applications can thus trace themselves
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and a number of security policies can be defined to enforce system permissions at

run-time. Evaluation was performed using 13 apps, each of which was inlined with

9 policies. One noteworthy characteristic is that inlined apps incur a negligible incre-

ment in their size.

Reported experiments in [Backes et al., 2012] also compare the execution of three

function calls in both the original and the inlined app (the latter with no policies set),

showing a degradation of 5.0%, 6.2%, and 1.0% of overhead respectively. In this

regard, we consider that the three micro-benchmarks used are not conclusive due to

their simplicity. Additionally, we consider that these results cannot be compared with

Andromaly as they were not tested under the same conditions.

2.4.4.3 Replicas in the Cloud

Approaches such as Paranoid Android [Portokalidis et al., 2010] or Secloud [Zonouz

et al., 2013] have focused on performing malware detection tasks over synchronized

replicas of the device maintained in the cloud. Thus, all security monitoring, analysis

and identification tasks can be done in an environment not subject to battery con-

straints. Additionally, multiple detection techniques can be applied simultaneously,

as several replicas can be run at the same time.

The proposed systems introduce several attack detection mechanisms for dynamic

analysis in the replicas such as AV scanners and tainting analysis. However, Secloud

[Zonouz et al., 2013] extends those mechanisms and deploys a number of response

and prevention techniques, including file removal, process termination, periodic back-

ups, network filtering, and device quarantining.

Experiments on Paranoid Android [Portokalidis et al., 2010] show that synchro-
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nizing the device with the replicas does not introduce more than 2KB/s and 64B/s

of trace data for high-load and idle operation environments, respectively. This per-

formance, however, cannot be compared with Secloud [Zonouz et al., 2013], as for

the latter no information about the consumption of the device being replicated is

provided.

2.4.5 Market Protection

Most of the aforementioned techniques are typically designed to monitor physical

devices, although they can also be used in virtual environments for market protec-

tion. Using specific monitoring techniques for virtual environments can bring about a

number of benefits, such as (i) performing a resource-intensive security analysis, (ii)

enabling virtual machine introspection [Garfinkel et al., 2003] to intercept OS-level

semantics, or (iii) enabling the possibility of hosting exact replicas of the device in

the cloud (e.g.: CloneCloud [Chun et al., 2011], and ThinkAir [Kosta et al., 2012])

as mentioned before.

2.4.5.1 Sandboxing

Several approaches have been proposed for malware detection in the form of sand-

boxes. For example, AASandbox [Blasing et al., 2010] is an Android OS analysis

sandbox for both static and dynamic analysis. AASandbox uses an android emulator,

pre-loaded with a SYS call monitoring service.

DroidScope [Yan and Yin, 2012] is another sandbox for Android OS based on

virtualization. It allows to monitor app features at the three layers of Android OS’s

architecture, i.e., hardware, OS, and Dalvik Virtual Machine. Different types of
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monitoring can be enabled by developing custom plugins over DroidScope. In this

regard, the authors include (i) a collector for native and Dalvik instructions traces,

(ii) a profiler for API-level activity, and (iii) a tracking system for information leakage

using taint analysis.

2.4.5.2 Smart Interaction

Sandbox analysis poses a limitation when interacting with samples in an automated

way, due to the fact that some malicious apps hide their malicious activity through

the User Interface (UI). In this regard, SmartDroid [Zheng et al., 2012] presents an

hybrid static and dynamic detection method to reveal UI-based trigger conditions

in Android OS. While static analysis is used to generate Activity and Function Call

Graphs (ACG and FCG, respectively), dynamic analysis is used to explore such paths.

AppsPlayground [Rastogi et al., 2013a] presents a similar approach combining

detection techniques (ranging from taint tracing to SYS call monitoring) along with

automatic exploration strategies. The proposed framework uses heuristics to guide

the UI inputs, avoiding redundant explorations and using contextual information to

fill editable text boxes.

2.4.5.3 Risk Analysis

Risk analysis techniques are emerging as a mechanism to palliate the ineffective way

in which permissions are used to communicate potential threats to the user [Felt

et al., 2011c]. Here, Grace et al. propose the use of static assessment metrics to

measure dangerous behaviors in Android OS called RiskRanker [Grace et al., 2012b].

Their proposal focuses on conducting a scalable, efficient and accurate proof-of-



2.4. Malware Detection and Analysis 73

concept rather than leveraging on sophistication. Contrary, Peng et al. [Peng et al.,

2012] propose the use use probabilistic generative models for risk ranking and scoring

schemes. More precisely, they evaluate a range of models starting from simple Basic

Naive Bayes (BNB) to advanced hierarchical mixture models, showing that these

models offer a promising mechanism for risk scoring.

2.4.5.4 Similarity detection

Researchers have explored different ways to detect repackaging in markets by detect-

ing similarity dependencies among population of applications. While early approaches

use syntactic analysis such as string-based matching [Desnos, 2012], recently ap-

proaches elaborate on semantic analysis [Crussell et al., 2012], e.g., PDG, as it is

resilient to code obfuscation. However, semantic analysis is generally more expensive

than syntactic analysis.

A different approach is presented in [Desnos, 2012], where several compression

algorithms are used to compute normalized information distances between two appli-

cations based on Kolmogorov complexity measurement. Their algorithm first identi-

fies which methods are identical and calculates the similarity of the reminder methods

using Normalized Compression Distances (NCD). In order to reduce complexity, the

authors use a representation of each method based on structured control flow signa-

tures [Cesare and Xiang, 2010]. Finally, authors apply Longest Common Subsequence

(LCS) algorithm to identify differences between similar elements.

Zhou et al. [Zhou et al., 2012a] propose a system called DroidMOSS for detecting

repackaged applications based on a fuzzy hashing technique. Distinguishing features

are first extracted in the form of fingerprints, and then compared with those from
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other applications in order to identify similarities. These features are computed by

applying traditional hash functions to pieces of code of variable size. The size of

the pieces is bounded by smaller chunks of fixed size called reset points. A chunk is

considered a reset point when the resulting hash is a prime number. Then, the edit

distance is calculated between two applications by comparing their fingerprints on

identical matching-basis. More recently, authors have extended their work in [Zhou

et al., 2013]. While their former work is designed to detect repackaging in unofficial

markets, the latter is capable of detecting repackaging among apps in the same

market.

Authors in [Hanna et al., 2013] present Juxtapp, a system for detecting app

similarity. They propose an optimization over the representation of the applications

as an alternative to k-grams based on feature hashing and then use hierarchical

clustering to classify similar applications.

Authors in [Crussell et al., 2012] present DNADroid, a system for detecting cloned

applications based on dependency graphs between methods. PDG is used to detect

semantic similarities by comparing graph isomorphism. Prior to similarity detection,

authors group applications based on meta-information retrieved from each applica-

tion, and they use several filters to enhance efficiency. Although their experiments

show better results than similar approaches such as [Desnos, 2012], the scheme is

less efficient in terms of performance. In fact, their experimental testbed is deployed

in a small cluster composed of one server and three desktop computers over Hadoop.

Even there, the analysis rate is 0.7 applications per minute.
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2.4.6 Attack-specific Malware Identification Systems

The majority of the approaches described above focus on general detectors using

either anomaly or misuse detection for both static and dynamic analysis. However,

due to the diversity of malware goals and incentives, other schemes are narrowing the

complexity towards detecting specific classes of malware, such as privileged escalation,

battery-depletion attacks, or money stealing.

2.4.6.1 Privilege Escalation

There are two common types of privilege escalation attacks according to whether

the exploitation strategy focuses on inter-process capability leakage or system vulner-

abilities. Approaches such as XManDroid [Bugiel et al., 2011a], Woodpecker [Grace

et al., 2012a], Elish et al. [Elish et al., 2013] or CHEX [Lu et al., 2012] focus on the

first class, while others such as [Checkoway et al., 2010] concentrate on the latter.

XManDroid [Bugiel et al., 2011a] is a privilege escalation detection tool for An-

droid OS devices. Dynamic analysis is used to identify covert channels using DFG.

Woodpecker [Grace et al., 2012a] is capable of identifying both explicit and implicit

leakage by combining static with dynamic analysis. Static analysis is used to identify

possible execution paths by means of CFG, and inter-procedural data flow analysis is

used to filter out non-dangerous paths. Additionally, app permissions are examined

to broaden leakage search. Similarly, Elish et al. [Elish et al., 2013] use DDG provid-

ing user-interaction dependencies of more than 1000 benign and malign apps, while

CHEX [Lu et al., 2012] employs system dependence graphs over more than 5000

applications from Google Play.

ROPdefender [Davi et al., 2011b] is a generic ROP detection tool for Windows
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and Linux–based OS capable of enforcing a return address check. Although ROPde-

fender is not built for smart devices, the proposed framework can be applied in this

context.

2.4.6.2 Grayware

As discussed early in this chapter, grayware poses a serious challenge to privacy

leakage detection system. Several approaches have focused on detecting such privacy

leakages, such as TaintDroid [Enck et al., 2010] for Android OS devices and PiOS

[Egele et al., 2011] for iOS.

TaintDroid [Enck et al., 2010] uses dynamic taint analysis to track sensitive

information. It monitors variables, methods, files, and messages throughout the

program execution according to data flow rules, and label the variables as they use

the sensitive data. When a piece of sensitive information attempts to leave a taint

sink, e.g., through the network interface, TaintDroid requests user consent to do

so. The authors studied 30 popular applications, showing that at least 20 of them

misused users’ private information. Experiments also show that TaintDroid incurs

14% CPU and 4.4% memory overhead. A major limitation of TaintDroid is its

inability to distinguish between legitimate and non-legitimate exfiltrations, especially

when facing grayware. In fact, their experiments show that 37 out of 105 instances

(35%) were incorrectly classified as false positives. Additionally, techniques such as

tainting can be circumvented through leaks via implicit flows, i.e., using program

control flow to disclose information.

AppProfiler [Rosen et al., 2013] uses dynamic tainting analysis along with static

analysis to extract privacy-related behaviors. The scheme builds a knowledge base
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that maps application behaviors with API calls observed during static analysis, pro-

viding the user with valuable information about their apps.

Finally, PiOS [Egele et al., 2011] is an information leakage detection system for

iOS devices that uses static analysis on apps. PiOS constructs CFG paths from the

sources of sensitive information to data sinks by means of data-flow analysis. So

far, static analysis of iOS apps does not have to face the obfuscation challenge, as

obviously obfuscated apps would not pass the revision process. However, this might

change in the coming years if non-walled-garden models such as Cydia gain popularity.

2.4.6.3 Battery-depletion

Traditional anomaly and misuse detection techniques have not paid much atten-

tion to unknown energy-depletion attacks. In this regard, Kim et al. [Kim et al.,

2008] proposes a power-aware malware detection system for smart devices. It uses

dynamic analysis to monitor power samples and build a consumption model. Power

signatures are generated from monitoring malicious samples in the device, and results

are analyzed in the device or in the cloud using noise filtering and data compression

algorithms. After building the model, malware is identified by using χ2-distance and

comparing the results with a set of signatures.





3
Maldroid Lab: Research Malware Lab

for Smart Malware Analysis and

Detection

3.1 Introduction

The analysis of smart malware is currently constrained by the lack of a versatile

and multipurpose laboratory for testing new research proposals. In this chapter, we

describe the architecture of a framework gathering together the most cutting-edge

tools for analyzing and dissecting Android malware.

This Chapter introduces Maldroid Lab, a framework aiming at providing grounds

for smart malware research. Maldroid Lab gathers together several monitoring, anal-

ysis, and identification systems. On the one hand, it includes a number of open

source static and dynamic tools over a virtual device manager [Android, 2014]. On

the other hand, it also extends current systems and implements new functionalities,

such as a proof-of-concept of a cloud clone system [Chun et al., 2011; Kosta et al.,
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2012; Portokalidis et al., 2010].

Maldroid Lab is implemented using generic Java and Python components and it

has been deployed with a sizeable dataset of both legitimate and malicious real-world

samples. More precisely, the lab currently compiles over 25K apps from legitimate

markets and 25K malicious apps. For the former, Google Play as well as Aptoide

are constantly crawled to retrieve new samples. Similarly, we query Android Malware

Genome Project1, Virus Share2 and Contagio Mobile3 for the latter. Figure 3.1

presents the architecture of our Maldroid Lab. All this together constitutes a research

laboratory for testing new malware analysis techniques and will serve as a building

block for the experimentation tasks of each contribution presented in this Thesis.

The architecture of Maldroid Lab has been designed to have the following fea-

tures:

• Facilitate the tasks of extracting assets, components, and resources from An-

droid apps.

• Automate the process of unpackaging and repackaging Android apps.

• Guarantee the isolation of a fully controlled Android environment for testing

apps via virtualization.

• Allow the dynamic allocation of virtual devices and the installation of apps

automatically.

• Optimize the execution of such virtual devices using parallelization.

1http://www.malgenomeproject.org/
2http://virusshare.com/
3http://contagiominidump.blogspot.com.es/

http://www.malgenomeproject.org/
http://virusshare.com/
http://contagiominidump.blogspot.com.es/
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Figure 3.1: Maldroid Lab’s architecture in a nutshell.

• Provide the injection of Graphical User Interface (GUI) events, as well as other

contextual information such as GPS locations or text SMS messages.

• Allow the execution of certain security tasks over synchronized replicas main-

tained in the cloud.

The remaining of this chapter is organized as follows. Sections 3.2 and 3.3 de-

scribe the main static- and dynamic-analysis tools deployed in this research laboratory,

respectively. In Section 3.4 we describe our cloud-based system, which is used for

offloading certain tasks from the device to the cloud. Finally, Section 3.5 describes

several online repositories used to retrieve both legitimate and malicious apps.
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3.2 Static Analysis

Apps are statically analyzed using several techniques aiming at unpackaging and

disassembling apps. In our lab, this process is mainly performed using Androguard

[Desnos, 2014]. For unpackaging and repackaging apps into a modified app, we use

ApkTool [Panxiaobo, 2014] and dex2jar [Alll and Tumbleson, 2014] tools.

Monkey [Android, 2014] and AndroidViewClient [Milano, 2014] are used to gener-

ate a common sequence of events to interact with the apps. These events should be

generated specifically for each test to intelligently drive the GUI exploration [Rastogi

et al., 2013a; Zheng et al., 2012], i.e., to test code implementing different func-

tionalities of the app. In its current implementation, Maldroid Lab uses Monkey and

AndroidViewClient to generate five classes of events: activity launch, service launch,

action buttons, screen touch, and text input. We also use Culebra [Milano, 2014] to

create AndroidViewClient scripts for further automating the analysis.

We then describe in some detail most popular tools deployed in this lab. Further

information about the particularities of each tool can be found in the references given

throughout the document.

3.2.1 Androguard

Androguard [Desnos, 2014] is an interactive-oriented static analysis tool for third-

party Android applications. It allows to disassemble apps and access their components

throughout its API4. Androguard’s API also provides access to each attribute of the

binary code, such as classes, methods, and variables. The main features of its API

are:
4http://doc.androguard.re/html/index.html

http://doc.androguard.re/html/index.html
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• APK. The Android Application Package (APK) is a file format used to dis-

tribute Android apps from the markets to the devices. This package is an

archive in JAR format containing a number of files and a well-structured di-

rectory hierarchy. Examples of files included in an APK file are: the Android

Manifest file, the executable classes file, and other precompiled binaries and raw

resources. Androguard allows to unpackage all these components and access

them through the APK library.

• DVM. The Dalvik Virtual Machine (DVM) is a component of Android OS re-

sponsible of running the apps on the device. Each Android APK packages a

DVM file—known as Dalvik Executable Format (DEX)—containing the com-

piled Android application code. This component of Androguard disassembles

the DEX file and provides access to its components. More precisely, it allows

to retrieve Java Annotations (metadata) about a program, the name and size

of its classes, methods, and variables, among other static features from the

DVM.

• Analysis. This library interprets Dalvik’s code and provides a semantic analysis

of the DVM. It allows to identify where permissions are used in a specific app

and when special libraries (such as crypto or reflection libs) are used. Addition-

ally, it also provides a Control Flow Graph (CFG) representation of the Dalvik

code flow. CFGs provided by Androguard are based on a grammar proposed by

Cesare and Xiang [Cesare and Xiang, 2010] and shown in Figure 3.2.

• Bytecode: The Dalvik code executed by the DVM is a compact and efficient

instruction set (numeric codes, constants, and references) that encodes exe-

cutable programs into a portable language called bytecode. This bytecode is
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translated into native machine code at run time. This facilitates the portability

of the bytecode itself across different hardware-specific platforms. However,

it also makes easier the reverse-engineering analysis of Android apps. This

component of Androguard provides a number of methods that aid bytecode

analysis.

Grammar:

Procedure ::= StatementList
StatementList ::= Statement | Statement StatementList

Statement ::= BasicBlock | Return | Goto | If | Field | Package | String
Return ::= ’R’
Goto ::= ’G’

If ::= ’I’
BasicBlock ::= ’B’

Field ::= ’F’0 | ’F’1
Package ::= ’P’ PackageNew | ’P’ PackageCall

PackageNew ::= ’0’
PackageCall ::= ’1’
PackageName ::= Epsilon | Id

String ::= ’S’ Number | ’S’ Id
Number ::= \d+

Id ::= [a-zA-Z]\w+

Examples:

CC1 B[P0P1]B[I]B[P1R]B[P1P1I]B[P0SP1P1P1]B[P1G]|B[F1P1R]

CC2 B[SSF1F0P1SF0SP1P1I]B[SP1P1F1SP1F1F0I]B[F0P1I]B[F0SP1]B[]
B[P1SP1SP1F1SF0P1I]B[F0I]B[F0P1I]B[F1F0P1P1I]B[F0P1I]B[]B[F0P1]
B[F0I]B[S]B[P1I]B[F0P1]B[I]B[P1F0P1P1F0P1I]B[F0P1P1I]B[F0P1I]
B[]B[F0P1F0P1]B[P0F0P1P1SP1F0P1SP1F0P1SP1F0P1P1F0P1F0P1S]

CC3 B[P1SF1R]

Figure 3.2: CFG grammar used by Androguard to extract code structures.
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3.2.2 ApkTool

ApkTool [Panxiaobo, 2014] is a reverse engineering tool for third-party Android appli-

cations. This tool allows to decode Android apps into Smali code5. It also facilitates

the modification of the app or the injection of new code before repackaging it.

Smali is a DEX code disassembler that transforms bytecode into a syntax similar

to the one used in Jasmin’s6 and dedexer’s7 project. This syntax aims at alleviating

the complexity of exploring Java Virtual Machine binaries. Thus, ApkTool allows to

reconstruct the original resources into a human-friendly format to facilitate reverse

engineering of the code as shown in Figure 3.3. This example shows a code fragment

obtained from an Android malware sample known as DroidKungFu.

We then describe the main functions of ApkTool:

• Decompile. It performs the inverse operation to that of Dalvik’s bytecode

compiler and the APK packaging. The resulting folder contains the manifest

of the app, all Java classes in Smali language, as well as assembled resources,

libraries, and assets.

• Recompile. Transforms Smali source code classes resulting from the previous

step—together with any other resources contained in the app—in an Android

APK file ready to be executed in the device. This new APK may well be

different from the original one, e.g., it can contain piggybacked functionality.

5https://code.google.com/p/smali/
6http://jasmin.sourceforge.net/
7http://dedexer.sourceforge.net/

https://code.google.com/p/smali/
http://jasmin.sourceforge.net/
http://dedexer.sourceforge.net/
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.method static constructor <clinit>()V
new-array v0, v0, [B
fill-array-data v0, :array_0
sput-object v0, Lcom/google/ssearch/Utils;->defPassword:[B
.line 40
return-void
.line 228
:array_0
.array-data 0x1

0x46t
0x75t
0x63t
0x6bt
0x5ft
0x73t
0x45t
0x78t
0x79t
0x2dt
0x61t
0x4ct
0x6ct
0x21t
0x50t
0x77t

.end array-data
.end method

Figure 3.3: Excerpt of an Android malware sample called DroidKungFu extracted with ApkTool
and represented in Smali syntax. This piece of code is used by the malware sample to decrypt
an exploit distributed together within the APK assets.

3.2.3 Monkey and Monkeyrunner

Monkey and Monkeyrunner [Android, 2014] are two Android Developer tools for auto-

matically testing Android apps. Monkey generates dummy random events to interact

with the Operating System. These events typically include GUI actions such as touch,

press a button, etc. Monkeyrunner provides the developer with a Python API to in-

teract with the running apps and control the device from the command line. The

main components of Monkeyrunner are:
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• Runner. This component provides a number of utility methods such as com-

municating with the device, creating user interfaces, and displaying built-in

help.

• Device. This component facilitates the installation and removal of Android

packages. It also provides the appropriate interface for starting Android Activ-

ities, sending keyboard or touch events to an app, etc.

• Image. This component provides access to the device for capturing screen-

shots, converting bitmap images to various formats, and comparing two Mon-

keyImage images. This component is very useful for monitoring changes in an

Activity running at a given time instant.

3.2.4 AndroViewClient

AndroViewClient is a Python tool that facilitates the creation of scripts for interacting

with the device. A remarkable feature of AndroViewClient is its ability to retrieve a

tree view of the UI-components displayed on the device at any given moment. For

instance, given an Activity, AndroViewClient allows to retrieve which other clickable

views are nested into this one. Then, it allows the user to interact with those

components by, for instance, clicking them or inserting text into a TextBox.

We instrumented our sandbox with AndroViewClient in order to generate smart

UI-interactions. Figure 3.4 depicts a code fragment snipped from our middleware

using AndroViewClient. This piece of code provides our lab with the capability to

interact with a particular view.
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’ ’ ’
Dump c u r r e n t window and i n t e r a c t w i t h i t s c h i l d r e n

’ ’ ’
def interactDumpWindow ( s e l f , s e r i a l n o , vc , t ime ) :

windows = vc . l i s t ( )
f o r wId i n windows . k e y s ( ) :

v i ew s = vc . dump( window=wId , s l e e p =t ime )
f o r v i ew i n v i ew s :

i f not s e l f . r u n n i n g :
break

s e l f . i n t e r a c t V i e w ( vc , v i ew )
’ ’ ’

I n t e r a c t w i t h a g i v e n View
’ ’ ’
def i n t e r a c t V i e w ( s e l f , vc , v iew , t e x t = ’ I n pu tTex t ’ ) :

i f ’ a n d r o i d . w i dge t . Ed i tTex t ’ == v i ew . g e t C l a s s ( ) :
v i ew . t ype ( t e x t )

i f v i ew and v i ew . i s C l i c k a b l e ( ) and
not v i ew . g e t I d ( ) i n s e l f . i n t e r a c t e d :

p r i n t v i ew . g e t I d ( ) , v i ew . ge tText ( )
v i ew . touch ( )
s e l f . i n t e r a c t e d . append ( v i ew . g e tUn i q u e I d ( ) )

Figure 3.4: Code snipped of our middleware using AndroViewClient’s API to interact with an
app running in the device.

3.3 Dynamic Analysis

We have used an open source dynamic analysis tool called Droidbox [Lantz, 2014]

to monitor various activities that can be used to characterize app behavior and tell

apart benign from suspicious behavior [Suarez-Tangil et al., 2014b]. We then de-

scribe Droidbox together with another tool, called TaintDroid, that is instrumental for

detecting information leakage.



3.3. Dynamic Analysis 89

3.3.1 Droidbox

Droidbox is a dynamic analysis tool that allows the execution of Android apps and

provides a variety of data about how an app is behaving. More precisely, Droidbox

monitors the execution of 11 different activities:

• crypto: generated when calls to the cryptographic API are invoked.

• netopen, netread, netwrite: associated with network I/O activities (opening a

connection, receiving, and sending data).

• fileopen, fileread, filewrite: associated with file system I/O activities (opening,

reading, and writing a file).

• sms: generated whenever a text message is sent or received.

• call : generated whenever a call is made or received from the device.

• leak : generated when a leakage of private information has occurred. This is

determined using tainting analysis [Enck et al., 2010].

• dexload : generated when native code is loaded dynamically.

We have extended Droidbox to allow the extraction of these activities programat-

ically.

3.3.2 Taintdroid

As introduced in Chapter 2, Taintdroid [Enck et al., 2010] uses dynamic taint anal-

ysis to track sensitive information throughout a program execution. Taintdroid in-

struments the DVM interpreter to provide the device with a variable-level tracking
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system, as well as message- and file-level tracking. This enhancement offers a valu-

able awareness of an app’s information flow during its execution. Figure 3.5 depicts

Taintdroid’s architecture as illustrated by Enck et al. in [Enck et al., 2010].
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Figure 3.5: Taintdroid’s architecture as illustrated in [Enck et al., 2010].

Taintdroid source code is available at the Author’s site8 for several versions of

Android such as the ones used by our sandbox, i.e., Android 2.1 and Android 2.3. In

our research lab, we use a version of Taintdroid distributed with Droidbox.

3.4 Cloud Analysis and Consumption Metering

Apart from traditional static and dynamic analysis techniques, a number of recent

works have opted for a radically different approach based on maintaining a synchro-

8http://appanalysis.org/

http://appanalysis.org/
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Figure 3.6: Proof of concept of a clone cloud system.

nized replica of the device in the cloud. Paranoid Android [Portokalidis et al., 2010],

Secloud [Zonouz et al., 2013] and CloudShield [Barbera et al., 2013] are illustrative

examples of such systems. In these cases, all security-related tasks, including moni-

toring, analysis, and detection can be performed in an environment not exposed to

battery or computational constraints. Furthermore, multiple detection techniques

can be applied simultaneously, as the clone can be easily replicated. Maldroid Lab

implements a proof-of-concept cloud cloning system (see Figure 3.6) based on the

aforementioned approaches. We then describe the components of our Clone Cloud

system:

• Physical device. We instrumented a Google Nexus One phone with various

monitoring tools that collect user events, the context, etc. and transmit them

to the cloud. For this purpose, we used a combination of logcat and getevent

tools from Android Debug Bridge (ADB) [Android, 2014].
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• Cloud virtual device. In the cloud-end, a middleware implemented in Python

processes all inputs received, generates the associated models, and runs the

simulation. We inject events and contexts from the physical device into apps

using both Monkeyrunner [Android, 2014] and the Android emulator console

[Android, 2014].

One critical issue with these approaches is that keeping the clone synchronized

involves a constant exchange of activity update packets. For example, experiments

on Paranoid Android show that synchronizing the device with the cloud replicas require

exchanging traces at 2 KB/s for high-load scenarios and at 64 B/s for idle operation.

This definitely consumes power, although it may be worth doing if the clone is a

subject to intensive monitoring.

We also instrumented our physical device with a tool for estimating the energy

consumption of the device. The technical issues on metering and modeling power

consumption in mobile devices have received much attention lately. Built-in meters in

platforms such as Android provide a coarse power profile and are inadequate for most

applications. Our choice of Appscope [Yoon et al., 2012] in this Thesis is motivated by

its accuracy, and also because it provides separate energy consumption for each app

and process, detailing how much corresponds to CPU usage, networking, touchscreen,

etc. Other alternatives include PowerTutor [Zhang et al., 2010], Systemtap [Dediu,

2014a], Eprof [Pathak et al., 2012], and also the schemes discussed in [Dong and

Zhong, 2011; Hao et al., 2012; Nagata et al., 2012; Pathak et al., 2011].

We then describe Appscope and present a middleware called Crowdcosec imple-

mented in this Thesis for offloading on-board information to the cloud.
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3.4.1 Appscope

AppScope [Yoon et al., 2012] is an energy metering framework that monitors the

kernel activity of Android devices. AppScope collects usage information from the

monitored device and estimates the consumption of each running application using an

energy model given by DevScope [Jung et al., 2012]. AppScope provides the amount

of energy consumed by an app in the form of several time series, each one associated

with a component of the device (CPU, Wi-Fi, cellular, touchscreen, etc). AppScope

uses event-driven monitoring method that produces low overhead and provides high

accuracy. In fact, its authors report that AppScope incurs approximately 35mW and

2.1% in power consumption and CPU utilization overhead, respectively.

We have instrumented our Google Nexus One phone with AppScope. Figure 3.7

depicts the information provided by AppScope when measuring the power consump-

tion of an app while being executed in the device. AppScope provides information

about the power consumed by different applications running in the device. Addition-

ally, it also offers information about the energy consumed by each individual process

executed by every app. We have also implemented a number of shell scripts to au-

tomatically collect details of the energy consumed by the device from AppScope’s

logs. (Incidentally, this process turned out to be very challenging due to the lack of

documentation describing the format of AppScope’s logs.)

3.4.2 Crowdcosec

We have tested several open source sensing frameworks such as Funf9 from MIT,

SystemSens [Falaki et al., 2011] and ProfileDroid [Wei et al., 2012]. Our experience

9http://www.funf.org/

http://www.funf.org/
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Figure 3.7: Metering Facebook’s power consumption with Appscope.

was that all these frameworks were still at their first stages by the time we tested them.

Thus, we implemented our own sensing framework to retrieve system information

from a crowd of devices. In particular, we are currently extracting system calls

(syscalls) generated by the apps. We use for this purpose a tool called strace10.

However, we can easily extend our framework to retrieve other information from the

devices.

Our syscall module, only runs in rooted devices with super user privileges. Col-

lected syscalls are processed and sent to a remote server implemented over Apache11.

Crowdcosec allows also to process collected traces locally in the device. In this regard,

we instrumented our Crowdcosec app with a stripped version of Weka [Hall et al.,

2009] capable of running any Machine Learning algorithm implemented in Weka.

10strace is a debugging tool for Linux and some other Unix-like systems that allows to monitor the
system calls used by a program. strace for Android is available online at http://benno.id.au/blog/
2007/11/18/android-runtime-strace.

11http://www.apache.org/

http://benno.id.au/blog/2007/11/18/android-runtime-strace
http://benno.id.au/blog/2007/11/18/android-runtime-strace
http://www.apache.org/
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3.5 Onlinet Markets and Malware Repositories

As introduced in Chapter 2, Android’s architecture implements an open-market

model. Therefore, users are free to download applications from any market. We

then describe the legitimate and malicious repositories used to carry out experimen-

tation in our laboratory. We also introduce an open source remote access malware

called Androrat used in this Thesis.

3.5.1 Crawling Online Markets

There are a substantial number of Android application markets with a variety of apps

available for all users. Typically, legitimate developers upload paid apps to Android’s

official market, i.e., Google Play12. Contrarily, unofficial markets such as Aptoide13

generally host the “very same” applications for free. To retrieve a large amount of

samples, we have crawled the following two markets and downloaded apps from both

of them:

• Google Play. Google Play is the official Android distributor for Android apps.

Users are able to search for apps and download them, as well as get access to

lists of apps ranked by popularity.

We have implemented a Google Play crawler in Python to automatically down-

load apps from this market. The crawler uses an unofficial open-source API14

for automatically querying Google Play.

12http://play.google.com/store/apps
13http://www.aptoide.com/
14https://code.google.com/p/android-market-api/

http://play.google.com/store/apps
http://www.aptoide.com/
https://code.google.com/p/android-market-api/
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• Aptoide. Aptoide is a popular framework for deploying your own alternative

market. It has so far over 110K stores and a total of almost 200K apps and

about 800M downloads.

We have implemented an Aptoide crawler in Ruby to automatically download

apps from this market. The crawler uses the official Aptoide APIs to obtain

metadata from the markets and get the location of the app. Then, we use our

crawler to retrieve new apps.

We have currently crawled about 25K apps from both markets. We mainly have

apps from Aptoide, as Google Play limits the number of downloads per day and user.

3.5.2 Malware Repositories

The growth of Android malware has come hand in hand with the proliferation of

online repositories sharing the latest specimens. There are a number of public and/or

private malware repositories such as:

• Malware Genome Project. The Android Malware Genome Project15 is a

malware repository that covers the majority of malware families for Android

OS. All these samples have been collected and characterized into families by

Zhou and Jian in [Zhou and Jiang, 2012]. We accessed this repository at

the end of 2011. Back then it contained 1247 malicious apps grouped into

49 different families. These samples included specimens with a variety of in-

fection techniques (repackaging, update attacks, and drive-by-download) and

payload functionalities (privilege escalation, remote control, financial charge,

and private information exfiltration).
15Available at http://www.malgenomeproject.org

http://www.malgenomeproject.org


3.5. Onlinet Markets and Malware Repositories 97

• Virus Share. Virus Share16 is a repository of malware samples for security

researchers that counts with a massive number of malware samples —over

15M of them. We visit this repository on a regular basis to retrieve the latest

samples found in the wild.

• Contagio Mobile. Contagio Mobile17 is a public malware repository managed

by a group of independent security researchers and with great amount of sup-

port within the malware community. We also visit this repository regularly.

In total, our malware repositories in the lab currently have about 25K malware

samples.

3.5.3 Open Source Malware Remote Access Tool

Androrat [Bertrand et al., 2014] is an an open source malware Android Remote Access

Tool (RAT). RAT tools provide a backdoor to a remote operator, enabling access to

the device and its personal data. Androrat is provided with two different components:

(i) the remote manager running on a server, and (ii) the local agent running on the

device. We then describe each of these two components:

• Server: This component implements command and control and allows the user

to remotely control numerous devices. The devices are listed dynamically as

new users are connected.

• Client: This component implements all functionality required to provide the

server with the information requested. More precisely, Androrats counts in its

current implementation with the following capabilities:
16http://virusshare.com/
17http://contagiominidump.blogspot.com.es/

http://virusshare.com/
http://contagiominidump.blogspot.com.es/
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– Get contacts (and all their information).

– Get call and messages logs.

– Get geolocation by GPS/Network.

– Monitor received messages and phone state in real time.

– Take a picture from the camera and stream sound or video.

– Do a toast.

– Send a text message or make a call.

– Open an URL in the default browser.

Figure 3.8 shows a snapshot of this tool running over our lab.

Figure 3.8: Exfiltrating personal information (SMSs) with Androrat.
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4
A Text Mining Approach to Analyzing

and Classifying Code Structures in

Malware Families

4.1 Introduction

The impressive growth both in malware and benign apps is making increasingly un-

affordable any human-driven analysis of potentially dangerous apps. For instance,

when confronted with a continuously growing stream of incoming malware samples,

it would be extremely helpful to differentiate between those that are minor variants

of a known specimen and those that correspond to novel, previously unseen sam-

ples. Grouping samples into families, establishing the relationships among them, and

studying the evolution of the various known “species” is also a much sought after

application.

Problems similar to these ones have been successfully attacked with Artificial

Intelligence and Data Mining techniques in many application domains, including mal-
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ware detection [Egele et al., 2012]. For instance, machine learning [Hou et al., 2010],

data mining [Liao et al., 2012; Thiruvadi and Patel, 2011], expert systems [Sahin

et al., 2012], and clustering [Delany et al., 2012], have been proposed to assist the

analyst in classifying the malware. We refer the reader to Chapter 2 for an overview

on automated malware analysis techniques.

In this chapter, we explore the use of text mining approaches to automatically an-

alyze smartphone malware samples and families based on the code structures present

in their software components. Such code structures are representations of the Con-

trol Flow Graph (CFG) of each method found in the app classes [Cesare and Xiang,

2010; Grace et al., 2012a]. A high level overview of the main building blocks and

salient applications of our approach, namely Dendroid [Suarez-Tangil et al., 2014c],

is provided in Figure 4.1. During the modeling phase, all different code structures

are extracted from a dataset of provided malware samples. A vector space model is

then used to associate a unique feature vector with each malware sample and family.

This vector representation is then used to illustrate two main applications:

• Automatic classification of unknown malware samples into candidate families

based on the similarity of their respective code structures. Our classification

scheme involves a preparatory stage where the sample is transformed into a

query in the text mining sense. Thus, a slight variation of this process can

be used to search for a set of given code structures in a database of known

specimens, a task that could be remarkably useful for malware analysts and app

market operators.

• We show how it is possible to perform an evolutionary analysis of malware

families based on the dendrograms obtained after hierarchical clustering. The
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Figure 4.1: Overview of Dendroid’s architecture.

process is almost equivalent to the analysis of the so-called phylogenetic trees

for biological species [Ruzgar and Erciyes, 2012], although using software code

structures rather than physical and/or genetic features. This enables us to

conjecture about evolutionary relationships among the various malware families,

including the identification of common ancestors. Additionally, it also enables

us to study the diversification process that they may have gone through as a

consequence of code reuse and malware re-engineering techniques.

In other domains, many works have applied text mining and information retrieval

techniques for decision making and classification, such as for example [Chibelushi

et al., 2004], and [Gadia and Rosen, 2008]. Furthermore, recent approaches have

also used text mining for detecting similarities [Oberreuter and Velásquez, 2013;

Rodriguez-Gonzalez et al., 2013].

Dendroid is novel in two separate ways. On the one hand, to the best of our
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knowledge using code structures to characterize Android OS malware families has

not been explored before. One major advantage of focusing on the internal structure

of code units (methods) rather than on their specific sequence of instructions is an

improved resistance against obfuscation (i.e., deliberate modifications of the code

aimed at evading pattern-based recognition [Rastogi et al., 2013b]). Furthermore,

such structures prove to be particularly useful for the case of smartphone malware,

where rapid development methodologies heavily based on code reuse are prevalent.

On the other hand, the idea of using text mining techniques to automate tasks such

as classifying specimens, searching for code components, or studying evolutionary

relationships of malware families is, to our knowledge, novel too. Besides, text

mining techniques were developed to efficiently deal with massive amounts of data,

a feature which turns out to be very convenient for the problems that we address

here.

The remaining of this chapter is organized as follows. In Section 4.2 we describe

the dataset of Android malware families used in this work, together with the tools

and methodology followed to extract code structures from each app. In Section 4.3

we analyze and discuss various statistical features of the code structures found in

the malware instances. Based on our findings from this analysis, in Section 4.4 we

propose Dendroid [Suarez-Tangil et al., 2014c], a text mining approach to classify

and analyze malware families according to the code structures present in their apps.

We first introduce a suitable vector space model, and report experimental results

related to classifying instances into families, measuring similarity among families, and

using dendrograms to analyze the evolutionary relationships among families. Finally,

Section 4.5 concludes the chapter and discusses our main contributions.
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4.2 Dataset and Experimental Setting

The work presented in this chapter is largely based on a sizable dataset of real-world

Android OS malware samples called Android Malware Genome Project and described

in Chapter 3. As commented before, this dataset contains 1247 malicious apps

grouped into 49 different families. For the purposes of this work, we discarded 16

out of the 49 families as they only contain one specimen each, resulting in a final

dataset of 1231 malware samples grouped into 33 families. More details on this will

be later provided in Section 4.3.

4.2.1 Extracting Code Structures

One key aspect of our work is the decomposition of an app into a number of con-

stituent code elements referred to as code chunks. Each code chunk corresponds to

a method associated with a class within the app. Thus, an app will be fragmented

into as many code chunks as methods contained in it. Rather than focusing on the

specific sequence of instructions contained in a code chunk, we extract a high-level

representation of the associated Control Flow Graph (CFG). CFGs use graphs as a

representation of the paths that a program might traverse during its execution. Each

node in a CFG represents a “basic block”, i.e., a piece of code that will be sequentially

executed without any jumps. The CFG of a piece of code is explicit in the source

code, is relatively easy to extract, and has been extensively used in static analysis

techniques [Nielson et al., 1999].

Each malware instance contained in the dataset described above has been first

disassembled into Dalvik instructions. We then used Androguard [Desnos, 2014]

to extract the code chunks of all malicious apps and compute their structure as
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described in Chapter 3. The sequence of instructions contained in a code chunk is

thus replaced by a list of statements defining its control flow, such as a block of

consecutive instructions (B), a bifurcation determined by an “if” condition (I), an

unconditional go-to jump (G), and so on. After parsing each code chunk with this

grammar, the resulting structure is a sequence of symbols of varying length (see

Figure 3.2 at Chapter 3).

After this process, each malware sample app is represented by a sequence:

app = 〈c1,c2, ... ,c|app|〉, (4.1)

where ci is a string describing the code structure of the i-th method in app, and |app|

is the total number of methods contained in app. In the remaining of this chapter, we

will refer to ci ’s indistinctly as code chunks or code structures. The resulting dataset

of code chunks, grouped by app and family as in the original Android Malware Genome

Project, has been made publicly available1.

4.3 Analysis of Code Structures in Android Malware

Families

In this section, we analyze and discuss various statistical features of the code struc-

tures found in the malware apps and families of the dataset described above. Our

findings will subsequently motivate the use of text-mining techniques for tasks such

as, for example, the classification of new apps into candidate malware families or the

analysis of similarities among families.

1http://www.seg.inf.uc3m.es/~guillermo-suarez-tangil/dendroid/codechunks.zip

http://www.seg.inf.uc3m.es/~guillermo-suarez-tangil/dendroid/codechunks.zip
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4.3.1 Definitions

We are interested in exploring questions such as how large, in terms of number of

code chunks (CCs), apps are; what the distribution of CCs across apps and families

is; or how discriminant a subset of CCs is for a given family. We next introduce a

number of measures that will be later used to perform this analysis.

Definition 1 (CC). We denote by CC(app) the set of all different CCs found in app

app. We emphasize that CC(app) is a set and, therefore, it does not contain repeated

elements.

Definition 2 (Redundancy). The redundancy, RD(app), of an app app is given by:

RD(app) = 1− |CC(app)|
|app|

, (4.2)

where |app| is the total number of CCs (possibly with repetitions) in app.

Note that redundancy measures the fraction of repeated CCs present in an app,

with low values indicating that CCs do not generally appear multiple times in the app,

and vice versa.

Definition 3 (FCC). The set of family CCs for a family Fi is given by:

FCC(Fi) =
⋃

app∈Fi

CC(app). (4.3)

Definition 4 (CCC). The set of common CCs for a family Fi is given by:

CCC(Fi) =
⋂

app∈Fi

CC(app). (4.4)
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In short, the set CCC(Fi) contains those CCs found in all apps of Fi . Even though

this can be certainly seen as a distinctive feature of family Fi , it does not imply

that all those CCs are unique to Fi . For instance, code reuse—which is a recurrent

feature of malware in general and, particularly, of smartphone malware—will make

the same CCs appear in multiple families.

Definition 5 (FDCC). Given a set of malware families M = {F1, ... ,Fm}, a set

C = {c1, ... ,cn} of CCs is fully discriminant for Fi with respect to M iff:

(i) C ⊆ CCC(Fi), and

(ii) ∀Fk ∈M ,Fk 6= Fi : C ∩FCC(Fk) = /0.

We denote by FDCC(Fi |M ) the maximal set of fully discriminant CCs for Fi with

respect to M ; that is, C = FDCC(Fi |M ) iff C is fully discriminant for Fi with respect

to M , and for all C ′ such that C ′ is fully discriminant for Fi with respect to M ,

C ′ ⊆ C .

Put simply, a set of CCs is fully discriminant for a family Fi if and only if every

CC in the set appears in every app of Fi and, furthermore, no CC in the set appear

in any app of any other family. Consequently, such a set unequivocally identifies the

family, provided that it is not the empty set.

4.3.2 Results and Discussion

We computed the various measures and sets described above over all the apps and

families in our dataset. Table 4.1 and Figure 4.2 summarize the most relevant results.
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The entire dataset contains 84854 different CCs. In terms of number of unique

CCs, apps do not display a uniform behavior, neither within the same family nor

across families. Apps in some malware families have, on average, only a few differ-

ent CCs: see for example FakePlayer (6), GPSSMSSpy (13), or SndApps (28). In

contrast, others are quite large, such as for example zHash (1348), Pjapps (1160),

or DroidKungFu4 (936).

The variance, both of apps’ length and redundancy within each family, is generally

large, as illustrated by the boxplots shown in Figures 4.2(a) and 4.2(b). This can

be explained by a number of factors, including the fact that in many cases malware

belonging to the same family appears in very different apps, each one with its own set

and distribution of CCs. In general, however, all apps display a redundancy between

0.4 and 0.7 regardless of their size.

The size of the FCC, CCC, and FDCC sets for each family reveal some remarkable

details. The number of family CCs (FCC) varies quite significantly across families.

Furthermore, such variability seems uncorrelated with the average number of CCs in

the apps. The most likely explanation for this has to do with the proliferation and

prevalence of each malware family. Families such as AnserverBot, Geinimi, Pjapps,

and DroidKungFu appeared in a variety of very popular repackaged apps, and infected

a significant number of devices. Thus, finding the same malware in very different

apps induces a sharp increase in the size of FCC.

The CCC set removes this diversity and identifies code structures common to all

available apps within a family. The size of this set varies across families, being quite

low in families where the malware code has undergone significant evolution, possibly

after being included in different apps. For example, only 6 CCs appear in each of
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App stats Family stats
Family Fi |Fi | Avg{|CC(app)|} Avg{RD(app)} |FCC(Fi )| |CCC(Fi )| |FDCC(Fi |M )|

ADRD 22 416 0.59 2726 21 8
AnserverBot 187 367 0.64 17635 44 9
Asroot 8 78 0.57 462 1 0
BaseBridge 122 433 0.53 9918 5 0
BeanBot 8 746 0.68 3081 61 34
Bgserv 9 384 0.53 487 67 34
CruseWin 2 82 0.53 82 82 40
DroidDream 16 302 0.51 2545 10 0
DroidDreamLight 46 529 0.54 3339 40 13
DroidKungFu1 34 501 0.58 7609 10 0
DroidKungFu2 30 295 0.51 2418 9 0
DroidKungFu3 309 872 0.58 19092 48 11
DroidKungFu4 96 936 0.56 9239 19 2
DroidKungFuSapp 3 351 0.66 411 310 0
FakePlayer 6 6 0.73 7 10 2
GPSSMSSpy 6 13 0.44 23 9 3
Geinimi 69 430 0.58 12141 77 37
GingerMaster 4 223 0.64 297 159 108
GoldDream 47 513 0.54 9129 13 3
Gone60 9 35 0.41 56 26 5
HippoSMS 4 148 0.67 262 8 1
KMin 52 502 0.50 795 120 42
NickySpy 2 65 0.71 84 47 34
Pjapps 45 1160 0.58 15128 6 0
Plankton 11 133 0.52 876 14 2
RogueLemon 2 962 0.54 1441 483 321
RogueSPPush 9 365 0.60 633 114 60
SndApps 10 28 0.55 54 20 11
Tapsnake 2 33 0.57 55 12 2
YZHC 22 316 0.48 1704 33 11
Zsone 12 365 0.40 535 338 1
jSMSHider 16 113 0.46 266 64 52
zHash 11 1348 0.56 2344 645 390

Table 4.1: Statistical indicators obtained for all apps and families in the dataset.

the 45 samples of Pjapps. On the contrary, apps in unpopular or rare families share

essentially the same version of the malware: see for example zHash, where all its 11

apps share 645 CCs.

Finally, the rightmost column in Table 4.1 shows the number of fully discriminant

CCs for each family. Surprisingly, The FDCC set is non-empty for 26 out of the 33
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Figure 4.2: Distribution of (a) unique CCs (CC); (b) redundancy (RD); and (c) common and
fully discriminant CCs for each family (CCC/FDCC).

families. This suggest that, in principle, those CCs might be used as a “signature” to

perfectly classify an app into one of those families. We believe, however, that such a

scheme would be extremely weak for a number of reasons. One of the most important
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shortcomings of using FDCC as the basis to represent malware family features is that

it is very fragile: the addition of a new app to a family such that it does not share any

CCs with those already in the family automatically makes the CCC set empty, which

in turn makes FDCC empty too. Such an app might have actually been incorrectly

labeled as belonging to the family, or perhaps carefully constructed to avoid sharing

CCs with all other apps. In either case, the characterization of the family would not

be useful anymore.

We next study the distribution of CCs across families, which will motivate a more

robust representation of family features.

4.3.3 Distribution of Code Structures

Figure 4.3 shows the distribution of CCs as a function of the number of families where

they appear. This plot is obtained by iterating over all different code structures and

computing, for each one of them, the number of different families where they appear.

(A CC appear in a family if it appears in at least one app of that family.) The results

reveal that 78.9% of all code structures appear in just one family. Note that this does

not mean that such a family is the same, as different code structures may appear

in different families. Rather, this value indicates that if a code structure is found in

one family, it is unlikely to find that same code structure in an app belonging to a

different family. Similarly, the number of code structures that appear in 2, 3, 4, and 5

different families drops to 12.6%, 3.5%, 1.5%, and 1.1%, respectively. Consequently,

less than 1% of all available code structures appear in 6 or more different families.

This distribution of code structures across malware families suggests that each

family can be sufficiently well characterized by just a few code structures, possibly
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Figure 4.3: Distribution of CCs as a function of the number of families where they appear.

accompanied by some extra information such as the frequency of that code structure

in each app of the family, the fraction of apps where it appears, etc. We next

elaborate on this.

4.4 Mining Code Chunks in Malware Families

Based on the findings discussed in the previous section, we next describe Dendroid,

our approach to analyzing malware samples and families based on mining code struc-

tures. We first present the vector space model used and describe the main features

of our prototype implementation. Subsequently we present two main applications—
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classifying unknown malware apps, and analyzing possible evolutionary paths of mal-

ware families—and discuss the experimental results obtained.

4.4.1 Vector Space Model

In this section, we adapt to our problem various numerical indicators well researched

in the field of information retrieval and text mining. One central concept in those

fields is the so-called Vector Space Model (VSM) [Salton et al., 1975], sometimes

known as Term Vector Model, where each object dj of a corpus is represented as a

vector of identifiers

dj = (w1,j , ... ,wk,j). (4.5)

Each identifier wi ,j is a measure of the relevance that the i-th term, mi , has in

object dj . In the most common setting, objects and terms are documents and words,

respectively. Thus, wi ,j is an indicator of the importance of word mi in document dj .

Many interesting problems related to information retrieval and text mining can

be easily reformulated in the VSM in terms of vector operations. For example, the

cosine of the angle between two vectors is a good measure of the similarity between

the associated documents. Such vector operations are the basis for a number of in-

teresting primitives, such as comparing two documents or ranking various documents

according to their similarity to a given query (after appropriately representing queries

as vectors too).

One popular statistical indicator used in the VSM is the term frequency-inverse

document frequency (tf-idf). Using the notation introduced above, the tf-idf wi ,j of

term mi in dj is the product of two statistics: (1) the term frequency (tf), which
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measures the number of times mi appears in dj ; and (2) the inverse document

frequency (idf), which measures whether mi is common or rare across all documents

in the corpus. Thus, a high tf-idf value means not only that the corresponding term

appears quite often in a document, but also that it is not frequent in other documents.

As a result, one important effect is that the tf-idf tends to filter out terms that are

common across documents.

Our proposal essentially mimics the model discussed above. Each family Fj is

represented by a vector vj = (I1,j , ... , Ik,j), where Ii ,j = I(ci ,Fj ,M ) is computed as

I(ci ,Fj ,M ) = ccf(ci ,Fj) ·iff(ci ,M ). (4.6)

The indicators ccf(c ,Fj) and iff(c ,M ) are approximately equivalent to the tf

and idf statistics, respectively, and can be computed as follows.

Definition 6 (CCF). The frequency of a CC c in a family Fj is given by

ccf(c ,Fj) =
∑app∈Fj freq(c ,app)

max{freq(c ,app) : app ∈ Fj}
, (4.7)

where freq(c ,app) is the number of occurrences of CC c in app app.

Definition 7 (IFF). The inverse family frequency of a CC c with respect to a set of

malware families M = {F1, ... ,Fm} is given by

iff(c ,M ) = log
|M |

1+ |{Fi ∈M : c ∈ FCC(Fj)}|
. (4.8)
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4.4.2 An example

We next illustrate the model presented above with a numerical example and discuss

some relevant features. Assume two different datasets, M1 and M2, of malicious

apps, with |M1| = 4 and |M2| = 400. Given a CC ci , we can easily see how each

family feature vector varies according to the relevance of ci .

On the one hand, when ci is a rather common CC (see Figure 4.4a), i.e., it

appears in most families, the iff value quickly vanishes (see Fig. 4.4b). Similarly, it

can also be observed how the components of a family vector grow when the frequency

of a CC increases, as shown in 4.4a. On the other hand, when ci is a very uncommon

CC, the iff value grows significantly: see, e.g., Figure 4.4 where iff(ci ,M2) is 16

times larger than iff(ci ,M1). The overall result is that the relevance of a CC is

strongly influenced by its frequency across families. Thus, CCs that are common to

many families have a low influence in the family feature vector, even if they are very

frequent.

4.4.3 Implementation

We have built a Java implementation of the VSM discussed above and applied it over

all families in our dataset to obtain a family feature vector for each of them. The

process is described by the algorithm shown in Figure 4.5 and outputs one vector vj

for each malware family Fj , with each vector component representing the relevance

of a CC in Fj .

The algorithm comprises three main steps: (i) initialization, (ii) inverse family

frequency computation, and (iii) CC frequency computation. First, we extract the
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F1 F2 F3 F4

Apps app1 app2 app3 app4 app5 app6 app7

Is ci in appk? X × X X × × ×
freq(ci , appk) 5 0 4 1 0 0 0
ccf(ci ,Fj) 9/5 1/1 0 0
iff(ci ,M1) log 4

1+2 = 0.288
I (ci ,Fj ,M1) 0.518 0.288 0.000 0.000

(a) Rather common CC with |M1|= 4.

-6 -4 -2 2 4 6

1

2

3

Hx from -6 to 6L

(b) iff(ci ,M1)

F1 F2 · · · F400

Apps app1 app2 app3 app4 app5 · · · appn

Is ci in appk? X × × X X × X
freq(ci , appk) 5 0 0 2 7 0 1
ccf(ci ,Fj) 5/5 9/7 0 1/1
iff(ci ,M2) log 400

1+3 = 4.605
I (ci ,Fj ,M2) 4.605 5.921 0.000 4.605

(c) Very uncommon CC with |M2|= 400.

-6 -4 -2 0 2 4 6

4

5

6

7

Hx from -6 to 6L

(d) iff(ci ,M2)

Figure 4.4: Computation of I (ci ,Fj ,M ) and distribution of the iff value depending on the
popularity of the CC in two different malware datasets: tiny (a) and (b), and large (c) and
(d). Figure (b) and (d) represents the resulting iff with respect to the FCC, i.e.: iff(ci ,M ) =

log( |M |x ), where x = 1+ |{Fi ∈M2 : c ∈ FCC(Fj )}| and x = 1+ |{Fi ∈M2 : c ∈ FCC(Fj )}|
respectively.

frequency freq(c,app) for every CC c ∈ CC(app) of each app app ∈M (lines 2–5).

The inverse family frequency is then computed for each extracted CC using Eq. (4.8)

(lines 8–10). Finally, the frequency of each CC is computed by applying Eq. (4.8),

and the associated indicator for the CC is obtained (lines 11–16).

4.4.4 Modeling Families and Classifying Malware Instances

In our first experiment, we have tested the ability to correctly predict the family of a

malware instance. To do this, we have randomly split our dataset into k complemen-

tary folds, being k = 10. During the generation of each fold, we have guaranteed that
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Algorithm 1. Computing Family Vectors
Input:

Dataset of labeled malware apps (sequences of code chunks):
M = {(app1,Fapp1),(app2,Fapp2), ... ,((appp,Fappm))}

where Fappi ∈ {F1, ... ,Fq}
Output:

Vectors vj = (I1,j , ... , Ik,j) for each Fj ∈ {F1, ... ,Fq}
Algorithm:
1 FCC(Fj) = /0 ∀j = 1, ... ,q

2 For each (app,Fapp) ∈M do
3 FCC(Fapp) = FCC(Fapp) ∪ CC(app)
4 Update freq(c ,app) for each c ∈ CC(app)
5 end-for
6 C(M ) =

⋃q
j=1 FCC(Fj)

7 k = |C(M )|
8 For each i = 1, ... ,k do
9 Compute iff(ci ,M ) according to (4.8)
10 end-for
11 For each Fj do
12 For each i = 1, ... ,k do
13 Compute ccf(ci ,Fj) according to (4.7)
14 vj[i ] = Ii ,j = ccf(ci ,Fj) ·iff(ci ,M )
15 end-for
16 end-for
17 return {v1, ... ,vq}

Figure 4.5: Algorithm for obtaining each family vector.

every family-subset contains at least one sample. Once the dataset is partitioned,

we have randomly selected one fold as validation data, and the remaining ones are

used as training data.

The training folds were used to derive a vectorial representation for each malware

family as described in Section 4.4.1. A total number of 84854 CC were found

across all instances in the dataset, so each family is represented by a vector with

this dimensionality, as specified in (4.6). We note, however, that such vectors are
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Algorithm 2. 1-NN Malware Classifier
Input:

Family vectors {v1, ... ,vq} and data structures
〈C(M ),iff(ci ,M )〉
Malware instance app

Output:
Predicted family Fj

Algorithm:
1 for each ci ∈ C(M ) do
3 z[i ]) = freq(ci ,app) ·iff(ci ,M )

4 end-for
5 j = arg mini{dist(z,vi)}
6 return Fj

Figure 4.6: 1-NN malware classification algorithm.

very sparse (as expected by the analysis given in Section 4.3), which in practice

makes it very efficient to store and manipulate them. For illustration purposes, the

largest family vectors correspond to DroidKungFu3 (19091 non-null components),

AnserverBot (17634), Pjapps (15127), and Geinimi (12140). On average, only

around 11% of each feature vector contains discriminant information.

The validation fold was processed in a similar way, obtaining a vectorial represen-

tation for each malware instance. We then implemented a 1-NN (nearest neighbor)

classifier [Tan, 2005] to compute the predicted family for each malware instance

under test. Such a prediction is the family whose vector is closest to the instance’s

vector (see Fig. 4.6). 1-NN is a widely used method in data mining that only requires

to compute n distances and one minimum. To compute distances between vectors,

we relied on the well-known cosine similarity:

Definition 8 (Cosine similarity). The cosine similarity between two vectors z =
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(z1, ... ,zk) and v = (v1, ... ,vk) is given by

sim(z,v) = cos(θz,v) =
z ·v

‖ z ‖‖ v ‖
=

k

∑
i=1
uivi√√√√ k

∑
i=1
u2

i

√√√√ k

∑
i=1
v 2

i

. (4.9)

The cosine similarity, which measures the cosine of the angle between vectors z

and v, has been extensively used to compare documents in text mining and informa-

tion retrieval applications. Besides, it is quite efficient to evaluate in domains such

as ours, since vectors are sparse and, therefore, only a few non-zero dimensions need

to be considered in the computation. As for our purposes a distance, and not a

similarity, is required, we use:

dist(z,v) = 1− sim(z,v). (4.10)

Results have been cross-validated with each of the k folds that were previously

generated. The classification error per family attained in this experiment is shown

in Table 4.2. A closer inspection reveals that the classification error is not uniform

across families. On the contrary, errors concentrate on 6 out of the 33 malware fami-

lies studied (AnserverBot, BaseBridge, and DroidKungFu1 through DroidKungFu4),

while instances belonging to the remaining 27 families are perfectly classified.

Interestingly, DroidKungFu has been considered a milestone in Android OS mal-

ware sophistication [Zhou and Jiang, 2012]. After the release of its first version, a

number of variants rapidly emerged, including DroidKungFu2 through DroidKungFu4
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Classification Error (%)
ADRD 0.00% GingerMaster 0.00%
AnserverBot 4.66% GoldDream 0.00%
Asroot 0.00% Gone60 0.00%
BaseBridge 7.92% HippoSMS 0.00%
BeanBot 0.00% KMin 0.00%
Bgserv 0.00% NickySpy 0.00%
CruseWin 0.00% Pjapps 0.00%
DroidDream 0.00% Plankton 0.00%
DroidDreamLight 0.00% RogueLemon 0.00%
DroidKungFu1 12.92% RogueSPPush 0.00%
DroidKungFu2 19.46% SndApps 0.00%
DroidKungFu3 8.12% Tapsnake 0.00%
DroidKungFu4 18.21% YZHC 0.00%
DroidKungFuSapp 0.00% Zsone 0.00%
FakePlayer 0.00% jSMSHider 0.00%
GPSSMSSpy 0.00% zHash 0.00%
Geinimi 0.00%

Table 4.2: Average malware classification error per family using 1-NN with 10-fold cross-
validation.

or DroidKungFuApp. A common feature shared by all these variants is the use of

encryption to hide their existence. In fact, some of them embedded their payloads

within constant strings or even resource files (e.g., pictures, asset files, etc.). Further-

more, DroidKungFu aggressively obfuscates the class name and uses native programs

(Java Native Interface, or JNI) precisely to made the analysis difficult. Similarly,

AnserverBot use sophisticated techniques to obfuscate all internal classes, methods,

and fields. Moreover, instead of enclosing the payload within the app, AnserverBot

dynamically fetches and loads it at runtime (this is known as update attacks). In

this regard, some authors (e.g., [Zhou and Jiang, 2012]) believe that AnserverBot

actually evolved from BaseBridge and inherited this feature from it. Our results

seem to confirm this hypothesis.
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More insights can be gained by observing the confusion matrix given by a larger

dataset of k = 2 folds and approximately an equal number of malware instances

in each fold (see Table 4.3). Each cell (x ,y) in the matrix shows the number of

instances belonging to family x whose predicted family is y . Here, for instance, we

can observe that 5 out of the 61 samples of BaseBridge have been predicted as

AnserverBot. Similarly, we can observe that a few samples of DroidKungFu1 have

been classified as DroidKungFu2 and, in a similar way, there is some misclassifications

between DroidKungFu3 and DroidKungFu4. Thus, the aforementioned classification

error is actually justified by the evolutionary relationships of these particular malware

strands.

4.4.5 Evolutionary Analysis of Malware Families

In this section, we discuss the application of hierarchical clustering to the feature

vectors that model samples and family. The resulting dendrograms are then used

to conjecture about their evolutionary phylogenesis, giving a valuable instrument to

discover relationships among families. We first describe the hierarchical clustering

algorithm currently included in Dendroid. Subsequently we discuss the results ob-

tained.

4.4.5.1 Single Linkage Hierarchical Clustering

Single Linkage Clustering, also known as nearest neighbor clustering, is a well-known

method to carry out an agglomerative hierarchical clustering process over a popula-

tion of vectors. The algorithm, shown in Figure 4.7, keeps a set of clusters, K , which

is initialized to the set of family vectors. At each iteration it, the two closest clusters
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ADRD 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11
AnserverBot 0 89 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93

Asroot 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
BaseBridge 0 5 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61

BeanBot 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
Bgserv 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

CruseWin 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
DroidDream 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

DroidDreamLight 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23
DroidKungFu1 0 0 0 0 0 0 0 0 0 15 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17
DroidKungFu2 0 0 0 0 0 0 0 0 0 3 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15
DroidKungFu3 0 0 0 0 0 0 0 0 0 0 0 141 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 154
DroidKungFu4 0 0 0 0 0 0 0 0 0 0 0 8 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48

DroidKungFuSapp 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
FakePlayer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

GPSSMSSpy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
Geinimi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34

GingerMaster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
GoldDream 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23

Gone60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4
HippoSMS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2

KMin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0 0 0 26
NickySpy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
Pjapps 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 22

Plankton 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 5
RogueLemon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
RogueSPPush 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 4

SndApps 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 5
Tapsnake 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

YZHC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 11
Zsone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 6

jSMSHider 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8
zHash 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5

11 94 4 60 4 4 1 8 23 18 14 149 53 1 3 3 34 2 23 4 2 26 1 22 5 1 4 5 1 11 6 8 5 610

Table 4.3: Confusion matrix for malicious app classification.

r,s ∈ K are combined into a larger cluster vrs. The distance matrix between each

pair of clusters is then updated by removing both r and s, adding the newly created

vrs, and finally computing the distances from vrs to each remaining cluster x through

a linkage function. In our case, such a function is simply the shortest between the

distance from x to r and the distance x to s. Furthermore, the algorithm keeps a list

L(it) with the distances at which each fusion takes place. The process is iterated

until the set of clusters K is reduced to one element.



124 4. A Text Mining Approach to Analyzing and Classifying Code in Malware Families

Algorithm 3. Single-linkage hierarchical clustering of malware families
Input:

Family vectors {v1, ... ,vq}
Output:

Proximity matrices D(t) = [dij ] and linkages at each level L(k)
Algorithm:
1 K = {v1, ... ,vq}
2 D(0) = [dij ] = dist(vi,vj) for all vi,vj ∈K
3 it = 0,L(it) = 0
4 while |K | 6= 1 do
5 Find r,s ∈K such that dist(r,s) = min

a,b∈K
{dist(a,b)}

6 Merge r,s into new cluster vrs
7 it = it+1
8 L(it) = dist(r,s)
9 D(it) = D(it−1) deleting the rows and columns corresponding

to r and s
10 Add to D a new row and column for vrs
11 D[vrs,x] = dist(vrs,x) = min{dist(r,x),dist(s,x)} for all x
12 K = K ∪{vrs}\{r,s}
13 end-while
14 return 〈D(0), ... ,D(it),L〉

Figure 4.7: Single linkage hierarchical clustering algorithm for malware families.

4.4.5.2 Results and Discussion

The results of a hierarchical clustering can be visualized in a dendrogram as the one

depicted in Figure 4.9 for the dataset used in this work. The dendrogram represents a

tree diagram where links between the leaves (malware families) illustrate the parental

relationships (ancestors and descendants) in a hierarchy. Thus, clusters (denoted as

vrs in Figure 4.7–line 6) are tree nodes representing merged families, i.e., a common

ancestor. The paths that group together different families illustrate the phylogenetic

evolution of the “species.” Furthermore, the distance D(t) between an ancestor and

its descendants is a measure of their similarity and, therefore, can be interpreted as an
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Figure 4.8: Distance matrix between pairs of malware families.

evolutionary (or diversification) distance. Note that the sequence of such distances

is provided as an output by the algorithm in Figure 4.7.

The initial proximity matrix, D(0), for all the families in our dataset is graphi-

cally shown in Figure 4.8. As anticipated by the results of the previous experiment,

the similarity among some groups of families is striking, while in other cases there

are substantial differences. The results after applying hierarchical clustering to the

datasets are displayed in the dendrogram shown in Figure 4.9. There are a number
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of interesting observations:
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Figure 4.9: Dendrogram obtained after hierarchical clustering over the dataset.

• BaseBridge and AnserverBot are intimately related, hence that they appear as

variants of a common ancestor. Besides, their linkage (distance) is very small

compared to the rest of the families, which suggest a large share of relevant

code structures and, perhaps of functionality too.

• The case of the DroidKungFu variants is remarkably captured. It transpires

from our results that DroidKungFu1 and DroidKungFu2 are alike, and the

same occurs with the pair DroidKungFu3 and DroidKungFu4. Furthermore,
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both pairs descend from a common ancestor, say DroidKungFuX, which in turn

is connected with GoldDream. This branch connects with another one formed

by the pair Plankton-DroidDreamLight, and both groups relate to Pjapps,

which is among the oldest examples of sophisticated Android OS malware. Fi-

nally, the relationship between this group, Zsone-DroidDream, and BaseBridge-

AnserverBot could be explained by a number of reasons, including the fact that

they probably share common engines.

• The remaining malware families seem rather unrelated, and no significant evo-

lutionary relationship can be inferred. Note, too, that distances approach 1 in

this area of the dendrogram, which suggest a very weak connection.

4.5 Conclusions

In this chapter, we have proposed a text mining approach to automatically clas-

sify smartphone malware samples and analyze families based on the code structures

found in them. Our proposal is supported by a statistical analysis of the distribu-

tion of such structures over a large dataset of real examples. Our findings point

out that the problem bears strong resemblances to some questions arising in au-

tomated text classification and other information retrieval tasks. By adapting the

standard Vector Space Model commonly used in these domains, we have explored

the suitability of such techniques to measure similarity among malware samples, and

to classify unknown samples into known families. Our experimental results suggest

that this technique is fast, scalable and very accurate. We have subsequently studied

the use of hierarchical clustering to derive dendrograms that can be understood as

phylogenetic trees for malware families. This provides the analyst with a means to
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analyze the relationships among families, the existence of common ancestors, the

prevalence and/or extinction of certain code features, etc. As discussed in this The-

sis, automated tools such as these will be instrumental for analysts to cope with the

proliferation and increasing sophistication of malware.



III
Dynamic-based Analysis





5
Alterdroid: Differential Fault Analysis of

Obfuscated Malware Behavior

5.1 Introduction

More sophisticated obfuscation techniques, particularly in code, are starting to ma-

terialize [Huang et al., 2013; Linn and Debray, 2003; Rastogi et al., 2013b]. These

techniques and trends create an additional obstacle to malware analysts, who see

their task further complicated and have to ultimately rely on carefully controlled dy-

namic analysis techniques to detect the presence of potentially dangerous pieces of

code.

Approaches based on dynamic code analysis such as the ones described in Chapter

2 are promising, but current works [Egele et al., 2012], [Rastogi et al., 2013a],

[Shabtai et al., 2014] only provide an holistic understanding of the behavior of an

app. This feature challenges the identification of grayware and the attribution of

malicious behavior to components of the app. Thus, current approaches are prone

to miss on their identification and further human—costly—efforts are required as
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shown by Zhou and Jiang in [Zhou and Jiang, 2012].

Recent works approach the detection of obfuscated malware by mining identifi-

able static features such as cryptographic functions [Calvet et al., 2012]. However,

Schrittwieser et al. [Schrittwieser et al., 2013] demonstrate the incompleteness of

these and other semantic-aware detectors [Christodorescu et al., 2005] by means of

“covert computation”. As regards the various ways to obfuscate or locate obfuscated

code in binary data, [Ker et al., 2013] describes most relevant steganography and

steganalysis techniques including active [Fisk et al., 2003; Li and Craver, 2011] and

passive wardens.

Fuzz Testing or Fuzzing is a technique commonly used for providing inputs when

testing software for security purposes [Takanen et al., 2008]. Fuzzing technique is re-

cently gaining popularity for automating the dynamic analysis of apps in smartphones

[Machiry et al., 2013; Mahmood et al., 2012; Rastogi et al., 2013a; Shabtai et al.,

2014; Zheng et al., 2012]. Basically, Fuzzing aims at providing different streams of

events to the app for further monitoring the behavior of the device. Fuzzing was orig-

inally proposed for finding software crashes or unexpected behaviors by deliberately

introducing faulty inputs.

In this chapter we describe Alterdroid [Suarez-Tangil et al., 2014a], a fuzzing-

based technique for detecting obfuscated malware components distributed as parts

of an app package. Such components are often hidden outside the app main code

components, as these may be subject to static analysis by market operators. The

key idea in Alterdroid consists of analyzing the behavioral differences between the

original app and an altered version where a number of modifications (faults) have

been carefully introduced. Such modifications are designed to have no observable
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effect on the app execution, provided that the altered component is actually what

it should be and does not have any hidden functionality. For example, replacing the

value of some pixels in a picture or a few characters in a string encoding an error

message should not affect execution. However, if after doing so it is observed that

a dynamic class loading action crashes or a network connection does not take place,

it may well be that the picture was actually a piece of code or the string a network

address or a URL.

At high level, Alterdroid has two differentiated major components: fault injection

and differential analysis. The first one takes a candidate app—the entire package—

as input and generates a fault-injected one. This is done by first extracting all

components in the app and then identifying those suspicious of containing obfuscated

functionality. Such identification is done on an anomaly-detection basis by comparing

certain statistical features of the component’s contents with a predefined model for

each possible type of resource (i.e., code, pictures and video, text files, databases,

etc.). Faults are then injected into candidate components, which are subsequently

repackaged, together with the unaltered ones, into a new app. This process admits

simultaneous injection of different faults into different components and is driven

by a search algorithm that attempts to identify where the obfuscated functionality

is hidden. Both the original and the fault-injected apps are then executed under

identical conditions (i.e., context and user inputs), and their behavior is monitored

and recorded in the form of two activity signatures. Such signatures are merely

sequential traces of the activities executed by the app, such as for example opening a

network connection, sending or receiving data, loading a dynamic component, sending

an sms, interacting with the file system, etc. Both behavioral signatures are then

treated as in a string-to-string correction problem, in such a way that computing
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the Levenshtein distance (also known as edit distance) between them returns the list

of observable differences in terms of insertions, deletions and substitutions. Such a

list, called the differential signature, is finally matched against a rule set where each

rule encodes a relationship between the type of functionality presumably hidden and

certain patterns in the differential signature.

The contributions of this chapter can be summarized in what follows:

1. We introduce the notion of differential fault analysis for detecting obfuscated

malware functionality in smartphone apps.

2. We provide simple yet powerful theoretical models for fault injection operators,

behavioral signatures and rule-based analysis of differential behavior.

3. We describe the functional components of Alterdroid, a prototype implemen-

tation of our differential fault analysis model for Android apps. The system

includes instantiations for key tasks such as identifying components to be fault-

injected and a search-based approach to track down obfuscated components

in an app.

4. We also show how Alterdroid’s functional architecture supports a distributed

deployment of different modules, which allows offloading various analysis to

the cloud and running them in parallel.

Additionally, we illustrate our approach by discussing the step-by-step analysis of

three Android malware samples that incorporate hidden functionality in repackaged

apps: DroidKungFu, AnserverBot, and GingerMaster.

Fault injection analysis has been widely used for software assurance against fault

tolerance [Gray, 1986; Natella et al., 2013]. Our approach uses Fuzzing both for au-
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tomating the generation of inputs given to the sandbox and to inject fault conditions

into components of the program. To the best of our knowledge differential fault

analysis is a novel approach compared to existing works aiming at analyzing malware

in smartphones.

The rest of this chapter is organized as follows. In Section 5.2 we introduce

formal models for fault injection and differential analysis. Section 5.3 describes Al-

terdroid’s architecture and its key functional components, discusses the complexity

of differential fault analysis, and provides an overview of our proof-of-concept imple-

mentation. Subsequently in Section 5.4 we describe the analysis of three Android

malware samples with Alterdroid. Finally, in Section 6.6 we conclude the chapter

by summarizing our main contributions and discussing limitations and directions for

future research.

5.2 A Differential Fault Analysis Model

This section introduces the theoretical background used in Alterdroid [Suarez-Tangil

et al., 2014a] to inject faults into apps, represent behavioral differences between apps,

and deducing properties from such behavioral differences considering injected faults

and observed differences. The overall dynamics of the differential fault analysis pro-

cess (i.e., the mechanism governing which faults are injected and where) is external

to this model and will be discussed later in Section 5.3.
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5.2.1 Fault Injection Model

An app P can be seen as a collection of components

P = {c1,c2, ... ,ck}. (5.1)

A component can be composed of a number of classes (i.e., code), but also other

resources that are dynamically accessed, such as for example asset files. Components

have a type, such as for example code, picture, video, database, etc. We define a

type function τ(c) that returns the type of component c .

Fault conditions can be injected into an app by altering one or more of its com-

ponents. Assume that C is the set of all possible app components and ψ(c) is the

alteration made over a component c ∈ C. A Fault Injection Operator is a transfor-

mation

ψci : 2P → 2C

ψci (P ) = P \{ci}∪{ψ(ci)}
(5.2)

That is, ψci (P ) returns a modified version of P where component ci has been re-

placed by ψ(ci). Depending on the functionality of c and the nature of the modifica-

tions introduced by ψ, replacing c by ψ(c) may, or may not, translate into observable

differences in the execution of P . In this work, we restrict ourselves to FIOs that

make alterations to data components only, not to instructions. Data components

include the value of variables found in the code, and also asset files such as databases,

pictures, audio and video files, etc. We will abuse notation and write τ(ψci ) for τ(ci);

i.e., we consider that the type of a FIO is the type of all components it can be applied

to.

FIOs can be arbitrarily complex and, in some cases, their operation may depend
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on the type and/or current value of the component to be altered. We will also make

use of very simple FIOs that treat components as a bit string, such as for example:

• rrepc(·): replaces the value of component c for a randomly chosen bit string.

• zeroc(·): replaces the value of component c for a string of zeros of the same

length.

• rmutc
j (·): flips the j-th bit of of component c .

The FIOs defined above are rather generic. In some cases, we might want to

define further datatype-specific operators. These will be useful to modify in a syntax-

preserving way certain data objects (e.g., multimedia files) when the focus is on

changing the content without rendering the object unusable.

5.2.2 Modeling Differential Behavior

A key task in our system is the analysis of the behavioral differences between an

original app and a slightly modified version of it after applying a FIO. We next

introduce a model to represent traces of activities and differences between traces.

5.2.2.1 Behavioral Signatures

An app interacts with the platform where it is executed by requesting services through

a number of available system calls. These define an interface for apps that need to

read/write files, send/receive data through the network, make a phone call, etc.

Rather than focusing on low-level system calls, in this work we will describe an

app’s behavior through the activities it executes (see also Chapter 7–Section 7.2.3).
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In some cases there will be a one-to-one correspondence between an activity and

a system call, while in others an activity encompasses a sequence of system calls

executed in a given order. In what follows, we assume that

A= {a1,a2, ... ,ar} (5.3)

is a set of all relevant and observable activities an app can execute.

The execution flow of an app P may follow different paths depending on its inputs.

We group such inputs into two main classes:

• A sequence u of user-provided inputs U, such as for example those acquired

through the touchscreen.

• A sequence of contexts g, defining the state of the environment when the

execution takes place. Each context (state) is represented by a set of variables

that provide the app with information such as current location, time, energy

level, temperature, etc.

We will denote by P (u|g) the execution of P with user inputs u in context g.

The observable behavior resulting from the execution of P (u|g) is summarized in

a behavioral signature β[P (u|g)], this being a time series given by

β[P (u|g)] = 〈s1,s2, ... ,sn〉, si ∈ A (5.4)

Note that this signature model does not take into account the duration of each

activity or the time elapsed between each two of them, but only their relative order.

We will abuse notation and omit the associated app and its inputs when it is irrelevant
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or clear from context.

Finally, we will denote by len(β) the length of signature β, defined as the number

of activities in the series.

5.2.2.2 Differential Signatures

We are interested in analyzing the differences between two observed behaviors given

by their respective behavioral signatures. We approach this problem as one of string-

to-string correction, where differences are represented as the minimum number of

edit operations needed to transform one signature into the other. Given an be-

havioral signature β = 〈s1,s2, ... ,sn〉, we define the next three families of signature

transformation operators (STO):

• Insa
i (β) = 〈s1, ... ,si ,a,si+1, ... ,sn〉 ∀a ∈ A, ∀i ∈ [1,n]

• Deli(β) = 〈s1, ... ,si−1,si+1, ... ,sn〉 ∀si ∈ A, ∀i ∈ [1,n]

• Suba
i (β) = 〈s1, ... ,si−1,a,si+1, ... ,sn〉 ∀a ∈ A, ∀i ∈ [1,n]

Let

O=
⋃
i ,a

(
Insa

i ∪Deli ∪Suba
i

)
(5.5)

be the set of all possible STOs. Given two behavioral signatures β1 and β2, we

define the differential signature ∆(β1,β2) as an ordered sequence of STOs:

∆(β1,β2) = 〈o1,o2, ... ,ok〉 oi ∈O (5.6)

such that

ok ◦ok−1 ◦ · · · ◦o1(β1) = β2 (5.7)
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where oi ◦oj denotes the composition of STOs oi and oj . In other words, the differen-

tial signature ∆(β1,β2) provides a sequence of insertions, deletions and substitutions

that transforms β1 into β2. Note that, in general, ∆(β1,β2) 6= ∆(β2,β1).

For the purposes of this work, we are interested in minimal differential signatures,

i.e., sequences of minimum length. The most straightforward way to compute the

minimal differential signature is by computing the Levenshtein distance (also known

as edit distance) between β1 and β2 assuming that all operators have equal cost

[Kumazawa and Tamai, 2011]. This computation returns not only the distance, but

also the optimal differential signature.

5.2.3 Analyzing Differential Signatures

Let

P ′ = Ψ(P ) = ψ
cr
r ◦ψ

cr−1
r−1 ◦ · · · ◦ψ

c1
1 (P ) (5.8)

be the app resulting after the sequential application of FIOs ψ1, ... ,ψr to components

c1, ... ,cr of app P . Let β[P ] and β[Ψ(P )] be the behavioral signatures obtained after

executing P and Ψ(P ) under the same conditions1, and let ∆(β[P ],β[Ψ(P )]) be their

differential signature. The analysis model used in this work is based on deducing

properties of P from the presence or absence of certain patterns in ∆(β[P ],β[Ψ(P )])

and the properties of the FIO Ψ. We next describe these two elements in turn.

Note than ψ denotes a single FIO operating on a given component and Ψ a

number of of FIOs operating on a collection of components of an app P .

1That is, the same sequence of user inputs and contexts.
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5.2.3.1 FIO Classes

We identify two broad classes of FIOs:

• A FIO ψci is said to be indistinguishable if ∆(β[P ],β[ψci (P )]) = /0 for all apps

P containing component ci . In other words, a FIO is indistinguishable if it

does not affect the execution flow of any app and, therefore, the behavioral

signatures before and after applying it coincide.

• A FIO ψci is said to be distinguishable if ∆(β[P ],β[ψci (P )]) 6= /0 for all apps

P containing component ci . Thus, distinguishable FIOs always manifest as

nonempty differential signatures.

In what follows, the predicate ind(ψci ) models this property:

ind(ψci ) =

 true if ψci is indistinguishable

false otherwise
(5.9)

5.2.3.2 Properties of Differential Signatures

Patterns in differential signatures will be modeled as first-order logical predicates

upon which Boolean formulae can be defined. Thus, analyzing a differential signature

reduces to evaluating a number of Boolean formulae linked to properties of the app

and the FIO, i.e.:

P has property x ⇐⇒ Φx

(
Ψ,∆(β[P ],β[Ψ(P )])

)
= true (5.10)

We consider two basic predicates:
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• equal(∆1,∆2) = true iff ∆1 = ∆2, where ∆1 and ∆2 are differential signatures.

Note that the empty set is a valid differential signature.

• contains(∆,o) = true iff ∆ = 〈o1,o2, ... ,ok〉 and ∃ oj ∈ ∆ such that oj = o.

Standard symbols will be used for Boolean formulae, including quantifiers (∃, ∀),

negation (¬), conjunction (∧), disjunction (∨), etc.

5.2.3.3 Examples

We next illustrate the concepts introduced above through a number of examples.

Example 1. Assume that cicon is an icon image used by an app P in its user

interface. Modifying some pixels of such icon, or even replacing it by another valid

icon does not affect at all the execution flow of P . If nonetheless the icon is replaced

and the modified app behaves different from the original app under exactly the same

conditions, it can be deduced that the original icon contained some functionality,

such as e.g., a piece of compiled code masqueraded as an icon. This intuition can be

generalized through the following rule (hidden functionality in component, or HFC):

RHFC : c ∈ P contains hidden functionality ⇐⇒

ind(ψc) ∧ ¬equal
(

∆(β[P ],β[ψc(P)]), /0
)

Example 2. A more specific case of the situation discussed above occurs when

modifications on a component c result in the absence of a dynamic loading action,

which are used to load code pieces into memory. In such a case, it may be possible

that c contains hidden code that is dynamically loaded. The following rule captures
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this:

RCDC : c ∈ P contains dynamic code ⇐⇒

ind(ψc) ∧ ∃ i : contains
(

∆(β[P ],β[ψc(P)]),Deli
)

,si = dex_load
(5.11)

Example 3. Let v be a variable such that their content has no influence on the

program flow. For example, v could be a string containing an error message which

may be displayed at some point. Such strings have been broadly used in existing

malware to hide URLs that point to services from where the malware can download

further code, receive instructions, send data, etc. To avoid detection, the string is

often obfuscated and the URL is only revealed at execution time after applying some

transformations. Thus, any modification on the string such that the URL is damaged

will likely result on the impossibility of establishing a connection. The following rule

captures this intuition:

RURL : v ∈ P contains an URL ⇐⇒

ind(ψv ) ∧ ∃ i : contains
(

∆(β[P ],β[ψv (P)]),Deli
)

,si = net
(5.12)

Example 4. Similarly to the cases discussed above, it may be possible to find

out whether a component c leaks information through a number of sensors (e.g.,

accelerometer, GPS, etc.) if, after modifying it, the differential signature lacks an
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access to such a sensor and a network connection:

RSDL : c ∈ P leaks sensor data ⇐⇒ ind(ψc) ∧(
∃ i1 : contains

(
∆(β[P ],β[ψc(P)]),Deli1

)
∨

∃ i2 : contains
(

∆(β[P ],β[ψc(P)]),Deli2
)
∨

...)
∧ ∃ j : contains

(
∆(β[P ],β[ψc(P)]),Delj

)
(5.13)

where si1 = accelerometer , si1 = gps, and sj = network

5.3 Alterdroid: Differential Fault Analysis of Obfus-

cated Apps

In this section we describe Alterdroid, our approach to study obfuscated malware

code based on the differential fault analysis model discussed in the previous section.

The high level architecture of Alterdroid is shown in Figure 5.1. There are two

differentiated major blocks. The first one generates a number of fault-injected apps.

This process is carried out by first extracting all app components and identifying

those of interest (CoI), i.e., those suspicious of containing hidden functionality. An

iterative process then selects candidate CoI and injects faults into them. Both the

modified and the unmodified components are then repackaged together into a new

app. The second block generates stimuli for both apps (user inputs and context) and

executes them, generating a pair of behavioral signatures. The differential signature

is then computed and matched against a database of patterns to identify the presence

of hidden functionality.
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Figure 5.1: Alterdroid architecture.

We next provide a detailed description of the key modules of Alterdroid and the

current prototype implementation.

5.3.1 Identifying Components of Interest

The first step in the analysis of an app is to identify component of interest (CoI).

Such components will be later fault injected according to some strategy in order to

analyze the resulting behavior.

We say that a component c of type τ(c) in an app P is of interest if it does not

fit a model Mτ(c) defined for all components of type τ(c). In our current version of

Alterdroid, models measure statistical features only, such as for example the expected

entropy, the byte distribution, or the average size. Such features are computed from
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a dataset of components of the same type, such as text files, pictures, code, etc.

For each model M , we assume a Boolean function test(c ,M ) that returns true if

c complies with M , and false otherwise. For example, if M is a byte distribution,

then test() could be a goodness-of-fit test (e.g., chi-square) between M and c ’s byte

distribution. More formally,

c ∈ CoI(P ) ⇐⇒ test(c ,Mτ(c)) = false (5.14)

In our experience, such simple models suffice to spot the most common—and

rather simple—obfuscation methods observed in smartphone malware, including code

camouflaged as supplementary multimedia files, connection data hidden in text vari-

ables, etc.

Alterdroid also supports an exhaustive analysis mode in which some additional

components may be considered CoI, even if they comply with their type model. In

this mode, a component is considered CoI if it is CoI as defined above or there exists

an indistinguishable operator for it. Formally

c ∈ CoI(P ) ⇐⇒
(
test(c ,Mτ(c)) = false

)
or(

∃ ψc : ind(ψc)
) (5.15)

The rationale of this mode is to also check components for which we know in advance

that alterations do not translate into noticeable differences. This is very useful

to detect more sophisticated obfuscation methods that try to evade detection by

carefully modifying the code so as it fits the statistical model of the component. As

a side effect, however, the exhaustive analysis mode may end up with a large set of



5.3. Alterdroid: Differential Fault Analysis of Obfuscated Apps 147

Algorithm 1. COI Obtention
Input:

App: P = {c1,c2, ... ,ck}
Set of type normality models: {M1,M2, · · · ,Mn}
Set of FIOs: {ψ1,ψ2, · · · ,ψm}
Mode: normal / exhaustive

Output:
CoI: List of all components of interest

Algorithm:
1 CoI← /0

2 For each c ∈ P do
3 if [test(c ,Mτ(c)) = false] or

[(mode = exhaustive) and (∃ ψi : τ(ψi) = τ(c))]
4 then
4 CoI← CoI∪{c}
5 end-for
6 return CoI

Figure 5.2: Algorithm for obtaining components of interest from an app.

CoI.

The algorithm shown in Figure 5.2 describes the process discussed above to

identify COI in Alterdroid.

5.3.2 Generating Fault-injected Apps

Components of interests identified in the previous stage are injected with faults and

reassembled, together with the remaining app components, to generate a faulty app

P ′. This process can generate several fault-injected apps, as there are multiple ways

of applying different FIOs to different components in the CoI set. In Alterdroid, fault-

injected apps are generated one at a time and sent for differential analysis. If no

evidence of malicious behavior is found in the differential analysis, the fault injection

process is invoked again to generate a different faulty app, and so on.
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Assume that CoI = {c1,c2, ... ,cn} and that for each ci ∈ CoI there is a set of

FIOs Fi = {ψci
i1

,ψ
ci
i2

, ... ,ψ
ci
imi
} that can be applied to ci . Recall that FIOs can be quite

specific and, therefore, not all FIOs are applicable to all components. All possible

fault-injected apps can be generated by a naïve strategy that applies each FIO to

each component one at a time:

ψ
c1
i1
(P ), ... ,ψ

c1
im1

(P ), ... ,ψ
cn
i1
(P ), ... ,ψ

cn
imn

(P ) (5.16)

Thus, there are ∑
n
j=1mj possible fault-injected apps, one for each possible component-

FIO pair.

All FIOs in Alterdroid are indistinguishable. This allows for a more efficient fault

injection process based on the fact that the composition of indistinguishable FIOs

is an indistinguishable FIO. Consequently, if the same FIO is applied to multiple

components and there is hidden functionality in just one of them, the resulting app

will behave exactly as if just the malicious component would have been fault injected.

The resulting fault injection process is as follows:

1. For each FIO ψj , generate P ′j by applying it to all ci ∈ CoI

P ′j = Ψj(P ) = ψ
c1
ij
◦ψ

c2
ij
◦ · · · ◦ψ

cn
ij
(P ) (5.17)

where ψ
ci
j is the void operator if Ψj is not applicable to ci . The resulting P ′j is

sent for differential analysis with respect to the original P .

2. If there is one P ′j such that the differential analysis spots malicious behavior,

the component responsible for it can be identified by searching over all ci ∈ CoI

with just the corresponding FIO Ψj . This process can be done in logarithmic
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time by ordering all components and recursively applying Ψj to half of them,

rather than in linear time by just applying Ψj to each ci ∈ CoI in turn.

The overall process, which is entwined with the differential analysis stage dis-

cussed later, is summarized in the algorithm shown in Figure 5.3. Note that in

this description the process stops when just one malicious component is identified.

Extending the algorithm to search for all of them is straightforward.

5.3.3 Applying Differential Analysis

Differential analysis between a candidate fault-injected app and the original app is

carried out by following the model described in Sections 5.2.2 and 5.2.3. The process

comprises the following steps:

1. Generate an appropriate usage pattern u and context g [Rastogi et al., 2013a;

Zheng et al., 2012] to feed both apps and extract their behavioral signatures,

β[P (u|g)] and β[P ′(u|g)]. Both the original and the fault-injected app are tested

under the same conditions and using the same input. Note that this assumes

that the execution of an app is completely deterministic.

2. Generate the differential signature ∆(β[P (u|g)],β[P ′(u|g)]) from the behavioral

signatures obtained above.

3. Apply sequentially all rules Ri over ∆(β[P (u|g)],β[P ′(u|g)]) and return those

that match.

The process is summarized in the algorithm given in Figure 5.4.
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Algorithm 2. Fault Injection and Malicious Search
Input:

App: P
CoI = {c1,c2, ... ,cn}
Set of FIOs: F = {ψ1,ψ2, · · · ,ψm}

Output:
List of all malicious components

Algorithm:
1 maliciousComp← null
2 For each FIO ψj do
3 P ′j ← P
4 For each ci ∈ CoI do
5 if ψj is applicable to ci then
6 P ′j = ψ

ci
j (P )

7 end-if
8 end-for
9 if DiffAnalysis(P , P ′, ψj) 6= /0 then
10 maliciousComp← SearchComponent(ψj ,P ,CoI,1,n)
11 end-if
12 end-for
13 return maliciousComp

Function SearchComponent(ψj ,P ,CoI,min,max)
1 P ′j ← P
2 For i =min to max do
3 if ψj is applicable to ci then
4 P ′j = ψ

ci
j (P )

5 end-if
6 end-for
7 if DiffAnalysis(P , P ′,ψj) 6= /0 then
8 if min =max then
9 return cmin

10 else
11 SearchComponent(ψj ,P ,CoI,min,(max −min)/2)
12 SearchComponent(ψj ,P ,CoI,(max −min)/2),max)
13 end-if

Figure 5.3: Algorithm for injecting faults and searching for malicious components after differential
analysis.
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Algorithm 3. Differential Analysis
Input:

Apps: P and P ′
FIO ψ

Set of rules: R = {R1,R2, ... ,Rp}
Output:

Matching rules
Algorithm:
1 (u,g)← GenUsagePatterns(P )
2 β← GenBehavioralSig(P ,u,g)
3 β′← GenBehavioralSig(P ′,u,g)
4 ∆(β,β′)← ComputeDiffSig(β,β′)
5 matchingRules← /0

6 For each Ri ∈ R do
7 if match(Ri ,ψ,∆(β,β′)) then
8 matchingRules←matchingRules∪{Ri}
9 end-if

10 end-for
11 return matchingRules

Figure 5.4: Algorithm DiffAnalysis for generating differential signatures and identifying matching
rules.

5.3.4 Implementation

Alterdroid is implemented over our Maldroid Lab described in Chapter 3. App com-

ponents are extracted and later on (after fault injection) repackaged using our static

analysis component. We then generate common sequences of events and execute

each app dynamically. In order to generate behavioral signatures, Alterdroid monitors

the execution of the following different activities: crypto, netopen, netread, netwrite,

fileopen, fileread, filewrite, sms, call, leak, and dexload.

Our prototype allows performing analysis tasks in parallel. We presently limit our

implementation to a small number of CoI models, FIO operators, and differential

matching operators. Nonetheless, our architecture allows security experts to further
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extend this and configure their own operators based on their experience.

5.3.4.1 CoI Models

Alterdroid currently supports the following models for identifying CoIs:

• EXEFileMatch. This model analyzes components of type Dalvik Executable

Format (DEXFileMatch), Application Package file format (APKFileMatch),

and Executable and Linkable Format (ELFFileMatch), i.e., τ(c)= 〈DEX ,APK ,

ELF 〉. The model defined for these components is based on the magic number

defined in the header of the file.

• ImgFileMatch. This model analyzes components of type picture, such as PNG,

JPG, or GIF images, i.e., τ(c) = 〈PNG , · · · ,JPG 〉. This model is based on the

magic number defined in the file header, similarly to the model above.

• EncryptedOrCompressedMatch. This model matches any file whose entropy,

measured at the byte level, exceeds a given threshold. In such a case, the file

is considered to contain random or encrypted information and, therefore, is

selected for fault analysis. We set the current threshold to 3.9. Such value

was chosen after measuring the entropy of several files before and after being

encrypted with DES.

• ExtensionMismatch. This model identifies files such that their magic numbers

do not match the file extension. For instance, we found several APK files with

DB extension and several encrypted files with JPG extension. We currently sup-

port two submodels: ImgFileExtensionMismatch and APKFileExtensionMismatch.
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FIO Type Targeted CoIs ind

GenericFMutation Any file
ImgExtensionMismatch
EncryptedOrCompressed
APKFExtensionMismatch

X
–
X

ImgFileChange Any image ImgFileMatch X
ScriptFileChange Non-compiled program TextScriptMatch ×

APKFileChange Android app APKFileMatch ×
DEXFileChange Dalvik executable DEXFileMatch ×
ELFFileChange Executable and linkable ELFFileMatch ×

Table 5.1: FIOs implemented in Alterdroid’s current version and their corresponding CoIs.

• TextScriptMatch. This model analyzes components that match any ASCII

text executable file, i.e., τ(c) = Script. This model is also based on the magic

number defined in the file header.

All CoIs described above are implemented in Python. The set can be easily

extended to incorporate additional models by simply adding the corresponding Python

module.

5.3.4.2 Fault Injection Operators

FIOs in Alterdroid are strongly typed. This avoids syntactic or unexpected errors

during the execution of the modified app. For instance, if a generic FIO modifies

randomly chosen bits of a JPEG without considering the file structure, it may end

up with a malformed picture that could cause the app to crash during execution. We

currently support the next list of FIOs (see also Table 5.1):

• ImgFileChange. This FIO changes a number of pixels of image file compo-

nents. The FIO type matches components of type ImgFileMatch. This is an
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indistinguishable FIO due to the nature of the changes and the type of compo-

nent. Thus, although the image resulting from the injection will be different,

this change should not alter the app execution flow.

• EXEFileChange. This FIO replaces the file with a well-formed APK, DEX or

ELF file that effectively does nothing, equivalent to a NOP (no-operation)

injection. This change should cause a different behavior in the resulting differ-

ential signature as the former EXE file has been replaced. Thus, this FIO is

distinguishable.

• ScriptFileChange. This FIO replaces the file with a valid NOP script. It only

matches components of type ScriptFileChange. This FIO is also distinguish-

able.

• GenericFileMutation. It randomly changes several bytes of a file. This FIO is

applied when there is no information about the file type and its structure, e.g.,

when injecting faults to encrypted files (EncryptedOrCompressedMatch) or

when the file extension does not match its magic number ExtensionMismatch.

This FIO might be distinguishable or indistinguishable, depending on the file

type.

As in the case of CoI models, FIOs are implemented in Python and provided with

Alterdroid’s current version. Again, the set can be easily extended with additional

FIOs by adding the corresponding Python module.
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Name Contains Rule

RNAC
Net. Activity
Component

ind(ψc)∧ ∃ i1 : contains
(

∆(β[P ],β[ψc(P)]),Deli1=netopen

)
∨ ∃ i2 : contains

(
∆(β[P ],β[ψc(P)]),Deli1=netread

)
∨ ∃ i3 : contains

(
∆(β[P ],β[ψc(P)]),Deli2=netwrite

)
RFAC

File Activity
Component

ind(ψc)∧ ∃ i1 : contains
(

∆(β[P ],β[ψc(P)]),Deli1=fileopen

)
∨ ∃ i2 : contains

(
∆(β[P ],β[ψc(P)]),Deli1=fileread

)
∨ ∃ i3 : contains

(
∆(β[P ],β[ψc(P)]),Deli2=filewrite

)
RDLC Data Leakage

Component
ind(ψc)∧ ∃ i : contains

(
∆(β[P ],β[ψc(P)]),Deli=leak

)
RSAC SMS Activity

Component
ind(ψc)∧ ∃ i : contains

(
∆(β[P ],β[ψc(P)]),Deli=sms

)
RPAC Payload Activity

Component
ind(ψc)∧ ∃ i : contains

(
∆(β[P ],β[ψc(P)]),Deli=dexload

)
RUPC

Update Payload
Component

ind(ψc)∧ ∃ i1 : contains
(

∆(β[P ],β[ψc(P)]),Deli1=netread

)
∧ ∃ i : contains

(
∆(β[P ],β[ψc(P)]),Deli=dexload

)
RCAC Crypto Activity

Component
ind(ψc)∧ ∃ i : contains

(
∆(β[P ],β[ψc(P)]),Deli=crypto

)
RCPC

Crypto Payload
Component

ind(ψc)∧ ∃ i1 : contains
(

∆(β[P ],β[ψc(P)]),Deli1=crypto

)
∧ ∃ i : contains

(
∆(β[P ],β[ψc(P)]),Deli=dexload

)
RHFC Hidden Function-

ality Component
ind(ψc)∧ ¬equal

(
∆(β[P ],β[ψc(P)]), /0

)
Table 5.2: Basic indistinguishable differential rules implemented in Alterdroid.

5.3.4.3 Differential Rules

The basic set of differential rules incorporated in Alterdroid comprises the 9 rules

shown in Table 5.2. They all apply to indistinguishable FIOs and cover the most

common examples of obfuscated functionalities: network activity, file activity, data

leakage, SMS activity, hidden payloads, update attacks, cryptographic activity, cryp-

tographic payloads, and generic hidden functionality.

To reduce the complexity of the search space, all basic rules apply to indistinguish-

able FIOs. However, for the sake of completeness our implementation incorporates

several distinguishable FIOs, and new rules can be further added to match them. For

instance, given an app that incorporates a DEX program used to enhance photos
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taken from the camera, we can use a rule to check whether this CoI actually does

just that or not.

Thus, if after applying a FIO over this component the differential signature shows,

for instance, changes in network activity, we may suspect that the CoI contained other

functionality piggybacked on the DEX.

Formally, given DEXFileMach ∈ CoIs and its corresponding distinguishable FIO

(i.e., DEXFileChange), the following rule captures this intuition:

RDEX : dex ∈ P contains NET activity ⇐⇒

¬ind(Ψdex) ∧ ∃ i : contains
(

∆(σ[P ],σ[Ψdex(P )]),Deli=net

) (5.18)

Note that we limit our implementation to a small number of indistinguishable

FIOs and matching rules. Nonetheless, our architecture allows security experts to

further extend this and configure their own FIOs and rules based on their experience.

5.4 Evaluation

We next report a number of experimental results obtained with our prototype im-

plementation of Alterdroid. These results illustrate how our system can be used by

market operators and security analysts to facilitate the analysis of complex obfus-

cated mobile malware. We first present the results of testing Alterdroid against two

datasets of smartphone malware samples found in the wild, including a performance

analysis of the entire differential fault analysis process. We finally discuss in more

detail three representative case studies.
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5.4.1 Analytical Results

We tested Alterdroid against a dataset composed of around 6K apps retrieved from

Aptoide (AP) alternative market and VirusShare (VS) repository (see Chapter 3—

Section 3.5.2). Every app was executed over a time span of 120 seconds—current

malware is generally quite eager to run their payloads promptly [Suarez-Tangil et al.,

2014a], so this time suffices to activate most malicious payloads. Table 5.3 provides

a summary of the obtained experimental results, including the average time required

for analyzing one app (this includes the time for extracting CoIs and injecting faults

into them.

When analyzing the distribution of CoIs throughout the apps in our datasets, we

observed that some apps have a fairly large amount of CoIs (see Figure 5.5). For

instance, we can find some apps with over 5K images (ImgFileMatch). Conversely,

we could find many apps with fewer CoIs. On average, our experiments show that

there are about 146 and 284 CoIs per app in VS and AP respectively, as shown in

Table 5.3. Note that the number of CoIs from AP is twice the number of CoIs from

VS. In any case, the amount of potentially malicious components is significant and

the time required to analyze each of them manually is shown affordable.

Finally, our results report a number of apps matching against the rules imple-

mented in our prototype. For instance, we could identify 220 apps reporting com-

ponents containing SMS functionality (RSAC) from all 2.9K samples in VirusShare.

Conversely, we could not find any RSAC rule in Aptoide (see Table 5.3). One alarming

result is that we found a significant number of apps, i.e.: 669, reporting components

containing data leakage functionality (RDLC) in Aptoide.

One interesting aspect of Alterdroid is that it can inject all selected FIOs at once.
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VirusShare (VS) Aptoide (AP)
Su

m
. No. Apps 2 913 2 994

Avg. No. CoIs 145.6 284.4
Avg. No. FIOs 138.3 273.5

C
oI
s

ImageFileMatch 3279 5215
EncryptedOrCompressed 16 687 35 293
ImageExtensionMismatch 5 771 5 246

DEXFileMatch 2 827 2 995
APKFileMatch 1 087 58

APKExtensionMismatch 517 39

F
IO
s ImageFile 397 248 813 754

GenericMutationFile 5 714 5 237

R
ul
es

No. RFAC 2 802 2 962
No. RNAC 2 773 2 929
No. RDLC 1 971 669
No. RSAC 220 0

– Avg. Overhead 584.51 s. 666.67 s.

Table 5.3: Analysis of the VS and AP datasets. The number of CoIs and FIOs is given on
average per app. The number of matches (NAC and DLC) is given in absolute value, and the
overhead is on average per app.

Furthermore, Alterdroid allows performing several analyses concurrently. In fact, our

current experimental setup allows the execution of 15 instances of Android in parallel.

Thus, this simple optimization strategy reduces the average execution time per app

at 32.62 and 44.44 seconds for VS and AP, respectively.

One challenge we faced when analyzing apps from Aptoide is identifying whether

some behaviors were malicious or not. Many legitimate apps are not fully malicious

but carry out activities that may constitute a privacy risk for some users. During

our analysis, most such suspicious behaviors were related with accessing local data

and exfiltrating it over the network. We did not analyze in detail whether this was

an intrinsic behavior of the app caused by the fault-injection process, for example

because the app contained an integrity check. Nonetheless, this indicates that the
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Figure 5.5: Distribution of the number of ImageFileMatch in the VirusShare (VS) and Aptoide
(AP) datasets.

app was behaving suspiciously and therefore it is worth analyzing.

5.4.2 Performance

The time taken by the entire differential analysis process depends on the number of

different fault-injected apps to be explored, the time required to generate each of

them, and the time taken by the differential analysis over each one:

t = nfaultApps · tgenFaultApp · tdiffAnalysis (5.19)

As for the first term, if |CoIs| = n and there are m FIOs, the fault injection
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algorithm shown in Figure 5.3 generates O(m+ logn) different fault-injected apps

to be analyzed. Each one of those apps has been injected with at most n faults, one

per component. The time tgenFaultApp required to inject one fault depends on the

specific FIO, although most of them run in constant time or are linear in the size of

the component to be fault-injected. Finally, differential analysis requires:

• Executing the two apps. In Alterdroid this is done by a component which

admits as input the time texec during which the app will be executed.

• Obtaining the differential signature, which reduces to computing an edit dis-

tance between the two activity signatures. If these signatures have lengths h1

and h2, then this process takes O(h1 ·h2) steps.

• Pattern-matching the differential signature with the rule-set, which takesO(|R |).

Apart from texec, the two most critical parameters affecting the total analysis time

are n and m, as defined above (i.e., number of CoIs and FIOs, respectively). Fig. 5.6

shows the average execution time of the SearchComponent identification algorithm at

the core of Alterdroid for different values of n, m, and texec. For example, the analysis

of an app containing 100 CoIs for which 10 FIOs are applicable, and executing each

fault-injected app 120 s, will require around 5 minutes. The time increases to 2.5

hours and 4.5 hours if the app contains 1K or 10K CoIs, respectively. If we decrease

the dynamic execution time of each app to 60 s, these figures reduce to 2.7 minutes,

1.3 hours, and 2.9 hours, respectively.
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Figure 5.6: Average execution time of the SearchComponent algorithm for different number of
FIOs and dynamic analysis time.

5.4.3 Case Studies

We next illustrate how Alterdroid can be used by market operators and security an-

alysts to facilitate the analysis of complex obfuscated mobile malware. We present

three case studies of malicious apps found in Android markets: GingerBread, Droid-

KungFu, and AnserverBot. These three samples constitute representative cases as

they incorporate obfuscation techniques of various degrees of sophistication, as well

as some malicious features common in malware for smart devices (see Chapter 2)

such as aggressive privilege escalation exploits, C&C-like functions and information

leakage. Figure 5.7 summarizes the behavior of the malware that will be discussed
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Figure 5.7: Malware’s activity during a time span of 120 seconds. The x-axis represent the
sequence of activities observed during the execution.

throughout this section. Subsequently, we evaluate the performance of our approach

over a number of malware samples found in the wild [Zhou and Jiang, 2012].

5.4.3.1 DroidKungFu

DroidKungFu (DKF) is one of the major Android malware outbreaks. DKF’s main

goal is to collect a variety of information on the infected device, including the IMEI

number, phone model, as well as the Android OS version.

DKF is mostly distributed through open or alternative markets through repack-

aging, i.e., by piggybacking the malicious payload into a variety of legitimate appli-

cations. Apps infected with DKF are distributed together with a root exploit hidden

within the app’s assets, namely Rage Against the Cage (RAC). In order to hinder

static analysis, this encrypted payload is only decrypted at runtime.

In this case study, we analyze one DKF variant by first extracting its components
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of interest and further applying fault injection and differential analysis over them. We

observed that the sample contained about 170 resource files, including PNG (153

files), MP3 (6 files), XML (2 files), DEX (1 file) and RSA key file, among others. All

these assets are, in principle, suspected of containing obfuscated functionality. We

note here that applying stand-alone static detection techniques would not be enough

to identify malicious payloads without requiring human-driven inspections. This is

due to the way that DKF obfuscates its core components. Specifically, each variant

uses a different encryption key hidden throughout the code. Even when we attempt

to apply stand-alone dynamic analysis, we observe that this technique only gives a

rough notion of the holistic behavior of the app. In fact, the behavior introduced by

DKF is strongly entwined with the original code of the repackaged app, in such a

way that some of its key activities, such as for instance network connections, might

be easily seen as normal.

The above-mentioned variant of DKF was fed to Alterdroid. It first identified

a number of components of interest, being in all the cases assets associated with

the app. Various faults were then injected into such components, and the resulting

app was executed and compared with the original one. Figure 5.7 (DroidKungFu)

graphically shows the differential behavior reported by Alterdroid when analyzing such

fault-injected app. Activities launched by the original piggybacked app correspond

to the full plot, while the behavior after fault injection is given just by the green

(legitimate app) and red spots (DKF). In this particular case, a text file pertaining

to the assets was randomly modified. This file was later identified as the component

containing the RAC exploit. Our analysis shows that disabling the access to such a

functionality stops the malware from: establishing a network connection (netopen,

netwrite), leaking some information through it (leak), and later performing some
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Input-Output (I/O) operations (fileread). These findings agree with previous reports

about DKF, including those undertaken by Jiang and Zhou [Zhou and Jiang, 2012].

5.4.3.2 AnserverBot

Our second case study deals with AnserverBot (ASB), a specimen similar to the first

versions of DKF in terms of sophistication and distribution strategy [Suarez-Tangil

et al., 2014c]. However, ASB introduces an update component that allows it to

retrieve at runtime secondary payloads and the latest C&C URLs from public blogs.

Additionally, it also incorporates advanced anti-analysis methods to avoid detection.

On the one hand, it introduces an integrity component to check if the app has been

modified. On the other hand, it piggybacks the main payload in native runnable

code. Furthermore, ASB obfuscates its internal classes and methods, and partitions

the main payload in two different parts: while one of them will be installed, the

other one is dynamically loaded without actually being installed. More specifically,

ASB hides one of these components into the assets folder under any of the following

names: anservera.db or anserverb.db. Furthermore, ASB inserts a new component

named com.sec.android.provider.drm that executes a root exploit known as Asroot

[Grace et al., 2012b].

As in the case of DKF, we observed that all ASB samples contain a non-negligible

amount of candidate components to be analyzed. The specimen we deal with in this

case study contained about 78 resource files, including 54 image files, one database,

one DEX file, and a ZIP file, to name a few. After a few iterations of the fault

injection process Alterdroid succeeds in positively identifying the actual payload within

the DB file, as well as the behavior related to such component. More precisely, this
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CoI is triggered after observing a mismatch between the magic number of the file

(APK) and the actual extension of the data base (DB). In fact, when a fault is

injected over the database, the ASB’s integrity check naturally aborts its execution

and produces a result similar to that expected from the original app. Figure 5.7

(AnserverBot) graphically shows the exhibited differential behavior. As observed,

ASB first establishes a network connection (netopen and netwrite) after loading

the main payload (fileread operations followed by dexload). After that, it keeps on

reading data that is finally leaked out. Interestingly, the legitimate application uses

the network as well, although it does not leak any personal information.

5.4.3.3 GingerMaster

GingerMaster (GM) was the first known Android malware to use root exploits for

privilege escalation on Android 2.3. GM’s main goal is to exfiltrate private information

such as the device ID (IMEI, MSI, etc.) or the contact list stored in the phone. GM is

generally repackaged with a root exploit known as GingerBreak [Grace et al., 2012b],

which is stored as a PNG and a JPG asset file. Right after infecting the device, GM

connects to the C&C server and fetches new payloads.

We analyzed a GM sample containing around 61 asset resources, 30 of which

were pictures in different formats. From those 30 pictures, Alterdroid identified 4

as strongly suspicious. (Actually, a detailed analysis shows that they are malformed

PNGs and that they also contain several ASCII text scripts.) Alterdroid was also able

to identify that such malformed images files play a key role in triggering the payloads

piggybacked into the legitimate app, including the ASCII text scripts.

Figure 5.7 (GingerMaster) shows the differential behavior obtained when one of
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such images is fault injected. Our analysis shows that GM starts the execution of a

service that performs some IO operations (file-read and file-write) before finally leak-

ing private information through the network (net-write and leak). Again, even when

the malicious components are hidden, Alterdroid proved to be able to discriminate

them and facilitate the identification of the underlying malicious behavior.

5.5 Conclusions

Today’s mobile security requires new approaches to protect users’ devices as tradi-

tional detection techniques are overwhelmed by the sophistication and obfuscation

of current mobile malware [Leavitt, 2013]. Furthermore, the current panorama and

trends suggest that automated malware detection and analysis is a major requirement

for apps review.

Differential fault analysis in the way implemented by Alterdroid is a powerful and

novel dynamic analysis technique that can identify potentially malicious components

hidden within an app package. Additionally, empowering dynamic analysis with a

fault injection approach can be used to differentiate the ”gray“ behavior from the

legitimate when analyzing grayware. This is a good complement to static analysis

tools, more focused on inspecting code components but which could well miss pieces

of code hidden in data objects or just obfuscated.

Alterdroid is thought as a general purpose framework with a very versatile archi-

tecture that can be extended in a number of ways. In this chapter, we have described

this architecture together with a formal notion of differential fault analysis. Addition-

ally, we present an open-source engineered version Alterdroid striving on offering an

automated tool for malware analysis. Furthermore, based on our experimental re-
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sults, we reduced from 6K apps to 2.6K apps suspicious of containing data leakage

functionality. In addition, performance figures are given and discussed, showing the

feasibility of such a novel approach to differential analysis. Even though Alterdroid is

presently a perfectly functional proof of concept, its open architecture and available

open sources can make it the basis for further research work and production/profes-

sional software.

Although current malware is relatively naïve, more sophisticated obfuscation

techniques—particularly in code—are starting to materialize. Cryptography is one

recurrent technique used by malware developers. Nonetheless, we believe that mal-

ware could be already using other advanced techniques for hiding their components

such as, for instance, Steganography. This technique would allow them to conceal

their malicious components within other objects of the code. This is specially critical

when these components are hidden within distinguishable components.
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6
Power-aware Anomaly Detection in

Smartphones

6.1 Introduction

Many security issues can be essentially reduced to the problem of separating malicious

from non-malicious activities. Such a reformulation has turned out to be valuable

for many classic computer security problems, including detecting network intrusions,

filtering out spam messages, or identifying fraudulent transactions. But, in general,

defining in a precise and computationally useful way what is harmless or what is

offensive is often too complex. To overcome these difficulties, many solutions to such

problems have traditionally adopted a machine learning approach, notably through

the use of classifiers to automatically derive models of good and/or bad behavior

that could be later used to identify the occurrence of malicious activities.

Anomaly-based detection strategies have proven particularly suitable for scenarios

where the main goal is to separate “self” (i.e., normal, presumably harmless behavior)

from “non-self” (i.e., anomalous and, therefore, potentially hostile activities). In
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this setting, one often uses a dataset of self instances to obtain a model of normal

behavior. In detection mode, each sample that does not fit the model is labelled as

anomalous. This notion has been thoroughly explored over the last two decades and

applied to multiple domains in the security arena [Chandola et al., 2009; Estévez-

Tapiador et al., 2004; Garcia-Teodoro et al., 2009].

More recently, many security problems related to smartphone platforms have been

approached with anomaly-based schemes (see, e.g., [Burguera et al., 2011; Dini

et al., 2012; Feizollah et al., 2014; Rosen et al., 2013; Shabtai et al., 2012]). One

illustrative example is found in the field of continuous—or implicit—authentication

through behavioral biometrics [De Luca et al., 2012; Jakobsson et al., 2009; Shi et al.,

2011]. The key idea here is to equip the device with the capability of continuously

authenticate the user by monitoring a number of behavioral features, such as for

example the gait—measured through the built-in accelerometer and gyroscope—,

the keystroke dynamics, the usage patterns of apps, etc. These schemes rely on

a model learned from user behaviors to identify anomalies that, for example, could

mean that the device is mislaid, in which case it should lock itself and request a

password.

Proposals for detecting malware in smartphones have also made extensive use

of anomaly detection approaches. Most schemes are built upon the hypothesis that

malicious apps somehow behave differently from goodware. The common practice

consists of monitoring a number of features for non-malicious apps, such as for

example the amount of CPU used, network traffic generated, system/API calls made,

permissions requested, etc. These traces are then used to train models of normality

that, again, can be used to spot suspicious behavior. Modeling app behavior in this

way is particularly useful in two scenarios. The first one is related to the problem of
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repackaged apps, which constitutes one of the most common distribution strategies

for smartphone malware. In this case, the malicious payload is piggybacked into a

popular app and distributed through alternative markets. Detecting repackaged apps

is a challenging problem, in particular when the payload is obfuscated or dynamically

retrieved at runtime. The second problem is thwarting the so-called grayware, i.e.,

apps that are not fully malicious but that entail security and/or privacy risks of which

the user may not be fully aware. For instance, an increasing number of apps access

user-sensitive information such as locations frequently visited, contacts, etc., and

send it out of the phone for obscure purposes [Kranz et al., 2013]. As users find it

difficult to define their privacy preferences in a precise way, automatic methods to

tell apart good from bad activities constitute a promising approach.

Essentially all machine learning-based anomaly detection solutions can be broken

down into the following functional blocks:

• Data acquisition. Activity traces are required both for (re-)training the model of

normality and in detection mode. The nature of the data collected varies across

applications and may include events such as system calls, network activities,

user-generated inputs, etc.

• Feature extraction. Machine learning algorithms require data to be expressed

in particular formats, commonly in the form of feature vectors. A number of

features are extracted from the acquired activity traces during a preprocessing

stage. The complexity of such preprocessing depends on the problem and

ranges from computationally straightforward procedures (e.g., obtaining simple

statistics from the data) to more resource intensive transformations.

• Training. A representative set of feature vectors is used to train a model that
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captures the underlying notion of normality. This process may be done offline,

in which case periodic re-training is often necessary in order to adapt the model

to drifts in behavioral patterns, or else constantly as new data arrives.

• Detection. Once a behavioral model is available, it is used along with a similarity

function to obtain an anomaly score for each observed feature vector. This

process is often carried out in real time and requires constant data acquisition

and feature extraction.

All the functions described above can be quite demanding—particularly if they

must operate constantly—and it is debatable whether they can be afforded in energy-

constrained devices with limited computational capabilities. As a consequence, a

number of recent works (see, e.g., [Barbera et al., 2013; Portokalidis et al., 2010;

Zonouz et al., 2013]) have suggested externalizing some of these tasks to dedicated

servers in the cloud or to other mobile devices nearby [Yu et al., 2013]. However,

these proposals do not provide a detailed analysis of the cost in terms of energy

consumption.

Although off-loading computation seems intuitively advantageous, such a strategy

has an implicit trade-off between the energy savings resulting from not performing

on-platform computations and the costs involved in data exchanges over the network.

Intermediate strategies are also possible, such as for example off-loading the training

stage only and performing detection locally, or externalizing everything but the data

acquisition and preprocessing stages. Additionally, each plausible placement strategy

has consequences in aspects other than energy consumption. For example, off-loaded

detection may result in delays in detecting anomalous events, or even malfunctions

if network connectivity is unavailable.
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Intuition suggests that intensive monitoring is prohibitive for platforms such as

the current generation of smartphones [Rachuri et al., 2014]. However, the energy

consumption trade-offs among the various on-platform and externalized computation

strategies are unclear. Several works (e.g., [Kumar and Lu, 2010; Namboodiri and

Ghose, 2012; Tandel and Venkitachalam, 2013]) have addressed the issue of deciding

whether to cloud is a better option than not to cloud for mobile systems. For

example, in [Namboodiri and Ghose, 2012] it is shown that determining an energy

efficient strategy is a complex task and require a fine characterization of the impact

of several parameters, including the type of device and the application domain. Their

approach focuses on three rather generic applications: word processing, multimedia,

and gaming for both laptops and mobile devices. Authors conclude that “cloud-based

applications consume more energy than non-cloud ones” when using platforms such

as mobile devices. In contrast, other works such as [Tandel and Venkitachalam, 2013]

and [Kumar and Lu, 2010] show that offloading is generally profitable energy-wise,

particularly for intensive computation tasks that require relatively small amount of

communications.

In this chapter, we address the problem discussed above and assess the energy-

consumption trade-offs among different strategies for off-loading, or not, functional

tasks in machine learning based anomaly detection systems. Our analysis is motivated

by, and hence strongly biased towards, security applications of anomaly detectors,

such as for example malware detection or behavioral authentication. Nevertheless,

the majority of our experimental setting, results and conclusions are general and may

be of interest to other domains where smartphone-based anomaly detectors are used

(e.g., health monitoring applications [Kranz et al., 2013]).

In summary, our results confirm the intuition that externalized computation is,
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by far, the best option energy-wise. However, one rather surprising finding is that

it is several orders of magnitude cheaper than on-platform computations, which

suggests that networking is much more optimized than computation in such platforms.

Furthermore, we have noticed substantial differences among the machine learning

algorithms tested. Since some of them appear not to scale well for large feature

vectors and/or datasets, developers should make careful choices when opting for

one algorithm or another. In addition, anomaly detectors are found to consume

considerably more energy than popular apps such as games or online social networks,

which motivates the need for more lightweight machine learning algorithms.

The rest of the chapter is organized as follows. Section 6.2 describes the experi-

mental setting used in our work, including the platform used, the anomaly detectors

tested and the experiments carried out. Empirical results are discussed in Section 6.3,

and energy-consumption linear models are numerically derived for each separate func-

tion. Such models are used in Section 6.4 to analyze various off-loading strategies

and provide a comparative discussion. In Section 6.5 we illustrate the main findings

discussed throughout the chapter using an anomaly-based detector of repackaged

malware. Section 6.6 concludes the chapter by summarizing our contributions and

main conclusions.

6.2 Experimental Setting

In this section, we describe the experimental framework used for evaluating energy

consumption in Android devices, including the machine learning algorithms evaluated,

the tests carried out, and the tools and operational procedures used to measure

power.
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6.2.1 Machine Learning Algorithms

We have tested three machine learning algorithms that can be used as anomaly

detectors. Our choosing of these particular schemes is motivated by the different

computational approaches followed by each one of them, and also because they are

representative of broad classes of machine learning strategies: decision trees [Quinlan,

1986], clustering [Fisher, 1987], and probabilistic approaches [Hastie et al., 2005].

For completeness, we next provide an overview of each algorithm’s working principles.

• J48 is a Java implementation of the classic C4.5 algorithm [Hastie et al., 2005].

The procedure builds a decision tree from a labelled training dataset using

information gain (entropy) as a criterion to choose attributes. The algorithm

starts with an empty tree and progressively grows nodes by choosing those

attributes that most effectively split the dataset into subsets where one class

dominates. This procedure is recursively repeated until reaching nodes where

all instances belong to the same class [Hastie et al., 2005].

The resulting tree can be used as a classifier that outputs the class of future

observations based on their attributes. The binary setting (i.e., two classes:

normal and anomalous) is commonly used in anomaly detection problems, al-

though it is perfectly possible to train a classifier with more a complex class

structure.

• K-means is a clustering algorithm that groups data into k clusters and returns

the geometric centroid of each one of them. Given a dataset composed of

feature vectors D = {x1, ... ,xn}, the algorithm searches for a partition of D
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into k clusters {s1, ... ,sk} such that the within-cluster sum of squares

k

∑
i=1

∑
xj∈si

‖ xj −µi ‖2 (6.1)

is minimized, where µi is the geometric mean of the vectors in si .

When used in a supervised training setting, each centroid µi receives a class

label derived from the labels of the samples associated with the corresponding

cluster. Labelled centroids can be then used, together with a nearest neighbor

classifier, to determine the class of an observation by simply assigning it to a

cluster according to some distance. Clustering algorithms have been extensively

used in anomaly detection, particularly in one-class settings where only normal

training instances are available. In such cases, a sample is often labelled as

anomalous if its sufficiently far away from its nearest centroid.

• OCNB (One Class Naïve Bayes) [Hastie et al., 2005] is a supervised learn-

ing algorithm that has been successfully used in a wide range of applications.

OCNB is often a very attractive solution because of its simplicity, efficiency

and excellent performance. It uses the Bayes rule to estimate the probability

that an instance x = (x1, ... ,xm) belongs to class y as

P(y |x) = P(y)
P(x)

P(x |y) = P(y)
P(x)

m

∏
i=1
P(xi |y) (6.2)

so the class with highest P(y |x) is predicted. (Note that P(x) is independent of

the class and therefore can be omitted.) The naïvety comes from the assump-

tion that in the underlying probabilistic model all the features are independent,

and hence P(x |y) = ∏
m
i=1P(xi |y). The probabilities P(xi |y) are derived from
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a training set consisting of labelled instances for all possible classes. This is

done by a simple counting procedure, often using some smoothing scheme to

ensure that all terms appear with non-zero probability. The priors P(y) are

often ignored.

In a one-class (OC) setting the training set consists exclusively of normal data.

Since a profile of non-self behavior is not required, the detection is performed

by simply comparing the probability of a sample being normal (or, equivalently,

the anomaly score) to a threshold. Such a threshold can be adjusted to control

the false and true positive rates, and the resulting ROC (Receiver Operating

Characteristic) curve provides a way of measuring the detection quality.

6.2.2 Instrumentation

The experiments have been conducted in a Google Nexus One smartphone. Power

consumption has been measured by applying a battery of tests involving both compu-

tation and communication capabilities. Each test is an app containing some of the

functionality present in a given anomaly detector, such as for example the training

process or the detection stage. The app is loaded into the device and repeatedly

executed using some provided configuration. The process is sequential, so only one

execution is run at a time.

The device was previously instrumented with AppScope [Yoon et al., 2012] as

described in Chapter 3. As mentioned before, AppScope provides the amount of

energy consumed by an app in the form of several time series, each one associated

with a component of the device (CPU, Wi-Fi, cellular, touchscreen, etc.). We restrict

our measures to CPU for computations and Wi-Fi for communications, as our tests
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do not have a graphical user interface, do not require user interaction and, therefore,

do not use any other component.

6.2.3 Energy Consumption Tests

The energy consumption tests were independently carried out over the four functional

tasks described in Section 6.1 in order to obtain a separate consumption model for

each anomaly detection component. With this aim in mind, we designed the following

four families of tests:

1. Data preprocessing. The underlying machine learning algorithm takes as input

a dataset of behavioral patterns encoded in some specific format, often in the

form of feature vectors. Obtaining such patterns may involve non-negligible

computations, such as for example computing histograms, obtaining statistics,

applying data transformations, etc. In our case, this stage consisted of process-

ing a trace file where an ordered list of system calls executed by a monitored

app was provided. The trace is sequentially read using a sliding window and a

feature vector is computed for each window. The vector is then written into an

Attribute-Relation File Format (ARFF) file, which will be later used for training

or detection purposes. Overall, the preprocessing requires some on-platform

computations and also reading and writing files. We used generic I/O Java

components for this task, such as FileInputStream and BufferedReader.

2. Training. The training process reads an ARFF dataset and builds a model of

normal behavior according to some machine learning algorithm. We prepared

three different subtests, one for each algorithm discussed above. We used an

stripped version of the well known Weka [Hall et al., 2009] library for Android
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devices, as this implementation is reasonably optimized. Training involves a

number of parameters that may influence the algorithm’s running time. In

our case, each algorithm was provided with the configuration yielding optimal

detection results as discussed in the previous section.

3. Detection. This tests measures the amount of energy consumed by a constantly

running detector. Again, we prepared one sub-test for each machine learning

algorithm and implemented the detector using the stripped version of Weka.

Each detector is assumed to have the behavioral model already loaded, so the

test only measures energy consumption associated with loading a test vector

and deciding its class (normal or anomalous).

4. Communications. In this test we measured the amount of energy consumed

by sending and receiving data over a Wi-Fi connection. As the amount of

data exchanged and the frequency of such exchanges may vary across oper-

ational scenarios, we focused on obtaining a model of energy consumed per

exchanged byte. We identified three subtests here, depending on whether a se-

cure (encrypted and authenticated) channel is necessary or not. The tests were

implemented using standard Java libraries, such as HttpURLConnect and Http-

sURLConnect for insecure and secure communications, respectively. Besides,

we tested two different networking scenarios. In the first one, the detector com-

municates with a locally reachable device, which implies low network latency.

For these cases we tested both open and WPA-protected Wi-Fi networks. In

this case, the time required for a packet to travel from the device to the server

and back (Round-Trip Time, RTT) is about 0.6 ms. In the second scenario, we

assumed that the detector communicates with a device located reasonably far



182 6. Power-aware Anomaly Detection in Smartphones

Test Subtest No. Executions
Data preprocessing Preprocessing 30

Training
Training.J48 30
Training.K-means 30
Training.OCNB 30

Detection
Detection.J48 30
Detection.K-means 30
Detection.OCNB 30

Comms

Comms.LoLat.Open.HTTP 30
Comms.LoLat.Open.HTTPS 30
Comms.LoLat.WPA.HTTP 30
Comms.LoLat.WPA.HTTPS 30
Comms.HiLat.WPA.HTTP 30
Comms.HiLat.WPA.HTTPS 30

Table 6.1: Energy consumption tests executed.

away in terms of network latency, such as for example in a cloud service accessi-

ble via Internet. In our experimental setting, the server is accessed via Internet

using a WPA-protected Wi-Fi network with a network latency of around 31 ms.

As indicated above, each test is a separate app that is installed on the device,

executed, measured with AppScope, and finally uninstalled. Each test was executed

30 times with different input parameters, such as the length and number of feature

vectors in the training dataset and the frequency of sending and receiving data over

the network. We elaborate on this later when discussing the experimental results.

The test suite is summarized in Table 6.1.
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6.3 Energy Consumption of Anomaly Detection Com-

ponents

We next present the experimental results obtained after running the tests described

in the preceding section. We group the results into two separate categories: compu-

tation and communications. The first one includes data preprocessing, training, and

detection, while the second focuses on data exchange over the network. We finally

obtain and discuss linear regression models for each algorithm and functional task.

6.3.1 Computation

We experimentally found that energy consumption related to preprocessing, training,

and detection tasks depends on:

• The length |v | of the feature vectors, measured as the number of attributes

that each vector has.

• The size |D| of the dataset, measured as the number of vectors to be pro-

cessed, i.e., generated during preprocessing, used for training, or evaluated

during detection.

We executed all the preprocessing, training, and detection tests with values of

|v | = 10, 100, 200, 300, and 400. These lengths are representative of the feature

vectors used in most security applications of machine learning. On the other hand,

for each vector length we generated datasets of sizes |D| = 10, 50, 100, 200, 500,

and 1000, and then computed the average energy consumption per vector. The
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Figure 6.1: Energy consumption results in Joules per vector for different vector lengths for the
preprocessing, training, and detection tests.

average energy consumption in Joules (J) per vector for each vector length is shown

in Figure 6.1. Several conclusions can be drawn from these results:

1. Data preprocessing consumes very little energy when compared to detection

and training. This cannot be easily generalized, as it strongly depends on the

sort of preprocessing applied. In our case data preprocessing is quite straight-

forward (computing histograms) and consumes less than 10 J/vector.

2. For a given algorithm, detection is significantly cheaper than training in terms

of energy consumption, but there are exceptions. For example, for both J48

and OCNB, and vectors of length 100 training requires around 50 J/vector

more than detection. This difference increases to more than 100 J/vector for
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lengths greater than 300. K-means is an exception, with training and detection

consuming approximately the same power.

3. The algorithm matters: K-means consumes far less than J48 and OCNB. In

turn, OCNB is more expensive power-wise than J48, both in training and de-

tection.

4. For the three tasks, consumption increases approximately linearly in |v |.

6.3.2 Communications

Each communication test consists of the app sending and receiving 10 large files

to/from a server, using both HTTP and HTTPS. After each test, the total energy

consumed is divided by the number of bytes sent or received to obtain a normalized

measure in Joules per byte. Each test was repeated 30 times, resulting in the boxplots

shown in Figure 6.2.

The results are quite surprising. On the one hand, we found no significant dif-

ference between using HTTP or HTTPS. In other words, key establishment plus

encryption/decryption for each packet sent/received seems to be extremely efficient

in terms of energy consumption. One possible explanation for these figures might

be related to the granularity used by AppScope to measure energy and compute the

attribution of consumption. AppScope uses application-specific energy consumption

data for each hardware component. However, authors argue that the “system” con-

sumes a certain amount of energy when communications are used. It may be the

case that AppScope is not attributing the consumption of crypto operations to the

app using HTTPS.
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Figure 6.2: Energy consumption results in Joules per byte exchanged (sent or received) for the
communication test.

Apart from the observation above, our results suggest that network latency has a

clear influence in the consumption. In our experiments, increasing latency from 0.6

ms to 31 ms resulted in 8 times more power. This may just be a consequence of the

app execution taking more time to transmit the data.

6.3.3 Linear Models

We used the figures obtained above to derive linear energy consumption models that

could be later used to determine the best deployment strategy for each function

depending on aspects such as the remaining energy available on the device or the

detection architecture. To do this, we applied a simple linear regression analysis using

least squares over the energy consumption data.
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In the case of the computation functions, each model has the form:

Ef (|v |) = αf · |v |+ yf (6.3)

where f ∈ {pre,tra,det}, i.e., preprocessing, training, and detection, respectively.

Similarly, energy consumption incurred by communications is estimated by a linear

model:

Ecomms(nb) = γ ·nb (6.4)

where nm is the number of bytes to be sent or received, and γ is the average energy

consumption of the network configuration used by the device.

The coefficients thus estimated are provided in Table 6.2 and confirm the conclu-

sions drawn above. For example the slope α of the three training algorithms reveals

the difference between K-means, which introduces a multiplying factor of 0.11 J per

additional attribute in the vector, and J48/OCNB, for which such a factor is 0.45

J and 0.57 J, respectively. Similarly, OCNB is clearly much more costly in terms of

detection, with a 0.15 J factor per additional vector attribute against 0.05 and 0.08

for J48 and K-means, respectively.

6.4 Deployment Strategies and Trade-offs

Based on the findings presented in the previous section, we next discuss different

deployment strategies for the various functions composing an anomaly detection

system and analyze the associated energy consumption costs.
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Function Model
Computation αf yf

Preprocessing – 0.00 2.82

Training
Training.J48 0.45 24.45
Training.K-means 0.11 7.85
Training.OCNB 0.57 18.78

Detection
Detection.J48 0.05 9.04
Detection.K-means 0.08 7.16
Detection.OCNB 0.15 6.34

Communications γ

Comms

Comms.LoLat.Open.HTTP 8.74 ·10−7

Comms.LoLat.Open.HTTPS 5.09 ·10−7

Comms.LoLat.WPA.HTTP 5.81 ·10−7

Comms.LoLat.WPA.HTTPS 5.18 ·10−7

Comms.HiLat.WPA.HTTP 8.31 ·10−6

Comms.HiLat.WPA.HTTPS 8.34 ·10−6

Table 6.2: Regression coefficients for the linear energy consumption models for computation
and communication tasks.

6.4.1 Energy Consumption Strategies

We make two assumptions in our subsequent analysis. Firstly, data acquisition is

executed in the device by means of some instrumentation procedure, e.g., through

the system API to get access to activity traces. This would not be strictly true

for some recently proposed approaches based on keeping a synchronized clone of

the device in the cloud [Chun et al., 2011; Portokalidis et al., 2010; Zonouz et al.,

2013]. We believe, however, that the overhead incurred by such approaches may be

equivalent to that of directly monitoring the device, although this issue needs further

investigation. Secondly, our envisioned applications require relatively straightforward

data preprocessing (see Table 6.2) that can easily be incorporated into the data

acquisition module. As a result, both acquiring the data and preparing the feature
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vectors incur a constant overhead for all discussed strategies and will be left out of

our analysis.

The two remaining functional blocks are training and detection. Each one, or

both, of them can be placed locally in the device (L) or off-loaded to a remote server

(R). This gives rise to four possible strategies that will denoted by LL, LR, RL, and

RR. In all cases, energy consumption is a linear function:

Ei ,j(t) = πi ,j · t (6.5)

with i , j ∈ {L,R}, where πi ,j is determined by each strategy.

In what follows |v | represents the length in bytes of each feature vector; |D| is

the size of the dataset used for training, measured in number of vectors; |M| is the

size in bytes of the normality model returned by the training process; and ωt and ωd

represent the frequencies at which training and detection take place, respectively.

• Local Training, Local Detection (LL). In this case the entire operation of the

detector is executed locally in the device. The energy consumption factor πLL

is composed of two terms: Et(|v |) Joules per vector in the dataset during

training, plus Ed(|v |) Joules per vector for each detection event. Overall, we

have:

πLL = ωt |D|Et(|v |)+ωdEd(|v |) (6.6)

• Local Training, Remote Detection (LR). In this scenario training takes place

in the device but detection is off-loaded. During training, energy consumption

is equivalent to the corresponding term in (6.6) plus the cost of sending the

model M to the cloud (Ed(|M|)). In detection mode, every vector must be also
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sent out for analysis. We consider here that receiving the result has a negligible

cost, as it may just be 1 bit (normal/anomalous). In summary:

πLR = ωt

(
|D|Et(|v |)+Ec(|M|)

)
+ωdEc(|v |) (6.7)

• Remote Training, Local Detection (RL). This strategy captures the idea of

off-loading the model training stage while performing detection locally. To do

this, every time that a (re-)training event is triggered the entire dataset must

be sent out for analysis and, subsequently, the model must be received. In

detection mode, energy consumption for each analyzed vector is ascribed to

the device, resulting in:

πRL = ωt

(
|D|Ec(|v |)+Ec(|M|)

)
+ωdEd(|v |) (6.8)

• Remote Training, Remote Detection (RR). Finally, this strategy considers the

possibility of externalizing all functions to a remote server. Consequently, the

only energy consumption attributed to the device is that related to sending and

receiving feature vectors both for training and detection. Thus:

πRR = ωt |D|Ec(|v |)+ωdEc(|v |) (6.9)

We then discuss the tradeoffs between these four possibilities. In particular, we

compare the LL strategy with the other three to understand the potential gains from

off-loading training, detection, or both.



6.4. Deployment Strategies and Trade-offs 191

6.4.2 LL vs LR

The LL strategy is preferred to LR if:

πLL ≤ πLR

ωt |D|Et(|v |)+ωdEd(|v |) ≤ ωt

(
|D|Et(|v |)+Ec(|M|)

)
+ωdEc(|v |)

ωdEd(|v |) ≤ ωtEc(|M|)+ωdEc(|v |)

ωdEd(|v |) ≤ (ωt +ωd)Ec(|M|+ |v |)

Ed(|v |) ≤
ωt +ωd

ωd
Ec(|M|+ |v |) (6.10)

Note that, in general, ωd � ωt , in which case the term ωt+ωd
ωd
≈ 1. Alternatively, in

the extreme case of training being done for each incoming vector, we have ωd = ωt

and ωt+ωd
ωd

= 2. Renaming this term as

z =
ωt +ωd

ωd
∈ [1,2] (6.11)

and using the linear forms of Ed and Ec we can rewrite the inequality above as:

α|v |+ y ≤ zγ(|v |+ |M|)

(α− zγ)|v | ≤ γ|M|− y

|v | ≤ z
γ|M|− y
α− zγ

(6.12)

A simple analysis of the orders of magnitude of the quantities involved in (6.12)

provides some insights. Recall that α ≈ 10−2, y ≈ 10 and γ ≈ 10−7 (see Table 6.2).
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Replacing these values in (6.12), and ignoring the factor z , we get

|v | ≤ 10−7|M|−10
10−2−10−7 ≈ 10−5|M| (6.13)

Consequently, the right-hand term in (6.12) will be negative unless |M| is of the order

of 106 or greater. However, almost all machine learning algorithms produce models

that rarely exceed a few hundred kilobytes.

The main conclusion that can be drawn is that the LL strategy is worse energy-

wise than the LR unless the model is so large and the vectors tiny enough so that the

energy consumed by sending both the model and the vectors to the cloud outweighs

the energy of performing detection locally.
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6.4.3 LL vs RL

In this case we have:

πLL ≤ πRL

ωt |D|Et(|v |)+ωdEd(|v |) ≤ ωt

(
|D|Ec(|v |)+Ec(|M|)

)
+ωdEd(|v |)

ωt |D|Et(|v |) ≤ ωt

(
|D|Ec(|v |)+Ec(|M|)

)
|D|Et(|v |) ≤ |D|Ec(|v |)+Ec(|M|)

|D|Et(|v |) ≤ Ec(|D||v |+ |M|)

|D|(α|v |+ y) ≤ γ(|D||v |+ |M|)

|D|α|v |+ |D|y ≤ |D|γ|v |+ γ|M|

|D|(α− γ)|v | ≤ γ|M|− |D|y

|v | ≤ γ|M|− |D|y
|D|(α− γ)

(6.14)

Expression (6.14) presents a trade-off somewhat similar to that discussed in the

previous section, but more acute. The fact that training takes place remotely factors

in the size of the dataset in the inequality, which must be transferred for the remote

server to build up the model. The overall consequence is however similar: the RL

strategy consumes less than LL unless the model is sufficiently large with respect to

the size of the dataset. Since the factor −|D|y appears in the numerator of (6.14),

the model size must now be even greater than in the previous case.

In summary, outsourcing the training stage is consistently better than performing

it locally unless the datasets to be sent for analysis and the models received are

massive.
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6.4.4 LL vs RR

Local training and detection consumes less than a fully off-loaded operation if:

πLL ≤ πRR

ωt |D|Et(|v |)+ωdEd(|v |) ≤ ωt |D|Ec(|v |)+ωdEc(|v |)

ωt |D|
(
Et(|v |)−Ec(|v |)

)
≤ ωd

(
Ec(|v |)−Ed(|v |)

)
(6.15)

Note that in (6.15) the various energy consumption functions are applied to inputs

of the same length |v |. However, communications are several orders of magnitude

cheaper than training and detection, so

Et(|v |)−Ec(|v |)≈ Et(|v |) (6.16)

and

Ec(|v |)−Ed(|v |)≈−Ed(|v |) (6.17)

Replacing this in (6.15) we get

ωt |D|Et(|v |)≤−ωdEd(|v |) (6.18)

which never holds. The conclusion is clear and, in a sense, rather expected from the

findings discussed in the two previous sections: off-loading the entire operation of

the detector is always better in terms of energy consumption than operating locally

in the device.

Taking another look at (6.15), the only scenario where LL may be competitive

against RR arises when Ec(|v |)≥Ed(|v |). This situation may correspond to extremely
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lightweight detectors in which computing the anomaly score takes less power than

sending the vector over the network. In such a case, (6.15) can be reduced to:

|D| Et(|v |)
Ec(|v |)−Ed(|v |)

≤ ωd

ωt
(6.19)

which essentially establishes that local operation pays off power-wise if training is

very infrequent, does not consume much energy, and the datasets are not very large.

6.4.5 Discussion

The analysis conducted in the previous three sections point out to one definite conclu-

sion: externalizing computation, both training and detection activities, is by far the

best option in terms of energy consumption. A deeper look at the trade-offs derived

above reveals that the core of this argument is intimately related to the enormous

differences in energy consumption existing between computation and networking ac-

tivities. In platforms such as the current generation of smartphones, communications

appear to be extraordinarily optimized in terms of energy requirements, whereas com-

putation is significantly more demanding. In fact, we have seen that communications

in current Android devices have similar energy consumption than early wireless sensor

devices such as MICAz or TelosB [De Meulenaer et al., 2008]. In the case of appli-

cations such as anomaly detection, the best strategy is undoubtedly to externalize

all computation functions, including continuous detection, whenever possible.

In terms of performance criteria other than energy consumption, off-loading may

or may not have an impact depending on the application domain. Loss of network

connectivity—or even sufficient degradation—is a major threat for outsourced detec-

tion, as the device may be forced to functioning without the detection service while
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the remote server is unreachable. Similarly, network delays may be a critical point in

applications where near real-time detection is required. In such cases, these aspects

must be weighed against the energy saving benefit.

Offloading resource-intensive tasks to the cloud is a topic that has gained mo-

mentum in recent years. Several works (e.g., [Kumar and Lu, 2010; Namboodiri and

Ghose, 2012; Tandel and Venkitachalam, 2013]) have addressed the issue of decid-

ing whether to cloud is a better option than not to cloud for mobile systems. For

example, in [Namboodiri and Ghose, 2012] it is shown that determining an energy

efficient strategy is a complex task and require a fine characterization of the impact

of several parameters, including the type of device and the application domain. Their

approach focuses on three rather generic applications: word processing, multimedia

and gaming for both laptops and mobile devices. Authors conclude that “cloud-based

applications consume more energy than non-cloud ones” when using platforms such

as mobile devices. In contrast, other works such as [Tandel and Venkitachalam, 2013]

and [Kumar and Lu, 2010] show that offloading is generally profitable energy-wise,

particularly for intensive computation tasks that require relatively small amount of

communications.

Finally, the security and privacy aspects of offloading computation to the cloud

is a major concern that may prevent many users from relying on external services,

particularly when confidential data is involved in the training and detection datasets.

In this context, many works have dealt with the problem of securely outsourcing

computation (see, e.g. [Wang et al., 2011]). One common assumption is to consider

the external server as untrusted and to encrypt all data sent out for processing. In

order to assess the extra energy consumption incurred by encrypting data prior to

sending it, we evaluated three of the most common ciphers found in cryptographic
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Cipher Mode γ

AES-128 CTR 7.62 ·10−9

3DES CTR 9.52 ·10−9

RC4 – 7.62 ·10−9

Table 6.3: Average energy consumption per encrypted byte.

libraries and used nowadays: AES, 3DES, and RC4. The experimental setting and

energy consumption tests are identical to those described in Section ??. We carried

out 30 independent tests and divided, in each case, the total energy consumed by the

number of encrypted bytes to obtain a normalized measure in Joules per byte. The γ

factor obtained is shown in Table 6.3. As it can be observed, the cost of encryption

is negligible when compared to that of training and detection tasks and does not

affect the general conclusions discussed above. These results indicates that current

encryption algorithms are extremely efficient in terms of energy consumption. This

is further supported by the results shown in the literature during the last years aiming

at providing low budget cryptography to enable wireless security [De Meulenaer et al.,

2008; Fan et al., 2013; Karaklajiić et al., 2010; Kerckhof et al., 2012; Verbauwhede,

2011].

6.5 Case Study: A Detector of Repackaged Malware

We next illustrate some of the conclusions drawn in the preceding sections with real-

world application: an anomaly-based detector for repackaged malware in Android

apps. The use of anomaly detectors for this purpose has been proposed in a number

of recent works (see, e.g., [Burguera et al., 2011; Shabtai et al., 2012]). Although in

all cases the performance of such approaches is reasonably good in terms of detection
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quality, to the best of our knowledge none has explored the energy consumption

savings gained by outsourcing it.

6.5.1 The Detector

Sequences of system calls have been recurrently used by anomaly detection systems

for security applications in smartphones [Blasing et al., 2010; Burguera et al., 2011;

Lin et al., 2013; Shabtai et al., 2012]. All apps interact with the platform where they

are executed by requesting services through a number of available system calls. These

calls define an interface that allow apps to read/write files, send/receive data through

the network, read data from a sensor, make a phone call, etc. Legitimate apps can be

characterized by the way they use such an interface [Lin et al., 2013], which facilitates

the identification of malicious components inserted into an seemingly harmless app

and, more generally, other forms of malware [Suarez-Tangil et al., 2014b].

Based on this idea, we have built an anomaly detector that combines some of

the ideas already proposed in previous works1. Feature vectors consist of histograms

computed from a trace of system calls using a sliding window of length W . We

determined experimentally that windows of length 400 result in very good detection

performance. The number of systems calls varies across architectures and it is often

between 200 and 400. Thus, during the training period all processes of normal apps

are monitored and the corresponding feature vectors are generated. Such vectors are

then used to train a normality model.

In detection mode, the algorithm takes as input a sequence sq of N system calls

1We deliberately omit a number of details about our detector, particularly those related to the
detection quality for different parametrizations, as this is not the main focus of this work and has
been reported elsewhere.
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and extracts the N −W + 1 feature vectors using a sliding window. Each one of

these feature vectors is then classified as normal or anomalous. Let A be the number

of vectors identified as anomalous. Then, the sequence—and, therefore, the app—is

classified according to the following rule:

det(sq) =

 legitimate if A
N−W+1 < ρ

repackaged otherwise
(6.20)

where ρ is an adjustable detection threshold.

The detection procedure described above is intimately related to the nature of

repackaged malware. In general, not all the system call windows issued by a repack-

aged app will be anomalous, as they may be generated by non-malicious code. Thus,

detection must be based on analyzing sets of windows and seeking if a fraction of

them are anomalous. In our experiments, we obtained good results with sequences

of at least 10 windows and thresholds ρ around 0.1. For example, one of the apps

we used for testing detection performance is a popular game named Mx Moto by

Camel Games. The app can be purchased from Google Play for 1.49 eand so far

has been downloaded 100K times. The same app can also be found in alternative

markets for free [Zhou and Jiang, 2012], in most cases repackaged with a malware

known as Anserverbot. We tested the original app together with various repackaged

variants, obtaining in all cases a detection rate of 100% with no false positives with

the OCNB detector. These results are congruent with those reported in similar works

based on anomaly detection [Burguera et al., 2011; Shabtai et al., 2012].
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Type No. Apps No. Events Throttle (ms) Syscalls/s

Goodware
10 5000 1000 180.43
35 1000 5000 453.91
50 5000 1000 307.62

Malware
10 5000 1000 112.39
35 1000 5000 128.66
50 5000 1000 161.90

All 190 — Average 224.16

Table 6.4: Average number of system calls per second in different executions of both goodware
and malware.

6.5.2 Testing Framework

We tested the energy consumption of three detectors built as described above, one

for each machine learning algorithm evaluated. Only the LL and RR strategies were

studied, as they represent opposite cases for placement decisions. For the latter,

the high latency configuration with WPA and HTTPS was used. In order to study

energy consumption for different apps and/or detector configurations, we gathered

a dataset of 190 apps containing both goodware and malware. For each one of

them, we derived the average number of system calls per second issued depending

on different usage intensity rates (throttle). These figures are obtained by running

each app in a controlled environment and automatically injecting user events at a

throttle pace. The results are shown in Table 6.4 and reveal that apps can generate

up to a few hundred system calls per second. Even though user-driven apps may well

function at lower paces, these rates are useful for apps where high frequency testing

is required.

Each detector is evaluated for different vector lengths. Again, our goal is mea-

suring how the amount of energy varies in a real setting depending on the choice of

this parameter. (Recall that in terms of detection quality, best results are obtained
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for |v |= 100.) Finally, each detector was continuously executed during 1 week, and

the amount of energy consumed so far was measured at 4 control points: after 10

minutes, 1 hour, 1 day, and 1 week. During this period, detection is triggered as of-

ten as a sufficiently large sequence of system calls is available, and re-training occurs

every 10 minutes.

6.5.3 Results and Discussion
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Figure 6.3: Average energy consumption for different detectors using the LL (Computation) and
RR (Communications) strategies.
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Figure 6.3 shows the average energy consumed by the three detectors for the

LL and RR strategies. (Note that the latter is independent of the algorithm as only

communications are involved.) The plots are consistent with the results discussed in

the previous section and confirm that outsourced detection is much more efficient

energy-wise than on-platform operation. Consider, for example, the case of vectors

of 100 attributes. During the first 10 minutes, both the OCNB and the J48 detectors

have consumed more than 105 J. During the same period, the detector located in

the cloud has required less than 104 J. After 1 day, cloud-based detectors consume

roughly the same amount of energy than on-platform detectors over 1 hour. Note,

too, that the frequency of re-training is extremely high in this setting, and that the

difference would be substantially greater if training occur more sporadically.

Another interesting finding is that differences among algorithms are noticeable

after some time, especially for large vectors. In general, OCNB is much more de-

manding than K-means and J48 when vectors with a hundred attributes are involved.

Finally, in order to contextualize the energy implications of constantly running a

detector, we have measured the energy consumed by some popular apps during 10

minutes (see Table 6.5). These apps are representative of three broad classes of

popular activities: games, online social networking, and multimedia content. The

amount of energy consumed by the three ranges between approximately 550 J and

645 J, most of it being related to the graphical user interface. For comparison

purposes, running our detector in the device with the less demanding algorithm (J48)

takes around 15 J per detection. At full throttle (i.e., around 224 detections per

second) this implies a consumption of around 2 MJ in 10 minutes. Even if detection

only takes place at a rate of 1 per second, the overall consumption in 10 minutes is

still around 9 KJ. In contrast, outsourced detection using WPA, HTTPS, and high
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App CPU Comms Display Total
YouTube 30.11 12.59 508.90 551.59
MX Moto 129.24 5.75 509.54 644.52
Facebook 137.76 27.42 471.42 637.27

Table 6.5: Consumption (in Joules) of three popular apps during a time span of 10 minutes.

latency consumes around 112 J and 0.5 J in the same conditions, respectively.

The figures discussed above reinforce the conclusion that externalized operation

of anomaly detection seems to be the only reasonable choice in terms of energy

consumption. However, given that cloud-based processing may raise some privacy

concerns in certain applications, this also motivates the need for more lightweight

anomaly detection techniques that may be suitable for on-platform operation.

6.6 Conclusions

In this chapter, we have discussed the power consumption trade-offs among various

strategies for executing anomaly detection components directly on mobile platforms

or remotely in the cloud. Both our theoretical analysis and experimental results con-

firm that there is actually little choice but to offload everything to the cloud. Reasons

for this include the differences between the energy efficiency of computation and com-

munications in current platforms, and also various parameters related to the anomaly

detection setting, such as the dataset sizes and the operation frequency. We believe

that the linear models provided in this work may be useful in other contexts to ob-

tain estimates about the energy consumption of different alternatives. Furthermore,

such models can be easily extended to other machine learning algorithms by simply

deriving the appropriate coefficients α and y .





7
Detecting Targeted Smartphone

Malware with Behavior-Triggering

Stochastic Models

7.1 Introduction

Malware for smartphones is a problem that has rocketed in the last few years [Juniper,

2013]. The presence of increasingly powerful computing, networking and sensing

functions in smartphones has empowered malicious apps with a variety of advanced

capabilities [Suarez-Tangil et al., 2014b], including the possibility to determine the

physical location of the smartphone, spy on the user’s behavioral patterns, or com-

promise the data and services accessed through the device. These capabilities are

rapidly giving rise to a new generation of targeted malware that makes decisions on

the basis of factors such as the device location, the user’s profile, or the presence of

other apps (e.g., see [Felt et al., 2011c; Hasan et al., 2013; Raiu and Emm, 2013;

Zawoad et al., 2013]). The idea of behaving differently under certain circumstances
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was also successfully applied in the past. For instance, Stuxnet [Langner, 2011]

remained dormant until a particular app was installed and used at certain location,

having as a target Iranian Nuclear Plants. Other malware targeted governments

and private corporations—mostly in the financial and pharmaceutical sectors [Corpo-

ration, 2013]. Another representative example of targeted malware is Eurograbber

[Kalige and Burkey, 2012], a “smart” Trojan targeting online banking users. The

situational awareness provided by smartphone platforms makes this type of attacks

substantially easier and potentially more dangerous. More recently, other examples

of targeted malware include FinSpy Mobile [Marquis-Boire et al., 2013], a general

surveillance software for mobile devices, and Dendroid Remote Access Toolkit (RAT)

[Rogers, 2014], which offers capabilities to target specific users.

A similar problem is the emergence of the so-called grayware [Felt et al., 2011c],

i.e., apps that cannot be completely considered malicious but whose behavior may

entail security and/or privacy risks of which the user is not fully aware. For example,

many apps using targeted advertisements are particularly aggressive in the amount

of personal data they gather, including sensitive contextual information acquired

through the device sensors. The purpose of such data gathering activities is in many

cases questionable, and many users might well disapprove it, either entirely or in

certain contexts.1

Both targeted malware and grayware share a common feature that complicates

their identification: the behavior and the potential repercussions of executing an

app might depend quite strongly on the context where it takes place [Capilla et al.,

2014] and the way the user interacts with the app and the device [Gianazza et al.,

1Classical examples include two popular games, Aurora Feint and Storm8, which were removed
from the Apple Store for harvesting data and phone numbers from the user’s contact list and sending
them to unknown destinations as introduced in Chapter 2.
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2014]. We stress that this problem is not addressed by current detection mecha-

nisms implemented in app markets, as operators are overwhelmed by the number

of apps submitted for revision every day and cannot afford an exhaustive analysis

over each one of them [Chakradeo et al., 2013]. A possible solution to tackle this

problem could be to implement detection techniques based on dynamic analysis (e.g.,

Taintdroid [Enck et al., 2010]) directly in the device. However, this is simply too

demanding for battery-powered platforms. Several recent works [Chun et al., 2011;

Kosta et al., 2012; Portokalidis et al., 2010; Zonouz et al., 2013] have proposed to

keep a synchronized replica (clone) of the device virtualized in the cloud. This would

facilitate offloading resource-intensive security analysis to the cloud, but still does

not solve one fundamental problem: grayware and targeted malware instances must

be provided with the user’s particular context and behavior, so the only option left

would be to install the app, use it, and expect that the analysis conducted over the

clone—hopefully in real time—detects undesirable behaviors. This is a serious limi-

tation that prevents users from learning in advance what an app would do in certain

situations, without the need of actually reproducing such a situation.

Recent works such as PyTrigger [Fleck et al., 2013] have approached the prob-

lem of detecting targeted malware in Personal Computers (PC). To do so, it is

sought to trigger specific malware behaviors by injecting activities collected from

users (e.g., mouse clicks and keyword inputs) and their context. This approach

cannot be adopted to platforms such as smartphones because the notion of sensed

context is radically different here. Other schemes, including the work presented in

[Gianazza et al., 2014; Jensen et al., 2013; Rastogi et al., 2013a; Zheng et al.,

2012], do focus on smartphones but concentrate exclusively on interactions with the

Graphical User Interface (GUI) and are vulnerable to context-based targeted attacks.
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Two works closer to our proposal are Context Virtualizer [Liang et al., 2013] and

Dynodroid [Machiry et al., 2013], where a technique called context fuzzing is intro-

duced in the former and used in the latter. The main aim in [Liang et al., 2013;

Machiry et al., 2013] is to automatically test apps with real-world conditions, in-

cluding user-based contexts. These tools, however, are intended for developers who

want to learn how their apps will behave when used in a real setting. Contrarily, our

focus is on final users who want to find out if they will be targeted by malicious or

privacy-compromising behaviors. Finally, other works such as CopperDroid [Reina

et al., 2013] focus on malware detection as we do, but with a static approach (based

on information extracted from the manifest) that, besides, does not consider the

user context.

In this chapter, we address the problem of identifying targeted grayware and

malware and propose a more flexible approach compared to other proposals to deter-

mining whether the behavior of an app is compliant with a particular set of security

and privacy preferences associated with an user. Our solution is based on the idea of

obtaining an actionable model of user behavior that can be leveraged to test how an

app would behave should the user executes it in some context. Such a testing takes

place over a clone of the device kept in the cloud. This approach removes the need

of actually exposing the device (e.g., we let the device access only fake data and not

real). More importantly, the analysis is tailored to a given user, either generally or for

a particular situation. For example, a user might want to explore the consequences

of using an app in the locations visited during working days from 9 to 5 or during a

planned trip.

Section 7.2 introduces the theoretical framework used to model triggering pat-

terns and app behavior. In Section 7.3, we describe the architecture of our proposal
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and a proof-of-concept prototype, and discuss the experimental results obtained in

terms of testing coverage and efficiency. In Section 7.4, we discuss the detection

performance with two representative case studies of grayware and targeted malware

instances. Finally, Section 7.5 extracts some conclusions.

7.2 Behavioral Models

This section introduces the theoretical framework used in our proposal (presented in

Section 7.4) to trigger particular app behaviors and determining whether they entail

security risks to the user (as shown in Section 7.4). More precisely, we present

models for the user-provided inputs, the resulting app behavior, and the mechanism

used to assess potential risks.

7.2.1 Triggering Patterns

Inputs provided by the user to his device constitute a major source of stimuli for

triggering certain app behaviors. We group such inputs into two broad classes of

patterns, depending on whether they refer to inputs resulting from the user directly

interacting with the app and/or the device (e.g., through the touchscreen), or else

indirectly by the context (e.g., location, time, presence of other devices in the sur-

roundings).

7.2.1.1 Usage Patterns

Usage patterns model sequences of events resulting from the actions of the user

during his interaction with an app. Such events are internal messages passed on to
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the app by the device, such as starting an activity, or clicking a button. We underline

that our focus is on the events and not on the actions that generate them, as the

same event can be triggered through different input interfaces (e.g., touchscreen,

voice). Let the following be a set of all possible events for all apps:

B = {e1,e2, ... ,en}. (7.1)

Thus, the interaction of a user with an app can be represented as an ordered

sequence:

u = 〈ε1,ε2, ... ,εk〉, εi ∈ B. (7.2)

We will refer to such sequences as usage traces. Interactions with an app at different

times and/or with different apps will result in different usage traces.

7.2.1.2 Context Patterns

Apps may behave differently depending on conditions not directly provided by the

user, such as the device location, the time and date, the presence of other apps

or devices, etc. We model this using the widely accepted notion of context [Conti

et al., 2012]. Assume that v1, ... ,vm are variables representing contextual elements

of interest, with vi ∈ Vi . Let the following be the set of all possible contexts:

X = V1×·· ·×Vm. (7.3)
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As above, monitoring a user during some time interval will result in a sequence refer

to as context traces:

g = 〈x1,x2, ... ,xl〉, xi ∈ X . (7.4)

7.2.2 Stochastic Triggering Model

Usage and context traces are used to derive a model that captures how the user

interacts with an app or a set of apps. For this purpose, we rely on a discrete-time

first-order Markov process (i.e., a Markov chain [Norris, 1998]) M = (S ,A,Π) where:

• The set of states S is given by:

S = B×X = {s1, ... ,sN}. (7.5)

We will denote by q(t) ∈ S the state of the model at time t = 1,2, ... , repre-

senting one particular input event executed in a given context.

• The transition matrix is given by:

A= [aij ] = P[q(t+1) = sj |q(t) = si ], (7.6)

where aij ∈ [0,1] and ∑
N
j=1 aij = 1.

• The vector of initial probabilities is given by:

Π = (πi) = P[q(1) = si ], (7.7)
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with πi ∈ [0,1] and ∑
N
i=1 πi = 1.

The model above is simple yet powerful to model user-dependant behavioral pat-

terns when interacting with an app. The model parameters can be easily estimated

from a number of usage and context traces. Assume that O = {o1,o2, ... ,oT} is a

sequence of observed states (i.e., event-context pairs) obtained by monitoring the

user during a representative amount of time. The transition matrix can be estimated

as:

aij =
∑

T
t=2P[q(t) = sj |q(t−1) = si ]

∑
T
t=2P[q(t) = sj ]

=
∑

T
t=2P[ot = sj |ot−1 = si ]

∑
T
t=2P[ot = sj ]

, (7.8)

where both probability terms are obtained by simply counting occurrences from O.

The process can be trivially extended when several traces are available.

The model above should be viewed as a general modeling technique that can be

applied at different levels. Therefore, if one is interested in modeling input events

irrespective of context, the set of states—and, therefore, the chain—can be reduced

to B. The same applies to context; e.g., states could be composed exclusively of

time-location pairs.

Markov chains are often represented as a directed graph where vertices represent

states and edges between them are labelled with the associated transition probability.

We will call the degree of a state, denoted by deg(si), to the number of states

reachable from s in just one transition with non-null probability

deg(si) = #{pij |pij > 0}. (7.9)
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The degree distribution of a chain is given by:

P(k) = P[deg(s) = k ]. (7.10)

7.2.3 App Behavior and Risk Assessment

An app interacts with the device by requesting services through a number of avail-

able system calls. These define an interface for apps that need to read/write files,

send/receive data through the network, make a phone call, etc. Rather than focusing

on low-level system calls, in this chapter we will describe an app behavior through the

sequence of activities it executes (see Chapter 5-Section 5.2.2). Activities represent

high-level behaviors, such as for example reading from or writing into a file, opening

a network connection, sending/receiving data, etc. In some cases, there will be a

one-to-one correspondence between an activity and a system call, while in others an

activity may encompass a sequence of system calls executed in a given order. In

what follows, we assume that

A= {a1,a2, ... ,ar} (7.11)

is the set of all relevant activities observable from an app execution.

The execution flow of an app may follow different paths depending on the input

events provided by the user and the context. Let σ = 〈σ1, ... ,σk〉 be a sequence of

states as defined above. We model the behavior of an app when executed with σ as
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input as the sequence

β(σ) = 〈αi , ... ,α〉, αi ∈ A, (7.12)

which we will refer to as the behavioral signature induced by σ.

Behavioral signatures constitute dynamic execution traces generated with usage

and context patterns specific to one particular user. Analysis of such traces will be

instrumental in determining whether there is evidence of security and/or privacy risks

for that particular user. The specific mechanism used for that analysis is beyond the

scope of our current work. In general, we assume the existence of a Risk Assess-

ment Function (RAF) implementing such a analysis. For example, general malware

detection tools based on dynamic analysis could be a natural option here. The case

of grayware is considerably more challenging, as the user’s privacy preferences must

be factored in to resolve whether a behavior is safe or not.

7.3 Targeted Testing in the Cloud

In this section, we first describe the architecture and the prototype implementation

of a cloud-based testing system for targeted malware and grayware based on the

models discussed in the previous section. We then provide a detailed description

of various experimental results obtained in two key tasks in our system: obtaining

triggering models and using them to test a cloned device.

7.3.1 Architecture and Prototype Implementation

A high level architectural view of our system is shown in Figure 7.1. There are

two differentiated major blocks: (i) the evidence generation subsystem, and (ii) the
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Figure 7.1: System architecture and main building blocks.

behavioral modeling and risk assessment subsystem. The first one extracts usage and

context traces from the device and generates the stochastic triggering model. This

process is carried out by first cloning the user device into the cloud and then injecting

the triggering patterns over the clone. The second block extracts the behavioral

signatures from the clone(s) and applies the RAF over the evidences collected. We

next provide a detailed description of our current prototype implementation.

The experiments have been conducted over the laboratory described in Chapter 3.

Specifically, we instrumented both a physical device and a cloud-virtual device. We

inject events and contexts into apps and monitor the resulting behavior. We chose 20

relevant activities to characterize app behavior (see Table 7.1), which include infor-

mation about calls to the crypto API (cryptousage), I/O network and file activity

(opennet, sendnet, accessedfiles, etc.), phone and SMS activity (phonecalls,

sendsms), data exfiltration through the network (dataleak), and dynamic code in-

jection (dexclass), among others.

Finally, we implemented a simple yet powerful RAF (Risk Assessment Function)

for analyzing behavioral signatures. In essence, the scheme is based on a pattern-
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Activities
• sendsms • servicestart • phonecalls • udpConn • cryptousage
• sendnet • netbuffer • activities • dexclass • activityaction
• dataleak • enfperm • opennet • packages • permissions
• recvs • recvnet • recvsaction • fdaccess • accessedfiles

Table 7.1: Set of activities (A) monitored from an app execution and used to characterize its
behavior.

matching process driven by a user-specified set of rules that identify behaviors of

interest according to his security and privacy preferences. Such rules are first-order

predicates over the set of activities A, allowing the user to specify relatively com-

plex patterns relating possible activities in a signature through logical connectives.

Regardless of this particular RAF, our prototype supports the inclusion of standard

security tools such as, e.g., antivirus packages or other security monitoring compo-

nents. These can be easily uploaded to the clone and run while the testing carries

on.

7.3.2 Experiment I: The Structure of a Triggering Model

In this first experiment, we monitored all events triggered by a user executing several

apps on his device during a representative amount of time. The resulting event

set contained about |S | =8K states, distributed over various observations traces

of around |O| = 37K states. We then used such traces to estimate the transition

matrix using Eq. (7.8). The resulting Markov chain turned out to have various

interesting features. For example, its degree distribution follows a power-law of the

form P(k) = k−α (see Fig. 7.2) with α = 2.28 for k ≥ 2. This suggests that events

and contexts follow a scale-free network [Clauset et al., 2009], which is not surprising.

Recall that an edge between two nodes (events) indicates that the destination event
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Figure 7.2: (a) Markov model representing contextual and kernel input events for a user inter-
acting with an Android platform; (b) Degree distribution, in log-log scale, of the model in (a) as
defined in Section 7.2.2.

occurs after the source event.

A power-law distribution such as the one shown in Figure 7.2 reveals that most

events have an extremely low number of “neighbors”; i.e., once an event has happened,

the most likely ones coming next reduce to about 100 out of the 8K possible. Only

a small fraction of all events are highly connected, meaning that almost any other

event is possible to occur after them. For instance, in our traces we found that over

half of the states were only connected to just one state. In contrast, one state was

found to be connected to more than 4000 other states.

These results make sense due to the following reason: input and context events

do depend quite strongly on those issued immediately before. For example, the

probability of moving from one place to another nearby is much higher than to

a remote place. The same applies to sequences of events, where the probability

distribution of the next likely event reflects the way we interact with the app. As we
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will next see, this structure makes testing extremely efficient.

7.3.3 Experiment II: Speed of Testing

We performed a number of experiments to measure how fast input events can be

injected into an Android application sandbox. Such events include not only input

events, but also a variety of contexts’ traces comprising phone calls, SMS messages

and GPS locations. We studied the time taken by both the sandbox and the operating

system to process each injected event. Our results suggest that the time required to

process injected states (input or context events) varies depending on the type of state

(see Table 7.2). For instance, it takes around 0.35 seconds, on average, to inject

an SMS and process it trough the operating system. In contrast, geolocation events

can be injected almost 100 times faster. We also observed a significant difference

between the capabilities of the sandbox and the OS running on top of it. For instance,

while the sandbox is able to process about 2800 geolocation states per second, the

OS can only absorb around 100 each second. We suspect that this throughput might

be improved by using more efficient virtual frameworks, such as Qemu for Android

x862 or ARM-based hardware for the cloud.3

For comparison purposes, the lower rows in Table 7.2 show the average and peak

number of events generated by human users, both for usage (e.g., touch events) and

context events, as reported in previous works [Wei et al., 2012].

2http://www.android-x86.org/
3http://armservers.com/

http://www.android-x86.org/
http://armservers.com/
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Automatic Injection
Injected Event Emulator Layer App Layer
Sensor event 7407.66 events/s 1.26 events/s
Power event 361.77 events/s 19.16 events/s

Geolocation event 2810.15 events/s 111.87 events/s
SMS event 451.27 events/s 0.35 events/s

GSM call/cancel event 1726.91 events/s 0.71 events/s

Human Generated
Event Type Average Peak

Usage patterns 5 events/s 10 events/s
Context patterns 10 events/s 25 events/s

Table 7.2: Event injection rates for different types of events over a virtualized Android device
(top), and rates generated by real users based on profiling 67 apps [Wei et al., 2012] (bottom).

7.3.4 Experiment III: Coverage and Efficiency

We perform a number of experiments to evaluate the performance of our proposal.

We aim at measuring the time required to reach an accurate decision by means of sim-

ulation. More precisely, we simulate an injection system configured with an specific u

and g randomly generated and with different number of states |S |= 100,1000,10000.

The configuration of each experiment is based on the findings shown in previous

section as detailed bellow. First, we generated two types of Markov model chains: (i)

one random scale-free network of events using a preferential attachment mechanism

as defined by Barabási–Albert (BA) [Albert and Barabási, 2002], and (ii) another

random network with attachment mechanism as defined by Erdős-Rényi (ER) model

[Erdős and Rényi, 1960]. Then, we simulated a user providing inputs to a device

together with its context at a rate of 10 events per second. We chose this throughput

as it is a realistic injection rate (see Table 7.2).

In each experiment, we generate a number of random Markov chains and calcu-
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late the cumulative transition probability covered when traversing from one state to

another of the chain for the first time. Formally, let

rw = 〈si1,si2, ... ,sin〉, sij ∈ S (7.13)

be a random walk over the chain, with aij ij+1 > 0 ∀ij , and let

T (rw) = {(sij ,sij+1) | sij ∈ S \{sin}} (7.14)

be the set of all transitions made during the random walk. We define the coverage of

rw as the amount of transitions seen by rw , weighted by their respective probabilities

and normalized to add up to one, i.e.:

Coverage(rw) =
1
N ∑

(p,q)∈T (rw)

apq. (7.15)

The coverage is used to evaluate both the efficiency and the accuracy of our

system. On the one hand, it can be used to measure the amount of a user’s common

actions triggered given a limited period of testing time. Additionally, it also shows

how fast the system tests the most common actions. Results for sets of events of

various sizes are shown in Figure 7.3, where the curves have been averaged over 10

simulations. The results show that the coverage reached when testing networks of

sizes |S |= 100, 1000, and 4000 states is very satisfactory. Such a good performance

is related to the scale-free distribution of states through time. Thus, a coverage

above 80% is reached in less than two minutes for 100 states, and in approximately

1 hour for 4000 states.

It is important to emphasize that the coverage reported in Figure 7.3 corresponds
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Figure 7.3: Efficiency and accuracy of the decision for a Barabási-Albert and Erdős-Rényi network
model.

to one test sequence randomly drawn according to the user’s behavioral model. If the

process is repeated or carried out in parallel (e.g., over a clone), other test sequences

may well explore behaviors not covered by the first one. This is illustrated in Table

7.3, where we show the total testing coverage as a function of the number of clones

tested in parallel, each on with a different input sequence. Thus, after two hours

testing just one clone results in a coverage slightly above 84%. However, if five clones

are independently tested in parallel, the overall results is a coverage of around 93%

of the total user behavior. This time-memory trade-off is a nice property, allowing

to increase the coverage by just testing multiple clones simultaneously rather than

by performing multiple test over the same clone.

Reaching a 100% coverage is, in general, difficult due to the stochastic nature of

the models. This is not critical, as those behavioral patterns that are left unexplored

correspond to actions extremely unlikely to be executed by the user. In practical terms
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Number of parallel clones
1 2 3 4 5 6 7 8 9 10

10 min. 42% 60% 68% 73% 76% 79% 81% 81% 82.5% 83.4%
60 min. 79% 86% 89% 90% 90% 91% 91% 91% 91% 95%
120 min. 84% 87% 88% 88% 93% 93% 93% 93% 93% 93%

Table 7.3: Coverage given by our model when running multiple parallel clone given a limited
testing time for a network of |S |= 4000 states.

this is certainly a risk, but one relatively unimportant as the presumably uncovered

malware instance would not activate for this user except with very low probability.

7.4 Case Studies

In this section we present two case studies illustrating how the injection of user-

specific behavioral patterns can contribute to reveal malware with targeted activa-

tion mechanisms. We cover dormant and anti-analysis malware, as these scenarios

constitute representative cases of targeted behaviors in current smart devices [Suarez-

Tangil et al., 2014b]. For each case, we first provide a brief description of the rationale

behind the malware activation condition and then discuss the results obtained after

applying the injection strategy presented in this work. In all cases, the evaluation has

been conducted using the android remote access tool (RAT) described in Chapter 3.

More precisely, we have adapted Androrat [Bertrand et al., 2014] to incorporate the

specific triggering conditions.

7.4.1 Case 1: Dormant Malware/Grayware

Piggybacked malware [Zhou et al., 2013] is sometimes programmed to remain dor-

mant until an specific situation of interest presents itself [Zhou and Jiang, 2012].
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Wake-up conditions
User presence USB connected, screen-on action, accelerator changed, etc.

Location Location change event, near an address, leaving an area, etc.
Time A given day and time, after a certain period of time, etc.

Hardware Power and LED status, KEY action, LOCK event, etc.
Configuration Apps installed, a given contact/phone number in the agenda, etc.

Table 7.4: Typical wake-up conditions for malware activation.

This type of malware is eventually activated to sense if the user context is relevant

for the malware. If so, then some other malicious actions are executed. For instance,

a malware aiming at spying a very specific industrial system, such as the case of

Stuxnet, will remain dormant until the malware hits the target system. Similarly,

in a Bring-Your-Own-Device (BYOD) context, malware targeting a specific office

building can remain dormant until the device is near a certain location.

Typically, malicious apps are activated when the BOOT_COMPLETED event is trig-

gered regardless of the context of the infected device. A recent study on Android

malware [Zhou and Jiang, 2012] suggests that the tendency is shifting towards more

sophisticated activation triggers so as to better align with the malware incentives and

the pursued goals. This results in a variety of more complex activation conditions,

such as those shown in Table 7.4.

We instrumented Androrat to activate the RAT component only when the device

is in a certain location. We use a mock location near the Bushehr’s nuclear plant,

simulating a possible behavior for a Stuxnet-like malware. Specifically, the RAT is only

activated when the device is near the location: 28.82781◦ (latitude) and 50.89114◦

(longitude). Once the RAT is activated, we send the appropriate commands to

exfiltrate ambient and call recordings captured through the microphone, the camera,

and the camcorder.
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Figure 7.4: Markov chain for the location.

For testing purposes, we built a symbolic model representing the abstract geo-

graphic areas of a given user working at Bushehr’s plant. Figure 7.4 represents the

Markov Model chain for the different areas and the transitions between them. For

instance, the model represents a user traveling from HOME (xH) to WORK (xW )

with a probability of P(xH |xW ) = 0.7.

Given the above model, we then inject testing traces drawn from the chain into the

sandbox instrumented with Androrat. The sandbox is configured with a generic RAF

aiming at identifying when operations involving personal information occur together

with network activity. Results show how the malware is not activated until we start

injecting mock locations. A few seconds after the first injection, the behavioral

signature collected reported, as expected, both data leakage (dataleak) and network

activity (sendnet).

We next defined an alternative scenario in which an app accesses the user location

and sends an SMS to one of his contacts whenever he is leaving a certain region,

such as for instance WORK (xW ). To this end, we implement an app and tested

it against three users with different contexts and concerns about their privacy. The

first user has strict privacy policies and visits very frequently the location xW . The

second user has the same policy as the first one but has never visited such a location.
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Finally, the last user visits xW as well but has a more flexible privacy policy. For

the sake of simplicity, we use the same triggering model described in the previous

example for user one and three (see Figure 7.4), while the second user has a different

Markov chain. Results show that:

• For the first user, the behavioral signature reported data leakage activity (dataleak)

as well as SMS activity (sendsms). As both are in conflict with this user’s pri-

vacy preferences, this is marked as undesirable behavior.

• In the case of the second user, the model injects locations other than those

triggering the grayware component. Consequently, no significant behavioral

signature is produced.

• Finally, the events injected for the third user trigger the grayware component,

resulting in data leakage and SMS activity. However, as these do not oppose

his privacy preferences, no alert is issued.

This example reinforces the view that not only malware activation can be user

specific, but that the consequences of such a malware may also be perceived very

differently by each user.

7.4.2 Case 2: Anti-analysis Malware

Malware analysis is typically performed in a virtual sandbox rather than in a physical

device due to economic and efficiency factors [Suarez-Tangil et al., 2014b]. These

sandboxes often have a particular hardware configuration that can be leveraged by

malware instances to detect that they are being analyzed and deploy evasion counter-

measures [Rogers, 2014], for example by simply not executing the malicious payload
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HW feature Default value
IMEI 000000000000000
IMSI 012345678912345
SIM 012345678912345

Phone Number 1-555-521-PORT (5554)
Model Number sdk

Network Android
Battery Status AC on Charging 50%

IP Address 10.0.2.X

Table 7.5: Default hardware configuration for Android emulator.

if the environment matches a particular configuration. Sandboxes for smartphone

platforms have such artifacts. For instance, the IMEI, the phone number, or the IP

address are generally configured by default. Furthermore, other hardware features

such as the battery level are typically emulated and kept indefinitely at the same sta-

tus: e.g., AC on and Charging 50%. Table 7.5 summarizes some of these features

in most Android emulators along with their default value.

Hardware features such as those described above can be set prior to launching the

sandbox. This will prevent basic fingerprinting analysis, for example by setting random

values for each execution. However, smarter malware instances might implement

more sophisticated approaches, such as waiting for a triggering condition based on

a combination of hardware changes. Motivated by this, we modified Androrat to

activate the RAT component only after AC is off and the battery status is different

from 50%. Once the RAT is activated, we send appropriate commands to exfiltrate

some personal information from the device such as SMSs, call history, etc.

In principle, there are as many triggering conditions as combinations of possible

hardware events. Although our framework support injection of all possible hardware

events via the Android emulator console [Android, 2014], for simplicity we restricted



7.4. Case Studies 227

Status Health Present AC Capacity

unknown
charging
discharging
not-charging
full

unknown

0−100%

good
overheat false off
dead true on
overvoltage
failure

Table 7.6: Different hardware states for power status of the device.

Figure 7.5: Markov chain for the battery status.

our experimentation to the subset of power-related events described in Table 7.6.

Based on the different power states, we built a model of the battery usage ex-

tracted from an actual device when used by a real user. The resulting model is shown

in Figure 7.5. We then tested Androrat against this model generated using the same

RAF configuration used in previous cases. The results show that the behavioral signa-

ture not only reported dataleak and sendnet, but also file activity (accessedfiles),

thus confirming that the malware activated as it failed to recognize its presence in a

sandbox.
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7.5 Conclusions

The problem of detecting targeted malware via behavioral analysis requires the ability

to reproduce an appropriate set of conditions that will trigger the malicious behavior.

Determining those triggering conditions by exhaustively searching through all possible

states is an undecidable problem. In this chapter, we have proposed a novel system

for mining the behavior of apps in different user-specific usage scenarios and contexts.

Our experimental results show that modeling such patterns as Markov chains reduces

the complexity of the search space while still offering an effective representation of

the usage and context patterns.

Our approach represents a robust building block for thwarting targeted malware,

as it allows the analyst to automatically generate patterns of input events to stimulate

apps. As the focus of this chapter has been on the design of such a component, we

have relied on ad hoc replication and risk assessment components to discuss the

quality of our proposal. We are currently extending our system to support: (a) a

replication system to automatically generate and test clones of the device under

inspection; and (b) a general framework to specify risk assessment functions and

analyze behavioral signatures obtained in each clone. Finally, in this chapter we

have not discussed the potential privacy implications associated with obtaining user

behavioral models. Even if such profiles are just used for testing purposes, they do

contain sensitive information and must be handled with caution. This and other

related privacy aspects of targeted testing will be tackled in future work.
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8
Conclusions

Smart devices equipped with powerful sensing, computing, and networking capa-

bilities have increasingly become the platform of choice—mostly in the form of

smartphones and tablets— for many users, outselling the number of PCs worldwide.

The rapid development of smartphone technologies and its widespread user accep-

tance have come hand in hand with a similar increase in the number of malicious

software targeting such platforms. This increase is accompanied, in some cases, by

sophisticated techniques purposely designed to overcome security architectures and

detection mechanisms. This Thesis examines the problem of such smart malware

and addresses several fundamental issues when automating its analysis in large-scale

scenarios.

This Chapter provides the conclusions of this dissertation. We first summarize

the main contributions and discuss how they meet the objectives established. Next,

we identify and discuss a number of challenging open issues that should be tackled in

future work. Finally, we list various results (publications, software, etc.) that have

resulted from this Thesis.
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8.1 Contributions

We next summarize the contributions made in this work and discuss the main con-

clusions that arise from them:

1. The comprehensive analysis presented in Chapter 2 on the evolution of malware

in smart devices motivates the need for intelligent instruments to automate

their analysis. To do so, we have first provided an overview of the security

models and protection mechanisms present in current platforms for smart de-

vices. Next, we have proposed a characterization of malware in terms of three

key factors: pursued goals and associated behaviors; distribution and infection

channels; and privilege acquisition strategies. Our analysis of some represen-

tative samples demonstrates that malware is becoming increasingly complex

and adaptive, with constantly changing goals and using multiple distribution

and infection strategies. We have also provided an analysis of the 20 most

significant proposals for detecting and analyzing malware for smart devices

proposed between 2010 and 2014. First, we have identified and classified all

device features where malware behavior could manifest. This taxonomy has

been complemented with additional elements, such as where the monitoring

and analysis tasks take place, or the specific detection technique used. Then,

we have provided key elements for the design of novel techniques aiming at

detecting and analyzing smart malware. Finally, Chapter 3 presents the design

and development of a research lab for smart malware analysis and detection.

This lab compiles together—and extends—the most cutting-edge open source

tools for all static-, dynamic-, and cloud-based analysis. This lab facilitates

the automation of smart malware analysis, and we believe it will be extremely
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useful to other researchers aiming at automating malware analysis for smart

detection.

2. Static analysis is a relatively fast approach to identify malicious software. For

this reason, it has been widely used by existing techniques to search for suspi-

cious components. The techniques introduced in Chapter 4 demonstrate that

exploiting static features for mining structural patterns in smart malware is

extremely efficient. In particular, we have successfully applied a text mining

approach to automatically classify smartphone malware samples and analyze

families based on the code structures found in them. Our proposal is sup-

ported by a statistical analysis of the distribution of such structures over a

large dataset of real examples. Our findings point out that the problem bears

strong resemblances to some questions arising in automated text classification

and other information retrieval tasks. By adapting them to these domains, we

have explored the suitability of such techniques to measure similarity among

malware samples, and to classify unknown samples into known families. Our

results suggest that this technique is fast, scalable, and very accurate. Fur-

thermore, this technique also provides the analyst with a means to analyze the

relationships among families, the existence of common ancestors, the preva-

lence and/or extinction of certain code features, etc. Altogether, this reveals

that automated tools are instrumental for analysts to cope with the prolifera-

tion and increasing sophistication of malware.

3. Smart malware often relies on obfuscation techniques to avoid detection and

to make static analysis harder. Chapter 5 uses dynamic analysis to address this

type of malware and introduces a novel technique based on differential fault
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analysis to automate its identification in large-scale markets. Our approach

demonstrates how fault injection can be used to analyze the behavioral dif-

ferences between the original app and a number of automatically generated

versions of it where a number of modifications (faults) have been carefully in-

jected. Observable differences in terms of activities that appear or vanish in

the modified app are used to successfully identify potentially malicious compo-

nents hidden within an app package. Finally, we show how this approach is

a good complement to static analysis tools, more focused on inspecting code

components but which could well miss pieces of code hidden in data objects or

just obfuscated.

4. Adapting and adopting both static- and dynamic-based analysis tools to battery-

powered devices is a challenging problem. Relying on offloaded (i.e., cloud-

based) engines has been suggested an alternative for empowering constrained

devices with powerful detection capabilities. In Chapter 6, we have discussed

the power consumption trade-offs among various strategies for executing anomaly

detection components directly on mobile platforms or remotely in the cloud.

When researchers are confronted with this dilemma, we have shown that there

is actually little choice but to offload everything to the cloud. Reasons for

this include the differences between the energy efficiency of computation and

communications in current platforms, and also various parameters related to

the anomaly detection setting, such as the dataset sizes and the operation

frequency.

5. The consumption model previously proposed reveals that the use of detection

techniques built in the device is unaffordable. Chapter 7 shows that cloud-based
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approaches can be adopted to analyze targeted malware. Current dynamic-

based detection strategies are shown to be extremely inefficient when dealing

with this type of malware, as analysts must reproduce very specific activation

conditions to trigger malicious payloads. First, we position that determining

those triggering conditions by exhaustively searching through all possible states

is an undecidable problem. To this end, we have proposed a novel system based

on cloud cloning for mining the behavior of apps in different user-specific usage

scenarios and contexts. We have revealed that using a simple yet powerful

stochastic model reduces the complexity of the search space while still offering

an effective representation of the usage and context patterns of the targeted

device. Finally, we have provided the analyst with a robust system for auto-

matically detecting targeted malware. The main building blocks of this system

are: the evidence generation subsystem, and the behavioral modeling and risk

assessment subsystem. The first one extracts usage and context traces from

the device and generates the stochastic triggering model. The second block ex-

tracts the behavioral signatures from the clone(s) and applies a risk assessment

over the evidences collected.

8.2 Open Issues and Future Work

Malware in smart devices still pose many challenges and a number of important issues

need to be further studied and addressed with novel solutions. This section identifies

some open issues where research is needed.

• Cooperative security. In the near future it is very likely that many users will

own a network of smart devices, including smartphones, smart TVs and other
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home appliances, and wearable computing platforms. Such networks could

be leveraged to implement cooperative security functions, as a complement

to cloud-based and on-platform monitoring and analysis mechanisms. Ideally,

several connected devices could cooperate to improve security in a number of

ways. For example, resource-intensive tasks can be delegated to devices with a

permanent power source to preserve the battery of mobile platforms. Similarly,

mutually monitoring schemes could be interesting, where each device monitors

the behavior of others to detect compromise.

• Trusted software. In the case of current smartphones and tablets, trust on

the non-malicious nature of an app is based on two factors: (i) the implicit

assumption that the market operator has conducted some security review before

making the app available for download; and (ii) the identity of the developer,

given by the signature attached to the app, which also provides some evidence

of the app’s integrity. The first point is not fully reliable, as operators cannot

afford to carry out an exhaustive analysis over every submitted app; and, even if

they could, there is still some non-negligible probability of sophisticated malware

evading detection. As for the identify of the developer and the app’s integrity,

evidence suggests that most users do not pay much attention to them, or

positively ignore them when downloading apps from alternative markets.

We believe that further efforts to improve trust in software are required. This

will be increasingly necessary in the near future, as the number of developers—

and, hence, apps—will likely grow very significantly. Reputation systems [Viriya-

sitavat and Martin, 2012; Zacharia et al., 2000] adapted to this context might

offer some added value, in particular by exploiting interactions in large user

communities such as, for example, those provided by online social networks
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[Govindan and Mohapatra, 2012]. But other mechanisms for building trust

could also apply, such as for example remote attestation protocols [Nauman

et al., 2010; Saroiu and Wolman, 2010; Viriyasitavat and Martin, 2012] or any

other schemes to ensure the authenticity and integrity of software.

• Malware in other smart devices. The experience gained from current smart-

phones suggests that malware will also hit other smart devices as soon as they

appear. Evidence in other pervasive technologies already exists. For exam-

ple, nowadays Radio Frequency Identification (RFID) systems are used in a

wide range of applications, such as transport tickets, access control systems,

e-passports, e-health applications, etc. The benefits of adopting RFID technol-

ogy for identification purposes are clear, but its associated security risks need

to be addressed. One of them—often underestimated—is malware. The use

of Internet-enabled mobile devices as RFID readers makes this sort of attacks

potentially more harmful. Most previous works have focused on securing the

communication link between the tag and the (mobile) reader. There are, how-

ever, some preliminary works [Rieback et al., 2006; Yan et al., 2009] on RFID

malware, but further studies and solutions are required. Similarly, Implantable

Medical Devices (IMDs) and other medical devices will likely be an attractive

target for attackers due to the economic value of the information they can

provide [Burleson et al., 2012; Clark and Fu, 2012; Clark et al., 2013].

• Forensics-based analysis for smart device protection. Sometimes malicious

programs uninstall themselves after achieving their goals. However, analyzing

evidences that they leave behind could be used as an input for detecting future

propagation using the same infection vector. Identifying such traces is a great
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challenge, particularly due to the availability of anti-forensic tools for devices

such as smartphones [Distefano et al., 2010]. In this regard, two different

approaches might be worth exploring. On the one hand, deleting evidences

or attempting to neutralize any source of evidence usually produces fresh new

evidences. On the other hand, new paradigms such as the aforementioned

replicas in the cloud, allow the creation of novel forensic approaches on the

cloud based on virtual introspection.

• Offloaded security. Applications are increasingly requiring the user to autho-

rize the transference of personal information to the cloud as part of the normal

use of the application. For instance, WhatsApp sends the user’s address book

to establish friendship connections [WhatsApp, 2014]. However, even if the

user authorizes such a transference, it does not mean that it will be used for

purposes other than those conveyed to the user, such as for example market

research. In other cases, users are only informed that some personal informa-

tion will be sent, but the particulars about what specific items or how it will

be used are not given. Identifying misuse of personal information, both on-

platform and in the cloud, is a challenging problem that is typically tackled by

legal enforcement mechanisms, but technical approaches should be explored.

For instance, in the same way that Google App Engine [Google, 2014a] is used

to deploy in-the-cloud applications—monitored by Google—, back-end services

for smartphones and other smart devices could be moved to a cloud controlled

and monitored by a trusted third party. This could make feasible to monitor

behavior and enforce security policies in the cloud end of the service, thus

complementing other security mechanisms applied in the device.

Similar privacy-related problems arise in cloud-based monitoring schemes, pri-
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marily in those that maintain a virtualized replica of the device to carry out mon-

itoring tasks that are unaffordable to perform directly on the device. Privacy-

preserving monitoring systems for this scenario are required, but also more

lightweight monitoring and detection mechanisms that can run on platform

with an appropriate balance between efficacy and power consumption.

• Stegomalware: In the case of smart malware, one commonly observed tech-

nique consists of hiding modules containing malicious functionality in places

that static analysis tools overlook (e.g., within data objects). More sophisti-

cated hiding techniques, particularly in code, are starting to materialize. These

techniques and trends create an additional obstacle to malware analysts, who

see their task further complicated and have to ultimately rely on carefully con-

trolled dynamic analysis techniques, such as Alterdroid, to detect the presence

of potentially dangerous pieces of code. We believe that smart malware could

be using advanced techniques, such as steganography, for concealing their mod-

ules within another components of the code. This is specially critical when this

components are hidden within distinguishable components (see Alterdroid—

Chapter 5).

8.3 Results

All contributions resulting from this Thesis (see Section 1.3 in Chapter 1) have been

sent for publication to top ranked peer reviewed journals and international conferences

in the Computer Science area. Furthermore, software produced as a result of this

Thesis has been sent for copyright protection and made available for fair use1 to the

1Permits the use of a copyrighted work for nonprofit or educational purposes.
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research community.

This section reports all results published and/or submitted during this PhD, and

Table 8.1 presents a summary. The index used for evaluating the journals we aim at

this dissertation is the Impact Factor (I.F.) as defined by the Journal Citation Report

(JCR) from Thomson Reuters2. Similarly, the Computer Research and Education

ranking (CORE) from Computer Research & Education3 is used to evaluate the

conferences. These rankings are typically based on the acceptance ratio, number

of submissions, citations, and the position of the publication venue with respect to

others in the same category.

Publications Indexes Rank

Journals Published : 3 JCR Q1
Submitted : 2 JCR Q1/2

Conferences Published : 1 CORE A

Others Copyrighted : 4 – –

Total 10

Table 8.1: Summary of the publications of this Thesis and the citation indexes of their corre-
sponding publication venue.

8.3.1 Publications Thesis

We list all publications that arise from this Thesis organized by contribution:

2http://thomsonreuters.com/journal-citation-reports/
3www.core.edu.au/

http://thomsonreuters.com/journal-citation-reports/
www.core.edu.au/
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P1: “Evolution, Detection and Analysis of Malware for Smart Devices” .

• Authors: Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro Peris-

Lopez, and Arturo Ribagorda.

• In: IEEE Comms Surveys & Tutorials, vol. 16:2, pp. 961-987 (2014).

• I.F. (2012): 4.81.

• Position in category: 2/132 (Q1) in Computer Science.

P2: “Dendroid: A Text Mining Approach to Analyzing and Classifying

Code Structures in Android Malware Families” .

• Authors: Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro Peris-

Lopez, and Jorge Blasco.

• In: Expert Systems with Applications, vol. 41, pp. 1104-1117 (2014).

• I.F. (2012): 1.85.

• Position in category: 56/243 (Q1) in Engineering.

P3: “Thwarting Obfuscated Malware via Differential Fault Analysis” .

• Authors: Guillermo Suarez-Tangil, Flavio Lombardi, Juan E. Tapiador,

and Roberto Di Pietro.

• In: IEEE Computer, vol. 47:6, pp. 24-31 (2014).

• I.F. (2012): 1.68.

• Position in category: 9/50 (Q1) in Computer Science.
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P4: “Detecting Targeted Smartphone Malware with Behavior-

Triggering Stochastic Models” .

• Authors: Guillermo Suarez-Tangil, Mauro Conti, Juan E. Tapiador,

and Pedro Peris-Lopez.

• To: European Symposium On Research In Computer Security (ES-

ORICS), September 2014.

• Rank (2013): CORE A in Computer Software.

8.3.2 Submitted Publications

We list all works that arise from this Thesis submitted for consideration to be pub-

lished organized by contribution:

P5: “Alterdroid: Differential Fault Analysis of Obfuscated Malware

Behavior” .

• Authors: Guillermo Suarez-Tangil, Juan E. Tapiador, Flavio Lombardi,

and Roberto Di Pietro.

• To: IEEE Transactions on Mobile Computing, submitted September

2014.

• I.F. (2012): 2.91.

• Position in category: 12/135 (Q1) in Computer Science.
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P6: “Power-aware Anomaly Detection in Smartphones: An Analysis of

On-Platform versus Externalized Operation” .

• Authors: Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro Peris-

Lopez, and Sergio Pastrana.

• To: Pervasive and Mobile Computing, submitted February 2014.

• I.F. (2012): 1.63.

• Position in category: 27/172 (Q1) in Computer Science.



244 8. Conclusions

8.3.3 Copyright Software and Patents

We list the copyright software submissions resulting from this Thesis:

• Software Registration I: Alterdroid. This software compiles all source code

related to the following contribution: “Differential fault analysis of obfuscated

malware behavior ”.

• Software Registration II: CloneCloud. “A stochastic behavioral-triggering

model for targeted malware detection” requires a number of scripts to auto-

matically generate android apps equipped with a number of anomaly detection

algorithms.

• Software Registration III: CrowdDroid. This software comprises an Android

app for monitoring system calls from physical Android smartphones and an

Apache server app for collecting such information. This software has been

used to evaluate the anomaly detectors described in ‘A stochastic behavioral-

triggering model for targeted malware detection”.

• Software Registration IV: Maldroid Lab. This software compiles all source

code related to the following contribution: “A research lab of malware for

smart malware analysis and detection”. Additionally, it compiles software used

in:

– “A text mining approach for analyzing and classifying malware families”.

– “Power-aware anomaly detection in smartphones”.
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8.3.4 Research Visits

We finally list the research visits performed during this PhD:

• Università degli Studi di Padova: I visited Dr. Mauro Conti between Septem-

ber and October 2013. As a result of this visit, we have published the fol-

lowing contribution “Detecting Targeted Smartphone Malware with Behavior-

Triggering Stochastic Models” in ESORICS 2014. We are currently working on

extending our proposal.

• Università degli Studi di Roma Tre: I visited Dr. Roberto Di Pietro between

September and December 2012. Resulting from this visit, we have published

“Thwarting Obfuscated Malware via Differential Fault Analysis” in IEEE Com-

puter 2014, and submitted “Alterdroid: Differential Fault Analysis of Obfus-

cated Malware Behavior ” to an IEEE Transactions 2014. We are currently

working on other proposals.
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C All possible components of an app, page 136

O Set of all possible signature transformation operators (STOs), page 139

g Context of the user during the execution of an app, page 138

B Set of all possible events for all apps, page 210

D Dataset composed of feature vectors, page 178

Fi Set of apps belonging to the same family i , page 107

K Set of clusters, page 123

M Set of malware families, page 108

P ′ App resulting after the sequential application of fault injections over P (see also
Ψ(P )), page 140

X Set of all possible contexts, page 211
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C Set of Code Chunks (CCs), page 108
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r A cluster, page 123

Ri A given rule i matching a behavior, page 149



References 269

RD(app) Redundancy of a app app, page 107
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tgenFaultApp Time to generate a fault injected app, page 160

u Inputs provided by a user during the execution of an app, page 138

v Vector of features, page 115

vrs A feature vector between derived from r and s, page 123

wi ,j Measure of the relevance that the i-th term, mi , has in object dj , page 114

y Intercept with the y-axes of a given function, page 187

z Vector of features, page 120

A Transition matrix, page 211

app Malware sample represented by a sequence of code structure, page 106

M Markov chain, page 211

N Length of a given property, page 199

O Sequence of observed states, page 212

P An app seen as a collection of components, page 136

t Time taken to perform a task, page 160
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