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Abstract

Mental health care has become one of the major priorities in developed
countries, where the annual budgets assigned to mental health care reach
hundreds of billion of dollars. Due to lack of laboratory tests as objective
diagnostic criteria, there is not consensus among the psychiatrists either on
the diagnostic criteria or the treatments. As a consequence, there exists
an increasing interest in improving both the detection and treatment of
mental disorders. This thesis is an interdisciplinary work, in which we
study the causes behind suicide attempts and provide thorough analysis
of pathological and comorbidity patterns of mental disorders. The final goal
of this study is to help psychiatrists detect people with higher risk and guide
them to improve treatments. To this end, we apply latent feature modeling
to the National Epidemiologic Survey on Alcohol and Related Conditions
(NESARC), which collects information about the mental health of the U.S.
population. In order to avoid the model selection step needed to infer the
number of variables in the latent feature model, we make use of the Indian
Buffet Process (IBP) [27]. However, the discrete nature of the database does
not allow us to use the standard Gaussian observation model, and therefore,
we need to adapt the observation model to discrete random variables.

In a first step, we propose an IBP model for categorical observations,
which are the most common in the NESARC. We consider two likelihood
observation models: a multinomial-logit and a multinomial-probit model.
We derive efficient Monte-Carlo Markov chain (MCMC) inference algorithms
that resort to either the Laplace approximation or the expectation
propagation (EP) algorithm to compute the marginal likelihood. We also
derive a variational inference algorithm that provides a less expensive, in
terms of computational complexity, alternative to the samplers. Afterwards,
to account for all the available information about the subjects (that
includes also non categorical observations, such as age, incomes or education
level), we extend the IBP observation model to handle mixed continuous
(real-valued and positive real-valued) and discrete (categorical, ordinal
and count) observations. This model keeps the properties of conjugate
models and allows us to derive an inference algorithm that scales linearly
with the number of observations. Finally, we present the experimental
results obtained after applying the proposed models to the NESARC
database, studying both the hidden causes behind suicide attempts and
the pathological and comobidity patterns of mental disorders.
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Resumen

La salud mental se ha convertido en una de las principales prioridades
de los paises desarrollados, los cuales dedican anualmente cientos de miles
de millones de ddélares al cuidado de la misma. Debido a la falta de pruebas
de laboratorio como criterios objetivos para el didgnostico de los desérdenes
mentales, existe una falta de consenso tanto en los criterios de diagndstico
como en los tratamiento. Esta tesis es un trabajo interdisciplinario que tiene
como préposito encontrar las causas latentes detras de los intentos de suicidio
y proveer de un profundo andlisis sobre los patrones, tanto patoldgicos
como de comorbidad, de los desérdenes psiquidtricos. Como objetivo final
de este trabajo, prentendemos ayudar a los psiquidtras a detectar aquellas
personas con mayor riesgo de sufrir de desérdenes mentales, y guiarlos en
la cartegorizacién y los tratamientos para dichos desérdenes. Para ello,
aplicamos modelado de caracteristicas latentes a la base de datos NESARC
(National Epidemiologic Survey on Alcohol and Related Conditions), la cual
contiene informacién sobre la salud mental de una muestra representativa
de la poblacion estadounidense. Con el fin de evitar fijar la complejidad
del modelo a priori, recurrimos al Indian Buffet Process (IBP) [27]. Sin
embargo, debido a la naturaleza discreta de la base de datos, debemos
adaptar a observaciones discretas el modelo de observacién del IBP, que
normalmente asume verosmilitudes Gaussianas.

Inicialmente, adaptamos el modelo de observacion del IBP a datos
categoéricos, los mas comunes en la NESARC. Para ello, consideramos dos
funciones de verosimilitud (la multinomial-logit y la multinomial-probit) y
desarrollamos algoritmos de inferencia basados en muestreo (Monte-Carlo
Markov chain) los cuales recurren a la aproximaciéon de Laplace o al
algoritmo Ezxpectation Propagation para calcular la verosimilutud marginal.
Adicionalmente, derivamos un algoritmo variacional que presenta menor
complejidad que los algoritmos de muestreo. Después, con el fin de tener en
cuenta en nuestro analisis toda la informacién disponible en la base de datos
(que incluye otras variables no categdricas como la edad, los ingresos anuales
o el nivel de estudios), proponemos un modelo de observacién para el IBP
que permite manejar bases de datos heterogéneas. Este modelo mantiene las
propiedades de los modelos conjugados y permite derivar un algoritmo de
inferencia de complejidad lineal con el niimero de observaciones. Finalmente,
analizamos los resultados obtenidos al aplicar los modelos propuestos a la
base de datos NESARC, estudiando tanto las causas latentes del suicidio
como los patrones patolégicos y de comorbidad de los desérdenes mentales.
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Chapter 1

Introduction

1.1 Background and Motivation

Psychiatric disorders, characterized by sustained abnormal changes in mood,
thinking or behavior, contribute to disability in developed countries [5]. As
an example, approximately one out of four U.S. adults reported suffering
from mental disorders in 2004 [5], and according to the U.S. Agency for
Healthcare Research and Quality, the total cost of mental health care in the
U.S. in 2006 was $57.5 billion, which is equivalent to the cost of cancer care
[78]. In addition to this quantity, we also need to take into account the cost
of treatments for mental health and substance abuse which was estimated
in 2005 in $135 billion [50]. One might think that the situation of the U.S.
is exceptional but a similar obervation can be made about Europe, where
the total cost of mental health care reached almost $170 billion in 2005 [77].

Several studies have stated suicide as an outcome of psychiatric disorders,
finding that most of psychiatric disorders have an increased risk of suicide
[28]. According to the World Health Organization, almost one million people
commit suicide every year, which is more than the number of people that
die in homicides and war combined. In addition, 10 to 20 million people
attempt suicide [2]. As a consequence, attempt suicide prevention is one of
the top public health priorities in developed countries. The current strategies
for suicide prevention have focused mainly on the treatment of the suicidal
behaviors themselves [14], and also on both the detection and treatment
of mental disorders [81]. A high proportion of suicide attempters (82%)
suffered from comorbid mental disorders [80]. However, despite prevention
efforts including improvements in the treatment of depression, the lifetime
prevalence of suicide attempts in the U.S., where more than 34,000 suicides



occur and over 370,000 individuals are treated for self-inflicted injuries in
emergency rooms every year [1], has remained unchanged over the past
decade [38]. This suggests that there is a need to improve the understanding
of the risk factors for suicide attempts as well as the psychiatric disorders,
particularly in non-clinical population.

Although significant advances in neuroscience and genetics have been
made in recent years, psychiatric classification is still nowadays performed
according to diagnostic criteria based on clinical consensus. These diagnostic
criteria, standardised by the Diagnostic and Statistical Manual of Mental
Disorders (DSM), do not totally agree with findings emerging from clinical
neuroscience and genetics [32]. As a consequence, laboratory tests are not
used as objective diagnostic criteria, which is why the current classification
system is subject to the ongoing controversy [59]. Hence, in order to improve
the categorization of mental disorders, and also in order to advance in
research that connects neuroscience and genetics with mental health care, a
better understanding of pathological and comorbid patterns of psychiatric
disorders is essential.

Clinical experience and several studies suggest that the analysis
of co-occurring or comorbid psychiatric disorders may have etiologic
and treatment implications. As a consequence, in 2001/2002, the
National Institute on Alcohol Abuse and Alcoholism (NIAAA) conducted
the National Epidemiologic Survey on Alcohol and Related Conditions
(NESARC) with the objective of providing a better understanding of
comorbidity in psychiatry. The NESARC collects information about
the mental health of the U.S. population through nearly 3,000 questions
regarding, among others, their way of life, their medical conditions,
depression and other mental disorders. We provide further details on
the NESARC database below. The public availability of the NESARC
database has led to a battery of works that cover topics such as
comorbidity of psychiatric disorders with other drug use disorders, mood
and anxiety disorders, and personality disorders. These studies suggest that
understanding the underlying interrelationships among psychiatric disorders
can be useful to improve the diagnostic classification system and guide
treatment approaches for each disorder [7].

Due to the controversy around the diagnostic criteria of mental disorder
and the lack of objective diagnostic criteria, statistical analysis of psychiatric
data plays an important role in understanding mental disorders, as the
long joint history between psychiatry and statistics shows [60]. Hence,
initiatives such as NESARC appear as interesting and challenging chances
for applying machine learning and data mining techniques, which have



been successfully applied to diverse health care related problems such as
hypothesis generation [55], diseases evolution analysis [74], diagnosis [53] or
gene expression analysis [69)].

In this context, probabilistic modeling appears as a powerful framework
for modelling, visualising, and understanding these data sets. Probabilistic
modeling has been applied in many areas of computer science, including
machine learning, data mining, natural language processing, computer
vision, and image analysis [89] but, to the best of our knowledge, it has
not been applied to psychiatric data. Data in the real world almost always
involves uncertainty, which may come from noise in the measurements,
missing information, or from the fact that we only have a randomly sampled
subset from a larger population. Probabilistic models are an effective
approach for understanding such data, by incorporating our assumptions
and prior knowledge of the world. All these properties make probabilistic
modeling an ideal candidate to model and analyse psychiatric databases.

In this thesis, we aim at exploiting the properties of probabilistic
modeling to thoroughly analyze the hidden causes behind suicide attempts
and the pathological and comorbid patterns of psychiatric disorders. To this
end, we apply latent feature modeling to the data collected in the NESARC
with the aim of finding the latent or hidden variables that explain the data.
These latent variables can be understood as latent properties of the objects
being modeled that have not been directly observed, or as hidden causes
behind the observed data. In order to avoid the model selection step needed
to infer the number of variables in the latent feature model, we make use of
Bayesian nonparametric (BNP) tools, which allow an open-ended number
of degrees of freedom in a model [34]. Specifically, our starting point is the
Indian Buffet Process (IBP) [27], because it allows us to infer which latent
features influence the observations and how many features there are. An
overview on BNP models is provided in Chapter 2.

1.1.1 NESARC database

The NESARC was thought to determine the magnitude of alcohol use
disorders and their associated disabilities in the general population and in
subgroups of the population. Two waves of interviews have been conducted
for this survey (first wave in 2001-2002 and second wave in 2004-2005).
In the current work, we only use the data from the first wave, for which
43,093 people were selected to represent the non-institutionalized U.S.
population above 18 years old. This wave of data is currently available
at: hitp://aspe.hhs.gov/hsp/06/catalog-ai-an-na/nesarc.htm.

3



Through 2,991 entries, the NESARC collects data on the background
of participants, alcohol and other drug consumption and abuse, medicine
use, medical treatment, mental disorders, phobias, family history, etc. In
the extensive battery of questions, the survey also includes a question about
having attempted suicide as well as other related questions such as ‘felt like
wanted to die’ and ‘thought a lot about own death’. It mainly contains
yes-or-no questions and some multiple-choice answers. Furthermore, the
NESARC contains questions associated to the criteria set forth in the
American Psychiatric Associations DSM-IV for the following psychiatric
disorders:

e Five substance disorders: alcohol abuse, alcohol dependence, drug
abuse, drug dependence and nicotine dependence.

e Five mood disorders: major depressive disorder, bipolar I and bipolar
IT disorders, dysthymia, and hypomania.

e Four anxiety disorders: panic with and without agoraphobia, social
phobia, specific phobia, and generalized anxiety.

e Seven personality disorders: avoidant, dependent, obsessive
compulsive, paranoid, schizoid, histrionic, and antisocial disorders.

NESARC’s diagnostic classifications were based on the Alcohol Use Disorder
and Associated Disability Interview Schedule DSM-IV (AUDADIS-IV),
which is a semistructured diagnostic interview schedule designed for use
by lay interviewers.

1.2 Organization

This thesis is an interdisciplinary work in which we apply probabilistic
modeling to psychiatric data. As a consequence, we have structured this
thesis into a machine learning and a psychiatry part. Specifically, the first
part comprises the technical details corresponding to the machine learning
discipline and consists of Chapters 2 to 6; and the second part corresponds
to the psychiatric contributions of the thesis and includes Chapters 7 to 9.

In Chapter 2, we begin with an overview of Bayesian nonparametric
tools. Specifically, we revise the basic principles of Bayesian nonparametric
models, and review two of the most popular Bayesian nonparametric models:
the Dirichlet process (DP) and the Indian Buffet process (IBP).

In Chapter 3, we propose an IBP based model suited for psychiatric
data. To this end, we extend the IBP model in three ways. First, we adapt
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the observation model to account for categorical observations, which are the
most common data in NESARC database. In particular, we consider two
likelihood observation models for categorical observations: a multinomial-
logit and a multinomial-probit model. Then, we include a bias term in
the IBP model, i.e., a latent variable that is active for all the objects,
that helps us to model those people that do not suffer from any mental
disorder, allowing us to interpret latent variables as latent disorders or
hidden causes behind psychiatric disorders. Finally, since the disorders are
not thought to be on/off diagnostics but rather manifestations or indicators
of underlying continuous variables that represent predispositions to certain
types of psychopathology, we adapt the IBP model to allow real-valued latent
variables. In our model, if we interpret latent variables as latent disorders,
once a subject has a latent variable active, its value indicates the grade of
severity. We limit the latent variables to be between 0 and 1, which helps
to interpret the latent variable as a belief in the subject suffering.

In Chapter 4, we derive several inference algorithms for the IBP
model for categorical observations. First, we derive three Markov Chain
Monte Carlo (MCMC) based inference algorithms: two (approximate)
collapsed Gibbs samplers adapted for the two considered likelihood functions
under the IBP model with binary latent variables, and a Metropolis-
Hastings (MH) based algorithm to infer the real-valued latent variables.
Since both the multinomial-logit and the multinomial-probit functions lead
to nonconjugate likelihood models, we cannot analytically compute the
marginal likelihood. Instead, we derive a Laplace approximation and
an expectation propagation (EP) algorithm for approximately collapsing
some of the latent variables under, respectively, the multinomial-logit
and the multinomial-probit observation models. Second, we derive a
variational inference algorithm for the IBP model with the multinomial-logit
observation model. This algorithm presents lower computational complexity
than the Gibbs samplers, and therefore, allows us to deal with a larger
number of observations.

In Chapter 5, we extend the IBP observation model to handle mixed
continuous and discrete observations in order to account for all the
available information about the subjects (that includes also non categorical
observations, such as age, incomes or education level). In particular, the
proposed model is able to handle mixed real-valued, positive real-valued,
categorical, ordinal and count data. The model keeps the properties of
conjugate models, allowing us to derive an inference algorithm that scales
linearly with the number of observations.

In the second part of the thesis, we present the experimental results



obtained after applying the proposed models to the NESARC database.
In Chapter 6, we provide an analysis of the hidden causes behind suicide
attempts, showing that the proposed model is able to detect people that
have a higher risk of attempting suicide.

In Chapter 7, we provide an exhaustive analysis of the comorbid
patterns among the 20 psychiatric disorders in the NESARC database.
In this chapter, we further analyze how different aspects of the people
social background (such as marital status, incomes, etc.) affect to the
manifestation of the different disorders.

In Chapter 8, we focus on seven personality disorders, studying their
pathological and comobid patterns. This analysis includes an evaluation of
the diagnostic criteria used in the NESARC to diagnose the seven personality
disorders.

Finally, in Chapter 9, we provide a summary with the main contributions
and results in the thesis, and some future possible research lines.

1.3 Contributions

The main contributions of this thesis are two-fold. On the one hand, we have
the technical contribution concerning machine learning techniques. On the
other hand, we have the contributions of the thesis to the state-of-the-art in
psychiatry. The technical contributions include:

e An IBP based model (and several extensions) suited for categorical
data and the corresponding inference algorithm. Specifically, we derive
three MCMC based inference algorithms and a variational inference
algorithm.

e Extension of the IBP model to account for heterogeneous databases,
keeping the properties of conjugate models and allowing for efficient
and fast (linear complexity) inference.

Note that, although we only focus on psychiatric data, the proposed models
and related inference algorithms, are general enough to be applicable in
other frameworks suitable for categorical or heterogeneous databases. For
instance, the extension of the IBP model to account for heterogeneous
databases has proved to be successful in estimating missing data in several
databases [86].

We next discuss the contributions regarding psychiatry. As we shall show
in the second part of the thesis, we obtain not only results in agreement
with previous studies but also new insights in the suicide risk detection and
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comorbidity pattern analysis, that may help psychiatrists detect people with
higher risk and guide them to improve treatments. The main contributions
to the psychiatric discipline are summarized below:

e We devise a suicide risk detector that does not only find the hidden
causes of suicide attempts but also allows us to detect those subject
with higher risk of attempting suicide.

e We perform an exhaustive analysis of comorbidity patterns among 20
psychiatric disorders that allows us to detect those subjects with higher
level of suffering. This study also includes how different aspects of the
social background of the subjects, such as age and gender, show up in
the comorbidity patterns of psychiatric disorders.

e We perform an comprehensive study of both pathological and
comorbid patterns among seven personality disorders. This study
shows how the seven personality disorders are related among each
other, and provides a thorough analysis and evaluation of the criteria
used in the NESARC to diagnose these disorders.






Chapter 2

Brief Introduction to
Bayesian Nonparametrics

Bayesian nonparametric (BNP) models are being developed in the statistics
and machine-learning communities [57] to solve problems such as topic
modeling [8], image segmentation [79], speaker diarization [22], and gene-
expression modeling [40], among others. BNP models are useful to find out
the latent causes and structures behind data, and appear as an alternative
to model selection, which is one of the main concerns within the machine
learning community and is highly related to problems such as overfitting and
underfitting [57]. Examples of model selection include selecting the number
of clusters in a clustering problem [52], the number of latent variables in a
latent feature model [27], the number of hidden states in a hidden Markov
model [23] , or the number of levels in a network [9]. In BNPs, the model
complexity is allowed to grow with data size. The central idea behind BNPs
is the replacement of the classical finite-dimensional prior distribution with
a general stochastic process allowing for an open-ended number of degrees
of freedom in a model [35].

BNP are generative models that explain the observed data with a
potentially infinite number of parameters. For example, the Dirichlet
process (DP) [75] is a BNP prior to cluster data in which the number of
clusters is potentially unbounded while the Indian buffet process (IBP)
is a latent variable model in which the number of latent variables is
potentially unbounded [27]. Hierarchical Dirichlet processes (HDPs) allow,
for instance, describing infinite dimensional hidden Markov models (HMMs).
The inference process in BNPs jointly provides the model complexity, i.e.,
the number of components (e.g., the number of clusters and the cluster
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assignment for each data point), as well as parameters of the components
(e.g., cluster properties such as the mean and covariance in Gaussian mixture
models).

Although BNP models were proposed in the seventies [21], they have
not received full attention until fairly recently because of their high
computational complexity. The underlying stochastic process behind a BNP
model has an infinite number of dimensions that makes the computation
of the posterior distribution generally expensive. Recent years, developing
computationally feasible inference algorithms in BNPs has captured the
attention of the machine learning community (see, e.g., [18, 62, 58]) due
to the extreme increase of available data. Indeed, a full 90% of all the data
in the world has been generated over the last two years [70].

We find two main branches in BNP inference: Markov Chain Monte
Carlo (MCMC) based approaches (see, e.g., [18, 62, 27, 95, 87, 83] and the
references therein) and variational inference (see, e.g., [10, 36, 19, 58] and the
references therein). MCMC based algorithms consist of iteratively sampling
from (either sequentially or in blocks) the unknown variables, asymptotically
getting samples from the true posterior distribution. Among MCMC based
algorithms, Gibbs sampling appears as one of the most popular in BNPs due
to its simplicity and because, in its collapsed version, it allows integrating
out variables to accelerate the convergence of the MCMC [52, 27, 18].
Variational algorithms usually appear as faster methods than MCMC based
approaches, because they tackle the inference task as an optimization
problem. They approximate the intractable posterior distribution with a
tractable variational distribution by introducing additional independence
assumptions that ease the update of the variational parameters. These
parameters are typically optimized by minimizing the Kullback-Leibler
divergence between the true posterior and the variational distribution.
However, by searching only within a restricted class of distributions we
might lose some of the expressiveness of the model, leading typically to less
accurate results than the MCMC methods, which asymptotically sample
from the true posterior [94].

2.1 Dirichlet Process

The Dirichlet process (DP) is currently one of the most popular Bayesian
nonparametric models. The DP places a distribution over distributions, i.e.
each draw from a Dirichlet process is itself a distribution, and is called
Dirichlet process because it has Dirichlet distributed finite dimensional
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marginal distributions (refer to [21] for a formal definition of the DP).
DPs are used in a wide variety of applications of Bayesian analysis in both
statistics and machine learning. The simplest and most popular applications
include density estimation and clustering via mixture models [47, 20, 63].

We focus on the DP mixture model for clustering. In a clustering
problem, given a set of observation, we aim to divide them into disjoint
subsets or clusters. Hence, the main assumption in clustering is that each
observation x, belongs to a single cluster. Here, the nonparametric nature
of the Dirichlet process translates to mixture models with a countably
infinite number of components (or clusters). More formally, given a set
of N observations, {x1,...,Xy}, the DP mixture model assumes that each
observation x,, is independently drawn from a distribution F'(6,,), such that

xp ~ F(0,),
9n ~ G,
G ~ DP(a, Gy),

where DP(«, Gy) states for a DP with concentration parameter o and base
measure Gy. We revise below how to construct the function G, i.e., the
DP, but for the time being, let us remark that G is discrete and, therefore,
different 6,, (n € {1,..., N}) can take simultaneously the same value. Hence,
the model above can be seen as a mixture model where the observations x,,
with the same parameter 6,, belong to the same cluster. For instance, in
the simplest DP Gaussian mixture model in which we are only interested
in estimating the means of the clusters (being the covariance matrix, X,
known), the likelihood function F'(6,,) is assumed to be Gaussian with mean
0, and covariance matrix Y., where the means 6, are distributed as Gy
[63]. Hence, if we assume Go to a Gaussian distribution, we can explouit
the properties of conjugate models to derive fast and efficient inference
algorithms. However, the DP prior is general enough to accommodate for
any observation model and prior distribution over the parameters of these
models (although the inference of such models is another matter).

2.1.1 The Stick-Breaking Construction

The stick-breaking construction of the DP is an equivalent representation of
the DP prior, in which draws from a DP are composed of a weighted sum
of point masses [76]. Specifically, the stick-breaking construction of the DP
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is given by

v ~ Beta(l, a),

k
m = o [ [(1 =),
I=1

0 ~ G,
G=> mdp:.
k=1

This construction can be understood with a stick-breaking process, in which,
starting with a stick of length 1, at each iteration &k = 1,2,..., a piece of
length 7y, is broken off from current length of the stick (refer o Figure 2.1
for a graphical view). Due to its simplicity, the stick-breaking construction
of the DP allows for the development of simple inference algorithms [33].

1
L
17
1
e k=1
|7T2|
1 1 i
1 1 k=2
EN k=3

Figure 2.1: Illustration of the stick-breaking construction of the DP.

2.1.2 The CRP and Inference

There are several MCMC based algorithms to perform inference under a
DP mixture model, being Gibbs sampling approaches the most popular
[33, 52]. We summarize here, one of the simplest Gibbs sampling schemes
for inference in DP mixture models. For a better understanding of the
algorithm, we introduce the Chinese restaurant process (CRP), which
describes the marginal probabilities of the DP in terms of a random partition
obtained from a sequence of customers sitting at tables in a restaurant [6].
The CRP allows us to generate samples from a DP in a simple and direct
manner.

The CRP receives its name due to a culinary metaphor, in which we have
a Chinese restaurant with an infinite number of tables, each of which can
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allocate an infinite number of customers (see Figure 2.2). In this metaphor,
the first customer enters the restaurant and sits at the first table. The
second customer enters and decides either to sit with the first customer,
or at a new table. In general, the n-th customer either joins an already
occupied table k with probability proportional to the number of customers
already sitting there nyg, or sits at a new table with probability proportional
to a. This process defines a distribution on partitions and is analogous to
the stick-breaking construction of the DP detailed above.

Based on the CRP idea, we can perform inference in an infinite mixture
model by iteratively sampling as follows: For n =1,..., N, we assign data
point n to an existing cluster or table k with probability proportional to

"k (being nj the number of customers in table k), or we assign n to a new

a+n—1

cluster with probability proportional to ;—%—. For further details on Gibbs
sampling schemes in DP mix®@i BygdeRradfer to [33, 52]. Alternatively, a

variational inference scheme for the DP mixture model can be found in [10].
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is invariant to the ordering of the features and can be (geriv%d bty takinlg the
where my, is the number of objects currently assigned to class k, and Ky 1s the number of"classes foi
which my > 0. If all N objects are assigned to classes via this process, the probability of a partition
of objects ¢ is that given in Equation 5. The CRP3hus provides an intuitive means of specifying a
prior for infinite mixture models, as well as revealing that there is a simple sequential process by
which exchangeable class assignments can be generated.

2.4 Inference by Gibbs Sampling

Inference in an infinite mixture model is only slightly more complicated than inference in a mixture
model with a finite, fixed number of classes. The standard algorithm used for inference in infinite
mixture models is Gibbs sampling (Bush and MacEachern, 1996; Neal, 2000). Gibbs sampling

2. Pitman and Dubins, both statisticians at the University of California, Berkeley, were inspired by the apparently infinite
capacity of Chinese restaurants in San Francisco when they named the process.



limit of a properly defined distribution over N x K binary matrices as K
tends to infinity [27], similarly to the derivation of the Chinese restaurant
process as the limit of a Dirichlet-multinomial model [4]. However, given
a finite number of data points N, it ensures that the number of non-zero
columns, namely, K, is finite with probability one.

Let Z be a random N x K binary matrix distributed following an IBP,
ie., Z ~ IBP(«a), where « is the concentration parameter of the process,
which controls the number of non-zero columns K. The n-th row of Z,
denoted by z,, represents the vector of latent features of the n-th data point,
and every entry nk is denoted by z,;. Note that each element z,; € {0,1}
indicates whether the k-th feature contributes to the n-th data point. Since
only the K non-zero columns of Z contain the features of interest, and due
to the exchangeability property of the features under the IBP prior, they

are usually grouped in the left hand side of the matrix, as illustrated in
) P a9
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Figure 2.3: Illustration of an IBP matrix.

2.2.1 The Stick-Breaking Construction

The stick-breaking construction of the IBP is an equivalent representation
of the IBP prior, useful for inference algorithms other than Gibbs sampling,
such as slice sampling or variational inference algorithms [82, 19].

In this representation, the probability of each latent feature being active
is represented explicitly by a random variable. In particular, the probability
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of feature z,; taking value 1 is denoted by wy, that is,
Znk ~ Bernouilli(wy).

Since this probability does mnot depend on n, the stick-breaking
representation explicitly shows that the ordering of the data does not affect
the distribution.

The probabilities wy are, in turn, generated by first drawing a sequence
of independent random variables vy, vo, ... from a beta distribution of the
form

v ~ Beta(a, 1).

Given the sequence of variables v1,v2, ..., the probability w; is assigned to
v1, and each subsequent wy, is obtained as

k
W = Hvia
=1

resulting in a decreasing sequence of probabilities wy. Specifically, the
expected probability of feature z,; being active decreases exponentially
with the index k. The graphical model corresponding to the stick-breaking
construction of the IBP is shown in Figure 2.4.

O-+o-E

N
K

Figure 2.4: Graphical model of the stick-breaking construction of the IBP.

This construction can be understood with the stick-breaking process
illustrated in Figure 2.5. Starting with a stick of length 1, at each iteration
k=1,2,..., apiece is broken off at a point v relative to the current length
of the stick. The variable wy corresponds to the length of the stick just
broken off, and the other piece of the stick is discarded.

2.2.2 Inference

Markov Chain Monte Carlo (MCMC) methods have been broadly applied
to infer the latent structure Z from a given observation matrix X (see, e.g.,
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Figure 2.5: Tllustration of the stick-breaking construction of the IBP.

in [27, 95, 87, 83]), being Gibbs sampling the standard method of choice.
This algorithm iteratively samples the value of each element z,; given the
remaining variables, that is, it samples from

p(znk: = 1|X, Z—\nk’) X p(X|Z)p(znk‘ = 1|Z—‘nk)’ (2'1)

where Z_,; denotes all the entries of Z other than z,;. The conditional
distribution p(z,x = 1|Z-,k) can be readily derived from the exchangeable
IBP and can be written as

Plonk = 1/Zoos) = 2,

where m-,, ;. is the number of data points with feature £, not including n,
ie, mopr = Z#n zik- For each data point n, after having sampled all
elements z, for the K| non-zero columns in Z, the algorithm samples from
a distribution (where the prior is a Poisson distribution with mean o/N) a
number of new features necessary to explain that data point.

Although MCMC methods perform exact inference, they typically suffer
from high computational complexity. To solve this limitation, variational
inference algorithms can be applied instead at a lower computational cost,
at the expense of performing approximate inference [36]. A variational
inference algorithm for the IBP under the standard Gaussian observation
model is presented by [19]. This algorithm makes use of the stick breaking
construction of the IBP, summarized above.
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Chapter 3

IBP for Categorical
Observations

Asintroduced in Chapter 1, the main goal of this work is to find and interpret
the latent patterns behind psychiatric disorders. In this chapter, we propose
to model the subjects in the NESARC database using a BNP latent model
that allows us to seek hidden causes and compact in a few features the
immense redundant information. Our starting point is the IBP [27], because
it allows us to infer which latent features influence the observations and how
many features there are. As the NESARC database mostly contains yes-
or-no questions and some multiple-choice answers, we need an observation
model suited for categorical observations. We propose two observation
models: a multinomial-logit and a multinomial-probit likelihood model.

Additionally, we extend the IBP model motivated by the specific
application of modeling the latent factors behind psychiatric disorders. We
extend the IBP model in two ways. First, we add a bias term, which plays
the role of a latent variable that is always active. For a discrete observation
space, if we do not have a bias term and all latent variables are inactive,
the model assumes that all the outcomes are independent and equally likely,
which is not a suitable assumption in psychiatry. Second, we consider the
latent variables to be bounded real values, instead of on-off latent features.
Once a subject activates a latent variable, its value indicates the grade of
influence of the latent feature on this subject. Hence, if we interpret a latent
feature as a latent disorder, its value indicates the severity of suffering.
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3.1 Model Description

Let us assume N objects, where each object is defined by D attributes.
We can store the data in an N x D observation matrix X, in which each
D-dimensional row vector is denoted by x, = [z,..., 2] and each entry
is denoted by z%¢. Let us also denote each N-dimensional column vector
in X by x?. Here, unlike the standard Gaussian observation model, we
consider categorical observations, i.e., xfl takes values in a finite unordered
set {1,...,Rq}, e.g., z¢ € {‘blue’, ‘red’, ‘black’}. For simplicity and without
loss of generality, we assume the same number of categories R in all the
dimensions of X, i.e., Ry = R. Nevertheless, the following results can be
readily extended to a different cardinality per input dimension.

We assume that each observation z? can be explained by a K-length
vector of binary latent variables z, = [zn1,...,2,k] and the associated
factors b¢_for r € {1,..., R} that weight the contribution of the k-th latent
variable to the observation z%¢. Note that we have a weighting factor bgr
for each possible value of the observation 2¢ € {1,...,R}. We gather
the weighting factors associated to the d-th dimension of X, i.e., bgr for
d=1,...,D, in a K x R weighting matrix B? (being K the number of
latent variables). Similarly, we gather the latent binary feature vectors z,
in an N x K matrix Z, which follows an IBP with concentration parameter
a, i.e., Z ~ IBP(«) [27]. We place a Gaussian distribution with zero mean
and variance a%; over the weighting factors bgr. The resulting model is shown

in Figure 3.1.

&

d=1,...,D

Figure 3.1: Simplest IBP model for Categorical Observation.

For a categorical observation space, the latent model in Figure 3.1
assumes that the observations for an object with no active latent features are
independent and equally likely. However, this property does not sound as
an appealing outcome when dealing with categorical observations in general,
and more so in psychiatry, where only a small fraction of the population
suffers from a psychiatric disorder. To solve this limitation, we extend
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the model in Figure 3.1 by adding a bias term, which plays the role of a
latent feature that is always active and is needed to model the behavior
of the objects without any active latent feature. In our application, we
make use of the bias term to model the general population that does not
suffer from any latent disorder, which allows us to directly interpret the
active latent variables as latent features describing disorders. The extended
model including the bias term is shown in Figure 3.2 where, similarly to
the weighting matrices, we place a Gaussian prior over the bias terms
bd, ~ N(bd|0,0%). The bias terms b3, are grouped in the K-length vectors
bg. Note that we can simplify the notation in Figure 3.2 by assuming an
extended latent feature matrix Z of size N x (K + 1), in which the elements
of the first column are equal to one, and D extended weighting matrices B¢
of size (K + 1) x R, in which the first row equals the vector bg.

d=1,....D

0123<

Figure 3.2: IBP model for Categorical observations with bias.

Additionally, we should take into account that in psychiatry the disorders
are not thought to be on/off diagnostics, but rather manifestations or
indicators of underlying continuous variables that represent predispositions
to certain types of psychopathology. Hence, instead of on/off latent features,
we extend the IBP model to allow real-valued latent variables. Under this
extended model, shown in Figure 3.3, once a subject has a latent variable (or
latent disorder) active, its value indicates the severity with what the subject
suffers from it. We limit the latent variables to be between 0 and 1, which
also helps to interpret the latent variable as a belief in the subject suffering
a latent disorder. In particular, we propose an N x K severity matrix W,
where each element w,; € [0, 1] represents how much the n-th observation
is influenced by the k-th latent feature. Similarly to [41], we propose a spike
and slab prior for the severity factors to readily account for the subjects that
do not suffer from the disorder (spike component), and that allows assigning
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a degree of severity for an active latent feature (slab component), i.e.,

P(wnk‘%, Y2, an) = (1 - an)a(wnk) + anBeta(wnk"Yla ’72)a (31)

where §(-) is the Kronecker delta function, and 7 and ~, are hyper-
parameters of the model that describe the beta distribution.  The
combination of the IBP with continuous latent variables has been previously
proposed in [41] for a BNP independent component analysis (ICA). In this
model, the prior for the latent continuous variables and the IBP matrix are
conjugated with a Gaussian likelihood, which significantly differs from our
proposal.

Y1, 72

8

d=1,....D

Figure 3.3: Full latent feature model for categorical observations with real-
valued latent features.

We assume that the observations z¢ are independent given the severity

matrix W, the weighting matrices B? and the vectors bg. Therefore, the
likelihood can be factorized as

N D
p(X[W,B',...,B”,by,....bJ) = [[ [ p(zf|wn, B, BG).  (32)
n=1d=1

We consider two different likelihood models, a multinomial-logit and a
multinomial-probit model. FEach of them allows us to derive different
inference algorithms, detailed in Chapter 4. There are several alternatives
to model categorical observations given the hidden latent features, such
as a Dirichlet distribution. However, we prefer the multinomial-logit and
the multinomial-probit distributions because, as in the standard Gaussian
observation model, the probability distribution of the observations depends
on the IBP matrix weighted by some factors, resulting in versatile and
flexible likelihood models.
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Multinomial-Logit Model. Under the multinomial-logit model the
probability of each element l‘,,dl taking value r € {1,..., R} is given by

exp (Wnbf, + b))
R )
Z exp (Wb, + b2 )

r'=1

p(ﬂﬁg = T’|Wn,Bd, bg) =

(3.3)

where b corresponds to the r-th column vector of B?, ie., bl =
[b¢.,...,0% ]7. The multinomial-logit model allows the implementation of
an efficient Gibbs sampler when the Laplace approximation [48] is used to
integrate out the weighting factors and can be efficiently computed using
the Matrix Inversion Lemma.

Multinomial-Probit Model. Under the multinomial-probit model, the
probability of each element z¢ taking value r € {1,..., R} can be written
as

p($Z|Wm Bd’ bg) = IEp(u)

R
11 ‘1)<U + (B0 — b,) + Wi (D%g — b%«))] :

r=
r#£T

sar-

(3.4)

where w,, stands for the n-th row of matrix W, the auxiliary variable u is
distributed as p(u) = N (u[0,1), Ey[-] denotes expectation with respect to
the distribution p(u), and ®(-) denotes the cumulative density function of the
standard normal distribution. We use a multivariate cumulative Gaussian
likelihood because it is amenable for an EP inference algorithm [26].
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Chapter 4

Inference

In this chapter, we derive several algorithms for inferring the latent variables
of the models proposed in Chapter 3. First, we focus on the derivation of
MCMC based algorithms for the proposed models. Afterwards, we derive a
variational inference algorithm for the IBP model fo categorical observations
under the multinomial-logit likelihood function.

4.1 MCMC based Inference

We first focus on the simplest model in Figure 3.1, where the unknown
variables are the latent matrices Z and {B?}2_ . We remark that the bias
term can be directly incorporated into the binary latent matrix Z and the
weighting matrix B?, such that the extended Z stands for the N x (K + 1)
matrix [1 Z] (being 1 a N-length vector whose elements are equal to one),
and the extended B¢ stands for the (K + 1) x D matrix [(bd)" (B4)]T.

In Section 2.2, we briefly reviewed the collapsed Gibbs sampling
algorithm for posterior inference over the latent variables of the IBP. This
algorithm samples from

P(enk = 1X, Zpi) o< p(X[Z)p(2nk = 1Z-nk), (4.1)

where the marginal likelihood p(X|Z) is obtained after integrating out the
matrices B? in

N D
p(X|Z,B!,...,B") = HH |z, B%). (4.2)

In the standard Gaussian observation model of the IBP [27], this
marginalization can be performed analytically. However, under both the
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multinomial-logit and the multinomial-probit models, the marginalization
with respect to B? is intractable. To solve this limitation, we derive two
different algorithms to approximately integrate out the matrices B?. First,
we resort to the Laplace approximation which is suitable for the multinomial-
logit model and, then, we derive an Expectation Propagation (EP) algorithm
which is suitable for the multinomial-probit model. Note that, although
we could also sample from the full join posterior distribution, the high
dimensionality of our parameter space causes strong dependences among
hyper-parameters and latent variables, resulting in a slow mixing of the
chains that requires thousands of posterior draws [64].

The rest of the chapter is organized as follows. First, we provide
the details on the derivation of the Laplace and EP approximations in
Sections 4.1.1 and 4.1.2, respectively. Afterwards, in Section 4.1.2, we
also derive an inference algorithm based on the Metropolis-Hastings (MH)
algorithm to jointly sample from the latent features z,; and the severity
factors wyy in the full model in Figure 3.3. Finally, in order to evaluate
the performance of the Laplace and the EP approximations, we provide a
comparison of both approximations on two toy examples in Section 4.1.4.

4.1.1 Laplace Approximation

In this section, we consider the multinomial-logit model in which the
probability of each element z¢ taking value r € {1,..., R} is given by

exp (znbffn)
Z exp (z,b%,)
r’'=1

Recall that our model assumes independence among the observations
given the hidden latent variables. Then, the posterior p(B!,..., BP|X, Z)
factorizes as

¢ = p(l’z = r|zn,Bd) =

(4.3)

D d d
p(x?|B?, Z)p(B)
p(B',....B”|X,Z) = [[ p(Bx", Z) = | | xd|z . (44)
d=1

Hence, we only need to deal with each term p(B?|x%, Z) individually.
The marginal likelihood p(x?|Z), which we are interested in, can be
obtained as

p(x%|Z) = / p(xB, Z)p(B4)dB. (4.5)
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Although the prior p(B?) is Gaussian, due to the non-conjugacy with the
likelihood term, the computation of this integral, as well as the computation
of the posterior p(B%|x¢, Z), turns out to be intractable.

Following a similar procedure as in Gaussian processes for multiclass
classification [93], we approximate the posterior p(B¢|x%, Z) as a Gaussian
distribution using Laplace’s method. In order to obtain the parameters
of the Gaussian distribution, we define f(B?) as the un-normalized log-
posterior of p(B?|x?¢, Z), i.e.,

f(BY) =1log p(x?B?, Z) + log p(BY). (4.6)

As proven in Appendix A, the function f(BY) is a strictly concave
function of B? and therefore it has a unique maximum, which is reached
at B¢, p, denoted by the subscript ‘MAP’ (mazimum a posteriori) because
it coincides with the mean of the Gaussian distribution in the Laplace
approximation. We resort to Newton’s method to compute Bﬁ/[ AP

Let us stack the columns of B¢ into 8%, i.e., 3¢ = B%(:) for avid Matlab
users. The posterior p(B?|x%, Z) can be approximated as

p(87x",2) ~ N (8 |Bliaps (~VV)lgg,,, )

where VVf is the Hessian of f(8%). Hence, by taking the second-order
Taylor series expansion of f(3%) around its maximum, the computation of
the marginal likelihood in (4.5) results in a Gaussian integral, whose solution
can be expressed as

1
log p(x"|2) ~ =5 trace { (Bliap) ' Biiap } + log p(x’ Bz, 2)

B
1 N
. ~d ~d\T ~
— 5108 |Tngesn) + 0% > (diag(h) — (7)7) @ (220
n=1
(4.7)
where ?rz is the vector ﬂ'fl = [ﬂ'gl,ﬂ'g% . ,WZR] evaluated at B? = Bﬁ/IAP,

and diag(®%) is a diagonal matrix with the values of &% as its diagonal
elements. Details of the computation of the Hessian and the gradient of
function f are provided in Appendix A.

Similarly as in [27], it is straightforward to prove that the limit of Eq. 4.7
is well-defined if Z has an unbounded number of columns, that is, as K — oo.
The resulting expression for the marginal likelihood p(x%|Z) can be readily
obtained from Eq. 4.7 by replacing K by K, Z by the submatrix containing
only the non-zero columns of Z, and Bf\l/I Ap Dy the submatrix containing the
K corresponding rows.
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Speeding Up the Matrix Inversion

In this section, we propose a method that reduces the complexity of
computing the inverse of the Hessian for Newton’s method (as well as its
determinant) from O(R3K?3 + NR?K?) to O(RK? + NR?K?), effectively
accelerating the inference procedure for large values of R.

Let us denote with Z the matrix that contains only the K + 1 non-zero
columns of the extended IBP matrix that account for the bias terms. The
inverse of the Hessian for Newton’s method, as well as its determinant in
(4.7), can be efficiently carried out if we rearrange the inverse of VV f as
follows:

N -1
(-VVf)l= (D — Zvn@) :
n=1

where v, = (m)" ® z] and D is a block-diagonal matrix, in which each
diagonal submatrix is given by

1 .
D, = UTIKFH + 7" diag (7)) Z, (4.8)
B
with 7l = [ ... ,Wj‘{,r ]T. Since v,v,! is a rank-one matrix, we can

apply the Woodbury identity [97] N times to invert the matrix —VVf,
similar to the RLS (Recursive Least Squares) updates [30]. At each iteration
n=1,...,N, we compute

. (D(n—l))—lvnVT(D(n—l))—l

-1
(n)y—1 _ (n—1) T _ (n—1)\— n
(D ) (D ann) (D ) + 1— VT—IL—(D(n—l))—lvn

(4.9)
For the first iteration, we define D) as the block-diagonal matrix D,
whose inverse matrix involves computing the R matrix inversions of size
(K41 +1) x (K4 +1) of the matrices in (4.8), which can be efficiently solved
applying the Matrix Inversion Lemma. After N iterations of (4.9), it turns
out that (—~VVf)~! = (D)1,
For the determinant in (4.7), similar recursions can be applied using
the Matrix Determinant Lemma [29], which states that |[D + vu'| =
(14 v Du)|D|, and [DO| = [[Z, |D, .

4.1.2 Nested EP

In this section, we adapt the nested EP algorithm introduced in [64] to
approximate the marginal likelihood p(X|Z). To this end, we assume the
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multinomial-logit model, being the probability of each observation given by

H <I><u+zn bd))] (4.10)
r;ém

where the auxiliary variable u is Gaussian distributed with zero mean and
unit variance. Similarly to the multinomial-logit model, the computation
of the marginal likelihood, p(x?|Z) = [ p(B%)p(x?¢|Z, Bd)dBd is again
intractable, because the prior and hkehhood are not conjugate. Instead,
we run D parallel nested EP algorithms to compute p(x?|Z), being the
marginal likelihood p(X|Z) the product of the individual terms p(x?|Z) for
d=1,...,D. In the description of the nested EP algorithm, we do not
make explicit the dependence on d, unless necessary, to avoid cluttering of
notation.

Besides the EP approximation, we could also approximate this posterior
using multi-dimensional quadratures [73] or, as before, using the Laplace
approximation [26]. We choose the nested EP algorithm, because EP
approaches are typically more accurate than the Laplace approximation
and computationally less demanding than numerical quadratures [64]. The
proposed nested EP consists of two loops, which are described below and
summarized in Algorithms 1 and 2. We show in Section 4.1.2 that the
complexity of the nested EP is linear in the number of observations. In
addition, a heuristic comparison of the performance on two Toy examples
of both the Laplace approximation (in Section 4.1.1) and the nested EP
approximation is provided in Section 4.1.4. This section also provides a
comparison, in terms of flexibility and expressiveness, of the models with
both binary latent features and (bounded) real-valued latent variables.

For convenience, we stack the columns of B? into the vector 8%. Note
that, given Z, we only need to account for the parameters corresponding
to the Ky + 1 active features. To obtain the marginal likelihood, we need
to approximate the posterior p(8%x%, Z) with a tractable distribution. The
likelihood p(x?|Z, B%) contains a product of non-conjugate terms (sites) [72],
denoted by t4(8%) = p(x?|Z, 3%), and hence the posterior can be expressed
as

( |Zn, Bd p(u

N
N(B%0,031) ] t4(8%

di,.d _ n=1
p(BIx",Z) = T . (4.11)

The EP approximation consists on replacing each site t¢(8%) with a
tractable term t4(39), resulting in an approximate distribution that we
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denote by grp(8?). We choose t% (,Bd) to be an unnormalized Gaussian
with the R(Ky + 1) x 1 vector A, and the R(K; + 1) x R(K; + 1)
matrix H as natural parameters, and scaling constant Zn, ie., td (,Bd) =

ZnN(ﬁd|Hn A, IT, ), yielding

qer(B%) = (BdlﬂgéAEp, Ell>)
N(B%0,031) HZN e, 0,

n=1

ZEP

where Agp and Ilgp are the natural parameters of the Gaussian distribution
qu(ﬁd). We choose Z following [71] in order for Zgp to become a good
approximation of the marginal likelihood p(x?|Z).

The EP algorithm chooses the parameters A,, and H by matching the
moments of p(8%x%, Z) and ¢gp(B?), which is equivalent to minimizing the
Kullback-Leibler divergence Dy, (p(8%x%, Z)||qep(8%)). This minimization
is solved iteratively for n = 1,...,N [51, 72, 54] (repeating until
convergence) as follows:

(i) Define the cavity distribution g—,(8%) o gep(8%)/t4(8%), in which we
have removed one approximate site. The natural parameters of the
cavity distribution are Il-,, = IIgp — II,, and A—;, = Agp — A\,.

(ii) Define the tilted distribution 5, (8%) o« ¢-n(89)t%(B8%) (which includes
the true site), and minimize Dxr,(P,(8%)||gep(8%)) with respect to

qep (89).
(iii) Update the approximate site as t%(8%) o qup(8%)/¢-n(89).

The standard EP algorithm solves Step (ii) by matching the moments
between p,(8%) and ¢gp(B?), which is assumed to be tractable. However, in
this case, matching these moments is not tractable and we resort to another
EP loop, i.e., the inner loop, and hence the name of the algorithm. The
inner loop of the nested EP, summarized in Algorithm 2 and detailed in
Appendix B, approximates the tilted distribution

Pn(BY) = = q-n(BHLL(B?) (4.13)

N

by a Gaussian distribution with natural parameters Xn and ﬁn, which is
similar to the EP algorithm resulting from a linear binary classifier with a
multivariate Gaussian prior and a probit likelihood function in the Gaussian
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process setting [61]. Now Step (iii) follows readily, since we can obtain the
new natural parameters for the approximate site t%(3%) as ﬁzew =T1I,-TI,
and ;\Zew = Xn — A-pn. A damping factor of no can be used in this step for
numerical stability.

The site parameters fﬁ(ﬁd) can be updated in parallel for all n,
recomputing the parameters of the posterior approximation qu(ﬁd) only
once per iteration of the outer loop [16, 72]. The approximate posterior
parameters are Ilgp = él + Zgzl I, and Agp = 22;1 X, After

convergence, the marginal likelihood p(xd|Z) can be approximated following
[71].  Specifically, the approximate marginal likelihood p(x?|Z) can be
computed as

log p(x’|Z) ~ log Zgp
N
1 KR 1oy _ (414
= —5 log [Hgp| — —~log oh+ §>\1T:PHE%>>\EP + ) log Z,

n=1

where
~ ~ 1 1 ~ ~ ~
log Z, = log Z,, + 5AITLH:}LAW — 5 + An) (T, 4+ I1,) YA, 4+ Ap)

1 ~ 1
+ 5 log |H—|n + Hn| - § log |H—|n|
(4.15)

Computational complexity

Although the nested EP is similar to the proposed algorithm in [64], the
computational complexity is substantially different. The running time of
the nested EP for our model is linear in the number of instances (N), while
for the Gaussian processes for multiclass classification the computational
complexity is cubic. The nested EP for our algorithm needs to integrate out
B%, which is an R(K, + 1)-dimensional vector. Note that the outer loop
of the proposed nested EP requires one loop in n and, since all the sites
t4(B%) are functions of the same R(K, + 1)-dimensional random vector 3%,
no matrix inversion is needed when we work with the natural parameters of
the normal distributions. Each iteration of the inner loop, however, requires
the inversion of a matrix of size R(K4+ + 1)+ 1 (in practice computed using
the Cholesky decomposition), which has a complexity of O((R(Ky+ + 1) +
1)3). The overall complexity of the posterior approximation scales with
DN(R(K; + 1) + 1)3, because we iterate through the number of samples
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Algorithm 1 Outer loop of the nested EP algorithm.

Input: x?, Z, 0% (optionally initial site parameters ﬁ;m, X;m, aini, N%T)

Output: p(x?|Z), Mgp, Agp (optionally site parameters I, A,, Qnr,

Bnr) . .

initialize IL,, < H;m, Ap — )\::j forn=1,...,N _
initialize Igp «— él + 3N T, App — NN,
repeat

for n=1,...,N (in parallel) do
cavity evaluations: I, « Igp — I,
Aop — AEP — Ay
tilted moments: ~
[f[n, An, Zn, {anr, Bnr}] < inner_loop
(xmh Wn, ];:-[—‘n? A i&%}7 - ) -
site updates: II,, < no(IL, — 1) + (1 — 7o)y,
>\n — TIO(An - Aﬂn) + (1 - TIO)An
end for B B
update Tlgp — él + 3N ML, Amp — YA,
until stopping criterion
for n=1,..., N (in parallel) do
compute log Z,, from (4.15).
end for
compute log p(x?|Z) from (4.14)

N and the dimensionality of the observation vector D. Evaluating the
likelihood after convergence of the outer loop requires operations of matrices
of size RK within a loop in n, which leads to a complexity scaling with
N(R(K,+1))3. Thus, the overall complexity of the full nested EP algorithm
to evaluate the marginal likelihood p(X|Z) is O(DN(R(K, +1)+1)3). The
EP procedure can be parallelized in the dimension of the observed instances
(D) and in the number of instances N, providing significant savings in
runtime complexity.

Furthermore, the site parameters of the inner loop can be stored after
each inner EP run and used as starting parameters the next time the inner
loop is called [64]. In addition, successive calls to the nested EP algorithm
differ in just one element of wy,, which allows reducing the number of outer
loop iterations by storing the site parameters A,, and Il,, after each nested
EP run and continuing from the previous values in the next run. When
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Algorithm 2 Inner loop of the nested EP algorithm.

Input: ﬂﬂflwAWn;\Hwa A-n (optionally initial site parameters Qi E’;ﬁ’)
Output: IL,, \,, Z,, (optionally site parameters ., Bnr)
initialize Qi < Q% By« B for r = 1,..., R (with r # a?fl)
initialize Iy, , Ar, from I, A~y B N
initialize I, «— HIH—FZT?@% &nrhﬁr(hflr)T, AL, — }\In—FZr#x% ﬁnrhgr
repeat
for r =1,..., R with r # x¢ (in parallel) do
marginal moments: vy, «— (hgr)—rﬁ;nlhflw My — (hfw)Tﬁ:XIn
cavity evaluations: v,— < (1/vpr + ) 7Y, My Ve (M /O —

Bnr)

auxiliary variable:

My
Pnr < N <\/#‘0, 1> / (q) (\/%) v1+ ’Urmr)

n—r
tilted moments:

= 2 2 Mp—r
Unr <= Un—r — Up—pr (pnr + Pnr 1_;,_3,”:7)7
My — Mp—r + PprVn—r,

am (o
site updates: ayr < N1(1/Vnr — 1/Vn~r) + (1 — n1) Qs
Bnr nl(mnr/i}\nr - mnﬁr/vnﬁr) + (1 - nl)ﬁnr

end for B N

update Iy, «— I} + Zﬁéx% &nrhﬁr(hgT)T, AL, < AL, + Zwéxz ﬂmnhg,.
until stopping criterion
for r=1,..., R with r # z? (in parallel) do

compute log C,,, from (B.9) (see Appendix B)
end for
compute log Z\A” from (B.8) (see Appendix B)
compute IL,,, A, from Iy, Az,

trying to add new features, the values of the ‘old’ site parameters can still
be used to build the mew’ parameters (extended to account for the new
features) A, and IT,.

4.1.3 Inferring the Severity Matrix

So far, we have consider the model without the severity matrix W, being
in this case Gibbs sampling suitable to infer the latent feature matrix Z.
However, when considering the “full” model in 3.3, in addition to the latent
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matrix Z, we need also to infer the severity matrix W, which cannot be
done with the Gibbs sampling algorithm. Here, we instead propose an
inference algorithm based on Metropolis-Hastings (MH) algorithm, in which
we jointly sample z,,;, and wy,, having marginalized the matrices BY. Since as
before, the posterior of B? is intractable, we can resort either to the Laplace
approximation or to the nested EP algorithm in order to approximately
integrate out B? to obtain the marginal likelihood p(X|W). Note that
adapting the EP approximation, detailed in Section 4.1.2, to deal with the
severity matrix W can be performed by simply replacing all the references in
the nested EP algorithm to the binary matrix Z by the severity matrix W.
The adaptation of the Laplace approximation is also straightforward but
some of the equations in Section 4.1.1 change when considering the severity
factors.

Our MH based algorithm proceeds iteratively as follows. For each
observation n =1,..., N:

e Step 1: Jointly sample z,; and wyy for k=1,..., K ;
e Step 2: Consider adding new latent features for the n-th observation,
updating K if necessary.

In Step 1, we rely on MH proposing to move from an initial pair (z,x, wn) to
(221, wry) (jumping from matrices Z and W to Z* and W*). Our proposal
distribution is

ql('z:;kv w;k|znk7 wnk)
_ o1(zn)p(whplzny, = 1), if zp, =0, (4.16)
%50(2%)50(11]:/&) + %51(3:Lk)P(ka’z:Lk =1), if zpx #0,

i.e., if 2, = 0 we propose to move to z;, = 1 with w}, sampled from

P(wpk 715725 2pk) = (1= zpp)00(wpg) + znpBeta(wpglyi,72). - (4.17)

Otherwise, either a move to 2%, = 0 or to 2}, = 1 (with a value of w,
drawn from the Eq. 4.17) is proposed with equal probability. The acceptance
probability for the MH step is given by

mi p(X|W*)p([Z*])p(w;‘Lk|Z;k) q1(Znk, wnk|zzk, w;k)
<17 p(X|W)p([Z])p(wnk|znk) Q1(Z:Lk’w;k|znk’wnk)>7 (418)

where
1, if 2ok = 2,

= Moy /(N —m-py), if 2%, =1 and z,, =0, (4.19)
(N —m-pi)/ Mok, if 25, =0 and zp; = 1,
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being m_,,; the number of data points (excluding n) which have active the
k-th feature, namely, m_,; = Z#n zik- The distribution p(wpk|znk) is
given in Eq. 4.17 and, as previously stated, the probabilities p(X|W) are
obtained using either the Laplace approximation or the nested EP algorithm
detailed, respectively, in Sections 4.1.1 and 4.1.2.

For Step 2, we need to define k, as the number of columns of Z which
are active only in the n-th row, i.e., K, = Y po Znk H#n(l — z;k). Note
that, after performing Step 1, the initial value of &, is 0 due to the form
of Egs. 4.18 and 4.19. The new value &} is sampled with a MH step. We
include as part of the proposal the corresponding new values of the severity
matrix, i.e., a 1 X k) vector denoted by w;,. Therefore, we propose to jump
from a initial value of x, and w, to x; and w},, where the latter variables
are drawn from the proposal distribution

@2 (K, wi) = q2(kn)qa(whky)- (4.20)

We make ¢a(w; |k7) equal to the prior, i.e., g2(w}|k}) = HZ;:l p(wi |2, =

1), and g2(k}) is chosen as in [41], namely,

q2(k;) = (1 — m)Poisson (K, |aA/N) + w1 (k}), (4.21)

where we set A = N/2 and = = 0.2. The move is accepted with probability

(- pXIW?) (/N gaien)
min (1’ PXIW) ) q2</~e:;>)' (122)

n

4.1.4 Laplace Approximation vs. Expectation Propagation

In order to evaluate the performance of our model and inference algorithms,
we generate two synthetic datasets and perform comparisons between a
latent feature model with:

(i) On/off hidden variables and inference based on Gibbs sampling
combined with the Laplace approximation described in Section 4.1.1
(denoted by “On/Off+Lap.”);

(ii) On/off hidden variables and inference based on Gibbs sampling and the
nested EP approximation described in Section 4.1.2 (“On/Off+EP”);

(iii) Continuous hidden variables in [0, 1] and inference based on MH steps
and the nested EP approximation, i.e., the algorithm in Section 4.1.3
(“Sev.+EP”).
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Figure 4.1: Toy example 1. (a) Base images. (b) Four observation examples.
The numbers above each figure indicate which features are present in that
image.

We generate binary-valued observation matrices X, with N = 100 black-
and-white images with dimensionality D = 36, that are built differently for
each of the two datasets.

Toy Example 1: In this example, each observation x,, is a combination
of four latent black-and-white base images that can be present or absent with
probability 0.5 independently of each other, i.e., z,; = 1 with probability
0.5. Each white pixel in the composite image becomes black with probability
0.5, while black pixels remain black. We plot in Figure 4.1 the four base
images and four observation examples.

Toy Example 2: This example is similar to the previous one but we
introduce a latent auxiliary matrix A to generate observations. As before,
we assume four latent features that become active with probability 0.5,
but we also generate a N x 4 matrix A, whose elements a,) are Beta(2,1)
distributed. In this set-up, we divide each image into four disjoint regions of
9 pixels, each modelled by one of the latent features. Each of the 9 pixels in
the observation n corresponding to feature k are set to black with probability
0.5 + 0.5a if z,, = 1, or with probability 0.5 otherwise.

Validation: In order to compare the three methods, we average over 5
independent realizations of the two synthetic datasets the following scores:

e Approximate marginal log-likehood (Log-lik).

e Kullback-Leibler divergence (D) between the true and the inferred
probability of the observation matrix. We compute the inferred
probability using the mean of the approximate posterior of B¢ and
the sample of the latent feature matrix Z (or W, if available).

In Tables 4.1 and 4.2 we show the results for the two synthetic datasets.
Note that the obtained values of the average log-likelihood are similar for the
three considered methods (no significant statistical differences are found) in
both examples. However, we can observe significant differences in terms of
the Kullback-Leibler divergence, for which the model with severity factors
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combined with the EP inference provides the best results in both examples.
Additionally, in Toy Example 1, since the generative model considers binary
latent variables (instead of continuous), both the “On/Off+EP” and the
“Sev.+EP” methods provide similar results. Hence, in agreement with
previous works [45, 64], we observe that the EP algorithm provides better
estimates of the marginal likelihood than the Laplace approximation, and
the severity factors included in the Full model in Figure 3.3 lead to a more
flexible and expressive model (and the corresponding inference algorithm)
that is able to better explain diverse databases.

On/Off+Lap. | On/Off+EP | Sev.+EP
Log-lik —1,943 —2,001 1,948
Dy, 497.15 354.92 347.11

Table 4.1: Results for the Toy Example 1.

On/Off+Lap. | On/Off+EP | Sev.+EP
Log-Tik —2.122 9933 2151
Dgkr, 524.16 372.10 353.15

Table 4.2: Results for the Toy Example 2.

4.2 Variational Inference

Variational inference provides a complementary (and less expensive in terms
of computational complexity) alternative to MCMC methods as a general
source of approximation methods for inference in large-scale statistical
models [36]. The main idea behind variational inference is to approximate
the distribution by a tractable distribution and find the optimal parameters
by minimizing the KL divergence between both distributions. In this
chapter, we adapt the infinite variational approach for the standard linear-
Gaussian IBP model, introduced in [19], to the multinomial-logit IBP model
introduced in Chapter 3. This approach assumes the (truncated) stick-
breaking construction for the IBP detailed in Section 2.2.1, which bounds
the number of columns of the IBP matrix by a finite (but large enough)
value, K. Then, in the truncated stick-breaking process, w, = Hle v; for
k < K, and zero otherwise.

The hyperparameters of the model are grouped in the set H = {«, a%}
and, similarly, ¥ = {Z,B!,... . B” . b},... . b, v1,..., vk} denotes the set
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of unobserved variables in the model where, for clarity, we explicitly account
for the bias terms bd. Under the truncated stick-breaking construction for
the IBP, the joint probability distribution over all the variables p(¥, X|H)
can be factorized as

K N D K
p(v,X[H) =]] (p(vk\a) Hp(znkl{vi}f:1)> II <p(b3\023) Hp(bi.la?s))

k=1 n=1 d=1 k=1

N D
x [T 1 p(anlzn. BY b5,

n=1d=1

where b%, is the k' row of matrix B¢.
We approximate p(¥|X, H) with the variational distribution ¢(¥) given
by

K N K R D
=11 <Q(Uk|7'kla7'k2) 1T aGznklvne) ) LTI T «viléts (o 4%,

n=1 k=0r=1d=1

where the terms bzr stand for the elements of matrix B¢, and
q(vk|Th1, Th2) = Beta(71, Th2),
2

g(b 1, (o)) = N (88, (o)),

q(2nk|Vnk) = Bernoulli(vy,).

Inference involves optimizing the variational parameters of ¢(¥) to minimize
the Kullback-Leibler divergence from ¢(¥) to p(¥|X,H), i.e., Dxr(q|lp).
This optimization is equivalent to maximizing a lower bound on the evidence
p(X|H), which can be computed as

log p(X[|H) = E, [log p(¥, X|H)] + H|q| + Dk r(ql|p)

> K, [log p(¥, X|H)] + H]q], (4.23)

where E,[-] denotes the expectation with respect to the distribution ¢(¥),
H{q] is the entropy of distribution ¢(¥), and

Eq [log p(¥, X[H)]
K D K D
Z [log p(vk|a)] + ZZE‘J [logp b \023)} + ZEq {logp(bg]a%)}
k=1 d=1k=1 d=1

N D
+ZZ&%MMW%J+ZZ&th%Wwﬂ

k=1n=1 n=1d=1
(4.24)



The derivation of the lower bound in (4.23) is straightforward, with the
exception of the terms Eq [log p(zn|{vi}t_ ;)] and E, [log p(z2|z,, B, bd)]
n (4.24), which have no closed-form solution, so we instead bound them.
Deriving these bounds leads to a new bound £(H,H,) (that can be written
in closed-form) such that log p(X|H) > L(H,H,), being H, the full set of
variational parameters. The final expression for £(H,H,), as well as the
details on the derivation of the bound, are provided in Appendix C.1.

In order to maximize the lower bound L(H,H,), we need to optimize
with respect to the value of the variational parameters. To this end, we can
iteratively maximize the bound with respect to each variational parameter
by taking the derivative of L(H,H,) and setting it to zero. This procedure
readily leads to the following fixed-point equations:

1. For the variational Beta distribution q(vg|7k1, Tx2),

Tkl_a+z(zynm>+ 5 (mi@(i Ami>,

m=k+1 i=k+1
Tpo = 1+ Z (N Zl/nm> Ak
m=k n=1

2. For the Bernoulli distribution q(znx|vnk),

1
1+ exp(—Ank)’

Unk =
where

Ank

k k—1
= W)(Tll) - ¢(Ti1 + 7_12 [Z )\km¢ Tm? + Z ( Z Akn) 7_ml)

m=1 \n=m-+1

—_

)
k

k
— Z (Z )\;.m> Tml + Tm2) - Z Nem 10%()\1%)]
. m=1
+ Z (Cb;md End Z
=1
X H <1 — Unk! + Vnk' €XpP <¢g’r + ;(O—g/r)2)> ] ’

k' #k

and 1 (-) stands for the digamma function [3, p. 258-259).
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3. For the feature assignments, which are Bernoulli distributed given the
feature probabilities, we have lower bounded Eq [log p(zn|{vi}r_;)] by
using the multinomial approach in [19] (see Appendix C.1 for further
details). This approximation introduces the auxiliary multinomial

distribution Ay = [Ag1, ..., Agk), where each A; can be updated as
i—1 i
Aki X €XP (7!)(7'@'2) + Z Y(Tm1) — Z V(T + Tm2)> )
m=1 m=1

where the proportionality ensures that Aj is a valid distribution.

4. The maximization with respect to the variational parameters d)%r, qbgw
(Ugr)2, and (0g.)? has no analytical solution, and therefore, we need to
resort to a numerical method to find the maximum, such as Newton’s
method or conjugate gradient algorithm, for which the first and the
second derivatives! (given in Appendix C.2) are required.

5. Finally, we lower bound the likelihood term E, [log p(2%|z,, B¢, b{)]
by resorting to a first-order Taylor series expansion around the

auxiliary variables 57;11 forn = 1,...,N and d = 1,...,D (see
Appendix C.1 for further details), which are optimized by the
expression
& 1 K 1 2 o
&nd = [Z €xp (¢gr + Q(Ugr>2> H (1 — Upk + Vnk €XP <¢gr + i(agr) ))] :
r=1 k=1

!Note that the second derivatives are strictly negative and, therefore, the maximum
with respect to each parameter is unique.
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Chapter 5

IBP for Heterogeneous
Databases

In previous chapters, we have focused on categorical data because most
of the available data in psychiatry and, more specifically, in the NESARC
database are categorical, i.e., they take values in a finite unordered set,
e.g., {‘ves’, ‘no’, ‘unknown’}. However, the database contains other non-
categorical attributes, frequently related to the subject background, such
us age, highest grade level completed in school, income, etc., that can also
be relevant for the manifestation of psychiatric disorders. For instance, the
number of consumed alcoholic drinks per day, which can be modeled as
count data, appears as a key variable to detect those subjects that suffer

from alcohol use disorder.

In this chapter, we aim at providing a general model that allows handling
all the available information about the subjects. In particular, we propose
a general observation model for the IBP that accounts for heterogeneous
data, where the attributes describing each subject can be either discrete
(categorical, ordinal and count), continuous (real-valued and positive real-
valued) or mixed variables. The proposed model keeps the properties of
conjugate models and allows us to derive an efficient inference algorithm that
scales linearly with the number of observations. In the literature, we find
that latent feature model approaches usually assume homogeneous databases
with either real [66, 67, 84] or categorical data [46], and only a few works
consider heterogeneous data, such as mixed real and categorical data [68].
However, up to our knowledge, there are no general latent feature models
to directly deal with heterogeneous databases.
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5.1 Model Description

Let us assume a database with IV objects, where each object is defined by
D attributes. We can store the data in an N x D observation matrix X,
in which each D-dimensional row vector is denoted by x, = [z},...,z2]
and each entry is denoted by xz%. We consider that the column vectors x¢
(i.e., each dimension in the observation matrix X) may contain the following

types of data:

e Continuous variables:

1. Real-valued, i.e., 2¢ € R.
2. Positive real-valued, i.e., ¢ € R,

e Discrete variables:

1. Categorical data, i.e., xfl takes values in a finite unordered set,
e.g., 4 € {‘blue’, ‘red’, ‘black’}.

2. Ordinal data, i.e., 2% takes values in a finite ordered set, e.g.,
a:‘,il € {‘never’, ‘sometimes’, ‘often’, ‘usually’, ‘always’}.

3. Count data, i.e., z¢ € {0,1,2,...,00}.

As proposed in Chapter 3, we assume that each observation ¢ can be

explained by a K-length vector of latent variables associated to the n-th data
point z, = [zn1, - ., znk] and a weighting vector B = [b¢, ..., b%] (being K
the number of latent variables), whose elements bg weight the contribution
of k-th the latent feature to the d-th dimension of the observation matrix
X. The binary feature vectors z, are stored in the N x K matrix Z, which
follows an IBP with concentration parameter « (i.e., Z ~ IBP(«)), and
the weighting vectors B¢ are Gaussian distributed with zero mean and
covariance matrix U%,IK. For convenience, z, is a K-length row vector,
while B? a K-length column vector.

To accommodate for all kinds of observed random variables described
above, we introduce an auxiliary Gaussian variable y?, such that when
conditioned on the auxiliary variables, the latent variable model behaves
as a standard IBP with Gaussian observations [27]. In particular, we place

over y¢ a Gaussian distribution with mean z, B¢ and variance o2

o Le.,

p(y;ﬂzm Bd) = N(yfﬂanda 05)7

and assume that there exists a transformation function over the variables yd
to obtain the observations 2%, mapping the real line R into the observation

space. The resulting generative model is shown in Figure 5.1, where Z is
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the IBP latent matrix, and Y% and B¢ contain, respectively, the auxiliary
Gaussian variables yg and the weighting factors bz for the d-dimension of
the data. Additionally, ¥¢ denotes the set of auxiliary random variables
needed to obtain the observation vector x¢ given Y?, and H? contains the
hyper-parameters associated to the random variables in W9,

This model assumes that the observations z¢ are independent given the

latent matrix Z, the weighting factors B? and the auxiliary variables W9,
Therefore, the likelihood can be factorized as

D D N
p(X’Z, {Bda \de}dDzl) = H p(Xd|Z, Bda \Ild) = H H p(l‘;ﬂzm Bd> \pd)'
d=1 d=1n=1

Note that, if we assume Gaussian observations and set Y% = x?, this model
resembles the standard IBP with Gaussian observations [27]. In addition,
conditioned on the variables Y?, we can infer the latent matrix Z as in the
standard IBP. We also remark that auxiliary Gaussian variables to link the
latent model with the observations have been previously used in Gaussian
processes for multi-class classification [25] and for ordinal regression [15].
However, up to our knowledge, this simple approach has not been used to
account for mixed continuous and discrete data, existing a lack of work in

this field.

@G ®

Figure 5.1: Generalized IBP for mixed continuous and discrete observations.

5.1.1 Likelihood Functions

Now, we define the set of transformations that map from the Gaussian

variables y¢ to the corresponding observations z&. We assume that each
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column in matrix X may contain any of the discrete or continuous variables
detailed above, provide a likelihood function for each kind of data and, in
turn, also a likelihood function for mixed data.

Real-valued Data. In this case, we assume that x¢ = Y in the model in
Figure 5.1 and consider the standard approach when dealing with real-valued
observations, which consist of assuming a Gaussian likelihood function. In
particular, as in the standard linear-Gaussian IBP [27], we assume that each
observation x¢ is distributed as

p(zi|zn, B?) = N(xfll\and, 05).

Positive Real-valued Data. In order to obtain positive real-valued
observations, i.e., :L*Z € Ry, we apply a transformation over yg that maps
from the real numbers to the positive real numbers, i.e.,

ad = fyd +ud),

where u? is a Gaussian noise variable with variance o2, and f : R — R, is

a differentiable function. By change of variables, we obtain the likelihood
function for positive real-valued observations as

p(} |20, BY)
1 { 1
2n(02 + 02) 2(05 + %)

J

(F () - andF}

d ._
Wf l(xi)

(5.1)

where f~!: R, — R is the inverse function of the transformation f(-), i.e,
f71(f(v)) = v. Note that, in this case, we make use of the Gaussian variable
ul to obtain z¢ from y¢, and therefore, ¥4 = {u?} | and H? = o2.

Categorical Data. Now, we account for categorical observations, i.e.,
each observation z¢ can take values in the unordered index set {1,..., Rg}.

Hence, assuming a multinomial-probit model, we can write

d
=ar max , 5.2
g X Yur (5.2)

4,
being yd, ~ N (ygr\znbf,ag) where b? denotes the K-length weighting
vector, in which each entry bgr weights the influence of the k-th feature for

the observation z¢ taking value r. Note that, under this likelihood model,
since we have a Gaussian auxiliary variable y¢. and a weighting factor biT
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for each possible value of the observation r € {1,..., R4}, we need to gather
all the weighting factors bgr in a K x Ry matrix B¢, and all the Gaussian
auxiliary variables y¢,. in the N x Rq matrix Y¢.

Under this observation model, we can write y¢, = z,b? +u
is a Gaussian noise variable with variance 05,
the probability of each element z¢ taking value r € {1,..., Ry} as [25]

Ry
H@(u+zn(bf b;?))], (5.3)
j=1

J#T
where subscript 7 in b? indicates the column in B? (r € {1,..., Rq}), ®(-)
denotes the cumulative density function of the standard normal distribution
and E,[-] denotes expectation with respect to the distribution p(u) =
N (0,05). Note that this likelihood model coincides with the multinomial-
probit likelihood introduced in Chapter 3, but here we exploit the underlying
structure of the probit model to obtain Eq. 5.2 which, opposite to Eq. 5.3,

allows us to derive an exact collapsed Gibbs sampler by conditioning on the
auxiliary variables 3<,..

d d
o s Where ul .

and therefore, we can obtain

p(‘rffil, = T|va Bd) = IE:p(u)

Ordinal Data. Consider ordinal data, in which each element z¢ takes
values in the ordered index set {1,...,R;}. Then, assuming an ordered
probit model, we can write

1 ifyd <6f
2 if ¢ < y? < 09
2l = oo (5.4)

Rd if Hii%dfl < yg

where again y¢ is Gaussian distributed with mean z,B¢ and variance 05,

and 04 for r € {1,..., Rg—1} are the thresholds that divide the real line into
R, regions. We assume the thresholds #¢ are sequentially generated from
the truncated Gaussian distribution ¢ oc N (64]0,03)I(0¢ > 69_,), where
0¢ = —o0o and H%d = +o00. As opposed to the categorical case, now we have
a unique weighting vector B? and a unique Gaussian variable y? for each
observation x¢. Hence, the value of z¢ is determined by the region in which
y< falls.

Under the ordered probit model [15], the probability of each element &

taking value r € {1,..., Rq} can be written as
gd . Bd Hd _ Bd
p(z? = r|z,, BY) = & (TZ"> _ <7’—1Z” _ (5.5)
Ty Ty
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Let us remark that, if the d-dimension of the observation matrix contains

ordinal data, the set of auxiliary variables reduces to the thresholds ¥¢ =
{64, ... ,H%d_l} and H? = o3.

Count Data. In count data, each observation z% takes non-negative integer
values, i.e., $§L € {0,1,2,...,00}. Then, we assume

z = Lf ()], (5.6)

where |v] returns the floor of v, that is the largest integer that does not
exceed v, and f : ® — R, is a differentiable function that maps from the real
numbers to the positive real numbers. We can therefore write the likelihood
function as

p(zl|z,, BY) = @ <f_1(mg‘ - Z"Bd> — (f_l($z) — Zan) (5.7)

Oy Oy

where f~1: R, — R is the inverse function of the transformation f(-).

5.2 Inference Algorithm

In this section, we describe our algorithm for inferring the latent variables
given the observation matrix. Under our model, detailed in Section 5.1, the
probability distribution over the observation matrix is fully characterized by
the latent matrices Z and {B?}2_, (as well as the auxiliary variables ¥?).

We use Markov Chain Monte Carlo (MCMC) methods, which have been
broadly applied to infer the IBP matrix (see, e.g., in [27, 95, 83]). The
proposed inference algorithm is summarized in Algorithm 3. This algorithm
exploits the information in the available data to learn the similarities among
the objects (captured in our model by the latent feature matrix Z), and
how these latent features show up in the attributes that describe the objects
(captured in our model by B9).

In Algorithm 3, we first need to update the latent IBP matrix Z.
Note that conditioned on {Y?}2 | both the latent matrix Z and the
weighting matrices {Bd}g):1 are independent of the observation matrix X.
Additionally, since {B%}?_, and {Y?}? | are Gaussian distributed, we
can analytically marginalize out the weighting matrices {Bd}dD:1 to obtain
p({Yd}g:1|Z). Therefore, to infer the IBP matrix Z, we can apply the
collapsed Gibbs sampler which presents better mixing properties than the
uncollapsed Gibbs sampler and, in consequence, is the standard method of
choice in the context of the standard linear-Gaussian IBP [27]. However,
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Algorithm 3 Inference Algorithm.

Require: X
Ensure: initialize Z and {Y9}2_,
1: for each iteration do

2. Update Z given {Y?}2_ .

3: ford=1,...,D do

4: Sample BY given Z and Y? according to (5.8).

5: Sample Y? given X, Z and B? as shown in Section 5.2.2.
6: Sample ¥? if needed as shown in Section 5.2.2.

7:  end for

8: end for

Output: Z, {B4}? | and {¥4}D

this algorithm suffers from a high computational cost (being the complexity
per iteration cubic with the number of data points N), which is prohibitive
when dealing with large databases. In order to solve this limitation, we
instead resort to the accelerated Gibbs sampler [18]. This algorithm allows
us to integrate out the weighting factors in {Bd}dD:1 while keeping linear
complexity with the number of datapoints. The accelerated Gibbs sampler
is detailed in Section 5.2.1.
Second, we need to sample the weighting factors in B¢, which is a
K x R4 matrix in the case of categorical attributes, and a K-length column
vector, otherwise. We denote the r-th column vector of B? by bf, where
r € {1,...,Rq} when dealing with categorical attributes, and r = 1
otherwise. The posterior distributions over the weighting vectors are given
by
p(bflyf, Z) = N(bf[P~IAL P, (5.8)

where P = Z"Z +1/0%1; and A = ZTy? Note that the covariance matrix
P! depend neither on the dimension d nor on 7, so we only need to invert
the K x K matrix P once at each iteration. We describe in Section 5.2.1 how
to efficiently compute P after changes in the Z matrix by rank one updates,
without the need of computing the matrix product Z'Z.

Once we have updated Z and B?, we sample each element in Y¢ from
the posterior distribution p(y?,|2z¢, z,, B?). The expression of the posterior
distribution p(yZ,.|z%, z,, B?) under each likelihood model in Section 5.1.1
is provided in Section 5.2.2. Finally, we sample the auxiliary variables in
U from their posterior distribution (detailed in Section 5.2.2) if necessary.
This two latter steps involve, in the worst case, sampling from a doubly
truncated univariate normal distribution (see the Section 5.2.2 for further
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details), for which we make use of the algorithm in [65].

5.2.1 Accelerated Gibbs Sampler

In [18], the authors presented a linear-time accelerated Gibbs sampler for
conjugate IBP models that effectively marginalized over the latent factors.
The per-iteration complexity of this algorithm is O(N(K? + K D)), which
is comparable to the uncollapsed linear-Gaussian IBP sampler that has per-
iteration complexity O(NDK?) but does not marginalize over the weighting
factors, and as a result, presents slower convergence rate.

This algorithm exploits the Bayes rule to avoid the cubic complexity with
N due to the computation of the marginal likelihood in the Collapsed Gibbs
sampler. In particular, it applies the Bayes rule to obtain the probability of
each element in the latent feature matrix Z being active as

D Sy
Map k
pank = Yl Zoi) o —= [T I /b Py 120 DDP(BY Iy, Zon) D,
d=1r=1 T

(5.9)

where Sy is the number of columns in matrices Y% and B¢ (being Sy the
number of categories Ry for those dimension d that contains categorical
attributes, and S; = 1 otherwise), Z-, corresponds to matrix Z after
removing the the n-th row, the vector yilm is the r—th column of matrix Y%
without the element y¢,, and p(b%|x?,, Z-,) is the posterior of b¢ computed
without taking the n-th datapoint into account, i.e.,

p(brlye Zon) = N(bIPLAL, P2, (5.10)
where P, = Z' Z_, + 1/03Ix and Xiny = ZI y¢  are the natural

parameters of the Gaussian distribution.

Note that, opposite to the notation in [18], we here resort to the natural
parameters for the Gaussian distribution over the posterior of b;? instead of
the mean and the covariance matrix. This formulation allows us to compute
the full posterior over the weighting factors as

p(bfly, Z) = N(b{[P~'A], P71, (5.11)

where P =P_,, + 2z, and A = X% +2z'y? are the natural parameters
of the Gaussian distribution.
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The Accelerated Gibbs sampling algorithm iteratively samples the value
of each element z,; according to

D Sq

Mo ke
Pz = Y Yy, Zons) o0 == LTI N Gl ln X, 20 Py +-03).
d=1r=1

(5.12)

After having sampled all elements z,; for the K, non-zero columns in Z
for each data point n, the algorithm samples from a distribution (where the
prior is a Poisson distribution with mean a/N) a number of new features
necessary to explain that data point.

5.2.2 Posterior distribution over Y?

As previously described, in the 5-th step of Algorithm 3, we need to sample
from the auxiliary Gaussian variables 3¢, from the posterior distribution
p(ye. |z, z,,b%). The posterior distribution 3¢, for all the considered types
of data are given given by:

1. For real-valued observation:
p(yg1|x;iw Znp, Bd) = 6(1‘55) (513)
2. For positive real-valued observations:

(Y |25, 2n, BY)
d —1(,.d -1 -1
_ d | ((zab5)  fED)Y (1 1 11
,/\/’(ynl( 0_2 + 0_2n ﬁ‘i‘p 5 ﬁ—i_p .
Yy U Y U Y u

3. For categorical observations:
d.d d
p(ynr’xn =T,z,,B )

_ { N(ygrlznbg,ai)ﬂ(ygr > H}iaxj#(yﬁj)) It r=7 (515
N(ynr‘znbr'io-;?/)ﬂ(ynr < ynT) It r 7é T

In words, if 24 = T = r we sample y¢, from a Gaussian truncated by

the left by maxj;,,gr(ygj) and, otherwise, we sample from a Gaussian

truncated by the right by y¢. with » = z¢. Note that sampling

from the variables y¢, corresponds to solve a multinomial probit
regression problem. To achieve identifiability we assume, without loss
of generality, that the regression function fr,(z,) is identically zero,
and therefore, we fix bﬁ R, =0 for all k.
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4. For ordinal observations:
p(yillwi =T1,2n, Bd) ~ /\/’(ygﬂznb?,aS)H(ﬂffl < ygl < 97(?)‘ (5.16)

Note that in this case, we also need to sample the values for the
thresholds ¢ with r =1,..., Ry — 1 as

(O yi) ~N (0710, )10 > max (6, max(ygy |7, = 7))

5.17
x 1(# < min(0%, min(yd,|2zd = r + 1)). (5:17)

In this case, sampling from the variables ygl corresponds to solve an
ordered probit regression problem, where the thresholds {Hr}f:dl are
unknown. Hence, to achieve identifiability we need to set the one of
the thresholds, 81 in our case, to a fixed value.

5. For count observations:

(
where f~!: R, — R is the inverse function of f, i.e., f~1(f(y)) = v.
Therefore, y¢, from a Gaussian truncated by the left by f~!(x%) and
by the right by f~1(z% +1).
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Chapter 6

Analysis of Suicide Attempts

Every year, more than 34,000 suicides occur and over 370,000 individuals
are treated for self-inflicted injuries in emergency rooms in the U.S., where
suicide prevention is one of the top public health priorities [1]. The current
strategies for suicide prevention have focused mainly on both detection and
treatment of mental disorders [81], and on the treatment of the suicidal
behaviors themselves [14]. However, despite prevention efforts including
improvements in the treatment of depression, the lifetime prevalence of
suicide attempts in the U.S. has remained unchanged over the past decade
[38]. This suggests that there is a need to improve understanding of the
risk factors for suicide attempts beyond psychiatric disorders, particularly
in non-clinical populations.

According to the National Strategy for Suicide Prevention, an important
first step in a public health approach to suicide prevention is to identify
those at increased risk for suicide attempts [1]. Suicide attempts are, by
far, the best predictor of completed suicide [56] and are also associated
with major morbidity themselves [49]. The estimation of suicide attempt
risk is a challenging and complex task, with multiple risk factors linked to
increased risk. In the absence of reliable tools for identifying those at risk
for suicide attempts, be they clinical or laboratory tests, risk detection still
relays mainly on clinical variables. The adequacy of the current predictive
models and screening methods has been questioned [56], and it has been
suggested that the methods currently used for research on suicide risk factors
and prediction models need revamping [44]. In the ongoing study, we aim at
seeking the latent causes which lead to committing suicide as well as being
able to detect those subjects that present higher risk of attempting suicide.
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’ # \ Source Code \ Description

01 | S4AQ4A17 | Thought about committing suicide

02 | S4AQ4A18 | Felt like wanted to die

03 S4AQ17A Stayed overnight in hospital because of depression

04 S4AQ17B Went to emergency room for help because of depression

05 | S4AQ4A19 | Thought a lot about own death

06 S4AQ16 Went to counselor/therapist/doctor/other person for help
to improve mood

07 S4AQ18 Doctor prescribed medicine/drug to improve mood/make
you feel better

08 S4CQ15A Stayed overnight in hospital because of dysthymia

09 | S4AQ4A12 | Felt worthless most of the time for 2+ weeks

10 S4CQ15B Went to emergency room for help because of dysthymia

11 S4AQ52 Had arguments/friction with family, friends, people at
work, or anyone else

12 S4AQ55 Spent more time than usual alone because didn’t want to
be around people

13 S4AQ21C Used medicine/drug on own to improve low mood prior to
last 12 months

14 S4AQ21A Ever used medicine/drug on own to improve low
mood/make self feel better

15 | S4AQ20A | Ever drank alcohol to improve low mood/make self feel
better

16 S4AQ20C Drank alcohol to improve mood prior to last 12 months

17 S4AQ56 Couldn’t do things usually did/wanted to do

18 S4AQ54 Had trouble doing things supposed to do -like working,
doing schoolwork, etc.

19 S4AQ11 Any episode began after drinking heavily /more than usual

20 | S4AQI15IR | Only/any episode prior to last 12 months began after
drinking/drug use

Table 6.1: Enumeration of the 20 selected questions in the experiments,
sorted in decreasing order according to their mutual information with the
‘attempted suicide’ question.

6.1 Experimental Setup

The NESARC includes a question about having attempted suicide as well
as other related questions such as ‘felt like wanted to die’ and ‘thought

a lot about own death’.

In this study, we build an unsupervised model

with the 20 questions that present the highest mutual information with
the suicide attempt question, which are shown in Table 6.1 together with
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their code in the questionnaire. The 20 selected variables correspond to
yes-or-no questions, which have four possible outcomes (i.e., R = 4): ‘blank’
(B), ‘unknown’ (U), ‘yes’ (Y) and ‘no’ (N). If a question is left blank the
question was not asked.! If a question is said to be unknown either it was
not answered or was unknown to the respondent.

We resort to the simplest IBP model for categorical observations
proposed in Section 3, i.e., the model with only the binary matrix Z and
weighting matrices B? as latent variables. In order to sample from the IBP
matrix, we make use of the Gibbs sampling algorithm combined with the
Laplace approximation, detailed in Section 4.1.1, to compute the marginal
likelihood. We initialize the sampler with an active feature, i.e., K; = 1,
and set z,; = 1 randomly with probability 0.5, and fixing & = 1 and 0]23 =1
Then, we run the Gibbs sampler over 500 randomly chosen subjects out of
the 13,670 that have answered affirmatively to having had a period of low
mood. In this study, we use another 9,500 subjects as test cases and have
left the remaining samples for further validation.

6.2 Results

After running our inference algorithm, we obtain seven latent features. In
Figure 6.1, we have plotted the posterior probability for each question when
a single feature is active. In these plots, white means 0 and black 1, and each
row sums up to one. Feature 1 is active for modeling the ‘blank’ and ‘no’
answers and, fundamentally, those who were not asked Questions 8 and 10.
Feature 2 models the ‘yes’ and ‘no’ answers and favors affirmative responses
to Questions 1, 2, 5,9, 11, 12, 17 and 18, which indicates depression. Feature
3 models blank answers for most of the questions and negative responses to
1, 2, 5, 8 and 10, which are questions related to suicide. Feature 4 models
the affirmative answers to 1, 2, 5, 9 and 11 and also have higher probability
for unknowns in Questions 3, 4, 6 and 7. Feature 5 models the ‘yes’ answer
to Questions 3, 4, 6, 7, 8, 10, 17 and 18, being ambivalent in Questions 1
and 2. Feature 6 favors ‘blank’ and ‘no’ answers in most questions. Feature
7 models answering affirmatively to Questions 15, 16, 19 and 20, which are
related to alcohol abuse.

We show the percentage of respondents that answered positively to the

In a questionnaire of this size some questions are not asked when a previous question
was answered in a predetermined way to reduce the burden of taking the survey. For
example, if a person has never had a period of low mood, the attempt suicide question is
not asked.
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suicide attempt questions in Table 6.2, independently for the 500 samples
that were used to learn the IBP and the 9,500 hold-out samples, together
with the total number of respondents. A dash indicates that the feature can
be active or inactive. Table 6.2 is divided in three parts. The first part deals
with each individual feature and the other two study some cases of interest.
Throughout the database, the prevalence of suicide attempt is 7.83%. As
expected, Features 2, 4, 5 and 7 favor suicide attempt risk, although Feature
5 only mildly, and Features 1, 3 and 6 decrease the probability of attempting
suicide. From the above description of each feature, it is clear that having
Features 4 or 7 active should increase the risk of attempting suicide, while
having Features 3 and 1 active should cause the opposite effect.

Features 3 and 4 present the lowest and the highest risk of suicide,
respectively, and they are studied together in the second part of Table 6.2,
in which we can see that having Feature 3 and not having Feature 4 reduces
this risk by an order of magnitude, and that combination is present in 70%
of the population. The other combinations favor an increased rate of suicide
attempts that goes from doubling (‘11’) to quadrupling (‘00’), to a ten-fold
increase (‘01’), and the percentages of population with these features are,
respectively, 21%, 6% and 3%.

In the final part of Table 6.2, we show combinations of features that
significantly increase the suicide attempt rate for a reduced percentage of
the population, as well as combinations of features that significantly decrease
the suicide attempt rate for a large chunk of the population. These results
are interesting as they can be used to discard significant portions of the
population in suicide attempt studies and focus on the groups that present
much higher risk. Hence, our IBP with discrete observations is being able to
obtain features that describe the hidden structure of the NESARC database
and makes it possible to pin-point the people that have a higher risk of
attempting suicide.
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Figure 6.1: Probability of answering ‘blank’ (B), ‘unknown’ (U), ‘yes’ (Y)
and ‘no’ (N) to each of the 20 selected questions, sorted as in Table 6.1.
These probabilities have been obtained with the posterior mean weights
Bl‘%/[ Ap » When only one of the seven latent features (sorted from left to right
to match the order in Table 6.2) is active.

. Suicide attempt probabilit Number of cases
Hidden features Train | pHEld—out s Train | Hold-out
1|-]-1-1-1-1- 6.74% 5.55% 430 8072
-1 - -1-1-1-] 1056% 11.16% 322 6083
S T I I e R 3.72% 4.60% 457 8632
-l -1 -11-]-1-12523% 22.25% 111 2355
-l - - -1 -] - 8.64% 9.69% 301 5782
-l - - --11]- 6.90% 7.18% 464 8928
- - -] -] -] 1| 14.29% 14.18% 91 1664
-l =100 -|-1-1] 307% 28.55% 26 571
-l -0 1]-1]-1]-18235% 61.95% 17 297
-l -]110f-]-]- 0.83% 0.87% 363 6574
-1 1] - -] - 14.89% 16.52% 94 2058
-l -10|1]-1]-1]1]/]100.00% 69.41% 4 85
0O|-]10]1|-1-1-1] 80.00% 66.10% 5 118
1|-]1(0]|-1]110 0.00% 0.25% 252 4739
- -]1110}|-1]-10 0.33% 0.63% 299 5543
1{-]1|10|-1]-]- 0.32% 0.41% 317 5807

Table 6.2: Probabilities of attempting suicide for different values of the latent
feature vector, together with the number of subjects possessing those values.
The symbol ‘-” denotes either 0 or 1. The ‘train ensemble’ columns contain
the results for the 500 data points used to obtain the model, whereas the
‘hold-out ensemble’ columns contain the results for the remaining subjects.
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Chapter 7

Analysis of Psychiatric
Disorders

7.1 Comorbidity Analysis

Health care increasingly needs to address the management of individuals
with multiple coexisting diseases, who are now the norm, rather than the
exception. In the United States, about 80% of Medicare spending is devoted
to patients with four or more chronic conditions, with costs growing as
the number of chronic conditions increases [96]. This explains the growing
interest of researchers in the impact of comorbidity on a range of outcomes,
such as mortality, health-related quality of life, functioning, and quality of
health care. However, attempts to study the impact of comorbidity are
complicated due to the lack of consensus about how to define and measure
it [85].

Comorbidity becomes particularly relevant in psychiatry, where
clinical experience and several studies suggest that the relation
among the psychiatric disorders may have etiological and treatment
implications. Several studies have focused on the search of the underlying
interrelationships among psychiatric disorders, which can be useful to
analyze the structure of the diagnostic classification system, and guide
treatment approaches for each disorder [7]. In [43], the authors found that 10
psychiatric disorders (available in the National Comorbidity Survey) can be
explained by only two correlated factors, one corresponding to internalizing
disorders and the other to externalizing disorders. The existence of the
internalizing and the externalizing factors was also confirmed by [42]. More
recently, the authors in [7] have used factor analysis to find the latent
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feature structure under 20 common psychiatric disorders, drawing on data
from the National Epidemiologic Survey on Alcohol and Related Conditions
(NESARQC). In particular, the authors found that three correlated factors,
one related to externalizing, and the other two to internalizing disorders,
characterized well the underlying structure of these 20 diagnoses. From a
statistical point of view, the main limitation of this study lies on the use of
factor analysis, which assumes that the number of factors is known and that
the observations are Gaussian distributed. However, the latter assumption
does not fit the observed data, since they are discrete in nature.

In the present study, our objective is to provide an alternative to the
factor analysis approach used by [7] with the IBP models in Chapter 3.
In particular, we build an unsupervised model taking the 20 disorders
used by [7] as input data, drawn from the NESARC data. These
disorders include substance use disorders (alcohol abuse and dependence,
drug abuse and dependence and nicotine dependence), mood disorders
(major depressive disorder (MDD), bipolar disorder and dysthymia), anxiety
disorders (panic disorder, social anxiety disorder (SAD), specific phobia and
generalized anxiety disorder (GAD)), pathological gambling (PG) and seven
personality disorders (avoidant, dependent, obsessive-compulsive (OC),
paranoid, schizoid, histrionic and antisocial personality disorders (PDs)).

The main goal of this study is to find out and analyze the latent
relations among the 20 psychiatric disorders. Specifically, we aim at finding
comorbidity patterns in the database, allowing us to seek hidden causes and
to provide a tool for detecting those subjects with higher risk of suffering
from these disorders.

7.1.1 Experimental Setup

Based on information collected in the first wave of the NESARC, a set
of pre-established and reliable diagnostic algorithms were applied to each
subject to determine the presence or absence of 20 psychiatric disorders
[7]. In this study, we use these diagnoses as input data to the full IBP
model in Figure 3.3, i.e., the IBP model with bias term and severity matrix.
We assume a multinomial-probit likelihood model with two categories (i.e.,
positive and negative diagnoses), and resort to the MH based sampler,
detailed in Section 4.1.3, to jointly infer the IBP matrix Z and the severity
matrix W, being weighting factors in B? integrated out using the EP
approximation.

For the following experimental results, we set a = 1, 0?3 =1, v =2
and 72 = 1 and run our inference algorithm. In order to speed up the
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inference procedure, we do not sample the rows of W corresponding to
those subjects who suffer from at most one out of the 20 disorders, but
instead fix these latent features to zero. The idea is that the b terms
must capture the general population, and we use the active components
of the matrix W to characterize the disorders. Besides speeding up the
algorithm, this modification ensures that the active latent features increase
the probability of suffering from the disorders and can be interpreted as
latent disorders, which helps the psychiatrists understand the obtained
results. If we had no bias term and did not force the subjects in the general
population to be explained by the bias term, the latent variables would not
be easy to interpret because the general population would be described by
a combination of latent factors.

7.1.2 Results

Similar to the previous study in [7], we find that we need three latent features
to describe the data. In Table 7.1, we show the empirical probability of
possessing each of the inferred latent feature, i.e., the number of subjects in
the database that possess each latent feature divided by the total number
of subjects. Additionally, we plot in Figure 7.1 the approximate posterior
probability of suffering from each of the considered disorders when only one
of the latent features is active (assuming severity factors equal to one), and
when none of them is active. As expected, for those subjects without any
active latent feature, the probability of having any disorder is below the
baseline level (defined as the empirical probability of suffering from each
disorder in the full database).

We can interpret each of the obtained latent features from the analysis
of Figure 7.1. Feature 1 (pattern [100]) increases the probability of having
all disorders, except alcohol abuse, and thus seems to represent a general
psychopathology factor, although it may particularly increase the risk of
personality disorders (disorders from 14 to 20). Feature 2 (pattern [010])
models substance use disorders and antisocial personality disorder, which
is consistent with the externalizing factor identified in previous studies of
the structure of psychiatric disorders [43, 37, 88, 7]. Feature 3 (pattern
[001]) models mood or anxiety disorders, and thus seems to represent
the internalizing factor also identified in previous studies. Note that the
probability of bipolar disorder presents a significantly different behavior,
since major depression (MDD) and dysthymia are mutually exclusive with
bipolar disorder.

In addition to the hidden relation among the disorders, our model also
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provides an individual-specific severity term that can be interpreted as our
belief in the subject suffering a latent disorder. We find that more than
80% of the subjects with active features have a severity factor above 0.5 and
around 50% of them have a severity value greater that 0.75. The histograms
for wp1, wpe and wys are shown in Figure 7.6. In order to examine the effect
of the severity, we plot in Figure 7.2 the posterior probability of suffering
from each of the disorders when only Feature 1 is active, for any value of the
severity wy1. (Similar plots, for Features 2 and 3, are provided in Figures 7.3
and 7.4, respectively.) When the severity reaches 0 (depicted in black),
Feature 1 turns inactive and, therefore, the corresponding probabilities
coincide with the green line in Figure 7.1 (pattern [000]). As the severity
approaches 1 (depicted in red), the corresponding probabilities coincide with
the red line in Figure 7.1 (pattern [100]). The solid line in Figure 7.2
represents the empirical probability of suffering from each disorder, obtained
for those subjects who only have Feature 1 active. We can see, that although
the probability of suffering from each disorder becomes higher when the
inferred severity value increases, each disorder is affected differently by the
value of the severity factor. For instance, the probability of suffering from
OCPD goes from 0.04 in the general population to 0.8 for the subjects with
a severity factor for Feature 1 near to one, while the probability for alcohol
abuse only changes from 0.04 to 0.05.

To further analyze the impact of severity, we depict in Figure 7.5 the
distribution of the number of disorders for those subjects whose inferred
severity is comprised between the numbers shown in the horizontal axis.
As expected, as the inferred severity increases, so does the number of
disorders that a subject suffers. Figure 7.5a shows that Feature 1 (general
psychopathology factor) is the feature with highest impact on the average
number of disorders. However, when we only consider a subset of the
disorders (Figures 7.5b and 7.5¢), Features 2 and 3 become more relevant.
These subsets have been chosen to match the externalizing and internalizing
factors, respectively.

From the analysis of the figures, we can conclude that the probability
of appearance of a disorder changes significantly when the value of the
severity associated to that group of disorders changes. We also find that
most of the subjects with active latent features suffer from three or more
disorders and, in general, most of the disorders that a subject suffers belong
to the group of disorders modeled by the same latent feature. Therefore, a
subject with Feature 2 (Feature 3) active has a higher probability of suffering
simultaneously from several externalizing (internalizing) disorders. Finally,
we can understand the importance of the severity factors in the model,
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because they allow explaining the comorbidity among the disorders and
also understanding the stress each subject suffers. The model without the
severity factors cannot distinguish between the different subjects that have
the same active latent features.

_sf~a-[000]
—-[100]
_fl-o-[010]
10 "8 _A-[001]
+ Baseline

Figure 7.1: Probabilities of suffering from the 20 considered disorders for
the latent feature vectors w, shown in the legend. These probabilities have

been obtained using the mean of the approximate posterior of the matrices
B

Figure 7.2: Probabilities of suffering from the 20 considered disorders when
only Feature 1 is active, for any value of the severity wy; (shown in the bar
on the right). These probabilities have been obtained using the mean of
the approximate posterior of the matrices B?. The solid line represents the
empirical probabilities, obtained for those subjects who only have Feature 1
active.
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Figure 7.3: Probabilities of suffering from the 20 considered disorders when
only Feature 2 is active, for any value of the severity wy2 (shown in the bar
on the right). These probabilities have been obtained using the mean of
the approximate posterior of the matrices B?. The solid line represents the
empirical probabilities, obtained for those subjects who only have Feature 2
active.

Figure 7.4: Probabilities of suffering from the 20 considered disorders when
only Feature 3 is active, for any value of the severity wy3 (shown in the bar
on the right). These probabilities have been obtained using the mean of
the approximate posterior of the matrices B%. The solid line represents the
empirical probabilities, obtained for those subjects who only have Feature 3
active.

] Active Feature \ Feature 1 \ Feature 2 \ Feature 3 \
| Empirical Prob. [ 0.0594 | 0.0239 | 0.0201 |

Table 7.1: Empirical probabilities of possessing at least one latent feature,
extracted directly from the inferred IBP matrix Z.
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(c) Internalizing disorders (disorders 6
and 8-12 in Fig. 7.1).

Figure 7.5: Distribution of the number of disorders, for those subjects who
only have active one latent feature (shown in the legend), whose inferred
severity is comprised between the numbers shown in the horizontal axis.
The thick line corresponds to the median, the edges of the box are the 25th
and 75th percentiles, and the whiskers represents the most extreme values.
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Figure 7.6: Normalized histograms of wy1, wpe and wy3 (assuming that
zn1 = 1, zp2 = 1 and z,3 = 1, respectively).

7.2 Impact of Social Background

Several studies have analyzed the impact of social background in the
development of mental disorders. These studies usually focus on the relation
between a mental disorder and a specific aspect of the social background
of the subjects. Some examples in this area study the relation between
depression and sex [92, 39], relation between common mental disorders and
poverty or social class [91, 17, 31], etc. However, up to our knowledge, there
is a lack of work in the study of the impact the social background in the
suffering of comorbid disorders.

In the previous section, we found that the 20 psychiatric disorders under
study can be divided into three groups, namely internalizing, externalizing
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and personality disorders. We also found that comorbid disorders tend to
belong to the same group. In this section, we aim at studying how the
social background of the subjects (such as the age, sex, etc.) shows up in
the comorbidity patterns studied above. To this end, we include in our
experiments the responses to some of the questions in Section 1 of the
NESARC, which collects information about the social background of the
participants. Specifically, we incorporate the following information: sex,
age, census region, imputed race/ethnicity, marital status, highest grade or
years of school completed, and the body mass index (BMI).

7.2.1 Experimental Setup

In addition to the diagnoses of 20 psychiatric disorders in the previous
section, we include one by one the background questions as input data to the
IBP model. In this study, we make use of the model and inference algorithm
introduced in Chapter 5 because they allow us to deal with all the considered
questions. In Table 7.2, we summarize the considered questions and how we
introduce them into our model as input variables.

For the following experimental results, we independently run the
inference algorithm in Section 5.2 for each question with a = 5, 0]23 =1,
UZ = 1, ag = 1, and consider for the real positive and the count data
the following transformation that maps from the real numbers to the real
positive numbers: f(z) = axz?, where a is a hyperparameter. In this study,
we do not sample the rows of Z corresponding to those subjects who do not
suffer from any of the 20 disorders, but instead fix these latent features to
zero. The idea is that the bg terms must capture the general population, and

we use the active components of the matrix Z to characterize the disorders.

’ Description \ Type of variable ‘
Sex Categorical with 2 categories
Age Count data
Census region Categorical with 4 categories
Race/ethnicity Categorical with 5 categories
Marital status Categorical with 6 categories
Highest grade or years of | Ordinal with 14 categories
school completed
BMI Positive real

Table 7.2: Enumeration of the 8 selected questions related to the social
background of the subjects.
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7.2.2 Results

1. Sex. We model the gender information of the participants in the
NESARC as a categorical variable with two categories: {‘male’, ‘female’},
being percentage of males in the NESARC around 43%. After running
our inference algorithm with the diagnoses of the 20 disorders and the
sex of the subjects as input data, we obtain three latent features. In
Table 7.3, we show the empirical probability of possessing each of the
inferred latent features, i.e., the number of subjects in the database that
possess each latent feature divided by the total number of subjects. In
Figure 7.7a, we show the probability of meeting each diagnostic criteria
for the latent feature vectors z, shown in the legend and in the database
(baseline). Note that the obtained latent features are similar to the ones
in Figure 7.1, i.e., Feature 1 (pattern [100]) mainly models the seven PDs,
Feature 2 (pattern [010]) models the alcohol and drug abuse disorders and
the antisocial PD, and Feature 3 (pattern [001]) models the anxiety and
mood disorders. Additionally, in Figure 7.7b, we show the probability of
being male and female for the latent feature vectors z,, shown in the legend
and the probability of being male and female in the database (baseline). In
Figure 7.7b, we observe that having not active features (pattern [000]), which
model people that so not suffer from any disorder, increases the probability
of being male with respect to the baseline probability, and therefore, it
indicates that females tend to suffer in a higher extent from psychiatric
disorders. Additionally, we observe that being male increases the probability
of Feature 1 (pattern [100]), while being female increases the probability
of Feature 3 (pattern [001]). Hence, from the analysis of Figure 7.7b, we
can conclude that, while women frequently suffer from mood and anxiety
disorders, PDs more often appear in men.

’ Active Feature \ Feature 1 \ Feature 2 \ Feature 3 ‘
| Empirical Prob. [ 0.0341 | 0.0470 | 0.0460 |

Table 7.3: Sex. Empirical probabilities of possessing at least one latent
feature, extracted directly from the inferred IBP matrix Z.

2. Age. Now, we focus on the age of the participants, which we model as
count data'. The numerical probability distribution over the age based on
the data is shown (and denoted by ‘baseline’) in Figure 7.8b. After running
our inference algorithm with the diagnoses of the 20 disorders and the age

We set the hyperparameter a in the transformation f(z) = az? to 1.

64



of the subjects as input data, we obtain three latent features. In Table 7.4,
we show the empirical probability of possessing each inferred latent feature.
Figure 7.8a shows the probability of meeting each diagnostic criteria for the
latent feature vectors z,, shown in the legend and in the database (baseline).
In addition to the baseline probability distribution, we plot in Figure 7.8b
the inferred probability distributions over the age when none or one of the
latent variables is active. In Figure 7.8b, we observe that introducing the
age of the participants as an input variable has change (with respect to
the features in Figure 7.1) the inferred latent features. In particular, we
observe that the obtained latent features mainly differ in the probability of
suffering from personality disorders (i.e., disorders from 14 to 20), being the
probability of suffering from disorders 1 to 13 similar for the three plotted
latent feature vectors. In this figure, we observe that the vector z, with no
active latent features (pattern [000]) is trying to capture the mean of the age
in the database (which coincides with middle-aged subjects, i.e., 30—50 years
old). Moreover, we observe that the subjects with the highest probability of
suffering from personality disorders (pattern [100]) are likely to be middle-
aged, followed in a decreasing order by young adults (pattern [010]) and
elderly people (pattern [001]). Additionally, if we focus on the differences
among the three features in disorders from 1 to 13, we also observe that,
while young and elderly people tend to suffer from depression, middle-aged
people tend to suffer from the bipolar disorder. Hence, based on Figure 7.8,
we can conclude that the bipolar disorder and the seven personality disorders
tend to show up in a higher extent in the mature age, while young and elderly
people tend to suffer from depression.

’ Active Feature \ Feature 1 \ Feature 2 \ Feature 3 ‘
| Empirical Prob. [ 0.0332 [ 0.0550 [ 0.0569 |

Table 7.4: Age. Empirical probabilities of possessing at least one latent
feature, extracted directly from the inferred IBP matrix Z.

3. Census Region. We model the census region information of the
participants in the NESARC as a categorical variable with four categories,
{‘northeast’, ‘midwest’, ‘south’, ‘east’}.  After running our inference
algorithm with the diagnoses of the 20 disorders and the census region
information of the subjects as input data, we obtain three latent features.
In Table 7.3, we show the empirical probability of possessing each of the
inferred latent features, i.e., the number of subjects in the database that
possess each latent feature divided by the total number of subjects. In
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Figure 7.7a, we show the probability of meeting each diagnostic criteria
for the latent feature vectors z, shown in the legend and in the database
(baseline). Note that the obtained latent features are similar to the ones
in Figure 7.1, i.e., Feature 1 (pattern [100]) mainly models all the PDs,
Feature 2 (pattern [010]) models the alcohol and drug abuse disorders and
the antisocial PD, and Feature 3 (pattern [001]) models the anxiety and
mood disorders. Additionally, in Figure 7.7b, we show the probability of
belonging to each region for the latent feature vectors z, shown in the
legend and in the database (baseline). In Figure 7.7b, we can observe that
the inferred probabilities are in general similar for the four considered latent
vectors z, and the baseline, except for Feature 1, which models the PDs and
slightly increases the probability of living in the northeast and decreases the
probability of living in the west of the U.S. Hence, since we do not appreciate
significant statistical differences, we can conclude that the location of the
subjects does not appear as an influential variable in the suffering of the
obtained latent psychiatric disorders.

] Active Feature \ Feature 1 \ Feature 2 \ Feature 3 ‘
| Empirical Prob. | 0.0335 [ 0.0385 [ 0.0440 |

Table 7.5: Census Region. Empirical probabilities of possessing at least one
latent feature, extracted directly from the inferred IBP matrix Z.

4. Race/Ethnicity. We model the race information of the
participants in the NESARC as a categorical variable with five categories,
{‘White, not Hispanic or Latino’, ‘Black, not Hispanic or Latino’,
‘American Indian/Alaska native, not Hispanic or Latino’, ‘Asian/Native
Hawaiian /Pacific Islander, not Hispanic or Latino’, ‘Hispanic or Latino’}.
After running our inference algorithm with the diagnoses of the 20 disorders
and the race of the subjects as input data, we obtain three latent features. In
Table 7.6, we show the empirical probability of possessing each of the inferred
latent feature, i.e., the number of subjects in the database that possess each
latent feature divided by the total number of subjects. In Figure 7.10a,
we show the probability of meeting each diagnostic criteria for the latent
feature vectors z, shown in the legend and in the database (baseline). Note
that the obtained latent features are similar to the ones in Figure 7.1, i.e.,
Feature 1 (pattern [100]) models the PDs, Feature 2 (pattern [010]) models
the alcohol and drug abuse disorders and the antisocial PD, and Feature
3 (pattern [001]) models the anxiety and mood disorders. Additionally, in
Figure 7.10b, we show the probability of belonging to each ethnic group
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for the latent feature vectors z, shown in the legend and in the database
(baseline). In this figure, we observe that all the probabilities, except the
pattern [100] for American Indian and Alaska natives (which can either be
due to a poor estimation of the probability of the less common race or mean
that American Indian and Alaska natives suffer in a less extent from PDs),
are close to the baseline and, therefore, we can conclude that the race of the
subjects does not influence the presence or absence of any of the three latent
psychiatric disorders (internalizing, externalizing or personality disorders).

’ Active Feature \ Feature 1 \ Feature 2 \ Feature 3 ‘
| Empirical Prob. | 0.0356 [ 0.0248 | 0.0533 |

Table 7.6: Race. Empirical probabilities of possessing at least one latent
feature, extracted directly from the inferred IBP matrix Z.

5. Marital Status. We now perform a similar analysis with the
marital status of the subjects, which we model as a categorical variable
with six categories, {‘Married’, ‘Living with someone as if married
(not currently married or separated from another person)’, ‘Widowed’,
‘Divorced’, ‘Separated’, ‘Never Married’ }. After running our inference
algorithm with the diagnoses of the 20 disorders and the marital status of the
subjects as input data, we obtain three latent features. In Table 7.7, we show
the empirical probability of possessing each of the inferred latent features.
In Figure 7.11a, we show the probability of meeting each diagnostic criteria
for the latent feature vectors z, shown in the legend and in the database
(baseline). Additionally, in Figure 7.11b, we show the probability of each
marital status for the latent feature vectors z, shown in the legend and in
the database (baseline). Since the probabilities under the four patterns are
similar to the probabilities in the baseline (except the pattern [001] for the
‘living with someone’ category), we can conclude from Figure 7.11b that the
marital status of the subjects does not influence the presence or absence
of any of the three latent psychiatric disorders (internalizing, externalizing
or personality disorders). The increase in the probability of being ‘Living
with someone as if married (not currently married or separated from another
person)’ under the pattern [001], seems to indicate that these subjects tend
to suffer in a higher extent from mood or anxiety disorders.

6. Highest Grade of School Completed. We now include in our analysis
the information about the grade of studies of the subjects, which we model
as an ordinal variable with the following fourteen categories, {‘No formal
schooling’, ‘completed grade K, 1 or 2’, ‘completed grade 3 or 4’, ‘completed
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’ Active Feature \ Feature 1 \ Feature 2 \ Feature 3 ‘
[ Empirical Prob. | 0.0362 [ 0.0433 [ 0.0404 |

Table 7.7: Marital Status. Empirical probabilities of possessing at least one
latent feature, extracted directly from the inferred IBP matrix Z.

] Active Feature \ Feature 1 \ Feature 2 \ Feature 3 ‘
| Empirical Prob. | 0.0341 [ 0.0379 [ 0.0469 |

Table 7.8: School. Empirical probabilities of possessing at least one latent
feature, extracted directly from the inferred IBP matrix Z.

grade 5 or 6’, ‘completed grade 7’, ‘completed grade &', ‘some high
school (grades 9-11)’, ‘completed high school’, ‘graduate equivalency degree
(GED)’, ‘some college (no degree)’, ‘completed associate or other technical
2-year degree’, ‘completed college (bachelor s degree)’, ‘some graduate or
professional studies (completed bachelor’s degree but not graduate degree)’,
‘completed graduate or professional degree (master’s degree or higher)’}.
After running our inference algorithm with the diagnoses of the 20 disorders
and the level of studies of the subjects as input data, we obtain three latent
features. In Table 7.8, we show the empirical probability of possessing each
of the inferred latent features, i.e., the number of subjects in the database
that possess each latent feature divided by the total number of subjects. In
Figure 7.12a, we show the probability of meeting each diagnostic criteria
for the latent feature vectors z, shown in the legend and in the database
(baseline). This figure shows that, although the three obtained features
increase the probability of suffering from all the disorders, Feature 1 (pattern
[010]) mainly increases the probability of suffering from disorders 13 to
20, i.e., personality disorders, Feature 2 (pattern [010]) mainly increases
the probability of suffering from disorders 1 to 5, i.e., drug and alcohol
abuse disorders (externalizing factor), and Feature 3 (pattern [001]) mainly
increases the probability of suffering from disorders 6 to 13, i.e., mood
disorders (internalizing factor). Additionally, in Figure 7.12b, we show
the probability of having each level of studies for the latent feature vectors
Z, shown in the legend and in the database (baseline). In this figure, we
observe that pattern [000] which models the people that do not suffer from
any disorder, decreases the probability of having a lower level or grade of
studies, increasing, in turn, the probability of suffering from any of the latent
disorders.
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7. Body Mass Index. Finally, since the NESARC collect the weight
and heigh of the participants, we have computed the BMI fo each subject
as BMI = % x 703. Figure 7.13b (dashed line) shows the
estimated probability density? given by the data in the NESARC. Note that
a BMI bellow 18.5 is classified as underweight, a BMI between 18.5 and 25
corresponds to normal (healthy weight), between 25 and 30 is classified as
overweight, and larger than 30 is classified as obesity. After running our
inference algorithm with the diagnoses of the 20 disorders and the BMI as
input data (being the BMI modeled as a positive real-valued variable?®), we
obtain four latent features. In Table 7.9, we show the empirical probability
of possessing each of the inferred latent feature, i.e., the number of subjects
in the database that possess each latent feature divided by the total number
of subjects. In Figure 7.13a, we show the probability of meeting each
diagnostic criteria for the latent feature vectors z,, shown in the legend and
in the database (baseline). In this figure, we observe that Feature 1 (pattern
[1000]) models the seven PDs, Feature 2 (pattern [0100]) models the alcohol
and drug abuse disorders and the antisocial PD, Feature 3 (pattern [0010])
models the anxiety and mood disorders , and Feature 4 (pattern [0001])
is similar to Feature 1 but it presents higher probability of suffering from
alcohol abuse disorder, mayor depression disorder (MDD) and dysthimia.
Additionally, Figure 7.13b shows the (estimated) baseline probability density
and the probability density over the BMI for the latent feature vectors z,
shown in the legend. Note that the pattern [0001] is trying to capture the
probability over the BMI in the database (baseline), matching the mean of
the BMI in the database. In Figure 7.8b, we observe that the suffering of
the seven PDs do not depend on the BMI, since Features 1 and 4 model
the seven PDs and cover all the possible values for the BMI. People with
Feature 4 present a lower BMI and tend to suffer in a higher extent from
alcohol abuse, mayor depression and dysthimia disorders than people with
Feature 1. Additionally, note that people that suffer from alcohol and drug
use disorders tend to present a lower BMI than general population (baseline)
while people that suffer from mood and anxiety disorders present a larger
BMI than the baseline.

2The estimated probability density is computed using the Matlab function ‘ksdensity’,
in which the estimate is based on a normal kernel function, and is evaluated at 100 equally
spaced points that cover the range of the data.

3We set the hyperparameter @ in the transformation f(x) = az? to 0.25.
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’ Active Feature \ Feature 1 \ Feature 2 \ Feature 3 \ Feature 4 ‘
| Empirical Prob. | 0.0420 | 0.0404 [ 0.0227 [ 0.0223 |

Table 7.9: BMI. Empirical probabilities of possessing at least one latent
feature, extracted directly from the inferred IBP matrix Z.
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Figure 7.7: Sex. (a) Probabilities of suffering from the 20 considered
disorders and (b) probability of belonging to each category for the latent
feature vectors z, shown in the legend and for the baseline.
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Figure 7.8: Age. (a) Probabilities of suffering from the 20 considered
disorders for the latent feature vectors z, shown in the legend and (b)
inferred probability distribution for the latent feature vectors z, shown in
the legend and baseline probability distribution.
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Chapter 8

Analysis of Personality
Disorders

8.1 Analysis of Diagnostic Criteria

Now, we study in more detail the seven personality disorders (PDs) in
the previous section. In order to identify the seven personality disorders,
psychiatrists have established specific diagnostic criteria for each of them.
These criteria correspond to affirmative responses to one or several questions
in the NESARC survey (detailed in Appendix D) and this correspondence is
shown in Table 8.1. Then, there exists a set of criteria to identify if a subject
presents any of the following personality disorders: avoidant, dependent,
obsessive-compulsive, paranoid, schizoid, histrionic and antisocial.

In this section, we analyze how the different criteria (and their
corresponding questions) are related. Our objective is to find the different
comorbidity patterns in the database. With this study, we aim at answering
the following three questions:

e Are the different criteria used to diagnose a disorder exchangeable (in
the sense that they just indicate the PD a subject suffers from) or,
on the contrary, different criteria indicate different aspects or levels of
suffering from the same PD?

e Are the comorbidity patterns related to the PDs or to their criteria?
We try to find out if the co-existence in a subject of two PDs is
independent of the specific diagnostic criteria that the subject meets
or, for instance, the probability of fulfilling a specific criterion of a PD
increases when the subject meets a criterion corresponding to another
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disorder.

e Are the criteria actually related to the disorders they were defined for,

or some of them are more related to other PDs?

] Question Code | Personality disorder and criterion |

| S10Q1A1-S10QI1B7 |

Avoidant (1 question per criterion)

|

] S10Q1A8-S10Q1B15 \ Dependent (1 question per criterion) \

S10Q1A16-S10Q1B17
S10Q1A18-S10Q1B23
S10Q1A24-S10Q1B25

OCPD criterion 1
OCPD criteria 2-7
OCPD criterion 8

S10Q1A26-S10Q1B29
S10Q1A30-S10Q1A31
S10Q1A32-S10Q1B33

Paranoid criteria 1-4
Paranoid criterion 5
Paranoid criteria 6-7

S10Q1A45-S10Q1B46
S10Q1A47-S10Q1B48
S10Q1A50-S10Q1B50
S10Q1A43-S10Q1B43
S10Q1A51-S10Q1B52
S10Q1A49-S10Q1B49 or
S10Q1A53-S10Q1B53

Schizoid criterion 1
Schizoid criteria 2-3
Schizoid criterion 4
Schizoid criterion 5
Schizoid criterion 6

Schizoid criterion 7

S10Q1A54-S10Q1B54 or
S10Q1A56-S10Q1B56
S10Q1A58-S10Q1B58 or
S10Q1A60-S10Q1B60
S10Q1A55-S10Q1B55
S10Q1A61-S10Q1B61
S10Q1A64-S10Q1B64
S10Q1A59-S10Q1B59 or
S10Q1A62-S10Q1B62
S10Q1A63-S10Q1B63
S10Q1A57-S10Q1B57

Histrionic criterion 1

Histrionic criterion 2

Histrionic criterion 3
Histrionic criterion 4
Histrionic criterion 5

Histrionic criterion 6

Histrionic criterion 7
Histrionic criterion 8

S11Q1A20-S11Q1A25
S11Q1A11- S11Q1A13
S11Q1A8- S11Q1A10
S11Q1A17- S11Q1A18
S11Q1A26- S11Q1A33
S11Q1A14- S11Q1A16
S11Q1A6 and S11Q1A19
S11Q8A-B

Antisocial, criterion 1
Antisocial, criterion 2
Antisocial, criterion 3
Antisocial, criterion 4
Antisocial, criterion 4
Antisocial, criterion 5
Antisocial, criterion 6
Antisocial, criterion 7

Table 8.1: Correspondence between the criteria for each personality disorder

and questions in NESARC.
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Figure 8.1: Variational lower bound L(H,H,) at each iteration.

8.1.1 Experimental Setup

In the present analysis, we consider as input data the fulfilment of the 52
criteria (i.e., R = 2) corresponding to all the disorders for the 43,093 subjects
and apply the variational inference algorithm truncated to K = 25 features,
as detailed in Section 4.2, to find the latent structure of the data.

In order to properly initialize the huge amount of variational parameters,
we have previously run six Gibbs samplers (combined with the Laplace
approximation to compute the marginal likelihood) over the data but taking
only the criteria corresponding to the avoidant PD and another PD (that
is, the seven criteria for avoidant PD and the seven for dependent PD, the
criteria for avoidant PD with the eight for the OCPD, etc.) for 10,000
randomly chosen subjects. After running the six Gibbs samplers, we obtain
18 latent features that we group in a unique matrix Z to obtain weighting
matrices B‘lf/[ Ap> Which are used to initialize some parameters v,; and gbzr.
We do this because the variational algorithm is sensitive to the starting
point and a random initialization would not produce good solutions.

We run enough iterations of the variational algorithm to ensure
convergence of the variational lower bound (the lower bound at each iteration
is shown in Figure 8.1). We construct a binary matrix Z by setting each
element z,, = 1 if v, > 0.5.

8.1.2 Results

In Table 8.2, we show the probability of occurrence of each feature (top
row), as well as the probability of having active only one single feature
(bottom row). We also show the ‘empirical’ and the ‘product’ probabilities
of possessing at least two latent features in Table 8.3, and the probabilities of
possessing at least two features given that one of them is active in Table 8.4.
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In Figure 8.2, we plot the probability of meeting each criterion in
the general population (dashed line) and the probability of meeting each
criterion for those subjects that do not have any active feature in our model
(solid line). There are 15,185 subjects (35.2% of the population) which
do not present any active feature, and for these people the probability of
meeting any criterion is reduced significantly.

We have found results that are in accordance with previous studies and at
the same time provide new information to understand personality disorders.
Out of the 10 features, 6 of them directly describe personality disorders.
Feature 1 increases the probability of fulfilling the criteria for OCPD, Feature
3 increases the probability of fulfilling the criteria for antisocial, Feature
4 increases the probability of fulfilling the criteria for paranoid, Feature
5 increases the probability of meeting the criteria for schizoid, Feature 8
increases the probability of fulfilling the criteria for histrionic and Feature 7
increases the probability of meeting the criteria for avoidant and dependent.

In Figure 8.3, we plot the probability ratio between the probability of
meeting each criterion when a single feature is active with respect to the
probability of meeting each criterion in the general population (baseline
in Figure 8.2). So, if the ratio is above one, it means that the feature
increases the probability of meeting that criterion with respect to the general
population. In all these plots, we also show the probability ratio between
not having any active feature and the general population, which serves as
a reference for a low probability of fulfilling a criterion. Note that the
scale on the vertical axis may be different through all the figures for a
better display. In Figure 8.3, we can see that only the criteria for one
of the personality disorders is systematically above one, when one feature is
active, except for Feature 7 that increases the probability for both avoidant
and dependent. In the figure, we can also notice that when one feature
is active the probability of the criteria for the other disorders is above the
probability for the subjects that do not have any active feature, although
lower than the general population (above the solid line and below one). It
partially shows the comorbidity pattern for each personality disorder. For
example, Feature 1, besides increasing the probability of meeting the criteria
for OCPD, also increases the probability of meeting criterion 3 for schizoid
and criterion 1 for histrionic. It is also important to point out that Feature
8 increases significantly the probability of meeting criteria 1, 2, 4 and 6 for
histrionic (and mildly for criterion 7), but it does not affect criteria 3, 5
and 8, although the probability of meeting these criteria are increased by
Feature 4 (paranoid) and Feature 5 (schizoid). In a way, it indicates that
criteria 3 and 8 are more related to paranoid disorder and criterion 5 to
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schizoid disorder.

As seen in Figure 8.4, Features 2 and 6 mainly reduce the probability of
meeting the criteria for dependent PD. Feature 2 also reduces criteria 4-7 for
avoidant and mildly increases criterion 1 for OCPD, criterion 6 for schizoid
and criteria 5 and 6 for antisocial. Feature 6 also reduces some criteria
below the probability for the subjects with no active features. But for most
of the criteria the probability ratio moves between one and the ratio for the
subjects with no active feature. When these features appear by themselves,
the subjects might be similar to the subjects without any active feature,
they become relevant when they appear together with other features. These
features are less likely to be isolated features than the previous ones, as
reported in Table 8.2. For example, Feature 2 appears frequently with
Features 1, 3, 4 and 5, as shown in Table 8.4, and the probability ratios
are plotted in Figure 8.5 and compared to the probability ratio when each
feature is not accompanied by Feature 2. We can see that when we add
Feature 2 to Feature 1, the comorbidity pattern changes significantly and it
results in subjects with higher probabilities of meeting the criteria for every
other disorder except avoidant and dependent. Additionally, when we add
Feature 2 to Feature 5, we can see that meeting the criteria for schizoid is
even more probable, together with criterion 5 for histrionic.

Either Feature 1 or Features 1 and 3 typically accompany Feature 6, and
Feature 6 is seldom seen by itself (see Tables 8.2 and 8.5). In Figure 8.6,
we show the probability ratio when Feature 1 is active and when Features
1 and 3 are active, as reference, and when we add Feature 6 to them.
Adding Feature 6 mainly reduces the probability of meeting the criteria
for dependent. It is also relevant to point out that Features 1 and 3 increase
the probability of meeting the criteria 5 and 6 for paranoid, while Feature
4 mainly increased the probability of meeting the criteria 1-4 for paranoid
personality disorder, as shown in Figure 8.3.

Feature 9 is similar to Feature 7, as it captures an increase in the
probability of meeting the criteria for avoidant and dependent, but it never
appears isolated and most times it appears together with Features 1 and 4.

Feature 10 never appears isolated and it mainly appears only with
Feature 1. This feature by itself only indicates that the probability of all
the criteria should be much lower than the subjects with no active features,
except for antisocial, which behaves as the subjects with no active features.
When we add Feature 1 to Feature 10, we get that the probability of meeting
the criteria for OCDP goes to that of the subject with no active features, as
can be seen in Figure 8.7. For us this is a spurious feature that is equivalent
to not having any active feature and that the variational algorithm has not
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been able to eliminate. This is always a risk when working with flexible
models, like BNP, in which a spurious component might appear when it
should not. These components can be eliminated by common sense in most
cases or by further analysis by experts (psychiatric experts in our case).
But it can also indicate an unknown component that can point towards a
new research direction previously unknown, which is one of the attractive
features of using generative models.

Besides the comorbidity patterns shown by the individual features that
we have already reported, we can also see that almost all the features
are positively correlated. In Table 8.3, we show the probability that any
two features appear together (upper triangular sub-matrix) and the joint
probability that we should observe if the features were independent (lower
triangular sub-matrix). Ignoring Feature 10, all of the other features are
positively correlated, except Features 2 and 7 and Features 8 and 5 that seem
uncorrelated (the differences are not statistically significant). Most of the
features are strongly correlated and the differences in Table 8.3 correspond
to several standard deviations higher (between 3 and 42) than we should
expect from independent random observations. For example, the correlation
between Features 4 and 9 and Features 4 and 7 is quite high and both
show subjects with higher probability of meeting the criteria for avoidant,
dependent and paranoid. The difference between Features 7 and 9 is given by
the criteria 1-4 for paranoid PD, that are significantly increased by Feature 9
and slightly by Feature 7, as it can be seen in Figure 8.8. Finally, it is worth
mentioning that Feature 4 (paranoid) is the most highly correlated feature
with all the others, so we can say that anyone suffering from paranoid PD
has a higher comorbidity with any other personality disorder.

[Feat. | 1 | 2 [ 3 | 4 | 5 [ 6 [ 7 [ 8 ] 9 [ 10|
Total | 43.45 [ 19.01 [ 15.28 [ 13.99 [ 11.76 [ 8.97 [ 7.54 [ 6.91 | 1.86 | 1.43
Single | 13.48 | 3.62 | 2.22 [ 1.34 [ 227 [ 049 [ 0.76 [ 1.07 | 0 0

Table 8.2: Probabilities (%) of possessing (top row) at least one latent
feature, or (bottom row) a single feature.
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[Feat. [ 1 | 2 | 3 [ 4 [ 5 | 6 | 7 [ 8 [ 9 | 10 |
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Table 8.3: Probabilities (%) of possessing at least two latent features. The
elements above the diagonal correspond to the ‘empirical probability’, that
is, extracted directly from the inferred IBP matrix Z, and the elements below
the diagonal correspond to the ‘product probability’ of the corresponding
two latent feature probabilities given in the first row of Table 8.2.
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Figure 8.2: Probability of meeting each criterion. The probabilities when
no latent feature is active (solid curve) have been obtained using the
matrices B¢ ,p, while the baseline (dashed curve) has been obtained taking
into account the 43,093 subjects in the database. (AvPD=Avoidant PD,
DPD=Dependent PD, OCPD=0bsessive-compulsive PD, PPD=Paranoid
PD, SPD=Schizoid PD, HPD=Histrionic PD, APD=Antisocial PD)
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)

ey 1 2 3 4 5 6 7 8 9 10
1 100 | 22.83 | 20.63 | 19.53 | 13.05 | 16.62 | 11.33 | 8.85 | 3.37 | 3.27
2 52.19 | 100 | 23.33 | 23.90 | 19.32 | 10.00 | 7.51 | 10.95 | 3.75 | 1.09
3 58.68 | 29.03 | 100 | 21.54 | 14.29 | 19.66 | 13.25 | 10.34 | 3.51 | 1.29
4 60.63 | 32.47 | 23.52 | 100 | 19.97 | 13.65 | 17.05 | 10.02 | 8.92 | 0.20
) 48.22 | 31.25 | 18.57 | 23.77 | 100 | 11.11 | 11.49 | 7.24 | 4.88 | 0.00
6 80.47 | 21.18 | 33.47 | 21.29 | 14.56 | 100 | 12.23 | 8.92 | 4.86 | 1.53
7 65.26 | 18.92 | 26.83 | 31.63 | 17.91 | 14.55 | 100 8.65 | 3.66 | 0.03
8 55.62 | 30.11 | 22.86 | 20.28 | 12.32 | 11.58 | 9.43 100 | 7.39 | 1.07
9 78.46 | 38.23 | 28.77 | 67.00 | 30.76 | 23.41 | 14.82 | 27.40 | 100 | 0.12
10 99.19 | 14.40 | 13.75 | 1.94 | 0.00 | 9.55 | 0.16 | 5.18 | 0.16 | 100

Table 8.4: Probabilities (%) of possessing at least features ki and ko given
that ki is active, i.e., (Egzl anlznkQ) / (Zgzl anrl)'
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Figure 8.3: Probability ratio of meeting each criterion, with respect to the
baseline. These probabilities have been obtained using the matrices Bf\l/[ AP
when none or a single feature is actiéff (the legend shows the active latent
features).



Features
# Occurrences TT9 7374151617879 10
1 15185 oOo(ojojojojojofofjoj| o
2 5811 1{0(0|0|JO0O]O|O]O]O] O
3 1561 oO(1jo0j0j0|j0jO0O|O|O] O
4 1389 1{1(0|0|]0]O0O|O]O]O0O] O
5 1021 1{0(1|0]J]0]0|0O]O]O0] O
6 977 o(ojojojrjo0j0f0|0] O
7 958 1{0(0|0]J0O|1T|0]0O]O0] O
8 956 o(oj1j0j0|0j0O|O|0O] O
9 946 1{0(0|1]0]0|0O]0O]O0] O
10 687 1{0(0|0|1]0|0]0O]O0] O
11 576 0O(ojoj1j0|10(0|0|0] O
12 553 1{0(0|0]JO0O]O|1]0]O0] O
13 495 o(1jo0;(0j1j0{0(0|0] O
14 486 1{0(0|0]JO0O]O|O]1]0] O
15 460 0O(ojojojojojof1ryo0j]o0
16 451 o(1|j1j0j0|0|0O|O|O] O
17 438 1{0({0|0]0O]O0O|O]O0O]O0] 1
18 414 1/0(1]0|0O]1]|0]|]0O|0O] O
19 385 oO(1j0j1j010j0|0|0] O
20 370 1{1(0|1]0]0|0]0O]O0] O

Table 8.5: List of the 20 most common feature patterns.
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Figure 8.4: Probability ratio of meeting each criterion, with respect to the

baseline. These probabilities have been obtained using the matrices Bf\l/I AP
when none or a single feature is active (the legend shows the active latent

features).

85



TTTTTTT TT T T TTrTT T T 11 T TTTTTTT TTTTTTT TTTTTTTT TTT T TTT
None ?CPé
g3 |---Fi i I
=
S ||-- F1&F2 i SPD
14 L = HPD - : APD
-2t Vi : s r R
5 SANL SER g
e DPD W4yt o PPD Al Nt TR
o, v Voot N v A v
1 AvPD /\,-_\/‘ ‘,]\~/ 1 ST N R i \
’ 5 B Y YLl A
ol \ - \ ’
M N W e VM N AN
1234567 12345678 12345678 1234567 1234567 12345678 1234567
Criterion
10 TTTTTTT TT T T TTTT TTTTTTTT TTTTTTT TTTTTTT TTTTTTTT TTT T TTT
1
sl None A
g ICE APD !
=
T g |-- F3&F2
6
14 B A
el SR
L eV
o 4 J
o A
2F : : SPD : Yom=o
AvPD .DPD_° | OCPD PPD : .. /“HPD L N
RSN ST N Nzt (o, s r:/\\a/—ﬂ"« ;vé\%;—w—« R SN =
1234567 12345678 12345678 1234567 1234567 12345678 1234567
Criterion
e s et A
None PPD
o3|~ -F4 Lo 1
® |- F4 & F2 e
o 1241 L SPD ;
sl (RS [ APD ]
Lo .
De_ DPD /\\‘_ 1 EPU HPDI’ Iyt
1+ \E 2 i N : Y o
AVPD BT LOCPD R N
Y 2 SR ~ - P . A
o \Sil TN
Or:v—v};‘r"b\« 4‘~r\4‘\WH—O—M\\\\\\\ \\\\M
1234567 12345678 12345678 1234567 1234567 12345678 1234567
Criterion
L e L B
' SPD None
vVone oy
83 TR ---F5 A
§ VT Rkt F5 & F2
- oL L HPD 4
o ne i
o v i\
o ! - APD
&4 APD [ DPD . ocPD PPD Y AR .
’ AN N RS L Nt Nt
SR AN by ,? LAY \/\/ PR RS \
0 M NG NN s N M Wﬁ? SAVEN
1234567 12345678 12345678 1234567 1234567 12345678 1234567
Criterion

Figure 8.5: Probability ratio of meeting each criterion, with respect to the
baseline. These probabilities have been obtained using the matrices B‘lf/[ AP
when none, a single or two features are active (the legend shows the active
latent features).
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Figure 8.6: Probability ratio of meeting each criterion, with respect to the
baseline. These probabilities have been obtained using the matrices Bﬁ/[ AP
when none, a single or several features are active (the legend shows the
active latent features).
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Figure 8.7: Probability ratio of meeting each criterion, with respect to the
baseline. These probabilities have been obtained using the matrices Bﬁ/{ AP
when none, a single or two features are active (the legend shows the active
latent features).
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Figure 8.8: Probability ratio of meeting each criterion, with respect to the
baseline. These probabilities have been obtained using the matrices Bf\l/[ AP
when none, a single or two features are active (the legend shows the active
latent features).

8.2 Analysis of the Survey Responses

In the previous study, we have worked with the results obtained after
processing the responses to the survey, i.e., the fulfilment of the criteria. As
detailed above, these criteria correspond to affirmatively answering to one or
a set of questions (see Table 8.1). According to the codebook of the NESARC
database, the questions are organized in pairs: there is a first question
(coded in Table 8.1 as SI0Q1AX) with three possible responses, ‘yes’, ‘no’
and ‘unknown’; and a second question (coded in Table 8.1 as S10Q1BX)
that is asked only in case the subject has responded affirmatively to the
former. Hence, for each pair of questions, we find five possible outcomes:
‘no’, ‘unknown’, ‘yes+no’, ‘yes+unknown’ and ‘yes+yes’. Based on these
responses, the psychiatrists consider that a subject meets a criterion if the
subject has answered affirmatively to the first question of the pair, i.e., if she
has responded ‘yes-+no’, ‘yes+unknown’ or ‘yes+yes’ to the pair of questions
that define a criterion. Moreover, for those criteria with more than one
associated (pairs of) questions, they assume that the subject satisfies the
criterion if she has answered ‘yes+no’, ‘yes+unknown’ or ‘yes+yes’ to any
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(of the pairs) of questions.

However, based on the previous results, we believe that there is further
information about the comorbidity patterns among psychiatric disorders in
the responses to the survey. As a consequence, in this section we work
directly with the responses of the people to the survey with the aim of
answering the following set of questions:

e Are the different questions designed to diagnose each PD actually
related to the disorder they were defined for, or some of them are
more related to another PD?

e Do the subjects that suffer from different disorders respond in a
different way to the questions? In other words, do the different
disorders present different response patterns?

e How are the questions related among them?

8.2.1 Experimental Setup

In this study, we use the responses to Section 10 in NESARC database
as input data to the IBP. This section of the NESARC contains 55 pairs
of questions used to diagnose the six following PDs: avoidant, dependent,
obsessive-compulsive, paranoid, schizoid and histrionic. We consider each
pair of questions as a unique input which takes five possible values: ‘no’,
‘unknown’, ‘yes+no’, ‘yes+unknown’ and ‘yes+yes’.

For this experiment, we resort to the model and inference detailed in
Chapter 5, assuming that all the attributes in the database are categorical
with five categories. We set o = 1, 05 =1and 0']23 = 1, and run the inference
algorithm detailed in Section 5.2. In order to get more interpretable results,
we do not sample the rows of Z corresponding to those subjects who
responded negatively to the 55 questions but instead fix these latent features
to zero. The idea is that the bias terms capture the general population, and
we use the active components of the matrix Z to characterize the disorders.

8.2.2 Results

After running our inference algorithm, we obtain eight latent variables. In
Table 8.6, we show the probability of occurrence of each feature (top row),
as well as the probability of having active only one single feature (bottom
row). In this table, we observe that there are two groups of latent features:
the first two most common features that are active in more than 35% of the
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people and appear half of the times as unique features; and the remaining six
features that are active only in a few subjects and rarely appear as unique
features.

In Figure 8.9, we plot the probability of answering ‘no’ to each question
in the general population (dashed line) and the probability of answering ‘no’
to each question for those subjects that do not have any active feature in our
model (solid line). We obtain that 34.81% of the population do not have any
active feature and, therefore, their answers are explained with the bias term.
This result is in agreement with the ones obtained in the previous study,
where 35.2% of the population was also explained with the bias term. As
expected, people with no active latent features present higher probability
of answering negatively to all the questions than the general population
represented with the dashed line, being these probabilities higher than 0.9
for all the questions.

Now, we focus on Features 1 and 2, which are the most active features
in the population. In Figure 8.10, we show the probability ratio between
the probability of the response ‘yes+no’ for all the questions when Feature
1 appears as the unique active feature with respect to the probability of the
‘yes+no’ response in the general population. Similarly, we plot in Figure 8.11
the probability ratio between the probability of the responses ‘yes+no’ and
‘unknown’ when only Feature 2 is active with respect to the probability of
the ‘yes+no’ and ‘unkown’ responses in the general population. Note that, if
the ratio is above one, it means that the feature increases the probability of
this response with respect to the general population. The different scales on
the vertical axis provide a better display. In these figures, we observe that
subjects that have active either Feature 1 or Feature 2 correspond to people
that do not suffer from any disorders but have responded ‘yes+no’ to some
pairs of questions mainly related to, respectively, schizoid PD (questions 1,
5 and 9) and obsessive compulsive PD (questions 1 and 10). Additionally,
Feature 2 increases the probability of answering ‘unknown’ to question 10
of obsessive compulsive PD and question 4 of histrionic DP.

In Figure 8.12, we show the probability ratio between the probability of
the responses ‘yes+no’ and ‘unknown’ for all the questions when Feature 3
appears as the unique active feature with respect to the probability of the
‘yves+no’ and ‘unknown’ responses in the general population. We find in
Figure 8.12 that subjects with Feature 3 active present higher probability
than the general population of answering ‘yes+no’ to some questions (1, 4
and 5) related to histrionic PD; and ‘unknown’ to questions 9 and 10 of
OCPD, and question 4 of HPD.

In Figure 8.13, we show the probability ratio for the response ‘unknown’
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when Feature 4 appears as the unique active feature. Clearly, Feature 4
models those subjects that answer ‘unknown’ to all the questions, i.e., those
that did not want to respond to the survey.

In Figure 8.14, we show the probability ratio for the response ‘yes+yes’
when Feature 5 appears as the unique active feature. Feature 5 captures
an increase up to 10 times in the probability of answering affirmatively
to the questions related to avoidant PD (and dependent PD). In addition,
we observe in this figure that people that suffer from avoidant PD and
dependant PD also tend to answer affirmatively to question 9 of paranoid
PD, question 2 of schizoid PD, and question 10 of histrionic PD.

In Figure 8.15, we show the probability ratio for the responses ‘yes+yes’
and ‘unknown’ for all the questions when Feature 6 appears as the
unique active feature. Feature 6 mainly captures the affirmative (and
also ‘unknown’, although to a lesser extent) to the questions designed
to diagnose paranoid PD. It also increases the probability of answering
‘yes+yes’ (or ‘unknown’) to some of the questions related to obsessive
compulsive (questions 5, 7, 9 and 10) and histrionic PDs (questions 2 and
4).

In Figure 8.16, we show the probability ratio between the probability
of the response ‘yes+yes’ when Feature 7 appears as the unique active
feature with respect to the probability of answering ‘yes+yes’ in the general
population. Feature 7 captures an increase in the probability of the
affirmative response (i.e., ‘yes+yes’) for all the questions, and specially, in
the questions related to avoidant, dependent and paranoid PDs. Therefore,
a subject with Feature 7 active suffers from several PDs and, according to
the results in Chapter 7, would present a high grade or severity of suffering
of personality disorders.

In Figure 8.17, we show the probability ratio between the probability
of the response ‘yes+no’ when Feature 8 appears as the unique active
feature with respect to the probability of answering ‘yes+no’ in the general
population. Feature 8 captures an increase in the probability of the ‘yes+no’
response for the questions related to avoidant, paranoid and schizoid PDs.
This feature models those subjects that respond affirmatively to the first
question of the pair of questions and negatively to the second question, and
therefore, those subject with a moderate suffering of several disorders.

Additionally, in Table 8.7, we show the 20 most common feature patterns
in the database, which capture 98.65% of the population. We have divided
this table into two groups of features: the first group with Features from
1 to 4, which are the most common features and model responses ‘yes+no’
and ‘unknown’; and a second group with Features from 5 to 8, which model
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the PDs. In this table, we observe that Feature 8 does not appear in any of
the most common patterns. There are 12 patterns (patterns 1-9, 12, 14 and
17) for which only features in the first group are active. In the remaining 8
feature patterns, one of the latent features in the second group (i.e., Features
5, 6 and 7) are combined with the features in the first group to model
the subjects with higher risk of suffering from one or several personality
disorders.

As a summary, we find that besides the 34.81% of the population without
any active feature, there is another 38% of the population (see bottom row
in Table 8.6), corresponding to the subjects that have Features 1, 2 or 3
as unique feature, that do not suffer from any disorder but have higher
probability of answering ‘yes+no’ to some of the questions. Feature 5 models
the subjects that suffer from avoidant and dependent PDs, and Feature 6
models paranoid PD with obsessive compulsive and histrionic tendencies.
In contrast to the previous section, we only obtain a latent feature to model
the affirmative responses (i.e., ‘yes+yes’) for all the questions associated to
avoidant and dependant PDs, and paranoid PD. For the remaining disorders
(i.e., obsessive compulsive, schizoid, and histrionic PDs), we find that the
‘yes+yes’ and ‘yes+no’ responses are modeled in general by the same latent
variable. Finally, we remark that, as shown by all the results in this chapter,
the comorbidity patterns are more related to different aspects (criteria or
questions) that characterize the disorders than to the PDs themselves.

[Feat. [ 1 [ 2 [ 3 [ 4] 5 [ 6] 78]
Total | 38.53 | 36.78 | 7.83 | 3.33 | 2.96 | 1.15 | 0.67 | 0.45
Single | 19.09 | 17.82 | 1.35 | 1.12 | 0.002 | 0.12 | 0.06 | 0.04

Table 8.6: Probabilities (%) of possessing (top row) at least one latent
feature, or (bottom row) a single feature.
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Figure 8.9: Probability of answering ‘NO’ to each question. The
probabilities when no latent feature is active (solid curve) have been obtained
using the inferred matrices B?, while the baseline (dashed curve) has
been obtained taking into account the 43,093 subjects in the database.
AvPD=Avoidant PD, DPD=Dependent PD, OCPD=0bsessive-compulsive
PD, PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic PD.
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Figure 8.10: Probability ration of answering ‘YES+NO’ to each question
with respect to the baseline. The probabilities when none or only one latent
feature is active have been obtained using the inferred matrices B?, while the
baseline has been obtained taking into account the 43,093 subjects in the
database. AvPD=Avoidant PD, DPD=Dependent PD, OCPD=0Obsessive-
compulsive PD, PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic

PD.
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Figure 8.11: Probability ratio of answering ‘YES+NO’ and ‘UNKNOWN’
to each question, with respect to the baseline. The probabilities when none
or only one latent feature is active have been obtained using the inferred
matrices B%, while the baseline has been obtained taking into account the
43,093 subjects in the database. AvPD=Avoidant PD, DPD=Dependent
PD, OCPD=0bsessive-compulsive PD, PPD=Paranoid PD, SPD=Schizoid
PD, HPD=Histrionic PD.
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Figure 8.12: Probability ratio of answering ‘YES4+NO’ and ‘UNKNOWN’

to each question, with respect to the baseline. The probabilities when none
or only one latent feature is active have been obtained using the inferred
matrices B¢, while the baseline has been obtained taking into account the
43,093 subjects in the database. AvPD=Avoidant PD, DPD=Dependent
PD, OCPD=O0bsessive-compulsive PD, PPD=Paranoid PD, SPD=Schizoid

PD, HPD=Histrionic PD.
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Figure 8.13: Probability ratio of answering ‘UNKNOWN’ to each question,
with respect to the baseline. The probabilities when none or only one latent
feature is active have been obtained using the inferred matrices B¢, while the
baseline has been obtained taking into account the 43,093 subjects in the
database. AvPD=Avoidant PD, DPD=Dependent PD, OCPD=0Obsessive-
compulsive PD, PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic

PD.
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Figure 8.14: Probability ratio of answering ‘YES+YES’ to each question,
with respect to the baseline. The probabilities when none or only one latent
feature is active have been obtained using the inferred matrices B¢, while the
baseline has been obtained taking into account the 43,093 subjects in the
database. AvPD=Avoidant PD, DPD=Dependent PD, OCPD=0Obsessive-
compulsive PD, PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic
PD.
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Figure 8.15: Probability ratio of answering ‘YES+YES’ and ‘UNKNOWN’
to each question, with respect to the baseline. The probabilities when none
or only one latent feature is active have been obtained using the inferred
matrices B¢, while the baseline has been obtained taking into account the
43,093 subjects in the database. AvPD=Avoidant PD, DPD=Dependent
PD, OCPD=0bsessive-compulsive PD, PPD=Paranoid PD, SPD=Schizoid
PD, HPD=Histrionic PD.
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Figure 8.16: Probability ratio of answering ‘YES+YES’ to each question
b

with respect to the baseline. The probabilities when none or only one latent
feature is active have been obtained using the inferred matrices B¢, while the
baseline has been obtained taking into account the 43,093 subjects in the
database. AvPD=Avoidant PD, DPD=Dependent PD, OCPD=0bsessive-
compulsive PD, PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic
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Figure 8.17: Probability ratio of answering ‘YES+NO’ to each question,
with respect to the baseline. The probabilities when none or only one latent
feature is active have been obtained using the inferred matrices B?, while the
baseline has been obtained taking into account the 43,093 subjects in the
database. AvPD=Avoidant PD, DPD=Dependent PD, OCPD=0Obsessive-
compulsive PD, PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic

PD.
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2
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18
19
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Table 8.7: List of the 20 most common feature patterns.
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Chapter 9

Summary and Conclusions

9.1 Summary and Final Remarks

In this section, we summarize the main ideas and findings exposed
throughout the thesis. We also provide some final remarks that open the
future lines of research detailed in Section 9.2. Similarly to the Introduction,
we split the summary into two parts: a first part that contains a summary of
the Bayesian nonparametric algorithms proposed in the thesis, and a second
part with a summary of the results.

9.1.1 Technical Details

In this section, we provide a summary of Chapters 3 to 5 of the thesis, i.e.,
a summary of the technical contributions of this thesis.

IBP model for Categorical Observations

In Chapter 3, we have extended the IBP model to deal with categorical
observations. Specifically, we have considered two likelihood observation
models (a multinomial-logit and a multinomial-probit model) and,
motivated by our specific application, we have extended the IBP prior in two
ways: 1) We have included a bias term; and ii) we have extended the model
to account for bounded real-valued latent variables, instead of on-off latent
features. For the proposed models, we have derived in Chapter 4 several
MCMC based inference algorithms and a variational inference algorithm.
Specifically, we have proposed an (approximated) collapsed Gibbs sampler
in which the marginal likelihood is approximated using either the Laplace
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approximation or the EP algorithm under, respectively, the multinomial-
logit or the multinomial-probit model. Additionally, we have proposed an
MH based algorithm to infer the latent variables in the continuous feature
model.

Note that, although our work has been motivated by our specific
psychiatric application, the proposed models and the corresponding
inference algorithms are general enough to be applicable in any context
dealing with categorical observations. We also remark that, although both
approximations present linear complexity with the number of observations,
the EP algorithm presents higher computational cost than the Laplace
approximation because it needs several iterations of both the inner and outer
loops at each step of the Gibbs sampler algorithm. But, in turn, the EP
algorithm also provides more accurate estimates of the marginal likelihood.

IBP model for Heterogeneous Observations

In Chapter 5, we have proposed a general observation model for the IBP
that allows us to handle mixed continuous and discrete variables. More
specifically, the proposed model is able to manage real-valued, positive real-
valued, categorical, ordinal, and count data. For this model, we have derived
an MCMC inference algorithm, based on the accelerated Gibbs sampler for
the IBP [18], that scales linearly with the number of observations. This
algorithm performs exact inference, being the computation of marginal
likelihood analytically tractable, by introducing an auxiliary Gaussian
variable such that, conditioned on this variable, it resembles the standard
Gaussian IBP model.

This model provides an efficient and general Bayesian approach for
applying probabilistic modeling to heterogeneous databases, which are very
common in real applications. Finally, note that the proposed model when
dealing with categorical observations coincides with the one in Chapter 3
under the multinomial-probit likelihood function but, in contrast to the
inference algorithm proposed in Chapter 4, the introduction of the auxiliary
Gaussian variable allows for exact inference. However, although both
algorithms (the ones in Chapter 4 and the one in Chapter 5), collapse
the weighting factors by computing (either approximately or exactly) the
marginal likelihood, the introduction of an auxiliary variable (that needs
to be sampled) may deteriorate the mixing performance of the algorithm.
Therefore, an extensive study of the mixing properties of the proposed
algorithms (i.e., the approximate and exact collapsed Gibbs samplers and
the variational inference algorithm) appears as an interesting future research
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line.

9.1.2 Experiments

In this section, we provide a summary of the main results obtained in the
second part of the thesis, i.e., in Chapters 6 to 8.

Analysis of Suicide Attempts

In this study, we have applied the IBP model for categorical observations
(under the multinomial-logit likelihood observation model) to the NESARC
database to find the hidden features that characterize the suicide attempt
risk. From the analysis of how each inferred feature contributes to the suicide
attempt probability, we have found that our algorithm is able to detect the
people with the highest and the lowest risk of attempting suicide.

Let us remark that the proposed approach can be used to discard
significant portions of the population in suicide attempt studies and focus
on the groups that present much higher risk. Hence, our IBP for categorical
observations is able to obtain features that describe the hidden causes behind
suicide attempts and makes it possible to pin-point the people that have a
higher risk of attempting suicide.

Analysis of Psychiatric disorders

In Chapter 7, we have used the diagnoses of the 20 psychiatric disorders
available in the NESARC database to perform a thorough analysis of
the comorbidity patterns among these disorders. In this study, we have
considered the continuous latent feature model, in which the latent variables
take bounded real values. We have shown that the obtained results
are not only consistent with previous studies on the latent structure of
psychiatric disorders but also provide new insights. We have found that
the comorbidity patterns of common psychiatric disorders can be described
by a small number of latent features, even though the model has enough
a priori flexibility to account for a potentially unbounded number of
features. In addition, nosologically related disorders, such as social anxiety
disorder and avoidant personality disorder, tend to be modeled by similar
features. We have found that no disorder is perfectly aligned along one
single latent feature, which suggests that disorders can develop through
multiple etiological paths. For instance, the risk of nicotine dependence
may be high in individuals with a propensity towards externalization or
internalization, as suggested in [7]. We have observed that the 20 psychiatric
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disorders under study can be divided into three groups of latent disorders,
namely internalizing, externalizing and personality disorders. Furthermore,
comorbid disorders tend to be modeled by the same latent feature, i.e.,
tend to belong to the same group of latent disorders. The importance of
the severity factors in the model has also been proved, because they allow
explaining the comorbidity among the disorders and also understanding the
stress each subject suffers. The model without the severity factors cannot
distinguish between the different subjects that have the same active latent
features.

Then, we have made use of the IBP model for heterogeneous databases
to study the impact of the social background of the subjects in their
comorbidity patterns. In particular, we have studied how sex, age, census
region, race/ethnicity, marital status, highest grade or years of school
completed, and the BMI show up in the comorbidity patterns among the
20 considered psychiatric disorders. In this study, we have found that, in
agreement with previous studies, women tend to suffer from mood and
anxiety disorders (internalizing factor) in a higher extent than men, who
frequently suffer from personality disorders. Additionally, we have found
that the body max index (BMI) also influence the development of some
latent disorders, finding that people with larger BMI tend to suffer in a
higher extent from mood and anxiety disorders.

Analysis of personality disorders

In Chapter 8, we have performed a thorough analysis of the comorbidity
patterns among the seven PDs diagnosed using the data in the NESARC.
For this analysis, we have worked with the criteria that the psychiatrists
defined to diagnose these seven PDs, instead the diagnoses themselves. We
have found a latent feature to directly describe each personality disorder,
except the avoidant and dependent PDs that are modeled by the same latent
feature. We also found that paranoid PD is the most highly correlated PD
with all the others, so we can say that anyone suffering from paranoid PD
has a higher probability of suffering from comorbid PDs.

Afterwards, we have studied directly the responses to the NESARC
survey, instead of the fulfilment of the diagnostic criteria obtained after
processing the data. In this analysis, we have observed that approximately
38% of the population answer ‘yes+no’ to some of the pairs of questions used
to diagnose PDs. This makes us wonder if the way these questions are stated
provides useful information to detect those subjects that suffer from PDs,
or they should be reformulated in a way that provide the information we are
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looking for. Additionally, we have observed that the comorbidity patterns
are more related to specific questions rather than to PDs. For instance, once
a subject suffers from avoidant and dependent PDs, she also affirmatively
answers to some specific questions of paranoid, schizoid and histrionic PDs.

Another question that arises from our results is related to the avoidant
and dependent PDs, which in all the performed experiments are modeled
by a unique latent feature, which, in agreement with previous studies [24],
indicates that they are highly correlated. Therefore, we may wonder whether
avoidant and dependent PDs are two different PDs or, on the contrary, they
correspond to different levels of suffering from the same PD.

9.2 Future Work

Several extensions of this work can be performed in both machine learning
and psychiatry. On the one hand, we have possible future research lines
regarding the Bayesian nonparametric models and inference algorithms. As
we have pointed out before, the proposed models and inference algorithms
are general enough to be applicable in other areas distinct from psychiatry.
For instance, possible extensions of this thesis include: i) The development
of an alternative and more scalable inference algorithm for the proposed
continuous latent feature model; ii) a throughout analysis of the mixing
properties of the proposed MCMC based inference algorithms; or iii) the
derivation of a variational inference algorithm that, instead of bounding the
lower bound, directly approximates the lower bound, which would probably
provide better results [90]. Additionally, an interesting extension of the IBP
model for heterogeneous databases is the development of a general tool for
the estimation of missing data in such databases. Specifically, this model
is able to directly provide estimates of the missing data by exploiting the
information in the available data to learn the similarities among the objects
and how these latent features show up in the attributes that describe the
objects. Finally, the idea of introducing an auxiliary Gaussian variable,
i.e., a pseudo-observation, could be combined with other Bayesian models,
e.g., with the DP mixture model to perform clustering in heterogeneous
databases.

On the other hand, the exhaustive analysis of different problems in the
area of psychiatry has led to a set of open questions. Hence, the search of
the responses to these questions appears as a natural future line of research
in this area. In this work, we have focused on the study of the causes behind
suicide attempts and the comorbidity patterns of psychiatric disorders, but
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the NESARC database contains further information that can be used to
study other problems. For instance, we could study the hidden causes behind
substance use and abuse disorders. The NESARC database would also allow
for socioeconomical studies because, in addition to the information of the
mental health of the participants, it also contains information of the social
background of the participants such as their incomes or ethnicity, among
others. Finally, in order to study how the different disorders evolve with
time, we would need temporal information of the subjects. This study could
be analyzed by psychiatrists to better understand the different phases of a
disorder and, as a consequence, help them to detect and treat the subjects
beforehand, avoiding visits to the emergency rooms or even preventing
suicide attempts.
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Appendix A

Laplace Approximation

In this chapter we provide the necessary details for the implementation of
the Laplace approximation proposed in Section 4.1.1. The expression in
(4.6) can be rewritten as

N R
f(BY) = trace {MdTBd} - Z log <Z exp(znb,dr)>
n=1 r=1

1 RK
— — trace {BdTBd} — —— log(2n0%),

20% 2
where (Md)kr counts the number of data points for which z,q = r and
Znk = 1, namely, (M%), = Zivzl 0(xpg = 7)2nk, where 6(-) is the Kronecker
delta function. By definition, (M%)o, = Zivzl xpg =r1).

N
By defining (p%)s, = Zznkﬂ';d, the gradient of f(B?) can be derived
as =t .
Vf=M'-p?— B
9B

To compute the Hessian, it is easier to define the gradient Vf as a
vector, instead of a matrix, and hence we stack the columns of B into 8¢,
ie., B = B()) for avid Matlab users. The Hessian matrix can now be
readily computed taking the derivatives of the gradient, yielding

1

VVf =——1Irx + VViogp(x?3? Z)

2
0p
1

N
= T — Y (diag(mh) — (w5) "m0 ) @ (2,20),
9B n=1

105



where diag(m?) is a diagonal matrix with the values of the vector ¢ =

n
[7‘1’21, 777%, . ,WZ R] as its diagonal elements.
Finally, note that, since p(xd|,8d,Z) is a log-concave function of B¢
[13, p. 87], —=VV [ is a positive definite matrix, which guarantees that the
maximum of f(3%) is unique.
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Appendix B

Nested EP: Inner loop

The inner loop is an EP method that approximates by a Gaussian the tilted
distribution p,(3%), which can be expressed as

-~ d d\4d d

pu(BY) = ?n n(BY)tn(B%)

— L ymeiag, - //\/ U0, 1) | |<I><und+zn(b b)) | duta
z ) —\n -r

n

r;éz

Removing the marginalization with respect to the auxiliary variable g4
and defining Bfl as the vector compound of 8¢ and wu,g, namely, ﬁfl =

[(ﬁd)T, und} T, we have the augmented tilted distribution

R
B8l = et ) [Te (md)8f). (B2
r=1
ket

where we have defined Ily,, as a block-diagonal matrix formed from Il-,, and

&
1, Ap, = [)\In,()] ,and h?¢_ = [(exz —e)! @z, 1} . Here, ‘®’ denotes
the Kronecker product, and e, is the r-th unit (column) vector of the R-
dimensional standard basis. Note that we use the subscript ‘I’ to denote the
augmented variables that account for both B% and u,4. The normalization

term Z, is the same for p,(3%) and for the augmented distribution 7y, (3%),
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and it is defined as

Zo= [ anlB) N nalo. ) T] 2((0,)7 641 (B.3)

r#£zd

Due to the multinomial probit model, Eq. B.2 contains a product of
intractable functions of the scalar variables s, = (h% )T 3¢, allowing us to
apply a new inner EP loop, which is simpler than the outer loop since
it only involves scalar operations. Hence, the augmented distribution in
(B.2) can be approximated by replacing each intractable term ®(s,) with
a scaled univariate Gaussian site function with natural parameters a,,, and
BW, resulting in the approximate distribution

1 R
a1, (,Bfl) = FN(Bg‘Hi1A1n7 H Sr’a ﬁn'ra )

L, =
;Zlg (B.4)
d ~—1~ ~ —1
=N (B ’HIn )‘In,HIn )s
where the normalization constant Cfy, approximates Z\n
, =1t
We start from g, (s,) = N(8p|mpr, Unr), being my, = (hzr)Tl'[In AL,

~ 1
and vy, = (h%)"II; "h¢.. Then, the cavity distribution g,-.(s,) can be
written as
qn—vr(sr) = N(S’f“mn—ﬂ'y vn—\’l‘)a (B5)

which has mean my,,—, = vy (M /Vpyr — Bm) and variance vy = (1/vp, +
Gnr) L. The tilted distribution (including one true site),

~ 1
fnr(sr) = TQnﬁr(Sr)q)(sr)a (B6)

nr
has mean My, = Mp—y + PprUn—p, variance uvp, =  Upoyp —
Uy (pnr + Py T ) and normalization constant Cp, = ® (\/;’”r% ,

being
Mn—r
N (o)
Prr = - : (B.7)
P (7%14:;;,“) V14 vy

Finally, the site updates are computed as qn, = 1/Upr — 1/vp-r and

Brr = My [Unr — M-y /Un—r. Again, a damping factor of 7 can be used
in this step. In this case, the site updates can be obtained in parallel for
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the different values of r, afterwards recomputing the natural parameters of
a, (BY) as Ihy, = T, +32, 4,0 Gnrhif, (B) T and Ar, = A, +30, L0 Oorhis

The constants Cf, (which approximates Z, in Eq. B.2) and Cp,, in (B.4)
can be computed after meeting the stopping criterion as

R
~ 1 _
logCr, = > (1og Cor + Qlog(an»)
gt (B.8)
1 - 1 /T mmlx _
+ 5 log(IT, | — [T, ) + 5 (g, T, A, = AL TIMA ).

and

2
M- ~
) "+ Bur
log Cpy = log C Jrllo (Un—r + 1/ )+1 i
g Cnr = 108 Cppe 9 g Un—r nr 2 V=g 1/Un—|r+anr

(B.9)

Matrices ﬁn and /A\n of the outer loop can be obtained from ﬁIn and Xln
after removing the effects of the auxiliary variable u,,.
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Appendix C

Variational Inference
Derivation

C.1 Lower Bound Derivation

In this chapter we derive the lower bound £(H,H,) on the evidence p(X|H).
From Eq. (4.23),

log p(X|H) = E, [log p(¥, X|H)] + Hlq] + Dk 1(qllp)
> Eq [log p(¥, X|H)] + Hlq].

The expectation E, [log p(¥, X|H)] can be derived as

Eq [log p(¥, X[H)]
K D K D
Z [log p(vi|a)] +ZZEq [logp (b¢ ]JB)} ZE‘I [logp(bgla?g)}
k= %’_’ d=1 k=1 d=1 -
N D
+ ZZE [logp an’{vz}z } + ZZE‘I [logp xnd\zn,B bd)}
k=1n=1 n=1d=1

5
(C.1)

where each term can be computed as shown below:
1. For the Beta distribution over vy,
Eq log p(vk|e)] = log(e) + (o = 1) [¥(7h1) — ¥ (7h1 + Tha)] -
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2. For the Gaussian distribution over vectors bz.,

d |52 :_E 2 _L S 2 . d 2
B, [logp(bit|oh)| = —5 log(2roh) — 575 ( So(6)* + X (01" )

r=1 r=1

3. For the Gaussian distribution over bg,

d2:_§ Q_LRdQRdQ
B, [logp(biloh)| =~ log(2roh) — 5o | 32667 + 3 (06° )

r=1 r=1

4. For the feature assignments, which are Bernoulli distributed given the
feature probabilities, we have

E, [logp(znk\{vi}fzﬁ}

4 |1og (1 - H v,>

where the expectation E, [log (1 —Hle vlﬂ has no closed-form

= (1= vu)E + Vnk Z Y(rin) — ¢(ra + Ti2)] s

solution. We can instead lower bound it by using the multinomial
approach [19]. Under this approach, we introduce an auxiliary
multinomial distribution Ay, = [Ag1,..., Agk) in the expectation and
apply Jensen’s inequality, yielding

k k—1
> Z )\kmw 7_m2 + Z ( Z )\k’n> Tml)

m=1 m= n=m+1

k
Z (Z )‘kn) (Tt + Tm2) Z M 10g(Akm),

m=1
which holds for any distribution represented by the probabilities
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)\k17"'7>\kk7 for 1§]€SK Then,

E, [1og p(zuk {vi}y)]

k k=1 / k&
> (1= vu) [Z Mt (Tm2) + ( > )\kn> U(Tim1)
m=1

m=1 \n=m+1
k k k
- Z (Z Akn) ¢(Tm1 + Tm2) - Z Akm log(Akm)]
m=1 \n=m m=1
k
+ Vnk Z [(7i1) — P(Tin + 732)] -
=1

. For the likelihood term, we can write

Eq [logp(acnd|zn, Bda b(c)l):|

K

_ 4d d

= ¢Oxnd + E Vnk¢kznd —E,
k=1

R
log (Z exp(z,bZ + bgﬁ)] ,

r=1

where the logarithm can be upper bounded by its first-order Taylor
series expansion around the auxiliary variable g;dl (forn=1,...,N
and d=1,...,D) [11, 12], yielding

R
log <Z exp(z, b? + bgr))

r=1
R
< gnd (Z eXp(an,Ci, + bgr)) - log(énd) - L
r=1

The main advantage of this bound lies on the fact that it allows us to
compute the expectation of the bound for the Gaussian distribution,
since it involves the moment generating functions of the distributions
q(b%) and ¢(bd,). Then, we can lower bound the likelihood term as

E, [10g p(palzn, B, b{)|

K R
1
2 ¢gxnd + Z Vnk¢%:pnd + log<£nd) +1—¢&na Z |:eXp <¢g7" + 2(Ulc)lr)2>
r=1

k=1

K
X H <1 — Upk + Vnk €Xp (gbzr + ;(gng))] .

k=1
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Substituting the previous results in (C.1), we obtain

E, [log p(¥, X|H)]
K
> > [log(a) + (o — 1) (¥(Tr1) — P (Th1 + Th2))]

k k k
_ Z (Z )\,m> Y(Tm1 + Tm2) — Z e IOg()\km)>]

N D K
+ Z Z [(ngnd + Z Vnk(bzmnd + log(gnd) +1

k=1

& 1 s 1 2
—§ndz [exp <¢gr + 2(037,)2> H <1 — Upk + Unk €Xp <¢%r + §(Ugr) ))” .
= k=1
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Additionally, the entropy of the distribution ¢(W) is given by
Hlg] = Eq [log ¢(V)]

K D R K 5
= > B, log q(velren, mia)] + > Y D Eq |logalbi o, (0f,)")|

K
= Z [log (W) — (k1 — D)Y(r1) — (T2 — 1)Y(7i2)

+ (Th1 + T2 — 2)Y (1 + Tk2)]

D R K 1
3N 3 log(2me(o)7)
d=1r=1 k=0
N K
)0 [~k log(vak) — (1 = vnr) log(1 — vp)] -
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Finally, we obtain the lower bound on the evidence p(X|H) as

log p(X|H) > E, [log p(¥, X|H)] + Hlq]

K
> " [log(a) + (o = 1) (1(7h1) — ¥ (7h1 + Th2))]

k=1
R(K +1) 1 &2
T leslnh) — gy 350 (982 + (o))
N K k
+ Z Z [Vnk Z W)(Tzl) @Z}(Tzl + 7-12)]
n=1k= =1
l k k—1 k
+(1 - Vnk) (Z )\kmw(Tm2) + ( Z )\kn> ¢(7_m1)
m=1 m=1 \n=m+1
k k k
- Z (Z )\kn> w(Tml + 7—m2> - Z Akm IOg(Akm)>]
v b m=1 ;L{—m m=1
D9 | S SR RRRICRS
n=1d=1 k=1
- 0 10\ a Lo g2
—§ndz exp <¢0r + 5(0—07‘) > H <1 — Unk + Vnk €XP <¢kr + §(Ukr) ))
r=1 k=1

K
’ ; [log <m> = (1 = DY (k1) = (T2 — Do(7h2) + (71 + 7wz — 2)80 (701 + Tkz)]

d=1r=1 k=0 n=1k=1
= K(H7 7_(q »
2
where Hq = {Tk17 Tk2, )‘kma fnd7 Unk, Qsirv ¢gr7 (O-gr) ) (O-(C)lr)Q} (fOI' k=

,.... K, m=1,....,k,d =1,...,D, and n = 1,..., N) represents the
set of the variational parameters.
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C.2 Derivatives for Newton’s Method

- For the parameters of the Gaussian distribution q(bﬁr|¢%r,(agr)2) for
k=1,... K,

0

ol L(H, Hq)
1 1
= 2 ¢kr + Z Vnk5 xnd = ’/‘) - Vnkénd €exXp <¢07‘ Q(Ugr) ) exp <¢)kr (Ugr)2>
n=1
X H <1 — Upk' + Uk €XP <¢§cl/r + ;(Ulccl’r)2>> ] :
k'#£k
82
———L(H, H
o )2 (H, H,)
1 al 2
5 [Vnkfnd exp <¢Or (UOT) > exp <¢kr (Ulcclr) )
UB n=1
X H (1 — Unpk/ + Uk €XPp (ng’r + ;(Ug’r>2)> ] :
k'#k
Oy
(of.)

N
1 1 -~ 1 )
— —E + 5 Ugr 5 z:: [Vnkgnd exXp <¢07~ (O'gr) ) exp <¢k7‘ (O—gT) >

<11 (1 Ut + Uy €XP <¢k, 1(0,;1, )2>) ]

K #k

1

= 2 (Ukr Z:: [Vnkénd exp <¢Or (GOT) > exp <¢g7‘ + ;(Ug’r‘)2>
X H <1 — Unk/ + Vnj €XP <¢;cl’r + ;(Ug’r)2>> ] :

K £k
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- For the parameters of the Gaussian distribution ¢(bd,|#2., (0d.)?),
0 —L(H, Hy) ¢0 i\’: S(xpg =)
00§, op o
K 1 2
— &nd €XP (%r ~(a§,) > H (1 — Unk + Unk €Xp <¢i;lr + §(Ul[§7“) )> ] :
2
ot

R 1 LS
=" > lfnd exp <¢6lr + 2(0&)2>
n=1

k=1

(1 — Upk + Unk €Xp (gsz +

d
kr

1
3@

)

S L) = 5o+ (o)
1 a 2
) Z [gnd exp <¢Or (707’ > H <1 — Vnk + Vnk €Xp <¢kr (Jgr) >> ] .
n=1 k=1
0’ Lo dy-a
FoEEE M) = 58
1 s 2
- Z [fnd exp <¢0r ~(od, 2) H <1 — Upk + Unk €Xp <¢kr (O'gr) >> ] .
n=1 k=1
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Appendix D

NESARC Survey

In this chapter, we show Sections 10 and 11 of the NESARC survey. These
section contain the questions necessary to diagnose the seven personality
disorders studied in Chapter 8, i.e., avoidant, dependent, obsessive-
compulsive, paranoid, schizoid, histrionic and antisocial.
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Section 10 - USUAL FEELINGS AND ACTIONS
The questions I’m going to ask you now are about how you have felt or acted MOST of the time throughout
your life regardless of the situation or whom you were with. Do NOT include times when you weren’t yourself
or when you acted differently than usual because you were depressed or hyper, anxious or nervous or
drinking heavily, using medicines or drugs or experiencing their bad aftereffects, or times when you were
physically ill.
1a. Most of the time throughout your life, regardless of the b. Did this ever trouble you or
situation or whom you were with. . . cause problems at work or
school, or with your family or
(Repeat phrase frequently) other people?
Have you avoided jobs or tasks that dealt with a 10 Yes——> 10 Yes
lot of people? 2 [ No - Go to next 20 No
experience
Do you avoid getting involved with people 10 Yes 10 Yes
unless you are certain they will like you? 2 [0 No - Go to next 2 0 No
experience
Do you find it hard to be “open” even with I10Yes— & 10 Yes
people you are close to? 2 [ No - Go 10 next 2 0 No
experience
Do you often worry about being criticized or 10 Yes—— 10 Yes
rejected in social situations? 2 [ No - Go o next 2 [0 No
experience
Do you believe that you’re not as good, as 10 Yes 10 Yes
smart, or as attractive as most other people? 2 [0 No - Go to next 2 O No
experience
Are you usually quiet or do you have very little 10 Yes 10 Yes
to say when you meet new people because you 2 [0 No - Go to next 2 [0 No
believe they are better than you are? experience
Are you afraid of trying new things or doing 10 Yes——— 10 Yes
things outside your usual routine because 2 O No - Go o next 20 No
you’re afraid of being embarrassed? experience
Do you need a lot of advice or reassurance from 10 Yes 10 Yes
others before you can make everyday decisions- 2 [0 No - Go to next 2 0 No
like what to wear or what to order in a experience
restaurant?
Do you depend on other people to handle 10 Yes 10 Yes
important areas in your life such as finances, 2 [ No - Go to next 20 No
child care, or living arrangements? experience
Do you find it hard to disagree with people even 10 Yes 10 Yes
when you think they are wrong because you 2 [ No - Go to next 20 No
fear losing their support or approval? experience
Do you find it hard to start or work on tasks 10 Yes 10 Yes
when there is no one to help you? 2 [ No - Go to next 2 O No
experience
Have you often volunteered to do things even if 10 Yes———— 10 Yes
they are unpleasant in order to get others to 2 [ No - Go o next 20 No
like you? experience
Do you usually feel uncomfortable when you 10 Yes 10 Yes
are by yourself because you are afraid you can’t 2 [ No - Go 10 next 2 O No
take care of yourself? experience
When a close relationship ends, do you feel you 10 Yes 10 Yes
immediately have to find someone else to take 2 [ No - Go to next 2 O No
care of you? experience,
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Section 10 - USUAL FEELINGS AND ACTIONS (Continued)

15)

(16)

amn

(18)

19)

(20)

@n

(22)

(23)

249

(25

(20

@7

(28

29

30

1a. Most of the time throughout your life, regardless of the
situation or whom you were with. . .

(Repeat phrase frequently)

b.

Did this ever trouble you or
cause problems at work or

school, or with your family
or other people?

Have you worried a lot about being left alone to 10 Yes 10 Yes

take care of yourself? 2 O No - Go to next 2 0 No
experience

Are you the kind of person who focuses on 10 Yes 10 Yes

details, order and organization or likes to make 2 O No - Go o next 20 No

lists and schedules? experience

Do you sometimes get so caught up with details, 10 Yes —— 10 Yes

schedules or organization that you lose sight of 2 [ No - Go to next 2 [0 No

what you wanted to accomplish? experience

Do you have trouble finishing jobs because you 10 Yes 10 Yes

spend so much time trying to get things exactly 2 [ No - Go to next 2 [0 No

right? experience

Do you or other people feel that you are so 10 Yes 10 Yes

devoted to work or school that you have no time 2 [ No - Go to next 2 0 No

left for anyone else or for just having fun? experience

Do other people think you have unreasonably 10 Yes 10 Yes

high standards and morals about what is right 2 [ No - Go to next 2 O No

and what is wrong? experience

Do you have trouble throwing out worn-out or 10 Yes 10 Yes

worthless things even if they don’t have 2 [ No - Go to next 2 0 No

sentimental value? experience

Is it hard for you to let other people help you if 10 Yes 10 Yes

they don’t agree to do things exactly the way 2 [ No - Go to next 2 [0 No

you want? experience

Is it hard for you to spend money on yourself 10 Yes 10 Yes

and other people even when you have enough? 2 [ No - Go to next 2 0 No
experience

Are you often so sure you are right that it 10 Yes 10 Yes

doesn’t matter what other people say? 2 [ No - Go to next 2 [ No
experience

Have other people told you that you are 10Yes—* 10 Yes

stubborn or rigid? 2 [ No - Go to next 2 0 No
experience

Do you often have to keep an eye out to keep 10 Yes ——— 10 Yes

people from using you, hurting you or lying to 2 [ No - Go to next 2 [ No

you? experience

Do you spend a lot of time wondering if you can 10 Yes 10 Yes

trust your friends or the people you work with? 2 [ No - Go to next 2 [ No
experience

Do you find that it is best not to let other people 10 Yes 10 Yes

know much about you because they will use it 2 [ No - Go to next 2 [0 No

against you? experience

Do you often detect hidden threats or insults in 10 Yes ——— 10 Yes

things people say or do? 2 O No - Go to next 2 0 No
experience

Are you the kind of person who takes a long 10 Yes 10 Yes

time to forgive people who have insulted or 2 [ No - Go 0 next 2 [0 No

slighted you? experience,
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Section 10 - USUAL FEELINGS AND ACTIONS (Continued)

1a. Most of the time throughout your life, regardless of the
situation or whom you were with . . .

(Repeat phrase frequently)

31

(32)

(33)

(35)

43)

45)

(46)

47)

(48)

(49)

(50)

(51

(52)

(53)

(54)

(55)

b.

Did this ever trouble you or
cause problems at work or
school, or with your family or
other people?

Have there been many people you can’t forgive 10 Yes 10 Yes
because they did or said something to you a long 2 [ No - Go to next 2 0 No
time ago? experience
Do you often get angry or lash out when 10 Yes 10 Yes
someone criticizes or insults you in some way? 2 [ No - Go to next 2 0 No
experience
Have you OFTEN suspected that your spouse or 10 Yes—— 10 Yes
partner has been unfaithful? 2 [ No - Go to next 2 [0 No
experience
‘When you are around people, do you often feel 10 Yes 10 Yes
that you are being watched or stared at? 2 [ No - Go to next 2 [0 No
experience
Are there very few people that you’re really 10 Yes 10 Yes
close to outside of your immediate family? 2 [ No - Go to next 2 [0 No
experience
Would you be just as happy without having any 10 Yes 10 Yes
close relationships? 2 [ No - Go to next 2 [0 No
experience
Do you take little pleasure in being with other 10 Yes 10 Yes
people? 2 [0 No - Go 10 next 2 0 No
experience
Have you almost always preferred to do things 10 Yes 10 Yes
alone rather than with other people? 2 [ No - Go to next 2 [ No
experience
Could you be content without ever being 10 Yes 1 0 Yes
sexually involved with anyone? 2 O No - Go 0 next 2 [ No
experience
Do you rarely show much emotion? 10 Yes 10 Yes
2 O No - Go to next 2 0 No
experience
Are there really very few things that give you 10Yes— 10 Yes
pleasure? 2 [0 No - Go to next 2 0 No
experience
Do you rarely react to praise or criticism? 10Yes ™ 10 Yes
2 O No - Go to next 2 0 No
experience
Are you the sort of person who doesn’t care I10Yes—— 10 Yes
about what people think of you? 2 O No - Go to next 20 No
experience
Do you find that nothing makes you very happy 10 Yes 10 Yes
or very sad? 2 O No - Go to next 20 No
experience
Do you like to be the center of attention? 10 Yes 10 Yes
2 O No - Go to next 2 0 No
experience
Do your feelings often change very suddenly or 10 Yes 10 Yes
unexpectedly, sometimes for no reason? 2 [ No - Go to next 2 [0 No
experience,
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Section 10 - USUAL FEELINGS AND ACTIONS (Continued)

la.

Most of the time throughout your life, regardless of the

situation or whom you were with . ..

(Repeat phrase frequently)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

. Did this ever trouble you or

cause problems at work or
school, or with your family or
other people?

Do you feel uncomfortable if you are not the 10 Yes 10 Yes

center of attention? 2 [ No - Go 1o next 2 O No
experience

Have you ever discovered that people aren’t as 10 Yes 10 Yes

close to you as you thought they were? 2 [ No - Go to next 2 [0 No
experience

Do you flirt a lot? 10 Yes 10 Yes

2 [ No - Go to next 2 O No

experience

Do you display your emotions in obvious or 10 Yes 10 Yes

dramatic ways so that people always know how 2 [ No - Go to next 2 0 No

you feel? experience

Do you often find yourself “coming on” to 10 Yes 10 Yes

people? 2 [ No - Go to next 2 O No
experience

Do you try to draw attention to yourself by the 10 Yes 10 Yes

way you dress or look? 2 [0 No - Go 1o next 2 O No
experience

Do you often make a point of being dramatic 10 Yes 10 Yes

and colorful? 2 [0 No - Go to next 2 O No
experience

Have you often changed your mind about things 10 Yes 10 Yes

depending on the people you’re with or what 2 [ No - Go to next 2 0 No

you have just read or seen on TV? experience

Do you often express yourself using generalities 10 Yes 10 Yes | Goto

and very little detail? 2 No-Goto 2 O No Section 114,
Section 114, Page 116
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Section 11A - BEHAVIOR
Now I’d like to ask you some questions about experiences you may have had. As I read each experience, please
tell me if it has ever happened.
1a. In your ENTIRE life, did you EVER.... b. Did this C. Has this happened SINCE
(Repeat entire phrase frequently) happen you were 15?
BEFORE
you were 15?

(1) Often cut class, not go 1 O Yes Ask Before 13 Ask Since 13
to class or go to school 2 O No - Go to next 10 Yes 1 0 Yes| Go to next
and then leave without experience 2 O No 20 NoJ experience
permission?

(2) Stay out late at night 1O Yes Ask Before 13 | Ask Since 13
even though your 2 [ No - Go to next 10 Yes 1a Yes} Go to next
parents told you to experience 20No 20NoJ experience
stay home?

A3 Hav'e a time when you 10 Yes 10 Yes 1 O Yes)| Go 1o next
bullied or pushed . 2 O No - Go to next 20 No 20NoJ experience
people around or t.rled experience
to make them afraid
of you?

(4) Run away from home 1 0 Yes 10 Yes 10 Yes} Go to next
ov.ermght at least 2 [ No - Go to next 20 No 20 NoJ experience
t.w¥ce when you were experience
living at home or run
away and stay away
for a longer time?

(5) Have atime when you 10 Yes 10 Yes 1 0 Yes| Go to next
xi:i?)tf;:ﬂt?:‘lm 2 O No - Go to next 2 O No 20 NoJ experience
other than the times cpertence
you were sick or
taking care of
someone else who was
sick?

6) ].Vlore'than once q'““ a 10 Yes 10 Yes 1 ch} Go to next
job without knowing 2 [0 No - Go to next 2 0 No 20 NoJ experience
where you would find experience
another one?

(7) More than once quit a 10 Yes 10 Yes 10 Yes} Go to next
sc.hool program 2 [0 No - Go to next 2 0 No 20NoJ experience
without knowing what experience
you would do next?

(8) Travel around from 10 Yes 10 Yes 1a Yes} Go to next
place to place for a 2 [0 No - Go to next 2 0 No 20NoJ experience
month or more experience
without making any
plans ahead of time or
not knowing how long
you would be gone or
where you were going
to work?

(9) Have a time that 10 Yes 10 Yes 1 0 Yes| Go to next
lasted at least 1 month 2 O No - Go 10 next 2 [ No 20 NoJ experience
when you had no experience
regular place to live —
like living on the street
orin a car?

(10) Have a time that 10 Yes——— 10 Yes 1 0 Yes) Go to next
lasted at least 1 month 2 [ No - Go to next 2 O No 20 No} experience,
when you lived with experience, page 117
l'rlends,.acquamtances page 117
or relatives because
you didn’t really have
your own place to
live?
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Section 11A - BEHAVIOR (Continued)

1a. Did you EVER.....

an

12)

13)

14)

13)

(16)

a7

18)

19)

(20

21

(22)

b. Did this C. Has this happened SINCE
(Repeat entire phrase frequently) happen you were 15?
BEFORE you
were 15?
ljlave a time iniyour 1 0 Yes 10 Yes 1 0 Yes | Go to next
life when you.lled a 2 [0 No - Go to next 2 O No 20 No - experience
lot, not counting any experience
times you lied to keep
from being hurt?
Use a false.orr’made—up 10 Yes 10 Yes 10 Yes} Go to next
name or alias? 2 [0 No - Go to next 20 No 20NoJ experience
experience
Scam Or con someone 10 Yes 10 Yes 10 Yes} Go to next
for mun.ey.',.to avo'ld 2 0 No - Go to next 20 No 20NoJ experience
responsibility or just experience
for fun?
Do thi"gf that could 10 Yes 10 Yes 1 0 Yes| Go to next
have easily hurt yqu 2 O No - Go to next 2 O No 20NoJ experience
or someone else - like experience
speeding or driving
after having too much
to drink?
Get more than 3 10 Yes 10 Yes 1 Yes} Go to next
traffic tickets for 2 O No - Go to next 2 O No 20NoJ experience
reckless or careless experience
driving, speeding, or
causing
an accident?
]jlave your driver’s 10 Yes 10 Yes 1 O Yes| Go to next
license suspende(.‘] or 2 O No - Go to next 2 O No 20 NoJ experience
revoked for moving experience
violations?
Destroy, break, or 10 Yes 10 Yes 10 Yes} Go to next
vandalize somcon.c 2 O No - Go to next 20No 20NoJ experience
else’s property - like experience
their car, home, or
other personal
belongings?
Start a fire on purpose 10 Yes 10 Yes 1 0 Yes| Go to next
to d,cstroy somcon? 2 O No - Go to next 20No 20NoJ experience
else’s property or just experience
to see it burn?
Fail to pay off your
debts - like moving to 1 0 Yes) Go to next
avoid paying rent, not 20 NoJ experience
making payments on a
loan or mortgage,
failing to make
alimony or child
support payments or
filing for bankruptcy?
Steal anything from 10 Yes 10 Yes 10 Yes} Go to next
someone or someplace 2 O No - Go to next 2 O No 20NoJ experience
when no one was experience
around?
F_orge someone else’s 10 Yes 10 Yes 1 0 Yes| Go to next
signature - like on a 2 O No - Go to next 2 O No 20 NoJ experience
legal document or on a experience
check?
Shoplift? 10 Yes 10 Yes 10 Yes} Go to next
2 O No - Go to next 20No 20 NoJ experience,
experience, page 118
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Section 11A - BEHAVIOR (Continued)
1a. Did you EVER... b. Did this €. Has this happened SINCE
(Repeat entire phrase frequently) happen you were 15?
BEFORE
you were 15?

(23) Rob or mug some;)ne 10 Yes 10 Yes 1d ch} Go to next
or snatch a purse? 2 [ No - Go to next 2 O No 20 NoJ experience

experience

24) Make money illegally - 10 Yes 10 Yes 1a ch} Go to next
like selling stole.n 2 O No - Go fo next 2 [ No 20 NoJ experience
property or selling experience
drugs?

(25) Do anything that you 10 Yes 10 Yes 1a Yes} Go to next
could have been 2 O No - Go to next 2 O No 20 NoJ experience
arrested for, experience
regardless of whether :
or not you were
caught?

(26) Force. someone to have 10 Yes 10 Yes g Yes} Go to next
SeX.W'ﬂ.' you against 2 O No - Go to next 2 O No 2[0NoJ experience
their will? i

experience

(27) Getinto alot of:‘lghts 10 Yes 10 Yes g Yes} Go to next
that you started? 2 [ No - Go to next 2 0 No 2[0NoJ experience

experience

(28) Getintoa ﬁght. that 10 Yes 10 Yes g Yes} Go to next
came to swapping 2 [ No - Go o next 2 0 No 20NoJ experience
blows with someone experience
like a husband, wife, e
girlfriend or
boyfriend?

(29) Use a weapon like a 10 Yes 10 Yes 1 Yes} Go to next
Stl:k]; lf)"lf€7 or gun in 2 O No - Go to next 2 O No 2 O No experience
a fight? experience

(30) Hit someone so hard 10 Yes 10 Yes 10 Yes} Go to next
that you injured them 2 O No - Go to next 2 O No 2 [ No experience
or they had to see a experience
doctor?

(31) Harass, threaten 01’» 10 Yes 10 Yes 1 O Yes| Go to next
blackmail someone? 2 O No - Go to next 2 O No 20NoJ experience

experience

(32) Physically hurt 10 Yes 10 Yes 1 0 Yes| Go to next
another person in any 2 O No - Go to next 2 O No 20 NoJ experience
other way on experience
purpose?

33) Hu.rt or be cruel to an 10 Yes 10 Yes 1 0 Yes| Go to Check
animal or pet on 2 [ No - Go to Check 2 O No 20NoJ ftem11.0
purpose? Item 11.0

Are at least 3 items marked “Yes” in column a, 10 Yes
pages 116 - 1187 2 O No - SKIP to Section 11B, page 121
1d. About how old were you the FIRST time SOME of these Ace
experiences BEGAN to happen? - €
CH Are at least 3 items marked “Yes” in 1, column b,
JUUNYBERY pages 116- 1187
Did respondent demonstrate at least 3 behaviors 10 Yes
BEFORE age 15? 2 [ No - SKIP to Check Item 11.2, page 119
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Section 11A - BEHAVIOR (Continued)

2. You just mentioned some experiences you had BEFORE
you were 15 years old.

1-year period?

Did any of these experiences you had BEFORE you were 15 1 0 Yes
years old cause any problems with your family or friends, at 2 0 No
school or with the law?
3. Did at least 1 of these experiences you mentioned happen 10 Yes
BEFORE you were 10 years old? 2 0 No
3a. Did at least 3 of these experiences you had BEFORE you 10 Yes
were 15 years old happen around the same time or within a 2 O No

1 O Yes - SKIP to 5a

15 happen WHILE you were drinking heavily, or AFTER
you had been drinking heavily?

Is the respondent a lifetime abstainer of alcohol? 2 0No
4a. Now I'd like you to think about ALL of the experiences you
just mentioned that happened BEFORE you were 15 years
old.
Did ANY of these experiences you had BEFORE you were 10 Yes

2 00 No - SKIP to 5a

15 happen WHILE you were using or AFTER you had used
any medicines or drugs?

b. Did ALL of these experiences ONLY happen WHILE you 1 0 Yes
were drinking heavily, or AFTER you had been drinking 2 0 No
heavily?

S5a. Did ANY of these experiences you had BEFORE you were 10 Yes

2 O No - SKIP to Check Item 11.1B

drugs?

Did respondent ever have a period of high mood?

b. Did ALL of these experiences ONLY happen WHILE you 10 Yes
were using or AFTER you had used any medicines or 2 0 No

I(:l'l-:fl\l 1 Is “Yes” marked in Check Item 5.3, Section 5,
Rl page 777 10 Yes

2 [ No - SKIP to Check Item 11.2

Sc. Did ANY of these experiences you had BEFORE you were
15 happen during a period when you felt extremely excited,
elated or hyper or extremely irritable or easily annoyed?

10 Yes
2 [0 No - SKIP to Check Item 11.2

Did respondent demonstrate at least 3 behaviors
SINCE age 15?

d. Did ALL of those experiences ONLY happen during periods 10 Yes
when you felt extremely excited, elated or hyper or 2 O No
extremely irritable or easily annoyed?

Are at least 3 items marked “Yes” in 1, column ¢, or
“No” in 1, column b, or “Yes” in 1(19), column a,
ages 116 - 118?
pag 10 Yes

2 O No - SKIP to Section 11B, page 121

CH Refer to Check Item 2.0, Section 24, page 9.
ITEM 11.2A

1 O Yes - SKIP to 7a

Did ANY of these experiences you had SINCE you were 15
happen WHILE you were drinking heavily, or AFTER you
had been drinking heavily?

Is the respondent a lifetime abstainer of alcohol? 20 No
6a. You mentioned some experiences you had SINCE you were
15 years old.
10 Yes

2 O No - SKIP to 7a

happen WHILE you were using or AFTER you had used
any medicines or drugs?

b. Did ALL of these experiences ONLY happen WHILE you 10 Yes
were drinking heavily, or AFTER you had been drinking 2 O No
heavily?

7a. Did ANY of these experiences you had SINCE you were 15 10 Yes

2 O No - SKIP to Check Item 11.2B, page 120
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Section 11A - BEHAVIOR (Continued)

Did respondent ever have a period of high mood?

7b. Did ALL of these experiences ONLY happen WHILE you 10 Yes
were using or AFTER you had used medicine or drugs? 2 O No
Is “Yes” marked in Check Item 5.3, Section 5,
age 777
pag 10 Yes

2 O No - SKIP to Check Item 11.3

7c. Did ANY of the experiences you had SINCE you were 15,
happen during a time when you felt extremely excited,
elated or hyper or extremely irritable or easily annoyed?

10 Yes
2 O No - SKIP to Check Item 11.3

Has respondent ever destroyed or stolen property or
mistreated or harmed another person?

d. Did ALL of those experiences ONLY happen during 10 Yes
periods when you felt extremely excited, elated or hyper or 2 [ No
extremely irritable or easily annoyed?

Is at least 1 item marked “Yes” in 1(17) - 1(33),
column ¢, or “No” in 1(17) - 1(33), column b, or
“Yes” in 1(19), column a, pages 117 - 118?
10 Yes

2 O No - SKIP to Section 11B, page 121

8. You mentioned some experiences that you’ve had in your
life when you (destroyed property/stole something/
mistreated or harmed another person).

(b)  Did you feel you had a right to do (this/these things)
or feel that the other people deserved what they got?

(a) Since (this/these things) happened, have you 10 Yes
regretted doing (this/these things) or wished (it/they) 2 O No
had never happened?

10 Yes

2 0 No }GD to Section 11B, page 121
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Section 11B - FAMILY HISTORY -1V
Now I would like to ask you about whether any of your relatives, regardless of whether or not they are
now living, have ever had behavior problems.
(SHOW FLASHCARD 26)
By behavior problems I mean being cruel to people or animals, fighting or destroying property, trouble
keeping a job or paying bills, being impulsive, reckless or not planning ahead, lying or conning people or
getting arrested. These people also do not seem to care if they hurt others and often have problems at an
early age such as truancy, staying out all night or running away.
(REFER TO FLASHCARD FREQUENTLY)
1. Inyour judgement, did your blood or natural father 10 Yes
have some of these behavior problems like this ANY 2 O No
time in his life? 99 [J DK
2. Did your blood or natural mother have some of these 10 Yes
behavior problems like this ANY time is her life? 2 [ No
99 00 DK
3. (Did your full brother have/How many of your full 10 Yes
brothers had) some of these behavior problems at ANY 2 [ No
time in (his life/their lives)? OR
Number
0 [ None
4, (Did your full sister have/How many of your full sisters 1 [ Yes
had) some of these behavior problems at ANY time in 2 O No
(her life/ their lives)? OR
Number
0 [J None
5. (Did your natural son have/How many of your natural 10 Yes
sons had) some of these behavior problems at ANY 2 O No
time in (his life/their lives)? OR
Number
0 [ None
6. (Did your natural daughter have/How many of your 10 Yes
natural daughters had) some of these behavior 2 O No
problems at ANY time in (her life/their lives)? OR
Number
0 [ None
7. (Did your natural father’s full brother have/How many 1 0 Yes
of your natural father’s full brothers had) some of these 2 0 No
behavior problems at ANY time in (his life/their lives)? OR
Number
0 O None
8. (Did your natural father’s full sister have/How many of 10 Yes
your natural father’s full sisters had) some of these 2 0 No
behavior problems at ANY time in (her life/their lives)? OR
Number
0 [J None
9, (Did your natural mother’s full brother have/How 10 Yes
many of your natural mother’s full brothers had) some 2 0 No
of these behavior problems at ANY time in (his life/ OR
their lives)?
Number
0 O None
10. (Did your natural mother’s full sister have/How many 10 Yes
of your natural mother’s full sisters had) some of these 2 [ No
behavior problems at ANY time in (her life/their lives)? OR
Number
0 [ None
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Section 11B - FAMILY HISTORY -1V (Continued)

11. Did your natural grandfather on your father’s side 1 0 Yes
have some of these behavior problems at ANY time in 2 O No
s oo
his life? 99 O] DK
12. Did your natural grandmother on your father’s side 1 0 Yes
have some of these behavior problems at ANY time in 2 0 No
her life?
99 O DK
13. Did your natural grandfather on your mother’s side 1 0 Yes
have some of these behavior problems at ANY time in 2 O No
A
his life? 99 00 DK
14. Did your natural grandmother on your mother’s side 10 Yes
have some of these behavior problems at ANY time in 20 No Go to Section 12, page 123
her life? 99 O DK !
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Appendix E

Acronyms and abbreviations

e DSM: Diagnostic and Statistical Manual of Mental Disorders.
e NTAAA: National Institute on Alcohol Abuse and Alcoholism.

e NESARC: National Epidemiologic Survey on Alcohol and Related
Conditions.

e BNP: Bayesian nonparametric.

e [BP: Indian Buffet Process.

e DP: Dirichlet Process.

e HDP: Hierarchical Dirichlet process.
e HMM: Hidden Markov model.

e CRP: Chinese Restaurant Process.
e MCMC: Markov Chain Monte Carlo.
e EP: Expectation Propagation.

e MH: Metropolis-Hastings.

e MAP: Mazximum a Posteriori.

e PD: Personality disorders.

e BMI: Body mass index.
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Appendix F

Notation

e N: Number of objects or observations.
e D: Dimensionality of the observations.
e X: N x D observation matrix.

e X,: n-th row vector of matrix X.

e x% d-th column vector of matrix X.

d.
n

e 1. each element in matrix X.

e RR: number f categories in the observation matrix X.
o K: Number of latent variables.

e K : Number of active latent variables.

e Z: N x K binary latent feature matrix.

e 7,: n-th row vector of matrix Z.

e 2,.: each element in matrix Z.

e «: Concentration parameter of the IBP.

e W: N x K severity matrix.

e w,: n-th row vector of matrix W.

e w,: each element in matrix W.
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B¢ K x R weighting matrix associated to dimension d of the
observation matrix X.

bl: r-th column vector of BZ.
sz: each element in matrix B¢.

bd: K-length bias vector associated to dimension d of the observation
matrix X.

bf)l,,: each element in bg.

Y? N x R matrix that contains the Gaussian auxiliary variable 3¢
needed for the IBP model for heterogeneous databases.

y:  Gaussian auxiliary variable needed for the IBP model for
heterogeneous databases.

09: Gaussian thresholds that divide the real line into the number of
categories for ordinal observations in the IBP model for heterogeneous
databases.

U Set of auxiliary variables needed to obtain the observations x?

given Y? in the IBP model for Heterogeneous databases.

p(+): probability distribution function of a random variable.

p(zly): conditional pdf of z given y.

x ~ p(x): The random variable x is distributed as p(x).

N (x|p, 02): Normal distribution with variable z, mean p and variance
o2.
o2: Variance of variable z.

®(-): Cumulative density function of the standard normal distribution.
E, () [-]: Expectation with respect to the distribution p(x).

f(x): Function of x.

f71(): Inverse function of function f(-).

V f: Gradient of function f.

VV f: Hessian of function f.

0(+): Kronecker delta function.
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