
1 

 

 

 
UC3M Working papers     Departamento de Economía 
Economics     Universidad Carlos III de Madrid 
15-03                             Calle Madrid, 126 
June, 2017                         28903 Getafe (Spain) 
ISSN 2340-5031     Fax (34) 916249875 

 
 

Estimation of Dynamic Nonlinear Random Effects 
Models with Unbalanced Panels 

 
Pedro Albarran†

 Raquel Carrasco‡
 Jesus M. Carro§

 
 

June 2017 
 

Abstract 
This paper presents and evaluates estimation methods for dynamic non-linear models with 
correlated random effects (CRE) when we have unbalanced panels. Accounting for the 
unbalancedness is crucial in dynamic non-linear models and ignoring it produces inconsistent 
estimates of the parameters even if the process that drives it is completely at random. We 
show that selecting a balanced panel from the sample can produce efficiency losses or even 
inconsistent estimates of the average marginal effects. In this paper we allow the sample 
selection process that determines the unbalancedness structure of the data to be arbitrarily 
correlated with the permanent unobserved heterogeneity. We discuss how to address the 
estimation by maximizing the likelihood function for the whole sample and also propose a 
Minimum Distance approach, which is computationally simpler and asymptotically equivalent 
to the Maximum Likelihood estimation. Our Monte Carlo experiments and empirical illustration 
show that our proposed estimation approaches perform better both in terms of bias and 
RMSE than the approaches that ignore the unbalancedness or that balance the sample. 
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1 Introduction

The purpose of this paper is to present and evaluate estimation methods for dynamic non-

linear models with correlated random effects (CRE) when we have unbalanced panels.

Although at a cost of imposing restrictive parametric assumptions on the conditional

distribution of the heterogeneity parameters, the CRE approach is not subject to the

incidental parameters problem that the fixed-effects (FE) approach suffers in nonlinear

models.1 Under these circumstances, correlated random effects methods can be regarded

as a useful alternative to estimate dynamic non-linear models with individual specific

effects. Examples of applications using it are Hyslop (1999), Contoyannis et. al. (2004),

Stewart (2007), and Akee et. al.(2010).

It is well-known how to estimate these models with balanced panels. However, the

panels usually available are unbalanced. For example, in large panel data sets like the

PSID for the U.S or the GSOEP for Germany, there are individuals who drop out (poten-

tially non-randomly) of the sample. In other cases, like in the so called “rotating panels”,

the unbalancedness is generated by the sample design and, therefore, the missingness is

completely at random (for instance, in the Monthly Retail Trade Survey for the U.S, or

in the Household Budget Continuous Survey for Spain).

In a dynamic setting the main drawback of the CRE approach is that it gives rise to the

so called “initial conditions problem”. Heckman (1981) and Wooldridge (2005) propose

solutions to deal with this problem, but these solutions are developed for balanced panels

and, in general, they cannot be directly implemented with unbalanced panel data sets.

Furthermore, the initial conditions problem is augmented when the panel is unbalanced

because it affects to each first period of observation in the data set. This implies that, as

we will show, assuming that unbalancedness is completely at random (i.e. independent of

the process of the observables and the unobservables) is not enough to allow us to ignore

it in the estimation.

It is important to note that previous problems also affect the traditional RE models

assuming that the time invariant unobserved heterogeneity is independent of the time-

1Bias-corrected versions of FE estimators address the incidental parameters problem, but they usually
require a greater number of periods for the bias adjustments to work than the available in some data sets.
Some examples are Carro (2007), Fernandez-Val (2009), Bester and Hansen (2009), Carro and Traferri
(2014), and Fernandez-Val and Weidner (2016). Arellano and Hahn (2007) offer a review of this literature,
and Arellano and Honoré (2001) and Arellano (2003) discuss the general literature of non-linear dynamic
models with unobserved heterogeneity, using both the FE and the CRE approaches.
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varying covariates.2 The dynamic nature of the model would still drive the inconsistency

problems previously pointed out. The CRE model that we cover in detail contains the

RE as a particular case.

A common practice in applied work is to obtain a balanced panel from the unbalanced

sample, so that the existing CRE methods for balanced panels can then be used. There

exists two different approaches. One is to take a subset of individuals that are observed

over the same periods. The problem is that if the unbalancedness is not independent of the

individual effects, this implies an endogenous selection of the sample, and we will not be

able to obtain consistent estimates of the average marginal effects. The other approach

to obtain a balanced panel is to use the subset of periods at which all individuals are

observed (see Wooldridge, 2005, pp. 44). Nonetheless, this approach is in some cases

infeasible because of the lack of enough number of common periods across individuals.

Moreover, when feasible, reducing the data set discards useful information, which may

imply important efficiency losses, as we will show.

To the best of our knowledge only Wooldridge (2010) addresses the issue of estimating

CRE models with unbalanced panels, but considering only static models with strictly

exogenous variables. Specifically, he proposes several strategies for allowing the time in-

variant unobserved heterogeneity to be correlated with the observed covariates and the

selection mechanism for unbalanced panels. However, the assumption of lack of dynamic

effects is very restrictive, and the solutions in Wooldridge (2010) cannot be directly ex-

tended to dynamic models because, as said, the unbalancedness also affects how we have

to deal with the initial conditions problem.

In this paper we allow the sample selection process that determines the unbalancedness

structure of the data to be arbitrarily correlated with the time invariant unobserved

heterogeneity. This includes unbalancedness completely at random as a particular case.

We discuss how to address the unbalancedness problem by maximizing the likelihood

function for the whole sample. This can be computationally cumbersome because specific

parameters to each sub-panel need to be estimated jointly with the common parameters

of the model. We also propose to perform the estimation of the model for each subpanel

separately and then to obtain estimates of the common parameters across subpanels by

2Examples of papers using the RE approach are Arulampalam and Stewart (2009), Campa (2004),
or Bernard and Jensen (2004).
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minimum distance (MD). This method allows to use the same estimation routines that

we would use if we had a balanced panel, while keeping the good asymptotic properties

of the maximum likelihood (ML) estimator for the whole sample.

The rest of the paper is organized as follows. Section 2 presents the general model and

the likelihood functions that account for the unbalancedness. Section 3 formalizes the

existing approaches, that is, those ignoring the unbalancedness and making the sample

balanced, and discuss the restrictive conditions under which they could work. Section 4

presents the ML and MD estimators for the model that accounts for the unbalancedness.

Section 5 describes how the estimation can be implemented and several practical issues.

In Section 6 we study the finite sample properties of the different estimators by means of

Monte Carlo simulations. In Section 7, as an empirical illustration, we estimate an export

market participation equation using firms’ level data. Finally, Section 8 concludes.

2 General framework

We present a general approach that can be applied to dynamic non-linear panel data

models. Let us denote

Yi = (yi1, ..., yiT )′ ,

Xi = (X ′i1, ..., X
′
iT )
′
,

Si = (si1, ..., siT )′ ,

where i = 1, ..., N represents cross-sectional units, yit is the potentially observed outcome,

and Xit is a row vector of dimension k of potentially observed covariates. The possibility

of having an unbalanced panel is captured through a set of selection indicators, sit, which

take the value 1 if unit i is observed in period t, that is

sit =

{
1 if yit and Xit are observed
0 otherwise.

Notice that the balanced situation can be seen as a particular case of the unbalanced one,

when sit = 1 for all i and t. We only consider cases in which either both yit and Xit

are observed or both are not observed. We define ti as the first period in which unit i is

observed, i.e.

ti = {t : sit = 1 and sij = 0 ∀ j < t} ,
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and

Ti =
T∑
t=1

sit

is the number of periods we observe for unit i. Another characteristic of the panels con-

sidered is that all the observations for unit i are consecutive. This means that

sit = 1 ∀ t ∈ [ti, ti + Ti − 1]

sit = 0 ∀ t < ti or t > ti + Ti − 1.

Let Mi be the (Ti × T ) matrix that select the set of Xi that we observe, that is,

MiXi =
(
X ′iti , ..., X

′
iTi

)′
. The element (j, k) of Mi, mi,(jk), is

mi,(jk) =

{
1 if sik = 1 and j = k − ti + 1
0 otherwise.

If the panel is balanced Mi is the identity matrix. Note that Si = ι
′
Ti
Mi where ιTi is a

vector of ones with dimension Ti. We denote by J the number of different Si sequences

that we have in the total panel. We refer to the sub-set of units with the same sequence

S(j) as “sub-panel” j, j = 1, . . . , J . In other words, subpanel j contains all the individuals

i such that Si = S(j). Finally, we consider panels where N is large and T and J are small

relative to N .

We are interested in the conditional distribution F (yit | yt−1i , Xi, ηi) where ηi denotes

the vector of permanent unobserved heterogeneous characteristics. Through this paper

we make the following assumption:

Assumption 1:

F (yit | yt−1i ,MiXi, ηi, Si) = F (yit | yt−1i , Xi, ηi),

where yt−1i = (yi1, ..., yit−1) . It means that the sample selection process sit is strictly

exogenous with respect to the idiosyncratic shocks to yit, although it is allowed to be

correlated with ηi and the observed covariates. This assumption is also made in the fixed

effects framework. It also means that in the model of yit | yt−1i ,MiXi, ηi observations of

Xit not present in our unbalanced panel do not play a role.

Let f(yit | yit−1, Xi, ηi, Si; β) be the correctly specified density for the conditional

distribution on Assumption 1 and h(ηi|MiXi, Si; βηSi
) the correctly specified density of the

distribution ηi|MiXi, Si.
3 For simplicity of the notation and for being the most frequently

3In our notation for defining functions, the set of parameters of that function appear after a semicolon.
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used case, we focus in the rest of the paper in the first-order Markov-chain for the process

of yit, but all our results are easily generalized to higher order chains. Then, the density

of (si1yi1, . . . , siTyiT ) for a given individual is

f (si1yi1, . . . , siTyiT |MiXi, Si) =
T∏
t=1

f (yit|yit−1,MiXi, Si)
sitsit−1 f (yit|MiXi, Si)

sit(1−sit−1)

=

ti+Ti−1∏
t=ti+1

f (yit|yit−1,MiXi, Si) f (yiti|MiXi, Si) . (1)

Previous equation can be written as

f (si1yi1, . . . , siTyiT |MiXi, Si) =∫
ηi

ti+Ti−1∏
t=ti+1

f (yit|yit−1,MiXi, Si, ηi; β) f (yiti|MiXi, Si, ηi;λSi
)h(ηi|MiXi, Si; βηSi

)dηi, (2)

or as

f (si1yi1, . . . , siTyiT |MiXi, Si) =[∫
ηi

ti+Ti−1∏
t=ti+1

f (yit|yit−1,MiXi, Si, ηi; β)h(ηi|yiti ,MiXi, Si; πηSi
)dηi

]
f (yiti|MiXi, Si) , (3)

depending on whether we integrate out the unobserved effect by specifying the density for

the first observation in each sub-panel conditional on the unobserved effect and the density

of the unobserved effect, or we specify the density of the unobserved effect conditional on

the first observation. Note that in equation (3) we can discard f (yiti|MiXi, Si) because

this term is outside the integral.

Given that previous equations depend on the unobservable ηi, if the start of the

sample does not coincide with the start of the stochastic process, the first observation

will not be independent of ηi. Moreover, f (yiti|MiXi, Si, ηi;λSi
) and h(ηi|MiXi, Si; βηSi

)

in equation (2), or h(ηi|yiti ,MiXi, Si; πηSi
) in equation (3) are different for each sub-panel

with different observed periods Si. Writing an equation for f (yi1|Xi, ηi) and h(ηi|Xi),

or for h(ηi|yi1, Xi), as Heckman (1981) and Wooldridge (2005) do respectively for the

balanced case, is not enough to solve the initial conditions problem for three reasons:

(i) The conditioning set of covariates is different for each Si, as in static models (see

Wooldridge, 2010).

(ii) The initial observation is different for each Si. Thus, even in a model without X

covariates, without further assumptions f(yiti|ηi = η, Si) 6= f(yrtr |ηr = η, Sr) for

ti 6= tr.
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(iii) Last but not least, even if the starting period ti is the same, there may be correlation

between Si and the individual characteristics making the distributions of ηi different

for each Si.

The framework considered so far includes situations in which the selection mecha-

nism Si is correlated with the individual effect, ηi. This implies that, if we write the

likelihood of the data using expression (2), a different distribution of the initial condi-

tions and of the unobserved effects for each sub-panel are required. That is, the densities

f(yiti|MiXi, Si, ηi;λSi
) and h(ηi|MiXi, Si; βηSi

) in (2) depend on a vector of parameters

different for each sub-panel. Likewise, in equation (3), we need to specify the density of ηi

conditional on the initial observation, h(ηi|yiti ,MiXi, Si; πSi
) and this will have different

parameters for each sub-panel.

Also, notice that there are two sets of coefficients in the conditional distribution of

interest. One set is β, which represent the parameters that are homogeneous across

individuals. The other set is ηi that are heterogeneous coefficients whose distribution

is used to integrate them out. The framework considered in this paper applies to any

random coefficients model by varying what is included in each set: from the typical case

with only the constant term being individual specific, to more general situations where

several or even all the coefficients are heterogeneous.

Unbalancedness independent of the individual effect: If in addition to Assump-

tion 1, we assume,

Assumption 2: Unbalancedness is independent of ηi,

we have that h(ηi|Xi, Si) = h(ηi|Xi) for any set of periods included in Xi. This

assumption is relevant, for instance, when having rotating panels. However, even under

Assumption 2 f(yiti|Xi, ηi, Si) is different for each Si simply because the process has

been running a different number of periods until that first observation, and we are not

assuming that the process is on steady state. Likewise, the density of the unobserved

effects conditional on the initial conditions, h(ηi|yiti , Xi, Si) will, in general, be different for

each ti. In addition to that, Assumption 2 is not enough to guarantee that h(ηi|MiXi, Si)

is the same for all Si because even if Si is independent of ηi given X, there will be a

different conditioning set of observations in MiXi for each Si.
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3 Existing approaches

3.1 Ignoring the unbalancedness

In this subsection we study under which assumptions it is possible to ignore the unbal-

ancedness and to treat the data as if they were balanced. That is, we study when it is

possible to use the following likelihood that ignores the unbalancedness,

N∑
i=1

log (f (si1yi1, . . . , siTyiT |MiXi))

=
N∑
i=1

log

(∫
ηi

ti+Ti−1∏
t=ti+1

f (yit|yit−1,MiXi, ηi; β) f (yiti|MiXi, ηi; δ)h (ηi|MiXi; βη) dηi

)
,

(4)

instead of the density given by equation (2).

Note that even though we ignore that each individual belongs to a different sub-panel

Si and is observed for the first time at a different moment in time, we have to write

the likelihood based on the MiXi observations that we have for each individual. The

restrictions coming from ignoring the unbalancedness are that the distribution of the

initial observation is the same for all, and that the distribution functions given MiXi are

also the same. Given that under Assumption 1 the sample selection process Si is strictly

exogenous with respect to the idiosyncratic shocks to yit we have that

f (yit|yit−1,MiXi, Si, ηi) = f (yit|yit−1,MiXi, ηi) . (5)

In order to have (2) and (4) leading to the equivalent Maximum Likelihood (ML)

Estimators of the parameters of the conditional distribution of yit|yit−1,MiXi, ηi we need

the following conditions:

C.1 Assumption 2, i.e. for any given X, h(ηi|X,Si) = h(ηi|X), so that h(ηi|MiXi, Si) =

h(ηi|MiXi).

C.2 h (ηi|MiXi) must be a function common to all Si, so that its value changes only as

the values of X at which it is evaluated change (but not as a function of the specific

periods at which Xi is observed).

C.3 The process is in the steady state (or the initial observations yti come from the same

exogenous distribution or rule for all units and ti).
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C.4 Si is independent from the shocks to the initial conditions.

Conditions 1 and 2 together imply that h(ηi|MiXi, Si; βηSi
) = h (ηi|MiXi; βη) for all i

as (4) imposes, where the common function h (ηi|MiXi; βη) must be able to accommodate

any differences coming from the different conditioning set (MiXi) across individuals.

Condition 2 is very restrictive because, for example, in general V ar (η|MiXi) will be

different if the number periods in which xit are observed is different.4 A case in which

this condition is trivially satisfied is when ηi is independent of Xi. Condition 2 does not

apply when there are no covariates X in the model.

Conditions 3 and 4 are needed to ensure that all units have the same distribution for

the initial condition regardless the period ti at which they enter the panel, i.e.

f (yiti|MiXi, Si, ηi;λSi
) = f (yi1|MiXi, ηi; δ) = ... = f

(
yimax tj |MiXi, ηi; δ

)
for all i,

as (4) imposes.

Unless these four conditions are all satisfied, the estimates of β obtained by ignoring

the unbalancedness are inconsistent.

Notice that the assumption that Si is independent from the shocks to the initial con-

ditions (condition 4) is not enough to ensure that the conditional densities for each initial

observational period coincide. Also notice that unbalancedness completely at random (i.e.

independent of everything else) is not enough to allow us to ignore it. For example, sup-

pose that we have two individuals in a process without covariates X, that yit starts in yi0

for both i, and that both follow the same process for yit. However, we start observing one

individual in period ti = 1 and the other in period ti = 2, and this is decided randomly.

Therefore, we are in a case in which Si is determined completely at random, and in which

condition 2 is not needed because there are no covariates. Then,

Pr(yi1 | ηi, Si) =
∑
yi0

Pr(yi1 | yi0, ηi, Si) · Pr(yi0 | ηi, Si) =
∑
yi0

Pr(yi1 | yi0, ηi) · Pr(yi0 | ηi)

(6)

Pr(yi2 | ηi, Si) =
∑
y1

Pr(yi2 | yi1, ηi) · Pr(yi1 | ηi). (7)

The two probabilities are different unless yi1 is at the steady state (Condition 3).

4The condition is not violated, however, if V ar (η|MiXi) changes with the number of periods of xit

observed in a deterministic way, e.g. V ar (η|MiXi) =
σ2
η

ι
′
Ti
MiιTi

.
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3.2 Using a subset of periods at which all individuals are ob-
served

Wooldridge (2005) points out that a potential solution to the unbalancedness under As-

sumption 1 is to use the subset of periods constituting a balanced panel. Then, one could

apply to that balanced sample the standard solutions to the initial conditions problem.

Nonetheless, this approach has two limitations: (i) it discards useful information leading

to an efficiency loss, and (ii) the balanced sample may not contain enough number of

common periods across individuals, making the estimation infeasible.5

Suppose that the correct conditional density of si1yi1, . . . , siTyiT |MiXi, Si is given by

(3), excluding the term for the initial observations f (yiti|MiXi, Si). Instead of that, the

following likelihood function is maximized

f (yitm , . . . , yiTm |MiXi)

=

∫
ηi

Tm∏
t=tm

f
(
yit|yit−1, XTm

itm
, ηi
)
h(ηi|yimax ti ,X

Tm
itm

)dηi, (8)

where tm ≡ maxj∈[1,N ] tj + 1, and Tm ≡ minj∈[1,N ](tj + Tj − 1). Under Assumption 1

f
(
yit|yit−1, XTm

itm
, Si, ηi

)
= f

(
yit|yit−1, XTm

itm
, ηi
)
. Thus, to have a consistent ML Estimator

of the parameters of the conditional distribution of yit|yit−1,MiXi, ηi based on (8) we need

h(ηi|yimaxj∈[1,N ] tj , X
Tm
itm

)

=
J∑
j=1

h(ηi|yimaxj∈[1,N ] tj , X
Tm
itm
, Si = S(j)) Pr

(
Si = S(j)|yimaxj∈[1,N ] tj , X

Tm
itm

)
, (9)

where S(j) is the j-th element of the set of J different Si sequences that we have in

the panel, and XTm
itm

=
(
X ′itm , ..., X

′
i,Tm

)′
. So, as long as the h(ηi|yimaxj∈[1,N ] tj ,X

Tm
itm

) we

specify satisfies this condition and we have enough periods in the balanced sample,

the MLE based on (8) will be consistent, though less efficient. However, depending on

the nature of h(ηi|yimaxj∈[1,N ] tj ,MiXi, Si) (i.e. depending on the nature of the relations

between ηi and Si and the evolution of the distribution of yit across periods and sub-

panels) approximating h(ηi|yimax ti ,X
min(ti+Ti−1)
imax ti+1 ) may require a complex distribution even

if h(ηi|yimaxj∈[1,N ] tj ,MiXi, Si) is the standard normal distribution.6

5For example, in a rotating panel with T = 5 with three sub-panels where each sub-panel lasts for
three periods (i.e. Ti = 3), the first sub-panel starts at ti = 1, the second at ti = 2, and the third at
ti = 3, the sub-panels only have one period in common, less than the 3 periods needed for estimation.

6See Section 5.1 for a discussion of the problems with the practical implementation of this approach.
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3.3 Using a subset of individuals that are observed the same
number of periods

Another possibility to deal with the unbalancedness is to take one single sub-panel from

the total sample. This sub-panel is, by definition, a balanced panel where all the indi-

viduals are observed from the same first period to the same last period. In many cases,

this would be the sub-sample of individuals present in all the waves of the original panel.

For example, Contoyannis et. al. (2004) obtain a balanced sub-sample in this way. More

generally, one can take the sub-set of individuals observed only in all of some specific

consecutive waves.

Although this way of obtaining a balanced sample produces an efficiency loss due

to discarding a potentially high proportion of the sample, it avoids the infeasibility of

the previous balancing method and may consistently estimate the common parameters

of the model. However, this does not allow to identify the average marginal effect of

covariates because the conditional distribution of the heterogeneous individual effects will

only be valid for this particular sub-group of individuals. Unless the unbalancedness is

independent of ηi (Assumption 2) and of X, the distribution of ηi for this balanced sub-

sample is different from the distribution of ηi for the entire sample. And the marginal

effects, which are the ultimate parameters of interest, are a function of the distribution

of ηi. Therefore, unless Si is independent of ηi and of Xi, the average marginal effects

we estimate for this sub-sample are not a consistent estimation of the average marginal

effects for the entire population of individuals.

4 Estimation with the entire sample

4.1 Maximum Likelihood Estimation

The models that accounts for unbalancedness explained in Section 2 can be estimated by

Maximum Likelihood (ML). The log-likelihood, if the model specifies the terms in (2), is

given by

L =
N∑
i=1

log

∫
ηi

[
ti+Ti−1∏
t=ti+1

f (yit|yit−1,MiXi, Si, ηi; β) f (yiti|MiXi, Si, ηi;λSi
)h(ηi|MiXi, Si; βηSi

)

]
dηi.

(10)
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If the model specifies the terms in (3), then the log-likelihood is given by

L =
N∑
i=1

log

∫
ηi

[
ti+Ti−1∏
t=ti+1

f (yit|yit−1,MiXi, Si, ηi; β)h(ηi|yiti ,MiXi, Si; πηSi
)

]
dηi. (11)

These log-likelihood functions will be maximized with respect to the vector of parameters

θ = (β′, γ′)′ that can be partitioned into the set of common parameters β and the set

of sub-panel specific parameters γ = (γ′1, ..., γ
′
J)′. The parameters that are specific to

sub-panel j are, depending on the approach taken to deal with the initial observation,

γj =
(
λ′
S(j) , β

′
ηS(j)

)′
in (10), or γj = πηS(j) in (11).

The properties of the MLE are well-known, as well as the numerical procedures to

obtain it. The problem is that the optimization procedure is cumbersome. Our spe-

cific likelihood must be optimized jointly with respect to a high number of parameters,

because, due to the unbalancedness, there is a different set of some parameters for each

subpanel. This will typically preclude using standard estimation software and will increase

computation time.

4.2 Minimum Distance Estimation

Here we propose an estimation method that allows us to use the same routine or estimation

program as when having a balanced panel, while keeping the good asymptotic properties

of the MLE. Also this procedure allows us to reduce the computational burden compared

with the MLE.

The proposal has two steps. The first step is to estimate the model for each sub-

panel separately. This implies that we can use the same standard software as in balanced

panels and, at the same time, very easily accommodate different distributions of ηi for

each sub-panel Si.

The second step is to obtain estimates of the parameters θ = (β′,γ′1, γ
′
2, . . . , γ

′
J)′ by

Minimum Distance. Let δ̂ =
(
δ̂′1, δ̂

′
2, . . . , δ̂

′
J

)′
be the vector of estimated coefficients of the

model after the first step. Each δ̂′j contains the estimated coefficients using sub-panel j,

(j = 1, 2, . . . , J) of the parameters of the model relevant to this sub-panel, which includes

two types of parameters:

δ̂j =

(
δ̂
[c]
j

δ̂
[nc]
j

)
where δ̂

[c]
j are the estimates of the parameters β that are common across subpanels, and

δ̂
[nc]
j are the estimates of the non-common parameters γj for using sub-panel j only. We
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also have the var-cov matrix of δ̂, V ar
(
δ̂
)

. It is a block diagonal matrix since different

sub-panels have no observations in common:

V = V ar
(
δ̂
)

=


V ar

(
δ̂1

)
0 0

0 ... 0

0 0 V ar
(
δ̂J

)
 (12)

where

V ar(δ̂j) =

 V ar(δ̂
[c]
j ) Cov

(
δ̂
[c]
j , δ̂

[nc]
j

)
Cov

(
δ̂
[c]
j , δ̂

[nc]
j

)
V ar(δ̂

[nc]
j )

 .
As described in Chamberlain (1982, 1984), we can impose restrictions on the vector of

coefficients δ by setting them to be equal to a known function of the structural parameters

θ: δ = h(θ). In our case, in order to recover a unique estimate of β, the restriction is

that we assume that all the δ̂
[c]
j are estimates of the same β parameters that are common

across sub-panels. Therefore the restrictions are

h (θ) =

 h1 (θ)
...

hJ (θ)

 = Pθ

where hj (θ) =
(
β′, γ′j

)′
and the matrix P is

P =


ι I 0 · · · 0 0
ι 0 I · · · 0 0
...

. . .
...

ι 0 0 · · · I 0
ι 0 0 · · · 0 I


where ι is a column vector of ones of the same dimension as β, I is an identity matrix of

the dimension of γj and 0 is a matrix of dimensions dim(β)× dim(γj).

Finally, the structural parameters θ can be consistently and efficiently estimated by

minimizing the following quadratic form:7

θ̂MD = arg min
θ
Q (θ) =

[
δ̂ − h(θ)

]′
V −1

[
δ̂ − h(θ)

]
. (13)

It is easy to see that the solution to the minimization of this quadratic form is

θ̂MD =
[
P ′V −1P

]−1
P ′V −1δ̂, (14)

7By choosing any other positive definite weighting matrix in this quadratic form, one still obtains
consistent estimates.
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where V is replaced by the consistent estimators obtained in the first step. The expression

of the Variance-Covariance matrix of θ̂MD is

V ar
(
θ̂MD

)
=
(
P ′V −1P

)−1
. (15)

This procedure is known to be asymptotically equivalent to obtain estimates by max-

imizing the log likelihood L on the entire set of parameters θ (see Chamberlain, 1982 and

1984 and references in there). If N → ∞ but T and J are fixed, then the asymptotic

properties derived in those references are applicable to our case. These are the relevant

conditions for us since we are interested in situations in which N is large relative to T

and J . Then θ̂MD is asymptotically equivalent to θ̂MLE.

Appendix A shows that the solution for each component of θ can be expressed as

β̂MD =

[
J∑
j=1

(
V ar(δ̂

[c]
j )
)−1]−1 J∑

j=1

[(
V ar(δ̂

[c]
j )
)−1

δ̂
[c]
j

]
(16)

γ̂MD
j = δ̂

[nc]
j − Cov

(
δ̂
[c]
j , δ̂

[nc]
j

)′ (
V ar(δ̂

[c]
j )
)−1 (

δ̂
[c]
j − β̂MD

)
. (17)

Note that the estimate of the common parameters, β̂MD, it is a weighted average only

of the estimates of those parameters by sub-panels, δ̂
[c]
j , whereas the MD estimate of the

other parameters, γ̂MD
j , does not only depends on δ̂

[nc]
j but they are also “adjusted” by

the distance between δ̂
[c]
j and β̂MD.

5 Implementation and practical issues

In this Section we show how to implement the estimators presented in previous sections

with specific assumptions about parametric distributions. We have chosen one of the most

common distributions and models used in empirical work, but the general framework and

estimation procedures proposed in the previous sections are applicable to other non-linear

models and parametric distributions.

5.1 Unbalancedness correlated with the individual effect

Let us consider the following dynamic binary choice model:

yit = 1 {αyit−1 +X ′itβ + ηi + εit ≥ 0} (18)

−εit| yt−1i , Xi, ηi, Si ∼
iid
N(0, 1). (19)
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The probability of a given random sample of N unit observations is

Pr (S ′1Y1, . . . , S
′
NYN |X1, . . . , XN , S1, . . . , SN) =

N∏
i=1

Pr (S ′iYi|MiXi, Si) .

For each i = 1, ..., N,

Pr (si1yi1, . . . , siTyiT |MiXi, Si, ηi) =
T∏
t=1

Pr (yit|yit−1,MiXi, Si, ηi)
sitsit−1 Pr (yit|MiXi, Si, ηi)

sit(1−sit−1)

=

ti+Ti−1∏
t=ti+1

Pr (yit|yit−1,MiXi, Si, ηi) Pr (yiti|MiXi, Si, ηi) ,

(20)

If one decides to make a distributional assumption about the conditional density of

the first observation Pr (yiti|MiXi, Si, ηi) and about ηi, we can write the probability in

(20) as

∫
ηi

ti+Ti−1∏
t=ti+1

Pr (yit|yit−1,MiXi, Si, ηi) Pr (yiti|MiXi, Si, ηi)h(ηi|MiXi, Si)dηi. (21)

where, from the model in equations (18) and (19), Pr (yit|yit−1,MiXi, Si, ηi) is

Pr (yit = 1|yit−1,MiXi, Si, ηi) = Pr (−εit ≤ αyit−1 + β0 +X ′itβ + ηi|yit−1,MiXi, Si, ηi)

= Pr (−εit ≤ αyit−1 + β0 +X ′itβ + ηi|yit−1,MiXi, ηi)

= Φ (αyit−1 + β0 +X ′itβ + ηi) . (22)

To solve the initial conditions problem, we can follow Heckman’s (1981) and use for

the first observation the same parametric form as the conditional density for the rest of

the observations. Then, using normal distributions,

Pr (yiti = 1|MiXi, Si, ηi) = Pr (yit = 1|Xit, Si, ηi, sit−1 = 0, sit = 1)

= Φ
(
δ0Si

+X ′itiλSi
+ µSi

ηi
)
, (23)

where we have different parameters for each value of Si. If, instead, we allow only for

correlation between ti and ηi, equation (23) will be different for each ti.

For h(ηi|MiXi, Si) we can follow Chamberlain (1980) to allow for correlation between

the individual effect and the explanatory variables:

ηi|MiXi, Si ∼ N
(
β0ηSi

+MiXi
′
βηSi

, σ2
ηSi

)
, (24)
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where MiXi contains the within-means of the time-varying explanatory variables for the

periods that they are observed, i.e. MiXi
′

= 1
Ti

∑ti+Ti−1
t=ti

xit. Notice that (24) allows

for correlation between the sample selection process, Si, and the permanent unobserved

heterogeneity ηi because the parameters are specific to each Si.

If one decides to consider the distribution conditional on the initial period observation,

we can write the probability in (20) as

[∫
ηi

ti+Ti−1∏
t=ti+1

Pr (yit|yit−1,MiXi, Si, ηi)h(ηi|yiti ,MiXi, Si)dηi

]
Pr (yiti|MiXi, Si) . (25)

To solve the initial conditions problem in this case we can follow Wooldridge (2005)

and specify an approximation for the density of ηi|yiti ,MiXi, Si in (25). Continuing with

the Normal case, we have8

ηi|yiti ,MiXi, Si ∼ N
(
π0Si

+ π1Si
yiti +MiXi

′
π2Si

, σ2
ηSi

)
. (26)

Note that here MiXi

′
= 1

Ti−1
∑ti+Ti

t=ti+1 xit for the reasons given in Rabe-Hesketh and Skro-

ndal (2013).

Estimation

Previous models can be estimated by Maximum Likelihood (ML) and by Minimum Dis-

tance (MD).

The contribution to the likelihood function for individual i in model (21) is given by

Li =

∫
ηi

Φ
(
δ0Si

+X ′itiλSi
+ µSi

ηi
)

(2yiti − 1) (27){
ti+Ti−1∏
t=ti+1

Φ [(αyit−1 + β0 +X ′itβ + ηi) (2yit − 1)]

}
h(ηi|MiXi, Si)dηi,

where h(ηi|MiXi, Si) is the distribution in (24) or any other distribution of ηi|MiXi, Si

like a discrete finite distribution.

In model (25) the contribution to the likelihood function for individual i is given by

Li =

∫ ti+Ti−1∏
t=ti+1

Φ
[(
αyit−1 +X ′itβ + π0Si

+ π1Si
yiti +MiXi

′
π2Si

+ a
)

(2yit − 1)
] 1

σηSi

φ

(
a

σηSi

)
da.

(28)

8Notice that if in (26) we impose that the variance of the distribution of ηi|yiti ,MiXi, Si is constant
across sub-panels, the estimation by ML becomes easier since it can be obtained using standard software
for the simple random-effects probit model. See the Albarran et. al. (2017) for details.
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The MLE maximizes L =
∑N

i=1 logLi with respect to

θ ≡
(
α, β′, {π0j}Jj=1 , {π1j}

J
j=1 , {π2j}

J
j=1 , {σηj}

J
j=1

)
.

For balanced panels, it is well known since Wooldridge (2005) that modeling conditional

on the first observation of the dependent variable plus the normality assumption for

ηi|yi1,MiXi produces a simple specification that can be estimated with standard random-

effects probit software. Also, for the model that follows the Heckman’s approach to the

initial conditions problem, Arulampalam and Stewart (2009) propose and implement a

procedure using built-in commands in econometric software. However, in the unbalanced

case maximizing the likelihood in (27) or (28) is cumbersome and cannot be done using

such standard built-in commands.9

Regarding the MD Estimator, we obtain in a first stage δ̂ =
(
δ̂′1, δ̂

′
2, . . . , δ̂

′
J

)′
by maxi-

mizing Lj =
∑

i∈{i:Si=S(j)} logLi for each j = 1, ..., J . Then, in the second step, we obtain

θ̂MD using formulas (16) and (17). The MD Estimator is simpler than MLE because we

can use standard random-effects probit software and because it is much faster. Further

details on computation time are given in Section 6.2. On the other hand, in specific finite

samples, the MD estimator may suffer from lack of variability in individual subpanels.

In such a case, the MLE could be obtained (since there could exist enough variability in

the whole sample), whereas the MD estimator could fail because in the first step δ̂j could

not be computed for all the subpanels. Based on the results reported in our simulation

exercises and in our application, this seems to be an infrequent problem.

Selecting a balanced sub-sample

Making the panel balanced using the sub-set of periods at which all individuals are ob-

served implies assuming a common normal distribution. From a practical point of view

this produces a potential problem.

If there is correlation between ηi and Si and the distribution of ηi|yimaxj∈[1,N ] tj ,MiXi, Si

is Normal for each sub-panel, making the panel balanced and assuming that ηi|yimaxj∈[1,N ] tj ,X
Tm
itm

follows a normal distribution –which would allow to use the simple practical solution ex-

plained in Section 5.1 of Wooldridge (2005)– is incorrect because ηi|yimaxj∈[1,N ] tj ,X
Tm
itm

9Although in theory it is possible to obtain these ML estimates by using the ‘gllamm’ and/or ‘gsem’
commands in Stata 13 (or higher), in practice this is not computationally feasible in many cases. See the
Albarran et. al. (2017) for details.
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would not follow a normal distribution.10

This also poses a problem for using the comparison between the estimates obtained

taking this balanced sub-sample with the estimates obtained ignoring the unbalanced-

ness to decide whether or not the unbalancedness is ignorable. If normality about the

distribution of ηi is incorrectly assumed in both cases, these two estimators will tend to

produce similar biased estimates. Therefore, the comparison between them may lead to

the incorrect conclusion that the unbalancedness can be ignored.

5.2 Unbalancedness independent of the individual effect

If we assume that Si is independent of ηi (condition 1), then h(ηi|MiXi, Si) = h(ηi|MiXi).

If in addition we assume that the distribution is the same regardless of the periods for

which we observe Xi (such that condition 2 in section 3.1 is satisfied) then we have:

ηi|MiXi, Si ∼ N
(
β0η +MiXi

′
βη, σ

2
η

)
. (29)

If we specify the likelihood based on expression (21), under conditions 1 and 2, even though

the unbalancedness is not ignorable, there is a simplification in terms of computation

because the distribution of ηi has the same parameters for all the sub-panels.11

In contrast with that, if we use the likelihood based on (25), conditions 1 and 2 do not

lead to a conditional distribution of ηi that is common to all sub-panels. As previously

noticed, even if we assume that the sample selection process Si is independent of ηi,

h(ηi|yiti ,MiXi, Si) will be different for each ti, i.e. it will be:

ηi|yiti ,MiXi, Si ∼ N
(
π0ti + π1tiyiti +MiXi

′
π2ti , σ

2
ηti

)
, (30)

unless the process is not dynamic or it is in its steady state since t = 0, or yti comes

from the same exogenous distribution for all units and ti (conditions 3 and 4). As can

be seen in (30), ηi|yiti ,MiXi, Si still has different parameters depending on when each

sub-panel starts even under independence of the unbalancedness from ηi. This implies a

10Of course, balancing the panel will work if the assumption about the distribution of
yimaxj∈[1,N] tj ,X

mT
i,mt was the correct one: h(ηi|yimaxj∈[1,N] tj ,X

mT
i,mt) =

∑J
j=1 h(ηi|yimaxj∈[1,N] tj ,X

mT
i,mt, Si =

S(j)) Pr
(
Si = S(j)|yimaxj∈[1,N] tj ,X

mT
i,mt

)
. When h(ηi|yimaxj∈[1,N] tj , X

mT
i,mt, Si) is the normal density, is a

mixture of normals with as many components as sub-panels. This would be a difficult, though not in-
feasible, model to estimate in practice. Certainly it is more difficult to implement than the case that
assumes normality.

11For example, this makes feasible obtaining the MLE from (27) using the ‘gllamm’ and ‘gsem’ com-
mands in Stata, as explained in Albarran et. al (2017).
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more complicated structure of the Likelihood and, therefore, computation of the MLE in

this case is not simpler than in the general situation without independence.

5.3 Average Marginal effects

The Average Marginal Effects (AMEs), which are ultimately the parameters of interest,

are based on

E[Φ (αyit−1 +X ′itβ + ηi)], (31)

where the expectation is taken with respect to the joint distribution of ηi and all covariates

other than the one with respect to which the marginal effect is computed.

Consider the model with a specification of the distribution of the individual hetero-

geneity as in (26). Using that ηi = π0Si
+π1Si

yiti +MiXi

′
π2Si

+ξi and following Wooldridge

(2005), the expression (31) becomes

E

Φ

αyit−1 +X ′itβ + π0Si
+ π1Si

yiti +MiXi

′
π2Si√

1 + σ2
ηSi

 , (32)

where this expectation is taken with respect to the distribution of the covariates condi-

tional on the unbalancedness structure, {S(1), . . . , S(J)}. It is worth noting that this ex-

pression and, therefore, the AMEs depend on the correlation between the unbalancedness

and this individual effect. Therefore, when this correlation is neglected, biased estimates

of the AMEs will be obtained.

The AME for a continuous regressor is the derivative of (32) with respect to that

regressor, and the AME for a discrete regressor is the difference in expression (32) for a

unitary change in that regressor.

The estimated AME, ÂME, can be simply obtained by replacing the population

expectation in (32) with the sample mean. For instance, since the AME for the lagged

dependent variable is (32) evaluated at yit−1 = 1 minus that expression evaluated at

yit−1 = 0, the corresponding ÂME of yit−1 is

ÂMEyt−1 =
1

N

N∑
i=1

Φ

α +X ′itβ + π0Si
+ π1Si

yiti +MiXi

′
π2Si√

1 + σ2
ηSi


− 1

N

N∑
i=1

Φ

X ′itβ + π0Si
+ π1Si

yiti +MiXi

′
π2Si√

1 + σ2
ηSi

 . (33)

Finally, the standard errors of ÂME can be computed using the Delta method.

18



5.4 Summary of estimators and notation

We summarize the different estimators that could be used in practice when having an

unbalanced panel and present the notation that will be used in next sections.

Ignore Unbal.: Standard ML estimators ignoring the unbalancedness and using all ob-

servations as if the panel were balanced.

Bal. Periods: Standard ML estimators making the panel balanced using the sub-set of

periods at which all individuals are observed.

Bal. Units: Standard ML estimators making the panel balanced using the sub-set of

individuals that are observed the same number of periods.

Unbal. ML: ML estimators that account for the unbalancedness (S) and allow for cor-

relation between S and η.

Unbal. MD: MD estimators that account for the unbalancedness (S) and allow for

correlation between S and η.

Unbal. ti ML: ML estimators that account for the unbalancedness (S) and allow for

correlation between the S and ηi but only through the moment at which we first

observe each individual, ti. The number of periods each individual is observed is

assumed to be independent of ηi.
12

Unbal. ti MD: The same as ti ML, but estimating by Minimum Distance.

Unbal. Indep ML: ML estimator when assuming independence between S and η.

6 Simulations: Finite sample performance

In this section we use Monte Carlo techniques to illustrate the behavior of the estimators.

We are particularly interested in the finite sample performance of the estimators under

different degrees of unbalancedness. In the simulations we consider the model without

other covariates because this model already contains all the problems we want to address

12For the model that specifies the distribution of ηi conditional on the initial observation this also
corresponds with the case in which we assume that the unbalancedness is independent of ηi. See equation
(30) and the comments that follow that equation, and comments in subsection 5.2.
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and it reduces computational time. Nonetheless, we also present simulation results with

exogenous covariates based on the data used in the empirical application.

6.1 Data Generating Process

The sub-panels may vary in both the period individuals enter and when they leave the

sample. The degree of unbalancedness in the sample is governed by J , which, as defined

in Section 2, indicates the number of sub-panels. The set of individuals that are observed

the same periods form a sub-panel. We set J = 0 when the panel is balanced. In our

baseline Data Generating Process (DGP), if J = 2, i.e. if there are two sub-panels: the

first half of units (N
2

) are observed from 1 to T−1 and the second half of units are observed

from 2 to T . If J = 4, the first quarter of units are observed from 1 to T − 1, the second

quarter of units are observed from 1 to T − 2, the third are observed from 2 to T , and the

last quarter of units is observed from 3 to T . And the same for higher values of J . Table

B.1 in Appendix B shows this structure of unbalancedness up to J = 6 for a case with

T = 6. Given this way of generating the unbalancedness, J can only take even values. In

our simulation, we impose the following restrictions on the values of J : (i) the maximum

value is Jmax = min{2 ∗ T − 3, N
30
}, where 2 ∗ T − 3 guarantees that all sub-panels have

at least 3 periods and N
30

guarantees that there is at least 30 units in all sub-panels, and

(ii) the minimum value is Jmin = max{2 ∗ T − 15, 0}, where the restriction 2 ∗ T − 15 is

to have sub-panels with less than 8 periods.13

Given that unbalancedness structure, we generate observations for our baseline speci-

fication as follows. There are T periods in the sample and N individuals. If the panel is

balanced, then we observe all individuals from 1 to T . If the panel is unbalanced, each

individual i belongs to one of the J subpanels and it is observed from ti until ti + Ti − 1.

That is, Si ∈ j where j can go from 1 to J . The first N
J

individuals that we generate

belongs to sub-panel j = 1, the second N
J

individuals (i.e. i from N
J

+ 1 to 2 ∗ N
J

) belongs

13When the time length is long, fixed effects approaches may be preferable. For example, simulations
in Carro (2007) show cases where a modified MLE fixed effects estimator performs well with 8 periods.
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to sub-panel j = 2, and so on. Our baseline DGP is:

yit = 1{αyit−1 + ηi + εit ≥ 0} (34)

εit ∼
iid
N(0, 1) (35)

ηi |Si ∈ j ∼
iid
N(µηj, σ

2
ηj) (36)

µηj = µη + (1.3 ∗ J/ (J − 1)) ∗ ((j/J)− (J + 1) / (2 ∗ J)) (37)

σηj = 0.25 + (j − 1) ∗ ((ση − 0.2) / (J − 1)) (38)

yi0 = 1{π0 + ((j/J)− (J + 1) / (2 ∗ J)) + π1ηi + vi0 ≥ 0}, vi0 ∼
iid
N (0, 1) , (39)

where α = 0.75, N = 1, 000, µη = 0, σ2
η = 1, π0 = −1.25, and π1 = 0.5, so the initial

condition and ηi are both correlated with the unbalancedness process. We have run 1, 000

replications for each DGP considered in this section.

µηj and σ2
ηj are generated in a way such that in all the unbalancedness structures (J)

that we simulate: Ej(µηj) = µη = 0, Ej(σηj) = 0.6, µηj ∈ [−1, 1], σηj ∈ [0.2, 1], and µηj

and σηj are increasing in S. Thus, the value of ηi is more likely to be larger the larger the

value of j, i.e. for the last sub-panels.

After the baseline DGP is simulated, it is changed to evaluate the finite sample per-

formance along the following dimensions:

1. Unbalancedness only from the left, i.e., sub-panels differ only on the period they

start but all are observed until T . In this case J can take both even and odd values.

Table B.1 contains examples of this unbalanced structure. Apart from the balanced

case (J = 0), J goes from Jmin = max{T − 6, 4} to Jmax = min{T − 2, N
30
}. Jmin

cannot be smaller than 4 because since the unbalancedness is only from the left,

a smaller J would be a case too close to a balanced situation and we have not

considered it. The way in which we generate ηi here implies that individuals with

higher ηi tend not to be observed the first periods.

2. Unbalancedness process and initial condition both generated exogenously: ηi |Si ∈ j ∼
iid

N(µη, σ
2
η), µη = 0, σ2

η = 1, so that ηi does not depend on j, and yi0 = 1{π0+vi0 ≥ 0}.

We also consider exogenous unbalancedness process but maintaining the endogeneity

of the initial condition.

3. We have also considered N = 500.

21



4. We have also considered α = 0.5 and α = 1 to evaluate the sensitivity to different

degrees of persistence.

6.2 Monte Carlo results

For the sake of brevity not all estimators are used in all the simulation exercises. Our

general criteria has been to study in each simulated DGP the performance of estimators

whose assumptions correspond with those made in the DGP. For instance, even though

the “Unbal. ML” estimator will give consistent estimates in all the cases considered in

this paper, when the unbalancedness is generated at random, only the estimators based

this assumption (or a weaker version of it) are used. Nonetheless, for completeness, there

will be a few simulations shown in Appendix B in which other estimators, including those

that are known to be incorrect, are used too.

Table 1 and 2 shows the results for our baseline specification, in which both the initial

condition and the unbalancedness are correlated with ηi, when estimating the α parameter

and the AME of the lagged dependent variable, respectively. Since the true AME (slightly)

varies with the sample drawn in each Monte Carlo simulation, Tables 2 reports the true

expected AME along with the estimated AME and the Root Mean Square Error (RMSE)

of the estimators. In all cases we deal with the initial conditions problem by specifying

the density of the unobserved effect conditional on the first observation.14

In Table 1 we observe that all the four approaches considered provide estimated values

of the parameter α very close to its true value. However, there exists some relevant points

that are worth noting. The solution that employs standard methods after balancing the

sample using the subset of periods at which all individuals are observed (“Bal. Periods”),

has two important drawbacks compared to the approaches that account for the unbal-

ancedness. First, this solution cannot be employed in many cases, including some where

the unbalancedness is moderate: for J = 4 with T = 6 or J = 6 with T = 8. Second, this

solution implies an important loss of efficiency in terms of RMSE of the parameter and

of the marginal effect when it can be employed, even for moderate unbalancedness. For

instance, Table 1 shows that for T = 8 and J = 4 the RMSE of the estimated parameter

14Table B.6 in Appendix B presents simulations dealing with the initial conditions problem by spec-
ifying the density of the first observation conditional on ηi and the density of ηi, and by specifying the
density on ηi conditional on the first observation. We find that the results are very similar, so we focus
on the latter in all the other simulations.
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Table 1: Simulation results on the estimation of α. Baseline case. Double Unbalancedness.

Bal. Bal. Unbal. Unbal. Bal. Bal. Unbal. Unbal.
Periods Units MD ML Periods Units MD ML

α̂ RMSE

T=4
J=0 0.7502 0.7491 0.7502 0.7491 0.0860 0.0872 0.0860 0.0872
J=2 0.7568 0.7361 0.7185 0.1855 0.1241 0.1283

T=6
J=0 0.7508 0.7476 0.7508 0.7508 0.0579 0.0589 0.0579 0.0579
J=2 0.7211 0.7544 0.7492 0.7468 0.0925 0.1016 0.0685 0.0675
J=4 0.7448 0.7485 0.7432 0.1504 0.0714 0.0707
J=6 0.7500 0.7505 0.7356 0.1803 0.0811 0.0810

T=8
J=2 0.7282 0.7519 0.7510 0.7504 0.0610 0.0830 0.0514 0.0511
J=4 0.7457 0.7525 0.7512 0.7499 0.0925 0.1181 0.0506 0.0504
J=6 0.7476 0.7468 0.7440 0.1387 0.0557 0.0555
J=8 0.7415 0.7490 0.7432 0.1615 0.0598 0.0590
J=10 0.7500 0.7512 0.7407 0.1887 0.0638 0.0638

T=10
J=6 0.7502 0.7551 0.7515 0.7507 0.1004 0.1186 0.0430 0.0433
J=8 0.7500 0.7485 0.7472 0.1441 0.0449 0.0448
J=10 0.7413 0.7533 0.7505 0.1580 0.0494 0.0489
J=12 0.7536 0.7482 0.7429 0.1661 0.0502 0.0501
J=14 0.7464 0.7516 0.7430 0.1784 0.0549 0.0544

T=15
J=16 0.7517 0.7492 0.7484 0.1532 0.0353 0.0352

Note: In the baseline case, the initial condition and the unbalancedness are both correlated with

η, α = 0.75 and N = 1, 000.

of the “Bal. Periods” estimator is around 0.09 compared with around 0.05 for the “Unbal.

MD” and “Unbal. MLE”. For the AME, see Table 2, these figures are around 0.04 and

0.02, respectively. Regarding the “Bal. Units” estimator, we find that the RMSE when

estimating α is much higher than in the case of any other estimator due to the loss of

observations when using this estimator. Furthermore in the estimation of the marginal

effect the “Bal. Unit” has not only an efficiency loss but also a bias problem. As explained

in Section 3.3, the estimated marginal effect is inconsistent, and this is precisely what we

can see in Table 2. As a result the RMSE is twice to five times larger than the “Unbal.

MD” and the “Unbal. MLE”.

With respect to the comparison between “Unbal. MD” and “Unbal. MLE”, as ex-

pected, the behavior of these estimators is very similar, both in terms of the estimated
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Table 2: Simulation results on the estimation of the AMEs. Baseline case. Double
Unbalancedness.

Bal. Bal. Unbal. Unbal. Bal. Bal. Unbal. Unbal.
Periods Units MD ML Periods Units MD ML

AME ÂME RMSE

T=4
J=0 0.2020 0.2096 0.2088 0.2096 0.2015 0.0298 0.0298 0.0298 0.0286
J=2 0.2194 0.1813 0.2201 0.2072 0.0621 0.0460 0.0441

T=6
J=0 0.2021 0.2096 0.2089 0.2096 0.2024 0.0206 0.0206 0.0206 0.0187
J=2 0.2194 0.2152 0.1813 0.2259 0.2183 0.0315 0.0479 0.0291 0.0228
J=4 0.2278 0.1825 0.2320 0.2249 0.0624 0.0281 0.0252
J=6 0.2292 0.1847 0.2320 0.2230 0.0677 0.0312 0.0289

T=8
J=2 0.2195 0.2183 0.1811 0.2279 0.2192 0.0197 0.0451 0.0206 0.0169
J=4 0.2280 0.2414 0.1836 0.2349 0.2279 0.0381 0.0559 0.0205 0.0176
J=6 0.2297 0.1833 0.2336 0.2272 0.0612 0.0215 0.0195
J=8 0.2300 0.1820 0.2333 0.2269 0.0673 0.0228 0.0205
J=10 0.2300 0.1848 0.2329 0.2253 0.0707 0.0240 0.0224

T=10
J=6 0.2300 0.2484 0.1857 0.2368 0.2300 0.0558 0.0174 0.0149
J=8 0.2305 0.1845 0.2354 0.2290 0.0625 0.0171 0.0155
J=10 0.2304 0.1823 0.2362 0.2303 0.0671 0.0190 0.0171
J=12 0.2306 0.1858 0.2339 0.2276 0.0664 0.0185 0.0172
J=14 0.2303 0.1852 0.2342 0.2270 0.0694 0.0209 0.0190

T=15
J=16 0.2312 0.1849 0.2372 0.2304 0.0651 0.0137 0.0118

Note: See note in Table 1.

parameters and the marginal effects. Although when estimating the model by ML we

make use an efficient use of all the observations in the sample, estimating this model is

computationally cumbersome and takes a lot of time because all parameters are jointly

estimated. The MLE can take between 150 and 1, 600 times more computing time than

the MD, depending on the number of periods and subpanels. Note that the computation

time will further increase when adding covariates. In contrast to that, the MD estimation

is much faster. On the other hand, we face a potential problem of lack of variability in

certain sub-panels, although the percentage of simulations that achieved convergence for

the MD estimator is very high. In Table B.11, we see that the percentage of failures is

below 1%. Higher failure rates only appear in a few cases when considering very high

degree of state dependence.

24



We have also simulated the baseline DGP with left-side unbalancedness. Results are

reported in Table B.2 and B.3 in Appendix B. The comparison of the different estimators

leads to the same conclusions as in the double unbalancedness case, both for the parameter

α and for the AMEs.

Finally, Table 3 presents the simulation results for a situation in which the initial

condition and the unbalancedness are uncorrelated with ηi. As in the baseline case we

present the results from the two solutions that balance the sample. The results show a

similar pattern than in the previous DGPs, but the performance of the “Bal. Periods”

estimator is slightly better. This is because in this case it is easier to approximate the

relation between η and S with a common distribution of η that does not change across

sub-panels. Third column in Table 3 presents MD estimates allowing for correlation

between the unbalancedness and ηi only through the moment at which we first observe

each individual, ti. Last column presents the ML estimates using the assumption of

independence between the unbalancedness and η, which corresponds with the assumption

in this DGP, but in this case using the distribution of the first observation conditional

on the unobserved effect and the distribution of the unobserved effect to deal with the

initial conditions problem. As in the baseline case, we can see that both MD and ML

estimates behave very similarly, being the former computationally much faster. Given

this, the remaining simulation results that can be found in Appendix B do not include

ML estimates.

From Tables B.4 to B.10 in Appendix B, we present a number of simulation results

where we have sequentially changed different parameters of the baseline specification as

explained in Section 6.1. Although the RMSE of all the solutions is increased when the

sample size decreases, the results remain basically unchanged.

7 An application to export market participation

We illustrate previous methods by estimating a model for firms’ export market partici-

pation decision. We use data for Spanish manufacturing firms, the Business Strategies

Survey (Encuesta sobre Estrategias Empresariales, ESEE). The survey, sponsored by the

Spanish Ministry of Industry and published by the Fundación Empresa Pública, is under-
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Table 3: Simulation results on the estimation of α. Baseline case but the initial condition
and the unbalancedness are uncorrelated with η. Double Unbalancedness.

Bal. Bal. Unbal. Unbal. Bal. Bal. Unbal. Unbal.
Periods Units ti MD Indep ML Periods Units ti MD Indep ML

α = 0.75 α̂ RMSE

T=4
J=0 0.7498 0.7498 0.7498 0.7498 0.0844 0.0844 0.0844 0.0844
J=2 0.7564 0.7528 0.7416 0.2592 0.1433 0.1261

T=6
J=0 0.7501 0.7501 0.7501 0.7501 0.0566 0.0566 0.0566 0.0566
J=2 0.7549 0.7531 0.7502 0.7488 0.1085 0.1152 0.0728 0.0709
J=4 0.7540 0.7505 0.7488 0.1685 0.0825 0.0783
J=6 0.7556 0.7585 0.7484 0.2054 0.0939 0.0861

T=8
J=2 0.7517 0.7488 0.7501 0.7495 0.0673 0.0827 0.0548 0.0545
J=4 0.7583 0.7465 0.7508 0.7498 0.1166 0.1173 0.0584 0.0578
J=6 0.7450 0.7512 0.7502 0.1407 0.0628 0.0620
J=8 0.7454 0.7513 0.7473 0.1588 0.0699 0.0679
J=10 0.7448 0.7542 0.7457 0.1781 0.0755 0.0729

T=10
J=6 0.7565 0.7526 0.7520 0.7513 0.1155 0.1199 0.0514 0.0509
J=8 0.7537 0.7511 0.7501 0.1365 0.0541 0.0536
J=10 0.7533 0.7519 0.7508 0.1505 0.0573 0.0572
J=12 0.7558 0.7535 0.7496 0.1620 0.0607 0.0594
J=14 0.7534 0.7540 0.7525 0.1751 0.0653 0.0645

T=15
J=16 0.7541 0.7509 0.7499 0.1416 0.0404 0.0406

taken annually since 1990 and constitutes an unbalanced panel.15

We use data for the period 1990 to 1999, because after 1999 there was a change in the

sample design.16 We have dropped those observations for which relevant information is

missing and those firms affected, in the corresponding year, by some process of absorption,

merger or split. We also eliminate the firms that are not observed in consecutive years

15There are different reasons why firms disappear from the sample: liquidations, merges, acquisitions,
or activity changes to non-manufacturing sectors. There are also firms that stop collaborating for un-
known reasons. Refreshment samples try to compensate the drop outs with new entrants, so as to keep
approximately the initial sample size. However, the entrance of new firms is not implemented every year,
nor in a systematic way. For more details on the survey, see, for example, Fariñas and Jaumandreu
(1999).

16Data before and after the change are hardly comparable, because big firms are overrepresented for
several waves after 1999. Including also this period after 1999 would imply a more severe unbalanced
structure, which would go in favor of our proposed estimators. However, we preferred not to use this
data because we did not want the unbalancedness structure to be artificially driven by a change in the
sample design.
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Table 4: Unbalancedness structure of the total sample

Number Pattern by year
Subpanel of firms 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

S = 1 143 x x x . . . . . . .
S = 2 100 x x x x . . . . . .
S = 3 102 x x x x x . . . . .
S = 4 66 x x x x x x . . . .
S = 5 63 x x x x x x x . . .
S = 6 48 x x x x x x x x . .
S = 7 79 x x x x x x x x x .
S = 8 699 x x x x x x x x x x
S = 9 65 . x x x x x x x x x
S = 10 34 . . x x x x x x x x
S = 11 37 . . . x x x x x x x
S = 12 34 . . . . x x x x x x
S = 13 91 . . . . . . x x x x
S = 14 246 . . . . . . . x x x
S = 1 to 14 1,807

S = 15 16 . . . . . . x x x .
S = 16 12 . x x x x . . . . .
. . . other patterns
S = 15 to 34 113
All subpanels 1,920

and those with less than 3 observations in the sample period. Our final sample consists

of an unbalanced panel of 1,920 firms and 13,203 observations. There are between 1,200

and 1,450 firms per year approximately and 36% of the firms are in the panel during the

whole sample period. Table 4 shows the unbalancedness structure of our sample. We have

34 different subpanels, some of them with missing observations to the right and others

with missing observations to the left. We have dropped out those subpanels with less

than 100 observations (less than 30 firms). This only represents a loss of less than 5%

of the sample, while making it feasible to obtain the MD estimator. We end up with 14

different subpanels and with 12,683 observations and 1,807 firms.

The starting point for estimation is an equation of the form

yit = 1(αyit−1 +X ′itβ + ηi + vit ≥ 0), (40)

where yit = 1 if the i − th firm exported in year t. Our empirical model is based on a

simple model of optimization for a firm facing the export decision. A profit-maximizing
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firm makes its decision based on the expected profits from exporting, now and in the

future, taking into account the sunk costs of entering the new market, which depends

on previous export behavior, and other variable costs (see Roberts and Tybout, 1997).

On the other hand, export decision is also affected by a number of time-invariant firm-

specific characteristics (for instance, product quality or managerial ability) that cannot

be directly observed. The choice of variables included in the vector X largely follows

the previous literature on the determinants of firm’s export decisions. See Table C.1 in

Appendix C for the definition and descriptive statistics of these variables.17 Exporters in

our total sample are on average larger and older companies, spend more on R&D and have

a higher proportion of skilled workers. These characteristics are in line with the previous

literature. With respect to the persistence, 46% of firms in the sample exported each

year, while approximately 36% of firms never exported and about 18% showed variation

in their exporting behavior.

With this data set we cannot perform the estimates using the balanced sample formed

by the periods at which all the firms are observed (“Bal. Units”), because we do not have

any observation in that set (see Table 4). We have performed estimates using the balanced

sample with the firms that are observed all the periods (those in subpanel S = 8). Tables

5, 6 and C.2 in Appendix B presents the estimation results. Columns labeled “Bal. Units”

shows estimates using the previously commented balanced sample. Columns labeled “Ig-

nore Unbal.” present the results from a model that ignores the unbalancedness. And,

finally, columns labeled “Unbal. MD” show the results from the model that accounts for

the unbalancedness and allows for its correlation with the unobserved effect. We consider

only the MD estimates because the estimation by ML is computationally cumbersome

and it presents similar performance than the MD ones, as shown in the simulations. In

all cases we model the unobserved heterogeneity conditional on the initial condition and

the time average of the exogenous variables as in equation (26).

Table C.2 presents three estimates of the common parameters of the correlated random

effects probit model. Given that the comparison between estimated parameters is not

obvious because of the differences in scale, we focus on Average Marginal Effects (AME).

Moreover, marginal effects are usually the parameters of interest in nonlinear models.

17Typically the literature includes a measure of firm’s productivity. Our data set does not offer a good
measure for it, but it has been accounted for by including firms’ specific effects.
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These are presented in Table 5 for the lagged export status variable. First row presents

the AME for the entire sample. As explained in the previous sections, the estimator

that ignores the unbalancedness and the estimator that takes the balanced sample are

incorrect, since they do not allow the unobservables to have different distributions across

subpanels. Coincidentally both estimators provide similar results, probably because the

observations in the balanced sample are 56% of the sample used to estimate the model

ignoring unbalancedness. This is an example where comparing these two estimators leads

to the incorrect conclusion about the possibility of ignoring the unbalancedness.

Regarding the “Unbal. MD” estimator, we find that the estimated AME for the entire

sample is around 4 percentage points greater than the one from the estimator that ignores

the unbalancedness. This difference is statistically significant even though the AME for

the entire sample tends to mask biases in opposite directions in different subsamples.18

This can be seen in more detail if we analyze the average marginal effects by subgroups

(see Table 5) and by subpanels (see Table 6). In particular, we find statistically different

results for younger firms and also for firms that do not export in the first period. The

last row in Table 5 presents the estimates excluding the largest subpanel (S = 8). This is

to show that if we had a dataset without a panel that dominates so much, the differences

between the “Ignore Unbal.” and “Unbal. MD.” are more significant, as it can be seen

from the Test of Difference in the last column.

If we look at the AMEs by subpanel, there are five subpanels in which the MD gives

statistically significant AMEs and the differences are even larger than for the total sample.

Furthermore, while the MD estimates range between 0.1095 and 0.4399, the corresponding

estimates for the model ignoring the unbalancedness only range from 0.2108 to 0.2689.

There is a great deal of variation on the marginal effect of lagged export across subpan-

els that is not captured by the “Ignore Unbal.” estimator. These results indicate that

the model that ignores the unbalancedness incorrectly imposes, among other restrictions,

independence between the distribution of the unobserved heterogeneity and the unbal-

ancedness.

18 In the last column of Tables 5 and 6 we have perform a Hausman-type test of the difference between
the “Unbal. MD” estimates and the estimates that ignore the unbalancedness, using the variance–
covariance matrix of the MD estimates only instead of subtracting from it the variance of the “Ignore
Unbal.” estimator. Under correct specification, this represents a lower bound for this test and a rejection
here will also be a rejection when using the well-defined variance–covariance matrix of the difference.
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Table 5: Estimated Average marginal effects of Lagged Export.

Bal. Units Ignore Unbal. Unbal. MD Test of Diff.
(1) (2) (3) (2) vs (3)

Total sample 0.2423 0.2351 0.2776 *
(0.0290) (0.0234) (0.0254)

Subsample, by age††

Age < 12 0.2590 0.2528 0.3181 **
(0.0313) (0.0251) (0.0290)

Age 12-24 0.2735 0.2573 0.2994
(0.0314) (0.0250) (0.0266)

Age > 24 0.2121 0.2032 0.2307
(0.0268) (0.0212) (0.0234)

Subsample, by I.C.
Exportti = 1 0.1640 0.1808 0.2064

(0.0257) (0.0209) (0.0234)
Exportti = 0 0.2811 0.2811 0.3391 **

(0.0269) (0.0269) (0.0287)
Subpanels S 6= 8 0.2358 0.3267 ***

(0.0236) (0.0328)

Note: Standard errors are reported in parentheses. The implementation of the test of difference

is discussed in footnote 18. Asterisks indicate the difference is significantly different from zero

at *10%; **5%; ***1%.
†† The age of approximately one third of the sample is lower than 12 and around 40% of the

firms are 24 or older.

Simulation evidence on the properties of the estimators We simulated data

calibrated to the ESEE sample to study the properties of the estimators in the empirical

application. This also has the additional interest of exhibiting some Monte Carlo results

with covariates in the dynamic model, which complement those reported in Section 6.

The data generating process in sub-section 6.1 is extended here to incorporate exoge-

nous covariates. Thus, the main equation becomes

yit = 1{αyit−1 +X ′itβ + ηi + εit ≥ 0}, t = ti + 1, ..., ti + Ti (41)

εit|yiti , Xi, Si ∈ j ∼
iid
N(0, 1) (42)

ηi|yiti , Xi, Si ∈ j ∼ N
(
π0j + π1jyiti +Xi

′
π2j, σ

2
ηj

)
, (43)

where Xit denotes the vector of exogenous regressors, Xi contains the within-means (from

period ti + 1 to ti + Ti) of the time-varying explanatory regressors and yiti is the first

observed value of the endogenous variable for the individual i (i.e., her initial condition).

In this Monte Carlo exercise, the initial conditions, the exogenous regressors Xit and
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Table 6: Estimated Average marginal effects of Lagged Export. By Subpanels

Bal. Units Ignore Unbal. Unbal. MD Test of Diff.
(1) (2) (3) (2) vs (3)

Subpanels
S = 1 0.2414 0.2903

(0.0245) (0.0904)
S = 2 0.2338 0.4380 ***

(0.0239) (0.0442)
S = 3 0.2470 0.4144 **

(0.0247) (0.0776)
S = 4 0.2108 0.2539

(0.0218) (0.1033)
S = 5 0.2340 0.3477

(0.0239) (0.0732)
S = 6 0.2230 0.1095 ***

(0.0222) (0.0209)
S = 7 0.2182 0.3441 ***

(0.0223) (0.0477)
S = 8 0.2423 0.2336 0.2413

(0.0290) (0.0233) (0.0245)
S = 9 0.2195 0.2758

(0.0221) (0.0793)
S = 10 0.2612 0.2634

(0.0257) (0.1403)
S = 11 0.2689 0.3256

(0.0260) (0.0830)
S = 12 0.2674 0.3144

(0.0251) (0.1175)
S = 13 0.2563 0.4399 ***

(0.0250) (0.0393)
S = 14 0.2374 0.3765

(0.0239) (0.0877)

Note: See note in Table 5.

their means Xi are kept fixed at their observed sample values across simulations. In

order to make the simulated model as parsimonious as possible, we have excluded those

variables that were insignificant in the main estimated equation (41) and in the auxiliary

regressions (43) for all the subpanels j = 1, . . . , 14. Therefore, we consider a model only

with “Size”, the share of “Medium skill” workers, the “Age” of the firm and a time trend

as covariates Xit (and Xi, accordingly), and it is estimated using the “Unbal. MD” in the

entire sample. The parameters required for simulations, α, β, π0j, π1j, π2j and σ2
ηj are

taken from these estimates. In each of our 1,000 simulations, we obtained random draws
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Table 7: Simulation results based on the MD results obtained in the empirical application

A. Total Sample

Bal. Units Ignore Unbal. Unbal. MD
True parameter Estimated RMSE Estimated RMSE Estimated RMSE

α = 1.5153 1.5145 0.0962 1.4651 0.0900 1.5413 0.0796
AME = 0.2721 0.2332 0.0483 0.2449 0.0358 0.2539 0.0305

B. By Subgroups

Bal. Units Ignore Unbal. Unbal. MD

True AME ÂME RMSE ÂME RMSE ÂME RMSE
By Age
< 12 0.3055 0.2495 0.0639 0.2606 0.0513 0.2698 0.0463
12− 24 0.2895 0.2606 0.0425 0.2647 0.0352 0.2761 0.0292
> 24 0.2310 0.2065 0.0363 0.2172 0.0258 0.2249 0.0245

By Initial
Conditions
yti = 1 0.2167 0.1644 0.0580 0.1974 0.0287 0.2041 0.0281
yti = 0 0.3200 0.2962 0.0412 0.2857 0.0430 0.2970 0.0364

By Subpanels
S = 8 0.2334 0.2332 0.0280 0.2442 0.0255 0.2387 0.0266
S 6= 8 0.3196 0.2456 0.0778 0.2726 0.0576

of two mutually independent standard normal variables, εit and ξi. Thus the simulated

values of yit are computed by plugging εit and ηi = π0j + π1jyiti + Xi

′
π2j + σηj ∗ ξi into

(41).

Table 7 contains the simulation results for the lagged dependent variable coefficients

and average marginal effects. The results obtained in this experiment confirms that the

“Unbal. MD” outperforms both “Bal. Units” and “Ignore Unbal.” estimator. First, in

part A of Table 7, we can see that our proposed “Unbal. MD” estimator performs clearly

better in terms of both bias and RMSE than the two alternatives to estimate in the total

sample the state-dependence parameter α and, specially, the AME. Then, in part B of

Table 7 we check the extent to which each estimator is able to capture heterogeneity in

the AME across subgroups. Of course, the “Bal. Units” estimator does a nice work in the

only subpanel that is using, but neglects the other ones. On the other hand the estimator

that ignores the unbalancedness can provide different AMEs across subgroups, but the

estimated AMEs are substantially biased in some of them. By contrast, the “Unbal. MD”

estimator performs reasonably well overall.
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8 Conclusions

In this paper we consider the estimation of dynamic non-linear correlated random effects

models when using unbalanced panel data. We identify two types of problems: (i) an

inconsistency in the estimates of the coefficients when the unbalancedness is ignored;

and (ii) an efficiency loss and/or an inconsistency in the estimates when using different

balanced versions of the unbalanced original data. These problems are specially severe

when the unbalanced process is correlated with the individual effect.

We propose a general model that accounts for the unbalancedness that can be arbi-

trarily correlated with the permanent unobserved heterogeneity. We show that this model

can be estimated by Maximum Likelihood (ML) and also by Minimum Distance (MD).

Monte Carlo experiments and an empirical illustration show that our proposed estima-

tion approaches perform better both in terms of bias and RMSE than the approaches

that ignore the unbalancedness or that balance the sample. Both the ML and the MD

estimators have comparative advantages and disadvantages. Its computational simplicity

leads us to favor the MD approach.

The comparison between the sets of estimates presented in the empirical application

emphasizes the point that different individuals behave differently due to the heterogeneity

in the distribution of the unobservables across subpanels. It also reveals the importance

of accounting for it to give a proper estimate of the marginal effect of the explanatory

variables in a dynamic non-linear model.

The model and estimation solutions proposed in this paper include different possi-

ble random effects specifications: from the simple model in which the random hetero-

geneous intercepts are independent to the most general correlated random coefficients

model. Moreover, it can easily accommodate models for which the state dependence

follows higher order Markov chains and models with autocorrelation in the error term.
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A Appendix: MD Estimator

We show that (16) and (17) are the result to the minimization problem in (13). Given

that the matrix V is block diagonal, that problem becomes

min
θ
Q(θ) =

J∑
j=1

[(
δ̂
[c]
j − β

δ̂
[nc]
j − γj

)′ (
V ar(δ̂j)

)−1( δ̂
[c]
j − β

δ̂
[nc]
j − γj

)]
, (44)

where V ar(δ̂j), that is the jth-block in the diagonal of V ar
(
δ̂
)

, is:

V ar
(
δ̂j

)
=

 V ar
(
δ̂
[c]
j

)
Cov

(
δ̂
[c]
j , δ̂

[nc]
j

)
Cov

(
δ̂
[c]
j , δ̂

[nc]
j

)′
V ar

(
δ̂
[nc]
j

)  . (45)

Based on the result on the inverse of block matrices (cf. p. 11 in Magnus and

Neudecker, 1999): (
V ar(δ̂j)

)−1
≡
(
V11j V12j
V ′12j D−1j

)
, (46)

where

V11j = V ar
(
δ̂
[c]
j

)−1
+ V ar

(
δ̂
[c]
j

)−1
Cov

(
δ̂
[c]
j , δ̂

[nc]
j

)
D−1j Cov

(
δ̂
[c]
j , δ̂

[nc]
j

)′
V ar

(
δ̂
[c]
j

)−1
(47)

V12j = −V ar
(
δ̂
[c]
j

)−1
Cov

(
δ̂
[c]
j , δ̂

[nc]
j

)
D−1j (48)

Dj = V ar
(
δ̂
[nc]
j

)
− Cov

(
δ̂
[c]
j , δ̂

[nc]
j

)′
V ar

(
δ̂
[c]
j

)−1
Cov

(
δ̂
[c]
j , δ̂

[nc]
j

)
. (49)

We can derive the first order conditions of the minimization problem in (44) as:

∂Q(θ)

∂γj
= −2V ′12j

(
δ̂
[c]
j − β

)
− 2D−1j

(
δ̂
[nc]
j − γj

)
= 0; j = 1, ..., J (50)

∂Q(θ)

∂β
=

J∑
j=1

[
−2V11j

(
δ̂
[c]
j − β

)
− 2V12j

(
δ̂
[nc]
j − γj

)]
= 0 (51)

Substituting the expression of V ′12j in (50), we obtain(
δ̂
[nc]
j − γ̂MD

j

)
= DjD

−1
j Cov

(
δ̂
[c]
j , δ̂

[nc]
j

)′
V ar

(
δ̂
[c]
j

)−1 (
δ̂
[c]
j − β̂MD

)
. (52)

from which the expression for the MD estimator of each γ̂MD
j in (17) follows.

On the other hand, we can insert the expression of
(
δ̂
[nc]
j − γ̂MD

j

)
from (52) into (51)

to get
J∑
j=1

[
V11j

(
δ̂
[c]
j − β̂MD

)
− V12jDjV

′
12j

(
δ̂
[c]
j − β̂MD

)]
= 0. (53)
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Then using the expressions for V11j and V12j it simplifies to(
J∑
j=1

V ar
(
δ̂
[c]
j

)−1)
β̂MD =

J∑
j=1

V ar
(
δ̂
[c]
j

)−1
δ̂
[c]
j (54)

and we obtain the expression for the MD estimator of the common parameters in (16).

Notice that for estimation the elements of V ar
(
δ̂j

)
in (45) are replaced by the con-

sistent estimators of them that we obtain in the first step.
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B Appendix: Other simulation tables

Table B.1: Examples of (un)balanced structures

t = 1 2 3 4 5 6
Balanced case

J = 0, For N units x x x x x x
Double unbalancedness

J = 2, For N/2 units x x x x x .
For N/2 units . x x x x x

J = 4, For N/4 units x x x x x .
For N/4 units x x x x . .
For N/4 units . x x x x x
For N/4 units . . x x x x

J = 6, For N/6 units x x x x x .
For N/6 units x x x x . .
For N/6 units x x x . . .
For N/6 units . x x x x x
For N/6 units . . x x x x
For N/6 units . . . x x x

Left-side Unbalancedness
J = 2, For N/2 units x x x x x x

For N/2 units . x x x x x
J = 3, For N/3 units x x x x x x

For N/3 units . x x x x x
For N/3 units . . x x x x

J = 4, For N/4 units x x x x x x
For N/4 units . x x x x x
For N/4 units . . x x x x
For N/4 units . . . x x x

Note: “x” denotes that individuals are observed in that period and “.” that they are not.
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Table B.2: Simulation results on the estimation of α. Baseline case. Left-side Unbal-
ancedness

Bal. Bal. Unbal. Unbal. Bal. Bal. Unbal. Unbal.
Periods Units MD ML Periods Units MD ML

α̂ RMSE

T=4
J=0 0.7502 0.7502 0.7502 0.7502 0.0860 0.0860 0.0860 0.0860
J=2 0.7325 0.7430 0.7376 0.1103 0.0947 0.0942

T=6
J=0 0.7508 0.7508 0.7508 0.7508 0.0579 0.0580 0.0580 0.0580
J=4 0.7416 0.7490 0.7449 0.1014 0.0673 0.0668

T=8
J=4 0.7388 0.7494 0.7516 0.7505 0.0723 0.0778 0.0509 0.0507
J=5 0.7386 0.7440 0.7480 0.7462 0.0931 0.0902 0.0509 0.0506
J=6 0.7427 0.7510 0.7480 0.0983 0.0564 0.0560

T=10
J=4 0.7386 0.7489 0.7479 0.7476 0.0504 0.0667 0.0399 0.0398
J=5 0.7415 0.7439 0.7488 0.7482 0.0581 0.0768 0.0419 0.0419
J=6 0.7438 0.7472 0.7493 0.7484 0.0746 0.0829 0.0438 0.0437
J=7 0.7427 0.7500 0.7501 0.7488 0.0956 0.0914 0.0456 0.0456
J=8 0.7456 0.7498 0.7476 0.0960 0.0467 0.0466

T=15
J=9 0.7438 0.7460 0.7486 0.7483 0.0518 0.0760 0.0336 0.0337
J=10 0.7495 0.7458 0.7496 0.7491 0.0608 0.0835 0.0349 0.0350
J=11 0.7487 0.7538 0.7521 0.7515 0.0765 0.0860 0.0344 0.0344
J=12 0.7404 0.7472 0.7483 0.7473 0.0997 0.0892 0.0362 0.0361
J=13 0.7493 0.7491 0.7478 0.0940 0.0380 0.0380
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Table B.3: Simulation results on the estimation of the AMEs. Baseline case. Left-side
Unbalancedness.

Bal. Bal. Unbal. Unbal. Bal. Bal. Unbal. Unbal.
Periods Units MD ML Periods Units MD ML

AME ÂME RMSE

T=4
J=0 0.2023 0.2096 0.2096 0.2096 0.2023 0.0298 0.0298 0.0298 0.0284
J=2 0.2278 0.2684 0.2306 0.2227 0.0613 0.0362 0.0334

T=6
J=0 0.2020 0.2097 0.2096 0.2096 0.2024 0.0206 0.0206 0.0206 0.0187
J=4 0.2398 0.2732 0.2424 0.2372 0.0528 0.0260 0.0244

T=8
J=4 0.2364 0.2361 0.2764 0.2419 0.2364 0.0265 0.0507 0.0260 0.0178
J=5 0.2401 0.2388 0.2745 0.2433 0.2385 0.0356 0.0494 0.0203 0.0183
J=6 0.2438 0.2738 0.2472 0.2426 0.0495 0.0215 0.0206

T=10
J=4 0.2347 0.2364 0.2766 0.2395 0.2338 0.0181 0.0495 0.0157 0.0139
J=5 0.2376 0.2404 0.2745 0.2422 0.2367 0.0216 0.0478 0.0161 0.0147
J=6 0.2404 0.2432 0.2758 0.2444 0.2396 0.0286 0.0480 0.0172 0.0155
J=7 0.2431 0.2441 0.2773 0.2470 0.2423 0.0378 0.0494 0.0174 0.0164
J=8 0.2461 0.2750 0.2492 0.2449 0.0472 0.0178 0.0171

T=15
J=9 0.2412 0.2469 0.2757 0.2459 0.2406 0.0203 0.0452 0.0128 0.0118
J=10 0.2429 0.2496 0.2754 0.2474 0.2424 0.0242 0.0456 0.0133 0.0123
J=11 0.2449 0.2499 0.2784 0.2498 0.2453 0.0300 0.0469 0.0136 0.0122
J=12 0.2469 0.2470 0.2757 0.2500 0.2456 0.0397 0.0446 0.0135 0.0129
J=13 0.2489 0.2768 0.2516 0.2477 0.0456 0.0143 0.0138
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Table B.4: Simulation results on the estimation of α. Baseline case but with N = 500.

Panel A: Double Unbalancedness

Bal. Bal. Unbal. Bal. Bal. Unbal.
Periods Units MD Periods Units MD

α = 0.75 α̂ RMSE

T=4 J=0 0.7472 0.7472 0.7472 0.1280 0.1280 0.1280
J=2 0.7479 0.7192 0.2602 0.1718

T=6 J=0 0.7518 0.7518 0.7518 0.0796 0.0796 0.0796
J=2 0.7250 0.7523 0.7502 0.1225 0.1457 0.0923
J=4 0.7443 0.7468 0.2171 0.1008
J=6 0.7489 0.7479 0.2604 0.1050

T=8 J=2 0.7277 0.7497 0.7465 0.0815 0.1085 0.0675
J=4 0.7460 0.7503 0.7506 0.1325 0.1614 0.0728
J=6 0.7455 0.7477 0.1999 0.0769
J=8 0.7429 0.7525 0.2372 0.0844
J=10 0.7387 0.7485 0.2530 0.0842

T=10 J=6 0.7521 0.7516 0.7533 0.1363 0.1682 0.0599
J=8 0.7543 0.7508 0.1875 0.0627
J=10 0.7416 0.7472 0.2261 0.0664
J=12 0.7346 0.7480 0.2474 0.0717
J=14 0.7434 0.7490 0.2627 0.0735

T=15 J=16 0.7475 0.7484 0.2162 0.0500

Panel B: Left-side Unbalancedness

Bal. Bal. Unbal. Bal. Bal. Unbal.
Periods Units MD Periods Units MD

α = 0.75 α̂ RMSE

T=4 J=0 0.7472 0.7472 0.7472 0.1280 0.1280 0.1280
J=2 0.7178 0.7327 0.1582 0.1318

T=6 J=0 0.7518 0.7518 0.7518 0.0796 0.0796 0.0796
J=4 0.7300 0.7487 0.1396 0.0922

T=8 J=4 0.7393 0.7419 0.7485 0.0995 0.1085 0.0699
J=5 0.7355 0.7420 0.7498 0.1319 0.1234 0.0719
J=6 0.7340 0.7519 0.1332 0.0774

T=10 J=4 0.7421 0.7491 0.7498 0.0745 0.0927 0.0580
J=5 0.7425 0.7442 0.7491 0.0817 0.1027 0.0584
J=6 0.7454 0.7455 0.7504 0.1020 0.1157 0.0622
J=7 0.7421 0.7422 0.7497 0.1293 0.1285 0.0640
J=8 0.7442 0.7514 0.1374 0.0650

T=15 J=9 0.7437 0.7466 0.7472 0.0718 0.1059 0.0473
J=10 0.7449 0.7476 0.7484 0.0860 0.1094 0.0474
J=11 0.7543 0.7556 0.7550 0.1044 0.1246 0.0505
J=12 0.7483 0.7478 0.7502 0.1381 0.1242 0.0508
J=13 0.7526 0.7493 0.1248 0.0518
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Table B.5: Simulation results on the estimation of the AMEs. Baseline case but with
N = 500.

Panel A: Double Unbalancedness

Bal. Bal. Unbal. Bal. Bal. Unbal.
Periods Units MD Periods Units MD

AME ÂME RMSE

T=4 J=0 0.2020 0.2094 0.2094 0.2094 0.0431 0.0431 0.0431
J=2 0.2195 0.1801 0.2148 0.0778 0.0581

T=6 J=0 0.2022 0.2106 0.2106 0.2106 0.0276 0.0276 0.0276
J=2 0.2194 0.2165 0.1811 0.2280 0.0428 0.0559 0.0331
J=4 0.2277 0.1819 0.2332 0.0761 0.0358
J=6 0.2291 0.1838 0.2324 0.0851 0.0370

T=8 J=2 0.2194 0.2182 0.1800 0.2271 0.0275 0.0498 0.0243
J=4 0.2281 0.2420 0.1827 0.2352 0.0529 0.0644 0.0267
J=6 0.2298 0.1828 0.2352 0.0737 0.0275
J=8 0.2302 0.1843 0.2372 0.0811 0.0307
J=10 0.2301 0.1820 0.2335 0.0868 0.0296

T=10 J=6 0.2299 0.2491 0.1842 0.2381 0.0572 0.0669 0.0226
J=8 0.2306 0.1872 0.2378 0.0706 0.0233
J=10 0.2306 0.1837 0.2361 0.0809 0.0240
J=12 0.2308 0.1814 0.2356 0.0856 0.0255
J=14 0.2304 0.1842 0.2346 0.0879 0.0257

T=15 J=16 0.2313 0.1855 0.2374 0.0791 0.0187

Panel B: Left-side Unbalancedness

Bal. Bal. Unbal. Bal. Bal. Unbal.
Periods Units MD Periods Units MD

AME ÂME RMSE

T=4 J=0 0.2020 0.2094 0.2094 0.2094 0.0431 0.0431 0.0431
J=2 0.2276 0.2625 0.2285 0.0723 0.0466

T=6 J=0 0.2022 0.2106 0.2106 0.2106 0.0276 0.0276 0.0276
J=4 0.2397 0.2679 0.2440 0.0613 0.0340

T=8 J=4 0.2364 0.2367 0.2731 0.2417 0.0369 0.0561 0.0255
J=5 0.2402 0.2377 0.2735 0.2449 0.0501 0.0589 0.0265
J=6 0.2439 0.2702 0.2483 0.0577 0.0288

T=10 J=4 0.2345 0.2378 0.2766 0.2408 0.0275 0.0554 0.0217
J=5 0.2376 0.2406 0.2746 0.2428 0.0304 0.0544 0.0215
J=6 0.2404 0.2443 0.2751 0.2457 0.0393 0.0567 0.0230
J=7 0.2431 0.2442 0.2732 0.2472 0.0507 0.0583 0.0235
J=8 0.2461 0.2740 0.2501 0.0597 0.0241

T=15 J=9 0.2416 0.2467 0.2756 0.2454 0.0274 0.0527 0.0171
J=10 0.2430 0.2479 0.2758 0.2470 0.0332 0.0530 0.0175
J=11 0.2449 0.2552 0.2792 0.2506 0.0413 0.0585 0.0188
J=12 0.2469 0.2501 0.2759 0.2507 0.0544 0.0556 0.0187
J=13 0.2491 0.2773 0.2518 0.0550 0.0189
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Table B.6: Simulation results. Baseline case but with the Unbalancedness and the initial
condition uncorrelated with η and N = 500.

Panel A: Double Unbalancedness

Bal. Units Bal. Units* MD Indep ML* Bal. Units Bal. Units* MD Indep ML*
α = 0.75 α̂ RMSE

T=4 J=0 0.7532 0.7532 0.7532 0.7532 0.1212 0.1213 0.1212 0.1213
J=2 0.7633 0.7409 0.2115 0.1848

T=6 J=0 0.7502 0.7502 0.7502 0.7502 0.0833 0.0833 0.0833 0.0833
J=2 0.7567 0.7538 0.7557 0.7530 0.1620 0.1617 0.1046 0.1025
J=4 0.7588 0.7513 0.1178 0.1100
J=6 0.7715 0.7543 0.1366 0.1253

T=8 J=2 0.7518 0.7500 0.7513 0.7505 0.1002 0.0999 0.0801 0.0796
J=4 0.7616 0.7561 0.7513 0.7504 0.1673 0.1665 0.0856 0.0850
J=6 0.7518 0.7493 0.0912 0.0892
J=8 0.7558 0.7460 0.0984 0.0956
J=10 0.7594 0.7474 0.1072 0.1057

T=10 J=6 0.7672 0.7608 0.7505 0.7500 0.1652 0.1638 0.0699 0.0697
J=8 0.7513 0.7494 0.0739 0.0732
J=10 0.7526 0.7471 0.0791 0.0783
J=12 0.7572 0.7459 0.0843 0.0853
J=14 0.7590 0.7530 0.0887 0.0906

T=15 J=16 0.7475 0.7438 0.0559 0.0564

* indicates that this estimator has been computed using Heckman’s approach.
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Table B.6: Simulation results. Baseline case but with the Unbalancedness and the initial
condition uncorrelated with η and N = 500. (cont’d)

Panel B: Left-side Unbalancedness

Bal. Units Bal. Units* MD Indep ML Bal. Units Bal. Units* MD Indep ML
α = 0.75 α̂ RMSE

T=4 J=0 0.7532 0.7532 0.7532 0.7532 0.1212 0.1213 0.1212 0.1213
J=2 0.7590 0.7482 0.1595 0.1482

T=6 J=0 0.7502 0.7502 0.7502 0.7502 0.0833 0.0833 0.0833 0.0833
J=4 0.7667 0.7514 0.1304 0.1230

T=8 J=4 0.7537 0.7501 0.7520 0.7493 0.1229 0.1224 0.0895 0.0876
J=5 0.7553 0.7502 0.7570 0.7492 0.1662 0.1667 0.0979 0.0944
J=6 0.7590 0.7474 0.1068 0.1035

T=10 J=4 0.7506 0.7488 0.7502 0.7494 0.0836 0.0836 0.0681 0.0679
J=5 0.7473 0.7447 0.7491 0.7480 0.0986 0.0981 0.0719 0.0717
J=6 0.7468 0.7435 0.7494 0.7458 0.1199 0.1194 0.0766 0.0754
J=7 0.7467 0.7414 0.7527 0.7441 0.1648 0.1653 0.0827 0.0814
J=8 0.7553 0.7480 0.0875 0.0829

T=15 J=9 0.7540 0.7520 0.7510 0.7497 0.0842 0.0838 0.0548 0.0547
J=10 0.7533 0.7507 0.7506 0.7484 0.0961 0.0955 0.0575 0.0570
J=11 0.7563 0.7523 0.7519 0.7452 0.1219 0.1210 0.0606 0.0606
J=12 0.7568 0.7527 0.7540 0.7406 0.1655 0.1665 0.0629 0.0643
J=13 0.7557 0.7399 0.0663 0.0648

* indicates that this estimator has been computed using Heckman’s approach.
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Table B.7: Simulation results. Baseline case but with Smaller state dependence (α = 0.50)
and N = 500

Panel A: Double Unbalancedness

Bal. Units Unbal. MD Bal. Units Unbal. MD
α = 0.50 α̂ RMSE

T=4 J=0 0.5014 0.5014 0.1199 0.1199
J=2 0.5107 0.2168

T=6 J=0 0.4964 0.4964 0.0801 0.0801
J=2 0.4991 0.4999 0.1516 0.1007
J=4 0.5020 0.1150
J=6 0.5168 0.1330

T=8 J=2 0.5024 0.5017 0.0942 0.0771
J=4 0.5109 0.5018 0.1550 0.0821
J=6 0.5020 0.0871
J=8 0.5060 0.0962
J=10 0.5108 0.1059

T=10 J=6 0.5128 0.4998 0.1488 0.0660
J=8 0.4996 0.0701
J=10 0.5001 0.0743
J=12 0.5037 0.0789
J=14 0.5061 0.0845

T=15 J=16 0.4964 0.0543

Panel B: Left-side Unbalancedness

Bal. Units Unbal. MD Bal. Units Unbal. MD
α = 0.50 α̂ RMSE

T=4 J=0 0.5014 0.5014 0.1199 0.1199
J=2 0.5063 0.1597

T=6 J=0 0.4964 0.4964 0.0801 0.0801
J=4 0.5079 0.1199

T=8 J=4 0.5041 0.5020 0.1141 0.0874
J=5 0.5074 0.5048 0.1542 0.0933
J=6 0.5097 0.1018

T=10 J=4 0.5003 0.5000 0.0775 0.0626
J=5 0.4968 0.4992 0.0920 0.0665
J=6 0.4956 0.4998 0.1093 0.0870
J=7 0.4795 0.5032 0.1517 0.0751
J=8 0.5060 0.0805

T=15 J=9 0.5006 0.4995 0.0798 0.0534
J=10 0.5016 0.4987 0.0919 0.0559
J=11 0.5030 0.4998 0.1136 0.0590
J=12 0.5065 0.5013 0.1539 0.0604
J=13 0.5035 0.0627
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Table B.8: Simulation results. Baseline case but with Higher state dependence (α = 1)
and N = 500.

Panel A: Double Unbalancedness

Bal. Units Unbal. MD Bal. Units Unbal. MD
α = 1 α̂ RMSE

T=4 J=0 1.0029 1.0029 0.1206 0.1206
J=2 1.0167 0.2136

T=6 J=0 1.0016 1.0016 0.0856 0.0856
J=2 1.0112 1.0072 0.1691 0.1096
J=4 1.0161 0.1249
J=6 1.0220 0.1381

T=8 J=2 1.0030 1.0017 0.1042 0.0829
J=4 1.0140 1.0010 0.1761 0.0889
J=6 1.0037 0.0981
J=8 1.0078 0.1051
J=10 1.0106 0.1152

T=10 J=6 1.0184 1.0014 0.1854 0.0730
J=8 1.0030 0.0772
J=10 1.0060 0.0834
J=12 1.0104 0.0879
J=14 1.0100 0.0929

T=15 J=16 1.0001 0.0592

Panel B: Left-side Unbalancedness

Bal. Units Unbal. MD Bal. Units Unbal. MD
α = 1 α̂ RMSE

T=4 J=0 1.0029 1.0029 0.1206 0.1206
J=2 1.0089 0.1608

T=6 J=0 1.0016 1.0016 0.0856 0.0856
J=4 1.0232 0.1344

T=8 J=4 1.0050 1.0033 0.1367 0.0923
J=5 1.0044 1.0095 0.1865 0.1012
J=6 1.0113 0.1135

T=10 J=4 1.0031 1.0015 0.0923 0.0718
J=5 1.0012 1.0010 0.1086 0.0765
J=6 1.0005 1.0040 0.1352 0.0823
J=7 1.0034 1.0076 0.1878 0.0890
J=8 1.0081 0.0940

T=15 J=9 1.0055 1.0033 0.0934 0.0604
J=10 1.0051 1.0027 0.1061 0.0626
J=11 1.0080 1.0048 0.1350 0.0661
J=12 1.0085 1.0067 0.1873 0.0691
J=13 1.0065 0.0718
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Table B.9: Simulation results. Baseline case but with the Unbalancedness uncorrelated
with η and N = 500.

Panel A: Double Unbalancedness

Bal. Units Unbal. MD Bal. Units Unbal. MD
α = 0.75 α̂ RMSE

T=4 J=0 0.7535 0.7535 0.1258 0.1258
J=2 0.7658 0.2207

T=6 J=0 0.7506 0.7506 0.0852 0.0852
J=2 0.7580 0.7565 0.1642 0.1067
J=4 0.7596 0.1203
J=6 0.7727 0.1403

T=8 J=2 0.7518 0.7519 0.1007 0.0815
J=4 0.7615 0.7521 0.1676 0.0873
J=6 0.7528 0.0928
J=8 0.7569 0.1006
J=10 0.7608 0.1098

T=10 J=6 0.7672 0.7505 0.1657 0.0709
J=8 0.7514 0.0749
J=10 0.7526 0.0803
J=12 0.7574 0.0855
J=14 0.7594 0.0905

T=15 J=16 0.7482 0.0562

Panel B: Left-side Unbalancedness

Bal. Units Unbal. MD Bal. Units Unbal. MD
α = 0.75 α̂ RMSE

T=4 J=0 0.7535 0.7535 0.1258 0.1259
J=2 0.7596 0.1659

T=6 J=0 0.7506 0.7506 0.0852 0.0852
J=4 0.7684 0.1329

T=8 J=4 0.7537 0.7525 0.1230 0.0903
J=5 0.7554 0.7577 0.1664 0.0989
J=6 0.7594 0.1075

T=10 J=4 0.7506 0.7499 0.0837 0.0690
J=5 0.7473 0.7489 0.0987 0.0725
J=6 0.7468 0.7492 0.1199 0.0770
J=7 0.7466 0.7525 0.1648 0.0831
J=8 0.7552 0.0879

T=15 J=9 0.7540 0.7511 0.0842 0.0547
J=10 0.7533 0.7508 0.0961 0.0574
J=11 0.7563 0.7521 0.1219 0.0605
J=12 0.7568 0.7541 0.1655 0.0629
J=13 0.7589 0.0664
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Table B.10: Simulation results on the estimation of the AMEs. Baseline case but with
the Unbalancedness uncorrelated with η and N = 500.

Panel A: Double Unbalancedness

Bal. Units Unbal. MD Bal. Units Unbal. MD

AME ÂME RMSE

T=4 J=0 0.2019 0.2034 0.2034 0.0416 0.0416
J=2 0.2019 0.2092 0.0764

T=6 J=0 0.2021 0.2024 0.2024 0.0273 0.0273
J=2 0.2021 0.2088 0.2052 0.0602 0.0362
J=4 0.2021 0.2068 0.0414
J=6 0.2021 0.2093 0.0476

T=8 J=2 0.2021 0.2039 0.2031 0.0339 0.0265
J=4 0.2021 0.2109 0.2034 0.0612 0.0286
J=6 0.2021 0.2038 0.0306
J=8 0.2021 0.2048 0.0333

J=10 0.2021 0.2045 0.0360
T=10 J=6 0.2020 0.2133 0.2025 0.0625 0.0229

J=8 0.2020 0.2030 0.0244
J=10 0.2020 0.2032 0.0264
J=12 0.2020 0.2043 0.0274
J=14 0.2020 0.2040 0.0296

T=15 J=16 0.2021 0.2018 0.0180

Panel B: Left-side Unbalancedness

Bal. Units Unbal. MD Bal. Units Unbal. MD

AME ÂME RMSE

T=4 J=0 0.2019 0.2034 0.2034 0.0416 0.0416
J=2 0.2019 0.2065 0.0589

T=6 J=0 0.2021 0.2024 0.2024 0.0273 0.0273
J=4 0.2021 0.2086 0.0462

T=8 J=4 0.2021 0.2058 0.2042 0.0436 0.0304
J=5 0.2021 0.2081 0.2060 0.0614 0.0335
J=6 0.2021 0.2055 0.0369

T=10 J=4 0.2020 0.2036 0.2026 0.0285 0.0226
J=5 0.2020 0.2028 0.2023 0.0340 0.0239
J=6 0.2020 0.2032 0.2026 0.0423 0.0256
J=7 0.2020 0.2048 0.2037 0.0605 0.0280
J=8 0.2020 0.2037 0.0297

T=15 J=9 0.2021 0.2051 0.2031 0.0286 0.0178
J=10 0.2021 0.2051 0.2030 0.0331 0.0188
J=11 0.2021 0.2071 0.2035 0.0435 0.0199
J=12 0.2021 0.2093 0.2040 0.0612 0.0208
J=13 0.2021 0.2039 0.0218
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Table B.11: Percentage of Monte Carlo Simulations that achieved convergence for the
Minimum Distance estimation

Uncorrelated IC Higher Uncorrelated
Baseline and Unbalancedness State Dependence Unbalancedness

Unbal. MD in Unbal. MD in Unbal. MD in Unbal. MD in
Tables 1 & B.2 Table B.6 Table B.8 Table B.9

Panel A: Double Unbalancedness
T=4 J=0 100.0 100.0 100.0 100.0

J=2 99.0 100.0 100.0 100.0
T=6 J=0 100.0 100.0 100.0 100.0

J=2 100.0 100.0 100.0 100.0
J=4 100.0 100.0 99.9 100.0
J=6 99.9 99.8 99.5 99.9

T=8 J=2 100.0 100.0 100.0 100.0
J=4 100.0 100.0 100.0 100.0
J=6 100.0 100.0 100.0 100.0
J=8 100.0 100.0 100.0 100.0

J=10 99.8 99.1 95.5 99.1
T=10 J=6 100.0 100.0 100.0 100.0

J=8 100.0 100.0 100.0 100.0
J=10 100.0 100.0 100.0 100.0
J=12 100.0 100.0 99.7 100.0
J=14 100.0 95.0 89.2 95.1

T=15 J=16 100.0 100.0 99.9 100.0

Panel B: Left-side Unbalancedness
T=4 J=0 100.0 100.0 100.0 100.0

J=2 99.9 100.0 100.0 100.0
T=6 J=0 100.0 100.0 100.0 100.0

J=4 100.0 100.0 99.7 100.0
T=8 J=4 100.0 100.0 100.0 100.0

J=5 100.0 100.0 100.0 100.0
J=6 100.0 99.9 99.3 99.9

T=10 J=4 100.0 100.0 100.0 100.0
J=5 100.0 100.0 100.0 100.0
J=6 100.0 100.0 100.0 100.0
J=7 100.0 100.0 100.0 100.0
J=8 99.9 99.5 98.3 99.5

T=15 J=9 100.0 100.0 100.0 100.0
J=10 100.0 100.0 100.0 100.0
J=11 100.0 100.0 99.9 100.0
J=12 100.0 100.0 99.7 100.0
J=13 99.8 96.8 91.3 96.8

Note: In other specifications all simulations converged or the percentage of convergence
very was close to 100%.
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C Appendix: Other application tables

Table C.1: Definition of variables and Descriptive statistics

Variable Definition Total Exporters Non-exporters

Export Export activity (binary indicator) 0.52
(0.50)

Size (Number of employees)/100 1.77 2.95 0.48
(5.7) (7.6) (1.1)

R&D intensity (R&D expenditure)/Sales 0.006 0.009 0.002
(0.02) (0.02) (0.01)

High skill Share of workers 2.93 3.7 2.0
with a university degree (5.6) (5.7) (5.4)

Med. skill Share of workers 4.23 5.2 3.1
with a high-school degree (6.9) (7.3) (6.2)

Age Years since firm’s creation /10 2.40 2.98 1.78
(2.3) (2.5) (1.9)

Number of Observations 13,203 6,887 6,316

Note: For each variable, Mean and Standard Deviation (in parentheses) are reported
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Table C.2: Export decision estimates

Variables Bal. Units Ignore Unbal. Unbal. MD

Exportt−1 1.544 1.459 1.534
(0.094) (0.075) (0.074)

Sizet 0.107 0.035 0.029
(0 .119) (0.085) (0.086)

Trend 0.100 0.097 0.095
(0 .015) (0.011) (0.013)

R&D intt -2.535 -1.412 -2.263
(1.994) (1.562) (1.752)

High skillt -0.010 -0.009 -0.011
(0 .011) (0.008) (0.008)

Med skillt 0.002 0.002 0.006
(0.007) (0.005) (0.005)

Aget 0.039 0.045 0.025
(0.030) (0.021) (0.021)

Exportti 2.618 2.475
(0 .239) (0.177)

Size 0.106 0.211
(0.128) (0.093)

R&D int 6.695 7.123
(4.871) (3.215)

High skill 0.000 0.003
(0.019) (0.012)

Med skill 0.038 0.028
(0.015) (0.009)

Const. -2.646 -2.693
(0.165) (0.126)

Num. obs. 6,291 10,876 10,876
Note: Standard errors are reported in parentheses.
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