

Research and
development of Big
Data technologies in
the field of Human
Resources
.ŀŎƘŜƭƻǊΩǎ ŘŜƎǊŜŜ ¢ƘŜǎƛǎ

Author: Ignacio Martín Martínez

Supervisor: Dr. José Alberto Hernández Gutiérrez

Degree in Telematics Engineering

September 2014

i

ii

Acknowledgements

First of all, I would like to thank my family, for being unconditionally supportive and helping, especially to
my father, David who has been listening and attending to all my crazy ideas and projects in the fields I
study. Also, I would really like to thank my close friends and relatives, who have supported or contributed
to my work and motivation in different ways and which, without them, I would not have been able to end
this huge work the cheerful way I have.

I would also like to thank all my university classmates, especially the ones with whom I have shared days,
classes, practices, projects and more. To all those who have helped me during the degree in one or other
way and have been supportive and have taken me out from more than one problem. All of them could be
considered a part of this work, since I have never had such a supportive and caring partners.

Finally, I would like to thank my supervisor, José Alberto for this year of ideas, new technologies,
unexpected turns and constant support and for the result of this journey which started a year ago and
have given us moments of trouble, anxiety, stress and complication. Thanks to our joint effort, we have
ōŜŜƴ ŀōƭŜ ǘƻ ŘŜǾŜƭƻǇ ŀ .ŀŎƘŜƭƻǊΩǎ ŘŜƎǊŜŜ ǘƘŜǎƛǎ ǿƘƛŎƘ L ŀƳ ǾŜǊȅ ǇǊƻǳŘ ƻŦΦ

!ŘŘƛǘƛƻƴŀƭƭȅΣ L ǿƻǳƭŘ ŀƭǎƻ ƭƛƪŜ ǘƻ ǘƘŀƴƪ ¢ŜƭŜŦƻƴƛŎŀ ŀǎ ŘǳŜ ǘƻ ƛǘǎ ά¢ŀƭŜƴǘǳƳ {ǘŀǊǘǳǇǎέ ǎŎƘƻƭŀǊǎƘƛǇ L ƘŀǾŜ
received additional means, formation and support to carry on with this amazing adventure which is now
ending and which, I hope, will bring more new adventures and projects for me to take part in.

iii

iv

Abstract

The aim of this work is to describe and report the achievements reached in the research and

development of Big Data technologies and frameworks. The document describes the research

process and the orientation towards the field of intelligent human resources management and

recruiting, retrieving information from LinkedIn, Tecnoempleo and Infojobs and its posterior

analysis inside a customized framework.

The whole report covers the entire process of data selection and retrieval by means of emerging

technologies such as Node.js or MongoDB, data processing using R programming language

supported by Hadoop and algorithms such as TFIDF or Okapi BM25 and finally reaches

conclusions and practical applications, which are considered either for future study or revision

during the project.

Most of the results are extracted from simple data analyses from the collections, which show very

relevant data for Internet enterprises such as the activity from users and companies in LinkedIn

or the most relevant aspects of job offers in Tecnoempleo. Additionally, a framework for this data

analyses is built and documented to allow further research on the subject from a very clear starting

point where all information can be gathered, processed and analysed within the same framework.

Finally, to all research work a business application is added with a developed prototype which

shows commercial possibilities for the data sets gathered. Such prototype is also developed by

emerging technologies and is highly connected to the framework and all the Big Data ecosystem.

v

vi

Table of Contents

1. Motivation and Objectives ... 1

1.1 Motivation ... 1

1.2. Objectives .. 2

1.3. Dissertation overview ... 3

2. State of the art and key technologies .. 4

2.1. Data Acquisition tools .. 4

2.1.1. Crawling .. 4

2.1.2. REST API.. 5

2.2. Big Data Technologies ... 5

2.2.1 Hadoop ecosystem .. 5

2.2.2. Google Ecosystem .. 8

2.2.3. Microsoft Azure ..10

2.2.4. Amazon Web Services ...10

2.2.5. SAP Hana ..11

2.2.6. Storage Systems ..11

2.3. Data Mining tools ..12

2.3.1. R ..13

2.3.2. Python ..14

2.3.3. Java over Hadoop ..16

2.3.4. Matlab ..16

2.3.5. Scala ..16

2.4. Web technologies ...17

2.4.1. Node.js ...17

2.4.2. PHP ...17

2.4.2. Django and Python ...17

2.4.3. HTML5 ...18

2.4.4. CSS ...18

2.4.5. R packages for web communication ...18

2.5. Text mining and information retrieval algorithms ...19

2.5.1 TF-IDF ..19

2.5.2. Okapi BM25 ...20

vii

2.5.3. Clustering algorithms ...21

2.5.4. Vector space scoring ..22

3. System architecture and design ...24

3.1. System architecture overview ...24

3.2. Data acquisition ..25

3.2.1. Technologies involved ..25

3.2.2. Development process ..27

3.3. Data analysis ..30

3.3.1. Technologies involved ..30

3.3.2. Development process ..31

3.4. Data mining ..35

3.4.1. Technologies involved ..35

3.4.2. Development process ..36

3.5. Data visualization and application ...39

3.5.1. Technologies involved ..39

3.5.2. Development process ..40

4. Experiments and results ...43

4.1. Data set description ..43

4.2. LinkedIn job collections analysis ...44

4.2.1. Job offer analysis: offer descriptive field selection. ...44

4.2.2. Companies offering jobs in LinkedIn...47

4.2.3. Lifetime of job offers in LinkedIn ...48

4.2.4. More relevant requirements and keywords in job Offers in LinkedIn49

4.3. Tecnoempleo job offer analysis ..53

4.3.1. Tecnoempleo basic analysis ..53

4.3.2. More relevant technological and profile terms ..55

4.3.3. Comparison of experience against formation ...56

4.3.4. Tecnoempleo offers clustering ...59

5. Prototype ...64

5.1. Prototype design and implementation ...64

5.2. Use case ..66

6. Conclusions and Future Work ..70

7. References ..74

viii

Annex I ...76

Project planning ...76

Budget ...80

Annex II...82

AII.1. MongoDB collections data schemas ...82

AII.2. Additional code lines from crawler programs ..85

AII.3. Framework additional captures ..87

AII.4. MongoDB Collections stats images ..89

ix

Table of Figures
Figure 1.1 Objective schema during the project ... 2

Figure 3.1 Objective schema during the project ..24

Figure 3.2 Project architecture schema ...25

Figure 3.3 Crawler init function ..28

Figure 3.4 Crawler structure ..29

Figure 3.5 Code for HTML parsing ..30

Figure 3.6 R base console program ..32

Figure 3.7 Hadoop file system root directory ...33

Figure 3.8 Framework schema ..34

Figure 3.9 MapReduce skeleton code ...37

Figure 3.10 identifier-term mapper function code ..38

Figure 3.11 ..41

Figure 3.12 REST API code snipet ..42

Figure 4.1 Skill text length distributions with and without stopwords ..44

Figure 4.2 Distribution of skill text sparsity ..45

Figure 4.3 Description text length distributions with and without stopwords45

Figure 4.4 Distribution of description text sparsity ...46

Figure 4.5 Number of jobs posted per company ..47

Figure 4.6 Lifespan of Job offers in months ...49

Figure 4.7 Wordclouds from person profiles and job offers ...51

Figure 4.8 Most relevant keywords from profiles and job offers ...51

Figure 4.9 Relevance of the 25 most offered skills among candidates in job offers52

Figure 4.10 Tecnoempleo offers basic parameters ...54

Figure 4.11 Number of jobs posted per company ..55

Figure 4.12 technological and profile requirement wordclouds ..56

Figure 4.13 jobs offered according to experience and formation ...57

Figure 4.14 salaries given to positions requiring certain experience and formation58

Figure 4.15 Within groups sum of squares for the Tecnoempleo technologies collection59

Figure 4.16 Wordclouds of the technology clusters in Tecnoempleo ...61

Figure 4.17 Salary summary of each of the professional groups inferred by clustering62

Figure 5.1 Okapi implementation code ..65

Figure 5.2 Prototype architecture schema ...66

Figure 5.3 Application index ..66

Figure 5.4 Application logging with LinkedIn ...67

Figure 5.5 Search result view ..67

Figure 5.6 Pagination options detail ..68

Figure 5.7 Capture of the LinkedIn Management profile for application testing69

Figure 5.9 Application output for a Java developer profile ...70

Figure 5.8 Application output for a management profile ..70

Figure AI.1 Gantt diagram ...78

Figure AI.2 Network diagram ...79

Figure AII.1 Base crawler detail: LinkedIn crawling engine code snippet85

x

Figure AII.4 Tecnoempleo Crawler. This code snippet shows the extraction of a given URL86

Figure AII.3 Mongoose job offer schema ...86

Figure AII.2 Mongoose person profile schema ..86

Figure AII.5 Mongo-framework connector based on Node.js solutions87

Figure AII.6 RStudio server capture during a Hadoop MapReduce job88

Figure AII.11 Tecnoempleo and LinkedIn mixed job offer collection ..89

Figure AII.10 Tecnoempleo job offer collection (TE) ..89

Figure AII.8 LinkedIn job offer collection (LIJ) ...89

Figure AII.9 LinkedIn company collection (LIC) ...89

Figure AII.7 LinkedIn person profile collection (LIP) ..89

xi

1

1. Motivation and Objectives

1.1 Motivation

At present, information society is gaining relevance and data production and consumption is

increasing. For years, the Internet has been focused on the information and contents generated

by human users, where each user shares his data with a limited number of users. Nowadays, with

the advent of social networks and the relevance acquired by smartphones and tablets, the Internet

is experimenting a huge development and turning into ñThe Internet of Thingsò where every device

is connected and generating more data to be processed as more devices are being connected at

all times.

Consequently, as new information is generated, new studies and use cases appear for this new

data which entail several ways of analysis, processing and computing. Moreover, the possibilities

of such a big and diverse dataset provide a huge amount of possibilities and results that tend to

be highly valued by top companies in the world.

This huge amount of information require new and advanced techniques for data processing,

where traditional programming has to evolve as traditional techniques are based on computer

power, which result useless when data size overcome single processor and memory capacity.

Due to the limitations on computer hardware, this project will be addressing software solutions to

optimize data processing over a common personal computer hardware with no improvements of

any kind.

In order to achieve the main goal of this project, we will target the field of human resources and

recruiting as application for the technologies and methods here described since the Internet offers

a great amount of information and new ways of job searching and job recruiting. Therefore, the

main sources of information will be professional networks such as LinkedIn or Tecnoempleo

where users can either post or apply job offers as well as publish any other relevant professional

information.

Actually, the field of talent hunting and human resources in businesses has not yet developed all

the power that Big Data technologies have to offer. Although there exist several solutions and

web services working on this field, no one offers solutions to analyse candidate profiles or job

offers in a very extensive way. In fact, these services are rather limited and underdeveloped, not

exploiting all the opportunities that datasets have to offer.

2

1.2. Objectives

Considering all the motivations explained in the previous section, this project addresses the new

situation in the Net, so new solutions based on new programming paradigms and technologies

have a strong starting point that takes advantage of Big Data technologies. Moreover, the project

also targets the statistical analysis of job offer and candidate analysis, which is a very useful

information both for enterprises and job seekers.

Thus, the aim of the project is to study and develop technologies for processing large amounts of

data at the lowest cost possible using software solutions. For this purpose, several existing

solutions and environments, such as MongoDB or Hadoop will be studied and tested in order to

find the proper starting point to develop new contributions in the field. Concretely, the means

defined to achieve our main objective are specified below:

O1

Data capture

Design and develop a framework for heterogeneous human-
resource and job hunting data capture from several sources
(LinkedIn, Tecnoempleo, Infojobsé)

O2

Data analysis

Implement framework in Objective 1 using Big Data technologies,
offering a powerful set of tools that allow easy and fast data
analysis and processing

O3

Data Mining

Study and implement within the framework information processing
and retrieval algorithms to analyse the dataset and extract concrete
results and conclusions from this analysis.

O4

Data
visualization
and application

Extract from the dataset analysis in the framework (Objectives 1
and 2) ideas for new services oriented to the Web. Design and
implement a basic prototype of any of these ideas.

Figure 1.1 Objective schema during the project

3

Additionally, figure 1.1 illustrates the flow chart diagram to be followed in order to achieve the

goals and expected results from the project. Taking as input the sources of information, all the

steps will be performed until the final result is achieved.

1.3. Dissertation overview

This document is divided in 5 chapters where the methodology and processes of the project are

presented and explained.

Chapter 2 presents the state of the art and all key technologies from where the project starts. This

chapter is also divided in relevant sections which cover all the technologies and relevant solutions

inside the proper framework.

Chapter 3 justifies the selection of technologies and algorithms to be used as well as developing

the architecture of the full software solution developed. Additionally, it explains in detail how every

phase in the project is developed and how the framework is installed and configured.

Chapter 4 presents the results obtained from the studies performed and answers the questions

proposed. All the experiments undertaken are explained in detail in this section together with its

results.

Chapter 5 explains and shows the prototype application derived from the whole project, including

a brief description and a use case with detailed captures and descriptions of the application.

Finally, chapter 6 summarizes the conclusions extracted from the project and proposes new

studies and works to continue the research towards new applications and results as well as

describing the ideas which the team already though about.

Additionally, annex I includes the planning and cost of the full project from its beginning and annex

II includes additional captures and tables which are referenced in previous chapters.

4

2. State of the a rt and key technologies

One of the most interesting features of Big Data processing is the huge amount of existing

solutions, which offer the best starting point to develop new technologies in the field. All the

technologies used in this project could be classified in four groups: Technologies for crawling

information, technologies for storing information, technologies for processing information and

technologies for web service design.

2.1. Data acquisition tools

At present, there exist several tools both from programmers and web services to extract

information from the Internet.

2.1.1. Crawling

A crawler is a computer program that navigates through the web searching information about one

or more topics by means of recursively accessing all the hyperlinks contained in the pages

retrieved. Generally a crawler works by downloading the full HTML page for future parsing of tags.

There exists several libraries in various programming language, which provide functions to

automatically download and even retrieve information from the selected XML tags based in XPath

routes. Some of this solutions include languages such as Javascript, Java, R or Python.

Javascript offers many libraries for HTML page retrieval, such as http and https from node, JQuery

or XMLHttpRequest, which perform various HTTP method requests to retrieve static web pages

for future processing. In order to process HTML Javascript provides some libraries like HTML

DOM API. However, Javascript HTML processing lacks some good libraries other programming

languages possess.

Java instead, offers several integrated web crawling tools which perform both page retrieval and

HTML parsing such as crawler4j, webSPHINX or JSpider. These crawlers allow programmers to

retrieve complete websites, parsing the HTML to recursively obtain new links and information.

Some of them even offer workbenchs and almost all of them are open source and supported by

big enough communities.

The R language programming also provides very specific libraries for web crawling: XML and

RCurl. RCurl allows to send an HTTP request to download HTML pages and XML is a tag parser

for both XML and HTML which, based on XPath sentences retrieve a concrete tag from the XML

tree or even convert a full HTML page into an R table.

Python, which is getting very popular in for web development and Internet related programs, offers

also a lot of libraries devoted to web crawling. Some of the most popular are urllib, which opens

5

a connection with an URL, HTMLParser, which parses HTML allowing the user to customize the

parsing functions. Other parsing modules are Beautiful Soup or lxml and for HTTP requesting,

Requests module may be used.

2.1.2. REST API

Brute force crawling is usually efficiency expensive, as parsing a tree structure increases

complexity and therefore, operation time. Due to this, several web services, especially social

networks and user-based websites offer an especial tool for data acquisition called REST API.

An REST API (Representational State Transfer Application Programming Interface) is simply a

web application which receives HTTP requests to several paths in its domain and answers with

structured information. Such information may be returned in several formats, such as XML or url-

encoded, although at present, JSON format is gaining most relevance. The returned information

may be paginated to improve efficiency.

The REST model is more extended day after day, since it provides easily manageable information

to any request and supports any platform. Thus, it is a very good alternative for web services

which support, for instance, both common web page and mobile application.

In order to improve security in these services, many APIs are protected by different methods,

such as OAuth. OAuth is a common three way authorization method developed to provide a user

with mechanisms for controlling which applications access his/her data and grant or revoke such

authorizations within an application.

At present, several Internet companies offer such tools to the open public. Generally, the

information provided is constrained both by the own user authorization and by the company by

means of daily query limits or strict registering of applications which use these tools. These

companies are the ones such as Twitter, Facebook or LinkedIn.

2.2. Big Data Technologies

2.2.1 Hadoop ecosystem

Apache Hadoop is a software framework supporting distributed applications under an open

source licence. It was inspired in Google technologies for Map Reduce and Hadoop Distributed

File System. The key for Hadoop functionality is its distributed architecture: every simple piece of

information stored is chunked and replicated by the Hadoop system, which keeps track of where

each chunk is and coordinates efficient information management and retrieval.

Hadoop is composed by two main components: Hadoop Distributed File System and MapReduce.

Both components are based on distributed programming and continuous communication.

MapReduce operations usually take as input a directory of files stored in the Hadoop file system

and computes the required operations in a distributed way.

6

In addition to this two main components, there exist several extensions based on Hadoop which

enlarge its processing possibilities to specific subjects which would have to be built over plain

Hadoop MapReduce otherwise.

2.2.1.1. Hadoop distributed file system

Hadoop Distributed File System (HDFS) is the storage component of the Hadoop platform. HDFS

consists on a set of distributed nodes which store information and their replicas. The main

components of HDFS are:

ǒ NameNode: This is the primary node of the Hadoop File System and is in charge of

keeping track of all the documents stored in the system. It stores the metadata related to

all files and is in charge of starting and coordinating basic file operations such as opening,

creation or modification for clients. The name node also provides the end user with a

consistent file system management system and determines the mapping of information

blocks to DataNodes.

ǒ Secondary NameNode: This element is in charge of creating checkpoints of the name

node contents by downloading name node contents, processing the information to merge

files and other efficiency operations and uploads the information back to the name node.

Secondary name node also stores a copy of the metadata for restoring in case of name

node failure. However, the secondary NameNode is not a name node redundancy and will

not assume its functions in case name node goes down.

ǒ DataNode: The DataNodes are responsible for serving read and write requests to the

clients. They store chunks of information under NameNode coordination. The DataNodes

lack the logic and capacity for information retrieval: they only read or write their chunks at

request

.

HDFS nodes are grouped in clusters. Each cluster must contain a NameNode and one or more

DataNodes and may contain a Secondary NameNode. Each cluster component may be either

installed in different machines communicated via Local Area Network or working in a single

machine by means of a software based pseudo-distributed mode.

Additionally, it is important to remember that HDFS is not a data base; it is a file system where

we can store folders and files. Therefore, in order to store information in HDFS some middle layer

such as a built in database or a custom file hierarchy is required.

2.2.1.2. MapReduce

The MapReduce component of Hadoop is in charge of performing MapReduce operations from

data stored into the Hadoop Distributed File System (HDFS). These MapReduce operations

consist on the parallel processing of documents by means of a Map operation, which receives a

set of documents, performs some operations and emits a set of key value pairs, and a Reduce

operation, which receives the key value pairs obtained by the mappers and sums them according

7

to their key values, as well as performing possible further operations. The Hadoop MapReduce

module is highly distributed and has two types of components:

ǒ JobTracker: The JobTracker is the component responsible for distributed operation

management. It is the component which separates an entire MapReduce operation into

simple tasks which are sent to the TaskTrackers to be performed. The JobTracker decides

whether each TaskTracker performs a map or a reduce operation and coordinates the

input and output stream of TaskTrackers.

ǒ TaskTracker: The TaskTracker component receives a chunk of the data set and performs

either a Map or a Reduce operation on such data set. Once the TaskTracker ends, it emits

its results and waits for more data.

Like HDFS, the Hadoop MapReduce component is separated in clusters of machines

interconnected where each machine can have installed 1 or more TaskTrackers. Additionally, one

machine should have installed the JobTracker and all configuration files should be edited

accordingly. It is important to remind that each of these components is a separate entity that can

be installed and configured independently from the rest.

2.2.1.3. Hive

Hive is a data warehouse which eases data management in an HDFS system. It provides a simple

language very similar to SQL called HiveQL which allows to perform SQL like queries to a Hadoop

Distributed File System transparently for the user.

Additionally, Hive allows the user to define Map Reduce operation code to be performed natively

and provides full index support. It supports many file formats and is open Source.

However, since a MongoDB database was deployed and working when Hadoop was introduced

and all data introduced in Hadoop was formatted using node.js programs, Hive was discarded as

it did offer no new or interesting feature.

2.2.1.4. Mahout

Mahout is a software project of the Apache foundation that pursues building a scalable machine

learning library. It implements the basic machine learning algorithms for clustering, classification

or filtering on distributed and scalable systems.

Mahout can be thus implemented on top of the HDFS, being able to exploit all the power of

Hadoop MapReduce operation into its own algorithms, making possible the application of

machine learning algorithms to huge data sets in a transparent way.

Although it has been usually deployed over Hadoop, there exist many other distributed systems

over which Mahaout can work, such as Spark.

8

2.2.1.5. Spark

Spark is an open source data analytics framework built on top of the Hadoop Distributed File

System. In contrast to Hadoop MapReduce component, Spark does not compile the MapReduce

classical implementation, providing efficiency improvements of a hundred times with respect to

Hadoop MapReduce.

The key to Spark performance is that it provides primitives for in-memory cluster computing, so

data can be loaded into a cluster memory and queried or processed repeatedly, which makes it

a good candidate over which machine learning algorithms can be deployed. There exists Spark

APIs for Java, Python or Scala, which combined with the power of these languages provide a

very easy and powerful starting point.

Each Spark application run as an independent set of processes on a cluster, coordinated by the

SparkContext object in the main program or ñDriver programò. The SparkContext can connect to

several type of cluster managers, such as Hadoop YARN clusters or the own Spark clusters. To

allocate resources across applications.

Once connected, SparkContext acquires executors on nodes in each cluster. These executors

are processes inside each node dedicated to the task performed and therefore, they store data

and run computations. Once acquired, the SparkContext sends each executor the code for the

application and afterwards, the tasks each executor should perform.

2.2.1.6. Pig

Pig is a platform which provides a High-Level programming language, similar to SQL, over the

Hadoop MapReduce operation component in order to reduce MapReduce program development

complexity as well as increasing efficiency.

The language provided by Pig is called Pig Latin. Pig interprets Pig Latin commands and

translates them to Java MapReduce operation code for many basic MapReduce operations.

Additionally, Pig Latin code may be augmented by means of the User defined functions written in

Java, Python, Javascript or Groovy.

2.2.2. Google Ecosystem

2.2.2.1 Google File System

Google File System (GFS) is a distributed file system implemented by Google to run on

commodity hardware and meet some of the specifics needed for Google search service. Many of

the goals of GFS are shared with other file systems, such as scalability, performance or reliability.

GFS is meant to be deployed in a huge cluster of hundreds or thousands of machines built with

inexpensive components and is expected to be accessed by a similar or even larger number of

client machines. Therefore, there will be components failing at any time or even permanent

faliures, so the file system must be highly fault tolerant.

9

Google File system provides a familiar file system interface, even though it does not implement

any standard API such as POSIX. This API consists in a tree-like file hierarchy, where each

directory is identified by its pathname. Common file operations are supported.

A cluster in GFS consists on a single master and several chunkservers. Each chunkserver is a

Linux machine running a server process. Running a chunkserver and a client in any of this

machines is possible, as long as its resources meet the requirements. Files are diveided into

fixed-size chunks identified by a unique 64bit chunk handle. As a default, every chunk is stored

three times in different chunkservers in order to assure reliability and fault tolerance.

The master maintains and handles all file system metadata, including mappings from files to

chunks and viceversa. Clients communicate to the master for metadata information, but all

communications involving data management is managed directly by the proper chunkservers.

There is no cache in neither clients nor chunkservers in order to avoid coherence problems.

Chunk size in GFS is, by default, of 64MB. Each replica is stored as a plain Linux file on a

chunkserver. Due to this size, reads and writes of a normal file do not require more than one

interaction with the master, avoiding it to become a bottleneck.

2.2.2.2. MapReduce

MapReduce is, in fact, a Google creation. When the search engine started to get larger, a

programming paradigm for scalable and efficient computing was needed, and thus, MapReduce

appeared.

The MapReduce programming paradigm is based on taking a set of input key/value pairs and

producing a set of output key/value pairs. The map function takes the input set and produces an

intermediate set of key/value pairs according to the user code provided.The MapReduce system

then groups together values according to their keys and sends them to the reduce function. The

reduce function then accepts one or more keys and their set of values and merges them together

to form a smaller set of values for each key.

The implementation of MapReduce is based on a distributed architecture. The map invocations

are distributed across multiple machines which receive a chunk of the input data each. Reduce

invocations are also distributed by partitioning the intermediate key values into several pieces by

means of a hashing function. The number of partitions and partitioning functions are specified by

the user.

After MapReduce completion, the output of the process is stored in each of the reducer output

files, which can be combined or used as input for another MapReduce task or distributed

application. The master keeps several data structures, such as each MapReduce state or the

identity of the worker machine. Furthermore, the user coordinates the flow of information between

map and reduce functions as well as storing the location of the output results.

10

2.2.2.3. Big Table

Big Table is Google proprietary storage system. Each Big Table is a distributed multi-dimensional

persistent sorted map indexed by row and column keys and timestamp. Each value of this

structure is an array of bytes.

It is important to remember that Google Big Table is a storage system prepared to index web

pages and contents, and thus, its row indexes store the URL of each page in lexical order. Each

column key is grouped into families, which are tiny groups of readable string identifiers which

information is of the same type. Several column families may be defined in each Big Table and

each column is identified by ófamily:qualifierô, being the qualifier any random string. Each pair row-

column stores a cell with the information relevant to the indexes, that is, some feature (column

index) of a web page (row index). Finally, each cell in Big Table can contain many versions of

the information which are indexed by timestamp.

Google Big Table also offers an API with functions to perform basic operations to the data for

client operations.

However, since Big Table is a proprietary system and it is based in another proprietary system

(Google File System) it is not a good candidate for our storage system. Furthermore, Big Table is

optimized for webpage metainformation storage and provided we are searching a system capable

of storing as much information as possible, Google Big Table is limited for our intentions.

2.2.3. Microsoft Azure

Microsoft Azure (previously Windows Azure) is a cloud platform developed by Microsoft which

provides different services for many applications, such as cloud computing or hosting sites.

Microsoft Azure supports many programming languages, both from the Microsoft ecosystem and

other acknowledged solutions.

It is self-described as a clod layer which works over several systems using Windows Server.

Some of the supported services provided are non-relational storage, application hosting, or

security backups. However, Azure constrains applications to work in Windows Server 2008, no

matter the language or environment where they have been conceived.

2.2.4. Amazon Web Services

Amazon Web Services is a collection of cloud computing services available as a full cloud platform

offered by Amazon. It is one of the pioneers in the field of cloud computing services and is broadly

used by companies such as Dropbox or Foursquare.

AWS was launched in 2006. Its services online are available for any web service or other client-

side applications. AWS provides a REST API and access through SOAP and is charged by usage.

The AWS layer provides several services from scalable computing services to SQL databases,

NoSQL, mailing server solutions or web servers

11

2.2.5. SAP Hana

SAP Hana is an in-memory database solution from SAP AG. It provides a database with several

additional components, which add cloud computing and advanced analysis and modelling

functionalities to the basic database solution.

Hana rests on low cost RAM memory, multicore processing capacity and solid state disk fast

access to data in order to offer a high-performance solution of analytic and transactional

applications. The first version in the market appeared in 2010 and has been improved until the

present day.

2.2.6 . Storage Systems

Data storage is another key point in Big Data since even with a really good processing system, if

the database or storage system is not able to retrieve quickly and efficiently the information

needed, the whole system will fail due to the bottleneck created.

2.2. 6.1. MongoDB

MongoDB is the leading NoSQL database in the Big Data environment. It is a document oriented

database where documents are formatted as JSON and indexes are fully supported. Mongo offers

data replication, high availability and allows horizontal escalation transparently, so queries and

data insertion is optimized.

MongoDB is supported by node and R among other programming languages and there exists

several frameworks to model and schematize database contents. It also provides an easy tool for

efficiently backing up and restoring information, so the database contents are highly portable and

safe.

Thanks to the efficient horizontal replication and high availability support, queries to a mongo

database are extremely fast when the collection is highly populated, which makes mongo a very

good candidate for Big Data storage. Moreover, node offers with the connector a console program

to access the data stored and built in functions, such as map-reduce, which will be presented later

on this section.

Therefore, Mongo is a highly efficient, portable and complete solution for storage of large amounts

of data with good interfaces for the technologies used within this project, which added to being an

open source technology and having good documentation and community makes mongo the best

alternative for data storage in many Big Data projects.

2.2. 6.2. SQL

SQL stands for Structure Query Language and it is a standard language for relational databases

access and management. A relational database is a database paradigm which defines tables of

information in which each entry is a row and has columns, which are common to all elements. In

12

a relational database, rows among tables are related by one or more columns, allowing to store

in a simple and ordered way thousands of entries.

Nevertheless, SQL is just a query language which allows managing a database manager. These

database managers are in charge of interpreting the SQL sentences and performing the proper

operations in the system for data storage. Many of these database managers (DBMS) are very

popular and used in many applications. Some of the most well-known are: MySQL, PostgreSQL,

Oracle, SQL lite and many others.

Relational databases follow the acronym ACID, which stands for:

ǒ Atomic: All the steps that must be taken for the operation occur or the whole operation

fails.

ǒ Consistency: Everything, once stored, must be consistent in all queries and updates of the

system. Whatever operation we perform, it must jump from a valid database state to

another valid state.

ǒ Isolation: Any number of transactions over the same information must not generate any

error. Each single operation over the information must be independent from all the other

ones.

ǒ Durability: All changes performed to the information must be safely stored and definite,

without the possibility of turning back.

These behaviour is very important, since it allows SQL to be a reliable, quick and robust system

to manage and store information.

2.2. 6.3. Cassandra

Apache project Cassandra is a NoSQL database which provides a Scalable and High available

solution efficiently on top of either commodity hardware or distributed systems. Cassandra

provides Linear scalability and fault-tolerance for the data stored in it.

The storage provided by Cassandra is structured in key/value pairs of data. The distributed

architecture is based on a P2P communication protocol among nodes, creating a high level of

redundancy.

2.3. Data mining tools

One of the key points for ñBig Dataò Analysis is processing information. Traditionally, data is

loaded to computer memory and processed sequentially following the execution thread of the

program. At present, this paradigm requires either hardware over scaling or a huge amount of

time, and thus neither of them are acceptable for an efficient application.

In contrast, when referring to Big Data, parallel processing is a key concept. Any Big Data

processing program takes advantage of all the parallel processing resources, such as multiple

13

core processors, by creating parallelizable and distributed algorithms which split data into

independent chunks in which simple tasks may be easily performed.

One of the most important paradigms for data processing is Map-Reduce. The Map-reduce

algorithm is a programming paradigm based on parallel processing which allows the user to define

in two stages(map and reduce) the way of processing the information receiving key-value pairs

and emitting new ones. This way of programming makes task performance really faster, although

adding complexity to the traditional paradigm.

2.3.1. R

The R programming language is a strongly functional language broadly used for statistical

analysis and information retrieval. R has a very efficient and strong base core which can be

extended with libraries natively programmed, so all methods offered by these libraries are also

highly optimized.

Once the information is stored, it can be loaded to R using a data structure called dataframe. A

dataframe is matrix with named rows and columns which can contain any mixture of any kind of

data. R provides several methods to efficiently traverse and perform operations over dataframes

and many R packages accept them as input. In addition, R provides several built-in statistical and

mathematical analysis libraries.

Thus, R is a more than appropriate candidate for data mining and processing. Especially in the

scope of this project, there are three relevant R libraries: tm, RHadoop and RHipe. The first one

is a data mining and processing library, whereas the other two are Hadoop connectors with R.

2.3.1.1. R: tm

The tm package is a text mining library which allows the user to prepare and process text in a

simple manner. It is based on creation of Corpora, which are collections of documents that tm

joins, process according to user commands and optimizes for term frequency matrices creation.

Other operations supported are text cleaning, text trimming or stopword removal based on given

lists for many languages.

2.3.1.2. R: RHadoop

RHadoop is a Hadoop connector for R developed by Revolution analytics. Hadoop is a very

powerful tool, but it is restricted to writing Java programs in order to perform a map-reduce job.

Although this is not a major inconvenience, it is an important drawback, since Java is not such a

statistical specific programming language as R is. Thus, having a Hadoop connector to R allows

to perform map reduces in an environment optimized for data mining and statistical analysis. The

RHadoop program is composed by three R libraries: rmr, rhdfs and rhive.

Rmr package is in charge of connect to the Hadoop MapReduce engine and perform map reduce

tasks defined by means of R code. Although working inside R, this package takes control of the

14

Hadoop cluster and performs all tasks using all the Hadoop daemons and resources, not just the

ones reserved for R.

Rhdfs is an interface package between the Hadoop Distributed File System and the R

environment. It basically allows Hadoop File System to be controlled from R console. This

package provides a low level interface to HDFS with functions to perform basic and advanced

operations over datasets stored in HDFS.

Rhbase is an interface for operating the Hadoop HBase data source stored at the distributed

network. It provides several methods for initialization and read, write and table manipulation

operations.

However, it is not necessary to install the three packages in order to run MapReduce operations

in R. If we use HBase, we need rhbase, else we will need rmr for MapReduce operations and

rhdfs for HDFS management interface.

2.3.1.3. R: RHipe

RHipe stands for R and Hadoop Integrated programming Environment and is a R and Hadoop

connector. It allows to perform map-reduce tasks using R. The working of the RHipe library

consists on an RClient program which maps and sends tasks to the Hadoop Job Tracker, passing

all needed parameters such as map and reduce functions or input and output files.

One of the most important keys in the RHipe library is that it provides a low level interface over

Hadoop. Any R user with RHipe can perform operations in R over a large dataset stored in HDFS,

which allows the user to process Hadoop stored data with the advanced tools available on R.

2.3.1.4. R: Wordcloud

The Wordcloud package is a simple library that allows the R programmer to create a wordcloud

by passing a set of words and their weight in order to create a weighted size cloud of words.

2.3.1.5. R: stats

The R stats library is a R library which offers many statistical, text mining and clustering functions.

Clustering algorithms for words based on relevance numerical measures allow the user to

separate words in groups (clusters) according to the measures given.

The stats function also provides statistical distribution generator functions and basic statistical

measures computation.

2.3.2. Python

Python is an interpreted multiparadigm programming language originally created as a successor

of the ABC programming language with a huge scientific orientation background in the Centrum

Wiskunde and Informatica in the Netherlands.

15

Nevertheless, in the past years, Python has become a very popular programming language,

which has provided an exceptional framework for the development of a lot of tools and libraries

for many subjects. As a matter of fact, Big Data and data analysis have been some of these

subjects, and thus, there are many tools in python, from MapReduce framework to natural

language processing and data analysis tools developed and supported for their use.

2.3.2.1. Octo

Octo.py is a simple MapReduce framework which provides a good approach for processing fair

big data sets by separation into parallel tasks. The system is based on a server-client approach

where the server coordinates all clients connected which will execute the map and reduce

functions defined by the user with the data provided by the server. Once each client is finished, it

will return the results to the server which will integrate all received data and finalise the execution.

Once they end, the clients wait for new tasks from the server.

2.3.2.2. Hadoop MapReduce

Hadoop ecosystem provides an API to run MapReduce operations which takes as input file texts

stored in HDFS and outputs files in another directory of HDFS. The python code to develop will

use Hadoop Streaming API to move information through MapReduce phases.

Each mapper or reducer function will be coded in a separated python file (mapper.py and

reducer.py respectively). Once everything is set, the user can start the Hadoop MapReduce task

by using the Hadoop Streaming API command passing by parameters the location of the map

and reducer functions written in Python.

2.3.2.3. Natural Language Toolkit

Natural Language ToolKit (NLTK) is a platform to support the creation of programs that manage

human language data. It provides simple and easy interfaces to over 50 corpora and lexical

resources besides a good deal of text processing libraries which ease tasks such as classification,

tokenization, stemmeing or parsing.

Thanks to its good documentation on programming fundamentals as well as on computational

linguistics, it has become an easy and suitable tool for specialists in many subjects, such as

education, engineering or even linguists.

2.3.2.4. TextBlob

TextBlob library is a tool for textual data processing by means of a simple API which complements

tools such as NLTK or pattern. TextBlob provides functions for classification, parsing sentiment

analysis tokenization or even word and phrase frequency computation.

2.3.2.5. Pandas

Pandas provides high-performance and simple data structures and tools for data processing in

Python. Pandas helps to fill the lack of Python built-in tools for data analysis and modelling. It

16

provides the functions and resources to perform the whole data analysis process in python,

avoiding the user the need of changing to a more specific programming language.

2.3.3. Java over Hadoop

Although there exists many other solutions to analyse data in Java, the more relevant tool written

in Java for Big Data analysis is Hadoop. Due to this, the most basic Hadoop MapReduce operation

is easily performed in Java by defining the map and reduce operations inside Java.

Setting up a MapReduce operation in Java is as simple as programming a Java class extending

the Mapper class for mapper, another class extending the Reducer class and a Driver class which

will coordinate the Hadoop Streaming API during the operation. Once everything is developed

and tested, a Jar file should be created which, when executed, will trigger the MapReduce

operation.

2.3.4. Mat lab

Matlab is a software mathematical tool which provides an Integrated Development Environment

(IDE) to develop mathematical computations with matrices, functions and other mathematical

elements by means of a proprietary programming language called M.

In spite of being a proprietary software solution, Matlab offers several libraries loaded with

solutions for many engineering problems, such as telecommunications, mathematical transforms,

photography and sound mathematical processing or even basical statistical distribution creation

and meassurements.

However, Matlab computing power decays with very large data sets, which turns to be together

with the lack of advanced data processing and statistical tools a huge disadvantage for Big Data

processing and management.

2.3.5. Scala

Scala is an acronym for ñScalable Languageò and it is a multi-paradigm programming language

built over Java with a clear and easy syntax. It is also apt for mission critical server systems, as

precise typing forces the detection of many problems beforehand.

The main feature of Scala is its scalability as a result of integration of object-oriented and function

paradigms. The object orientation allows the creation of advanced component architectures

through classes and traits while its functional design provides support for evolving from a ñjava

without semicolonsò state to functional composition patterns, always supporting the preferences

of the programmer.

Additionally, Scala can interoperate with Java sin a seamless manner. Classes may be mixed

and cross-referred, as the Scala compiler includes a subset of the Java compiler to allow such

mixtures. Furthermore, everything in Scala is an object, which provides the flexibility required to

17

make the language evolve and create scalable server software using concurrent and synchronous

processing, parallel processing or distributed processing on a cloud environment.

2.4. Web technologies

When developing web services, there exists a great deal of alternatives of several programing

languages and web frameworks which make web programming really easy. In the case of this

project, only a light and simple prototype was to be made, so many powerful web frameworks

were out of question due to complexity. Despite of this, we find several alternatives in order to

design a web service prototype.

2.4.1. Node.js

As stated before, Node.js is local adaptation of Javascript which was conceived for light backend

programming. In addition to npm, which allows package management easily, the node

environment offers several packages which make web development simple.

The Express framework is one of these packages. Express is a really easy framework in node for

backend programming. Using it jointly with npm, it provides the basic code for a server running in

host which can be easily modified to develop a powerful web application very quickly.

Furthermore, it provides Jade, which is an easy and powerful html template engine based on

Javascript.

Other relevant framework provided by the node community is sails.js, which provides ORM,

RESTful API auto generation, basic security functions implementation and static file auto linking.

Another examples are RhapsodyJS, total.js or Locomotive.

2.4.2. PHP

PHP is a backend object oriented interpreted language very developed for web applications which

also provides several frameworks to develop simple and light web services. It runs on an Apache

Server and is open source.

PHP is introduced inside an html file and interpreted in the server before making the response to

the user. Furthermore, PHP provides a very complete documentation and a great user

community, as well as many third party sites devoted to the PHP programing.

2.4.2. Django and Python

Python is an interpreted multi-paradigm programming language which philosophy is writing code

easily readable for humans. Python is commonly used in scientific environments due to its easy

syntax and quick development and execution.

18

Django is a very easy web framework for Python which provides a very powerful set of functions

that ease hugely the labour of the programmers. Among Django facilities are included ORM,

REST API auto generation or user management.

Additionally, Django offers a simple template engine for html coding as well as an easy way of

linking static files and external source files.

2.4.3. HTML5

HTML5 is the fifth version of the HyperText Markup Language, which is a frontend markup

language which helps to define and state the layout and elements of a web page for a browser.

In addition to being the web standard, HTML5 includes several improvements with respect to

older versions that allow programmers to easily implement several modern functions, such as

drag and drop, form validation, special form fields creation and many others.

HTML allows the programmer to include Javascript code and style commands both in the same

html file or linking an external file. Additionally, many web frameworks provide template engines

which allow creating several html pages based on a few files with some additional code.

2.4.4. CSS

CSS stands for Cascading Style Sheets and is a standard for frontend style definition. CSS allows

the programmer to actually design and decorate web pages. CSS is really important when

developing a professional web service, since it allows element collocation and colour and styles

definition. In summary, CSS provides the mechanisms to turn an ugly HTML page into a more

readable and good looking page.

 2.4.5. R packages for web communication

In order to establish a connection with the project framework, it is necessary to offer an API which

provides functions for data processing when required in any application. For this purpose, R

provides several packages which help developing a full HTTP server in R, which allows

performing computations and operations over our dataset.

 2.4.5.1. Rook

Rook is an R package developed by Jeffrey Horner which creates an interface for R HTTP server

functions. This package abstracts a web server to several objects and methods over these objects

which are called in the same way as any other R object or method. Consequently, creating an R

server with Rook only requires to write an R script to perform the required functionality with some

calls to Rook functions.

Additionally, Rook allows writing HTTP responses to each request and customizing headers,

which offers more alternatives when writing server side web services.

19

2.4.5.2. Shiny

Shiny is a light RStudio Package prepared to deploy an HTTP web server for R. It provides

functions to develop a web page which allows the user to perform operations in R and deploy the

results, with graphical elements and in a more user-friendly interface.

Nevertheless, Shiny is a package aimed to web page development, and therefore, is not prepared

to deploy a REST API. There is no HTML code, only shiny functions, which handle the

presentation of the web underneath.

2.4.5.3. OpenCPU

OpenCPU is an R library that provides tools for developing a cloud server with statistical

computing capabilities and full compatibility to create HTTP interfaces. The HTTP API offers

support for the main HTTP methods and a good path creation system for API functions.

Additionally, it provides Javascript seamless integration and easy input and output methods and

data types.

However, it does not allow writing responses directly, which leaves the programmer constrained

to the existing methods, with little possibilities when none of them matches the project interests.

2.5. Text mining and information retrieval algorithms

Text mining consists in deriving high quality information from plain text. It is also known as text

analytics, since it performs analyses on the text passed as input. Text mining includes several

tasks such as text categorization, text clustering or stemming. Information retrieval refers to the

activity of obtaining information which satisfies the user needs from a collection of resources.

Such retrieval is based on either metadata or a user based query.

At present, there exist several algorithms both for data mining and information retrieval which

generally offer good results for different situations.

2.5.1 TF -IDF

 The Term Frequency - Inverse Document Frequency algorithm is a ñbag of wordsò algorithm

which scores all words appearing inside a document based on the number of times the word

appears in the document and the number of documents where the words appear within the

collection.

The algorithm starts from a collection of documents, such as a set of texts from a book or a

collection of web pages in plain text. After text cleaning and some other pre-processing, the words

inside each document are counted, which results in a set of ñterm frequenciesò of each term for

each document in the collection. To obtain the inverse document frequency, it is necessary to first

obtain the document frequency, which is the count of documents where each term appears at

20

least once. Then, the inverse document frequency is just the quotient between the total number

of documents in the collection and the number of documents containing a particular term.

The TF-IDF algorithm implements the following formula

ὝὊὍὈὊȟ ὝὊȟ ὰέὫ
ὔ

ὔ

where ὝὊὍὈὊȟis the TFIDF value for term t and Document D, ὝὊȟThe term frequency

of term t in document D, N the total number of document in the collection and ὔthe number of

documents containing term t

The result of the algorithm is a list of ranked terms per document. The numeric output is called

relevance of a term and it is the importance it has within the document. Therefore, the term with

the greatest relevance will be the one to consider, as it represents the keyword in the document,

whereas the term with the least relevance is a word which has no value at all.

One of the most important aspects of this algorithm is to know how does it discriminate between

relevant and not relevant terms. For that, we have to consider the two main parts of the formula:

ǒ The term frequency makes a word which is mentioned several times in a document more

relevant

ǒ The inverse document frequency gives importance to words that appear in a very limited

subset of the document collection with respect to words that appear in most documents.

 2.5.2. Okapi BM25

BM25 algorithm is a word ranking algorithm which behaves in a very similar way to TFIDF, since

it discriminates terms by their numeric score of relevance. However, in contrast to TFIDF which

is a very simple algorithm, Okapi algorithm improves performance and results by considering

more aspects of the text and text collection.

The essential mechanism of Okapi is very similar to TFIDF: it contrasts the number of times a

word appears inside a document to the number of documents that contain that term, but instead

of just multiplying both terms, Okapi shapes the result introducing document lengths, as the term

frequency will tend to be greater in a document with many words. The Okapi BM25 algorithm is

based, among others, on the following formula:

21

ίὧέὶὩὸȟὈ
ὪὸȟὈ ὑ ρ

Ὢὸ ȟὈ Ὧ ρ ὦ ὦ
ȿὈȿ
ὥὺὫὨὰ

 ὰέὫ
ὔ

ὔ

Where t is a term in the document, D a document from the collection, f(t,D) the term

frequency of query term t in document D, |D| the document word length, avgdl the average

document length from the documents in the collection, N is the number of documents in the

collection and Nt is the number of documents where t appears. K and b are free parameters that

may be modified to refine the algorithm results.

From the formula, it can be appreciated the effect of the length on the result. An average length

of the document will not affect very much to the TFIDF result, whereas a greater length will reduce

the contribution of the TF and a smaller length will increase it.

2.5.3. Clustering algorithms

Clustering consists in separating documents in subsets that are coherent among them, but

different from others. Clustering is a very good example of unsupervised learning: there is no

human assigning documents to classes, but is the machine itself the one deciding which

document belongs to which class.

It is very important to consider the classification of clustering algorithms in soft and hard clustering:

hard clustering implies a strict assignment where each document belongs exactly to one single

cluster whereas in soft clustering any document may belong to more than one cluster at the same

time.

2.5.3.1. K -means clustering

K-means clustering tries to create k groups of documents which present similar characteristics in

terms of Euclidean distance. When given a numeric value, such as relevance, K-means algorithm

can compute clusters based on the distance among such values.

This algorithm is based on the computation of centroids for each of the K clusters based on the

values given as input. Initially, the centroids are randomly assigned. Each value is assigned its

closest centroid according to Euclidean distance, conforming each of the K clusters. Once the

assignment is completed, the centroids are recalculated according to the points conforming the

cluster. This process is repeated until the recomputation of centroids results in almost the same

point.

K-means clustering is one of the most common clustering algorithms at present. Furthermore, it

has been broadly developed and possible to implement using MapReduce, which makes it a very

useful candidate for Big Data analysis.

22

2.5.3.2. Canopy clustering

Canopy clustering is commonly used as a pre-clustering algorithm to speed up the clustering,

especially in large data sets. The primary target of this algorithm is to partition data in overlapping

subsets or canopies and afterwards perform more refined clustering techniques.

The algorithm consists on setting two threshold values (T1 and T2) so the first is greater than the

second, pick any data point to be the centroid for cluster X, compute the distance of all points to

such centroid and compare them to thresholds. If the distance is smaller than T1, then the point

is added to the cluster X and if it is also smaller than T2 then the point is removed. The computation

and assignment of points to X is repeated until there are no points left and X is not empty.

2.5.3 .3. Hierarchical aggregative clustering

Flat clustering is efficient and relatively simple, but outputs an unstructured set of clusters which

requires a specific number of clusters as input. Hierarchical clustering instead outputs a structured

result, a hierarchy, which gives a priori more information than the flat clustering approach.

One of the most common types of hierarchical clustering algorithms are the agglomerative

algorithms. A bottom-up approach to agglomerative clustering considers each document inside a

collection as a single cluster and successively agglomerates pairs of clusters until all clusters are

together below the same hierarchical structure. A top-down approach splits clusters recursively

in a hierarchical structure until single documents are reached.

Hierarchical agglomerative clustering results are usually represented as dendograms, which are

tree-like structures which leaves are documents from the collection which are merged one another

as branches go up to the root. Once a dendogram is created, the number of clusters created

depends on the point of cut desired, which allows the user to define the sharpness and proximity

among clusters.

However, Hierarchical clustering algorithms offer better results at the cost of increasing

complexity and therefore reducing efficiency, so the selection of a clustering algorithm must be

conducted by the selection between very good results or simplicity and speed.

2.5.4. Vector space scoring

The vector space scoring algorithm derives document vectors with a term for each word that

appears in the document. By default, each term weight is computed using TFIDF algorithm.

Therefore, the collection of documents can be considered a set of vectors in a vector space where

each term is a numerical value.

Consequently, the way to find the score of a document given a query, also in vector

representation, would be to compute the dot product of the document vector and the query vector.

Nevertheless, as document lengths may vary significantly, a query could result being closer to a

document just because that document is larger than others. To solve this problem, this dot product

23

should be normalized, so instead of computing the dot product, we will compute the cosine

similarity, which given two document vectors d1 and d2 is defined as:

ίὭάὨȟὨ
ὠᴆὨ ὠᴆὨ

ὠᴆὨ ὠᴆὨ

 Where ὠᴆὼ denotes the document vector of x and ὠᴆὼ is the modulus of such document

vector. The formula shows the computation of cosine similarity between two documents, but any

of them could be a query document represented in our vector form. Additionally, it could be

appreciated that apart from comparing a document to a query, vector space scoring may be used

to contrast documents.

It is very important to understand the results from this algorithm. Since the equation computes

similarity, a greater resulting value is a better match, so when applying this algorithm with a query

to find and order results, decreasing similarity ordering would output the best results.

24

3. System architecture and design

Within this project, several existing technologies have been selected, installed and developed to

achieve objectives. One of the main criteria taken into account when selecting technologies has

been to choose open source solutions as far as possible. This is due to the fact that open source

licenses are easier to obtain and use, documentation and user communities tend to be bigger and

more developed and open source programs usually are more flexible and allow changes in the

main program. Another key point has been documentation: if no documentation or not a very good

documentation was found, the technology was discarded, since without documentation, working

with a technology usually turns difficult and tedious.

Additionally, emerging technologies have been seriously considered, since we understand that it

is very important to create solutions adapted to the future tendencies and standards. It is also

very important to bear in mind that this project covers several aspects of data processing and

data mining and thus there are several requirements for technologies and programs which are

currently on research and development.

All the decisions and steps taken during the project have been undertaken in order to achieve the

primary goal of the project, and therefore, each of the steps in the development of the project

follows the consecution of one of the objectives established in chapter 2. Such steps, shown in

figure 3.1, will guide the development and structure of this chapter in order to present the

technologies selected, the methodology applied and the tasks undertaken during the project.

3.1. System architecture overview

Such a big and complex framework requires a very defined and structured design in order to be

manageable, simple and extensible. The whole system is divided in smaller modules which can

be treated separately despite interacting among them with no problems. Each module is then

separated in smaller components which conform their functionalities.

The modules created are: the crawling module (O1), which is in charge of retrieving and storing

structured information, the data processing module (O2), which manages retrieving data from the

Figure 3.1 Objective schema during the project

25

database and processing it as needed and the service module (O4), and it is in charge of

deploying and serving all web components, including the necessary database queries.

In addition, the database has to be a central element which serves to all modules with persistent

and updated information. For this purpose, there will only exist a central database system based

on MongoDB, although each module can implement and develop its own storage information

systems for other purposes.

All modules in the application will follow a Model View Controller (MVC) design pattern which can

be supported by different frameworks and all of them will work as independent entities of the main

framework. The architecture schema of the framework is illustrated on figure 3.2.

3.2. Data a cquisition

3.2.1. Technologies involved

Node.js (node from now) was a technology emerging at the beginning of the project and showed

very good perspectives for crawling and as basic programming language in web development.

Node is a Javascript based programming language which is very close to the web environment,

very easy to understand and learn and highly compatible with many of the technologies and data

structures used in the project.

Furthermore, node provides several libraries to connect with MongoDB, which is the main

candidate for data storage, in contrast to many other programming languages which offer less

Figure 3.2 Project architecture schema

26

options. Moreover, node is a light environment, highly portable, easy to install on any operative

system and the language is Javascript, which is a well-known programming language with the

same code syntax on any platform.

In addition, node provides the ñnode package managerò (npm) which allows the user to easily

install all needed packages with a line or two and keep everything up to date automatically.

Furthermore, node was created to ease the development of web services and, therefore, there

exist a good deal of web frameworks and template engines. Although this may not seem useful

for web crawling, it could be a very good candidate for prototype development, so acquiring the

knowledge from the beginning will save time in the future.

LinkedIn offers a full REST API to retrieve diverse information, from public user profiles to job

offers and company information. This API is fully supported by the company and only requires

registering to develop applications interacting with it.

Once the application is registered, Oauth credentials and programmer user tokens are provided.

The Oauth credentials are needed for any request and allow the programmer to implement user

authorization of his application to the public. User tokens allow the programmer to access to all

the information of a user as well as other API methods which must be called on behalf of an

authorized user.

There also exists a node package to send OAuth authenticated requests to the LinkedIn API.

Additionally, some node code is used to adapt the other crawler outputs to the database model

and the backend of the prototype obtained is also programmed in node using the Express

framework.

For this project, the most relevant methods on the LinkedIn API are the search methods (people-

search, company-search and job-search) which allow any user to retrieve user profiles, job offers

or company profiles according to some key parameters (name and surname in profiles or

keywords otherwise).

However, the API has a limit of 500 queries per API method and day, which results in a severe

limitation for data retrieval and the need of executing the crawler once a day. The requirement of

some key parameters in the search API methods also requires additional efforts finding the proper

parameters to query the API.

For the other source pages (Tecnoempleo and Infojobs) we used the R XML and RCurl libraries

since, in this case, no API was provided and XML library provides functions for easy and quick

html parsing and RCurl allows to easily download all the html pages needed. In any case, it must

be taken into account that this crawling method is much less efficient, since HTML parsing is

usually slow and many web pages understand several repeated HTTP request to them as harmful

and perform techniques to avoid such connections.

27

As it was the most well-known and handy solution for data storage, the selection for long term

data storage was MongoDB. MongoDB provides a NoSQL vary fast solution for JSON-like

document storage with a highly efficient index management system and several data processing

tools embedded, such as MapReduce. Additionally, there exist many node libraries for the

connection with MongoDB, such as Mongoose.

Mongoose, which is a node package for MongoDB and node communication, provides a really

easy way of connecting to MongoDB from node, modelling the raw data to be inserted into user

predefined schemas and also gives the possibility of performing built in operations over a whole

MongoDB collection.

3.2.2. Dev elopment process

The very first step in this project was to start obtaining any kind of Human Resources and Job

Hunting data from the web as soon as possible. The initial source of information was LinkedIn.

After some research on the subject and all the considerations stated in previous section, node

was the programming language preferred for LinkedIn application management.

Once the design decision was taken and after trying how all these APIs together work, some

design considerations had to be taken. The main design decision was that an MVC (Model-View-

Controller) architecture was to be used.

Initially, the design of the crawler proposed creating three different and separated crawlers, each

one containing its own controller, model and querying engine (according to the MVC programming

model) and managing just one kind of data. Thus, there was a crawler for person profiles, another

crawler for job offers and a last one for companies. Each crawler stores information following the

data structures specified in annex II (AII.1).

Initially, all controllers execute an init function which reads configuration files and opens a

connection to the MongoDB database. These configuration files mainly contain a set of search

parameters to query the LinkedIn API (Names and surnames for person profiles and keywords

for the rest of collections). Additionally, the init function calls the init functions of the rest of

components (the querying engine and the database model). Figure 3.3 offers a snippet of the init

code from one of the controllers.

After initialization, the program calls the querying engine to start making queries to the API. The

querying engine is a layered architecture with two levels:

1. The first level offers a common querying engine which performs any type of query agnostic

to the specific contents of the query.

2. The second one adds the logic to specify the type of data and parameters of each query

over a common lower-layer interface.

28

Once the results of a query are received, the program checks if there exists any error, computes

whether the following query changes its offset or the query parameters and sends the results to

the modelling module to be processed.

The model module performs modelling and saving operations to the raw data obtained from the

API. Using Mongoose, the data is modelled according to the database schema and saved. To

this point, no data validation or duplicate removal is performed: everything downloaded is

modelled and stored in the database as it is.

After saving results, the program then decides whether the next step is a new page from the

current query or the beginning of a new query. When the proper action is undertaken, the querying

process is repeated until there are no more queries pending or the daily limit of downloads is

reached. If the later occurs, the program terminates its execution.

Nevertheless, once the prototypes of the three programs were developed, a ñsuper controllerò

managing the execution of each of the programs sequentially was proposed. The fundamental

advantage provided with this solution was the reduction of execution complexity, since the super

controller manages the order of the queries and the change of program when any of them reaches

its daily limit, leaving the user the lone task of starting the program.

The basic working of the ñsuper controllerò is to coordinate the work flow of controllers so they are

executed sequentially. The programming required for this element was really simple, as it only

needs to add events and their listeners at the beginning of each controller as well as triggers at

the right moment.

Figure 3.3 Crawler init function

29

In fact, one of the most complicated elements to manage in a node program is the workflow, as

Javascript is a programming language hardly based on callback functions and does not provide

wait methods neither any blocking system to partially stop execution. Consequently, the crawler

program is strongly related to events and event listeners, as they are the most adequate way to

control workflow when callback functions appear.

Figure 3.4 shows a schema of the full crawler program working with all its modules and

dependencies. Additional code captures of the query engine as well as the rest of components

may be found in annex II (AII.2)

Once a sufficiently large dataset had been downloaded, data processing started and it was

appreciated that there existed other sources that could enlarge and enrich the dataset.

Consequently, Tecnoempleo and Infojobs were added to the source list and crawlers for both

were developed.

The design and development of these crawlers was easier and faster. Using XML and RCurl

libraries a simple R script could be written that requested each web all the job offers and then

Figure 3.4 Crawler structure

30

processed the results with the Html parsing functions of XML library. Once the information is

processed and prepared is stored in a structured dataframe which is saved in the computer hard

drive as an Rda file.1

The basic working of these crawlers consist on three steps starting from the search results page

of each web:

1. First, using XML library we retrieve the content from the HTML tag corresponding to each

job offer Universal Resource Locator (URL) and store them in a list using XML method

ñxpathSApplyò. The sentence in R used is shown in figure 3.5. This step can be repeated

until every search result page is traversed.

2. Once all the job offer URLs are stored in a list, RCurl sends GET request to each URL

and the HTML page is stored to be completely parsed and exported to an R list using

XML.

3. Finally, the proper element from the mentioned list is extracted to obtain all job offer fields,

create a dataframe row for that offer and add the row to the resulting dataframe.

Figure 3.5 Code for HTML parsing

However, this new sources are not as populated as LinkedIn and, therefore, should not be

considered as primary sources but as a complement to the main one. Despite this fact, both are

a good enough source to take into consideration when performing different data processing

analysis separately. Additional captures on these crawlers code may be found in annex II (AII.2).

3.3. Data analysis

3.3.1. Technologies involved

Data analysis requires the setting up and configuration of a framework of great capabilities. Due

to the size of the data stored, traditional data analysis is out of question, as it is impossible to load

the full dataset to computer memory. Furthermore, single-threaded analysis fails to provide a fast

enough solution for this project to offer a feasible way of analysing data efficiently. Consequently,

data structuring and advanced efficient parallel operations are needed in the construction of a Big

Data framework.

In a first approach, the Hadoop ecosystem would be a very good alternative, since it offers really

nice applications to manage Big Data, is open-source and provides a really good supporting

community.

However, for data processing, the best alternative would be the R programming language, as it

offers the largest collection of data analysis and statistical tools, a good deal of mechanisms to

manage large amounts of data and several libraries for graphical representation of results.

1 Rda file: R data format to store dataframes in the hard disk

31

Moreover, it is an open-source alternative which is gaining a lot of relevance, increasing its

community and the enterprises interested in it.

Consequently, the most desirable combination for the framework would be to join both Hadoop

and R to get the higher efficiency in Big Data management from Hadoop and the best analysis

tools from R.

For this purpose, we found in RHadoop a real handy tool, since it allows to perform MapReduce

operations over R, which provides to mapper and reducer function development all the advanced

tools mentioned above and allows exporting results to a dataframe for further analysis. In contrast

to RHipe, we considered that RHadoop was more complete and had a more active community,

as well as a more defined architecture which helped to understand easily the package.

Therefore, rmr on top of Hadoop MapReduce engine and rhdfs on top of HDFS are the basic

components of this framework. Additionally, since the whole project is stored on a MongoDB

database, a MongoDB and R connector needed to be used to extract data necessary for data

analysis. For this purpose, two different alternatives were considered and included in the project:

1. Package rmongodb from R provides all kind of mechanisms to query information from

MongoDB with a relatively easy syntax. It deals with cursors and MongoDB BSON objects,

so efficiency is guaranteed.

2. Node.js Mongoose provides all needed tools for data extraction from a MongoDB

database and, with a little further processing, allows any data to be written to files which

can be easily stored in HDFS.

More precisely, the Hadoop implementation selected to be the core of the framework, was

Cloudera Hadoop (CDH4) [1] as it offered the best configuration documentation and an auto

configurable pseudo distributed cluster installation based on Ubuntu repositories.

The server machine available is a Dell OptiPlex 360 containing an Intel Core 2 Duo processor at

2.6 GHz, 160 GB hard drive disk and 4GB RAM memory running Ubuntu 12.04 LTS (Precise

Pangolin) with no graphical interface. This machine will host the entire framework as well as all

the add-ons the project shall develop. The machine is in the Carlos III University of Madrid in the

Telematics department and is connected to the Internet behind a firewall which only allows

connections to ports needed for framework interaction.

During the project, a smaller framework based on built-in MongoDB MapReduce engine and node

Mongoose was considered, as it would avoid setting up the Hadoop ecosystem and thus reduce

the configuration workload. Nevertheless, the alternative was very quickly discarded as the

processing needs outran easily the solution capacity.

3.3.2. Development process

The first step in framework configuration was to physically install the computer in the provided

facilities and turn it on. Then, the Ubuntu 12.04 OS was installed and the machine was connected

32

to the Internet. In order to act as stable server, a static IP address from the university was

assigned to the machine and configured on start.

When the machine contained the operative system and the basic control and monitoring

programs, such as an SSH server and file sharing mechanisms, the Node.js and MongoDB

programs were installed from the Ubuntu official repositories. Both programs are included in

official repositories, so a simple apt-get install command was required for each.

Then, both R and Hadoop were installed. There was no necessary order of installation. The R

installation can be performed adding a repository to the Unbuntu repository list which can be

found in the Cran project official web page (reference 5). Once the repository entry is added and

authenticated, R may be installed with an apt-get install command.

However, the plain R installation is a console program as shown in figure 3.6, which is not very

desirable when the processing algorithms and variables become bigger. Consequently, Rstudio

server was installed. RStudio server is a tool which provides a web based IDE for R, which keeps

track of variables, functions, allows to develop code files among many other functionalities. This

IDE is accessible in port 8787 of the machine hosting it, so the framework is accessible from

anywhere and therefore working on the project becomes really flexible.

Cloudera Hadoop installation and configuration was a bit more difficult, although Cloudera

provides a vert good userguide through the process which can be found in its webpage (reference

9). The installation process is based on a repository solution installed by a Debian page

downloadable from the Cloudera webpage and once installed allows the user to install everything

from repository.

Due to the resources available for the project, the pseudo cluster was developed. The Hadoop

pseudo cluster is an emulation of a distributed Hadoop cluster installed in a single machine which

Figure 3.6 R base console program

33

provides all components from the Hadoop ecosystem and works exactly as an actually distributed

cluster. Although this solution is less efficient, it has less costs and requires less maintenance.

Since all Hadoop components are written in Java, it is necessary to have installed in the computer

the Java Runtime Environment (JRE).

Once CDH4 is installed, Hadoop start running its processes and is completely functional, so files

may be stored into the HDFS and MapReduce jobs may be started by any authorized user. The

Hadoop distributed File System can be accessed at any time as if it was a typical file system and

data storage may be performed in a similar manner. The file structure is exactly the same as a

traditional file system structure, as shown in figure 3.7. In fact, the most notable change with

respect to any other file system is the sentence to access the HDFS.

Figure 3.7 Hadoop file system root directory

Finally, once both Hadoop and R are installed, the final step is to install RHadoop so they integrate

each other. For that purpose, the R packages needed for the installation may be downloaded

from Revolution Analytics GitHub account. In addition to the RHadoop R packages, some

additional packages have to be installed to solve compatibility issues, such as RJava, RJSONIO

or others which provides RHadoop package with advanced tools not installed in the basic R

distribution. These packages must be installed before installing RHadoop and should be installed

in the system space.

By default, R packages are installed in the personal folder of the user who logged in. In the case

of RHadoop and its dependencies, this is not possible, as the user starting mapreduce operations

and HDFS operations would vary with respect to the R user. Consequently, all RHadoop

34

packages and dependencies must be installed by the root user account. This way, all packages

get installed inside the system files and permission issues are avoided.

After all these configurations, the basic framework is completed with the exception of MongoDB

integration for data analysis. Although direct connection to MongoDB from R is also possible,

most of the data analysis inputs rely on a variable node script which connects to MongoDB via

Mongoose and extracts the fields desired for each data analysis to store them in a set of plain

text files which will be introduced in HDFS for processing. An example script of this connectors

may be found in annex II (AII.3).

The last part of the complete framework is the REST API to provide data processing functionalities

to external applications which do not manage R structures nor code. This REST API opens a set

of HTTP GET requests on server port 8080 (which is currently protected by firewall from external

connections) which allow external users to manage the framework for their information processing

needs. The implementation of this component is specified in section 3.4 with the rest of the web

application developments and is based on the Rook package. Figure 3.8 illustrates a diagram of

the full framework and their components.

Figure 3.8 Framework schema

35

 3.4. Data mining

3.4.1. Technologies involved

The basic technologies involved in the consecution of this objective are mostly algorithms used

to classify, score or separate words of the data set. These algorithms are both well-known

algorithms with a clear and developed projection and new or improvements of other algorithms

which try to address the new problems here encountered.

Obviously, the main technological support for this objective is the framework developed for the

project, which will provide the starting point for data analytics. Additionally, many other R

libraries will be added to the framework ecosystem in order to improve and augment the

capabilities and functionalities of the framework. For instance, stats, plyr or tm libraries are

added to the framework.

Stats library provides a bunch of advanced statistical analysis tools as well as other data

analytic advanced tools, as the k-mean algorithm implementation. Plyr exploits many

possibilities of parallel computing and provides highly efficient functions to be applied to larger

data structures. Tm provides basic structures and algorithms optimized for data mining, as well

as the functions to manage and create them. For presenting the results, the libraries wordcloud

and gplots provide several advanced functions for graphical representation.

One set of algorithms highly involved in the project nature is the family of the word ranking

algorithms. Such algorithms include various mathematical models which try to discriminate and

punctuate words to extract the most relevant ones from a great collection of texts depending on

various factors. Thus, they allow the quantification of the relevance a term has inside one or

more documents.

Word ranking algorithms are strongly related to term frequency and document frequency values,

which we have seen can be obtained by means of a MapReduce program. Once these

frequencies are obtained, the computation of word scores is fairly simpler and requires less

computer resources.

The most relevant algorithms studied for this project are Term Frequency Inverse Document

Frequency (TF-IDF) and Okapi BM25. Both algorithms are strongly related to term frequencies

and inverse document frequency. Inside the framework, both can be implemented fairly easily

from a collection of terms and their frequencies obtained using the MapReduce word count.

The TF-IDF algorithm implementation is used mainly to extract keywords from huge text

collections. The actual TF-IDF algorithm computes the TF-IDF score for each term per document,

but in this project, it was adapted to compute a unique score for the whole document collection.

For that purpose, once we get the term and document frequencies for each word from the

MapReduce word count, we can add them up according to the following equation in order to

compute this custom TF-IDF measurement.

36

ὝὊ ὍὈὊ ὝὊ ὰέὫ
ὔ

ὔ

 Where TF is the full term frequency, that is, the number of times a word appears in the

collection, N the number of documents inside the collection and ὔ is the number of documents

containing the current word.

Okapi algorithm is a more complex algorithm that takes into account other aspects of the collected

texts, such as text lengths and other free parameters. Here, starting again from a MapReduce

word count containing the document term frequency of each term, the term itself and the identifier

of the text where it appears, we can compute text lengths and document frequency of each term

by means of the count R library óplyrô function and then compute the okapi score, which follows

the following equation:

ίὧέὶὩὗȟὈ
ὪήȟὈ ὑ ρ

Ὢή ȟὈ Ὧ ρ ὦ ὦ
ȿὈȿ
ὥὺὫὨὰ

 ὰέὫ
ὔ

ὔ

Where Q is a query of n words, D a document from the collection, ὪήȟὈ the term

frequency of query term ή in document D, |D| the document word length, avgdl the average

document length from the documents in the collection, N is the number of documents in the

collection and ὔ is the number of documents where ήappears. K and b are free parameters that

may be modified to refine the algorithm results and in this project are fixed to 1.2 and 0.75

respectively.

3.4.2. Development process

As stated before, there exist several programs in Node.js which open a collection, and write to a

set of files all the fields required for the data analysis to be performed. In order to assure

compatibility, each file of the set is structured separating fields of a same entity using the character

chain: ñ///ò and entities one another by means of the character chain: ñasdfghjklò.

The selection of such trivial chains is hardly conditioned by the nature of the documents

processed. Several texts retrieved contain typical separation characters such as the new line

character or the tab or space characters. In Addition, the export program is also responsible for

text cleaning, removing all unwanted characters, such as punctuation characters, characters

containing tildes or even numerical digits.

After the execution of any of these connectors, the data is stored inside a set of plain text files

compiling to the above format which are ready for further development. These files are then sent

to a HDFS directory which will be specified afterwards as the input path for a MapReduce task.

37

Then, the rmr package can be invoked. When Map and reduce tasks are programmed and a

MapReduce job starts, Hadoop opens in parallel all the files in the collections and sends their

content to various mappers that perform the programmed task by the user and emit key-value

pairs for the reducers, which perform on their pairs the task written by the user. A code skeleton

for MapReduce operations is shown in figure 3.9

It is important to remember that, even though Hadoop MapReduce is able to process huge

amounts of data more efficiently and faster, it is limited, and thus helps to reduce the information

to process for R to continue processing. When a MapReduce operation concludes, it can be

loaded into an R data frame containing two columns: one for keys and one for values. Then, this

dataframe can be processed very efficiently by R.

In this line, the first word ranking algorithm developed was the custom implementation of TF-IDF

described above. Using MapReduce, it is possible to count the number of appearances of any

word within a collection. For that purpose, we just need a mapper which cleans and separate

words in a text by whitespaces and a reducer that sums all the occurrences of each word.

Alternatively, it is possible obtain document frequency of each word, which is the number of

entities from the collection where a word appears, by extending the mapper to separate texts

using the separating chains and emitting for each word the term frequency of the word and an

additional instance of the word (with added characters, for example ñ%%ò) which has a value of

one, so when the reducer sums values it will emit for each word the term frequency, identified by

the word itself, and the document frequency, which will be identified by the word itself followed by

a restricted chain of characters.

When this MapReduce task is finished, the output dataframe contains both global TF and IDF of

all words in the collection of documents examined, so with a little more processing consisting in

Figure 3.9 MapReduce skeleton code

38

joining all terms together and applying the formula, it is possible to obtain a dataframe with each

single term appearing on the collection and the TF-IDF relevance value. Then, after ordering the

results, the dataframe contains a decreasing ordered list with the terms appearing in the text

collection, ready to be displayed with a histogram, a pie or a wordcloud.

Then, based on this TFIDF implementation, a point is reached when the implementation of a job

offer search engine seems feasible. Consequently, the first step is deciding which algorithm will

be used for this purpose. Okapi BM25 seemed a better candidate, as it considers text lengths and

the collection available contains a very length-variable collection.

Therefore, the implementation of Okapi BM25 started. It was discovered that, if given the proper

data input to the algorithm, the execution of a MapReduce task could be avoided. So initially, a

MapReduce task was developed to create such structure. The basic idea of the structure consists

on a dataframe which relates each word in the collection to its document identifier. For this, the

input data should contain the text identifier and the text contents adequately separated which the

map function would separate and process to emit as key the document identifier and as value

each term in each document.

This mapper function, as shown in figure 3.10, separates all lines received in ids and term chains

to continue cleaning and splitting the later into single words identified by their document id which

will be sent to the reducer function that will do nothing in this case, just emit the values as they

enter each reducer.

Once this structure is created, R can handle it easily to perform further operations using functions

from libraries like plyr and count term and document frequencies and even word lengths. Then,

the Okapi algorithm implementation turns to be as simple as finding in this dataframe the values

Figure 3.10 identifier-term mapper function code

39

included in the user query, separating them from the rest, computing the Okapi value for each

document and presenting the ordered results as an output.

The score computation is made in parallel using the functions and libraries built in R, all needed

values are computed from the input dataframe and Okapi algorithm is performed in parallel to all

entries in the table. Once Okapi values are computed, they are re-joined. The Okapi

implementation returns a dataframe containing the identifier and the okapi score of each

document ordered by the later in decreasing order.

These results may be used for further analysis or even to consult which job offers are more

relevant with respect a given query. When this algorithm worked, it was clear that it had many

useful applications, and so the idea of creating a job offer search engine became clear.

In addition to this two main processing development lines, several experiments on data were

performed in order to extract new conclusions or confirm some theories. To implement such

studies, specific data was exported to the framework for analysis and further research. Many

algorithms and methods have been tested and used. The specific details of each experiment as

well as the result data and interpretation may be found in chapter 4. Most of the resulting

illustrations and tables have been obtained using the framework tools.

3.5. Data visualization and application

3.5.1. Technologies involved

Once the data is obtained and processed, any resulting application should be tested and

experiment, and for this, a prototype would be one of the best alternatives. For this purpose, it is

desirable to define a common collection of web development technologies to be able to quickly

create prototype applications of the results.

Consequently, back-end and front-end solutions must be chosen to set a good environment. Due

to the development of the project, the best candidate for back-end programming is Node.js, since

it has been very used and the team has practise in programming it. Besides, node offers the

Express framework, which allows the developer to easily set up a web service based on HTTP

requests.

In fact, Express manages transparently most of the issues of web server development, is highly

connected to the node package manager, assuring a very fast and agile deployment, and provides

a very simple Html template engine: Jade. Therefore, the front-end scheme is based on the Html

code generated by Jade and Express, with static CSS and Javascript linked files which add style

and LinkedIn connection features.

40

Since we are dealing with LinkedIn data, the LinkedIn API may be useful, both for data consulting

or even user logging to the application developed. For the later, LinkedIn provides a Javascript

library which helps to connect and retrieve all needed user information from the client.

Additionally, in order to access to the Big Data sets and perform operations over them using our

framework, it needs to have a connector which allows compatibility of node server-side processing

with the R framework. For this, an REST API would be one of the best alternatives, as it would

ease data exchange over a standard protocol unaware of the technologies below and also will

grant any web application in the world to easily connect to the framework. Rook library provides

functionalities to easily deploy any kind of web server based on the R language, allowing the

connection of the data and the data processor with any web service over a common interface.

3.5.2. Development process

For data visualization and application validation, a prototype methodology was proposed as a way

of testing the results of such application at a moderate effort. Such web service had to be easy to

implement and deploy. In order to create such a prototype based on the application idea, node

was used.

The web page developed has to be fully functional and intuitive, granting the basic functionalities

of the application as well as a friendly design. Node and express provided the starting point to

create and improve a light web server with the three following views:

ǒ Index view: The page displays a welcome message and invites the users to login the

application using LinkedIn

ǒ Search view: Once the search task is complete, the service displays the results in a new

page, ordered decreasingly by relevance and paginated.

ǒ Error view: Whenever there is an error in the web or in the API, the server displays an

error page with its corresponding error.

Additionally, the web server is in charge making requests to the API with the proper queries based

on the data extracted from the user LinkedIn account. For this purpose, the API provides a method

which given a query in text format returns the ten most relevant job offers in JSON format. Once

this JSON is received, the server displays its contents on the search view in different boxes

containing a brief description, the source and the link of each job offer.

The development of a web server based on npm and express is fairly easy. The node package

manager provides tools to create a functional skeleton which sets connections and bindings to

port 3000 as well as the full file system, which contains the auto generated code for a ñhello,

worldò program. These file structure is shown in figure 3.11.

41

The structure shows various folders:

¶ bin folder contains an executable file (www) for starting up the web server

¶ node_modules folder contains all the additional node packages included in

the project

¶ public folder contains static files, Javascript program files and CSS style

sheets

¶ routes folder contains node files which define the actions to be taken when

a certain path of the server file system is reached by a client. The bindings of

each path to a specific node file and function is undertaken in the file app.js

¶ views folder contains all jade templates developed which will be rendered

when the programmer calls the function render over the template name

¶ app.js is the main controller file of the application. Bindings of paths and

methods to functions is performed there as well as many other server settings

and values.

¶ package.json is a file containing a JSON structure which defines all

dependencies of packages of the project, so when it is built, npm manages the

download and installation of such modules.

Once this structure is created and all dependencies fixed, the only things to do

are developing the functionalities of the application and creating the templates used.

The main functionality of the application is the search engine. When any user logs with its LinkedIn

account, a Javascript routine retrieves the data relevant for analysis and sends it as a form to the

server. The server then receives the information from the user and sends it to the framework API,

which will return a collection of job offers in JSON format prepared for visualization. When every

job offer is received, the server calls the result page rendering and sends it the results and thus,

the result page is shown in the application.

Whenever there is an error, the application will show a generic error page in order to inform the

user that the processing should wait. If the user wants to log out from LinkedIn from the result

page, there is a button that calls the LinkedIn Javascript API and unlogs the user. During the

waiting period for the results, the application displays a processing gif

.

The REST API is an important part of the framework, as it provides external communication for

the processing capabilities of the framework. This API is built using the web library Rook in R,

which provides methods and variables to manage external connections via HTTP. The API

developed is just in charge of receiving queries from the web server, calling the okapi function

implemented passing as a parameter the queries and the collection dataframe and returning the

results via an HTTP response to the web server in JSON format. Figure 3.12 shows a snippet of

the code of the API.

Figure 3.11

42

.

The API is also connected to the MongoDB database of the framework, to a collection which

merges job offers from all the sources of the project in order to retrieve all the relevant information.

As a security measure, this API runs on a local port on the framework machine and cannot be

accessed from the outside, so only a local web server may access it. The MongoDB collection

used for this web service contains job offers from all sources in a common format, so information

about any job offer can be retrieved at any time. Further details on the collection parameters may

be found in annex II (AII.4)

Figure 3.12 REST API code snippet

43

4. Experiments and results

4.1. Data set description

As a result of all the crawling efforts during the project, several Gigabytes of information have

been retrieved and different types of structured data have been prepared and processed for data

analysis, as shown in the following table.

Identifier Source Number of Structured entities Size in
memory(KB)

LIP LinkedIn: Personal
Profiles

67071

13858

LIC LinkedIn: Companies 515000 866284

LIJ LinkedIn: Job Offers 170536 633478

TE Tecnoempleo: Job
Offers

2691 4562

IJ Infojobs: Job Offers 1223 957.4

All these collections contains structured information as described in section 3. 2. In order to be

processed, any of these collections must be exported to the framework as described in section

3.3. Additional information on the data stored may be found in annex II (AII.1) and captures of the

collections may be also found in annex II (AII.4).

Consequently, once the crawlers retrieved information enough, the information could be exported

and processed in the framework. Most of the experiments undertaken try to address the following

issues:

1. Are job offers in LinkedIn a good collection for analysis? (4.2.1)

2. How do companies take advantage of social networks as LinkedIn (4.2.2)

3. What is the average active duration of a job offer in LinkedIn (4.2.3)

4. Which are the most demanded skills in LinkedIn? (4.2.4)

5. Do candidates in LinkedIn know how to meet employersô requirements? (4.2.4)

6. What are the basic parameter from offers in Tecnoempleo? (4.3.1)

7. Which skills are demanded in Tecnoempleo?(4.3.2)

8. What do employers seek: experience or formation?(4.3.3)

9. Which profiles can be found in networks as Tecnoempleo? (4.3.4)

44

4.2. LinkedIn job collections analysis

LinkedIn analyses in this project focus on person profiles and job offers collections in order to

obtain information related to the job recruiting process as well as the existing offer in LinkedIn.

The collections studied offer several fields such as job offer description or candidate skills lists

which are very interesting for word scoring and clustering algorithms.

4.2.1. Job offer analysis: offer descriptive field selection.

In order to analyse the collection of job offers extracted from LinkedIn, we need to consider two

relevant fields: ñskillsAndExperienceò and ñdescription. Both these fields contain descriptions of

the job offer; the first more oriented to job requisites and the other more oriented to job description.

Although both may seem perfect candidates to use in offer analysis, we will study both and extract

a conclusion from both. In order to perform this analysis, we will find the lengths in number of

words of each fields and the percentage of ñstopwordsò, which are common use words that result

meaningless for our analysis.

SkillsAndExperience field

Initially, we consider the field skillsAndExperience, which is supposed to contain requirements for

the offer candidate. By means of R functions we count the field lengths in each job offer after and

before removing ñstopwordsò. Once this is achieved, we can plot the histograms containing the

frequencies of each length.

Figure 4.1 Skill text length distributions with and without stopwords

45

Figure 4.1 shows the skill text with and without stopwords lengths. It can be appreciated that the

skillsAndExperience field is a moderate length text, which contains between 90 and 126 words in

average, which is a brief description. Besides, the noise introduced by the stopwords is not very

relevant in terms of text length.

However, the computation of sparsity in figure 4.2 shows that the noise produced by stopwords

in the skillsAndExperience field is small indeed. The sparsity is the percentage of words from the

field which give no information at all, that is, stopwords. A mean spartisty of 27.54% makes this

field a certainly reliable field which contains a good deal of meaningful words which, being

contained in such short texts, suggest that the field will contain a sufficiently specific terminology

to provide notable results after text analysis.

Figure 4.2 Distribution of skill text sparsity

Figure 4.3 Description text length distributions with and without stopwords

46

Description field

The description field is longer and contains more common use terms than the skillsAndExperience

field. Therefore, it contains less specific information as it is a description of the job offer and may

contain whatever the employer considers relevant instead of a detailed list of requisites. We

repeat the text length analysis to the description field and obtain figure 4.3 which shows the

lengths of the text with and without stopwords.

Here, the mean length of texts goes from 234 and 355 terms per text on average, although

reaching thousands of words in some cases. Although is a bigger difference with respect to the

skillsAndExperience field, this is an expected behaviour as we are dealing with longer text fields

which will necessarily contain more stopwords.

In contrast to the skills and experience though, the percentage of meaningless words increases,

which suggests that even though texts are longer, they provide less meaningful information, as

empty words are more common. In fact, as texts are longer, a more general description of job

offers could be expected and thus, a less relevant result would appear from such analysis. Figure

4.4 illustrates this sparsity increase.

Figure 4.4 Distribution of description text sparsity

47

4.2.2. Companies offering jobs in LinkedIn

4.2.2.1 . Experiment overview

Each job offer in LinkedIn is related to a company present in the Social Network. Thus we can

obtain the average number of job offers per company as well as the company more active and

offering more job offers.

Performing a simple counting Map Reduce operation with RHadoop we obtain a dataframe

containing the company identifier and the number of job offers recorded for that company. Once

the results are gathered, the output structure is ordered in decreasing order and by means of the

summary function, the basic analyses are performed.

4.2.2.2. Experiment outcome

Each company in LinkedIn posts on average 6.65 jobs, although most companies had post no

more than one or two job offers. Figure 4.5 shows the graphical representation of the distributed

outcome. The result has the shape of a Pareto distribution, which is a very well-known distribution

which usually occurs when resources are distributed.

The basic idea of such distribution is to support the theory that when it comes to share resources,

there is always a small fraction of the users of resources who are in control of most resources,

leaving the rest of the population the smaller share of resources.

Figure 4.5 Number of jobs posted per company

48

Additionally, the company that has posted more job offers (4747 offers) is Hays (www.hays.com).

It is important to remind that this analysis considers both currently active job offers and past job

offers and, therefore, this results do not necessarily mean that Hays is currently offering 4747

jobs, but that it has been a very active company in LinkedIn posting job offers and recruiting

people.

It can be thus proved that apart from compiling with the Pareto distribution, most of companies in

LinkedIn are not very active in job hunting using the tools provided by the social network, as there

are several well-known companies with resources showing no interest or giving no importance to

job offer posting.

In any case, these results show that even though many companies do not consider seriously

LinkedIn recruiting mechanisms, there are other companies very active at recruiting through

LinkedIn.

4.2.3. Lifetime of job offers in LinkedIn

4.2.3.1. Experiment overview

Thanks to the posting and expiration timestamps in LinkedIn, the mean lifetime of a job offer can

be inferred with a little computing effort. Consequently, we can compute it and obtain the lifespan

of each job offer as well as mean statistical parameters.

4.2.3.2. Experiment outcome

The mean job offer duration is 47 days and 22 hours approximately, the median and the minimum

job offer duration is 30 days, and the longest lifespan job offer is 12300 days long. Figure 4.6

depicts the lifespan of job offers in months posted in LinkedIn.

http://www.hays.com/

49

Figure 4.6 Lifespan of Job offers in months

Once again, figure 4.7 shows a Pareto distribution, which shows that most companies in LinkedIn

expect to have a suitable candidate within a month whereas a very small amount of them accepts

increasing the period. Consequently, we can see that candidate hunting in LinkedIn has an

average duration of 1.598 months with a median of 1 month duration. This also proves that

LinkedIn is a social network immerse in change and fast development and thus, any company

looking for success inside it must be prepared to deal with very fast changes.

This result also gives LinkedIn candidates a good piece of advice: It is crucial to keep up the pace

of the network and to apply for the interesting jobs at once, since at any time any offer can be

covered or its time expired.

4.2.4. More relevant requirements and keywords in job Offers in LinkedIn

4.2.4.1. Experiment overview

From the field ñskills and experienceò from the retrieved LinkedIn job offers, we can extract the

most demanded skills in the market. Applying our custom variant of the TF-IDF algorithm, where

the term frequency is global and the inverse document frequency is computed based on each

different job offer, we can obtain a collection of key terms for businesses in the LinkedIn

environment.

In the same line, using the field ñdescriptionò from the user public profiles retrieved from LinkedIn,

we can analyse the offered skills by means of the same variant of TF-IDF algorithm to extract

another collection of keywords offered by the users of the social network.

50

In order to count word and document frequency, a MapReduce algorithm is used. This algorithm

cleans the text from punctuation signs and common ñemptyò words and emits values of term

frequencies and document counts into an R data structure called data frame. Once we have this

data frame, we apply a R script which sorts and performs TF-IDF computation to return another

data frame containing each word and its relevance.

4.2.4.2. Experiment outcome

Once the analysis is performed, two dataframes containing lists of key words for each collection

can be illustrated using the wordcloud R library. This wordclouds will show at a first sight the key

terms of each collection in a very simple way.

Figure 4.7 shows both collections. The left figure shows the result of the person profile collection

wordcloud and the right figure shows the result of the job collection wordcloud.

It can be appreciated that the job offer collection analysis results in a greater set of skills which

is also less specific than the person profile collection. The skills most valued in job offers are

those, which although seeming more generic, are basic requirements for any job. In contrast,

the skills offered by candidates are more specific and focused in more professional tasks.

Figure 4.8 illustrates two pies with the 25 most relevant skills as ordered by TFIDF relevance of

the skills offered by LinkedIn users (left) and the skills required by employers (right). It can be

observed that although there are some matches, most of required skills are different to the ones

offered by possible candidates.

51

Figure 4.7 Wordclouds from person profiles and job offers

Figure 4.8 Most relevant keywords from profiles and job offers

52

One of the possible reasons for this result is that both enterprises and LinkedIn users write their

profiles or offers with a different focus. On the one hand, Companies tend to focus on teamwork

and personality skills, leaving professional skills behind. On the other hand, LinkedIn users, and

by induction most of job seekers, focus on what they know, the professional skills they have

acquired, forgetting the personal skills they reached.

Therefore, it could be stated that in a Big Data context, job seekers fail to offer in their profiles the

abilities companies search. Consequently, the application of matching algorithms will not be totally

accurate, although good enough to provide a collection of the better subjects for each job or vice

versa.

It is important to remember that we are working over a limited collection of candidate profiles and

job offers. Besides, not all candidates work on their LinkedIn profile in the same way. Thus,

although the study is reliable, some details may change when the subjected population changes.

Figure 4.9 Relevance of the 25 most offered skills among candidates in job offers

In addition, figure 4.9 shows the relevance given in job offers to the 25 most relevant skills offered

by candidates. As stated, the match is not perfect, but is able to satisfy many of the needs of the

job recruiting side, allowing matching algorithms to provide a good result. As an example of the

TFIDF algorithm and results, the table below shows the information and computation of the TFIDF

of the 25 most relevant skills among candidates.

53

 Skills Term

Frequency
Number of

Candidates
Relevance Inverse Document

Freque ncy

1 microsoft 605 245 869.5258 1.437233

2 management 816 606 851.8437 1.043926

3 business 394 335 512.7335 1.301354

4 desarrollo 349 299 471.4039 1.350728

5 gestion 346 304 464.8597 1.343525

6 development 338 285 463.5852 1.371554

7 marketing 336 284 461.3550 1.373080

8 proyectos 337 296 456.6711 1.355107

9 c 286 202 435.0196 1.521047

10 design 235 183 367.5277 1.563948

11 windows 224 155 366.4790 1.636067

12 web 242 219 359.6010 1.485955

13 project 241 225 355.2861 1.474216

14 control 237 222 350.7709 1.480046

15 sales 225 192 347.1969 1.543098

16 sistemas 219 185 341.4707 1.559227

17 manejo 222 197 340.0890 1.531933

18 systems 202 155 330.4856 1.636067

19 analisis 216 200 329.4797 1.525369

20 analysis 199 162 321.7599 1.616884

21 sof tware 204 180 320.5098 1.571126

22 administracion 199 181 312.1753 1.568720

23 office 197 179 309.9885 1.573546

24 sql 191 161 309.3384 1.619573

25 oracle 180 130 308.2420 1.712455

4.3. Tecnoempleo job offer analysis

4.3.1. Tecnoempleo basic analysis

4.3.1.1. Experiment overview

Once the Tecnoempleo search page is crawled, there exists a collection 2691 job offers to

analyse. From this collection, it is very easy to extract the basic raw data and present it in a more

descriptive way.

Additionally, we compute the number of jobs offered by each company and take a look at the

distribution they follow.

54

4.3.1.2. Experiment outcome

 Figure 4.10 shows the basic parameters which can be extracted from Tecnoempleo. As

expected, most of job offers are located in either Madrid or Barcelona, which are the biggest cities

in Spain. Abundant salaries rest between the 10000ú and 40000ú range and the mean experience

required is 3.06 years.

From these results, we can appreciate that almost everything expected applies. Since Madrid and

Barcelona are the biggest and more developed cities in Spain, most of the jobs should be located

there, followed by Sevilla and Valencia, which are two other important cities. The more common

salaries are the ones which offer an acceptable amount of money and the experience required do

not surpass 5 years, being very uncommon not requiring any experience at all.

Besides, there exists 390 companies offering positions in Tecnoempleo. Such enterprises have

published on the web page at least one active job offer. Figure 4.11 illustrates how many

enterprises offer how many jobs.

Figure 4.10 Tecnoempleo offers basic parameters

55

Once again, Pareto distribution appears again, and shows that most enterprises offer, at most, 5

active job offers whereas some few companies surpass the 50 active job offers at the time. In

contrast to LinkedIn analysis, here only active offers are shown, as the Tecnoempleo page only

displays interesting offers for its users.

The fact that companies in Tecnoempleo have the same behaviour than the ones in LinkedIn

suggest that this is a common behaviour in recruiting web services. In fact, it seems very

reasonable that many enterprises here provide a modest amount of offers, since most of the

companies belong to the group known as PYMES, which refers to small and medium size

enterprises in Spain. Consequently, these PYMES are unable to perform big job offers, as they

have no resources nor such a big employee need.

4.3.2. More relevant technological and profile terms

4.3.2.1. Experiment overview

Using packages wordcloud and tm from R and the collection of required technologies in each job

offer from Tecnoempleo, it is easy to infer the collection of technologies most demanded in the

site. Additionally the profile requirements collection can be also inferred and compare it to see

whether the most demanded technologies match the profile requirements.

Figure 4.11 Number of jobs posted per company

56

4.3.2.2. Experiment outcome

Figure 4.12 depicts both wordclouds, the one for technological requirements on the left and the

one for profile requirements on the right. This result suggests, as in LinkedIn, that companies

seek common personal skills and capabilities more than professional skills. Although

Tecnoempleo offers an especial section for professional skills, the profile, the expected behaviour

and capabilities of any candidate is hardly conditioned on keywords which are not strictly related

to any field.

Nevertheless, the technologies collection of keywords shows clearly that Tecnoempleo is a highly-

oriented professional environment which focuses on technological knowledge about web

development. Thus it would be the perfect job finder for any candidate involved in programming,

database management or even system administration.

4.3.3. Comparison of experience against formation

4.3.3.1. Experiment overview

One of the key aspects to be taken into account when either recruiting new workers or applying

for any job is the importance given to experience and formation. Both are usually considered for

any candidate purposed, but it is hardly ever clear which of both receives more importance by

employers.

Figure 4.12 technological and profile requirement wordclouds

57

The aim of this experiment is to unveil which of the later is better considered and helps when

achieving better positions inside a company. For that purpose, we will analyse Tecnoempleo

collection to cross-correlate experience and formation in order to obtain quantitative measures

like the number of jobs offered per formation and experience combination as well as the salaries

offered for them.

4.3.3.2. Experiment outcome

Once processed, we obtain an experience-formation matrix which can be easily depicted as a

color map using the package ñlatticeò for R inside our framework. Consequently we can show

results for each formation-experience pair of values as the number of jobs offered(figure 4.13)

and the mean salary rewarded in positions requiring such formation and experience (figure 4.14).

PF means Professional Formation and it is the Spanish name for non-university after school

education for non-academic disciplines. All titles which are related to Bologne refer to the new

European plan for University education.

If we consider figure 4.13, we can appreciate that job offers highly depend on the formation

required, since the jobs offered for a certain position are more or less proportional for the

experience period increase, whereas the increase of experience do not entail any increase in jobs

offered. However, figure maximum is located in the middle area of the graph, which suggests that

formation may not be so relevant as it seems, since better formation does not necessarily

guarantees better positions.

Figure 4.13 jobs offered according to experience and formation

