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Autor: Maŕıa Isabel Valera Mart́ınez

Director: D. Fernando Pérez Cruz
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Abstract

Mental health care has become one of the major priorities in developed
countries, where the annual budgets assigned to mental health care reach
hundreds of billion of dollars. Due to lack of laboratory tests as objective
diagnostic criteria, there is not consensus among the psychiatrists either on
the diagnostic criteria or the treatments. As a consequence, there exists
an increasing interest in improving both the detection and treatment of
mental disorders. This thesis is an interdisciplinary work, in which we
study the causes behind suicide attempts and provide thorough analysis
of pathological and comorbidity patterns of mental disorders. The final goal
of this study is to help psychiatrists detect people with higher risk and guide
them to improve treatments. To this end, we apply latent feature modeling
to the National Epidemiologic Survey on Alcohol and Related Conditions
(NESARC), which collects information about the mental health of the U.S.
population. In order to avoid the model selection step needed to infer the
number of variables in the latent feature model, we make use of the Indian
Buffet Process (IBP) [27]. However, the discrete nature of the database does
not allow us to use the standard Gaussian observation model, and therefore,
we need to adapt the observation model to discrete random variables.

In a first step, we propose an IBP model for categorical observations,
which are the most common in the NESARC. We consider two likelihood
observation models: a multinomial-logit and a multinomial-probit model.
We derive efficient Monte-Carlo Markov chain (MCMC) inference algorithms
that resort to either the Laplace approximation or the expectation
propagation (EP) algorithm to compute the marginal likelihood. We also
derive a variational inference algorithm that provides a less expensive, in
terms of computational complexity, alternative to the samplers. Afterwards,
to account for all the available information about the subjects (that
includes also non categorical observations, such as age, incomes or education
level), we extend the IBP observation model to handle mixed continuous
(real-valued and positive real-valued) and discrete (categorical, ordinal
and count) observations. This model keeps the properties of conjugate
models and allows us to derive an inference algorithm that scales linearly
with the number of observations. Finally, we present the experimental
results obtained after applying the proposed models to the NESARC
database, studying both the hidden causes behind suicide attempts and
the pathological and comobidity patterns of mental disorders.
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Resumen

La salud mental se ha convertido en una de las principales prioridades
de los páıses desarrollados, los cuales dedican anualmente cientos de miles
de millones de dólares al cuidado de la misma. Debido a la falta de pruebas
de laboratorio como criterios objetivos para el diágnostico de los desórdenes
mentales, existe una falta de consenso tanto en los criterios de diagnóstico
como en los tratamiento. Esta tesis es un trabajo interdisciplinario que tiene
como próposito encontrar las causas latentes detrás de los intentos de suicidio
y proveer de un profundo análisis sobre los patrones, tanto patológicos
como de comorbidad, de los desórdenes psiquiátricos. Como objetivo final
de este trabajo, prentendemos ayudar a los psiquiátras a detectar aquellas
personas con mayor riesgo de sufrir de desórdenes mentales, y guiarlos en
la cartegorización y los tratamientos para dichos desórdenes. Para ello,
aplicamos modelado de caracteŕısticas latentes a la base de datos NESARC
(National Epidemiologic Survey on Alcohol and Related Conditions), la cual
contiene información sobre la salud mental de una muestra representativa
de la población estadounidense. Con el fin de evitar fijar la complejidad
del modelo a priori, recurrimos al Indian Buffet Process (IBP) [27]. Sin
embargo, debido a la naturaleza discreta de la base de datos, debemos
adaptar a observaciones discretas el modelo de observación del IBP, que
normalmente asume verosmilitudes Gaussianas.

Inicialmente, adaptamos el modelo de observación del IBP a datos
categóricos, los más comunes en la NESARC. Para ello, consideramos dos
funciones de verosimilitud (la multinomial-logit y la multinomial-probit) y
desarrollamos algoritmos de inferencia basados en muestreo (Monte-Carlo
Markov chain) los cuales recurren a la aproximación de Laplace o al
algoritmo Expectation Propagation para calcular la verosimilutud marginal.
Adicionalmente, derivamos un algoritmo variacional que presenta menor
complejidad que los algoritmos de muestreo. Después, con el fin de tener en
cuenta en nuestro análisis toda la información disponible en la base de datos
(que incluye otras variables no categóricas como la edad, los ingresos anuales
o el nivel de estudios), proponemos un modelo de observación para el IBP
que permite manejar bases de datos heterogéneas. Este modelo mantiene las
propiedades de los modelos conjugados y permite derivar un algoritmo de
inferencia de complejidad lineal con el número de observaciones. Finalmente,
analizamos los resultados obtenidos al aplicar los modelos propuestos a la
base de datos NESARC, estudiando tanto las causas latentes del suicidio
como los patrones patológicos y de comorbidad de los desórdenes mentales.
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Chapter 1

Introduction

1.1 Background and Motivation

Psychiatric disorders, characterized by sustained abnormal changes in mood,
thinking or behavior, contribute to disability in developed countries [5]. As
an example, approximately one out of four U.S. adults reported suffering
from mental disorders in 2004 [5], and according to the U.S. Agency for
Healthcare Research and Quality, the total cost of mental health care in the
U.S. in 2006 was $57.5 billion, which is equivalent to the cost of cancer care
[78]. In addition to this quantity, we also need to take into account the cost
of treatments for mental health and substance abuse which was estimated
in 2005 in $135 billion [50]. One might think that the situation of the U.S.
is exceptional but a similar obervation can be made about Europe, where
the total cost of mental health care reached almost $170 billion in 2005 [77].

Several studies have stated suicide as an outcome of psychiatric disorders,
finding that most of psychiatric disorders have an increased risk of suicide
[28]. According to the World Health Organization, almost one million people
commit suicide every year, which is more than the number of people that
die in homicides and war combined. In addition, 10 to 20 million people
attempt suicide [2]. As a consequence, attempt suicide prevention is one of
the top public health priorities in developed countries. The current strategies
for suicide prevention have focused mainly on the treatment of the suicidal
behaviors themselves [14], and also on both the detection and treatment
of mental disorders [81]. A high proportion of suicide attempters (82%)
suffered from comorbid mental disorders [80]. However, despite prevention
efforts including improvements in the treatment of depression, the lifetime
prevalence of suicide attempts in the U.S., where more than 34,000 suicides
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occur and over 370,000 individuals are treated for self-inflicted injuries in
emergency rooms every year [1], has remained unchanged over the past
decade [38]. This suggests that there is a need to improve the understanding
of the risk factors for suicide attempts as well as the psychiatric disorders,
particularly in non-clinical population.

Although significant advances in neuroscience and genetics have been
made in recent years, psychiatric classification is still nowadays performed
according to diagnostic criteria based on clinical consensus. These diagnostic
criteria, standardised by the Diagnostic and Statistical Manual of Mental
Disorders (DSM), do not totally agree with findings emerging from clinical
neuroscience and genetics [32]. As a consequence, laboratory tests are not
used as objective diagnostic criteria, which is why the current classification
system is subject to the ongoing controversy [59]. Hence, in order to improve
the categorization of mental disorders, and also in order to advance in
research that connects neuroscience and genetics with mental health care, a
better understanding of pathological and comorbid patterns of psychiatric
disorders is essential.

Clinical experience and several studies suggest that the analysis
of co-occurring or comorbid psychiatric disorders may have etiologic
and treatment implications. As a consequence, in 2001/2002, the
National Institute on Alcohol Abuse and Alcoholism (NIAAA) conducted
the National Epidemiologic Survey on Alcohol and Related Conditions
(NESARC) with the objective of providing a better understanding of
comorbidity in psychiatry. The NESARC collects information about
the mental health of the U.S. population through nearly 3,000 questions
regarding, among others, their way of life, their medical conditions,
depression and other mental disorders. We provide further details on
the NESARC database below. The public availability of the NESARC
database has led to a battery of works that cover topics such as
comorbidity of psychiatric disorders with other drug use disorders, mood
and anxiety disorders, and personality disorders. These studies suggest that
understanding the underlying interrelationships among psychiatric disorders
can be useful to improve the diagnostic classification system and guide
treatment approaches for each disorder [7].

Due to the controversy around the diagnostic criteria of mental disorder
and the lack of objective diagnostic criteria, statistical analysis of psychiatric
data plays an important role in understanding mental disorders, as the
long joint history between psychiatry and statistics shows [60]. Hence,
initiatives such as NESARC appear as interesting and challenging chances
for applying machine learning and data mining techniques, which have
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been successfully applied to diverse health care related problems such as
hypothesis generation [55], diseases evolution analysis [74], diagnosis [53] or
gene expression analysis [69].

In this context, probabilistic modeling appears as a powerful framework
for modelling, visualising, and understanding these data sets. Probabilistic
modeling has been applied in many areas of computer science, including
machine learning, data mining, natural language processing, computer
vision, and image analysis [89] but, to the best of our knowledge, it has
not been applied to psychiatric data. Data in the real world almost always
involves uncertainty, which may come from noise in the measurements,
missing information, or from the fact that we only have a randomly sampled
subset from a larger population. Probabilistic models are an effective
approach for understanding such data, by incorporating our assumptions
and prior knowledge of the world. All these properties make probabilistic
modeling an ideal candidate to model and analyse psychiatric databases.

In this thesis, we aim at exploiting the properties of probabilistic
modeling to thoroughly analyze the hidden causes behind suicide attempts
and the pathological and comorbid patterns of psychiatric disorders. To this
end, we apply latent feature modeling to the data collected in the NESARC
with the aim of finding the latent or hidden variables that explain the data.
These latent variables can be understood as latent properties of the objects
being modeled that have not been directly observed, or as hidden causes
behind the observed data. In order to avoid the model selection step needed
to infer the number of variables in the latent feature model, we make use of
Bayesian nonparametric (BNP) tools, which allow an open-ended number
of degrees of freedom in a model [34]. Specifically, our starting point is the
Indian Buffet Process (IBP) [27], because it allows us to infer which latent
features influence the observations and how many features there are. An
overview on BNP models is provided in Chapter 2.

1.1.1 NESARC database

The NESARC was thought to determine the magnitude of alcohol use
disorders and their associated disabilities in the general population and in
subgroups of the population. Two waves of interviews have been conducted
for this survey (first wave in 2001-2002 and second wave in 2004-2005).
In the current work, we only use the data from the first wave, for which
43,093 people were selected to represent the non-institutionalized U.S.
population above 18 years old. This wave of data is currently available
at: http://aspe.hhs.gov/hsp/06/catalog-ai-an-na/nesarc.htm.
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Through 2,991 entries, the NESARC collects data on the background
of participants, alcohol and other drug consumption and abuse, medicine
use, medical treatment, mental disorders, phobias, family history, etc. In
the extensive battery of questions, the survey also includes a question about
having attempted suicide as well as other related questions such as ‘felt like
wanted to die’ and ‘thought a lot about own death’. It mainly contains
yes-or-no questions and some multiple-choice answers. Furthermore, the
NESARC contains questions associated to the criteria set forth in the
American Psychiatric Associations DSM-IV for the following psychiatric
disorders:

• Five substance disorders: alcohol abuse, alcohol dependence, drug
abuse, drug dependence and nicotine dependence.

• Five mood disorders: major depressive disorder, bipolar I and bipolar
II disorders, dysthymia, and hypomania.

• Four anxiety disorders: panic with and without agoraphobia, social
phobia, specific phobia, and generalized anxiety.

• Seven personality disorders: avoidant, dependent, obsessive
compulsive, paranoid, schizoid, histrionic, and antisocial disorders.

NESARC’s diagnostic classifications were based on the Alcohol Use Disorder
and Associated Disability Interview Schedule DSM-IV (AUDADIS-IV),
which is a semistructured diagnostic interview schedule designed for use
by lay interviewers.

1.2 Organization

This thesis is an interdisciplinary work in which we apply probabilistic
modeling to psychiatric data. As a consequence, we have structured this
thesis into a machine learning and a psychiatry part. Specifically, the first
part comprises the technical details corresponding to the machine learning
discipline and consists of Chapters 2 to 6; and the second part corresponds
to the psychiatric contributions of the thesis and includes Chapters 7 to 9.

In Chapter 2, we begin with an overview of Bayesian nonparametric
tools. Specifically, we revise the basic principles of Bayesian nonparametric
models, and review two of the most popular Bayesian nonparametric models:
the Dirichlet process (DP) and the Indian Buffet process (IBP).

In Chapter 3, we propose an IBP based model suited for psychiatric
data. To this end, we extend the IBP model in three ways. First, we adapt
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the observation model to account for categorical observations, which are the
most common data in NESARC database. In particular, we consider two
likelihood observation models for categorical observations: a multinomial-
logit and a multinomial-probit model. Then, we include a bias term in
the IBP model, i.e., a latent variable that is active for all the objects,
that helps us to model those people that do not suffer from any mental
disorder, allowing us to interpret latent variables as latent disorders or
hidden causes behind psychiatric disorders. Finally, since the disorders are
not thought to be on/off diagnostics but rather manifestations or indicators
of underlying continuous variables that represent predispositions to certain
types of psychopathology, we adapt the IBP model to allow real-valued latent
variables. In our model, if we interpret latent variables as latent disorders,
once a subject has a latent variable active, its value indicates the grade of
severity. We limit the latent variables to be between 0 and 1, which helps
to interpret the latent variable as a belief in the subject suffering.

In Chapter 4, we derive several inference algorithms for the IBP
model for categorical observations. First, we derive three Markov Chain
Monte Carlo (MCMC) based inference algorithms: two (approximate)
collapsed Gibbs samplers adapted for the two considered likelihood functions
under the IBP model with binary latent variables, and a Metropolis-
Hastings (MH) based algorithm to infer the real-valued latent variables.
Since both the multinomial-logit and the multinomial-probit functions lead
to nonconjugate likelihood models, we cannot analytically compute the
marginal likelihood. Instead, we derive a Laplace approximation and
an expectation propagation (EP) algorithm for approximately collapsing
some of the latent variables under, respectively, the multinomial-logit
and the multinomial-probit observation models. Second, we derive a
variational inference algorithm for the IBP model with the multinomial-logit
observation model. This algorithm presents lower computational complexity
than the Gibbs samplers, and therefore, allows us to deal with a larger
number of observations.

In Chapter 5, we extend the IBP observation model to handle mixed
continuous and discrete observations in order to account for all the
available information about the subjects (that includes also non categorical
observations, such as age, incomes or education level). In particular, the
proposed model is able to handle mixed real-valued, positive real-valued,
categorical, ordinal and count data. The model keeps the properties of
conjugate models, allowing us to derive an inference algorithm that scales
linearly with the number of observations.

In the second part of the thesis, we present the experimental results
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obtained after applying the proposed models to the NESARC database.
In Chapter 6, we provide an analysis of the hidden causes behind suicide
attempts, showing that the proposed model is able to detect people that
have a higher risk of attempting suicide.

In Chapter 7, we provide an exhaustive analysis of the comorbid
patterns among the 20 psychiatric disorders in the NESARC database.
In this chapter, we further analyze how different aspects of the people
social background (such as marital status, incomes, etc.) affect to the
manifestation of the different disorders.

In Chapter 8, we focus on seven personality disorders, studying their
pathological and comobid patterns. This analysis includes an evaluation of
the diagnostic criteria used in the NESARC to diagnose the seven personality
disorders.

Finally, in Chapter 9, we provide a summary with the main contributions
and results in the thesis, and some future possible research lines.

1.3 Contributions

The main contributions of this thesis are two-fold. On the one hand, we have
the technical contribution concerning machine learning techniques. On the
other hand, we have the contributions of the thesis to the state-of-the-art in
psychiatry. The technical contributions include:

• An IBP based model (and several extensions) suited for categorical
data and the corresponding inference algorithm. Specifically, we derive
three MCMC based inference algorithms and a variational inference
algorithm.

• Extension of the IBP model to account for heterogeneous databases,
keeping the properties of conjugate models and allowing for efficient
and fast (linear complexity) inference.

Note that, although we only focus on psychiatric data, the proposed models
and related inference algorithms, are general enough to be applicable in
other frameworks suitable for categorical or heterogeneous databases. For
instance, the extension of the IBP model to account for heterogeneous
databases has proved to be successful in estimating missing data in several
databases [86].

We next discuss the contributions regarding psychiatry. As we shall show
in the second part of the thesis, we obtain not only results in agreement
with previous studies but also new insights in the suicide risk detection and
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comorbidity pattern analysis, that may help psychiatrists detect people with
higher risk and guide them to improve treatments. The main contributions
to the psychiatric discipline are summarized below:

• We devise a suicide risk detector that does not only find the hidden
causes of suicide attempts but also allows us to detect those subject
with higher risk of attempting suicide.

• We perform an exhaustive analysis of comorbidity patterns among 20
psychiatric disorders that allows us to detect those subjects with higher
level of suffering. This study also includes how different aspects of the
social background of the subjects, such as age and gender, show up in
the comorbidity patterns of psychiatric disorders.

• We perform an comprehensive study of both pathological and
comorbid patterns among seven personality disorders. This study
shows how the seven personality disorders are related among each
other, and provides a thorough analysis and evaluation of the criteria
used in the NESARC to diagnose these disorders.
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Chapter 2

Brief Introduction to
Bayesian Nonparametrics

Bayesian nonparametric (BNP) models are being developed in the statistics
and machine-learning communities [57] to solve problems such as topic
modeling [8], image segmentation [79], speaker diarization [22], and gene-
expression modeling [40], among others. BNP models are useful to find out
the latent causes and structures behind data, and appear as an alternative
to model selection, which is one of the main concerns within the machine
learning community and is highly related to problems such as overfitting and
underfitting [57]. Examples of model selection include selecting the number
of clusters in a clustering problem [52], the number of latent variables in a
latent feature model [27], the number of hidden states in a hidden Markov
model [23] , or the number of levels in a network [9]. In BNPs, the model
complexity is allowed to grow with data size. The central idea behind BNPs
is the replacement of the classical finite-dimensional prior distribution with
a general stochastic process allowing for an open-ended number of degrees
of freedom in a model [35].

BNP are generative models that explain the observed data with a
potentially infinite number of parameters. For example, the Dirichlet
process (DP) [75] is a BNP prior to cluster data in which the number of
clusters is potentially unbounded while the Indian buffet process (IBP)
is a latent variable model in which the number of latent variables is
potentially unbounded [27]. Hierarchical Dirichlet processes (HDPs) allow,
for instance, describing infinite dimensional hidden Markov models (HMMs).
The inference process in BNPs jointly provides the model complexity, i.e.,
the number of components (e.g., the number of clusters and the cluster
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assignment for each data point), as well as parameters of the components
(e.g., cluster properties such as the mean and covariance in Gaussian mixture
models).

Although BNP models were proposed in the seventies [21], they have
not received full attention until fairly recently because of their high
computational complexity. The underlying stochastic process behind a BNP
model has an infinite number of dimensions that makes the computation
of the posterior distribution generally expensive. Recent years, developing
computationally feasible inference algorithms in BNPs has captured the
attention of the machine learning community (see, e.g., [18, 62, 58]) due
to the extreme increase of available data. Indeed, a full 90% of all the data
in the world has been generated over the last two years [70].

We find two main branches in BNP inference: Markov Chain Monte
Carlo (MCMC) based approaches (see, e.g., [18, 62, 27, 95, 87, 83] and the
references therein) and variational inference (see, e.g., [10, 36, 19, 58] and the
references therein). MCMC based algorithms consist of iteratively sampling
from (either sequentially or in blocks) the unknown variables, asymptotically
getting samples from the true posterior distribution. Among MCMC based
algorithms, Gibbs sampling appears as one of the most popular in BNPs due
to its simplicity and because, in its collapsed version, it allows integrating
out variables to accelerate the convergence of the MCMC [52, 27, 18].
Variational algorithms usually appear as faster methods than MCMC based
approaches, because they tackle the inference task as an optimization
problem. They approximate the intractable posterior distribution with a
tractable variational distribution by introducing additional independence
assumptions that ease the update of the variational parameters. These
parameters are typically optimized by minimizing the Kullback-Leibler
divergence between the true posterior and the variational distribution.
However, by searching only within a restricted class of distributions we
might lose some of the expressiveness of the model, leading typically to less
accurate results than the MCMC methods, which asymptotically sample
from the true posterior [94].

2.1 Dirichlet Process

The Dirichlet process (DP) is currently one of the most popular Bayesian
nonparametric models. The DP places a distribution over distributions, i.e.
each draw from a Dirichlet process is itself a distribution, and is called
Dirichlet process because it has Dirichlet distributed finite dimensional
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marginal distributions (refer to [21] for a formal definition of the DP).
DPs are used in a wide variety of applications of Bayesian analysis in both
statistics and machine learning. The simplest and most popular applications
include density estimation and clustering via mixture models [47, 20, 63].

We focus on the DP mixture model for clustering. In a clustering
problem, given a set of observation, we aim to divide them into disjoint
subsets or clusters. Hence, the main assumption in clustering is that each
observation xn belongs to a single cluster. Here, the nonparametric nature
of the Dirichlet process translates to mixture models with a countably
infinite number of components (or clusters). More formally, given a set
of N observations, {x1, . . . ,xN}, the DP mixture model assumes that each
observation xn is independently drawn from a distribution F (θn), such that

xn ∼ F (θn),
θn ∼ G,
G ∼ DP (α,G0),

where DP (α,G0) states for a DP with concentration parameter α and base
measure G0. We revise below how to construct the function G, i.e., the
DP, but for the time being, let us remark that G is discrete and, therefore,
different θn (n ∈ {1, . . . , N}) can take simultaneously the same value. Hence,
the model above can be seen as a mixture model where the observations xn

with the same parameter θn belong to the same cluster. For instance, in
the simplest DP Gaussian mixture model in which we are only interested
in estimating the means of the clusters (being the covariance matrix, Σx,
known), the likelihood function F (θn) is assumed to be Gaussian with mean
θn and covariance matrix Σx, where the means θn are distributed as G0

[63]. Hence, if we assume G0 to a Gaussian distribution, we can explouit
the properties of conjugate models to derive fast and efficient inference
algorithms. However, the DP prior is general enough to accommodate for
any observation model and prior distribution over the parameters of these
models (although the inference of such models is another matter).

2.1.1 The Stick-Breaking Construction

The stick-breaking construction of the DP is an equivalent representation of
the DP prior, in which draws from a DP are composed of a weighted sum
of point masses [76]. Specifically, the stick-breaking construction of the DP
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is given by

vk ∼ Beta(1, α),

πk = vk

k∏
l=1

(1 − vl),

θ∗k ∼ G0,

G =
∞∑

k=1

πkδθ∗k .

This construction can be understood with a stick-breaking process, in which,
starting with a stick of length 1, at each iteration k = 1, 2, . . ., a piece of
length πk is broken off from current length of the stick (refer o Figure 2.1
for a graphical view). Due to its simplicity, the stick-breaking construction
of the DP allows for the development of simple inference algorithms [33].

1

. . .

k = 1

k = 2

k = 3

π1

π2

π3

Figure 2.1: Illustration of the stick-breaking construction of the DP.

2.1.2 The CRP and Inference

There are several MCMC based algorithms to perform inference under a
DP mixture model, being Gibbs sampling approaches the most popular
[33, 52]. We summarize here, one of the simplest Gibbs sampling schemes
for inference in DP mixture models. For a better understanding of the
algorithm, we introduce the Chinese restaurant process (CRP), which
describes the marginal probabilities of the DP in terms of a random partition
obtained from a sequence of customers sitting at tables in a restaurant [6].
The CRP allows us to generate samples from a DP in a simple and direct
manner.

The CRP receives its name due to a culinary metaphor, in which we have
a Chinese restaurant with an infinite number of tables, each of which can
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allocate an infinite number of customers (see Figure 2.2). In this metaphor,
the first customer enters the restaurant and sits at the first table. The
second customer enters and decides either to sit with the first customer,
or at a new table. In general, the n-th customer either joins an already
occupied table k with probability proportional to the number of customers
already sitting there nk, or sits at a new table with probability proportional
to α. This process defines a distribution on partitions and is analogous to
the stick-breaking construction of the DP detailed above.

Based on the CRP idea, we can perform inference in an infinite mixture
model by iteratively sampling as follows: For n = 1, . . . , N , we assign data
point n to an existing cluster or table k with probability proportional to

nk
α+n−1 (being nk the number of customers in table k), or we assign n to a new
cluster with probability proportional to α

α+n−1 . For further details on Gibbs
sampling schemes in DP mixture models refer to [33, 52]. Alternatively, a
variational inference scheme for the DP mixture model can be found in [10].

INDIAN BUFFET PROCESS

...

2

10

6 7

93

1 4

8 5

Figure 2: A partition induced by the Chinese restaurant process. Numbers indicate customers (ob-
jects), circles indicate tables (classes).

it is identical to the extended Polya urn scheme introduced by Blackwell and MacQueen 1973).
Imagine a restaurant with an infinite number of tables, each with an infinite number of seats.2 The
customers enter the restaurant one after another, and each choose a table at random. In the CRP
with parameter α, each customer chooses an occupied table with probability proportional to the
number of occupants, and chooses the next vacant table with probability proportional to α. For
example, Figure 2 shows the state of a restaurant after 10 customers have chosen tables using this
procedure. The first customer chooses the first table with probability α

α = 1. The second customer
chooses the first table with probability 1

1+α , and the second table with probability
α
1+α . After the

second customer chooses the second table, the third customer chooses the first table with probability
1
2+α , the second table with probability

1
2+α , and the third table with probability

α
2+α . This process

continues until all customers have seats, defining a distribution over allocations of people to tables,
and, more generally, objects to classes. Extensions of the CRP and connections to other stochastic
processes are pursued in depth by Pitman (2002).

The distribution over partitions induced by the CRP is the same as that given in Equation 5. If
we assume an ordering on our N objects, then we can assign them to classes sequentially using the
method specified by the CRP, letting objects play the role of customers and classes play the role of
tables. The ith object would be assigned to the kth class with probability

P(ci = k|c1,c2, . . . ,ci−1) =
{ mk

i−1+α k ≤ K+
α

i−1+α k = K+1

where mk is the number of objects currently assigned to class k, and K+ is the number of classes for
which mk > 0. If all N objects are assigned to classes via this process, the probability of a partition
of objects c is that given in Equation 5. The CRP thus provides an intuitive means of specifying a
prior for infinite mixture models, as well as revealing that there is a simple sequential process by
which exchangeable class assignments can be generated.

2.4 Inference by Gibbs Sampling

Inference in an infinite mixture model is only slightly more complicated than inference in a mixture
model with a finite, fixed number of classes. The standard algorithm used for inference in infinite
mixture models is Gibbs sampling (Bush and MacEachern, 1996; Neal, 2000). Gibbs sampling

2. Pitman and Dubins, both statisticians at the University of California, Berkeley, were inspired by the apparently infinite
capacity of Chinese restaurants in San Francisco when they named the process.

Figure 2.2: A partition induced by the CRP. Numbers indicate customers
(objects), circles indicate tables (clusters).

2.2 The Indian Buffet Process

Unsupervised learning aims to recover the latent structure responsible
for generating the observed properties of a set of objects. In latent
feature modeling, the properties of each object can be represented by an
unobservable vector of latent features, and the observations are generated
from a distribution determined by those latent feature values. Typically, we
have access to the set of observations and the main goal of latent feature
modeling is to find out the latent variables that represent the data.

The most common nonparametric tool for latent feature modeling is the
Indian Buffet Process (IBP). The IBP places a prior distribution over binary
matrices, in which the number of rows is finite but the number of columns
(features) K is potentially unbounded, that is, K → ∞. This distribution
is invariant to the ordering of the features and can be derived by taking the
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limit of a properly defined distribution over N × K binary matrices as K
tends to infinity [27], similarly to the derivation of the Chinese restaurant
process as the limit of a Dirichlet-multinomial model [4]. However, given
a finite number of data points N , it ensures that the number of non-zero
columns, namely, K+, is finite with probability one.

Let Z be a random N ×K binary matrix distributed following an IBP,
i.e., Z ∼ IBP(α), where α is the concentration parameter of the process,
which controls the number of non-zero columns K+. The n-th row of Z,
denoted by zn, represents the vector of latent features of the n-th data point,
and every entry nk is denoted by znk. Note that each element znk ∈ {0, 1}
indicates whether the k-th feature contributes to the n-th data point. Since
only the K+ non-zero columns of Z contain the features of interest, and due
to the exchangeability property of the features under the IBP prior, they
are usually grouped in the left hand side of the matrix, as illustrated in
Figure 2.3.

Given a binary latent feature matrix Z, we assume that the N × D
observation matrix X, where the n-th row contains a D-dimensional
observation vector xn, is distributed according to a probability distribution
p(X|Z). For instance, in the standard observation model by [27], p(X|Z) is
a Gaussian probability density function. Throughout the paper, we denote
by xd the d-th column of X, and the elements in X by xnd.

Z =

2

6

6

6

4

z11 z12 · · · z1K+ 0 0 · · ·
z21 z22 · · · z2K+ 0 0 · · ·
...

...
. . .

...
...

...
. . .

zN1 zN2 · · · zNK+ 0 0 · · ·

3

7

7

7

5
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N
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p
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Figure 2.3: Illustration of an IBP matrix.

2.2.1 The Stick-Breaking Construction

The stick-breaking construction of the IBP is an equivalent representation
of the IBP prior, useful for inference algorithms other than Gibbs sampling,
such as slice sampling or variational inference algorithms [82, 19].

In this representation, the probability of each latent feature being active
is represented explicitly by a random variable. In particular, the probability
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of feature znk taking value 1 is denoted by ωk, that is,

znk ∼ Bernouilli(ωk).

Since this probability does not depend on n, the stick-breaking
representation explicitly shows that the ordering of the data does not affect
the distribution.

The probabilities ωk are, in turn, generated by first drawing a sequence
of independent random variables v1, v2, . . . from a beta distribution of the
form

vk ∼ Beta(α, 1).

Given the sequence of variables v1, v2, . . ., the probability ω1 is assigned to
v1, and each subsequent ωk is obtained as

ωk =
k∏

i=1

vi,

resulting in a decreasing sequence of probabilities ωk. Specifically, the
expected probability of feature znk being active decreases exponentially
with the index k. The graphical model corresponding to the stick-breaking
construction of the IBP is shown in Figure 2.4.

α

K

N

znkwk

Figure 2.4: Graphical model of the stick-breaking construction of the IBP.

This construction can be understood with the stick-breaking process
illustrated in Figure 2.5. Starting with a stick of length 1, at each iteration
k = 1, 2, . . ., a piece is broken off at a point vk relative to the current length
of the stick. The variable ωk corresponds to the length of the stick just
broken off, and the other piece of the stick is discarded.

2.2.2 Inference

Markov Chain Monte Carlo (MCMC) methods have been broadly applied
to infer the latent structure Z from a given observation matrix X (see, e.g.,
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Figure 2.5: Illustration of the stick-breaking construction of the IBP.

in [27, 95, 87, 83]), being Gibbs sampling the standard method of choice.
This algorithm iteratively samples the value of each element znk given the
remaining variables, that is, it samples from

p(znk = 1|X,Z¬nk) ∝ p(X|Z)p(znk = 1|Z¬nk), (2.1)

where Z¬nk denotes all the entries of Z other than znk. The conditional
distribution p(znk = 1|Z¬nk) can be readily derived from the exchangeable
IBP and can be written as

p(znk = 1|Z¬nk) =
m¬n,k

N
,

where m¬n,k is the number of data points with feature k, not including n,
i.e., m¬n,k =

∑
i6=n zik. For each data point n, after having sampled all

elements znk for the K+ non-zero columns in Z, the algorithm samples from
a distribution (where the prior is a Poisson distribution with mean α/N) a
number of new features necessary to explain that data point.

Although MCMC methods perform exact inference, they typically suffer
from high computational complexity. To solve this limitation, variational
inference algorithms can be applied instead at a lower computational cost,
at the expense of performing approximate inference [36]. A variational
inference algorithm for the IBP under the standard Gaussian observation
model is presented by [19]. This algorithm makes use of the stick breaking
construction of the IBP, summarized above.
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Chapter 3

IBP for Categorical
Observations

As introduced in Chapter 1, the main goal of this work is to find and interpret
the latent patterns behind psychiatric disorders. In this chapter, we propose
to model the subjects in the NESARC database using a BNP latent model
that allows us to seek hidden causes and compact in a few features the
immense redundant information. Our starting point is the IBP [27], because
it allows us to infer which latent features influence the observations and how
many features there are. As the NESARC database mostly contains yes-
or-no questions and some multiple-choice answers, we need an observation
model suited for categorical observations. We propose two observation
models: a multinomial-logit and a multinomial-probit likelihood model.

Additionally, we extend the IBP model motivated by the specific
application of modeling the latent factors behind psychiatric disorders. We
extend the IBP model in two ways. First, we add a bias term, which plays
the role of a latent variable that is always active. For a discrete observation
space, if we do not have a bias term and all latent variables are inactive,
the model assumes that all the outcomes are independent and equally likely,
which is not a suitable assumption in psychiatry. Second, we consider the
latent variables to be bounded real values, instead of on-off latent features.
Once a subject activates a latent variable, its value indicates the grade of
influence of the latent feature on this subject. Hence, if we interpret a latent
feature as a latent disorder, its value indicates the severity of suffering.
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3.1 Model Description

Let us assume N objects, where each object is defined by D attributes.
We can store the data in an N × D observation matrix X, in which each
D-dimensional row vector is denoted by xn = [x1

n, . . . , xD
n ] and each entry

is denoted by xd
n. Let us also denote each N -dimensional column vector

in X by xd. Here, unlike the standard Gaussian observation model, we
consider categorical observations, i.e., xd

n takes values in a finite unordered
set {1, . . . , Rd}, e.g., xd

n ∈ {‘blue’, ‘red’, ‘black’}. For simplicity and without
loss of generality, we assume the same number of categories R in all the
dimensions of X, i.e., Rd = R. Nevertheless, the following results can be
readily extended to a different cardinality per input dimension.

We assume that each observation xd
n can be explained by a K-length

vector of binary latent variables zn = [zn1, . . . , znK ] and the associated
factors bd

kr for r ∈ {1, . . . , R} that weight the contribution of the k-th latent
variable to the observation xd

n. Note that we have a weighting factor bd
kr

for each possible value of the observation xd
n ∈ {1, . . . , R}. We gather

the weighting factors associated to the d-th dimension of X, i.e., bd
kr for

d = 1, . . . , D, in a K × R weighting matrix Bd (being K the number of
latent variables). Similarly, we gather the latent binary feature vectors zn

in an N ×K matrix Z, which follows an IBP with concentration parameter
α, i.e., Z ∼ IBP(α) [27]. We place a Gaussian distribution with zero mean
and variance σ2

B over the weighting factors bd
kr. The resulting model is shown

in Figure 3.1.

Z

XBdσ2
B

d = 1, . . . , D

α

Figure 3.1: Simplest IBP model for Categorical Observation.

For a categorical observation space, the latent model in Figure 3.1
assumes that the observations for an object with no active latent features are
independent and equally likely. However, this property does not sound as
an appealing outcome when dealing with categorical observations in general,
and more so in psychiatry, where only a small fraction of the population
suffers from a psychiatric disorder. To solve this limitation, we extend
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the model in Figure 3.1 by adding a bias term, which plays the role of a
latent feature that is always active and is needed to model the behavior
of the objects without any active latent feature. In our application, we
make use of the bias term to model the general population that does not
suffer from any latent disorder, which allows us to directly interpret the
active latent variables as latent features describing disorders. The extended
model including the bias term is shown in Figure 3.2 where, similarly to
the weighting matrices, we place a Gaussian prior over the bias terms
bd
0r ∼ N (bd

0r|0, σ2
B). The bias terms bd

0r are grouped in the K-length vectors
bd

0. Note that we can simplify the notation in Figure 3.2 by assuming an
extended latent feature matrix Z of size N × (K +1), in which the elements
of the first column are equal to one, and D extended weighting matrices Bd

of size (K + 1) × R, in which the first row equals the vector bd
0.

Z

XBd

bd
0

σ2
B

d = 1, . . . , D

α

Figure 3.2: IBP model for Categorical observations with bias.

Additionally, we should take into account that in psychiatry the disorders
are not thought to be on/off diagnostics, but rather manifestations or
indicators of underlying continuous variables that represent predispositions
to certain types of psychopathology. Hence, instead of on/off latent features,
we extend the IBP model to allow real-valued latent variables. Under this
extended model, shown in Figure 3.3, once a subject has a latent variable (or
latent disorder) active, its value indicates the severity with what the subject
suffers from it. We limit the latent variables to be between 0 and 1, which
also helps to interpret the latent variable as a belief in the subject suffering
a latent disorder. In particular, we propose an N × K severity matrix W,
where each element wnk ∈ [0, 1] represents how much the n-th observation
is influenced by the k-th latent feature. Similarly to [41], we propose a spike
and slab prior for the severity factors to readily account for the subjects that
do not suffer from the disorder (spike component), and that allows assigning
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a degree of severity for an active latent feature (slab component), i.e.,

p(wnk|γ1, γ2, znk) = (1 − znk)δ(wnk) + znkBeta(wnk|γ1, γ2), (3.1)

where δ(·) is the Kronecker delta function, and γ1 and γ2 are hyper-
parameters of the model that describe the beta distribution. The
combination of the IBP with continuous latent variables has been previously
proposed in [41] for a BNP independent component analysis (ICA). In this
model, the prior for the latent continuous variables and the IBP matrix are
conjugated with a Gaussian likelihood, which significantly differs from our
proposal.

Z

XBd

bd
0

σ2
B

d = 1, . . . , D

α W

γ1, γ2

Figure 3.3: Full latent feature model for categorical observations with real-
valued latent features.

We assume that the observations xd
n are independent given the severity

matrix W, the weighting matrices Bd and the vectors bd
0. Therefore, the

likelihood can be factorized as

p(X|W,B1, . . . ,BD,b1
0, . . . ,b

D
0 ) =

N∏
n=1

D∏
d=1

p(xd
n|wn,Bd,bd

0). (3.2)

We consider two different likelihood models, a multinomial-logit and a
multinomial-probit model. Each of them allows us to derive different
inference algorithms, detailed in Chapter 4. There are several alternatives
to model categorical observations given the hidden latent features, such
as a Dirichlet distribution. However, we prefer the multinomial-logit and
the multinomial-probit distributions because, as in the standard Gaussian
observation model, the probability distribution of the observations depends
on the IBP matrix weighted by some factors, resulting in versatile and
flexible likelihood models.
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Multinomial-Logit Model. Under the multinomial-logit model the
probability of each element xd

n taking value r ∈ {1, . . . , R} is given by

p(xd
n = r|wn,Bd,bd

0) =
exp (wnbd

·r + bd0r)
R∑

r′=1

exp (wnbd
·r′ + bd0r′)

, (3.3)

where bd
·r corresponds to the r-th column vector of Bd, i.e., bd

·r =
[bd1r, . . . , b

d
Kr]

>. The multinomial-logit model allows the implementation of
an efficient Gibbs sampler when the Laplace approximation [48] is used to
integrate out the weighting factors and can be efficiently computed using
the Matrix Inversion Lemma.

Multinomial-Probit Model. Under the multinomial-probit model, the
probability of each element xd

n taking value r ∈ {1, . . . , R} can be written
as

p(xd
n|wn,Bd,bd

0) = Ep(u)

[
R∏

r=1
r 6=xd

n

Φ
(
u+ (bd0xd

n
− bd0r) + wn(bd

·xd
n
− bd

·r)
)]
,

(3.4)

where wn stands for the n-th row of matrix W, the auxiliary variable u is
distributed as p(u) = N (u|0, 1), Ep(u)[·] denotes expectation with respect to
the distribution p(u), and Φ(·) denotes the cumulative density function of the
standard normal distribution. We use a multivariate cumulative Gaussian
likelihood because it is amenable for an EP inference algorithm [26].
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Chapter 4

Inference

In this chapter, we derive several algorithms for inferring the latent variables
of the models proposed in Chapter 3. First, we focus on the derivation of
MCMC based algorithms for the proposed models. Afterwards, we derive a
variational inference algorithm for the IBP model fo categorical observations
under the multinomial-logit likelihood function.

4.1 MCMC based Inference

We first focus on the simplest model in Figure 3.1, where the unknown
variables are the latent matrices Z and {Bd}Dd=1. We remark that the bias
term can be directly incorporated into the binary latent matrix Z and the
weighting matrix Bd, such that the extended Z stands for the N × (K + 1)
matrix [1 Z] (being 1 a N -length vector whose elements are equal to one),
and the extended Bd stands for the (K + 1)×D matrix [(bd

0)
> (Bd)>]>.

In Section 2.2, we briefly reviewed the collapsed Gibbs sampling
algorithm for posterior inference over the latent variables of the IBP. This
algorithm samples from

p(znk = 1|X,Z¬nk) ∝ p(X|Z)p(znk = 1|Z¬nk), (4.1)

where the marginal likelihood p(X|Z) is obtained after integrating out the
matrices Bd in

p(X|Z,B1, . . . ,BD) =
N∏

n=1

D∏
d=1

p(xd
n|zn,Bd). (4.2)

In the standard Gaussian observation model of the IBP [27], this
marginalization can be performed analytically. However, under both the
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multinomial-logit and the multinomial-probit models, the marginalization
with respect to Bd is intractable. To solve this limitation, we derive two
different algorithms to approximately integrate out the matrices Bd. First,
we resort to the Laplace approximation which is suitable for the multinomial-
logit model and, then, we derive an Expectation Propagation (EP) algorithm
which is suitable for the multinomial-probit model. Note that, although
we could also sample from the full join posterior distribution, the high
dimensionality of our parameter space causes strong dependences among
hyper-parameters and latent variables, resulting in a slow mixing of the
chains that requires thousands of posterior draws [64].

The rest of the chapter is organized as follows. First, we provide
the details on the derivation of the Laplace and EP approximations in
Sections 4.1.1 and 4.1.2, respectively. Afterwards, in Section 4.1.2, we
also derive an inference algorithm based on the Metropolis-Hastings (MH)
algorithm to jointly sample from the latent features znk and the severity
factors wnk in the full model in Figure 3.3. Finally, in order to evaluate
the performance of the Laplace and the EP approximations, we provide a
comparison of both approximations on two toy examples in Section 4.1.4.

4.1.1 Laplace Approximation

In this section, we consider the multinomial-logit model in which the
probability of each element xd

n taking value r ∈ {1, . . . , R} is given by

πd
nr = p(xd

n = r|zn,Bd) =
exp (znbd

·r)
R∑

r′=1

exp (znbd
·r′)

. (4.3)

Recall that our model assumes independence among the observations
given the hidden latent variables. Then, the posterior p(B1, . . . ,BD|X,Z)
factorizes as

p(B1, . . . ,BD|X,Z) =
D∏

d=1

p(Bd|xd,Z) =
D∏

d=1

p(xd|Bd,Z)p(Bd)
p(xd|Z)

. (4.4)

Hence, we only need to deal with each term p(Bd|xd,Z) individually.
The marginal likelihood p(xd|Z), which we are interested in, can be

obtained as

p(xd|Z) =
∫
p(xd|Bd,Z)p(Bd)dBd. (4.5)
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Although the prior p(Bd) is Gaussian, due to the non-conjugacy with the
likelihood term, the computation of this integral, as well as the computation
of the posterior p(Bd|xd,Z), turns out to be intractable.

Following a similar procedure as in Gaussian processes for multiclass
classification [93], we approximate the posterior p(Bd|xd,Z) as a Gaussian
distribution using Laplace’s method. In order to obtain the parameters
of the Gaussian distribution, we define f(Bd) as the un-normalized log-
posterior of p(Bd|xd,Z), i.e.,

f(Bd) = log p(xd|Bd,Z) + log p(Bd). (4.6)

As proven in Appendix A, the function f(Bd) is a strictly concave
function of Bd and therefore it has a unique maximum, which is reached
at Bd

MAP, denoted by the subscript ‘MAP’ (maximum a posteriori) because
it coincides with the mean of the Gaussian distribution in the Laplace
approximation. We resort to Newton’s method to compute Bd

MAP.
Let us stack the columns of Bd into βd, i.e., βd = Bd(:) for avid Matlab

users. The posterior p(Bd|xd,Z) can be approximated as

p(βd|xd,Z) ≈ N
(
βd
∣∣∣βd

MAP, (−∇∇f)|βd
MAP

)
,

where ∇∇f is the Hessian of f(βd). Hence, by taking the second-order
Taylor series expansion of f(βd) around its maximum, the computation of
the marginal likelihood in (4.5) results in a Gaussian integral, whose solution
can be expressed as

log p(xd|Z) ≈ − 1
2σ2

B

trace
{

(Bd
MAP)>Bd

MAP

}
+ log p(xd|Bd

MAP,Z)

− 1
2

log

∣∣∣∣∣IR(K+1) + σ2
B

N∑
n=1

(
diag(π̂d

n)− (π̂d
n)>π̂

)
⊗ (z>n zn)

∣∣∣∣∣ ,
(4.7)

where π̂d
n is the vector πd

n =
[
πd

n1, π
d
n2, . . . , π

d
nR

]
evaluated at Bd = Bd

MAP,
and diag(π̂d

n) is a diagonal matrix with the values of π̂d
n as its diagonal

elements. Details of the computation of the Hessian and the gradient of
function f are provided in Appendix A.

Similarly as in [27], it is straightforward to prove that the limit of Eq. 4.7
is well-defined if Z has an unbounded number of columns, that is, asK →∞.
The resulting expression for the marginal likelihood p(xd|Z) can be readily
obtained from Eq. 4.7 by replacing K by K+, Z by the submatrix containing
only the non-zero columns of Z, and Bd

MAP by the submatrix containing the
K+ corresponding rows.
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Speeding Up the Matrix Inversion

In this section, we propose a method that reduces the complexity of
computing the inverse of the Hessian for Newton’s method (as well as its
determinant) from O(R3K3

+ +NR2K2
+) to O(RK3

+ +NR2K2
+), effectively

accelerating the inference procedure for large values of R.
Let us denote with Z the matrix that contains only the K+ +1 non-zero

columns of the extended IBP matrix that account for the bias terms. The
inverse of the Hessian for Newton’s method, as well as its determinant in
(4.7), can be efficiently carried out if we rearrange the inverse of ∇∇f as
follows:

(−∇∇f)−1 =

(
D−

N∑
n=1

vnv>n

)−1

,

where vn = (π)> ⊗ z>n and D is a block-diagonal matrix, in which each
diagonal submatrix is given by

Dr =
1
σ2

B

IK++1 + Z> diag (πr
·d)Z, (4.8)

with πd
·r =

[
πd

1r, . . . , π
d
Nr

]>. Since vnv>n is a rank-one matrix, we can
apply the Woodbury identity [97] N times to invert the matrix −∇∇f ,
similar to the RLS (Recursive Least Squares) updates [30]. At each iteration
n = 1, . . . , N , we compute

(D(n))−1 =
(
D(n−1) − vnv>n

)−1
= (D(n−1))−1+

(D(n−1))−1vnv>n (D(n−1))−1

1− v>n (D(n−1))−1vn
.

(4.9)
For the first iteration, we define D(0) as the block-diagonal matrix D,

whose inverse matrix involves computing the R matrix inversions of size
(K+ +1)× (K+ +1) of the matrices in (4.8), which can be efficiently solved
applying the Matrix Inversion Lemma. After N iterations of (4.9), it turns
out that (−∇∇f)−1 = (D(N))−1.

For the determinant in (4.7), similar recursions can be applied using
the Matrix Determinant Lemma [29], which states that |D + vu>| =
(1 + v>Du)|D|, and |D(0)| =

∏R
r=1 |Dr|.

4.1.2 Nested EP

In this section, we adapt the nested EP algorithm introduced in [64] to
approximate the marginal likelihood p(X|Z). To this end, we assume the
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multinomial-logit model, being the probability of each observation given by

p(xd
n|zn,Bd) = Ep(u)

[
R∏

r=1
r 6=xd

n

Φ
(
u+ zn(bd

·xd
n
− bd

·r)
)]
, (4.10)

where the auxiliary variable u is Gaussian distributed with zero mean and
unit variance. Similarly to the multinomial-logit model, the computation
of the marginal likelihood, p(xd|Z) =

∫
p(Bd)p(xd|Z,Bd)dBd, is again

intractable, because the prior and likelihood are not conjugate. Instead,
we run D parallel nested EP algorithms to compute p(xd|Z), being the
marginal likelihood p(X|Z) the product of the individual terms p(xd|Z) for
d = 1, . . . , D. In the description of the nested EP algorithm, we do not
make explicit the dependence on d, unless necessary, to avoid cluttering of
notation.

Besides the EP approximation, we could also approximate this posterior
using multi-dimensional quadratures [73] or, as before, using the Laplace
approximation [26]. We choose the nested EP algorithm, because EP
approaches are typically more accurate than the Laplace approximation
and computationally less demanding than numerical quadratures [64]. The
proposed nested EP consists of two loops, which are described below and
summarized in Algorithms 1 and 2. We show in Section 4.1.2 that the
complexity of the nested EP is linear in the number of observations. In
addition, a heuristic comparison of the performance on two Toy examples
of both the Laplace approximation (in Section 4.1.1) and the nested EP
approximation is provided in Section 4.1.4. This section also provides a
comparison, in terms of flexibility and expressiveness, of the models with
both binary latent features and (bounded) real-valued latent variables.

For convenience, we stack the columns of Bd into the vector βd. Note
that, given Z, we only need to account for the parameters corresponding
to the K+ + 1 active features. To obtain the marginal likelihood, we need
to approximate the posterior p(βd|xd,Z) with a tractable distribution. The
likelihood p(xd|Z,βd) contains a product of non-conjugate terms (sites) [72],
denoted by tdn(βd) = p(xd

n|Z,βd), and hence the posterior can be expressed
as

p(βd|xd,Z) =

N (βd|0, σ2
BI)

N∏
n=1

tdn(βd)

p(xd|Z)
. (4.11)

The EP approximation consists on replacing each site tdn(βd) with a
tractable term t̃dn(βd), resulting in an approximate distribution that we
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denote by qEP(βd). We choose t̃dn(βd) to be an unnormalized Gaussian
with the R(K+ + 1) × 1 vector λ̃n and the R(K+ + 1) × R(K+ + 1)
matrix Π̃n as natural parameters, and scaling constant Z̃n, i.e., t̃dn(βd) =
Z̃nN (βd|Π̃

−1

n λ̃n, Π̃
−1

n ), yielding

qEP(βd) = N (βd|Π−1
EPλEP,Π−1

EP)

=
1
ZEP
N (βd|0, σ2

BI)
N∏

n=1

Z̃nN (βd|Π̃
−1

n λ̃n, Π̃
−1

n ),
(4.12)

where λEP and ΠEP are the natural parameters of the Gaussian distribution
qEP(βd). We choose Z̃n following [71] in order for ZEP to become a good
approximation of the marginal likelihood p(xd|Z).

The EP algorithm chooses the parameters λ̃n and Π̃n by matching the
moments of p(βd|xd,Z) and qEP(βd), which is equivalent to minimizing the
Kullback-Leibler divergence DKL(p(βd|xd,Z)||qEP(βd)). This minimization
is solved iteratively for n = 1, . . . , N [51, 72, 54] (repeating until
convergence) as follows:

(i) Define the cavity distribution q¬n(βd) ∝ qEP(βd)/t̃dn(βd), in which we
have removed one approximate site. The natural parameters of the
cavity distribution are Π¬n = ΠEP − Π̃n and λ¬n = λEP − λ̃n.

(ii) Define the tilted distribution p̂n(βd) ∝ q¬n(βd)tdn(βd) (which includes
the true site), and minimize DKL(p̂n(βd)||qEP(βd)) with respect to
qEP(βd).

(iii) Update the approximate site as t̃dn(βd) ∝ qEP(βd)/q¬n(βd).

The standard EP algorithm solves Step (ii) by matching the moments
between p̂n(βd) and qEP(βd), which is assumed to be tractable. However, in
this case, matching these moments is not tractable and we resort to another
EP loop, i.e., the inner loop, and hence the name of the algorithm. The
inner loop of the nested EP, summarized in Algorithm 2 and detailed in
Appendix B, approximates the tilted distribution

p̂n(βd) =
1

Ẑn

q¬n(βd)tdn(βd) (4.13)

by a Gaussian distribution with natural parameters λ̂n and Π̂n, which is
similar to the EP algorithm resulting from a linear binary classifier with a
multivariate Gaussian prior and a probit likelihood function in the Gaussian
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process setting [61]. Now Step (iii) follows readily, since we can obtain the
new natural parameters for the approximate site t̃dn(βd) as Π̃

new

n = Π̂n−Π¬n

and λ̃
new

n = λ̂n − λ¬n. A damping factor of ηO can be used in this step for
numerical stability.

The site parameters t̃dn(βd) can be updated in parallel for all n,
recomputing the parameters of the posterior approximation qEP(βd) only
once per iteration of the outer loop [16, 72]. The approximate posterior
parameters are ΠEP = 1

σ2
B
I +

∑N
n=1 Π̃n and λEP =

∑N
n=1 λ̃n. After

convergence, the marginal likelihood p(xd|Z) can be approximated following
[71]. Specifically, the approximate marginal likelihood p(xd|Z) can be
computed as

log p(xd|Z) ≈ logZEP

= −1
2

log |ΠEP| −
KR

2
log σ2

B +
1
2
λ>EPΠ−1

EPλEP +
N∑

n=1

log Z̃n,
(4.14)

where

log Z̃n = log Ẑn +
1
2
λ>¬nΠ

−1
¬nλ¬n −

1
2
(λ¬n + λ̃n)>(Π¬n + Π̃n)−1(λ¬n + λ̃n)

+
1
2

log |Π¬n + Π̃n| −
1
2

log |Π¬n|.
(4.15)

Computational complexity

Although the nested EP is similar to the proposed algorithm in [64], the
computational complexity is substantially different. The running time of
the nested EP for our model is linear in the number of instances (N), while
for the Gaussian processes for multiclass classification the computational
complexity is cubic. The nested EP for our algorithm needs to integrate out
βd, which is an R(K+ + 1)-dimensional vector. Note that the outer loop
of the proposed nested EP requires one loop in n and, since all the sites
tdn(βd) are functions of the same R(K+ + 1)-dimensional random vector βd,
no matrix inversion is needed when we work with the natural parameters of
the normal distributions. Each iteration of the inner loop, however, requires
the inversion of a matrix of size R(K+ + 1) + 1 (in practice computed using
the Cholesky decomposition), which has a complexity of O((R(K+ + 1) +
1)3). The overall complexity of the posterior approximation scales with
DN(R(K+ + 1) + 1)3, because we iterate through the number of samples
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Algorithm 1 Outer loop of the nested EP algorithm.

Input: xd, Z, σ2
B (optionally initial site parameters Π̃

ini

n , λ̃
ini

n , α̃ini
nr , β̃ini

nr )
Output: p(xd|Z), ΠEP, λEP (optionally site parameters Π̃n, λ̃n, α̃nr,
β̃nr)
initialize Π̃n ← Π̃

ini

n , λ̃n ← λ̃
ini

n for n = 1, . . . , N
initialize ΠEP ← 1

σ2
B
I +

∑N
n=1 Π̃n, λEP ←

∑N
n=1 λ̃n

repeat
for n = 1, . . . , N (in parallel) do

cavity evaluations: Π¬n ← ΠEP − Π̃n,
λ¬n ← λEP − λ̃n

tilted moments:
[Π̂n, λ̂n, Ẑn, {α̃nr, β̃nr}]← inner loop

(xnd,wn,Π¬n,λ¬n, {α̃ini
nr , β̃

ini
nr })

site updates: Π̃n ← ηO(Π̂n −Π¬n) + (1− ηO)Π̃n,
λ̃n ← ηO(λ̂n − λ¬n) + (1− ηO)λ̃n

end for
update ΠEP ← 1

σ2
B
I +

∑N
n=1 Π̃n, λEP ←

∑N
n=1 λ̃n

until stopping criterion
for n = 1, . . . , N (in parallel) do

compute log Z̃n from (4.15).
end for
compute log p(xd|Z) from (4.14)

N and the dimensionality of the observation vector D. Evaluating the
likelihood after convergence of the outer loop requires operations of matrices
of size RK+ within a loop in n, which leads to a complexity scaling with
N(R(K++1))3. Thus, the overall complexity of the full nested EP algorithm
to evaluate the marginal likelihood p(X|Z) is O(DN(R(K+ +1)+1)3). The
EP procedure can be parallelized in the dimension of the observed instances
(D) and in the number of instances N , providing significant savings in
runtime complexity.

Furthermore, the site parameters of the inner loop can be stored after
each inner EP run and used as starting parameters the next time the inner
loop is called [64]. In addition, successive calls to the nested EP algorithm
differ in just one element of wnk, which allows reducing the number of outer
loop iterations by storing the site parameters λ̃n and Π̃n after each nested
EP run and continuing from the previous values in the next run. When
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Algorithm 2 Inner loop of the nested EP algorithm.

Input: xd
n,wn,Π¬n,λ¬n (optionally initial site parameters α̃ini

nr , β̃ini
nr )

Output: Π̂n, λ̂n, Ẑn (optionally site parameters α̃nr, β̃nr)
initialize α̃nr ← α̃ini

nr , β̃nr ← β̃ini
nr for r = 1, . . . , R (with r 6= xd

n)
initialize ΠIn ,λIn from Π¬n,λ¬n

initialize Π̃In ← ΠIn+
∑

r 6=xd
n
α̃nrhd

nr(h
d
nr)

>, λ̃In ← λIn+
∑

r 6=xd
n
β̃nrhd

nr

repeat
for r = 1, . . . , R with r 6= xd

n (in parallel) do

marginal moments: vnr ← (hd
nr)

>Π̃
−1

In hd
nr, mnr ← (hd

nr)
>Π̃

−1

In λ̃In

cavity evaluations: vn¬r ← (1/vnr + α̃nr)−1, mn¬r ← vn¬r(mnr/vnr−
β̃nr)
auxiliary variable:

ρnr ← N
(

mn¬r√
1 + vn¬r

|0, 1
)
/
(
Φ
(

mn¬r√
1+vn¬r

)√
1 + vn¬r

)
tilted moments:

v̂nr ← vn¬r − v2
n¬r

(
ρ2

nr + ρnr
mn¬r

1+vn¬r

)
,

m̂nr ← mn¬r + ρnrvn¬r,

Ĉnr ← Φ
(

mn¬r√
1 + vn¬r

)
site updates: α̃nr ← ηI(1/v̂nr − 1/vn¬r) + (1− ηI)α̃nr,

β̃nr ← ηI(m̂nr/v̂nr −mn¬r/vn¬r) + (1− ηI)β̃nr

end for
update Π̃In ← ΠIn +

∑
r 6=xd

n
α̃nrhd

nr(h
d
nr)

>, λ̃In ← λIn +
∑

r 6=xd
n
β̃nrhd

nr

until stopping criterion
for r = 1, . . . , R with r 6= xd

n (in parallel) do
compute log C̃nr from (B.9) (see Appendix B)

end for
compute log Ẑn from (B.8) (see Appendix B)
compute Π̂n, λ̂n from Π̃In , λ̃In

trying to add new features, the values of the ‘old’ site parameters can still
be used to build the ‘new’ parameters (extended to account for the new
features) λ̃n and Π̃n.

4.1.3 Inferring the Severity Matrix

So far, we have consider the model without the severity matrix W, being
in this case Gibbs sampling suitable to infer the latent feature matrix Z.
However, when considering the “full” model in 3.3, in addition to the latent

31



matrix Z, we need also to infer the severity matrix W, which cannot be
done with the Gibbs sampling algorithm. Here, we instead propose an
inference algorithm based on Metropolis-Hastings (MH) algorithm, in which
we jointly sample znk and wnk having marginalized the matrices Bd. Since as
before, the posterior of Bd is intractable, we can resort either to the Laplace
approximation or to the nested EP algorithm in order to approximately
integrate out Bd to obtain the marginal likelihood p(X|W). Note that
adapting the EP approximation, detailed in Section 4.1.2, to deal with the
severity matrix W can be performed by simply replacing all the references in
the nested EP algorithm to the binary matrix Z by the severity matrix W.
The adaptation of the Laplace approximation is also straightforward but
some of the equations in Section 4.1.1 change when considering the severity
factors.

Our MH based algorithm proceeds iteratively as follows. For each
observation n = 1, . . . , N :

• Step 1: Jointly sample znk and wnk for k = 1, . . . ,K+;

• Step 2: Consider adding new latent features for the n-th observation,
updating K+ if necessary.

In Step 1, we rely on MH proposing to move from an initial pair (znk, wnk) to
(z∗nk, w

∗
nk) (jumping from matrices Z and W to Z∗ and W∗). Our proposal

distribution is
q1(z∗nk, w

∗
nk|znk, wnk)

=

{
δ1(z∗nk)p(w

∗
nk|z∗nk = 1), if znk = 0,

1
2δ0(z

∗
nk)δ0(w

∗
nk) + 1

2δ1(z
∗
nk)p(w

∗
nk|z∗nk = 1), if znk 6= 0,

(4.16)

i.e., if znk = 0 we propose to move to z∗nk = 1 with w∗nk sampled from

p(w∗nk|γ1, γ2, z
∗
nk) = (1− z∗nk)δ0(w

∗
nk) + z∗nkBeta(w∗nk|γ1, γ2). (4.17)

Otherwise, either a move to z∗nk = 0 or to z∗nk = 1 (with a value of w∗nk

drawn from the Eq. 4.17) is proposed with equal probability. The acceptance
probability for the MH step is given by

min
(

1,
p(X|W∗)p([Z∗])p(w∗nk|z∗nk)
p(X|W)p([Z])p(wnk|znk)

q1(znk, wnk|z∗nk, w
∗
nk)

q1(z∗nk, w
∗
nk|znk, wnk)

)
, (4.18)

where

p([Z∗])
p([Z])

=


1, if znk = z∗nk,

m¬nk/(N −m¬nk), if z∗nk = 1 and znk = 0,
(N −m¬nk)/m¬nk, if z∗nk = 0 and znk = 1,

(4.19)
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being m¬nk the number of data points (excluding n) which have active the
k-th feature, namely, m¬nk =

∑
i6=n zik. The distribution p(wnk|znk) is

given in Eq. 4.17 and, as previously stated, the probabilities p(X|W) are
obtained using either the Laplace approximation or the nested EP algorithm
detailed, respectively, in Sections 4.1.1 and 4.1.2.

For Step 2, we need to define κn as the number of columns of Z which
are active only in the n-th row, i.e., κn =

∑∞
k=1 znk

∏
i6=n(1 − zik). Note

that, after performing Step 1, the initial value of κn is 0 due to the form
of Eqs. 4.18 and 4.19. The new value κ∗n is sampled with a MH step. We
include as part of the proposal the corresponding new values of the severity
matrix, i.e., a 1× κ∗n vector denoted by ω∗

n. Therefore, we propose to jump
from a initial value of κn and ωn to κ∗n and ω∗

n, where the latter variables
are drawn from the proposal distribution

q2(κ∗n,ω
∗
n) = q2(κ∗n)q2(ω∗

n|κ∗n). (4.20)

We make q2(ω∗
n|κ∗n) equal to the prior, i.e., q2(ω∗

n|κ∗n) =
∏κ∗n

k′=1 p(ω
∗
nk′ |z∗nk′ =

1), and q2(κ∗n) is chosen as in [41], namely,

q2(κ∗n) = (1− π)Poisson (κ∗n |αλ/N ) + πδ1(κ∗n), (4.21)

where we set λ = N/2 and π = 0.2. The move is accepted with probability

min

(
1,
p(X|W∗)
p(X|W)

(α/N)κ∗n

κ∗n!
q2(κn)
q2(κ∗n)

)
. (4.22)

4.1.4 Laplace Approximation vs. Expectation Propagation

In order to evaluate the performance of our model and inference algorithms,
we generate two synthetic datasets and perform comparisons between a
latent feature model with:

(i) On/off hidden variables and inference based on Gibbs sampling
combined with the Laplace approximation described in Section 4.1.1
(denoted by “On/Off+Lap.”);

(ii) On/off hidden variables and inference based on Gibbs sampling and the
nested EP approximation described in Section 4.1.2 (“On/Off+EP”);

(iii) Continuous hidden variables in [0, 1] and inference based on MH steps
and the nested EP approximation, i.e., the algorithm in Section 4.1.3
(“Sev.+EP”).
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(a) (b)

Figure 4.1: Toy example 1. (a) Base images. (b) Four observation examples.
The numbers above each figure indicate which features are present in that
image.

We generate binary-valued observation matrices X, with N = 100 black-
and-white images with dimensionality D = 36, that are built differently for
each of the two datasets.

Toy Example 1: In this example, each observation xn is a combination
of four latent black-and-white base images that can be present or absent with
probability 0.5 independently of each other, i.e., znk = 1 with probability
0.5. Each white pixel in the composite image becomes black with probability
0.5, while black pixels remain black. We plot in Figure 4.1 the four base
images and four observation examples.

Toy Example 2: This example is similar to the previous one but we
introduce a latent auxiliary matrix A to generate observations. As before,
we assume four latent features that become active with probability 0.5,
but we also generate a N × 4 matrix A, whose elements ank are Beta(2, 1)
distributed. In this set-up, we divide each image into four disjoint regions of
9 pixels, each modelled by one of the latent features. Each of the 9 pixels in
the observation n corresponding to feature k are set to black with probability
0.5 + 0.5ank if znk = 1, or with probability 0.5 otherwise.

Validation: In order to compare the three methods, we average over 5
independent realizations of the two synthetic datasets the following scores:

• Approximate marginal log-likehood (Log-lik).

• Kullback-Leibler divergence (DKL) between the true and the inferred
probability of the observation matrix. We compute the inferred
probability using the mean of the approximate posterior of Bd and
the sample of the latent feature matrix Z (or W, if available).

In Tables 4.1 and 4.2 we show the results for the two synthetic datasets.
Note that the obtained values of the average log-likelihood are similar for the
three considered methods (no significant statistical differences are found) in
both examples. However, we can observe significant differences in terms of
the Kullback-Leibler divergence, for which the model with severity factors
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combined with the EP inference provides the best results in both examples.
Additionally, in Toy Example 1, since the generative model considers binary
latent variables (instead of continuous), both the “On/Off+EP” and the
“Sev.+EP” methods provide similar results. Hence, in agreement with
previous works [45, 64], we observe that the EP algorithm provides better
estimates of the marginal likelihood than the Laplace approximation, and
the severity factors included in the Full model in Figure 3.3 lead to a more
flexible and expressive model (and the corresponding inference algorithm)
that is able to better explain diverse databases.

On/Off+Lap. On/Off+EP Sev.+EP
Log-lik −1, 943 −2, 001 −1, 948
DKL 497.15 354.92 347.11

Table 4.1: Results for the Toy Example 1.

On/Off+Lap. On/Off+EP Sev.+EP
Log-lik −2, 122 −2, 233 −2, 151
DKL 524.16 372.10 353.15

Table 4.2: Results for the Toy Example 2.

4.2 Variational Inference

Variational inference provides a complementary (and less expensive in terms
of computational complexity) alternative to MCMC methods as a general
source of approximation methods for inference in large-scale statistical
models [36]. The main idea behind variational inference is to approximate
the distribution by a tractable distribution and find the optimal parameters
by minimizing the KL divergence between both distributions. In this
chapter, we adapt the infinite variational approach for the standard linear-
Gaussian IBP model, introduced in [19], to the multinomial-logit IBP model
introduced in Chapter 3. This approach assumes the (truncated) stick-
breaking construction for the IBP detailed in Section 2.2.1, which bounds
the number of columns of the IBP matrix by a finite (but large enough)
value, K. Then, in the truncated stick-breaking process, ωk =

∏k
i=1 vi for

k ≤ K, and zero otherwise.
The hyperparameters of the model are grouped in the set H = {α, σ2

B}
and, similarly, Ψ = {Z,B1, . . . ,BD,b1

0, . . . ,b
D
0 , v1, . . . , vK} denotes the set
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of unobserved variables in the model where, for clarity, we explicitly account
for the bias terms bd

0. Under the truncated stick-breaking construction for
the IBP, the joint probability distribution over all the variables p(Ψ,X|H)
can be factorized as

p(Ψ,X|H) =
K∏

k=1

(
p(vk|α)

N∏
n=1

p(znk|{vi}ki=1)

)
D∏

d=1

(
p(bd

0|σ2
B)

K∏
k=1

p(bd
k·|σ2

B)

)

×
N∏

n=1

D∏
d=1

p(xd
n|zn,Bd,bd

0),

where bd
k· is the kth row of matrix Bd.

We approximate p(Ψ|X,H) with the variational distribution q(Ψ) given
by

q(Ψ) =
K∏

k=1

(
q(vk|τk1, τk2)

N∏
n=1

q(znk|νnk)

)
K∏

k=0

R∏
r=1

D∏
d=1

q(bdkr|φd
kr, (σ

d
kr)

2
),

where the terms bdkr stand for the elements of matrix Bd, and

q(vk|τk1, τk2) = Beta(τk1, τk2),

q(bdkr|φd
kr, (σ

d
kr)

2
) = N (φd

kr, (σ
d
kr)

2
),

q(znk|νnk) = Bernoulli(νnk).

Inference involves optimizing the variational parameters of q(Ψ) to minimize
the Kullback-Leibler divergence from q(Ψ) to p(Ψ|X,H), i.e., DKL(q||p).
This optimization is equivalent to maximizing a lower bound on the evidence
p(X|H), which can be computed as

log p(X|H) = Eq [log p(Ψ,X|H)] +H[q] +DKL(q||p)
> Eq [log p(Ψ,X|H)] +H[q],

(4.23)

where Eq[·] denotes the expectation with respect to the distribution q(Ψ),
H[q] is the entropy of distribution q(Ψ), and

Eq [log p(Ψ,X|H)]

=
K∑

k=1

Eq [log p(vk|α)] +
D∑

d=1

K∑
k=1

Eq

[
log p(bd

k·|σ2
B)
]

+
D∑

d=1

Eq

[
log p(bd

0|σ2
B)
]

+
K∑

k=1

N∑
n=1

Eq

[
log p(znk|{vi}ki=1)

]
+

N∑
n=1

D∑
d=1

Eq

[
log p(xd

n|zn,Bd,bd
0)
]
.

(4.24)

36



The derivation of the lower bound in (4.23) is straightforward, with the
exception of the terms Eq

[
log p(znk|{vi}ki=1)

]
and Eq

[
log p(xd

n|zn,Bd,bd
0)
]

in (4.24), which have no closed-form solution, so we instead bound them.
Deriving these bounds leads to a new bound L(H,Hq) (that can be written
in closed-form) such that log p(X|H) ≥ L(H,Hq), being Hq the full set of
variational parameters. The final expression for L(H,Hq), as well as the
details on the derivation of the bound, are provided in Appendix C.1.

In order to maximize the lower bound L(H,Hq), we need to optimize
with respect to the value of the variational parameters. To this end, we can
iteratively maximize the bound with respect to each variational parameter
by taking the derivative of L(H,Hq) and setting it to zero. This procedure
readily leads to the following fixed-point equations:

1. For the variational Beta distribution q(vk|τk1, τk2),

τk1 = α+
K∑

m=k

(
N∑

n=1

νnm

)
+

K∑
m=k+1

(
N −

N∑
n=1

νnm

)(
m∑

i=k+1

λmi

)
,

τk2 = 1 +
K∑

m=k

(
N −

N∑
n=1

νnm

)
λmk.

2. For the Bernoulli distribution q(znk|νnk),

νnk =
1

1 + exp(−Ank)
,

where

Ank

=
k∑

i=1

[ψ(τi1)− ψ(τi1 + τi2)]−

[
k∑

m=1

λkmψ(τm2) +
k−1∑
m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑
m=1

λkm log(λkm)

]

+
D∑

d=1

(
φd

kxd
n
− ξnd

R∑
r=1

[
exp

(
φd

0r +
1
2
(σd

0r)
2

)(
1− exp

(
φd

kr +
1
2
(σd

kr)
2
))
×

×
∏
k′ 6=k

(
1− νnk′ + νnk′ exp

(
φd

k′r +
1
2
(σd

k′r)
2
))] ,

and ψ(·) stands for the digamma function [3, p. 258–259].
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3. For the feature assignments, which are Bernoulli distributed given the
feature probabilities, we have lower bounded Eq

[
log p(znk|{vi}ki=1)

]
by

using the multinomial approach in [19] (see Appendix C.1 for further
details). This approximation introduces the auxiliary multinomial
distribution λk = [λk1, . . . , λkk], where each λki can be updated as

λki ∝ exp

(
ψ(τi2) +

i−1∑
m=1

ψ(τm1)−
i∑

m=1

ψ(τm1 + τm2)

)
,

where the proportionality ensures that λk is a valid distribution.

4. The maximization with respect to the variational parameters φd
kr, φ

d
0r,

(σd
kr)

2, and (σd
0r)

2 has no analytical solution, and therefore, we need to
resort to a numerical method to find the maximum, such as Newton’s
method or conjugate gradient algorithm, for which the first and the
second derivatives1 (given in Appendix C.2) are required.

5. Finally, we lower bound the likelihood term Eq

[
log p(xd

n|zn,Bd,bd
0)
]

by resorting to a first-order Taylor series expansion around the
auxiliary variables ξ−1

nd for n = 1, . . . , N and d = 1, . . . , D (see
Appendix C.1 for further details), which are optimized by the
expression

ξnd =

[
R∑

r=1

exp
(
φd

0r +
1
2
(σd

0r)
2

) K∏
k=1

(
1− νnk + νnk exp

(
φd

kr +
1
2
(σd

kr)
2
))]−1

.

1Note that the second derivatives are strictly negative and, therefore, the maximum
with respect to each parameter is unique.
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Chapter 5

IBP for Heterogeneous
Databases

In previous chapters, we have focused on categorical data because most
of the available data in psychiatry and, more specifically, in the NESARC
database are categorical, i.e., they take values in a finite unordered set,
e.g., {‘yes’, ‘no’, ‘unknown’}. However, the database contains other non-
categorical attributes, frequently related to the subject background, such
us age, highest grade level completed in school, income, etc., that can also
be relevant for the manifestation of psychiatric disorders. For instance, the
number of consumed alcoholic drinks per day, which can be modeled as
count data, appears as a key variable to detect those subjects that suffer
from alcohol use disorder.

In this chapter, we aim at providing a general model that allows handling
all the available information about the subjects. In particular, we propose
a general observation model for the IBP that accounts for heterogeneous
data, where the attributes describing each subject can be either discrete
(categorical, ordinal and count), continuous (real-valued and positive real-
valued) or mixed variables. The proposed model keeps the properties of
conjugate models and allows us to derive an efficient inference algorithm that
scales linearly with the number of observations. In the literature, we find
that latent feature model approaches usually assume homogeneous databases
with either real [66, 67, 84] or categorical data [46], and only a few works
consider heterogeneous data, such as mixed real and categorical data [68].
However, up to our knowledge, there are no general latent feature models
to directly deal with heterogeneous databases.
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5.1 Model Description

Let us assume a database with N objects, where each object is defined by
D attributes. We can store the data in an N × D observation matrix X,
in which each D-dimensional row vector is denoted by xn = [x1

n, . . . , x
D
n ]

and each entry is denoted by xd
n. We consider that the column vectors xd

(i.e., each dimension in the observation matrix X) may contain the following
types of data:

• Continuous variables:

1. Real-valued, i.e., xd
n ∈ <.

2. Positive real-valued, i.e., xd
n ∈ <+.

• Discrete variables:

1. Categorical data, i.e., xd
n takes values in a finite unordered set,

e.g., xd
n ∈ {‘blue’, ‘red’, ‘black’}.

2. Ordinal data, i.e., xd
n takes values in a finite ordered set, e.g.,

xd
n ∈ {‘never’, ‘sometimes’, ‘often’, ‘usually’, ‘always’}.

3. Count data, i.e., xd
n ∈ {0, 1, 2, . . . ,∞}.

As proposed in Chapter 3, we assume that each observation xd
n can be

explained by aK-length vector of latent variables associated to the n-th data
point zn = [zn1, . . . , znK ] and a weighting vector Bd = [bd1, . . . , b

d
K ] (being K

the number of latent variables), whose elements bdk weight the contribution
of k-th the latent feature to the d-th dimension of the observation matrix
X. The binary feature vectors zn are stored in the N ×K matrix Z, which
follows an IBP with concentration parameter α (i.e., Z ∼ IBP(α)), and
the weighting vectors Bd are Gaussian distributed with zero mean and
covariance matrix σ2

BIK . For convenience, zn is a K-length row vector,
while Bd a K-length column vector.

To accommodate for all kinds of observed random variables described
above, we introduce an auxiliary Gaussian variable yd

n, such that when
conditioned on the auxiliary variables, the latent variable model behaves
as a standard IBP with Gaussian observations [27]. In particular, we place
over yd

n a Gaussian distribution with mean znBd and variance σ2
y , i.e.,

p(yd
n|zn,Bd) = N (yd

n|znBd, σ2
y),

and assume that there exists a transformation function over the variables yd
n

to obtain the observations xd
n, mapping the real line < into the observation

space. The resulting generative model is shown in Figure 5.1, where Z is
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the IBP latent matrix, and Yd and Bd contain, respectively, the auxiliary
Gaussian variables yd

n and the weighting factors bd
k for the d-dimension of

the data. Additionally, Ψd denotes the set of auxiliary random variables
needed to obtain the observation vector xd given Yd, and Hd contains the
hyper-parameters associated to the random variables in Ψd.

This model assumes that the observations xd
n are independent given the

latent matrix Z, the weighting factors Bd and the auxiliary variables Ψd.
Therefore, the likelihood can be factorized as

p(X|Z, {Bd, Ψd}D
d=1) =

D∏
d=1

p(xd|Z,Bd, Ψd) =
D∏

d=1

N∏
n=1

p(xd
n|zn,Bd, Ψd).

Note that, if we assume Gaussian observations and set Yd = xd, this model
resembles the standard IBP with Gaussian observations [27]. In addition,
conditioned on the variables Yd, we can infer the latent matrix Z as in the
standard IBP. We also remark that auxiliary Gaussian variables to link the
latent model with the observations have been previously used in Gaussian
processes for multi-class classification [25] and for ordinal regression [15].
However, up to our knowledge, this simple approach has not been used to
account for mixed continuous and discrete data, existing a lack of work in
this field.

Z

σ2
B

α Yd

Bd

d = 1, . . . , D

σ2
y

X

Ψd

Hd

Figure 5.1: Generalized IBP for mixed continuous and discrete observations.

5.1.1 Likelihood Functions

Now, we define the set of transformations that map from the Gaussian
variables yd

n to the corresponding observations xd
n. We assume that each

41



column in matrix X may contain any of the discrete or continuous variables
detailed above, provide a likelihood function for each kind of data and, in
turn, also a likelihood function for mixed data.

Real-valued Data. In this case, we assume that xd = Yd in the model in
Figure 5.1 and consider the standard approach when dealing with real-valued
observations, which consist of assuming a Gaussian likelihood function. In
particular, as in the standard linear-Gaussian IBP [27], we assume that each
observation xd

n is distributed as

p(xd
n|zn,Bd) = N (xd

n|znBd, σ2
y).

Positive Real-valued Data. In order to obtain positive real-valued
observations, i.e., xd

n ∈ <+, we apply a transformation over yd
n that maps

from the real numbers to the positive real numbers, i.e.,

xd
n = f(yd

n + ud
n),

where ud
n is a Gaussian noise variable with variance σ2

u, and f : < → <+ is
a differentiable function. By change of variables, we obtain the likelihood
function for positive real-valued observations as

p(xd
n|zn,Bd)

=
1√

2π(σ2
y + σ2

u)
exp

{
− 1

2(σ2
y + σ2

u)
(f−1(xd

n)− znBd)2
} ∣∣∣∣ ddxd

n

f−1(xd
n)
∣∣∣∣ ,

(5.1)

where f−1 : <+ → < is the inverse function of the transformation f(·), i.e,
f−1(f(v)) = v. Note that, in this case, we make use of the Gaussian variable
ud

n to obtain xd
n from yd

n, and therefore, Ψd = {un
d}Nn=1 and Hd = σ2

u.

Categorical Data. Now, we account for categorical observations, i.e.,
each observation xd

n can take values in the unordered index set {1, . . . , Rd}.
Hence, assuming a multinomial-probit model, we can write

xd
n = arg max

r∈{1,...,Rd}
yd

nr, (5.2)

being yd
nr ∼ N (yd

nr|znbd
r , σ

2
y) where bd

r denotes the K-length weighting
vector, in which each entry bdkr weights the influence of the k-th feature for
the observation xd

n taking value r. Note that, under this likelihood model,
since we have a Gaussian auxiliary variable yd

nr and a weighting factor bdkr
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for each possible value of the observation r ∈ {1, . . . , Rd}, we need to gather
all the weighting factors bdkr in a K × Rd matrix Bd, and all the Gaussian
auxiliary variables yd

nr in the N ×Rd matrix Yd.
Under this observation model, we can write yd

nr = znbd
r +ud

nr, where ud
nr

is a Gaussian noise variable with variance σ2
y , and therefore, we can obtain

the probability of each element xd
n taking value r ∈ {1, . . . , Rd} as [25]

p(xd
n = r|zn,Bd) = Ep(u)

[
Rd∏
j=1
j 6=r

Φ
(
u+ zn(bd

r − bd
j )
)]
, (5.3)

where subscript r in bd
r indicates the column in Bd (r ∈ {1, . . . , Rd}), Φ(·)

denotes the cumulative density function of the standard normal distribution
and Ep(u)[·] denotes expectation with respect to the distribution p(u) =
N (0, σ2

y). Note that this likelihood model coincides with the multinomial-
probit likelihood introduced in Chapter 3, but here we exploit the underlying
structure of the probit model to obtain Eq. 5.2 which, opposite to Eq. 5.3,
allows us to derive an exact collapsed Gibbs sampler by conditioning on the
auxiliary variables yd

nr.

Ordinal Data. Consider ordinal data, in which each element xd
n takes

values in the ordered index set {1, . . . , Rd}. Then, assuming an ordered
probit model, we can write

xd
n =


1 if yd

n ≤ θd
1

2 if θd
1 < yd

n ≤ θd
2

...
Rd if θd

Rd−1 < yd
n

(5.4)

where again yd
n is Gaussian distributed with mean znBd and variance σ2

y ,
and θd

r for r ∈ {1, . . . , Rd−1} are the thresholds that divide the real line into
Rd regions. We assume the thresholds θd

r are sequentially generated from
the truncated Gaussian distribution θd

r ∝ N (θd
r |0, σ2

θ)I(θd
r > θd

r−1), where
θd
0 = −∞ and θd

Rd
= +∞. As opposed to the categorical case, now we have

a unique weighting vector Bd and a unique Gaussian variable yd
n for each

observation xd
n. Hence, the value of xd

n is determined by the region in which
yd

n falls.
Under the ordered probit model [15], the probability of each element xd

n

taking value r ∈ {1, . . . , Rd} can be written as

p(xd
n = r|zn,Bd) = Φ

(
θd
r − znBd

σy

)
− Φ

(
θd
r−1 − znBd

σy

)
. (5.5)
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Let us remark that, if the d-dimension of the observation matrix contains
ordinal data, the set of auxiliary variables reduces to the thresholds Ψd =
{θd

1 , . . . , θ
d
Rd−1} and Hd = σ2

θ .

Count Data. In count data, each observation xd
n takes non-negative integer

values, i.e., xd
n ∈ {0, 1, 2, . . . ,∞}. Then, we assume

xd
n = bf(yd

n)c, (5.6)

where bvc returns the floor of v, that is the largest integer that does not
exceed v, and f : < → <+ is a differentiable function that maps from the real
numbers to the positive real numbers. We can therefore write the likelihood
function as

p(xd
n|zn,Bd) = Φ

(
f−1(xd

n + 1)− znBd

σy

)
− Φ

(
f−1(xd

n)− znBd

σy

)
(5.7)

where f−1 : <+ → < is the inverse function of the transformation f(·).

5.2 Inference Algorithm

In this section, we describe our algorithm for inferring the latent variables
given the observation matrix. Under our model, detailed in Section 5.1, the
probability distribution over the observation matrix is fully characterized by
the latent matrices Z and {Bd}Dd=1 (as well as the auxiliary variables Ψd).

We use Markov Chain Monte Carlo (MCMC) methods, which have been
broadly applied to infer the IBP matrix (see, e.g., in [27, 95, 83]). The
proposed inference algorithm is summarized in Algorithm 3. This algorithm
exploits the information in the available data to learn the similarities among
the objects (captured in our model by the latent feature matrix Z), and
how these latent features show up in the attributes that describe the objects
(captured in our model by Bd).

In Algorithm 3, we first need to update the latent IBP matrix Z.
Note that conditioned on {Yd}Dd=1, both the latent matrix Z and the
weighting matrices {Bd}Dd=1 are independent of the observation matrix X.
Additionally, since {Bd}Dd=1 and {Yd}Dd=1 are Gaussian distributed, we
can analytically marginalize out the weighting matrices {Bd}Dd=1 to obtain
p({Yd}Dd=1|Z). Therefore, to infer the IBP matrix Z, we can apply the
collapsed Gibbs sampler which presents better mixing properties than the
uncollapsed Gibbs sampler and, in consequence, is the standard method of
choice in the context of the standard linear-Gaussian IBP [27]. However,
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Algorithm 3 Inference Algorithm.
Require: X
Ensure: initialize Z and {Yd}Dd=1

1: for each iteration do
2: Update Z given {Yd}Dd=1.
3: for d = 1, . . . , D do
4: Sample Bd given Z and Yd according to (5.8).
5: Sample Yd given X, Z and Bd as shown in Section 5.2.2.
6: Sample Ψd if needed as shown in Section 5.2.2.
7: end for
8: end for
Output: Z, {Bd}Dd=1 and {Ψd}Dd=1

this algorithm suffers from a high computational cost (being the complexity
per iteration cubic with the number of data points N), which is prohibitive
when dealing with large databases. In order to solve this limitation, we
instead resort to the accelerated Gibbs sampler [18]. This algorithm allows
us to integrate out the weighting factors in {Bd}Dd=1 while keeping linear
complexity with the number of datapoints. The accelerated Gibbs sampler
is detailed in Section 5.2.1.

Second, we need to sample the weighting factors in Bd, which is a
K ×Rd matrix in the case of categorical attributes, and a K-length column
vector, otherwise. We denote the r-th column vector of Bd by bd

r , where
r ∈ {1, . . . , Rd} when dealing with categorical attributes, and r = 1
otherwise. The posterior distributions over the weighting vectors are given
by

p(bd
r |yd

r ,Z) = N (bd
r |P−1λd

r ,P
−1), (5.8)

where P = Z>Z+1/σ2
BIk and λd

r = Z>yd
r . Note that the covariance matrix

P−1 depend neither on the dimension d nor on r, so we only need to invert
the K×K matrix P once at each iteration. We describe in Section 5.2.1 how
to efficiently compute P after changes in the Z matrix by rank one updates,
without the need of computing the matrix product Z>Z.

Once we have updated Z and Bd, we sample each element in Yd from
the posterior distribution p(yd

nr|xd
n, zn,Bd). The expression of the posterior

distribution p(yd
nr|xd

n, zn,Bd) under each likelihood model in Section 5.1.1
is provided in Section 5.2.2. Finally, we sample the auxiliary variables in
Ψd from their posterior distribution (detailed in Section 5.2.2) if necessary.
This two latter steps involve, in the worst case, sampling from a doubly
truncated univariate normal distribution (see the Section 5.2.2 for further

45



details), for which we make use of the algorithm in [65].

5.2.1 Accelerated Gibbs Sampler

In [18], the authors presented a linear-time accelerated Gibbs sampler for
conjugate IBP models that effectively marginalized over the latent factors.
The per-iteration complexity of this algorithm is O(N(K2 + KD)), which
is comparable to the uncollapsed linear-Gaussian IBP sampler that has per-
iteration complexity O(NDK2) but does not marginalize over the weighting
factors, and as a result, presents slower convergence rate.

This algorithm exploits the Bayes rule to avoid the cubic complexity with
N due to the computation of the marginal likelihood in the Collapsed Gibbs
sampler. In particular, it applies the Bayes rule to obtain the probability of
each element in the latent feature matrix Z being active as

p(znk = 1|{Yd}Dd=1,Z¬nk) ∝
m¬n,k

N

D∏
d=1

Sd∏
r=1

∫
bd

r

p(yd
nr|zn,bd

r)p(b
d
r |yd

¬nrZ¬n)dbd
r ,

(5.9)

where Sd is the number of columns in matrices Yd and Bd (being Sd the
number of categories Rd for those dimension d that contains categorical
attributes, and Sd = 1 otherwise), Z¬n corresponds to matrix Z after
removing the the n-th row, the vector yd

¬nr is the r−th column of matrix Yd

without the element yd
nr, and p(bd

r |xd
¬n,Z¬n) is the posterior of bd

r computed
without taking the n-th datapoint into account, i.e.,

p(bd
r |yd

¬nr,Z¬n) = N (bd
r |P−1

¬nλd
¬nr,P

−1
¬n), (5.10)

where P¬n = Z>¬nZ¬n + 1/σ2
BIK and λd

¬ny = Z>¬ny
d
¬nr are the natural

parameters of the Gaussian distribution.
Note that, opposite to the notation in [18], we here resort to the natural

parameters for the Gaussian distribution over the posterior of bd
r instead of

the mean and the covariance matrix. This formulation allows us to compute
the full posterior over the weighting factors as

p(bd
r |yd

r ,Z) = N (bd
r |P−1λd

r ,P
−1), (5.11)

where P = P¬n + z>n zn and λd
r = λd

¬nr + z>n y
d
nr are the natural parameters

of the Gaussian distribution.
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The Accelerated Gibbs sampling algorithm iteratively samples the value
of each element znk according to

p(znk = 1|{Yd}Dd=1,Z¬nk) ∝
m¬n,k

N

D∏
d=1

Sd∏
r=1

N (yd
nr|znλd

¬nr, znP¬nz>n + σ2
y).

(5.12)

After having sampled all elements znk for the K+ non-zero columns in Z
for each data point n, the algorithm samples from a distribution (where the
prior is a Poisson distribution with mean α/N) a number of new features
necessary to explain that data point.

5.2.2 Posterior distribution over Yd

As previously described, in the 5-th step of Algorithm 3, we need to sample
from the auxiliary Gaussian variables yd

nr from the posterior distribution
p(yd

nr|xd
n, zn,bd). The posterior distribution yd

nr for all the considered types
of data are given given by:

1. For real-valued observation:

p(yd
n1|xd

n, zn,Bd) = δ(xd
n) (5.13)

2. For positive real-valued observations:

p(yd
n1|xd

n, zn,Bd)

= N

(
yd

n1

∣∣∣∣ ((znbd
1)

σ2
y

+
f−1(xd

n)
σ2

u

)(
1
σ2

y

+
1
σ2

u

)−1

,

(
1
σ2

y

+
1
σ2

u

)−1
)
.

(5.14)

3. For categorical observations:

p(yd
nr|xd

n = T, zn,Bd)

=
{
N (yd

nr|znbd
r , σ

2
y)I(yd

nr > maxj 6=r(yd
nj)) If r = T

N (yd
nr|znbd

r , σ
2
y)I(yd

nr < yd
nT ) If r 6= T

(5.15)

In words, if xd
n = T = r we sample yd

nr from a Gaussian truncated by
the left by maxj 6=r(yd

nj) and, otherwise, we sample from a Gaussian
truncated by the right by yd

nr with r = xd
n. Note that sampling

from the variables yd
nr corresponds to solve a multinomial probit

regression problem. To achieve identifiability we assume, without loss
of generality, that the regression function fRd

(zn) is identically zero,
and therefore, we fix bdkRd

= 0 for all k.
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4. For ordinal observations:

p(yd
n1|xd

n = r, zn,Bd) ∼ N (yd
n1|znbd

1, σ
2
y)I(θd

r−1 < yd
n1 ≤ θd

r ). (5.16)

Note that in this case, we also need to sample the values for the
thresholds θd

r with r = 1, . . . , Rd − 1 as

p(θd
r |yd

n1) ∼N (θd
r |0, σ2

θ)I(θd
r > max(θd

r−1,max
n

(yd
n1|xd

n = r))

× I(θd
r < min(θd

r ,min
n

(yd
n1|xd

n = r + 1)).
(5.17)

In this case, sampling from the variables yd
n1 corresponds to solve an

ordered probit regression problem, where the thresholds {θr}Rd
r=1 are

unknown. Hence, to achieve identifiability we need to set the one of
the thresholds, θ1 in our case, to a fixed value.

5. For count observations:

p(yd
n1|xd

n, zn,Bd) = N (yd
n1|znbd

1, σ
2
y)I(f−1(xd

n) ≤ yd
n1 < f−1(xd

n + 1)),
(5.18)

where f−1 : <+ → < is the inverse function of f , i.e., f−1(f(y)) = y.
Therefore, yd

n1 from a Gaussian truncated by the left by f−1(xd
n) and

by the right by f−1(xd
n + 1).
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Chapter 6

Analysis of Suicide Attempts

Every year, more than 34,000 suicides occur and over 370,000 individuals
are treated for self-inflicted injuries in emergency rooms in the U.S., where
suicide prevention is one of the top public health priorities [1]. The current
strategies for suicide prevention have focused mainly on both detection and
treatment of mental disorders [81], and on the treatment of the suicidal
behaviors themselves [14]. However, despite prevention efforts including
improvements in the treatment of depression, the lifetime prevalence of
suicide attempts in the U.S. has remained unchanged over the past decade
[38]. This suggests that there is a need to improve understanding of the
risk factors for suicide attempts beyond psychiatric disorders, particularly
in non-clinical populations.

According to the National Strategy for Suicide Prevention, an important
first step in a public health approach to suicide prevention is to identify
those at increased risk for suicide attempts [1]. Suicide attempts are, by
far, the best predictor of completed suicide [56] and are also associated
with major morbidity themselves [49]. The estimation of suicide attempt
risk is a challenging and complex task, with multiple risk factors linked to
increased risk. In the absence of reliable tools for identifying those at risk
for suicide attempts, be they clinical or laboratory tests, risk detection still
relays mainly on clinical variables. The adequacy of the current predictive
models and screening methods has been questioned [56], and it has been
suggested that the methods currently used for research on suicide risk factors
and prediction models need revamping [44]. In the ongoing study, we aim at
seeking the latent causes which lead to committing suicide as well as being
able to detect those subjects that present higher risk of attempting suicide.
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# Source Code Description
01 S4AQ4A17 Thought about committing suicide
02 S4AQ4A18 Felt like wanted to die
03 S4AQ17A Stayed overnight in hospital because of depression
04 S4AQ17B Went to emergency room for help because of depression
05 S4AQ4A19 Thought a lot about own death
06 S4AQ16 Went to counselor/therapist/doctor/other person for help

to improve mood
07 S4AQ18 Doctor prescribed medicine/drug to improve mood/make

you feel better
08 S4CQ15A Stayed overnight in hospital because of dysthymia
09 S4AQ4A12 Felt worthless most of the time for 2+ weeks
10 S4CQ15B Went to emergency room for help because of dysthymia
11 S4AQ52 Had arguments/friction with family, friends, people at

work, or anyone else
12 S4AQ55 Spent more time than usual alone because didn’t want to

be around people
13 S4AQ21C Used medicine/drug on own to improve low mood prior to

last 12 months
14 S4AQ21A Ever used medicine/drug on own to improve low

mood/make self feel better
15 S4AQ20A Ever drank alcohol to improve low mood/make self feel

better
16 S4AQ20C Drank alcohol to improve mood prior to last 12 months
17 S4AQ56 Couldn’t do things usually did/wanted to do
18 S4AQ54 Had trouble doing things supposed to do -like working,

doing schoolwork, etc.
19 S4AQ11 Any episode began after drinking heavily/more than usual
20 S4AQ15IR Only/any episode prior to last 12 months began after

drinking/drug use

Table 6.1: Enumeration of the 20 selected questions in the experiments,
sorted in decreasing order according to their mutual information with the
‘attempted suicide’ question.

6.1 Experimental Setup

The NESARC includes a question about having attempted suicide as well
as other related questions such as ‘felt like wanted to die’ and ‘thought
a lot about own death’. In this study, we build an unsupervised model
with the 20 questions that present the highest mutual information with
the suicide attempt question, which are shown in Table 6.1 together with
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their code in the questionnaire. The 20 selected variables correspond to
yes-or-no questions, which have four possible outcomes (i.e., R = 4): ‘blank’
(B), ‘unknown’ (U), ‘yes’ (Y) and ‘no’ (N). If a question is left blank the
question was not asked.1 If a question is said to be unknown either it was
not answered or was unknown to the respondent.

We resort to the simplest IBP model for categorical observations
proposed in Section 3, i.e., the model with only the binary matrix Z and
weighting matrices Bd as latent variables. In order to sample from the IBP
matrix, we make use of the Gibbs sampling algorithm combined with the
Laplace approximation, detailed in Section 4.1.1, to compute the marginal
likelihood. We initialize the sampler with an active feature, i.e., K+ = 1,
and set znk = 1 randomly with probability 0.5, and fixing α = 1 and σ2

B = 1.
Then, we run the Gibbs sampler over 500 randomly chosen subjects out of
the 13,670 that have answered affirmatively to having had a period of low
mood. In this study, we use another 9,500 subjects as test cases and have
left the remaining samples for further validation.

6.2 Results

After running our inference algorithm, we obtain seven latent features. In
Figure 6.1, we have plotted the posterior probability for each question when
a single feature is active. In these plots, white means 0 and black 1, and each
row sums up to one. Feature 1 is active for modeling the ‘blank’ and ‘no’
answers and, fundamentally, those who were not asked Questions 8 and 10.
Feature 2 models the ‘yes’ and ‘no’ answers and favors affirmative responses
to Questions 1, 2, 5, 9, 11, 12, 17 and 18, which indicates depression. Feature
3 models blank answers for most of the questions and negative responses to
1, 2, 5, 8 and 10, which are questions related to suicide. Feature 4 models
the affirmative answers to 1, 2, 5, 9 and 11 and also have higher probability
for unknowns in Questions 3, 4, 6 and 7. Feature 5 models the ‘yes’ answer
to Questions 3, 4, 6, 7, 8, 10, 17 and 18, being ambivalent in Questions 1
and 2. Feature 6 favors ‘blank’ and ‘no’ answers in most questions. Feature
7 models answering affirmatively to Questions 15, 16, 19 and 20, which are
related to alcohol abuse.

We show the percentage of respondents that answered positively to the

1In a questionnaire of this size some questions are not asked when a previous question
was answered in a predetermined way to reduce the burden of taking the survey. For
example, if a person has never had a period of low mood, the attempt suicide question is
not asked.
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suicide attempt questions in Table 6.2, independently for the 500 samples
that were used to learn the IBP and the 9,500 hold-out samples, together
with the total number of respondents. A dash indicates that the feature can
be active or inactive. Table 6.2 is divided in three parts. The first part deals
with each individual feature and the other two study some cases of interest.
Throughout the database, the prevalence of suicide attempt is 7.83%. As
expected, Features 2, 4, 5 and 7 favor suicide attempt risk, although Feature
5 only mildly, and Features 1, 3 and 6 decrease the probability of attempting
suicide. From the above description of each feature, it is clear that having
Features 4 or 7 active should increase the risk of attempting suicide, while
having Features 3 and 1 active should cause the opposite effect.

Features 3 and 4 present the lowest and the highest risk of suicide,
respectively, and they are studied together in the second part of Table 6.2,
in which we can see that having Feature 3 and not having Feature 4 reduces
this risk by an order of magnitude, and that combination is present in 70%
of the population. The other combinations favor an increased rate of suicide
attempts that goes from doubling (‘11’) to quadrupling (‘00’), to a ten-fold
increase (‘01’), and the percentages of population with these features are,
respectively, 21%, 6% and 3%.

In the final part of Table 6.2, we show combinations of features that
significantly increase the suicide attempt rate for a reduced percentage of
the population, as well as combinations of features that significantly decrease
the suicide attempt rate for a large chunk of the population. These results
are interesting as they can be used to discard significant portions of the
population in suicide attempt studies and focus on the groups that present
much higher risk. Hence, our IBP with discrete observations is being able to
obtain features that describe the hidden structure of the NESARC database
and makes it possible to pin-point the people that have a higher risk of
attempting suicide.
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Figure 6.1: Probability of answering ‘blank’ (B), ‘unknown’ (U), ‘yes’ (Y)
and ‘no’ (N) to each of the 20 selected questions, sorted as in Table 6.1.
These probabilities have been obtained with the posterior mean weights
Bd

MAP , when only one of the seven latent features (sorted from left to right
to match the order in Table 6.2) is active.

Hidden features Suicide attempt probability Number of cases
Train Hold-out Train Hold-out

1 - - - - - - 6.74% 5.55% 430 8072
- 1 - - - - - 10.56% 11.16% 322 6083
- - 1 - - - - 3.72% 4.60% 457 8632
- - - 1 - - - 25.23% 22.25% 111 2355
- - - - 1 - - 8.64% 9.69% 301 5782
- - - - - 1 - 6.90% 7.18% 464 8928
- - - - - - 1 14.29% 14.18% 91 1664
- - 0 0 - - - 30.77% 28.55% 26 571
- - 0 1 - - - 82.35% 61.95% 17 297
- - 1 0 - - - 0.83% 0.87% 363 6574
- - 1 1 - - - 14.89% 16.52% 94 2058
- - 0 1 - - 1 100.00% 69.41% 4 85
0 - 0 1 - - - 80.00% 66.10% 5 118
1 - 1 0 - 1 0 0.00% 0.25% 252 4739
- - 1 0 - - 0 0.33% 0.63% 299 5543
1 - 1 0 - - - 0.32% 0.41% 317 5807

Table 6.2: Probabilities of attempting suicide for different values of the latent
feature vector, together with the number of subjects possessing those values.
The symbol ‘-’ denotes either 0 or 1. The ‘train ensemble’ columns contain
the results for the 500 data points used to obtain the model, whereas the
‘hold-out ensemble’ columns contain the results for the remaining subjects.
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Chapter 7

Analysis of Psychiatric
Disorders

7.1 Comorbidity Analysis

Health care increasingly needs to address the management of individuals
with multiple coexisting diseases, who are now the norm, rather than the
exception. In the United States, about 80% of Medicare spending is devoted
to patients with four or more chronic conditions, with costs growing as
the number of chronic conditions increases [96]. This explains the growing
interest of researchers in the impact of comorbidity on a range of outcomes,
such as mortality, health-related quality of life, functioning, and quality of
health care. However, attempts to study the impact of comorbidity are
complicated due to the lack of consensus about how to define and measure
it [85].

Comorbidity becomes particularly relevant in psychiatry, where
clinical experience and several studies suggest that the relation
among the psychiatric disorders may have etiological and treatment
implications. Several studies have focused on the search of the underlying
interrelationships among psychiatric disorders, which can be useful to
analyze the structure of the diagnostic classification system, and guide
treatment approaches for each disorder [7]. In [43], the authors found that 10
psychiatric disorders (available in the National Comorbidity Survey) can be
explained by only two correlated factors, one corresponding to internalizing
disorders and the other to externalizing disorders. The existence of the
internalizing and the externalizing factors was also confirmed by [42]. More
recently, the authors in [7] have used factor analysis to find the latent
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feature structure under 20 common psychiatric disorders, drawing on data
from the National Epidemiologic Survey on Alcohol and Related Conditions
(NESARC). In particular, the authors found that three correlated factors,
one related to externalizing, and the other two to internalizing disorders,
characterized well the underlying structure of these 20 diagnoses. From a
statistical point of view, the main limitation of this study lies on the use of
factor analysis, which assumes that the number of factors is known and that
the observations are Gaussian distributed. However, the latter assumption
does not fit the observed data, since they are discrete in nature.

In the present study, our objective is to provide an alternative to the
factor analysis approach used by [7] with the IBP models in Chapter 3.
In particular, we build an unsupervised model taking the 20 disorders
used by [7] as input data, drawn from the NESARC data. These
disorders include substance use disorders (alcohol abuse and dependence,
drug abuse and dependence and nicotine dependence), mood disorders
(major depressive disorder (MDD), bipolar disorder and dysthymia), anxiety
disorders (panic disorder, social anxiety disorder (SAD), specific phobia and
generalized anxiety disorder (GAD)), pathological gambling (PG) and seven
personality disorders (avoidant, dependent, obsessive-compulsive (OC),
paranoid, schizoid, histrionic and antisocial personality disorders (PDs)).

The main goal of this study is to find out and analyze the latent
relations among the 20 psychiatric disorders. Specifically, we aim at finding
comorbidity patterns in the database, allowing us to seek hidden causes and
to provide a tool for detecting those subjects with higher risk of suffering
from these disorders.

7.1.1 Experimental Setup

Based on information collected in the first wave of the NESARC, a set
of pre-established and reliable diagnostic algorithms were applied to each
subject to determine the presence or absence of 20 psychiatric disorders
[7]. In this study, we use these diagnoses as input data to the full IBP
model in Figure 3.3, i.e., the IBP model with bias term and severity matrix.
We assume a multinomial-probit likelihood model with two categories (i.e.,
positive and negative diagnoses), and resort to the MH based sampler,
detailed in Section 4.1.3, to jointly infer the IBP matrix Z and the severity
matrix W, being weighting factors in Bd integrated out using the EP
approximation.

For the following experimental results, we set α = 1, σ2
B = 1, γ1 = 2

and γ2 = 1 and run our inference algorithm. In order to speed up the
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inference procedure, we do not sample the rows of W corresponding to
those subjects who suffer from at most one out of the 20 disorders, but
instead fix these latent features to zero. The idea is that the bd

0 terms
must capture the general population, and we use the active components
of the matrix W to characterize the disorders. Besides speeding up the
algorithm, this modification ensures that the active latent features increase
the probability of suffering from the disorders and can be interpreted as
latent disorders, which helps the psychiatrists understand the obtained
results. If we had no bias term and did not force the subjects in the general
population to be explained by the bias term, the latent variables would not
be easy to interpret because the general population would be described by
a combination of latent factors.

7.1.2 Results

Similar to the previous study in [7], we find that we need three latent features
to describe the data. In Table 7.1, we show the empirical probability of
possessing each of the inferred latent feature, i.e., the number of subjects in
the database that possess each latent feature divided by the total number
of subjects. Additionally, we plot in Figure 7.1 the approximate posterior
probability of suffering from each of the considered disorders when only one
of the latent features is active (assuming severity factors equal to one), and
when none of them is active. As expected, for those subjects without any
active latent feature, the probability of having any disorder is below the
baseline level (defined as the empirical probability of suffering from each
disorder in the full database).

We can interpret each of the obtained latent features from the analysis
of Figure 7.1. Feature 1 (pattern [100]) increases the probability of having
all disorders, except alcohol abuse, and thus seems to represent a general
psychopathology factor, although it may particularly increase the risk of
personality disorders (disorders from 14 to 20). Feature 2 (pattern [010])
models substance use disorders and antisocial personality disorder, which
is consistent with the externalizing factor identified in previous studies of
the structure of psychiatric disorders [43, 37, 88, 7]. Feature 3 (pattern
[001]) models mood or anxiety disorders, and thus seems to represent
the internalizing factor also identified in previous studies. Note that the
probability of bipolar disorder presents a significantly different behavior,
since major depression (MDD) and dysthymia are mutually exclusive with
bipolar disorder.

In addition to the hidden relation among the disorders, our model also
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provides an individual-specific severity term that can be interpreted as our
belief in the subject suffering a latent disorder. We find that more than
80% of the subjects with active features have a severity factor above 0.5 and
around 50% of them have a severity value greater that 0.75. The histograms
for wn1, wn2 and wn3 are shown in Figure 7.6. In order to examine the effect
of the severity, we plot in Figure 7.2 the posterior probability of suffering
from each of the disorders when only Feature 1 is active, for any value of the
severity wn1. (Similar plots, for Features 2 and 3, are provided in Figures 7.3
and 7.4, respectively.) When the severity reaches 0 (depicted in black),
Feature 1 turns inactive and, therefore, the corresponding probabilities
coincide with the green line in Figure 7.1 (pattern [000]). As the severity
approaches 1 (depicted in red), the corresponding probabilities coincide with
the red line in Figure 7.1 (pattern [100]). The solid line in Figure 7.2
represents the empirical probability of suffering from each disorder, obtained
for those subjects who only have Feature 1 active. We can see, that although
the probability of suffering from each disorder becomes higher when the
inferred severity value increases, each disorder is affected differently by the
value of the severity factor. For instance, the probability of suffering from
OCPD goes from 0.04 in the general population to 0.8 for the subjects with
a severity factor for Feature 1 near to one, while the probability for alcohol
abuse only changes from 0.04 to 0.05.

To further analyze the impact of severity, we depict in Figure 7.5 the
distribution of the number of disorders for those subjects whose inferred
severity is comprised between the numbers shown in the horizontal axis.
As expected, as the inferred severity increases, so does the number of
disorders that a subject suffers. Figure 7.5a shows that Feature 1 (general
psychopathology factor) is the feature with highest impact on the average
number of disorders. However, when we only consider a subset of the
disorders (Figures 7.5b and 7.5c), Features 2 and 3 become more relevant.
These subsets have been chosen to match the externalizing and internalizing
factors, respectively.

From the analysis of the figures, we can conclude that the probability
of appearance of a disorder changes significantly when the value of the
severity associated to that group of disorders changes. We also find that
most of the subjects with active latent features suffer from three or more
disorders and, in general, most of the disorders that a subject suffers belong
to the group of disorders modeled by the same latent feature. Therefore, a
subject with Feature 2 (Feature 3) active has a higher probability of suffering
simultaneously from several externalizing (internalizing) disorders. Finally,
we can understand the importance of the severity factors in the model,

58



because they allow explaining the comorbidity among the disorders and
also understanding the stress each subject suffers. The model without the
severity factors cannot distinguish between the different subjects that have
the same active latent features.
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Figure 7.1: Probabilities of suffering from the 20 considered disorders for
the latent feature vectors wn shown in the legend. These probabilities have
been obtained using the mean of the approximate posterior of the matrices
Bd.
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Figure 7.2: Probabilities of suffering from the 20 considered disorders when
only Feature 1 is active, for any value of the severity wn1 (shown in the bar
on the right). These probabilities have been obtained using the mean of
the approximate posterior of the matrices Bd. The solid line represents the
empirical probabilities, obtained for those subjects who only have Feature 1
active.
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Figure 7.3: Probabilities of suffering from the 20 considered disorders when
only Feature 2 is active, for any value of the severity wn2 (shown in the bar
on the right). These probabilities have been obtained using the mean of
the approximate posterior of the matrices Bd. The solid line represents the
empirical probabilities, obtained for those subjects who only have Feature 2
active.
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Figure 7.4: Probabilities of suffering from the 20 considered disorders when
only Feature 3 is active, for any value of the severity wn3 (shown in the bar
on the right). These probabilities have been obtained using the mean of
the approximate posterior of the matrices Bd. The solid line represents the
empirical probabilities, obtained for those subjects who only have Feature 3
active.

Active Feature Feature 1 Feature 2 Feature 3
Empirical Prob. 0.0594 0.0239 0.0201

Table 7.1: Empirical probabilities of possessing at least one latent feature,
extracted directly from the inferred IBP matrix Z.
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(a) 20 disorders.
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(b) Externalizing disorders (disorders 1 to
5 in Fig. 7.1 and antisocial PD).
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(c) Internalizing disorders (disorders 6
and 8-12 in Fig. 7.1).

Figure 7.5: Distribution of the number of disorders, for those subjects who
only have active one latent feature (shown in the legend), whose inferred
severity is comprised between the numbers shown in the horizontal axis.
The thick line corresponds to the median, the edges of the box are the 25th
and 75th percentiles, and the whiskers represents the most extreme values.
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Figure 7.6: Normalized histograms of wn1, wn2 and wn3 (assuming that
zn1 = 1, zn2 = 1 and zn3 = 1, respectively).

7.2 Impact of Social Background

Several studies have analyzed the impact of social background in the
development of mental disorders. These studies usually focus on the relation
between a mental disorder and a specific aspect of the social background
of the subjects. Some examples in this area study the relation between
depression and sex [92, 39], relation between common mental disorders and
poverty or social class [91, 17, 31], etc. However, up to our knowledge, there
is a lack of work in the study of the impact the social background in the
suffering of comorbid disorders.

In the previous section, we found that the 20 psychiatric disorders under
study can be divided into three groups, namely internalizing, externalizing
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and personality disorders. We also found that comorbid disorders tend to
belong to the same group. In this section, we aim at studying how the
social background of the subjects (such as the age, sex, etc.) shows up in
the comorbidity patterns studied above. To this end, we include in our
experiments the responses to some of the questions in Section 1 of the
NESARC, which collects information about the social background of the
participants. Specifically, we incorporate the following information: sex,
age, census region, imputed race/ethnicity, marital status, highest grade or
years of school completed, and the body mass index (BMI).

7.2.1 Experimental Setup

In addition to the diagnoses of 20 psychiatric disorders in the previous
section, we include one by one the background questions as input data to the
IBP model. In this study, we make use of the model and inference algorithm
introduced in Chapter 5 because they allow us to deal with all the considered
questions. In Table 7.2, we summarize the considered questions and how we
introduce them into our model as input variables.

For the following experimental results, we independently run the
inference algorithm in Section 5.2 for each question with α = 5, σ2

B = 1,
σ2

y = 1, σ2
θ = 1, and consider for the real positive and the count data

the following transformation that maps from the real numbers to the real
positive numbers: f(x) = ax2, where a is a hyperparameter. In this study,
we do not sample the rows of Z corresponding to those subjects who do not
suffer from any of the 20 disorders, but instead fix these latent features to
zero. The idea is that the bd

0 terms must capture the general population, and
we use the active components of the matrix Z to characterize the disorders.

Description Type of variable
Sex Categorical with 2 categories
Age Count data
Census region Categorical with 4 categories
Race/ethnicity Categorical with 5 categories
Marital status Categorical with 6 categories
Highest grade or years of
school completed

Ordinal with 14 categories

BMI Positive real

Table 7.2: Enumeration of the 8 selected questions related to the social
background of the subjects.
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7.2.2 Results

1. Sex. We model the gender information of the participants in the
NESARC as a categorical variable with two categories: {‘male’, ‘female’},
being percentage of males in the NESARC around 43%. After running
our inference algorithm with the diagnoses of the 20 disorders and the
sex of the subjects as input data, we obtain three latent features. In
Table 7.3, we show the empirical probability of possessing each of the
inferred latent features, i.e., the number of subjects in the database that
possess each latent feature divided by the total number of subjects. In
Figure 7.7a, we show the probability of meeting each diagnostic criteria
for the latent feature vectors zn shown in the legend and in the database
(baseline). Note that the obtained latent features are similar to the ones
in Figure 7.1, i.e., Feature 1 (pattern [100]) mainly models the seven PDs,
Feature 2 (pattern [010]) models the alcohol and drug abuse disorders and
the antisocial PD, and Feature 3 (pattern [001]) models the anxiety and
mood disorders. Additionally, in Figure 7.7b, we show the probability of
being male and female for the latent feature vectors zn shown in the legend
and the probability of being male and female in the database (baseline). In
Figure 7.7b, we observe that having not active features (pattern [000]), which
model people that so not suffer from any disorder, increases the probability
of being male with respect to the baseline probability, and therefore, it
indicates that females tend to suffer in a higher extent from psychiatric
disorders. Additionally, we observe that being male increases the probability
of Feature 1 (pattern [100]), while being female increases the probability
of Feature 3 (pattern [001]). Hence, from the analysis of Figure 7.7b, we
can conclude that, while women frequently suffer from mood and anxiety
disorders, PDs more often appear in men.

Active Feature Feature 1 Feature 2 Feature 3
Empirical Prob. 0.0341 0.0470 0.0460

Table 7.3: Sex. Empirical probabilities of possessing at least one latent
feature, extracted directly from the inferred IBP matrix Z.

2. Age. Now, we focus on the age of the participants, which we model as
count data1. The numerical probability distribution over the age based on
the data is shown (and denoted by ‘baseline’) in Figure 7.8b. After running
our inference algorithm with the diagnoses of the 20 disorders and the age

1We set the hyperparameter a in the transformation f(x) = ax2 to 1.
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of the subjects as input data, we obtain three latent features. In Table 7.4,
we show the empirical probability of possessing each inferred latent feature.
Figure 7.8a shows the probability of meeting each diagnostic criteria for the
latent feature vectors zn shown in the legend and in the database (baseline).
In addition to the baseline probability distribution, we plot in Figure 7.8b
the inferred probability distributions over the age when none or one of the
latent variables is active. In Figure 7.8b, we observe that introducing the
age of the participants as an input variable has change (with respect to
the features in Figure 7.1) the inferred latent features. In particular, we
observe that the obtained latent features mainly differ in the probability of
suffering from personality disorders (i.e., disorders from 14 to 20), being the
probability of suffering from disorders 1 to 13 similar for the three plotted
latent feature vectors. In this figure, we observe that the vector zn with no
active latent features (pattern [000]) is trying to capture the mean of the age
in the database (which coincides with middle-aged subjects, i.e., 30−50 years
old). Moreover, we observe that the subjects with the highest probability of
suffering from personality disorders (pattern [100]) are likely to be middle-
aged, followed in a decreasing order by young adults (pattern [010]) and
elderly people (pattern [001]). Additionally, if we focus on the differences
among the three features in disorders from 1 to 13, we also observe that,
while young and elderly people tend to suffer from depression, middle-aged
people tend to suffer from the bipolar disorder. Hence, based on Figure 7.8,
we can conclude that the bipolar disorder and the seven personality disorders
tend to show up in a higher extent in the mature age, while young and elderly
people tend to suffer from depression.

Active Feature Feature 1 Feature 2 Feature 3
Empirical Prob. 0.0332 0.0550 0.0569

Table 7.4: Age. Empirical probabilities of possessing at least one latent
feature, extracted directly from the inferred IBP matrix Z.

3. Census Region. We model the census region information of the
participants in the NESARC as a categorical variable with four categories,
{‘northeast’, ‘midwest’, ‘south’, ‘east’}. After running our inference
algorithm with the diagnoses of the 20 disorders and the census region
information of the subjects as input data, we obtain three latent features.
In Table 7.3, we show the empirical probability of possessing each of the
inferred latent features, i.e., the number of subjects in the database that
possess each latent feature divided by the total number of subjects. In
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Figure 7.7a, we show the probability of meeting each diagnostic criteria
for the latent feature vectors zn shown in the legend and in the database
(baseline). Note that the obtained latent features are similar to the ones
in Figure 7.1, i.e., Feature 1 (pattern [100]) mainly models all the PDs,
Feature 2 (pattern [010]) models the alcohol and drug abuse disorders and
the antisocial PD, and Feature 3 (pattern [001]) models the anxiety and
mood disorders. Additionally, in Figure 7.7b, we show the probability of
belonging to each region for the latent feature vectors zn shown in the
legend and in the database (baseline). In Figure 7.7b, we can observe that
the inferred probabilities are in general similar for the four considered latent
vectors zn and the baseline, except for Feature 1, which models the PDs and
slightly increases the probability of living in the northeast and decreases the
probability of living in the west of the U.S. Hence, since we do not appreciate
significant statistical differences, we can conclude that the location of the
subjects does not appear as an influential variable in the suffering of the
obtained latent psychiatric disorders.

Active Feature Feature 1 Feature 2 Feature 3
Empirical Prob. 0.0335 0.0385 0.0440

Table 7.5: Census Region. Empirical probabilities of possessing at least one
latent feature, extracted directly from the inferred IBP matrix Z.

4. Race/Ethnicity. We model the race information of the
participants in the NESARC as a categorical variable with five categories,
{‘White, not Hispanic or Latino’, ‘Black, not Hispanic or Latino’,
‘American Indian/Alaska native, not Hispanic or Latino’, ‘Asian/Native
Hawaiian/Pacific Islander, not Hispanic or Latino’, ‘Hispanic or Latino’}.
After running our inference algorithm with the diagnoses of the 20 disorders
and the race of the subjects as input data, we obtain three latent features. In
Table 7.6, we show the empirical probability of possessing each of the inferred
latent feature, i.e., the number of subjects in the database that possess each
latent feature divided by the total number of subjects. In Figure 7.10a,
we show the probability of meeting each diagnostic criteria for the latent
feature vectors zn shown in the legend and in the database (baseline). Note
that the obtained latent features are similar to the ones in Figure 7.1, i.e.,
Feature 1 (pattern [100]) models the PDs, Feature 2 (pattern [010]) models
the alcohol and drug abuse disorders and the antisocial PD, and Feature
3 (pattern [001]) models the anxiety and mood disorders. Additionally, in
Figure 7.10b, we show the probability of belonging to each ethnic group
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for the latent feature vectors zn shown in the legend and in the database
(baseline). In this figure, we observe that all the probabilities, except the
pattern [100] for American Indian and Alaska natives (which can either be
due to a poor estimation of the probability of the less common race or mean
that American Indian and Alaska natives suffer in a less extent from PDs),
are close to the baseline and, therefore, we can conclude that the race of the
subjects does not influence the presence or absence of any of the three latent
psychiatric disorders (internalizing, externalizing or personality disorders).

Active Feature Feature 1 Feature 2 Feature 3
Empirical Prob. 0.0356 0.0248 0.0533

Table 7.6: Race. Empirical probabilities of possessing at least one latent
feature, extracted directly from the inferred IBP matrix Z.

5. Marital Status. We now perform a similar analysis with the
marital status of the subjects, which we model as a categorical variable
with six categories, {‘Married’, ‘Living with someone as if married
(not currently married or separated from another person)’, ‘Widowed’,
‘Divorced’, ‘Separated’, ‘Never Married’ }. After running our inference
algorithm with the diagnoses of the 20 disorders and the marital status of the
subjects as input data, we obtain three latent features. In Table 7.7, we show
the empirical probability of possessing each of the inferred latent features.
In Figure 7.11a, we show the probability of meeting each diagnostic criteria
for the latent feature vectors zn shown in the legend and in the database
(baseline). Additionally, in Figure 7.11b, we show the probability of each
marital status for the latent feature vectors zn shown in the legend and in
the database (baseline). Since the probabilities under the four patterns are
similar to the probabilities in the baseline (except the pattern [001] for the
‘living with someone’ category), we can conclude from Figure 7.11b that the
marital status of the subjects does not influence the presence or absence
of any of the three latent psychiatric disorders (internalizing, externalizing
or personality disorders). The increase in the probability of being ‘Living
with someone as if married (not currently married or separated from another
person)’ under the pattern [001], seems to indicate that these subjects tend
to suffer in a higher extent from mood or anxiety disorders.

6. Highest Grade of School Completed. We now include in our analysis
the information about the grade of studies of the subjects, which we model
as an ordinal variable with the following fourteen categories, {‘No formal
schooling’, ‘completed grade K, 1 or 2’, ‘completed grade 3 or 4’, ‘completed
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Active Feature Feature 1 Feature 2 Feature 3
Empirical Prob. 0.0362 0.0433 0.0404

Table 7.7: Marital Status. Empirical probabilities of possessing at least one
latent feature, extracted directly from the inferred IBP matrix Z.

Active Feature Feature 1 Feature 2 Feature 3
Empirical Prob. 0.0341 0.0379 0.0469

Table 7.8: School. Empirical probabilities of possessing at least one latent
feature, extracted directly from the inferred IBP matrix Z.

grade 5 or 6’, ‘completed grade 7’, ‘completed grade 8’, ‘some high
school (grades 9-11)’, ‘completed high school’, ‘graduate equivalency degree
(GED)’, ‘some college (no degree)’, ‘completed associate or other technical
2-year degree’, ‘completed college (bachelor s degree)’, ‘some graduate or
professional studies (completed bachelor’s degree but not graduate degree)’,
‘completed graduate or professional degree (master’s degree or higher)’}.
After running our inference algorithm with the diagnoses of the 20 disorders
and the level of studies of the subjects as input data, we obtain three latent
features. In Table 7.8, we show the empirical probability of possessing each
of the inferred latent features, i.e., the number of subjects in the database
that possess each latent feature divided by the total number of subjects. In
Figure 7.12a, we show the probability of meeting each diagnostic criteria
for the latent feature vectors zn shown in the legend and in the database
(baseline). This figure shows that, although the three obtained features
increase the probability of suffering from all the disorders, Feature 1 (pattern
[010]) mainly increases the probability of suffering from disorders 13 to
20, i.e., personality disorders, Feature 2 (pattern [010]) mainly increases
the probability of suffering from disorders 1 to 5, i.e., drug and alcohol
abuse disorders (externalizing factor), and Feature 3 (pattern [001]) mainly
increases the probability of suffering from disorders 6 to 13, i.e., mood
disorders (internalizing factor). Additionally, in Figure 7.12b, we show
the probability of having each level of studies for the latent feature vectors
zn shown in the legend and in the database (baseline). In this figure, we
observe that pattern [000] which models the people that do not suffer from
any disorder, decreases the probability of having a lower level or grade of
studies, increasing, in turn, the probability of suffering from any of the latent
disorders.
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7. Body Mass Index. Finally, since the NESARC collect the weight
and heigh of the participants, we have computed the BMI fo each subject
as BMI = mass(lb)

(height(in))2
× 703. Figure 7.13b (dashed line) shows the

estimated probability density2 given by the data in the NESARC. Note that
a BMI bellow 18.5 is classified as underweight, a BMI between 18.5 and 25
corresponds to normal (healthy weight), between 25 and 30 is classified as
overweight, and larger than 30 is classified as obesity. After running our
inference algorithm with the diagnoses of the 20 disorders and the BMI as
input data (being the BMI modeled as a positive real-valued variable3), we
obtain four latent features. In Table 7.9, we show the empirical probability
of possessing each of the inferred latent feature, i.e., the number of subjects
in the database that possess each latent feature divided by the total number
of subjects. In Figure 7.13a, we show the probability of meeting each
diagnostic criteria for the latent feature vectors zn shown in the legend and
in the database (baseline). In this figure, we observe that Feature 1 (pattern
[1000]) models the seven PDs, Feature 2 (pattern [0100]) models the alcohol
and drug abuse disorders and the antisocial PD, Feature 3 (pattern [0010])
models the anxiety and mood disorders , and Feature 4 (pattern [0001])
is similar to Feature 1 but it presents higher probability of suffering from
alcohol abuse disorder, mayor depression disorder (MDD) and dysthimia.
Additionally, Figure 7.13b shows the (estimated) baseline probability density
and the probability density over the BMI for the latent feature vectors zn

shown in the legend. Note that the pattern [0001] is trying to capture the
probability over the BMI in the database (baseline), matching the mean of
the BMI in the database. In Figure 7.8b, we observe that the suffering of
the seven PDs do not depend on the BMI, since Features 1 and 4 model
the seven PDs and cover all the possible values for the BMI. People with
Feature 4 present a lower BMI and tend to suffer in a higher extent from
alcohol abuse, mayor depression and dysthimia disorders than people with
Feature 1. Additionally, note that people that suffer from alcohol and drug
use disorders tend to present a lower BMI than general population (baseline)
while people that suffer from mood and anxiety disorders present a larger
BMI than the baseline.

2The estimated probability density is computed using the Matlab function ‘ksdensity’,
in which the estimate is based on a normal kernel function, and is evaluated at 100 equally
spaced points that cover the range of the data.

3We set the hyperparameter a in the transformation f(x) = ax2 to 0.25.
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Active Feature Feature 1 Feature 2 Feature 3 Feature 4
Empirical Prob. 0.0420 0.0404 0.0227 0.0223

Table 7.9: BMI. Empirical probabilities of possessing at least one latent
feature, extracted directly from the inferred IBP matrix Z.
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Figure 7.7: Sex. (a) Probabilities of suffering from the 20 considered
disorders and (b) probability of belonging to each category for the latent
feature vectors zn shown in the legend and for the baseline.
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Figure 7.8: Age. (a) Probabilities of suffering from the 20 considered
disorders for the latent feature vectors zn shown in the legend and (b)
inferred probability distribution for the latent feature vectors zn shown in
the legend and baseline probability distribution.
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Figure 7.9: Census Region. (a) Probabilities of suffering from the 20
considered disorders and (b) probability of belonging to each category for
the latent feature vectors zn shown in the legend and for the baseline.
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Figure 7.10: Race. (a) Probabilities of suffering from the 20 considered
disorders and (b) probability of belonging to each category for the latent
feature vectors zn shown in the legend and for the baseline.

73



10−3

10−2

10−1

100

 

 

1.
 A

lco
ho

l a
bu

se
2.

 A
lco

ho
l d

ep
en

d.
3.

 D
ru

g 
ab

us
e

4.
 D

ru
g 

de
pe

nd
.

5.
 N

ico
tin

e 
de

pe
nd

.
6.

 M
DD

7.
 B

ip
ol

ar
 d

iso
rd

er
8.

 D
ys

th
im

ia
9.

 P
an

ic 
di

so
rd

er
10

. S
AD

11
. S

pe
cif

ic 
ph

ob
ia

12
. G

AD
13

. P
G

14
. A

vo
id

an
t P

D
15

. D
ep

en
de

nt
 P

D
16

. O
CP

D
17

. P
ar

an
oi

d 
PD

18
. S

ch
izo

id
 P

D
19

. H
ist

rio
ni

c 
PD

20
. A

nt
iso

cia
l P

D

[000]
[100]
[010]
[001]
Baseline

(a)

10−2

10−1

100

 

 

M
ar

rie
d

Li
vin

g 
wi

th
 s

om
eo

ne
W

id
ow

ed
Di

vo
rc

ed
Se

pa
ra

te
d

Ne
ve

r M
ar

rie
d

[000]
[100]
[010]
[001]
Baseline

(b)

Figure 7.11: Marital Status. (a) Probabilities of suffering from the 20
considered disorders and (b) probability of belonging to each category for
the latent feature vectors zn shown in the legend and for the baseline.
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Figure 7.12: School. (a) Probabilities of suffering from the 20 considered
disorders and (b) probability of belonging to each category for the latent
feature vectors zn shown in the legend and for the baseline.
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Figure 7.13: BMI. (a) Probabilities of suffering from the 20 considered
disorders for the latent feature vectors zn shown in the legend; and (b)
inferred probability distribution for the latent feature vectors zn shown in
the legend and baseline probability distribution.

76



Chapter 8

Analysis of Personality
Disorders

8.1 Analysis of Diagnostic Criteria

Now, we study in more detail the seven personality disorders (PDs) in
the previous section. In order to identify the seven personality disorders,
psychiatrists have established specific diagnostic criteria for each of them.
These criteria correspond to affirmative responses to one or several questions
in the NESARC survey (detailed in Appendix D) and this correspondence is
shown in Table 8.1. Then, there exists a set of criteria to identify if a subject
presents any of the following personality disorders: avoidant, dependent,
obsessive-compulsive, paranoid, schizoid, histrionic and antisocial.

In this section, we analyze how the different criteria (and their
corresponding questions) are related. Our objective is to find the different
comorbidity patterns in the database. With this study, we aim at answering
the following three questions:

• Are the different criteria used to diagnose a disorder exchangeable (in
the sense that they just indicate the PD a subject suffers from) or,
on the contrary, different criteria indicate different aspects or levels of
suffering from the same PD?

• Are the comorbidity patterns related to the PDs or to their criteria?
We try to find out if the co-existence in a subject of two PDs is
independent of the specific diagnostic criteria that the subject meets
or, for instance, the probability of fulfilling a specific criterion of a PD
increases when the subject meets a criterion corresponding to another
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disorder.

• Are the criteria actually related to the disorders they were defined for,
or some of them are more related to other PDs?

Question Code Personality disorder and criterion
S10Q1A1-S10Q1B7 Avoidant (1 question per criterion)
S10Q1A8-S10Q1B15 Dependent (1 question per criterion)
S10Q1A16-S10Q1B17 OCPD criterion 1
S10Q1A18-S10Q1B23 OCPD criteria 2-7
S10Q1A24-S10Q1B25 OCPD criterion 8
S10Q1A26-S10Q1B29 Paranoid criteria 1-4
S10Q1A30-S10Q1A31 Paranoid criterion 5
S10Q1A32-S10Q1B33 Paranoid criteria 6-7
S10Q1A45-S10Q1B46 Schizoid criterion 1
S10Q1A47-S10Q1B48 Schizoid criteria 2-3
S10Q1A50-S10Q1B50 Schizoid criterion 4
S10Q1A43-S10Q1B43 Schizoid criterion 5
S10Q1A51-S10Q1B52 Schizoid criterion 6

S10Q1A49-S10Q1B49 or Schizoid criterion 7S10Q1A53-S10Q1B53
S10Q1A54-S10Q1B54 or Histrionic criterion 1S10Q1A56-S10Q1B56
S10Q1A58-S10Q1B58 or Histrionic criterion 2S10Q1A60-S10Q1B60
S10Q1A55-S10Q1B55 Histrionic criterion 3
S10Q1A61-S10Q1B61 Histrionic criterion 4
S10Q1A64-S10Q1B64 Histrionic criterion 5

S10Q1A59-S10Q1B59 or Histrionic criterion 6S10Q1A62-S10Q1B62
S10Q1A63-S10Q1B63 Histrionic criterion 7
S10Q1A57-S10Q1B57 Histrionic criterion 8
S11Q1A20-S11Q1A25 Antisocial, criterion 1
S11Q1A11- S11Q1A13 Antisocial, criterion 2
S11Q1A8- S11Q1A10 Antisocial, criterion 3
S11Q1A17- S11Q1A18 Antisocial, criterion 4
S11Q1A26- S11Q1A33 Antisocial, criterion 4
S11Q1A14- S11Q1A16 Antisocial, criterion 5

S11Q1A6 and S11Q1A19 Antisocial, criterion 6
S11Q8A-B Antisocial, criterion 7

Table 8.1: Correspondence between the criteria for each personality disorder
and questions in NESARC.
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Figure 8.1: Variational lower bound L(H,Hq) at each iteration.

8.1.1 Experimental Setup

In the present analysis, we consider as input data the fulfilment of the 52
criteria (i.e., R = 2) corresponding to all the disorders for the 43,093 subjects
and apply the variational inference algorithm truncated to K = 25 features,
as detailed in Section 4.2, to find the latent structure of the data.

In order to properly initialize the huge amount of variational parameters,
we have previously run six Gibbs samplers (combined with the Laplace
approximation to compute the marginal likelihood) over the data but taking
only the criteria corresponding to the avoidant PD and another PD (that
is, the seven criteria for avoidant PD and the seven for dependent PD, the
criteria for avoidant PD with the eight for the OCPD, etc.) for 10, 000
randomly chosen subjects. After running the six Gibbs samplers, we obtain
18 latent features that we group in a unique matrix Z to obtain weighting
matrices Bd

MAP, which are used to initialize some parameters νnk and φd
kr.

We do this because the variational algorithm is sensitive to the starting
point and a random initialization would not produce good solutions.

We run enough iterations of the variational algorithm to ensure
convergence of the variational lower bound (the lower bound at each iteration
is shown in Figure 8.1). We construct a binary matrix Z by setting each
element znk = 1 if νnk > 0.5.

8.1.2 Results

In Table 8.2, we show the probability of occurrence of each feature (top
row), as well as the probability of having active only one single feature
(bottom row). We also show the ‘empirical’ and the ‘product’ probabilities
of possessing at least two latent features in Table 8.3, and the probabilities of
possessing at least two features given that one of them is active in Table 8.4.
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In Figure 8.2, we plot the probability of meeting each criterion in
the general population (dashed line) and the probability of meeting each
criterion for those subjects that do not have any active feature in our model
(solid line). There are 15, 185 subjects (35.2% of the population) which
do not present any active feature, and for these people the probability of
meeting any criterion is reduced significantly.

We have found results that are in accordance with previous studies and at
the same time provide new information to understand personality disorders.
Out of the 10 features, 6 of them directly describe personality disorders.
Feature 1 increases the probability of fulfilling the criteria for OCPD, Feature
3 increases the probability of fulfilling the criteria for antisocial, Feature
4 increases the probability of fulfilling the criteria for paranoid, Feature
5 increases the probability of meeting the criteria for schizoid, Feature 8
increases the probability of fulfilling the criteria for histrionic and Feature 7
increases the probability of meeting the criteria for avoidant and dependent.

In Figure 8.3, we plot the probability ratio between the probability of
meeting each criterion when a single feature is active with respect to the
probability of meeting each criterion in the general population (baseline
in Figure 8.2). So, if the ratio is above one, it means that the feature
increases the probability of meeting that criterion with respect to the general
population. In all these plots, we also show the probability ratio between
not having any active feature and the general population, which serves as
a reference for a low probability of fulfilling a criterion. Note that the
scale on the vertical axis may be different through all the figures for a
better display. In Figure 8.3, we can see that only the criteria for one
of the personality disorders is systematically above one, when one feature is
active, except for Feature 7 that increases the probability for both avoidant
and dependent. In the figure, we can also notice that when one feature
is active the probability of the criteria for the other disorders is above the
probability for the subjects that do not have any active feature, although
lower than the general population (above the solid line and below one). It
partially shows the comorbidity pattern for each personality disorder. For
example, Feature 1, besides increasing the probability of meeting the criteria
for OCPD, also increases the probability of meeting criterion 3 for schizoid
and criterion 1 for histrionic. It is also important to point out that Feature
8 increases significantly the probability of meeting criteria 1, 2, 4 and 6 for
histrionic (and mildly for criterion 7), but it does not affect criteria 3, 5
and 8, although the probability of meeting these criteria are increased by
Feature 4 (paranoid) and Feature 5 (schizoid). In a way, it indicates that
criteria 3 and 8 are more related to paranoid disorder and criterion 5 to
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schizoid disorder.
As seen in Figure 8.4, Features 2 and 6 mainly reduce the probability of

meeting the criteria for dependent PD. Feature 2 also reduces criteria 4-7 for
avoidant and mildly increases criterion 1 for OCPD, criterion 6 for schizoid
and criteria 5 and 6 for antisocial. Feature 6 also reduces some criteria
below the probability for the subjects with no active features. But for most
of the criteria the probability ratio moves between one and the ratio for the
subjects with no active feature. When these features appear by themselves,
the subjects might be similar to the subjects without any active feature,
they become relevant when they appear together with other features. These
features are less likely to be isolated features than the previous ones, as
reported in Table 8.2. For example, Feature 2 appears frequently with
Features 1, 3, 4 and 5, as shown in Table 8.4, and the probability ratios
are plotted in Figure 8.5 and compared to the probability ratio when each
feature is not accompanied by Feature 2. We can see that when we add
Feature 2 to Feature 1, the comorbidity pattern changes significantly and it
results in subjects with higher probabilities of meeting the criteria for every
other disorder except avoidant and dependent. Additionally, when we add
Feature 2 to Feature 5, we can see that meeting the criteria for schizoid is
even more probable, together with criterion 5 for histrionic.

Either Feature 1 or Features 1 and 3 typically accompany Feature 6, and
Feature 6 is seldom seen by itself (see Tables 8.2 and 8.5). In Figure 8.6,
we show the probability ratio when Feature 1 is active and when Features
1 and 3 are active, as reference, and when we add Feature 6 to them.
Adding Feature 6 mainly reduces the probability of meeting the criteria
for dependent. It is also relevant to point out that Features 1 and 3 increase
the probability of meeting the criteria 5 and 6 for paranoid, while Feature
4 mainly increased the probability of meeting the criteria 1-4 for paranoid
personality disorder, as shown in Figure 8.3.

Feature 9 is similar to Feature 7, as it captures an increase in the
probability of meeting the criteria for avoidant and dependent, but it never
appears isolated and most times it appears together with Features 1 and 4.

Feature 10 never appears isolated and it mainly appears only with
Feature 1. This feature by itself only indicates that the probability of all
the criteria should be much lower than the subjects with no active features,
except for antisocial, which behaves as the subjects with no active features.
When we add Feature 1 to Feature 10, we get that the probability of meeting
the criteria for OCDP goes to that of the subject with no active features, as
can be seen in Figure 8.7. For us this is a spurious feature that is equivalent
to not having any active feature and that the variational algorithm has not
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been able to eliminate. This is always a risk when working with flexible
models, like BNP, in which a spurious component might appear when it
should not. These components can be eliminated by common sense in most
cases or by further analysis by experts (psychiatric experts in our case).
But it can also indicate an unknown component that can point towards a
new research direction previously unknown, which is one of the attractive
features of using generative models.

Besides the comorbidity patterns shown by the individual features that
we have already reported, we can also see that almost all the features
are positively correlated. In Table 8.3, we show the probability that any
two features appear together (upper triangular sub-matrix) and the joint
probability that we should observe if the features were independent (lower
triangular sub-matrix). Ignoring Feature 10, all of the other features are
positively correlated, except Features 2 and 7 and Features 8 and 5 that seem
uncorrelated (the differences are not statistically significant). Most of the
features are strongly correlated and the differences in Table 8.3 correspond
to several standard deviations higher (between 3 and 42) than we should
expect from independent random observations. For example, the correlation
between Features 4 and 9 and Features 4 and 7 is quite high and both
show subjects with higher probability of meeting the criteria for avoidant,
dependent and paranoid. The difference between Features 7 and 9 is given by
the criteria 1-4 for paranoid PD, that are significantly increased by Feature 9
and slightly by Feature 7, as it can be seen in Figure 8.8. Finally, it is worth
mentioning that Feature 4 (paranoid) is the most highly correlated feature
with all the others, so we can say that anyone suffering from paranoid PD
has a higher comorbidity with any other personality disorder.

Feat. 1 2 3 4 5 6 7 8 9 10
Total 43.45 19.01 15.28 13.99 11.76 8.97 7.54 6.91 1.86 1.43
Single 13.48 3.62 2.22 1.34 2.27 0.49 0.76 1.07 0 0

Table 8.2: Probabilities (%) of possessing (top row) at least one latent
feature, or (bottom row) a single feature.

82



Feat. 1 2 3 4 5 6 7 8 9 10
1 9.92 8.96 8.48 5.67 7.22 4.92 3.85 1.46 1.42
2 8.26 4.43 4.54 3.67 1.90 1.43 2.08 0.71 0.21
3 6.64 2.90 3.29 2.18 3.00 2.02 1.58 0.54 0.20
4 6.08 2.66 2.14 2.79 1.91 2.39 1.40 1.25 0.03
5 5.11 2.23 1.80 1.65 1.31 1.35 0.85 0.57 0.00
6 3.90 1.71 1.37 1.26 1.05 1.10 0.80 0.44 0.14
7 3.28 1.43 1.15 1.06 0.89 0.68 0.65 0.28 0.00
8 3.00 1.31 1.06 0.97 0.81 0.62 0.52 0.51 0.07
9 0.81 0.35 0.28 0.26 0.22 0.17 0.14 0.13 0.00
10 0.62 0.27 0.22 0.20 0.17 0.13 0.11 0.10 0.03

Table 8.3: Probabilities (%) of possessing at least two latent features. The
elements above the diagonal correspond to the ‘empirical probability’, that
is, extracted directly from the inferred IBP matrix Z, and the elements below
the diagonal correspond to the ‘product probability’ of the corresponding
two latent feature probabilities given in the first row of Table 8.2.

Figure 8.2: Probability of meeting each criterion. The probabilities when
no latent feature is active (solid curve) have been obtained using the
matrices Bd

MAP, while the baseline (dashed curve) has been obtained taking
into account the 43, 093 subjects in the database. (AvPD=Avoidant PD,
DPD=Dependent PD, OCPD=Obsessive-compulsive PD, PPD=Paranoid
PD, SPD=Schizoid PD, HPD=Histrionic PD, APD=Antisocial PD)
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HHHHHk1

k2 1 2 3 4 5 6 7 8 9 10

1 100 22.83 20.63 19.53 13.05 16.62 11.33 8.85 3.37 3.27
2 52.19 100 23.33 23.90 19.32 10.00 7.51 10.95 3.75 1.09
3 58.68 29.03 100 21.54 14.29 19.66 13.25 10.34 3.51 1.29
4 60.63 32.47 23.52 100 19.97 13.65 17.05 10.02 8.92 0.20
5 48.22 31.25 18.57 23.77 100 11.11 11.49 7.24 4.88 0.00
6 80.47 21.18 33.47 21.29 14.56 100 12.23 8.92 4.86 1.53
7 65.26 18.92 26.83 31.63 17.91 14.55 100 8.65 3.66 0.03
8 55.62 30.11 22.86 20.28 12.32 11.58 9.43 100 7.39 1.07
9 78.46 38.23 28.77 67.00 30.76 23.41 14.82 27.40 100 0.12
10 99.19 14.40 13.75 1.94 0.00 9.55 0.16 5.18 0.16 100

Table 8.4: Probabilities (%) of possessing at least features k1 and k2 given

that k1 is active, i.e.,
(∑N

n=1 znk1znk2

)
/
(∑N

n=1 znk1

)
.
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Figure 8.3: Probability ratio of meeting each criterion, with respect to the
baseline. These probabilities have been obtained using the matrices Bd

MAP,
when none or a single feature is active (the legend shows the active latent
features).
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# Occurrences
Features

1 2 3 4 5 6 7 8 9 10
1 15185 0 0 0 0 0 0 0 0 0 0
2 5811 1 0 0 0 0 0 0 0 0 0
3 1561 0 1 0 0 0 0 0 0 0 0
4 1389 1 1 0 0 0 0 0 0 0 0
5 1021 1 0 1 0 0 0 0 0 0 0
6 977 0 0 0 0 1 0 0 0 0 0
7 958 1 0 0 0 0 1 0 0 0 0
8 956 0 0 1 0 0 0 0 0 0 0
9 946 1 0 0 1 0 0 0 0 0 0
10 687 1 0 0 0 1 0 0 0 0 0
11 576 0 0 0 1 0 0 0 0 0 0
12 553 1 0 0 0 0 0 1 0 0 0
13 495 0 1 0 0 1 0 0 0 0 0
14 486 1 0 0 0 0 0 0 1 0 0
15 460 0 0 0 0 0 0 0 1 0 0
16 451 0 1 1 0 0 0 0 0 0 0
17 438 1 0 0 0 0 0 0 0 0 1
18 414 1 0 1 0 0 1 0 0 0 0
19 385 0 1 0 1 0 0 0 0 0 0
20 370 1 1 0 1 0 0 0 0 0 0

Table 8.5: List of the 20 most common feature patterns.
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baseline. These probabilities have been obtained using the matrices Bd

MAP,
when none, a single or two features are active (the legend shows the active
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baseline. These probabilities have been obtained using the matrices Bd
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when none, a single or several features are active (the legend shows the
active latent features).
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Figure 8.8: Probability ratio of meeting each criterion, with respect to the
baseline. These probabilities have been obtained using the matrices Bd

MAP,
when none, a single or two features are active (the legend shows the active
latent features).

8.2 Analysis of the Survey Responses

In the previous study, we have worked with the results obtained after
processing the responses to the survey, i.e., the fulfilment of the criteria. As
detailed above, these criteria correspond to affirmatively answering to one or
a set of questions (see Table 8.1). According to the codebook of the NESARC
database, the questions are organized in pairs: there is a first question
(coded in Table 8.1 as S10Q1AX) with three possible responses, ‘yes’, ‘no’
and ‘unknown’; and a second question (coded in Table 8.1 as S10Q1BX)
that is asked only in case the subject has responded affirmatively to the
former. Hence, for each pair of questions, we find five possible outcomes:
‘no’, ‘unknown’, ‘yes+no’, ‘yes+unknown’ and ‘yes+yes’. Based on these
responses, the psychiatrists consider that a subject meets a criterion if the
subject has answered affirmatively to the first question of the pair, i.e., if she
has responded ‘yes+no’, ‘yes+unknown’ or ‘yes+yes’ to the pair of questions
that define a criterion. Moreover, for those criteria with more than one
associated (pairs of) questions, they assume that the subject satisfies the
criterion if she has answered ‘yes+no’, ‘yes+unknown’ or ‘yes+yes’ to any
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(of the pairs) of questions.
However, based on the previous results, we believe that there is further

information about the comorbidity patterns among psychiatric disorders in
the responses to the survey. As a consequence, in this section we work
directly with the responses of the people to the survey with the aim of
answering the following set of questions:

• Are the different questions designed to diagnose each PD actually
related to the disorder they were defined for, or some of them are
more related to another PD?

• Do the subjects that suffer from different disorders respond in a
different way to the questions? In other words, do the different
disorders present different response patterns?

• How are the questions related among them?

8.2.1 Experimental Setup

In this study, we use the responses to Section 10 in NESARC database
as input data to the IBP. This section of the NESARC contains 55 pairs
of questions used to diagnose the six following PDs: avoidant, dependent,
obsessive-compulsive, paranoid, schizoid and histrionic. We consider each
pair of questions as a unique input which takes five possible values: ‘no’,
‘unknown’, ‘yes+no’, ‘yes+unknown’ and ‘yes+yes’.

For this experiment, we resort to the model and inference detailed in
Chapter 5, assuming that all the attributes in the database are categorical
with five categories. We set α = 1, σ2

y = 1 and σ2
B = 1, and run the inference

algorithm detailed in Section 5.2. In order to get more interpretable results,
we do not sample the rows of Z corresponding to those subjects who
responded negatively to the 55 questions but instead fix these latent features
to zero. The idea is that the bias terms capture the general population, and
we use the active components of the matrix Z to characterize the disorders.

8.2.2 Results

After running our inference algorithm, we obtain eight latent variables. In
Table 8.6, we show the probability of occurrence of each feature (top row),
as well as the probability of having active only one single feature (bottom
row). In this table, we observe that there are two groups of latent features:
the first two most common features that are active in more than 35% of the
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people and appear half of the times as unique features; and the remaining six
features that are active only in a few subjects and rarely appear as unique
features.

In Figure 8.9, we plot the probability of answering ‘no’ to each question
in the general population (dashed line) and the probability of answering ‘no’
to each question for those subjects that do not have any active feature in our
model (solid line). We obtain that 34.81% of the population do not have any
active feature and, therefore, their answers are explained with the bias term.
This result is in agreement with the ones obtained in the previous study,
where 35.2% of the population was also explained with the bias term. As
expected, people with no active latent features present higher probability
of answering negatively to all the questions than the general population
represented with the dashed line, being these probabilities higher than 0.9
for all the questions.

Now, we focus on Features 1 and 2, which are the most active features
in the population. In Figure 8.10, we show the probability ratio between
the probability of the response ‘yes+no’ for all the questions when Feature
1 appears as the unique active feature with respect to the probability of the
‘yes+no’ response in the general population. Similarly, we plot in Figure 8.11
the probability ratio between the probability of the responses ‘yes+no’ and
‘unknown’ when only Feature 2 is active with respect to the probability of
the ‘yes+no’ and ‘unkown’ responses in the general population. Note that, if
the ratio is above one, it means that the feature increases the probability of
this response with respect to the general population. The different scales on
the vertical axis provide a better display. In these figures, we observe that
subjects that have active either Feature 1 or Feature 2 correspond to people
that do not suffer from any disorders but have responded ‘yes+no’ to some
pairs of questions mainly related to, respectively, schizoid PD (questions 1,
5 and 9) and obsessive compulsive PD (questions 1 and 10). Additionally,
Feature 2 increases the probability of answering ‘unknown’ to question 10
of obsessive compulsive PD and question 4 of histrionic DP.

In Figure 8.12, we show the probability ratio between the probability of
the responses ‘yes+no’ and ‘unknown’ for all the questions when Feature 3
appears as the unique active feature with respect to the probability of the
‘yes+no’ and ‘unknown’ responses in the general population. We find in
Figure 8.12 that subjects with Feature 3 active present higher probability
than the general population of answering ‘yes+no’ to some questions (1, 4
and 5) related to histrionic PD; and ‘unknown’ to questions 9 and 10 of
OCPD, and question 4 of HPD.

In Figure 8.13, we show the probability ratio for the response ‘unknown’
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when Feature 4 appears as the unique active feature. Clearly, Feature 4
models those subjects that answer ‘unknown’ to all the questions, i.e., those
that did not want to respond to the survey.

In Figure 8.14, we show the probability ratio for the response ‘yes+yes’
when Feature 5 appears as the unique active feature. Feature 5 captures
an increase up to 10 times in the probability of answering affirmatively
to the questions related to avoidant PD (and dependent PD). In addition,
we observe in this figure that people that suffer from avoidant PD and
dependant PD also tend to answer affirmatively to question 9 of paranoid
PD, question 2 of schizoid PD, and question 10 of histrionic PD.

In Figure 8.15, we show the probability ratio for the responses ‘yes+yes’
and ‘unknown’ for all the questions when Feature 6 appears as the
unique active feature. Feature 6 mainly captures the affirmative (and
also ‘unknown’, although to a lesser extent) to the questions designed
to diagnose paranoid PD. It also increases the probability of answering
‘yes+yes’ (or ‘unknown’) to some of the questions related to obsessive
compulsive (questions 5, 7, 9 and 10) and histrionic PDs (questions 2 and
4).

In Figure 8.16, we show the probability ratio between the probability
of the response ‘yes+yes’ when Feature 7 appears as the unique active
feature with respect to the probability of answering ‘yes+yes’ in the general
population. Feature 7 captures an increase in the probability of the
affirmative response (i.e., ‘yes+yes’) for all the questions, and specially, in
the questions related to avoidant, dependent and paranoid PDs. Therefore,
a subject with Feature 7 active suffers from several PDs and, according to
the results in Chapter 7, would present a high grade or severity of suffering
of personality disorders.

In Figure 8.17, we show the probability ratio between the probability
of the response ‘yes+no’ when Feature 8 appears as the unique active
feature with respect to the probability of answering ‘yes+no’ in the general
population. Feature 8 captures an increase in the probability of the ‘yes+no’
response for the questions related to avoidant, paranoid and schizoid PDs.
This feature models those subjects that respond affirmatively to the first
question of the pair of questions and negatively to the second question, and
therefore, those subject with a moderate suffering of several disorders.

Additionally, in Table 8.7, we show the 20 most common feature patterns
in the database, which capture 98.65% of the population. We have divided
this table into two groups of features: the first group with Features from
1 to 4, which are the most common features and model responses ‘yes+no’
and ‘unknown’; and a second group with Features from 5 to 8, which model
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the PDs. In this table, we observe that Feature 8 does not appear in any of
the most common patterns. There are 12 patterns (patterns 1-9, 12, 14 and
17) for which only features in the first group are active. In the remaining 8
feature patterns, one of the latent features in the second group (i.e., Features
5, 6 and 7) are combined with the features in the first group to model
the subjects with higher risk of suffering from one or several personality
disorders.

As a summary, we find that besides the 34.81% of the population without
any active feature, there is another 38% of the population (see bottom row
in Table 8.6), corresponding to the subjects that have Features 1, 2 or 3
as unique feature, that do not suffer from any disorder but have higher
probability of answering ‘yes+no’ to some of the questions. Feature 5 models
the subjects that suffer from avoidant and dependent PDs, and Feature 6
models paranoid PD with obsessive compulsive and histrionic tendencies.
In contrast to the previous section, we only obtain a latent feature to model
the affirmative responses (i.e., ‘yes+yes’) for all the questions associated to
avoidant and dependant PDs, and paranoid PD. For the remaining disorders
(i.e., obsessive compulsive, schizoid, and histrionic PDs), we find that the
‘yes+yes’ and ‘yes+no’ responses are modeled in general by the same latent
variable. Finally, we remark that, as shown by all the results in this chapter,
the comorbidity patterns are more related to different aspects (criteria or
questions) that characterize the disorders than to the PDs themselves.

Feat. 1 2 3 4 5 6 7 8
Total 38.53 36.78 7.83 3.33 2.96 1.15 0.67 0.45
Single 19.09 17.82 1.35 1.12 0.002 0.12 0.06 0.04

Table 8.6: Probabilities (%) of possessing (top row) at least one latent
feature, or (bottom row) a single feature.
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Figure 8.9: Probability of answering ‘NO’ to each question. The
probabilities when no latent feature is active (solid curve) have been obtained
using the inferred matrices Bd, while the baseline (dashed curve) has
been obtained taking into account the 43, 093 subjects in the database.
AvPD=Avoidant PD, DPD=Dependent PD, OCPD=Obsessive-compulsive
PD, PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic PD.
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Figure 8.10: Probability ration of answering ‘YES+NO’ to each question
with respect to the baseline. The probabilities when none or only one latent
feature is active have been obtained using the inferred matrices Bd, while the
baseline has been obtained taking into account the 43, 093 subjects in the
database. AvPD=Avoidant PD, DPD=Dependent PD, OCPD=Obsessive-
compulsive PD, PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic
PD.
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Figure 8.11: Probability ratio of answering ‘YES+NO’ and ‘UNKNOWN’
to each question, with respect to the baseline. The probabilities when none
or only one latent feature is active have been obtained using the inferred
matrices Bd, while the baseline has been obtained taking into account the
43, 093 subjects in the database. AvPD=Avoidant PD, DPD=Dependent
PD, OCPD=Obsessive-compulsive PD, PPD=Paranoid PD, SPD=Schizoid
PD, HPD=Histrionic PD.
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Figure 8.12: Probability ratio of answering ‘YES+NO’ and ‘UNKNOWN’
to each question, with respect to the baseline. The probabilities when none
or only one latent feature is active have been obtained using the inferred
matrices Bd, while the baseline has been obtained taking into account the
43, 093 subjects in the database. AvPD=Avoidant PD, DPD=Dependent
PD, OCPD=Obsessive-compulsive PD, PPD=Paranoid PD, SPD=Schizoid
PD, HPD=Histrionic PD.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1011
0

10

20

30

Question

P
ro

b.
 R

at
io

 

 

None
F4

HPDDPD

SPD
AvPD OCPD

PPD

Figure 8.13: Probability ratio of answering ‘UNKNOWN’ to each question,
with respect to the baseline. The probabilities when none or only one latent
feature is active have been obtained using the inferred matrices Bd, while the
baseline has been obtained taking into account the 43, 093 subjects in the
database. AvPD=Avoidant PD, DPD=Dependent PD, OCPD=Obsessive-
compulsive PD, PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic
PD.
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Figure 8.14: Probability ratio of answering ‘YES+YES’ to each question,
with respect to the baseline. The probabilities when none or only one latent
feature is active have been obtained using the inferred matrices Bd, while the
baseline has been obtained taking into account the 43, 093 subjects in the
database. AvPD=Avoidant PD, DPD=Dependent PD, OCPD=Obsessive-
compulsive PD, PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic
PD.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1011
0

5

10

Question

P
ro

b.
 R

at
io

 

 
None
F6 PPD HPD

AvPD DPD
OCPD

SPD

(a) ‘YES+YES’

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1011
0

2

4

6

Question

P
ro

b.
 R

at
io

 

 
None
F6

OCPD PPD

HPD

AvPD DPD SPD

(b) ‘UNKNOWN’

Figure 8.15: Probability ratio of answering ‘YES+YES’ and ‘UNKNOWN’
to each question, with respect to the baseline. The probabilities when none
or only one latent feature is active have been obtained using the inferred
matrices Bd, while the baseline has been obtained taking into account the
43, 093 subjects in the database. AvPD=Avoidant PD, DPD=Dependent
PD, OCPD=Obsessive-compulsive PD, PPD=Paranoid PD, SPD=Schizoid
PD, HPD=Histrionic PD.
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Figure 8.16: Probability ratio of answering ‘YES+YES’ to each question,
with respect to the baseline. The probabilities when none or only one latent
feature is active have been obtained using the inferred matrices Bd, while the
baseline has been obtained taking into account the 43, 093 subjects in the
database. AvPD=Avoidant PD, DPD=Dependent PD, OCPD=Obsessive-
compulsive PD, PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic
PD.
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Figure 8.17: Probability ratio of answering ‘YES+NO’ to each question,
with respect to the baseline. The probabilities when none or only one latent
feature is active have been obtained using the inferred matrices Bd, while the
baseline has been obtained taking into account the 43, 093 subjects in the
database. AvPD=Avoidant PD, DPD=Dependent PD, OCPD=Obsessive-
compulsive PD, PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic
PD.
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# Occurrences
Features

1 2 3 4 5 6 7 8
1 15002 0 0 0 0 0 0 0 0
2 8225 1 0 0 0 0 0 0 0
3 7679 0 1 0 0 0 0 0 0
4 5394 1 1 0 0 0 0 0 0
5 1224 1 0 1 0 0 0 0 0
6 1162 0 1 1 0 0 0 0 0
7 581 0 0 1 0 0 0 0 0
8 499 1 0 0 1 0 0 0 0
9 478 0 0 0 1 0 0 0 0
10 457 0 1 0 0 1 0 0 0
11 376 1 0 0 0 1 0 0 0
12 268 0 1 0 1 0 0 0 0
13 207 0 0 0 0 1 0 0 0
14 177 1 1 1 0 0 0 0 0
15 169 1 0 0 0 0 1 0 0
16 167 0 1 0 0 0 1 0 0
17 162 1 1 0 1 0 0 0 0
18 116 0 1 0 0 0 0 1 0
19 84 1 1 0 0 1 0 0 0
20 84 1 0 0 0 0 0 1 0

Table 8.7: List of the 20 most common feature patterns.
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Chapter 9

Summary and Conclusions

9.1 Summary and Final Remarks

In this section, we summarize the main ideas and findings exposed
throughout the thesis. We also provide some final remarks that open the
future lines of research detailed in Section 9.2. Similarly to the Introduction,
we split the summary into two parts: a first part that contains a summary of
the Bayesian nonparametric algorithms proposed in the thesis, and a second
part with a summary of the results.

9.1.1 Technical Details

In this section, we provide a summary of Chapters 3 to 5 of the thesis, i.e.,
a summary of the technical contributions of this thesis.

IBP model for Categorical Observations

In Chapter 3, we have extended the IBP model to deal with categorical
observations. Specifically, we have considered two likelihood observation
models (a multinomial-logit and a multinomial-probit model) and,
motivated by our specific application, we have extended the IBP prior in two
ways: i) We have included a bias term; and ii) we have extended the model
to account for bounded real-valued latent variables, instead of on-off latent
features. For the proposed models, we have derived in Chapter 4 several
MCMC based inference algorithms and a variational inference algorithm.
Specifically, we have proposed an (approximated) collapsed Gibbs sampler
in which the marginal likelihood is approximated using either the Laplace
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approximation or the EP algorithm under, respectively, the multinomial-
logit or the multinomial-probit model. Additionally, we have proposed an
MH based algorithm to infer the latent variables in the continuous feature
model.

Note that, although our work has been motivated by our specific
psychiatric application, the proposed models and the corresponding
inference algorithms are general enough to be applicable in any context
dealing with categorical observations. We also remark that, although both
approximations present linear complexity with the number of observations,
the EP algorithm presents higher computational cost than the Laplace
approximation because it needs several iterations of both the inner and outer
loops at each step of the Gibbs sampler algorithm. But, in turn, the EP
algorithm also provides more accurate estimates of the marginal likelihood.

IBP model for Heterogeneous Observations

In Chapter 5, we have proposed a general observation model for the IBP
that allows us to handle mixed continuous and discrete variables. More
specifically, the proposed model is able to manage real-valued, positive real-
valued, categorical, ordinal, and count data. For this model, we have derived
an MCMC inference algorithm, based on the accelerated Gibbs sampler for
the IBP [18], that scales linearly with the number of observations. This
algorithm performs exact inference, being the computation of marginal
likelihood analytically tractable, by introducing an auxiliary Gaussian
variable such that, conditioned on this variable, it resembles the standard
Gaussian IBP model.

This model provides an efficient and general Bayesian approach for
applying probabilistic modeling to heterogeneous databases, which are very
common in real applications. Finally, note that the proposed model when
dealing with categorical observations coincides with the one in Chapter 3
under the multinomial-probit likelihood function but, in contrast to the
inference algorithm proposed in Chapter 4, the introduction of the auxiliary
Gaussian variable allows for exact inference. However, although both
algorithms (the ones in Chapter 4 and the one in Chapter 5), collapse
the weighting factors by computing (either approximately or exactly) the
marginal likelihood, the introduction of an auxiliary variable (that needs
to be sampled) may deteriorate the mixing performance of the algorithm.
Therefore, an extensive study of the mixing properties of the proposed
algorithms (i.e., the approximate and exact collapsed Gibbs samplers and
the variational inference algorithm) appears as an interesting future research
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line.

9.1.2 Experiments

In this section, we provide a summary of the main results obtained in the
second part of the thesis, i.e., in Chapters 6 to 8.

Analysis of Suicide Attempts

In this study, we have applied the IBP model for categorical observations
(under the multinomial-logit likelihood observation model) to the NESARC
database to find the hidden features that characterize the suicide attempt
risk. From the analysis of how each inferred feature contributes to the suicide
attempt probability, we have found that our algorithm is able to detect the
people with the highest and the lowest risk of attempting suicide.

Let us remark that the proposed approach can be used to discard
significant portions of the population in suicide attempt studies and focus
on the groups that present much higher risk. Hence, our IBP for categorical
observations is able to obtain features that describe the hidden causes behind
suicide attempts and makes it possible to pin-point the people that have a
higher risk of attempting suicide.

Analysis of Psychiatric disorders

In Chapter 7, we have used the diagnoses of the 20 psychiatric disorders
available in the NESARC database to perform a thorough analysis of
the comorbidity patterns among these disorders. In this study, we have
considered the continuous latent feature model, in which the latent variables
take bounded real values. We have shown that the obtained results
are not only consistent with previous studies on the latent structure of
psychiatric disorders but also provide new insights. We have found that
the comorbidity patterns of common psychiatric disorders can be described
by a small number of latent features, even though the model has enough
a priori flexibility to account for a potentially unbounded number of
features. In addition, nosologically related disorders, such as social anxiety
disorder and avoidant personality disorder, tend to be modeled by similar
features. We have found that no disorder is perfectly aligned along one
single latent feature, which suggests that disorders can develop through
multiple etiological paths. For instance, the risk of nicotine dependence
may be high in individuals with a propensity towards externalization or
internalization, as suggested in [7]. We have observed that the 20 psychiatric
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disorders under study can be divided into three groups of latent disorders,
namely internalizing, externalizing and personality disorders. Furthermore,
comorbid disorders tend to be modeled by the same latent feature, i.e.,
tend to belong to the same group of latent disorders. The importance of
the severity factors in the model has also been proved, because they allow
explaining the comorbidity among the disorders and also understanding the
stress each subject suffers. The model without the severity factors cannot
distinguish between the different subjects that have the same active latent
features.

Then, we have made use of the IBP model for heterogeneous databases
to study the impact of the social background of the subjects in their
comorbidity patterns. In particular, we have studied how sex, age, census
region, race/ethnicity, marital status, highest grade or years of school
completed, and the BMI show up in the comorbidity patterns among the
20 considered psychiatric disorders. In this study, we have found that, in
agreement with previous studies, women tend to suffer from mood and
anxiety disorders (internalizing factor) in a higher extent than men, who
frequently suffer from personality disorders. Additionally, we have found
that the body max index (BMI) also influence the development of some
latent disorders, finding that people with larger BMI tend to suffer in a
higher extent from mood and anxiety disorders.

Analysis of personality disorders

In Chapter 8, we have performed a thorough analysis of the comorbidity
patterns among the seven PDs diagnosed using the data in the NESARC.
For this analysis, we have worked with the criteria that the psychiatrists
defined to diagnose these seven PDs, instead the diagnoses themselves. We
have found a latent feature to directly describe each personality disorder,
except the avoidant and dependent PDs that are modeled by the same latent
feature. We also found that paranoid PD is the most highly correlated PD
with all the others, so we can say that anyone suffering from paranoid PD
has a higher probability of suffering from comorbid PDs.

Afterwards, we have studied directly the responses to the NESARC
survey, instead of the fulfilment of the diagnostic criteria obtained after
processing the data. In this analysis, we have observed that approximately
38% of the population answer ‘yes+no’ to some of the pairs of questions used
to diagnose PDs. This makes us wonder if the way these questions are stated
provides useful information to detect those subjects that suffer from PDs,
or they should be reformulated in a way that provide the information we are
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looking for. Additionally, we have observed that the comorbidity patterns
are more related to specific questions rather than to PDs. For instance, once
a subject suffers from avoidant and dependent PDs, she also affirmatively
answers to some specific questions of paranoid, schizoid and histrionic PDs.

Another question that arises from our results is related to the avoidant
and dependent PDs, which in all the performed experiments are modeled
by a unique latent feature, which, in agreement with previous studies [24],
indicates that they are highly correlated. Therefore, we may wonder whether
avoidant and dependent PDs are two different PDs or, on the contrary, they
correspond to different levels of suffering from the same PD.

9.2 Future Work

Several extensions of this work can be performed in both machine learning
and psychiatry. On the one hand, we have possible future research lines
regarding the Bayesian nonparametric models and inference algorithms. As
we have pointed out before, the proposed models and inference algorithms
are general enough to be applicable in other areas distinct from psychiatry.
For instance, possible extensions of this thesis include: i) The development
of an alternative and more scalable inference algorithm for the proposed
continuous latent feature model; ii) a throughout analysis of the mixing
properties of the proposed MCMC based inference algorithms; or iii) the
derivation of a variational inference algorithm that, instead of bounding the
lower bound, directly approximates the lower bound, which would probably
provide better results [90]. Additionally, an interesting extension of the IBP
model for heterogeneous databases is the development of a general tool for
the estimation of missing data in such databases. Specifically, this model
is able to directly provide estimates of the missing data by exploiting the
information in the available data to learn the similarities among the objects
and how these latent features show up in the attributes that describe the
objects. Finally, the idea of introducing an auxiliary Gaussian variable,
i.e., a pseudo-observation, could be combined with other Bayesian models,
e.g., with the DP mixture model to perform clustering in heterogeneous
databases.

On the other hand, the exhaustive analysis of different problems in the
area of psychiatry has led to a set of open questions. Hence, the search of
the responses to these questions appears as a natural future line of research
in this area. In this work, we have focused on the study of the causes behind
suicide attempts and the comorbidity patterns of psychiatric disorders, but
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the NESARC database contains further information that can be used to
study other problems. For instance, we could study the hidden causes behind
substance use and abuse disorders. The NESARC database would also allow
for socioeconomical studies because, in addition to the information of the
mental health of the participants, it also contains information of the social
background of the participants such as their incomes or ethnicity, among
others. Finally, in order to study how the different disorders evolve with
time, we would need temporal information of the subjects. This study could
be analyzed by psychiatrists to better understand the different phases of a
disorder and, as a consequence, help them to detect and treat the subjects
beforehand, avoiding visits to the emergency rooms or even preventing
suicide attempts.
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Appendix A

Laplace Approximation

In this chapter we provide the necessary details for the implementation of
the Laplace approximation proposed in Section 4.1.1. The expression in
(4.6) can be rewritten as

f(Bd) = trace
{
Md>Bd

}
−

N∑
n=1

log

(
R∑

r=1

exp(znbd
·r)

)

− 1
2σ2

B

trace
{
Bd>Bd

}
− RK

2
log(2πσ2

B),

where (Md)kr counts the number of data points for which xnd = r and
znk = 1, namely, (Md)kr =

∑N
n=1 δ(xnd = r)znk, where δ(·) is the Kronecker

delta function. By definition, (Md)0r =
∑N

n=1 δ(xnd = r).

By defining (ρd)kr =
N∑

n=1

znkπ
r
nd, the gradient of f(Bd) can be derived

as
∇f = Md − ρd − 1

σ2
B

Bd.

To compute the Hessian, it is easier to define the gradient ∇f as a
vector, instead of a matrix, and hence we stack the columns of Bd into βd,
i.e., βd = Bd(:) for avid Matlab users. The Hessian matrix can now be
readily computed taking the derivatives of the gradient, yielding

∇∇f = − 1
σ2

B

IRK +∇∇ log p(xd|βd,Z)

= − 1
σ2

B

IRK −
N∑

n=1

(
diag(πd

n)− (πd
n)>πd

n

)
⊗ (z>n zn),
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where diag(πd
n) is a diagonal matrix with the values of the vector πd

n =[
πd

n1, π
d
n2, . . . , π

d
nR

]
as its diagonal elements.

Finally, note that, since p(xd|βd,Z) is a log-concave function of βd

[13, p. 87], −∇∇f is a positive definite matrix, which guarantees that the
maximum of f(βd) is unique.
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Appendix B

Nested EP: Inner loop

The inner loop is an EP method that approximates by a Gaussian the tilted
distribution p̂n(βd), which can be expressed as

p̂n(βd) =
1

Ẑn

q¬n(βd)tdn(βd)

=
1

Ẑn

N (βd|Π−1
¬nλ¬n,Π−1

¬n)×
∫
N (und|0, 1)

 R∏
r=1

r 6=xd
n

Φ
(
und + zn(bd

·xd
n
− bd

·r)
)dund.

(B.1)

Removing the marginalization with respect to the auxiliary variable und

and defining βd
I as the vector compound of βd and und, namely, βd

I =[
(βd)>, und

]>
, we have the augmented tilted distribution

p̂n(βd
I ) =

1

Ẑn

N (βd
I |Π−1

In
λIn ,Π

−1
In

)
R∏

r=1
r 6=xd

n

Φ
(
(hd

nr)
>βd

I

)
, (B.2)

where we have defined ΠIn as a block-diagonal matrix formed from Π¬n and

1, λIn =
[
λ>¬n, 0

]>
, and hd

nr =
[
(exd

n
− er)> ⊗ zn, 1

]>
. Here, ‘⊗’ denotes

the Kronecker product, and er is the r-th unit (column) vector of the R-
dimensional standard basis. Note that we use the subscript ‘I’ to denote the
augmented variables that account for both βd and und. The normalization
term Ẑn is the same for p̂n(βd) and for the augmented distribution p̂n(βd

I ),
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and it is defined as

Ẑn =
∫
q¬n(βd)N (und|0, 1)

∏
r 6=xd

n

Φ((hd
nr)

>βd
I )dβ

d
I . (B.3)

Due to the multinomial probit model, Eq. B.2 contains a product of
intractable functions of the scalar variables sr = (hd

nr)
>βd

I , allowing us to
apply a new inner EP loop, which is simpler than the outer loop since
it only involves scalar operations. Hence, the augmented distribution in
(B.2) can be approximated by replacing each intractable term Φ(sr) with
a scaled univariate Gaussian site function with natural parameters α̃nr and
β̃nr, resulting in the approximate distribution

qIn(βd
I ) =

1
CIn

N (βd
I |Π−1

In
λIn ,Π

−1
In

)
R∏

r=1
r 6=xd

n

C̃nrN (sr|α̃−1
nr β̃nr, α̃

−1
nr )

= N (βd
I |Π̃

−1

In λ̃In , Π̃
−1

In ),

(B.4)

where the normalization constant CIn approximates Ẑn.
We start from qnr(sr) = N (sr|mnr, vnr), being mnr = (hd

nr)
>Π̃

−1

In λ̃In

and vnr = (hd
nr)

>Π̃
−1

In hd
nr. Then, the cavity distribution qn¬r(sr) can be

written as
qn¬r(sr) = N (sr|mn¬r, vn¬r), (B.5)

which has mean mn¬r = vn¬r(mnr/vnr − β̃nr) and variance vn¬r = (1/vnr +
α̃nr)−1. The tilted distribution (including one true site),

f̂nr(sr) =
1

Ĉnr

qn¬r(sr)Φ(sr), (B.6)

has mean m̂nr = mn¬r + ρnrvn¬r, variance v̂nr = vn¬r −
v2
n¬r

(
ρ2

nr + ρnr
mn¬r

1+vn¬r

)
and normalization constant Ĉnr = Φ

(
mn¬r√
1+vn¬r

)
,

being

ρnr =
N
(

mn¬r√
1+vn¬r

|0, 1
)

Φ
(

mn¬r√
1+vn¬r

)√
1 + vn¬r

. (B.7)

Finally, the site updates are computed as α̃nr = 1/v̂nr − 1/vn¬r and
β̃nr = m̂nr/v̂nr − mn¬r/vn¬r. Again, a damping factor of ηI can be used
in this step. In this case, the site updates can be obtained in parallel for
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the different values of r, afterwards recomputing the natural parameters of
qIn(βd

I ) as Π̃In = ΠIn +
∑

r 6=xd
n
α̃nrhd

nr(h
d
nr)

> and λ̃In = λIn +
∑

r 6=xd
n
β̃nrhd

nr.

The constants CIn (which approximates Ẑn in Eq. B.2) and C̃nr in (B.4)
can be computed after meeting the stopping criterion as

logCIn =
R∑

r=1
r 6=xd

n

(
log C̃nr +

1
2

log(α̃nr)
)

+
1
2

log(|ΠIn | − |Π̃In |) +
1
2

(
λ̃
>
InΠ̃

−1

In λ̃In − λ>InΠ
−1
In

λIn

)
,

(B.8)

and

log C̃nr = log Ĉnr +
1
2

log(vn¬r + 1/α̃nr) +
1
2

m2
n¬r

vn¬r
−

(
mn¬r

vn¬r
+ β̃nr

)2

1/vn¬r + α̃nr

 .

(B.9)

Matrices Π̂n and λ̂n of the outer loop can be obtained from Π̃In and λ̃In

after removing the effects of the auxiliary variable und.
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Appendix C

Variational Inference
Derivation

C.1 Lower Bound Derivation

In this chapter we derive the lower bound L(H,Hq) on the evidence p(X|H).
From Eq. (4.23),

log p(X|H) = Eq [log p(Ψ,X|H)] +H[q] +DKL(q||p)
> Eq [log p(Ψ,X|H)] +H[q].

The expectation Eq [log p(Ψ,X|H)] can be derived as

Eq [log p(Ψ,X|H)]

=
K∑

k=1

Eq [log p(vk|α)]︸ ︷︷ ︸
1

+
D∑

d=1

K∑
k=1

Eq

[
log p(bd

k·|σ2
B)
]

︸ ︷︷ ︸
2

+
D∑

d=1

Eq

[
log p(bd

0|σ2
B)
]

︸ ︷︷ ︸
3

+
K∑

k=1

N∑
n=1

Eq

[
log p(znk|{vi}ki=1)

]
︸ ︷︷ ︸

4

+
N∑

n=1

D∑
d=1

Eq

[
log p(xnd|zn,Bd,bd

0)
]

︸ ︷︷ ︸
5

,

(C.1)

where each term can be computed as shown below:

1. For the Beta distribution over vk,

Eq [log p(vk|α)] = log(α) + (α− 1) [ψ(τk1)− ψ(τk1 + τk2)] .
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2. For the Gaussian distribution over vectors bd
k·,

Eq

[
log p(bd

k·|σ2
B)
]

= −R
2

log(2πσ2
B)− 1

2σ2
B

(
R∑

r=1

(φd
kr)

2 +
R∑

r=1

(σd
kr)

2

)
.

3. For the Gaussian distribution over bd
0,

Eq

[
log p(bd

0|σ2
B)
]

= −R
2

log(2πσ2
B)− 1

2σ2
B

(
R∑

r=1

(φd
0r)

2 +
R∑

r=1

(σd
0r)

2

)
.

4. For the feature assignments, which are Bernoulli distributed given the
feature probabilities, we have

Eq

[
log p(znk|{vi}ki=1)

]
= (1− νnk)Eq

[
log

(
1−

k∏
i=1

vi

)]
+ νnk

k∑
i=1

[ψ(τi1)− ψ(τi1 + τi2)] ,

where the expectation Eq

[
log
(
1−

∏k
i=1 vi

)]
has no closed-form

solution. We can instead lower bound it by using the multinomial
approach [19]. Under this approach, we introduce an auxiliary
multinomial distribution λk = [λk1, . . . , λkk] in the expectation and
apply Jensen’s inequality, yielding

Eq

[
log

(
1−

k∏
i=1

vi

)]

≥
k∑

m=1

λkmψ(τm2) +
k−1∑
m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑
m=1

λkm log(λkm),

which holds for any distribution represented by the probabilities
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λk1, . . . , λkk, for 1 ≤ k ≤ K. Then,

Eq

[
log p(znk|{vi}ki=1)

]
≥ (1− νnk)

[
k∑

m=1

λkmψ(τm2) +
k−1∑
m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑
m=1

λkm log(λkm)

]

+ νnk

k∑
i=1

[ψ(τi1)− ψ(τi1 + τi2)] .

5. For the likelihood term, we can write

Eq

[
log p(xnd|zn,Bd,bd

0)
]

= φd
0xnd

+
K∑

k=1

νnkφ
d
kxnd
− Eq

[
log

(
R∑

r=1

exp(znbd
·r + bd0r)

)]
,

where the logarithm can be upper bounded by its first-order Taylor
series expansion around the auxiliary variable ξ−1

nd (for n = 1, . . . , N
and d = 1, . . . , D) [11, 12], yielding

log

(
R∑

r=1

exp(znbd
·r + bd0r)

)

≤ ξnd

(
R∑

r=1

exp(znbd
·r + bd0r)

)
− log(ξnd)− 1.

The main advantage of this bound lies on the fact that it allows us to
compute the expectation of the bound for the Gaussian distribution,
since it involves the moment generating functions of the distributions
q(bd

·r) and q(bd0r). Then, we can lower bound the likelihood term as

Eq

[
log p(xnd|zn,Bd,bd

0)
]

≥ φd
0xnd

+
K∑

k=1

νnkφ
d
kxnd

+ log(ξnd) + 1− ξnd

R∑
r=1

[
exp

(
φd

0r +
1
2
(σd

0r)
2

)

×
K∏

k=1

(
1− νnk + νnk exp

(
φd

kr +
1
2
(σd

kr)
2
))]

.
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Substituting the previous results in (C.1), we obtain

Eq [log p(Ψ,X|H)]

≥
K∑

k=1

[log(α) + (α− 1) (ψ(τk1)− ψ(τk1 + τk2))]

− R(K + 1)D
2

log(2πσ2
B)− 1

2σ2
B

K∑
k=0

D∑
d=1

R∑
r=1

(
(φd

kr)
2 + (σd

kr)
2
)

+
N∑

n=1

K∑
k=1

[
νnk

k∑
i=1

[ψ(τi1)− ψ(τi1 + τi2)]

+(1− νnk)

(
k∑

m=1

λkmψ(τm2) +
k−1∑
m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑
m=1

λkm log(λkm)

)]

+
N∑

n=1

D∑
d=1

[
φd

0xnd
+

K∑
k=1

νnkφ
d
kxnd

+ log(ξnd) + 1

−ξnd

R∑
r=1

[
exp

(
φd

0r +
1
2
(σd

0r)
2

) K∏
k=1

(
1− νnk + νnk exp

(
φd

kr +
1
2
(σd

kr)
2
))]]

.
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Additionally, the entropy of the distribution q(Ψ) is given by

H[q] = Eq [log q(Ψ)]

=
K∑

k=1

Eq [log q(vk|τk1, τk2)] +
D∑

d=1

R∑
r=1

K∑
k=0

Eq

[
log q(bdkr|φd

kr, (σ
d
kr)

2
)
]

+
N∑

n=1

K∑
k=1

Eq [log q(znk|νnk)]

=
K∑

k=1

[
log
(

Γ(τk1)Γ(τk2)
Γ(τk1 + τk2)

)
− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2)

+ (τk1 + τk2 − 2)ψ(τk1 + τk2)
]

+
D∑

d=1

R∑
r=1

K∑
k=0

1
2

log(2πe(σd
kr)

2
)

+
N∑

n=1

K∑
k=1

[−νnk log(νnk)− (1− νnk) log(1− νnk)] .
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Finally, we obtain the lower bound on the evidence p(X|H) as

log p(X|H) ≥ Eq [log p(Ψ,X|H)] +H[q]

≥
K∑

k=1

[log(α) + (α− 1) (ψ(τk1)− ψ(τk1 + τk2))]

− R(K + 1)D
2

log(2πσ2
B)− 1

2σ2
B

K∑
k=0

D∑
d=1

R∑
r=1

(
(φd

kr)
2 + (σd

kr)
2
)

+
N∑

n=1

K∑
k=1

[
νnk

k∑
i=1

[ψ(τi1)− ψ(τi1 + τi2)]

+(1− νnk)

(
k∑

m=1

λkmψ(τm2) +
k−1∑
m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑
m=1

λkm log(λkm)

)]

+
N∑

n=1

D∑
d=1

[
φd

0xnd
+

K∑
k=1

νnkφ
d
kxnd

+ log(ξnd) + 1

−ξnd

R∑
r=1

[
exp

(
φd

0r +
1
2
(σd

0r)
2

) K∏
k=1

(
1− νnk + νnk exp

(
φd

kr +
1
2
(σd

kr)
2
))]]

+
K∑

k=1

[
log
(

Γ(τk1)Γ(τk2)
Γ(τk1 + τk2)

)
− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2)

]

+
D∑

d=1

R∑
r=1

K∑
k=0

1
2

log(2πe(σd
kr)

2
) +

N∑
n=1

K∑
k=1

[−νnk log(νnk)− (1− νnk) log(1− νnk)]

= L(H,Hq),

where Hq = {τk1, τk2, λkm, ξnd, νnk, φ
d
kr, φ

d
0r, (σ

d
kr)

2
, (σd

0r)
2} (for k =

1, . . . ,K, m = 1, . . . , k, d = 1, . . . , D, and n = 1, . . . , N) represents the
set of the variational parameters.
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C.2 Derivatives for Newton’s Method

- For the parameters of the Gaussian distribution q(bdkr|φd
kr, (σ

d
kr)

2) for
k = 1, . . . ,K,

∂

∂φd
kr

L(H,Hq)

= − 1
σ2

B

φd
kr +

N∑
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[
νnkδ(xnd = r)− νnkξnd exp
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(σd
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2

)
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2
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∏
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2
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.
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2
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νnkξnd exp

(
φd

0r +
1
2
(σd
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∏
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Appendix D

NESARC Survey

In this chapter, we show Sections 10 and 11 of the NESARC survey. These
section contain the questions necessary to diagnose the seven personality
disorders studied in Chapter 8, i.e., avoidant, dependent, obsessive-
compulsive, paranoid, schizoid, histrionic and antisocial.
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Section 10 - USUAL FEELINGS AND ACTIONS 

 
 
 

 
The questions I’m going to ask you now are about how you have felt or acted MOST of the time throughout 
your life regardless of the situation or whom you were with.  Do NOT include times when you weren’t yourself 
or when you acted differently than usual because you were depressed or hyper, anxious or nervous or 
drinking heavily, using medicines or drugs or experiencing their bad aftereffects, or times when you were 
physically ill. 

 
 1a.   Most of the time throughout your life, regardless of the 

situation or whom you were with. . .  
 

(Repeat phrase frequently) 

 
 b. Did this ever trouble you or 

cause problems at work or 
school, or with your family or 
other people? 

 
        (1) 

 
Have you avoided jobs or tasks that dealt with a 
lot of people? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
        (2) 

 
Do you avoid getting involved with people 
unless you are certain they will like you? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
        (3) 

 
Do you find it hard to be “open” even with 
people you are close to? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
        (4) 

 
Do you often worry about being criticized or 
rejected in social situations? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
        (5) 

 
Do you believe that you’re not as good, as 
smart, or as attractive as most other people? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
        (6) 

 
Are you usually quiet or do you have very little 
to say when you meet new people because you 
believe they are better than you are? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
        (7) 

 
Are you afraid of trying new things or doing 
things outside your usual routine because 
you’re afraid of being embarrassed? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
        (8) 

 
Do you need a lot of advice or reassurance from 
others before you can make everyday decisions-
like what to wear or what to order in a 
restaurant? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
        (9) 

 
Do you depend on other people to handle 
important areas in your life such as finances, 
child care, or living arrangements? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (10) 

 
Do you find it hard to disagree with people even 
when you think they are wrong because you 
fear losing their support or approval? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (11) 

 
Do you find it hard to start or work on tasks 
when there is no one to help you? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (12) 

 
Have you often volunteered to do things even if 
they are unpleasant in order to get others to 
like you? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (13) 

 
Do you usually feel uncomfortable when you 
are by yourself because you are afraid you can’t 
take care of yourself? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (14) 

 
When a close relationship ends, do you feel you 
immediately have to find someone else to take 
care of you? 

 
          1  Yes  
          2  No - Go to next 
                          experience, 
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          1  Yes 
          2  No 
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Section 10 - USUAL FEELINGS AND ACTIONS (Continued) 

 
 1a.   Most of the time throughout your life, regardless of the 

situation or whom you were with. . .        
 

(Repeat phrase frequently) 

 
 b.      Did this ever trouble you or 

cause problems at work or 
school, or with your family 
or other people? 

 
      (15) 

 
Have you worried a lot about being left alone to 
take care of yourself? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (16) 

 
Are you the kind of person who focuses on 
details, order and organization or likes to make 
lists and schedules? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (17) 

 
Do you sometimes get so caught up with details, 
schedules or organization that you lose sight of 
what you wanted to accomplish? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (18) 

 
Do you have trouble finishing jobs because you 
spend so much time trying to get things exactly 
right? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (19) 

 
Do you or other people feel that you are so 
devoted to work or school that you have no time 
left for anyone else or for just having fun? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (20) 

 
Do other people think you have unreasonably 
high standards and morals about what is right 
and what is wrong? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (21) 

 
Do you have trouble throwing out worn-out or 
worthless things even if they don’t have 
sentimental value? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (22) 

 
Is it hard for you to let other people help you if 
they don’t agree to do things exactly the way 
you want? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (23) 

 
Is it hard for you to spend money on yourself 
and other people even when you have enough? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (24) 

 
Are you often so sure you are right that it 
doesn’t matter what other people say? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (25) 

 
Have other people told you that you are 
stubborn or rigid? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (26) 

 
Do you often have to keep an eye out to keep 
people from using you, hurting you or lying to 
you? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (27) 

 
Do you spend a lot of time wondering if you can 
trust your friends or the people you work with? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (28) 

 
Do you find that it is best not to let other people 
know much about you because they will use it 
against you? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (29) 

 
Do you often detect hidden threats or insults in 
things people say or do? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (30) 

 
Are you the kind of person who takes a long 
time to forgive people who have insulted or 
slighted you? 

 
          1  Yes  
          2  No - Go to next 
                           experience, 
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          1  Yes 
          2  No 
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Section 10 - USUAL FEELINGS AND ACTIONS (Continued) 

 
 1a.   Most of the time throughout your life, regardless of the 

situation or whom you were with . . . 
 

(Repeat phrase frequently) 

 
 b.   Did this ever trouble you or 

cause problems at work or 
school, or with your family or 
other people? 

 
      (31) 

 
Have there been many people you can’t forgive 
because they did or said something to you a long 
time ago? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (32) 

 
Do you often get angry or lash out when 
someone criticizes or insults you in some way? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (33) 

 
Have you OFTEN suspected that your spouse or 
partner has been unfaithful? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (35) 

 
When you are around people, do you often feel 
that you are being watched or stared at? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (43) 

 
Are there very few people that you’re really 
close to outside of your immediate family? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (45) 

 
Would you be just as happy without having any 
close relationships? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (46) 

 
Do you take little pleasure in being with other 
people? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (47) 

 
Have you almost always preferred to do things 
alone rather than with other people? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (48) 

 
Could you be content without ever being 
sexually involved with anyone? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (49) 

 
Do you rarely show much emotion? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (50) 

 
Are there really very few things that give you 
pleasure? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (51) 

 
Do you rarely react to praise or criticism? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (52) 

 
Are you the sort of person who doesn’t care 
about what people think of you? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (53) 

 
Do you find that nothing makes you very happy 
or very sad? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (54) 

 
Do you like to be the center of attention? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (55) 

 
Do your feelings often change very suddenly or 
unexpectedly, sometimes for no reason? 

 
          1  Yes  
          2  No - Go to next 
                          experience, 
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          1  Yes 
          2  No 
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Section 10 - USUAL FEELINGS AND ACTIONS (Continued) 

 
 1a.    Most of the time throughout your life, regardless of the 

 situation or whom you were with . . . 
 

(Repeat phrase frequently) 

 
 b.   Did this ever trouble you or 

cause problems at work or 
school, or with your family or 
other people? 

 
      (56) 

 
Do you feel uncomfortable if you are not the 
center of attention? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (57) 

 
Have you ever discovered that people aren’t as 
close to you as you thought they were? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (58) 

 
Do you flirt a lot? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (59) 

 
Do you display your emotions in obvious or 
dramatic ways so that people always know how 
you feel? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (60) 

 
Do you often find yourself “coming on” to 
people? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (61) 

 
Do you try to draw attention to yourself by the 
way you dress or look? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (62) 

 
Do you often make a point of being dramatic 
and colorful? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (63) 

 
Have you often changed your mind about things 
depending on the people you’re with or what 
you have just read or seen on TV? 

 
          1  Yes  
          2  No - Go to next 
                           experience 

 
          1  Yes 
          2  No 

 
      (64) 

 
Do you often express yourself using generalities 
and very little detail? 

 
          1  Yes  
          2  No - Go to  
                           Section 11A, 
                           page 116 

 
          1  Yes 
          2  No 

 
Go to 
Section 11A, 
Page 116 
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Section 11A - BEHAVIOR 

   
 
 

  
Now I’d like to ask you some questions about experiences you may have had.  As I read each experience, please 
tell me if it has ever happened. 

 
  1a. In your ENTIRE life, did you EVER . . . 

   (Repeat entire phrase frequently) 

 
 b. Did this 

happen 
BEFORE 
you were 15?

 
 c. Has this happened SINCE 

you were 15? 

 
         (1) 

 
Often cut class, not go 
to class or go to school 
and then leave without 
permission? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
  Ask Before 13 
         1  Yes  
         2  No 

 
  Ask Since 13 
         1  Yes    Go to next 
         2  No      experience  

 
         (2) 

 
Stay out late at night 
even though your 
parents told you to 
stay home? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
  Ask Before 13 
         1  Yes  
         2  No 

 
  Ask Since 13 
         1  Yes    Go to next 
         2  No      experience  

 
         (3) 

 
Have a time when you 
bullied or pushed 
people around or tried 
to make them afraid  
of you? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
         (4) 

 
Run away from home 
overnight at least 
twice when you were 
living at home or run 
away and stay away 
for a longer time? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
         (5) 

 
Have a time when you 
were absent from  
work or school a lot, 
other than the times 
you were sick or 
taking care of 
someone else who was 
sick? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
         (6) 

 
More than once quit a 
job without knowing 
where you would find 
another one? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
         (7) 

 
More than once quit a 
school program 
without knowing what 
you would do next? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
         (8) 

 
Travel around from 
place to place for a 
month or more 
without making any 
plans ahead of time or 
not knowing how long 
you would be gone or 
where you were going 
to work? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
         (9) 

 
Have a time that 
lasted at least 1 month 
when you had no 
regular place to live – 
like living on the street 
or in a car? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (10) 

 
Have a time that 
lasted at least 1 month 
when you lived with 
friends, acquaintances 
or relatives because 
you didn’t really have 
your own place to 
live? 

 
          1  Yes  
          2  No - Go to next 
                          experience,      
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         1  Yes  
         2  No 

 
         1  Yes    Go to next      
         2  No      experience,    
                            page 117 
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Section 11A - BEHAVIOR (Continued) 
 
  1a. Did you EVER . . . 

 (Repeat entire phrase frequently) 

 
 b. Did this 

happen 
BEFORE you 
were 15? 

 
 c. Has this happened SINCE 

you were 15? 

 
        (11) 

 
Have a time in your  
life when you lied a 
lot, not counting any 
times you lied to keep 
from being hurt? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (12) 

 
Use a false or made-up 
name or alias? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (13) 

 
Scam or con someone 
for money, to avoid 
responsibility or just 
for fun? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (14) 

 
Do things that could 
have easily hurt you 
or someone else - like 
speeding or driving 
after having too much 
to drink? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (15) 

 
Get more than 3 
traffic tickets for 
reckless or careless 
driving, speeding, or 
causing  
an accident? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (16) 

 
Have your driver’s 
license suspended or 
revoked for moving 
violations? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (17) 

 
Destroy, break, or 
vandalize someone 
else’s property - like 
their car, home, or 
other personal 
belongings? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (18) 

 
Start a fire on purpose 
to destroy someone 
else’s property or just 
to see it burn? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (19) 

 
Fail to pay off your 
debts - like moving to 
avoid paying rent, not 
making payments on a 
loan or mortgage,  
failing to make 
alimony or child 
support payments or 
filing for bankruptcy? 

 
 
          1  Yes   Go to next 
          2  No     experience 

 
 

  
 

 
        (20) 

 
Steal anything from 
someone or someplace 
when no one was 
around? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (21) 

 
Forge someone else’s 
signature - like on a 
legal document or on a 
check? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (22) 

 
Shoplift? 

 
          1  Yes  
          2  No - Go to next 
                          experience, 
                          page 118 
 
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience, 
                            page 118  
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Section 11A - BEHAVIOR (Continued) 

 
  1a. Did you EVER . . . 

 (Repeat entire phrase frequently) 

 
 b. Did this 

happen 
BEFORE 
you were 15?

 
 c. Has this happened SINCE 

you were 15? 

 
        (23) 

 
Rob or mug someone 
or snatch a purse? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (24) 

 
Make money illegally - 
like selling stolen 
property or selling 
drugs? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (25) 

 
Do anything that you 
could have been 
arrested for, 
regardless of whether 
or not you were 
caught? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (26) 

 
Force someone to have 
sex with you against 
their will? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (27) 

 
Get into a lot of fights 
that you started? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (28) 

 
Get into a fight that 
came to swapping 
blows with someone 
like a husband, wife, 
girlfriend or 
boyfriend? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (29) 

 
Use a weapon like a 
stick, knife, or gun in 
a fight? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (30) 

 
Hit someone so hard 
that you injured them 
or they had to see a 
doctor? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (31) 

 
Harass, threaten or 
blackmail someone? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (32) 

 
Physically hurt 
another person in any 
other way on 
purpose? 

 
          1  Yes  
          2  No - Go to next 
                          experience  
 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to next 
         2  No      experience  

 
        (33) 

 
Hurt or be cruel to an 
animal or pet on 
purpose? 

 
          1  Yes  
          2  No - Go to Check 
                          Item 11.0 

 
         1  Yes  
         2  No 

 
         1  Yes    Go to Check 
         2  No      Item 11.0  

 
 

  CHECK 
  ITEM 11.0  

 
  Are at least 3 items marked “Yes” in column a,             
  pages 116 - 118? 

 
         1  Yes 
         2  No - SKIP to Section 11B, page 121 

 
  1d. 

 
About how old were you the FIRST time SOME of these 
experiences BEGAN to happen? 

  
         ______ Age 

  CHECK 
  ITEM 11.1  
 

  Are at least 3 items marked “Yes” in 1, column b,         
  pages 116 - 118? 

 
  Did respondent demonstrate at least 3 behaviors            
  BEFORE age 15? 

 
 
 
         1  Yes 
         2  No - SKIP to Check Item 11.2, page 119 
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 Page 119

 
Section 11A - BEHAVIOR (Continued) 

 
   2. 

 
You just mentioned some experiences you had BEFORE 
you were 15 years old. 
 
Did any of these experiences you had BEFORE you were 15 
years old cause any problems with your family or friends, at 
school or with the law? 

 
 
 
 
             1 Ƒ Yes 
             2 Ƒ No 

 
   3. 

 
Did at least 1 of these experiences you mentioned happen 
BEFORE you were 10 years old? 

 
             1 Ƒ Yes 
             2 Ƒ No 

 
  3a. 

 
Did at least 3 of these experiences you had BEFORE you 
were 15 years old happen around the same time or within a 
1-year period? 

 
             1 Ƒ Yes 
             2 Ƒ No 

  CHECK 
  ITEM 11.1A  
 

 
  Refer to Check Item 2.0, Section 2A, page 9 
 
  Is the respondent a lifetime abstainer of alcohol? 

 
             1 Ƒ Yes - SKIP to 5a 
             2 Ƒ No 

 
  4a. 

 
Now I’d like you to think about ALL of the experiences you 
just mentioned that happened BEFORE you were 15 years 
old. 
 
Did ANY of these experiences you had BEFORE you were 
15 happen WHILE you were drinking heavily, or AFTER 
you had been drinking heavily? 

 
 
 
 
 
             1 Ƒ Yes 
             2 Ƒ No - SKIP to 5a 

 
    b.  

 
Did ALL of these experiences ONLY happen WHILE you 
were drinking heavily, or AFTER you had been drinking 
heavily? 

 
             1 Ƒ Yes 
             2 Ƒ No 

 
  5a. 

 
Did ANY of these experiences you had BEFORE you were 
15 happen WHILE you were using or AFTER you had used 
any medicines or drugs? 

 
             1 Ƒ Yes 
             2 Ƒ No - SKIP to Check Item 11.1B 

 
    b.  

 
Did ALL of these experiences ONLY happen WHILE you 
were using or AFTER you had used any medicines or 
drugs? 

 
             1 Ƒ Yes 
             2 Ƒ No 

  CHECK 
  ITEM 11.1B  
 
 
 

 
    Is “Yes” marked in Check Item 5.3, Section 5, 
    page 77? 
 
   Did respondent ever have a period of high mood? 

 
 
             1 Ƒ Yes 
             2 Ƒ No - SKIP to Check Item 11.2 

 
  5c. 

 
Did ANY of these experiences you had BEFORE you were 
15 happen during a period when you felt extremely excited, 
elated or hyper or extremely irritable or easily annoyed? 

 
 
             1 Ƒ Yes 
             2 Ƒ No - SKIP to Check Item 11.2 

 
   d.  

 
Did ALL of those experiences ONLY happen during periods 
when you felt extremely excited, elated or hyper or 
extremely irritable or easily annoyed? 

 
             1 Ƒ Yes 
             2 Ƒ No 

  CHECK 
  ITEM 11.2   
 
 
 
     

 
 Are at least 3 items marked “Yes” in 1, column c, or 
“No” in 1, column b, or “Yes” in 1(19), column a,          
 pages 116 - 118? 
 
  Did respondent demonstrate at least 3 behaviors 
  SINCE age 15? 

 
 
 
             1 Ƒ Yes 
             2 Ƒ No - SKIP to Section 11B, page 121 

  CHECK 
  ITEM 11.2A  
 

 
  Refer to Check Item 2.0, Section 2A, page 9. 
 
  Is the respondent a lifetime abstainer of alcohol? 

 
             1 Ƒ Yes - SKIP to 7a 
             2 Ƒ No 

 
  6a. 

 
You mentioned some experiences you had SINCE you were 
15 years old. 
 
Did ANY of these experiences you had SINCE you were 15 
happen WHILE you were drinking heavily, or AFTER you 
had been drinking heavily? 

 
 
 
             1 Ƒ Yes  
             2 Ƒ No - SKIP to 7a 

 
   b. 

 
Did ALL of these experiences ONLY happen WHILE you 
were drinking heavily, or AFTER you had been drinking 
heavily? 

 
             1 Ƒ Yes 
             2 Ƒ No 

 
  7a. 

 
Did ANY of these experiences you had SINCE you were 15 
happen WHILE you were using or AFTER you had used 
any medicines or drugs? 
 

 
             1 Ƒ Yes 
             2 Ƒ No - SKIP to Check Item 11.2B, page 120 
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Section 11A - BEHAVIOR (Continued) 

 
  7b. 

 
Did ALL of these experiences ONLY happen WHILE you 
were using or AFTER you had used medicine or drugs? 

 
             1  Yes 
             2  No 

  CHECK 
  ITEM 11.2B  
 
 

 
   Is “Yes” marked in Check Item 5.3, Section 5, 
   page 77? 
 
   Did respondent ever have a period of high mood? 

 
 
             1  Yes 
             2  No - SKIP to Check Item 11.3 

 
  7c. 

 
Did ANY of the experiences you had SINCE you were 15, 
happen during a time when you felt extremely excited, 
elated or hyper or extremely irritable or easily annoyed? 

 
 
             1  Yes 
             2  No - SKIP to Check Item 11.3 

 
   d. 

 
Did ALL of those experiences ONLY happen during 
periods when you felt extremely excited, elated or hyper or 
extremely irritable or easily annoyed? 

 
             1  Yes 
             2  No 

  CHECK 
  ITEM 11.3   
 
 
 
    

 
   Is at least 1 item marked “Yes” in 1(17) - 1(33),       
   column c, or “No” in 1(17) - 1(33), column b, or 
   “Yes” in 1(19), column a, pages 117 - 118? 
 
   Has respondent ever destroyed or stolen property or 
   mistreated or harmed another person? 

 
 
 
             1  Yes 
             2  No - SKIP to Section 11B, page 121 

 
   8. 

 
You mentioned some experiences that you’ve had in your 
life when you (destroyed property/stole something/ 
mistreated or harmed another person). 

 
 

 
         (a) 

 
Since (this/these things) happened, have you 
regretted doing (this/these things) or wished (it/they) 
had never happened? 

 
             1  Yes 
             2  No 

 
         (b) 

 
Did you feel you had a right to do (this/these things) 
or feel that the other people deserved what they got? 

 
             1  Yes 
             2  No 

 

Go to Section 11B, page 121 
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Section 11B - FAMILY HISTORY - IV  

  
 
 

 
Now I would like to ask you about whether any of your relatives, regardless of whether or not they are 
now living, have ever had behavior problems. 
 
(SHOW FLASHCARD 26) 
 
By behavior problems I mean being cruel to people or animals, fighting or destroying property, trouble 
keeping a job or paying bills, being impulsive, reckless or not planning ahead, lying or conning people or 
getting arrested.  These people also do not seem to care if they hurt others and often have problems at an 
early age such as truancy, staying out all night or running away. 
 
(REFER TO FLASHCARD FREQUENTLY) 

 
   1. 

 
In your judgement, did your blood or natural father 
have some of these behavior problems like this ANY 
time in his life? 

 
             1  Yes 
             2  No 
           99  DK   

 
   2. 

 
Did your blood or natural mother have some of these 
behavior problems like this ANY time is her  life? 
 

 
             1  Yes 
             2  No 
           99  DK   

 
   3. 

 
(Did your full brother have/How many of your full 
brothers had) some of these behavior problems at ANY 
time in (his life/their lives)? 

 
             1  Yes 
             2  No 
                OR 
 
 
 
            _____ Number 

             0  None 
 
   4. 

 
(Did your full sister have/How many of your full sisters 
had) some of these behavior problems at ANY time in 
(her life/ their lives)? 

 
             1  Yes 
             2  No 
                OR 
 
 
 
            _____ Number 

             0  None 
 
   5. 

 
(Did your natural son have/How many of your natural 
sons had) some of these behavior problems at ANY 
time in (his life/their lives)? 

 
             1  Yes 
             2  No 
                OR 
 
 
 
            _____ Number 

             0  None 
 
   6. 

 
(Did your natural daughter have/How many of your 
natural daughters had) some of these behavior 
problems at ANY time in (her life/their lives)? 

 
             1  Yes 
             2  No 
                OR 
 
 
 
            _____ Number 

             0  None 
 
   7. 

 
(Did your natural father’s full brother have/How many 
of your natural father’s full brothers had) some of these 
behavior problems at ANY time in (his life/their lives)? 

 
             1  Yes 
             2  No 
                OR 
 
 
 
            _____ Number 

             0  None 
 
   8. 

 
(Did your natural father’s full sister have/How many of 
your natural father’s full sisters had) some of these 
behavior problems at ANY time in (her life/their lives)? 

 
             1  Yes 
             2  No 
                OR 
 
 
 
            _____ Number 

             0  None 
 
   9. 

 
(Did your natural mother’s full brother have/How 
many of your natural mother’s full brothers had) some 
of these behavior problems at ANY time in (his life/ 
their lives)? 

 
             1  Yes 
             2  No 
                OR 
 
 
 
            _____ Number 

             0  None 
 
  10. 

 
(Did your natural mother’s full sister have/How many 
of your natural mother’s full sisters had) some of these 
behavior problems at ANY time in (her life/their lives)? 

 
             1  Yes 
             2  No 
                OR 
 
 
 
            _____ Number 

             0  None 

Statement P 

Page 121 
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Section 11B - FAMILY HISTORY - IV (Continued) 
 
  11. 

 
Did your natural grandfather on your father’s side 
have some of these behavior problems at ANY time in 
his life?  
 

 
             1  Yes 
             2  No 
           99  DK 

 
  12. 

 
Did your natural grandmother on your father’s side 
have some of these behavior problems at ANY time in 
her life?  
 

 
             1  Yes 
             2  No 
           99  DK 

 
  13. 

 
Did your natural grandfather on your mother’s side 
have some of these behavior problems at ANY time in 
his life? 
 

 
             1  Yes 
             2  No 
           99  DK 

 
  14. 

 
Did your natural grandmother on your mother’s side 
have some of these behavior problems at ANY time in 
her life? 
 

 
             1  Yes 
             2  No      Go to Section 12, page 123 
           99  DK 
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Appendix E

Acronyms and abbreviations

• DSM: Diagnostic and Statistical Manual of Mental Disorders.

• NIAAA: National Institute on Alcohol Abuse and Alcoholism.

• NESARC: National Epidemiologic Survey on Alcohol and Related
Conditions.

• BNP: Bayesian nonparametric.

• IBP: Indian Buffet Process.

• DP: Dirichlet Process.

• HDP: Hierarchical Dirichlet process.

• HMM: Hidden Markov model.

• CRP: Chinese Restaurant Process.

• MCMC: Markov Chain Monte Carlo.

• EP: Expectation Propagation.

• MH: Metropolis-Hastings.

• MAP: Maximum a Posteriori.

• PD: Personality disorders.

• BMI: Body mass index.
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Appendix F

Notation

• N : Number of objects or observations.

• D: Dimensionality of the observations.

• X: N ×D observation matrix.

• xn: n-th row vector of matrix X.

• xd: d-th column vector of matrix X.

• xd
n: each element in matrix X.

• R: number f categories in the observation matrix X.

• K: Number of latent variables.

• K+: Number of active latent variables.

• Z: N ×K binary latent feature matrix.

• zn: n-th row vector of matrix Z.

• znk: each element in matrix Z.

• α: Concentration parameter of the IBP.

• W: N ×K severity matrix.

• wn: n-th row vector of matrix W.

• wnk: each element in matrix W.
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• Bd: K × R weighting matrix associated to dimension d of the
observation matrix X.

• bd
·r: r-th column vector of Bd.

• bdkr: each element in matrix Bd.

• bd
0: K-length bias vector associated to dimension d of the observation

matrix X.

• bd0r: each element in bd
0.

• Yd: N × R matrix that contains the Gaussian auxiliary variable yd
n

needed for the IBP model for heterogeneous databases.

• yd
n: Gaussian auxiliary variable needed for the IBP model for

heterogeneous databases.

• θd
r : Gaussian thresholds that divide the real line into the number of

categories for ordinal observations in the IBP model for heterogeneous
databases.

• Ψd: Set of auxiliary variables needed to obtain the observations xd

given Yd in the IBP model for Heterogeneous databases.

• p(·): probability distribution function of a random variable.

• p(x|y): conditional pdf of x given y.

• x ∼ p(x): The random variable x is distributed as p(x).

• N (x|µ, σ2
x): Normal distribution with variable x, mean µ and variance

σ2
x.

• σ2
x: Variance of variable x.

• Φ(·): Cumulative density function of the standard normal distribution.

• Ep(x)[·]: Expectation with respect to the distribution p(x).

• f(x): Function of x.

• f−1(·): Inverse function of function f(·).

• ∇f : Gradient of function f .

• ∇∇f : Hessian of function f .

• δ(·): Kronecker delta function.
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