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Abstract 

 

Nanoscale Al/SiC composite laminates are metal-ceramic multilayers with unique 

mechanical properties at ambient temperature, such as high strength, high toughness, 

and damage tolerance, due to the nm scale thickness of their layers. Nevertheless, 

nothing is known about their high temperature mechanical properties and this is a key 

issue both from the fundamental viewpoint as well as from the in-service behavior. This 

lack of information is mainly due to the difficulties associated with the characterization of 

the mechanical behavior of thin-films at high temperature, a rather unexplored area. 

High temperature instrumented nanoindentation and micropillar compression were 

carried out in this thesis to study the mechanical properties of Al/SiC nanolaminates as 

a function of layer thickness from room temperature up to 300ºC. Mechanical tests were 

complemented with detailed transmission electron microscopy (TEM) analysis of the 

deformed structures to elucidate the effect of temperature on the deformation 

mechanisms at the nm scale. In addition, finite element simulations of the multilayer 

deformation were used to clarify the influence of the Al flow stress and of the interface 

properties (strength, friction coefficient) on the overall stress-strain response of Al/SiC 

multilayers. 

The combination of nanoindentation, micropillar compression tests, TEM observations 

and numerical simulations provided a better understanding of the key parameters 

influencing the high temperature mechanical behavior of Al/SiC nanoscale multilayers. It 

was found that the mechanical behavior at ambient temperature was controlled by the 

high strength of the Al nanograins and the constraint induced by the stiff SiC nanolayers 

on the Al plastic flow. Changes in the Al-SiC interface behavior, in the form of interface 

sliding, limited the constraint on plastic flow at 100ºC. This phenomenon, together with 

the softening of the Al nanolayers, resulted in a marked reduction in the flow stress and 

in the strain hardening capacity of the nanoscale multilayers. The role of the Al-SiC 

interfaces in plastic flow was also apparent in the creep activation energies, which 

showed a marked decrease with the reduction in Al layer thicknesses, reaching values 
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close to the activation energy for grain boundary diffusion in Al for layer thicknesses of 

10 nm. 

Finally, above 200ºC, chemical reactions between Al and SiC promoted a large 

degradation in the mechanical properties of the nanoscale multilayers. 
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Resumen 

 

Los nanolaminados de Al/SiC son materiales multicapa metal-cerámicos con 

propiedades mecánicas singulares a temperatura ambiente, combinando alta 

resistencia, alta tenacidad y tolerancia al daño, debido al espesor nanométrico de las 

capas. Sin embargo, su comportamiento mecánico a alta temperatura no es conocido y 

éste es un aspecto clave tanto desde el punto de vista fundamental como para su 

comportamiento en servicio. Ello es principalmente debido a la dificultad inherente a la 

caracterización mecánica a altas temperaturas de películas delgadas, un área que está 

en desarrollo en la actualidad. 

En este trabajo, se han empleado técnicas de nanoindentación instrumentada y 

compresión de micropilares a alta temperatura para estudiar las propiedades 

mecánicas de nanolaminados de Al/SiC, en función del espesor de las capas, entre 

temperatura ambiente y 300ºC. Los ensayos mecánicos se complementaron con una 

caracterización detallada de las microestructuras deformadas mediante microscopía 

electrónica de transmisión (TEM), con el objetivo de determinar el efecto de la 

temperatura en los mecanismos de deformación. Por último, se han empleado 

simulaciones por elementos finitos para entender mejor la influencia de la tensión de 

fluencia del Al y de las propiedades de las intercaras (resistencia, coeficiente de 

fricción) en el comportamiento global tensión-deformación de los nanolaminados de 

Al/SiC. 

La resultados obtenidos en los estudios de nanoindentación, compresión de 

micropilares, caracterización por TEM y simulaciones numéricas permitieron adquirir 

una mejor compresión de los parámetros que determinan el comportamiento mecánico 

a alta temperatura de nanolaminados de Al/SiC. Se concluyó que el comportamiento 

mecánico a temperatura ambiente está controlado por la alta resistencia plástica de las 

nanocapas de Al y la restricción a la deformación impuesta por las capas rígidas de 

SiC. A 100ºC, se observó un cambio en el comportamiento de la intercaras Al/SiC, 

dando lugar a la aparición de deslizamiento en las intercaras, limitando así la restricción 
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a la deformación plástica de las capas de Al. Este cambio, junto al ablandamiento de 

las nanocapas de Al, dio lugar a una abrupta reducción de la tensión de fluencia y de la 

tasa de endurecimiento por deformación de los nanolaminados. El efecto de las 

intercaras Al-SiC en la deformación plástica también fue notable en las energías de 

activación a fluencia lenta, que decrecieron con la reducción del espesor de las capas 

de Al, hasta alcanzar valores cercanos a la energía de activación para difusión en las 

fronteras de grano del Al, para espesores de capa de 10 nm. 

Por último, por encima de 200ºC, reacciones químicas entre las capas de Al y SiC 

dieron lugar a una reducción importante de las propiedades mecánicas de los 

nanolaminados. 
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1 Introduction 

1.1. Background: nanoscale multilayers 

Laminated composites consist of alternating layers of two or more materials in different 

combinations, namely: metal-metal [1-7], ceramic-ceramic [8-12], and metal-ceramic 

[13-20]. They present outstanding mechanical properties (strength, toughness, and 

fatigue resistance) when the layer thicknesses are smaller than 100 nm. In this case, 

they are also referred to as nanoscale multilayers or nanolaminates. By proper choice of 

the constituent materials, their layer thickness and their microstructure, multilayers have 

shown superior performance than their bulk counterparts in many applications where 

multifunctionality is important, as summarized in table 1-1 [21]. 

In this context, metal-ceramic nanolaminates offer a good combination of hardness and 

toughness, leading to excellent wear resistance for protective coatings. In electronic 

applications, metal (Cu, Al) - ceramic (SiO2, CDO) multilayers have been widely used in 

advanced packaging technology for more than 30 years [22-24]. In addition, new 

electronic devices (like MEMS, Micro Electro Mechanical Systems) often combine 

metal-ceramic layers at the interconnect level. More recently, metal/ceramic multilayers 
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have also found applications as optically absorbing coatings in solar collectors for 

thermo-solar energy generation [25]. Finally, the development of cellular phones has 

pushed the research towards base-metal electrode multilayer ceramic capacitors due to 

their high capacitance at large frequencies [26-28]. 

Table  1-1: Applications in which nanolaminates have shown superior performance, 
including one example of the material combination proposed in each case [21]. 

Ultra-high strength materials (Cu/Nb) 
[29] 

Magnetic transducers-GMR (Co/Cu) 
[30] 

High performance tribological coatings 
(Cr/CrN) [31] 

EUV, Soft X-ray and X-ray optics 
spectroscopy (Ni/Mg) [32] 

Coatings for gas turbine engines 
(Thermal Barrier Coatings) [33] 

Magneto-optic read/write memory 
(Pt/Co) [34] 

Coatings for medical applications 
(porous-coated Co/Cr) [35] 

High performance visible optics 
(Indium Tin Oxide/Silica) [36] 

High performance capacitors for 
energy storage 

(MnO2/Ni/graphite/paper) [37] 

New smart materials for sensors 
(SnO2/SiO2) [38] 

Capacitor structures for industrial 
applications (Graphene/h-BN) [39] Imaging and microcircuit lithography 

development (Photoresist/SiO2/Si) [40] Integrated circuit interconnects (Au/Cu) 
[41] 

 
Even in those cases where metal-ceramic nanolaminates are selected on the basis of 

their electrical or optical properties, their mechanical reliability is also a concern, 

particularly at high temperature. This is because nanolaminates will be often subjected 

to high stresses and temperatures under normal operation conditions, as in the case of 

electrical interconnects or solar coatings. However, very little is known about the 

mechanical behavior of metal-ceramic nanoscale multilayers at high temperature, due 

to the lack of techniques available up to date to explore the mechanical properties of 

thin-films at high temperature. 

1.2. Motivation for the thermomechanical study of nanolaminates 

Recent progress in instrumented nanoindentation has opened the possibility to carry out 

nanoindentation tests at high temperatures. Current knowledge about the effect of 

temperature on the mechanical properties of nanoscale multilayers is scarce. This 

information is important from the engineering viewpoint but also from the fundamental 

perspective as the dominant mechanisms controlling the deformation and fracture of 

nanoscale multilayers (interface strength, dislocation plasticity) are often thermally 

activated. 
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However, quantifying the stress-strain behavior of small volumes from indentation tests 

is still a challenge. Despite the popularity of indentation tests, they still present some 

intrinsic shortcomings. The main problem is that indentation involves a complex stress-

strain field underneath the indenter that depends on the specific tip geometry. In 

consequence, extracting the uniaxial stress-strain constitutive relationship, although 

possible, requires difficult iterative methods. To overcome this problem, alternative 

nanomechanical testing methods that lead to a more uniform stress state in the tested 

volume have been developed during the last decade. Among these, micropillar 

compression has been extensively studied recently [42-45]. This technique uses a 

nanoindenter with a flat punch to compress a small cylindrical volume to obtain uniaxial 

stress-strain behavior. The main advantage of this method is that the imposed stress 

field is uniform. However, it requires the fabrication of micropillars whose dimension in 

length, in this case, is limited by the coating thickness, usually just a few micrometers. 

Machining this type of micrometer size pillars requires the use of focused ion beam 

(FIB) methods. Since microcompression testing is a relatively new technique, there has 

been very limited use of this technique at high temperatures, and even less in the case 

of nanoscale multilayers. 

1.3. Aim of the study and summary of the work 

Based on the above, the main objective of this work has been exploiting the recently 

developed capabilities in high temperature nanomechanical testing to study the 

thermomechanical properties of metal-ceramic nanolaminates. The study has focused 

on Al/SiC multilayers. Al/SiC multilayers constitute an interesting metal-ceramic 

multilayer model system, but are also technologically relevant, due to their high 

strength, high toughness and high damage tolerance at room temperature [46, 47]. 

These nanolaminated composites were fabricated by magnetron sputtering of aluminum 

(Al) and silicon carbide (SiC) onto Si substrates. 

Multilayers with varying individual layer thicknesses, in the range of 10 to 100 nm, were 

grown. Their deformation behavior was studied by high temperature nanoindentation 

and micropillar compression from room temperature up to 300ºC. The high temperature 

behavior, unknown up to date, provided the basis for understanding the controlling 

deformation and fracture mechanisms at different temperatures, by analyzing the 

deformation mechanisms, using focused ion beam (FIB) and transmission electron 
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microscopy (TEM). Based on the experimental observations, numerical simulations 

provided further evidence of the key microstructural parameters determining the 

mechanical behavior of these nanolaminates. 

1.4. Outline of the thesis 

The thesis is divided into six core chapters dealing with various aspects related to this 

investigation. Chapter 2 summarizes the current knowledge on the mechanical 

properties of nanolaminate composites. Chapter 3 briefly introduces the most important 

nanomechanical testing techniques used in this work, together with the experimental 

parameters used for the processing of the Al/SiC nanolaminates and their 

microstructural characterization techniques, namely, atomic force microscopy (AFM), 

scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), 

transmission electron microscopy (TEM), and focused ion beam (FIB). Since 

nanomechanical testing at high temperature is not currently a well-established 

technique, large efforts were devoted in this work to establish the optimum testing 

conditions. The challenges and best practices developed as a result of this work for 

carrying out nanomechanical testing at high temperature are thus summarized in 

Chapter 4. The main results obtained using these techniques in Al/SiC nanolaminates 

are summarized in the following chapters. Chapter 5 is focused on the effects of layer 

thickness and temperature on strength and creep of Al/SiC nanolaminates by using high 

temperature nanoindentation. In chapter 6, the effect of temperature on the controlling 

deformation mechanisms is studied in more detail by micropillar compression of 

selected nanolaminates. Based on the experimental results, a finite element model was 

used to simulate the mechanical behavior of Al/SiC nanolaminates, which is presented 

in Chapter 7. Finally, the conclusions extracted from this work and some 

recommendations for future studies are summarized in chapter 8. 

 

 

 

 



 

 9 

 

 

 

 

 

 

 

 

 

 

2 State of the art 

2.1. Nanolaminate composites 

Nanolaminates can be produced with layer thicknesses varying from the sub-nanometer 

scale to hundreds of nanometers. Their mechanical strength and the operating 

deformation mechanisms have been found to depend strongly on layer thickness. 

Koehler [48] was the first to propose that a multilayered structure was expected to 

display ultra-high strength and high resistance to brittle fracture. Based on his 

pioneering ideas, there have been many theoretical and experimental studies based on 

the use of multilayered structures to improve strength and ductility, namely: 

• The use of one interlayer or several interlayers to enhance the adhesion of 

coatings by reducing the mismatch in mechanical, chemical, or thermal 

properties between coatings and substrate. 

• The use of multilayered structures to control the residual strain and therefore the 

tensile stress within coatings, most commonly to enhance the effective adhesion 

and strength. 
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• Alternating layers that can improve the fracture toughness either by introducing 

interfaces that stop cracks or providing a tough medium through which 

propagation of cracks is prohibited. 

• Alternating hard and brittle layers along with ductile and tough layers to avoid the 

significant stress concentrations that may occur with thick hard coatings. 

• Nanoscale multilayers that inhibit dislocation motion, and thereby possess 

extremely high strength. 

• Individual layers that provide distinct physical or electrical properties, such as 

diffusion, thermal, or insulating barriers. 

It appears, therefore, that the potential benefits of multilayered structures depend 

strongly on the nature of the materials used for making the layers. In the following 

sections, the state-of-the-art in the mechanical properties of metal-metal and ceramic-

ceramic multilayers is reviewed, to finish with the case of metal-ceramic multilayers, 

which are the object of this thesis. 

2.1.1. Metal-metal nanolaminates 

To date, metal-metal nanolaminates seem to be the most widely studied due to their 

outstanding mechanical properties. It has been found that changes in the plastic 

deformation mechanisms appear when the individual layer thickness is below 100 nm. 

Under these conditions, the high density of interfaces impedes dislocation glide and the 

dimensions of the individual layer thickness become comparable to the length of 

dislocation sources [49, 50]. As a result, metal-metal nanolaminates typically display 

much larger strengths than their monolithic counterparts, which strongly depend on the 

modulation periodicity (߉) (thickness of a bilayer). Several strengthening mechanisms 

have been proposed to explain their ultra high strength, depending on the layer 

combinations [51-54], such as: 

• Misfit dislocation strengthening: if the lattice parameters of the two 

components are different, an array of misfit dislocations will develop at the 

interfaces. They act as a barrier to the motion of gliding dislocations across the 

interfaces. 

• Coherency strain strengthening: for a small lattice mismatch between the 

layers and a small layer thickness, it might become energetically favored for the 

layers to elastically strain to a common in-plane lattice parameter, rather than to 
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nucleate an array of misfit dislocations. In these cases, large in-plane coherency 

stresses that alternate from tensile to compressive between the layers give rise 

to a periodic resistance to dislocation motion. 

• Structure barrier strengthening: in some cases, especially for very thin layers, 

the crystal structure of one of the layers can serve as a template for the 

nucleation of the other layer through heteroepitaxy. This can lead to the 

stabilization of metastable phases, which can be harder than the stable phase. 

• Elastic mismatch (Koehler stress): for multilayers with large shear modulus 

mismatch between layers, a dislocation in the lower modulus (hence, lower line 

energy) phase may need to overcome a large repulsive image stress from the 

higher modulus phase before slip can be transmitted across layers. 

In all these cases, the strength that can be achieved is very sensitive to the chemical 

intermixing at the interface and to the layer thickness [55, 56]. Unlike sharp interfaces 

usually formed in multilayer thin films with positive enthalpy of mixing, intermixing at 

interface due to negative enthalpy of mixing can reduce the effectiveness of the 

interface as dislocation motion barrier and thus weaken the hardness/strength of the 

multilayer thin film. Regarding the layer thickness dependency, it has been found that at 

large layer thicknesses, typically above 100 nm, the yield strength follows a Hall-Petch 

type dependency, with the strength increasing with the inverse root of layer thickness. 

However, a large deviation from the Hall-Petch behavior has been reported at smaller 

layer thicknesses, of the order of tens of nm, as shown in figure 2-1 for Cu/Nb 

nanoscale multilayers. 

Misra et al. [50, 57] rationalized the strength of metal-metal nanolaminates from the 

point of view of the operating deformation mechanisms as a function of layer thickness, 

as summarized in figure 2-2. 

• At large layer thicknesses, generally above 100 nm, the layers are thick enough 

to form dislocation pile-ups that can help to overcome the interface barrier. As a 

result, a Hall-Petch type relationship between strength and layer thickness 

develops in this regime, so that the yield stress ߪ௬ ∝ 1 √ℎ⁄  , where h is layer 

thickness. 

• For layer thicknesses in the order of a few nanometers to tens of nanometers, 

the layers are no longer thick enough to accommodate dislocation pile-ups, 
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resulting in a breakdown of the Hall-Petch regime. At these layer thicknesses, 

threading dislocations are thought to be the primary deformation mechanism. 

Threading dislocations are glide dislocations that are formed during layer growth. 

Typically these dislocations originate at surface defects in the substrate and 

extend from the substrate to the next layer. In multilayer systems, the threading 

dislocations in each layer are inherited from the previous layer during growth. In 

this regime, deformation is thought to occur by dislocation bowing (Orowan 

bowing) within each individual layer, a mechanism that has been named confined 

layer slip [58]. The restrictions imposed by the interfaces and the smaller layer 

thicknesses limit the motion of the threading dislocations to two dimensions, 

which brings about a logarithmic strength dependency with layer thickness (h), of 

the type ߪ௬ ∝ lnሺℎ ܾ⁄ ሻ ℎ⁄ , where b is the burgers vector. 

 

Figure  2-1: Flow strength of Cu/Nb multilayers (estimated as hardness divided by 2.7) as 
a function of ିࢎ૙.૞ where ࢎ is the individual layer thickness. The solid line stands for a 
linear fit of the experimental data consistent with a Hall-Petch type behavior [51]. 

• Finally, when the layer thickness is of the order of a few nanometers, it has been 

proposed that the stress required for confined layer slip is so large, that 

transmission of dislocations across the interface might become favorable, 



State of the art 

 13 

reaching a plateau in strength. In this regime, it seems that interface/dislocation 

interactions and interfacial shearing become important. 

 

Figure  2-2: Deformation mechanisms in metallic multilayers as a function of layer 
thickness [50, 57, 58]. 

Several experimental observations support the operation of these deformation 

mechanisms in metallic multilayers. For instance, in-situ deformation experiments inside 

the TEM in Cu/Ni nanolaminates (Foecke et al. [3] ) showed confined layer slip followed 

by unstable crack growth, due to fracture of interfaces and layers, with a large plastic 

zone ahead of crack tip. Similarly, the yield stress of Ag/Cu multilayers increased with 

decreasing layer thickness, down to extremely small layer thicknesses, at which ductility 

was lost, triggering brittle fracture [59]. 

Interestingly, the interface character plays a major role on the maximum strength of 

metallic multilayers [51]. The most important factor determining the interface character 

is the crystal structure of each layer (see the figure 2-3) [60]: 

• Coherent or semicoherent interfaces: a coherent (figure 2-4 (a)) or 

semicoherent (figure 2-4 (b)) interface is formed when the two layers present the 

same crystal structure, as it is the case of fcc/fcc multilayers like Cu/Ni. The 

interface strengthening mechanisms are mainly elastic mismatch plus coherency 



Chapter 2 

 14 

strains or misfit dislocation strengthening, depending on whether the layers are 

fully coherent or semicoherent. 

 

Figure  2-3: Hardness of a number of Cu-based nanolaminates with coherent or 
semicoherent interfaces (Cu/Ni, Cu/Ag, Cu/SS304, and Cu/SS304) and incoherent 
interfaces (Cu/Nb and Cu/Cr). ࢎ is the layer thickness or one-half of the bilayer period. 
The solid lines stand for a linear fit of the each experimental data set consistent with a 
Hall-Petch type behavior [51]. 

 

 

Figure  2-4: Schematic of (a) coherent interface, (b) semicoherent interface, and (c) 
incoherent interface [60]. 

• Incoherent interfaces: fully incoherent interfaces (figure 2-4 (c)) are found in 

multilayers combining layers with different crystal structures, like Cu/Nb, where 
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Cu is fcc and Nb is bcc. They have shown superior strength and, on top of the 

strengthening mechanisms mentioned above, the incoherent interfaces act as 

dislocation sinks. In other words, dislocations tend to get trapped at incoherent 

interfaces, requiring larger stresses for dislocation transmission, and thus 

providing a larger strengthening capability than coherent or semicoherent 

interfaces, as shown in figure 2-3 for Cu/Nb and Cu/Cr multilayers. 

2.1.2. Ceramic-ceramic nanolaminates 

Ceramic-ceramic nanolaminates have also been the subject of large research efforts, 

mainly driven by the cutting tool industry. Making artificial materials that match or 

exceed the hardness of the two hardest known materials (diamond and cubic boron 

nitride) has been a dream from both the fundamental and the technological viewpoint. 

Ceramic-ceramic nanolaminates (also referred to as ceramic superlattices) typically 

show strengths near to theoretical strength limit, and as such, fall in the so-called 

category of ultra-hard materials. The most studied systems have been: 

• Nitrides: TiN/NbN [11], AlN/CrN [61], TiN/ZrN [8], Ti/VN [62], TiAlN/CrN [63], that 

are usually grown by reactive sputtering. 

• Oxides: Al2O3/TiO2 [64], Y2O3/Zr2O3 [65], Al2O3/Zr2O3 [66]. 

• Carbides: like TiC/CrC [67, 68] 

There are many investigations on nitrides nanolaminates, while the other two (oxides 

and carbides) remain less explored. Recently, some non-isostructural systems like 

nitride/carbide (AlN/SiC [69], TiN/TiB2 [70]) multilayers have also been studied. 

The ultra-high hardness of ceramic nanolaminates has been attributed to two factors 

associated with the nanometer thick dimensions of the layers. Firstly, similar dislocation 

strengthening mechanisms to those described in metallic multilayers are expected to 

operate, as a function of elastic and lattice mismatch between the layers. Secondly, 

ceramics are inherently brittle and a reduction in individual layer thickness and an 

increase in interface density can also improve the crack propagation resistance. 

For instance, Shinn et al. [71, 72] studied the hardness of epitaxial TiN/NbN 

nanolaminates grown by reactive magnetron sputtering with bilayer thicknesses, ߉, 

ranging from 1.6 to 450 nm. Cross-sectional TEM studies showed well-defined 

superlattice layers and relatively sharp interfaces, with semi-coherent interfaces 
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containing misfit dislocations for ߉ > 9.4 nm that became fully coherent for ߉ < 4.6 nm. 

The hardness was found to increase rapidly with decreasing ߉, reaching a peak value 

of 52 GPa at ߉ = 4.6, which was around 30 GPa larger than that of the TiN film. Further 

reductions in ߉ below 4.6 nm also led to a reduction in hardness (see figure 2-5). The 

hardening mechanisms were explained by a combination of two effects that inhibited 

dislocation motion across the layers. The primary mechanism of hardness enhancement 

was related to the difference in the dislocation line energies between TiN and NbN 

layers. A secondary mechanism was related to coherency strains. The maximum 

hardness occurred where the layers were too thin for coherency-strain relaxation or 

dislocation motion. 

 

Figure  2-5: Hardness of different combinations of nitride superlattices [72]. 

Similar effects were found in another single-crystal TiN/VN strained-layer superlattice 

(SLS) system by Helmersson et al. [62]. The hardness of the SLS structures increased 

rapidly with reduction the superlattice period and reached a maximum of 56 GPa at ߉ = 5.2 nm. Further increases in ߉ resulted in a rapid decrease in hardness to 44 GPa 

at ߉ = 7.5 nm and only in a relatively slow decrease in hardness at higher wavelengths. 

The highest hardness measured was more than 2.5 times higher than that of the TiN 

component. These results are summarized in figure 2-5. 
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Figure  2-6: TEM images showing (a) columnar TiN film grown on Si(001); (b) small region 
from a TiN/SiNx multilayer grown on Si(001) in similar conditions. The lighter layers are 
SiNx. In (a) the contrast arises from the different crystallographic orientations of the 
grains. Small, equiaxed grains form near the substrate but, as the film grows, 
preferentially grain growth in favorable orientations leads to a columnar structure. The 
introduction of amorphous layers in (b) results in a much greater degree of control over 
the orientation and shape of the grains, as each amorphous layer interrupts grain growth 
and each TiN layer is forced to renucleate, eliminating the columnar growth and reducing 
the roughness [60]. 

Additionally, nanolaminates often present an improved microstructure as compared with 

thin films of one material (figure 2-6). The layers contribute to the suppression of 

columnar growth and to a reduction of porosity associated with columnar boundaries 

that often limit the mechanical strength of ceramic coatings [60]. 

2.1.3. Metal-ceramic nanolaminates 

Metal-ceramic nanolaminates have not been studied in depth. However, they are 

expected to display an attractive combination of strength, hardness, and toughness, due 

to several reasons: 

• Metal-ceramic multilayers present a large elastic, lattice and shear strength 

mismatch between the layers, which is expected to constrain the plastic 

deformation of the softer metallic layers. 

• The metallic layers are very thin and thus are expected to yield at very high 

stresses. 



Chapter 2 

 18 

• The ceramic layers are very thin and thus are expected to show very high 

fracture stresses. 

• The different physical nature of each layer can contribute to the suppression of 

columnar boundaries or other coating defects that propagate throughout the 

thickness in monolithic coatings, as shown in figure 2-6. 

• The high density of interfaces may lead to the activation of toughening 

mechanisms based on crack arrest and/or crack deflection at the interfaces. 

These effects have been demonstrated in several systems. For instance, the hardness 

of Ti/TiN nanolaminates was found to depend on layer thickness, with hardness peaking 

for a bilayer thickness of 50 nm (figure 2-7 (a)) [73]. Similar results have also been 

found in Cr/CrN [74] (figure 2-7 (b)), and Al/AlN (figure 2-7 (c)) multilayers [75, 76]. In 

general, the peak hardness of the nanolaminates was higher than that of the nitride, 

indicating that the strength of the metallic layers was greatly enhanced by the 

nanolaminate architecture. 

 

Figure  2-7: Hardness of (a) Ti/TiN, (b) Cr/CrN, and (c) Al/AlN multilayers as a function of 
the modulation period [73-76]. The hardness of the constituents is also shown in the 
figures for comparison. 
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Another recent study was devoted to study the mechanical properties of Cu/Cu-Zr, in 

which Cu-Zr is an amorphous metallic glass [16]. Bulk metallic glasses usually display 

limited ductility due to shear localization and strain softening. However, significant 

increase in ductility was found in the case of metal/metallic glass nanolaminates, 

compared with Cu/304 stainless steel crystalline multilayers with an individual layer 

thickness of 25 nm and pure nanocrystalline Cu with an average grain size of ≈ 30 nm 

(figure 2-8). The study showed that, when the amorphous layers were sufficiently small 

(thickness ≈ 5 nm), they can act as sinks for dislocations and are no longer affected by 

shear banding instability. 

Finally, improvements in damage tolerance associated with nanometer thick ceramic 

layers have also been observed in Cu/TiN multilayers [77]. Cross-sectional studies 

across indentation imprints showed that the material deformed by extensive plastic 

deformation of Cu and bending of the ceramic TiN layers to substantial strains without 

fracture. Deformation by rotation of Cu grains was also observed (figure 2-9). 

 

Figure  2-8: Room-temperature tensile true stress–strain curves of the nanocrystalline – 
amorphous nanolaminate at the strain rate of 10-4 s-1, in comparison with those of Cu/304 
stainless steel crystalline multilayers with an individual layer thickness of 25 nm and 
pure nanocrystalline Cu with an average grain size of ≈ 30 nm. The curve for pure 
nanocrystalline Cu is an engineering stress–strain plot [78]. The Cu/Zr nanolaminate has 
an average tensile elongation to failure of 13.8 ± 1.7% and a steady-state flow stress of 
1090 ± 20 MPa, in contrast with the low ductility (<2%) seen in conventional crystalline 
nanolaminates (Cu/304 SS) and pure nanocrystalline Cu [16]. 
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Figure  2-9: FIB-TEM cross-section image showing a cross-section of the indented region 
of the Cu/TiN multilayer with ࢫ = ૞૙ nm deposited on a Si substrate. The TiN layers bend 
elastically, and constrain the upward plastic flow of copper [77]. 

2.2. Strength of nanolaminates at high temperature 

The current knowledge about the effect of temperature on the mechanical properties of 

nanoscale multilayers is scarce, as most of the experimental work has been carried out 

at ambient temperature. This information is important from the engineering viewpoint 

but also from a fundamental perspective as the dominant mechanisms controlling the 

deformation and fracture of nanoscale multilayers (interface strength, dislocation 

plasticity) are thermally activated.  

Cu/Nb nanolaminates has been one of the only laminate systems for which the high 

temperature mechanical properties have been investigated. Mara et al. [79, 80] tested 

freestanding Cu/Nb multilayers with 60 nm layer thicknesses. The Cu/Nb samples 

contained 125 bilayers to form 15 μm foils and were sputtered on Si wafers. After 

deposition, the foils were carefully peeled from their substrate, clamped into a fixture 

and ground into dogbone-shaped tensile specimens with a gauge length of 2 mm and a 

gauge width of 1 mm to a finish on the edges better than 1 μm. The samples were 

tested at temperature ranging from 20°C to 700°C at strain rates on the order of 10-4s-1. 

The layered morphology of the composite was stable in the whole temperature range. 

At room temperature, the nanolaminate exhibited high strength (1.2 GPa) and a strain to 

failure close to 10%. At 700°C, the flow stress of the nanolaminate was ≈ 200 MPa, 

while the strain to failure reached 30% (figure 2-10). The high strength of the 

nanolaminate was attributed to the fine scale of the microstructure, and to the ability of 

the Cu/Nb interfaces to function as barriers to dislocation motion. The confined layer slip 
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model is able to explain the mechanical response up to 500ºC, and the reduction in the 

work hardening contribution with increasing temperature is due to enhanced dislocation 

mobility at elevated temperatures. At 600°C and above, thermally activated processes 

such as dislocation climb and cross slip across Cu/Nb interfaces diminish the work 

hardening, leading to uniform strains of 30% at 700ºC. 

 

Figure  2-10: Influence of the temperature in the tensile stress-strain curve of Cu/Nb 
nanolaminates tested at a strain rate of 10-4 s-1 [79, 80]. 

Recently, Monclus et al. [81] used high temperature nanoindentation to reveal nano-

layer size effects on the hardness of Cu/Nb nanolaminates. They reported the effect of 

nano-layer thickness and interface structure on the high temperature mechanical 

behavior of Cu/Nb nanolaminates with different thicknesses and processing history: 

physical vapor deposition (PVD) Cu/Nb thin films and accumulative roll bonded (ARB) 

Cu/Nb sheets. They showed that the PVD samples are consistently harder than the 

ARB samples at all temperatures, which is in agreement with the trends observed in 

ambient temperature studies on Cu/Nb nanolaminates (figure 2-11). 

In addition, their study revealed the existence of a critical layer thickness ܮ௖௥௜௧ at which 

the material is more resistant to softening at elevated temperature. ܮ௖௥௜௧ depends on 

interface structure, which provides indirect evidence that ܮ௖௥௜௧ corresponds to the layer 

thickness at which the main deformation mechanism changes from confined layer slip to 
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interface crossing. These results imply that layer thickness and interface structure can 

be tuned to achieve optimal high-temperature strength in layered nanocomposite 

structures. 

 

Figure  2-11: Indentation hardness vs. layer thickness L for the (a) ARB Cu/Nb 
nanolaminates at 23°C, 300°C, and 400°C; (b) PVD Cu/Nb multilayers at 23°C, 200°C, and 
300°C [81]. 

With the recent progress in instrumented nanoindentation, it is now possible to carry out 

nanomechanical testing at high temperatures. This work aims at exploiting this new 

technique to explore the high temperature mechanical properties of Al/SiC 

nanolaminates as a model multilayer system combining metallic and ceramic layers. 
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3 Materials and experimental 

techniques 

3.1. Multilayer processing 

Except for accumulative roll bonding (ARB), that has demonstrated the ability to 

manufacture bulk metallic laminate plates with layer thicknesses as small as 10 nm, 

most of the techniques for nanolaminate fabrication rely on thin-film deposition 

technology. Metal-ceramic nanoscale laminates can be processed by a range of thin-

film deposition techniques, like chemical vapor deposition (CVD), physical vapor 

deposition (PVD), sol-gel synthesis, electroplating, etc. The Al/SiC nanolaminates 

studied in this work were deposited by magnetron sputter deposition (a form of PVD). 

Sputter deposition is one of the most versatile and widely used fabrication techniques 

for nanoscale multilayers [4, 5, 9, 10, 13, 17]. The wide acceptance of this technique is 

based on the ability to deposit a wide variety of materials (both conducting and non-

conducting elements as well as alloys can be sputtered) together with a good process 

control (required to control layer thickness at the nano scale) and high deposition rates 
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(needed to manufacture relatively thick laminates) [82]. The conditions used for the 

deposition of the Al/SiC nanolaminates and the set of multilayers deposited are briefly 

described below. 

3.1.1. Deposition of the Al/SiC nanolaminates by magnetron sputtering 

The Al/SiC nanoscale multilayers were grown on thermally oxidized (111) oriented 

single-crystal silicon (Si) wafers. The films were deposited in Los Alamos National 

Laboratory using a sputter unit made up of a high vacuum chamber with dual sputter 

guns (figure 3-1). 

 

 

Figure  3-1: (a) Schematic of sputter unit, (b) vacuum chamber with dual sputter guns. 

 
The base pressure of the sputtering unit was 10-7 Torr. Argon (Ar) was used as the 

sputter gas and all depositions were carried out at an Ar working pressure of 3.0 mTorr 

(0.4 Pa). The pure aluminum target (>99.99% purity, Kurt J. Lesker, Clairton, PA) was 

sputtered at a DC power of 95 W. SiC layers were deposited from a SiC target made by 

hot isostatic pressing (>99.5% purity, Kurt J. Lesker, Clairton, PA) using identical argon 

pressure and a RF sputter power of 215 W. The targets were pre-sputtered for about 10 

min at 40 W for Al and 95 W for SiC to remove any oxides and contamination prior to 

film deposition. The sample holder was continuously rotated during sputtering to obtain 

a uniform layer thickness. The deposition rates were approximately 7.5 nm min-1 for Al 

and 3.9 nm min-1 for SiC. Alternating Al and SiC layers were deposited by means of a 

computer controlled shutter system to build up the multilayer structure [13, 14, 17, 83-

85]. 
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Four different series of nanolaminates were deposited for this work. In series 0, the Al 

and SiC layer were grown to an equal nominal thickness of 50 nm, to a total number of 

layers of 40, yielding a total coating thickness of approximately 2 μm. Using the same 

sputtering conditions, 1 μm thick monolithic thin films of Al and SiC were also deposited 

on Si substrates, to be used as reference materials. 

Three additional series of samples (series 1 to 3 in table 3-1) were manufactured to 

investigate the effect of individual layer thickness and volume fraction on the 

mechanical response. The total number of layers in each nanolaminate was chosen to 

obtain a total coating thickness above 10 μm to reduce substrate effects during 

nanoindentation, as will be explained in section 3.4. 

In series 1, the SiC layer thickness was kept constant at 50 nm and the Al layer 

thickness was varied between 10 and 100 nm. In series 2, the Al layer thickness was 

kept constant at 50 nm and the SiC layer thickness was ranged between 2 and 100 nm. 

Finally the volume fraction of both Al and SiC was fixed at 50% in series 3 and the layer 

thicknesses were varied between 10 and 100 nm. The code used to name the different 

nanolaminates refers to the nominal thickness, in nm, of each layer; for example 

Al10SiC50 refers to a nanolaminate containing 10 nm thick Al layers and 50 nm thick 

SiC layers. The last column in table 3-1 indicates the volume fraction of Al in each 

nanolaminate, according to the nominal layer thicknesses. 

Table  3-1: Number of layers and layer thicknesses in the three series of nanolaminates 
under study. 

Series Sample Thickness 
(μm) 

Number of 
bilayers tAl (nm) tSiC (nm) VAl 

S0 

Al40SiC40 ~2 20 40 40 0.5 
Al60SiC60 ~2 20 60 60 0.5 
Al ~1 - 1000 - 1 
SiC ~1 - - 1000 0 

S1 

Al10SiC50 ~15 250 10 50 0.17 
Al25SiC50 ~13.3 175 25 50 0.33 
Al50SiC50 ~15 150 50 50 0.50 
Al100SiC50 ~15 100 100 50 0.67 

S2 

Al50SiC2 ~13.5 260 50 2 0.96 
Al50SiC10 ~15 250 50 10 0.83 
Al50SiC25 ~13 175 50 25 0.67 
Al50SiC100 ~15 100 50 100 0.33 

S3 
Al100SiC100 ~17 85 100 100 0.50 
Al25SiC25 ~14 280 25 25 0.50 
Al10SiC10 ~12 600 10 10 0.50 
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3.2. Microstructural characterization techniques 

Microstructural characterization of the nanolaminates was carried out by scanning 

electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), transmission 

electron microscopy (TEM), and atomic force microscopy (AFM). 

SEM was carried out in either a SEM EVO® MA15 (Carl Zeiss Company) or a Helios 

600i (FEI Company) dual beam system, both equipped with an Oxford INCA 350 EDS 

system for chemical analysis. AFM (Park XE-150) was employed to carry out a detailed 

analysis of the topography around nanoindentation imprints and to quantify the pile-

up/sink-in effects as well as to study the shape changes of the indenter tip that can 

potentially occur during hot nanoindentation. Finally, TEM was employed for studying 

the deformation mechanisms, using three different microscopes: a FEI Tecnai F-20, at 

the LabMet Laboratory of Carlos III University, and the JEOL JEM 3000 and JEOL JEM 

2100, at the National Laboratory for Electron Microscopy (CNME) of the Complutense 

University of Madrid. TEM sample preparation across nanoindentations and deformed 

nanopillars was carried out by focused ion beam (FIB) milling, as described in section 

3.3.2. 

3.3. Nanofabrication by FIB 

Focused ion beam (FIB) milling has become an increasingly popular technique for the 

fabrication of various types of nanostructures for different applications. In this study, FIB 

milling, using a Helios 600i dual beam instrument (FEI Company) has been used with 

two purposes. The first one was to study the deformation mechanisms around 

indentations and deformed micropillars, as FIB is the only available method to prepare 

TEM specimens across selected locations. Secondly, for the fabrication of nanolaminate 

micropillars that were afterwards tested in compression. Since FIB nanofabrication is a 

relatively novel technique, the principle of operation is first presented in section 3.3.1, 

followed by a detailed description of the methods and conditions used for the TEM 

sample preparation (section 3.3.2) and the fabrication of the micropillars (section 3.3.3). 

3.3.1. Principles of operation 

Focused ion beam (FIB) microscopes are tools enabling inspection, characterization, 

structuring or manipulation of a broad range of materials. The basic concept is very 

similar to scanning electron microscope (SEM) but uses ions (charge atoms) instead of 
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electrons. For both instruments, the intensity of the secondary electrons produced at 

each raster position of the beam is displayed to create an image of the sample. A fine 

tungsten pin covered with liquid Gallium (Ga) is used as ion source from which Ga 

atoms are extracted and ionized via high voltage. The use of Ga is advantageous for 

two reasons. Firstly, Ga has a low melting point and hence exists in the liquid state near 

room temperature. Secondly, Ga can be focused to a very fine probe size, less than 10 

nm in diameter. Such Ga+ ions are then accelerated in the range of 0.5 - 50 keV and 

focused on the sample via electrostatic lenses. By controlling the strength of the 

electrostatic lenses and adjusting the effective aperture sizes, the probe current density 

(and therefore the beam diameter) may be varied from tens of pA to several nA 

corresponding to a beam diameter of ~ 5 nm to ~ 0.5 μm, respectively. 

The impacting ions can interact with the specimen surface in many different ways, such 

as the emission of electrons, ions, atoms or clusters. An understanding of the sputtering 

process is important for the operation of FIB systems. When a Ga+ ion is accelerated 

toward the target sample, it impacts the sample, creating a cascade of collision events 

that results in the emission of secondary electrons plus the ejection of sputtered 

particles (which may be ions or neutral atoms) and/or the generation of point and line 

defects. Therefore, the interaction with the ion beam can be used both for imaging, by 

the use of different detectors, and for removing material through sputtering in selected 

locations. Almost all materials can be structured by FIB, ranging from soft matter 

(polymers) to ultra hard material (diamond). However, when using FIBs for surface 

structuring it should be kept in mind that this method can lead to ion implantation, 

thermal stresses and defect formation. Another advantage of FIB systems is that they 

can also be used for ion-beam assisted chemical vapor deposition in selected locations. 

This is very useful for the deposition of metals in silicon semiconductor device repair, 

but also to protect selected locations from further interaction with the ion beam, and it is 

extensively used in SEM and TEM specimen preparation by FIB. To this end, a needle 

is brought to within 100–200 μm of the target surface. A suitable organometallic gas is 

injected through the needle and adsorbed onto the target surface. By scanning the area 

of interest with the Ga+ beam, the gas can decompose, leaving a layer of deposited 

metal. Pt or W can be deposited in FIB systems using this method while the byproducts 

like CO are removed through the vacuum system [86, 87]. 
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Figure  3-2: Schematic diagram of the configuration of the FIB/SEM dual beam apparatus. 
The sample is tilted to 52°, so ion milling occurs at 90° to the sample while electron 
imaging takes place at 52° to the sample [88]. 

Nowadays, most FIB microscopes are equipped with an additional scanning electron 

column, as depicted in figure 3-2. Such systems are extremely useful since they allow 

for in situ observation with the electron beam during ion beam induced surface 

structuring [86-94]. 

3.3.2. FIB milling techniques for TEM specimen preparation 

The small beam size and imaging capabilities of the FIB make this instrument ideal for 

preparing SEM or TEM specimens in either cross-section or plan view in selected 

locations. The beam can be very accurately positioned on the sample at high current 

density to produce uniformly thin TEM specimens that may be prepared in just a couple 

of hours [86-89, 91-96]. There are basically two methods to prepare electron 

transparent lamellas using FIB: 

a) The cross-section method: Initial specimen preparation must be performed before 

the sample is placed into the FIB using conventional TEM specimen preparation 

techniques. An area of interest is located and cut to less than 3 mm in length, so that it 

fits into the TEM holder. The sample is then mechanically polished as thin as possible 

(around 50 μm) to reduce the FIB time. The sample is mounted on a slotted TEM Cu 

grid that has been partially cut away (see figure 3.3). The sample is then positioned into 

the FIB and a window is thinned down using the Ga+ beam. The preparation of plan 
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view specimens is similar to that for cross-section specimens. The plan view method 

essentially requires that the bulk sample be oriented so that planar interfaces are 

positioned parallel to the ion beam. For the preparation of TEM plan view specimens, 

the top edge of the specimen that contains the region of interest is polished and the bulk 

sample is cut and/or polished to the appropriate size using the same techniques 

mentioned above. The mounted sample is then positioned into the FIB so that the plane 

of interest is parallel to the ion beam and an electron transparent membrane is then FIB 

milled in a similar manner for the preparation of cross-section specimens. 

 
Figure  3-3: A schematic diagram of a TEM specimen prepared by FIB (drawing is not at 
scale) [92]. 

b) The lift-out technique: this technique requires little or no initial specimen 

preparation but the FIB system must be equipped with a micromanipulator or 

microprobe. A thin membrane is actually cut and removed from the bulk specimen and 

mounted in a TEM grid. The process starts with the deposition of a metal strip over the 

area of interest as in the conventional FIB method to protect the surface. A large stair-

step FIB trench is cut on one side of the area of interest and a rectangular FIB trench is 

cut on the other side of the area of interest. Prior to final thinning, the sample is tilted to 

45° with respect to the ion beam and then the bottom, left side, and a portion of the right 

side of the specimen is cut free. Then, the thin membrane is glued to the 

micromanipulator and then the remaining right side of the specimen is milled free and 

transferred to a TEM grid where is glued again depositing a metal pad. Once the 

membrane is transferred to the TEM grid, the final milling to electron transparency is 

completed using low ion beam currents. If the specimen is to be used for high resolution 

electron microscopy (HREM), a final FIB cut is performed ~1–2° with respect to the 

plane of the specimen surface. In this manner, the thinnest portion of the specimen lies 
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in the area of interest required for HREM analysis. The remaining right side of the 

specimen is milled free leaving the electron transparent membrane lying in the cut 

trenches. Plan view specimens may also be prepared using this technique. Lift-Out 

TEM specimens may be prepared within 3 h. 

 
Figure  3-4: Focused ion beam (FIB) lift-out TEM sample preparation technique [80]. 

In this work, the lift-out technique was used to prepare electron transparent lamellas 

across nanoindentations in order to study the deformation mechanisms in the TEM. The 

process used to prepare cross-section surfaces suitable for TEM analysis is shown in 

figure 3-4. A Pt layer was deposited on the nanolaminate to minimize beam damage. 

This was followed by milling a wide trench in the region of interest at a decreasing high 

ion beam current (from 30 nA to 2.5 nA). A fair amount of beam damage was introduced 
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at this current. The region of interest was then finally thinned down at low currents (from 

80 to 10 pA) to remove the damage introduced during the high current milling. 

3.3.3. Micropillar fabrication by FIB 

The micropillar compression technique was introduced by Uchic et al. [42-45] as a new 

method to characterize the mechanical behavior of micrometer scale volumes under 

uniaxial conditions. The technique, used for the first time to study size effects in strength 

in pure metals, is very well suited to study the mechanical behavior of thin-films and 

coatings under uniaxial loading. The technique relies on the ability to manufacture 

micropillars, whose size is limited by the total coating thickness. FIB milling is very well 

suited for this purpose and two main strategies can be used to manufacture micropillars 

by FIB: 

a) Annular milling: The pillars are manufactured by milling concentric annular patterns, 

with the ion beam oriented parallel to the pillar axis, as schematically illustrated in figure 

3-5 (a). The final result is a pillar located in the center of a trench whose dimensions 

have to be large enough to fit the flat punch that will be used for compressing the pillar. 

The main advantage of this technique is that it can be easily employed based on 

conventional milling patterns readily available in any FIB system. However, pillars 

fabricated by annular milling tend to present some taper, so that the diameter at the top 

is slightly smaller than the diameter at the base. This leads to a gradient on the applied 

stress along the micropillar and may induce potential artifacts in the stress-strain 

curves. The taper angle will vary with milling condition, but is generally within 2 to 5 

degrees. 

 
Figure  3-5: A schematic drawing of the approximate geometry for (a) annular milling, (b) 
lathe milling of micropillars. 
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b) Lathe milling: To avoid the potential artifacts associated with the taper, the 

micropillar walls can be subsequently polished with the ion beam at bevel angle to the 

bulk specimen surface, while rotating the pillar around its axis. This procedure, referred 

to as lathe milling, is time consuming, but provides micropillars with uniform cross-

section and controlled aspect ratio (figure. 3-5 (b) and figure 3-6 (b) and (c)). 

 

Figure  3-6: (a) Annular milling patterns have been used to FIB mill a roughly defined 
pillar and surrounding cavity, (b) and (c) micropillars fabricated by lathe milling [43]. 

In this work, the mechanical behavior of Al/SiC nanolaminates was investigated by 

micropillar compression (in addition to indentation). The micropillars were fabricated 

with a diameter of 1 μm and a length of 2 μm. Two types of manufacturing strategies 

were followed: annular milling and lathe milling, as shown in figure 3-7. The micropillars 

manufactured by annular milling presented slight taper (less than 4º), while lathe milling 

produced “taper-free” micropillars with vertical walls and negligible taper (< 1º). Milling 

of the tapered pillars was carried out in two steps. First, a relatively large pillar of 4 μm 

in diameter was milled with a relatively high ion current (7 nA). Final milling was carried 

out with an ion current of 50 pA, down to a final micropillar diameter of ~1 μm. “Taper-

free” pillars were fabricated by initially milling a micropillar of ~3 μm in diameter using 

the annular milling technique described above. Afterwards, the sample surface was 

tilted to make a small angle with the initial sample surface (~28º), so that the ion beam 

overstepped the sample tangent to the surface. The sample was rotated in 5º intervals, 

and the milling operation was replicated with an ion current of 50 pA. A fixed mark at the 

top surface of the micropillar was introduced before starting the lathe milling for better 

aligning the sample. It is well known that Ga+ ion implantation can cause irradiation 

damage, although the damage depth was estimated to be less than 60 nm at 30 kV 

beam under normal incidence [97, 98]. This is a small fraction of the total micropillar 

diameter (~1 μm). 
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Figure  3-7: (a) Tapered micropillar of Al/SiC nanolaminate fabricated by FIB annular 
milling procedure, (b) Taper-free micropillar of Al/SiC nanolaminate manufactured by FIB 
lathe milling [85]. 

Ion beam-induced surface damage approaching the 50-60 nm in depth might have an 

influence on the micropillar compression behavior in the case of micropillars with very 

small diameter of monolithic materials [99]. The micropillar diameter does not influence 

the flow stress significantly In the case of Al/SiC nanolaminates since the characteristic 

length scale that controls the mechanical response is the layer thickness, that is much 

smaller than the micropillar diameter [84, 85]. For the reasons described above, it is 

assumed that the ion beam-induced surface damage should play a minor role on the 

deformation behavior of micropillars made of nanoscale multilayers. 

 

Figure  3-8: (a) Stress-strain curves in compression of Al/SiC nanoscale multilayers 
obtained by testing tapered and taper-free micropillars. (b) The elastic modulus 
determined for both micropillar geometry as a function of the applied displacement [85]. 
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Figure 3-8 illustrates potential artifacts associated with the taper of the pillars by 

comparing the stress-strain curves for tapered and straight Al/SiC nanolaminate 

micropillars [85]. Tapered pillars tend to be somewhat more compliant than straight 

pillars and produce artifacts in the determination of the elastic modulus, due to the more 

inhomogeneous deformation and the stress concentration at the top of the pillar, 

resulting in plastic yielding at lower apparent stresses. 

3.4. Nanomechanical testing 

The aim of this work was to study the high temperature mechanical properties of Al/SiC 

nanoscale multilayers. This was achieved using three experimental nanomechanical 

testing approaches. Firstly, the hardness and elastic modulus of the nanolaminates was 

determined through instrumented nanoindentation. Secondly micropillar compression 

tests were carried out at elevated temperature in selected cases to get a better 

understanding of the deformation mechanisms. And finally, the creep behavior of these 

multilayers was also explored by the indentation creep technique. All three approaches 

are well established at room temperature, and hence are described below, together with 

a description of the experimental set-up used in this thesis. However, nanomechanical 

testing techniques at high temperature are not yet well established and required a large 

effort in order to find the best operating procedure. Hence, the extension of the 

techniques described below to elevated temperatures will be the subject of the next 

chapter and is one the original contributions of this thesis. 

3.4.1. Description of experimental apparatus 

Two types of commercial nanoindenter systems were used during this investigation: 

• A TI 950 TriboIndenterTM from Hysitron. 

• A NanoTestTM platform III from Micro Materials. 

The Hysitron 950 TriboIndenter uses an axial-loading system based on a piezoelectric 

force transducer and capacitance depth-sensing indenter head (figure 3-9). 

The indenter contains a granite base that supports other components of the system and 

is embedded on an active vibration isolation system. The system is equipped with 

automated motorized X-axis and Y-axis stages mounted on the bottom of the 

TriboIndenter base, while the Z-axis stage is mounted on the bridge (bracket). The 
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sample stage is connected directly to the XY stage. The Triboscanner (three axis piezo 

scanner and transducer) and optics are mounted to the Z stage. The positioning is 

provided by three axis piezo scanner that has much higher precision than the XYZ 

stage and can also be used for scanning the topography of the surface before and after 

indentation. The entire apparatus is placed inside an acoustic and thermal enclosure 

that has been designed to minimize the amount of acoustic noise that can get to the 

indenter during testing, that blocks air current and acts as a thermal buffer to help 

eliminate drift (figure 3-10). 

 

Figure  3-9: (a) Hysitron three-plate capacitive transducer. (b) Schematic of Hysitron 
three-plate capacitive transducer. Electrostatic actuation of the nanoindenter probe is 
realized by applying a known voltage between the movable center plate and the fixed 
lower outer plate of the force actuator sensor [100]. 

The NanoTest, however, operates with a horizontal loading configuration and utilizes a 

pendulum based loading system. The loading system is illustrated schematically in 

figure 3-11. By passing a current through the coil at the top, the pendulum rotates 

around a friction-less pivot towards the magnet, thus pushing the indenting tip into the 

sample. The displacement of the indenter into the sample surface is measured by a set 

of parallel plate capacitors, with one plate attached to the pendulum and the other to the 

main frame of the instrument. A set of damping plates located at the bottom provide air 

damping to minimize pendulum oscillation prior to measurements. The whole 

indentation setup is placed inside an environmental control chamber. Figure 3-12 shows 
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the seal chamber that can be purged with gas to perform the experiments in a controlled 

atmosphere. 

 

 

Figure  3-10: (a) Outside view of TriboIndenter cabinet, (b) Inside view of the 
TriboIndenter, (1) acoustic enclosure, (2) granite bridge, (3) XY-Stage, (4) Optic Objective, 
(5) Z-Axis stage, (6) high load transducer, (7) Triboscanner that contains piezo scanner 
and low load transducer. 
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Figure  3-11: Schematic of NanoTest system based on horizontal loading of the specimen. 

 

Figure  3-12: Outside view of NanoTestTM platform III from Micro Materials. The entire 
indentation setup lay on an environmental control chamber. 
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3.4.2. Basic principles of instrumented nanoindentation 

In instrumented nanoindentation, force and depth are measured continuously during 

loading and unloading while a hard tip with a well defined geometry is pressed into the 

sample surface. Instrumented nanoindentation relies on the precise knowledge of the 

real shape of the indenter to estimate the contact area between the indenter and the flat 

surface from the loading-unloading sequence, allowing the hardness and elastic 

modulus to be derived. An important component of the indentation system is the probe 

tip. The indenter tip is generally made of single crystal diamond but other kind of hard 

materials such as sapphire, quartz, tungsten carbide, and cubic boron nitride can be 

used. Different shapes of tips are available depending on the type of experiment to 

carry out. Common geometries of the indenter tip are cones, spheres, four-sided 

pyramids, like Vickers, and three-sided pyramids, like Berkovich and Cube-Corner tips 

(figure 3-13). The most common tip in nanoscale testing for probing hardness and 

elastic modulus is the Berkovich tip, mainly due to two reasons. Firstly, pyramidal 

indenters have a self-similar geometry with depth, and therefore the type of elasto-

plastic deformation induced by the indenter is independent of indentation depth. 

Secondly, three sided pyramids are easier to grind to a sharp point, allowing for very 

small indenter tip radius. 

 

Figure  3-13: Various common indenter shapes and their projected cross-sectional area 
as a function of indentation depth [101]. 

3.4.2.1. Hardness and elastic modulus determination 

The most commonly used method to analyze nanoindentation data for pyramidal 

indenters was developed by Oliver and Pharr in 1992 [102]. This method is based on 

analytical solutions for the elastic contact problem between an indenter and a flat 

surface. As the direct measurement of the contact area is not always accurate and 
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convenient, they proposed a procedure to determine the contact area based on the 

depth of indentation and the indenter shape function. The contact between an indenter 

and a flat surface can be modeled by the sequence of events illustrated in figure 3-14. 

At peak load, Pmax, the material conforms to the shape of the indenter. The total 

displacement hmax is the sum of the contact depth hc (the vertical distance along which 

contact is made) and the displacement of the surface at the perimeter of contact hs, due 

to elastic deformation of the flat surface: ℎ௖ = ℎ௠௔௫ − ℎ௦ ( 3-1)
 
During unloading, the elastic displacements are recovered, and the final depth of the 

residual impression is hf when the indenter is fully withdrawn. To determine the contact 

depth hc from the experimental data, the displacement of the surface at the contact 

perimeter hs, must be obtained. This displacement hs depends on the geometry of the 

indenter. 

 

Figure  3-14: Cross-section of nanoindentation profile at peak load and at full unloading 
for an elasto-plastic material. 

 
Oliver and Pharr assumed that the equations describing the elastic unloading of a flat, 

semi-infinite half space are the same as those for an indented surface. That is, 

Sneddon’s solutions [103] can be applied to a flat surface or to a surface with a 

hardness impression. Sneddon derived general relationships among the load, elastic 

displacement and contact area for any indenter that can be described as a solid of 
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revolution of a smooth function. Sneddon’s expressions for the shape of the surface 

outside the area of contact can be used to obtain hs: 

ℎ௦ = ߝ ܲܵ
 (3-2)

 
where P is the indentation load, S the stiffness of the contact, ܵ = ݀ܲ ݀ℎ⁄ , and ߝ a 

indenter geometrical constant that has a value of 1 for a flat punch, 0.75 for a 

paraboloidal indenter and 0.72 for a conical indenter. Oliver and Pharr obtained that the 

value of ߝ that best described the unloading behavior of a Berkovich indenter was 0.75. 

 

Figure  3-15: A loading-unloading sequence for an indentation in an Al/SiC nanolaminate, 
indicating the parameters used to estimate the contact depth hc. 

The maximum depth, hmax, and the maximum stiffness of the unloading curve, S, can be 

obtained from the loading and unloading sequence of an indentation, as shown in figure 

3-15. They can be used to estimate the contact depth hc according to equation 3-2. The 

contact area Ac at peak load is determined from the geometry of the indenter and the 

contact depth hc. The indenter geometry is described by an area function ܨሺℎሻ which 

relates the cross-sectional area of the indenter to the distance from its tip h. The 

projected contact area Ac is then determined using the relation: ܣ௖ = ሺℎ௖ሻ ( 3-3)ܨ
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whereas the functional form of ܨ must be estimated experimentally prior to the analysis 

using a standard calibration material (fused quartz) with a well-known elastic modulus. 

Alternatively, the shape function can be determined directly by careful measurement of 

the dimensions of the tip using a traceably calibrated, precision metrology device such 

as an Atomic Force Microscope (AFM). 

Both the hardness and the elastic modulus can be determined as follows: 

(a) Hardness determination 

The hardness can be determined as: 

ܪ = ሺℎ௖ሻ ( 3-4)ܣܲ

 
where P is the load and A(hc) is the cross-sectional area of the indenter at a distance hc 

from its tip. According to this definition, the measured hardness may be different from 

the one obtained from the more conventional definition in which the contact area is 

determined by direct measurement of the size of the residual impression. 

 

Figure  3-16: Effect of (a) pile-up and (b) sink-in on the real contact area ࢒ࢇࢋ࢘ࢉࢇ compared to 
the contact area ࢉࢇ derived from instrumented nanoindentation. The dashed line 
indicates the height of the original surface. 

There are two reasons for this difference. Firstly, the material around the indentation 

may pile-up (or sink-in), as shown in figure 3-16, and the real contact area will be larger 

(or smaller) than the one derived from equation 3-4. As a result the hardness will be 

overestimated (underestimated). Secondly, elastic recovery at the sides of the 
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indentation mark may happen, and therefore the residual size of the indentation will be 

smaller than that in equation 3-4. However, the size of the residual hardness imprint 

coincides with the size of contact area a at peak load for metals, whose deformation is 

mainly controlled by plastic deformation. Elastic recovery during unloading in this case 

usually affects the depth of the residual indentation mark, which decreases from hmax to 

hf, while the size of contact area a remains constant during unloading. However, this 

may not be true when elastic recovery is important, as in the case of materials with a 

very high ܧ ⁄௬ߪ  ratio (> 20) [104]. To avoid uncertainties, the real contact area for most 

nanolaminates tested in this work was actually measured by direct observation of the 

residual imprints by either SEM or AFM. 

(b) Elastic Modulus determination 

The elastic modulus E can be calculated from: 

ܵ = ߨ√2 ሺℎ௖ሻ ( 3-5)ܣ௥ඥܧ

 
where S is the initial slope of the unloading curve, as shown in figure 3-15, and Er the 

reduced modulus that accounts for the elastic deformation of both the specimen and the 

indenter and is given by: 1ܧ௥ = 1 − ߭ଶܧ + 1 − ߭௜ଶܧ௜  ( 3-6)

 
where Ei and E are the elastic modulus and ߭௜ and ߭ are the Poisson`s ratio of the 

indenter and the specimen, respectively. 

3.4.3. Micropillar compression 

The micropillar compression testing technique was introduced by Uchic and his 

colleagues [43, 44] to evaluate plastic flow of specimens ranging in size from about 1 

μm to several μm. A schematic illustration of the experiment is shown in figure 3-17. 

This test simulates the compression experiment commonly performed on macroscopic 

samples, with some modifications to facilitate both the fabrication of the micrometer size 

specimens and their subsequent manipulation into the testing system. The most 

remarkable difference is that the microcompression specimens are not freestanding; 



Materials and experimental techniques 

 43 

rather, they remain integrally attached to the bulk substrate in order to eliminate the 

need for micromanipulation. Therefore, the substrate acts as the bottom compression 

platen during the test. 

 
Figure  3-17: Schematic of compression test on a micropillar. 

Commercial nanoindentation systems are usually used as the mechanical test frame, 

where the sharp indentation tip is substituted with a flat punch tip. The load and 

displacement resolution of many nanoindentation machines are appropriate for 

microcompression tests. In the last ten years, micropillar compression has been widely 

applied to study size effects in the mechanical strength of single crystalline metals, such 

as Ni, Au, Al, Cu, Nb, W, and Mo [42, 105-108], by testing micropillars with diameters 

ranging from 200 nm to ≈ 20 μm. Most studies used FIB milling to fabricate the 

micropillars, allowing accurate control of location and size, using the methodology 

described in section 3.3.3. In most cases, micropillars with a circular cross-section were 

studied, but others, like square cross-sections are also possible. 

3.4.3.1. Challenges 

Some of the challenges and/or concerns associated with micropillar compression are 

summarized below in the context of the application of this test to Al/SiC nanolaminates: 

(a) FIB irradiation damage: it is recognized that the use of highly accelerated Ga+ ions 

associated with FIB milling creates some surface damage. The depth and nature of this 
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damaged layer depends on a number of parameters, including the atomic weight and 

bonding nature of the material, the angle of the incident beam, and the ion energy [87, 

90, 92, 94, 109]. Depending on these parameters, several damage types have been 

reported, from the formation of a thin amorphous layer to the introduction of point and 

line defects, as well as to the precipitation of Ga-containing phases [93, 110]. While 

these surface defects might play a major role on single-crystal micropillars, where the 

strength is very dependent on micropillar diameter, this work relies on the hypothesis 

that the effect of surface damage should be negligible in Al/SiC nanolaminates. This is 

because the length scale that controls the strength of Al/SiC nanolaminates, the 

individual layer thickness, is orders of magnitude smaller than the pillar diameter. As a 

matter of fact, and as will be shown in chapter 5, and contrary to the single-crystal 

behavior, the strength was found to be independent of the micropillar diameter in the 

case of Al/SiC nanolaminates, corroborating the initial hypothesis. 

(b) Tapering effect: as explained in section 3.3.3, tapering effects induce a non-uniform 

stress field that might create artifacts on the determination of stress-strain curves. The 

results presented in this work were mainly obtained on micropillars fabricated by lathe 

milling, to minimize these problems. 

(c) Elastic deflection of the substrate: the compliance contribution coming from the 

elastic deflection of the substrate at the base of the pillar should be accounted for to 

obtain accurate strain measurements. The method for correcting the measured 

displacement will be discussed in next section. 

(d) Misalignment between the flat punch tip and the top surface of the pillar: when 

the misalignment is greater than 1 degree, stress concentration at the top of the pillar 

can lead to an underestimation of the yield point and elastic modulus, changes in strain 

hardening response and buckling [111, 112]. To ensure minimum alignment errors, the 

nanoindentation apparatus was fitted with a double-tilt stage and a procedure was 

developed to align the pillars, as will be explained in the next section. 

3.4.3.2. Methodology 

The uniaxial micropillar compression tests were conducted using the Hysitron 

TriboIndenterTM and the Micro Materials NanoTestTM platforms described in section 

3.4.1. The samples were mounted in such a way as to allow for high temperature 

testing: 
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• Hysitron TriboIndenter: In this system, the samples were mounted by mechanical 

clips. A flat diamond punch with a diameter of 8 μm was used to apply the load. 

The flat punch tip was brazed to a low thermal expansion coefficient Eclipse® 

shaft, attached directly to a load transducer. 

• Micro Materials NanoTest: Thermally conductive cement was used in this system 

to mount the samples. The tests were carried out using a sapphire flat punch tip 

with a diameter of 10 μm, compatible with high temperature testing. 

To reduce alignment errors, a novel in-situ method was developed by using the 

nanoindenter head as a high resolution displacement gauge to determine the surface 

profile to the sample. The indenter tip was brought in contact with the sample surface at 

various X-Y locations of the positioning table, and the raw Z displacement measured. 

The Z displacements at different X-Y locations provided the initial slope of the sample 

surface, which was corrected by the use of a double-tilt stage mounted between the X-Y 

table of the instrument and the sample, as schematically illustrated in figure 3-18. 

 

 

Figure  3-18: Measuring misalignment of sample for micro-compression testing. 



Chapter 3 

 46 

3.4.3.3. Stress and strain determination 

In order to compute stress and strain from the load-displacement data, the micropillars 

were considered perfect cylindrical rods of length L0 and constant cross-sectional area 

A0. The true stress and true strain will be given by [84, 85]: 

ߝ = ݈݊ ଴ܮ − ଴ܮ௣௜௟௟௔௥ݑ  ( 3-7)

 
and 

ߪ = ଴൫1ܣܲ − ௣௜௟௟௔௥ݑ ⁄଴ܮ ൯ ( 3-8)

 
where ݑ௣௜௟௟௔௥ is the pillar contraction and P the measured load. 

The measured displacement of the flat punch, ்ݑை்஺௅, is different from ݑ௣௜௟௟௔௥ because 

it includes contributions from the elastic sink-in effect of the surrounding material at the 

base of pillar (ݑ௦௜௡௞) as well as a small contribution from the diamond indenter itself 

ை்஺௅்ݑ ,So .(௣௨௡௖௛ݑ) = ௣௜௟௟௔௥ݑ + ௦௜௡௞ݑ + ௣௨௡௖௛ ( 3-9)ݑ

 
The sink-in contribution to the measured displacement can be easily corrected using 

Sneddon’s equation [85] for the deflection of an elastic surface by a flat punch, in which 

the micropillar itself is assimilated to the flat punch, according to: 

ௌ௡௘ௗௗ௢௡ܥ = ௦௜௡௞݀ܲݑ݀ = ሺ1ߨ√ − ߭ଶሻ2ܧ௕௔௦௘ඥܣ௉  ( 3-10)

 
where CSneddon is the Sneddon compliance associated with elastic deflection of the 

surface at the base of the pillar, Ebase and ߭௕௔௦௘ are the elastic and Poisson’s modulus of 

the base material and AP is the micropillar cross-sectional area. Sneddon’s equation 

assumes that the pillar is completely rigid, which may result in a slight overestimation of 

the compliance. 

The relative magnitude of each contribution is plotted in figure 3-19. While the 

contribution of the elastic deformation of the flat-punch (ݑ௣௨௡௖௛) is negligible, an 
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accurate determination of the elastic and plastic deformation of the pillar requires the 

correction of Sneddon’s sink-in effect. Figure 3-20 shows the load-displacement curve 

corresponding to micropillar compression of Al/SiC nanolaminates before and after sink-

in correction. 

 

Figure  3-19: Different contributions to the deformation of a micropillar in compression 
[85]. 

 

Figure  3-20: Load-displacement curve for micropillar compression of Al/SiC 
nanolaminates before and after sink-in correction. 



Chapter 3 

 48 

So, the pillar contraction was estimated in this work according to: ݑ௣௜௟௟௔௥ = ௧௢௧௔௟ݑ − ௦௜௡௞ି௜௡ݑ = ௧௢௧௔௟ݑ − ௌ௡௘ௗௗ௢௡ܲ ( 3-11)ܥ
 

3.4.4. Indentation creep 

Indentation creep was used to study the creep behavior of the Al/SiC nanolaminates. 

Creep is essentially the time-dependent plastic response of a material under stress. In 

the case of depth-sensing indentation tests, the nominal pressure in the zone under the 

indenter is often very high, and can easily reach a few percent of the shear modulus of 

the material. Under these conditions, nearly all materials, including metals and even 

ceramics, are known to creep to more or less extent at low homologous temperatures. 

Depth-sensing indentation measurements can be conveniently applied to the study of 

strain-rate effects on deformation behavior and the creep properties of materials in 

small volumes [113-120]. 

In uniaxial tensile creep tests, the steady-state creep behavior of a wide range of 

materials can be described by a power-law equation of the type: 

ሶߝ = ܴܶܳ−൬ ݌ݔ௡݁ߪܣ ൰ ( 3-12)

 
where ߝሶ is the strain rate, ߪ the applied stress, n the stress exponent, Q the activation 

energy and A some pre-factor. The stress exponent n, given by the slope of ߝሶ versus ߪ 

in a log-log plot under isothermal conditions, can provide useful information on the rate-

controlling deformation mechanism. 

Although still a topic of debate in the scientific community, it is possible to draw 

analogies between uniaxial creep and indentation creep when using self-similar 

indenters [119]. It has been shown by dimensional analysis that the following scaling 

relationships are obeyed during indentation of power-law creeping solids with self-

similar indenters: ߝሶ ∝ ℎሶ ℎ⁄ ∝ ሶܽ ܽ⁄ ∝ ௖ሶܣ ⁄௖ܣ  ( 3-13)
 
and ߪ ∝ ܲ ℎଶ⁄  ( 3-14)
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where P is the indentation load, h the instantaneous indenter displacement and a the 

radius of the contact zone. Manipulating equations 3-12 to 3-14 leads to: 

ሶ௜௡ௗߝ = ܴܶܳ−൬ ݌ݔ௡݁ܪܥ ൰ ( 3-15)

 

where the indentation strain rate is defined as ߝሶ௜௡ௗ = ௛ሶ௛ , the hardness ܪ = ௉஺೎ , and the 

pre-factor C depends on the material and the indenter geometry. 

A typical nanoindentation creep curve can be divided into two regimes: an initial 

transient regime where the depth increases suddenly and a steady state regime in 

which the rate of penetration reaches a constant value. This is similar to the primary and 

steady state creep regimes observed during uniaxial tensile testing. However, there are 

certain fundamental differences that should be kept in mind when analyzing indentation 

creep data: 

• The specimen is under a uniform stress field during uniaxial creep testing. During 

indentation, the material under the tip experiences a very complicated triaxial 

stress state with a strong gradient from the vicinity of the tip to the undeformed 

surrounding material. 

• The creep strain is uniformly distributed over the entire specimen in the steady 

state regime during uniaxial creep without contribution from the primary transient 

regime to the overall strain rate. In contrast, during indentation creep, the 

deformation fields under the indenter tip act as an expanding hemispherical 

volume. As deformation proceeds, the elastic-plastic boundary expands and new 

undeformed material enters into the plastic zone. This new material will exhibit 

primary creep deformation that will be added to the steady-state creep strain 

present in the already deformed volume. Hence, there will always be a 

contribution from both primary and steady state creep stages in indentation creep 

measurements. 

• The third fundamental difference is that indentation creep will not show a tertiary 

stage leading to rupture due to the constraint imposed by the surrounding 

material to the deforming volume. On the contrary, the penetration rate will 

decrease over time. 
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3.4.4.1. Analysis of indentation creep data 

Several methods can be found in the literature for the analysis of indentation creep 

data. They include the depth-sensing, constant-load (h-CL) method; the continuous-

stiffness, constant-load (S-CL) method; the constant loading rate method; and the 

exponential loading rate method [115, 116, 121, 122]. The h-CL method can be easily 

applied and it has been frequently used to investigate the creep properties of materials. 

It was selected to measure the creep properties of the Al/SiC nanolaminates in this 

thesis. The displacement change in this method is monitored at a constant indentation 

load. Since the contact area increases during the hold period as creep takes place, the 

indentation hardness and the indentation strain rate will continuously decrease with 

time. The determination of strain rate and hardness during the hold period thus enables 

the calculation of the stress exponent. 

The indentation strain rate ߝሶ can expressed as: 

ሶߝ = 1ℎ ൬݀ℎ݀ݐ൰ ( 3-16)

 
where ℎ is the indentation depth and ݐ the time. ݀ℎ ⁄ݐ݀  can be determined by fitting the 

experimental ℎ − ሻݐcurve during the holding time to the empirical law: ℎሺ ݐ = ℎ଴ + ݐሺݔ − ଴ሻ௬ݐ + (17-3 ) ݐݖ
 
where ℎ଴, ݕ ,ݔ and ݖ are fitting constants, and ݐ଴ is the time necessary to reach the 

maximum load. The fitting protocol is found to produce very good fits to all the results in 

Al/SiC nanoscale multilayers. The choice of the fitting equation does not affect the 

computation of the creep parameters as long as a good fit to the data can be obtained. 

Figure 3-21 shows the fitting curve for the Al50SiC50 nanolaminate tested at ambient 

temperature. Differentiation of equation 3-17 allows the calculation of indentation strain 

rate ߝሶ according to equation 3.16. 

3.4.4.2. Strain rate sensitivity 

Based on the depth-sensing, constant-load (h-CL) method, the strain-rate sensitivity ݉ 

is given by the slope of the double logarithmic plot of hardness ܪ vs. ߝሶ under isothermal 

conditions according to the following equation: 
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݉ = ߲ ݈݊ሺܪሻ߲ ݈݊ሺߝሶሻ  ( 3-18)

 
while the stress exponent n, defined in equation 3-12, is just the inverse of the strain 

rate sensitivity, m, and the activation volume is determined as: 

ܸ∗ = 2.8 × ܪܶ݇ 3√ ቆ ߲ ݈݊ሺߝሶሻ߲ ݈݊ሺܪሻቇ ( 3-19)

 
where ݇ is the Boltzmann constant and ܶ is the absolute temperature. In this equation, 

the yield strength of the nanolaminates is assumed to be given by ≈  .2.8/ܪ

 

 

Figure  3-21: Experimental creep curve and fitting with equation 3-17 for the Al50SiC50 
nanolaminate tested at ambient temperature. 

 

The corresponding double logarithmic plots of stress vs. strain rate and strain rate vs. 

stress for the Al50SiC50 nanolaminate tested at room temperature are plotted in figures 

3-22 (a) and (b), respectively. The strain rate sensitivity and the activation volume can 

be computed from the slope of these plots. 
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Figure  3-22: Determination of (a) strain rate sensitivity, ࢓, and (b) activation volume, ࢂ∗, 
for the experimental results of the Al50SiC50 nanolaminate tested at ambient 
temperature. 

Strain rate sensitivity and activation volume provide information about the thermally 

activated deformation mechanisms that control plastic flow. Recent investigations in 

nanostructured metals have shown that the influence of grain size on the strain rate 

sensitivity is closely related to the lattice structure of the metals, as summarized by Niu 

et al. [123] in figure 3-23, which shows the evolution of the strain rate sensitivity with the 

average grain size, for face centered cubic (fcc), body center cubic (bcc), and 

hexagonal close packed (hcp) metals, respectively. 

The data of three representative fcc metals, Cu, Al, and Ni, show a consistent trend with 

the strain rate sensitivity increasing with decreasing grain size from the micrometer to 

the submicrometer scale, followed by a sharp rise when the grain size is reduced below 

a couple of hundreds nanometers (figure 3-23 (a)). The present explanation for this 

phenomenon is that the highly localized dislocation activity (e.g. dislocation nucleation) 

at the grain boundaries (GBs) is responsible for the enhanced strain rate sensitivity in 

nanocrystalline fcc metals. On the contrary, the strain rate sensitivity of bcc metals (Fe, 

Ta, W, V) decreases with grain size from the submicrometer to the nanocrystalline 

regime. It has been claimed that this behavior is related to the low mobility of screw 

dislocations in bcc metals, as well as to the increasing prevalence of GB strengthening 

in the smaller size regime. The strain rate sensitivity of bcc metals is only about ~0.004 

when the grain size is below 100 nm, which is 5- to 10-fold smaller than that of fcc 

metals having the same grain size (figures 3-23 (a) vs. 3-23 (b)). Finally, no definitive 

conclusions can be drawn for hcp metals due to the scatter in the limited experimental 

data (figure 3-23 (c)). 
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Figure  3-23: Strain rate sensitivity of (a) fcc metals, (b) bcc metals, and (c) hcp metals as 
a function of grain size [123]. 

 
In the case of nanolaminates, and as explained in chapter 2, the layer thickness is the 

most relevant microstructural parameter controlling strength. However, the strain rate 

sensitivity of nanolaminates and its thickness dependence are far from clear. Only a 

very limited number of papers addressing size effects on strain rate sensitivity have 

been published in nanolaminates. The most relevant results are reviewed below, and 

they are limited to room temperature studies in metallic multilayers. 

Wen et al. [124] used the depth-sensing, constant-load (h-CL) method at room 

temperature to study the strain rate sensitivity of Ag/Co nanolaminates with modulation 

period from 4 to 60 nm. The total creep depth decreased with increasing hardness of 

multilayers (figure 3-24), which indicates that the creep resistance increased with 

hardness. Stress exponent values in the range from 2.5 to 5 determined by dimensional 

analysis suggested that creep was controlled by dislocation climbing. 
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Figure  3-24: Hardness and total creep depth as a function of the modulation period in 
Ag/Co nanolaminates [124]. 

 

 

Figure  3-25: Hardness of Cu/Ta multilayers as a function of strain rate [125]. 

Huang et al. [125] investigated the strain rate sensitivity of Cu/Ta nanolaminates at 

strain rates between 10-1 s-1 and 10-5 s-1 at room temperature. The individual Cu and Ta 

layers had equal thickness (~ 30 nm) but different grain sizes: 26-28 nm for Cu and 9.5-

10 nm for Ta. A transition in strain rate sensitivity was found at a strain rate of 10-3 s-1 

(figure 3-25), indicating a competition between dislocation-mediated and GB-mediated 
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mechanisms in Cu and Ta layers. At higher strain rates (>10-3 s-1), plastic deformation 

of the Cu/Ta multilayer was dominated by dislocation-mediated mechanisms in Cu. At 

low strain rates (<10-3 s-1), the GB-mediated mechanisms in Ta dominated, increasing 

significantly the strain rate sensitivity of the Cu/Ta multilayers. 

Carpenter et al. [126] measured the strain rate sensitivity and activation volume of a 

Cu/Ni metallic multilayer with a modulation period of 42 nm by the strain-rate jump test, 

using micropillar compression tests at room temperature. The average values for strain 

rate sensitivity and activation volume are summarized in table 3-2. The values for Cu/Ni 

nanolaminates were near to the lower range found in nanocrystalline Cu and Ni. It was 

concluded that the interfaces served as the primary sources and sinks for dislocations, 

similar to the grain boundaries in nanocrystalline materials. 

Table  3-2: Strain rate sensitivities and activation volumes for selected materials [126]. 

Material Strain rate jump (s-1) Strain rate 
sensitivity 

Activation 
volume (b3) 

Nanocrystalline Ni, Cu - 0.01 to 0.04 8-12 

21 nm/21 nm Cu/Ni 
multilayers 

10-4        10-5 
10-5        10-4 
10-4        10-3 
10-3        10-4 

0.017 ± 0.003 
0.010 ± 0.001 
0.011 ± 0.002 
0.018 ± 0.002 

15 ± 9 
22 ± 8 
19 ± 7 
11 ± 4 

Coarse grain Ni, Cu - 0.001 to 0.005 1000 
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4 Nanomechanical testing at 

elevated temperature 

The main aim of this work was to study the mechanical properties of Al/SiC 

nanolaminates at high temperature. Since these nanolaminates are grown as thin-films 

on a substrate, mechanical characterization relays on instrumented nanoindentation 

and/or other novel nanomechanical testing methods, like micropillar compression. Even 

though several instrumented nanoindentation instruments capable of operating at 

elevated temperature have been commercialized recently, the technique itself is by no 

means well established. This is due to several critical problems that need to be 

overcome in order to obtain reliable results. They include heat management inside the 

instrument, thermal drift effects on the measurements and sample and indenter stability 

as a function of testing conditions. A large part of the research work in this thesis was 

dedicated to overcome these challenges and to find the best high temperature testing 

procedure depending on the experimental setup. The most important results are 

summarized in this chapter. 
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4.1. Experimental set-up for high temperature nanomechanical testing 

The high temperature nanoindentation studies were performed in the two commercial 

platforms described in section 3.4.1. Since the load and displacement transducers are 

only capable of operating at room temperature, high temperature nanoindentation relies 

on heating locally the sample, while appropriate heat shields and active cooling systems 

are placed to protect the critical components of the instrument. The design of the 

heating system in each platform is described below. 

4.1.1. Hysitron TI 950 TriboIndenterTM 

Heating of the specimens was achieved through a commercial heating stage with 

integrated cooling, shown in figures 4-1 and 4-2, coupled to a PID temperature 

controller. The heater was designed with a small profile to enable concentrated heating 

of the sample without heating other components of the system. This is important, not 

only to protect some sensitive components, like the load transducer and the motorized 

stages, but also to reduce the potential for uncontrolled thermal drift due to expansion 

and contraction of the elements in the load frame. The heater consisted on a resistive 

heating wire embedded in a copper cartridge to take advantage of the high thermal 

conductivity of copper for fast and uniform heating. The heater cartridge lays on the 

cooling stage by three small ceramic balls arranged in a symmetric tripod configuration, 

rather than a ceramic layer, to minimize thermal conduction. A ceramic spacer ring 

reduced heat transfer between the heater and the steel ring that was used to clamp the 

whole assembly to the main plate (figure 4-1). 

 
Figure  4-1: Schematic of heating stage in the Triboindenter platform. The steel ring 
clamps the copper heater cartridge between ceramic spacers which limit thermal 
conduction between the heater and the rest of the stage. 
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Figure  4-2: Heating stage in the TriboIndenter. (1) Surface of heater cartridge, (2) 
thermocouple, (3) sample clips, (4) cooling lines. 

Considering that this system displays a vertical loading configuration, the transducer 

must be protected from radiation, conduction and convection heating. This is achieved 

through an actively cooled heat shield with a small central hole for the indenter 

assembly, as schematically shown in figure 4-3. Finally, a temperature controlled close-

circuit chiller ensures active cooling of both the heat shield and the sample stage (figure 

4-4). 

 

Figure  4-3: Heating system used in the Hysitron high temperature nanoindentation 
system [127]. 
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This system does not use active heating of the indenter tip, but it rather relies on the 

principle of passive heating. Heat will flow from the heated sample to the colder indenter 

tip when contact is first established, until some equilibrium is reached. For this reason, 

the indenter tip itself should be attached to a special shaft made of a special glass-

ceramic with low thermal conductivity and low thermal expansion coefficient. 

 

 

Figure  4-4: Inside view of the TriboIndenter during high temperature testing, (1) heat 
shield, (2) heating stage, (3) Triboscanner (Piezo tube and transducer), (4) thermocouple, 
(5) cooling lines, (6) cooling system, (7) optical objective, (8) Z-axis stage, (9) granite 
bridge. 

4.1.2. Micro Materials NanoTestTM platform III 

This system also uses a resistive heating stage for mounting the sample while actively 

cooled heat shields protect the electronics. There are, however, three important 

differences with the previous system that makes it more adequate for elevated 

temperature nanoindentation: 

a) The system uses a horizontal loading configuration so that convection heating of 

the electronics is minimized. 

b) The principle of active indenter tip heating. The indenter tip itself is independently 

heated to the test temperature, as shown schematically in figure 4-5. This 

strategy helps to minimize thermal drift, as explained in section 4.2; figure 4-6 

shown the heating set-up for Micro Materials NanoTest system. 
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c) The entire system is placed inside a chamber that can be purged with Ar down to 

oxygen contents < 0.1%, minimizing oxidation of the sample surface and tip 

degradation as well as contamination effects. 

 
Figure  4-5: Schematic of the hot stage and heated tip set-up for the Micro Materials 
NanoTest system. 

 

Figure  4-6: Close view of heating set-up for Micro Materials NanoTest system, (1) heating 
shield, (2) tilt stage, (3) heating stage, (4) heated tip set-up, (5) optical objective. 



Chapter 4 

 62 

4.2. Thermal Drift 

Thermal drift refers to changes in the measured displacement even when the indenter is 

maintained at a constant depth within the sample. Thermal drift arises due to electronic 

drift or small contractions or extensions of different parts of the system motivated by 

thermal fluctuations inside the chamber. As a result, nanoindentation systems are 

extremely sensitive to thermal fluctuations as small as 1ºC, and this is the biggest 

challenge to obtain accurate results during elevated temperature nanoindentation. 

Thermal drift must be continuously monitored and corrected during indentation, even at 

ambient temperature. The most extended procedure to measure thermal drift is to 

monitor the displacement signal when the contact between the indenter and the sample 

surface is purely elastic, and therefore, the depth should remain constant with time. 

During a regular indentation experiment, this is achieved in two stages: when contact is 

established at a very small load, typically a few μN, and upon elastic unloading, at a 

small fraction of the maximum load. An estimate of the pre-indentation and post-

indentation drift rates can be obtained by monitoring depth over time during both stages, 

respectively. 

 
Figure  4-7: Load-indentation depth curves for indentations performed under load control 
in Al with a temperature gap of 75ºC between the indenter and the sample. The red 
curves stand for the case in which the sample was heated to 100ºC while the indenter 
was mantained at ambient temperature. The blue curves stand for the opposite situation 
(indenter at 100ºC, sample at ambient temperature) [128]. 
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For reliable results, drift rates before and after the test should be equal and small, 

typically < 0.1 nm s-1. This condition is routinely achieved during nanoindentation at 

ambient temperature in any commercial system, but it becomes a challenge at elevated 

temperature. For this reason, a large effort was dedicated in this work to minimize 

thermal drift. 

It was found that the major source of thermal drift is actually thermal flow between the 

indenter and the sample motivated by temperature difference between the two. The 

temperature gradient between the indenter and sample can be reduced by holding the 

indenter in contact with the sample for a stabilization period, but this method cannot 

achieve complete thermal equilibrium. The effect of a temperature gap of ≈ 75ºC 

between sample and indenter on the load – penetration depth curves is shown in figure 

4-7. All curves were obtained under load control. The red curves stand for the case in 

which the sample was heated to 100ºC while the indenter was mantained at ambient 

temperature. The blue curves in figure 4-7 stand for the opposite situation (indenter at 

100ºC, sample at ambient temperature). Heat will flow towards the indenter if the 

indenter tip is colder than the sample (red curves). The indenter temperature will rise, 

inducing the thermal expansion of the tip and of the indenter shaft. In order to maintain 

a constant load, the system will react withdrawing the indenter, giving rise to a spurious 

decrease in indentation depth. The opposite behavior (increasing penetration depth with 

time at constant load) will be found when the indenter is hotter than the sample [128]. 

Similar effects are observed when the tests are carried out in displacement control, as 

shown in figure 4-8. In this case, the particular outcome depends on the frame 

compliance of the system. If heat transfer occurs from the sample to the indenter (hotter 

sample), the indenter and the indenter shaft will expand, and the system will react by 

reducing the load proportional to the frame compliance. The opposite behavior 

(increasing the load proportional to the frame compliance) will take place if the indenter 

is hotter than the sample. This results in differences in the slope of the load-Indentation 

depth during loading, as shown in the red and blue curves in figure 4-8. 

The analysis of the geometry of the contact suggests that the main factor influencing 

thermal drift during elevated temperature nanoindentation is the indenter tip assembly. 

Samples are typically flat and have much larger lateral dimension than the indenter, so 

the sample surface will constrain any thermal expansion or contraction. 
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Figure  4-8: Load-indentation depth curves obtained under displacement control for 
indentations performed under load control in Al with a temperature gap of 75ºC between 
the indenter and the sample. The red curves stand for the case in which the sample was 
heated to 100ºC while the indenter was mantained at ambient temperature. The blue 
curves stand for the opposite situation (indenter at 100ºC, sample at ambient 
temperature) [128]. 

Regarding the indenter tip assembly, the main components that can contribute to the 

thermal expansion are the indenter itself, the shaft and the brazing between indenter 

and shaft, as schematically illustrated in figure 4-9. Diamond indenters present a very 

high thermal conductivity and are expected to achieve a constant temperature 

immediately after being brought in contact with the sample. The contribution of the 

brazing is also expected to be negligible due to its small dimensions. Therefore, the 

thermal expansion of shaft is thought to dominate thermal drift when passive heating is 

used. Two different glass-ceramic indenter shafts (extended length Macor® and super 

extended length Zerodur®) were used in this investigation, with the second providing the 

most reliable results. The thermal properties of the corresponding glass-ceramics are 

found in table 4-1. 

Table  4-1: Thermal properties of Macor and Zerodur glass ceramics. 

Thermal Properties Macor® Zerodur® 
Thermal conductivity (W m-1 K-1) 1.46 1.46 
Thermal expansion coefficient (10-6 K-1) 9.3 0 ± 0.007 
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Figure  4-9: Schematic illustration of the indenter tip assembly [127]. 

Despite of these improvements with the selection of the shaft material, passive indenter 

heating systems tend to give unreliable results, especially when the contact area is 

changing during indentation. Under these conditions, the heat transfer by conduction 

between the sample and the indenter tip is continuously changing during the test and 

thermal stability cannot be achieved. Additionally, the thermo-mechanical properties of 

the sample play a very important role. For instance, by comparison of the drift rates 

during nanoindentation of Al and fused silica, it was concluded that materials with high 

thermal conductivity and low hardness give rise to higher drift rates. While the effect of 

higher thermal conductivity is obvious (facilitates heat transfer and thus thermal drift), 

softer materials lead to larger contact areas and also enhance the heat transfer 

between sample and indenter. Thus, the influence of the different parameters (indenter 

and sample temperature, thermo-mechanical properties of the sample) on the 

magnitude and direction of thermal drift during elevated temperature nanoindentation is 

summarized in figure 4-10. 

Considering all these factors, active indenter heating is thought to be the only 

alternative to minimize and control thermal drift during high temperature 

nanoindentation. This is particularly critical if the tests are carried over long periods of 

time (creep tests) because it is the only method that allows achieving thermal 

equilibrium and negligible heat transfer between the sample and the indenter 

independently of the properties of the indented material. 
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Figure  4-10: Schematic diagram showing the influence of different parameters (indenter 
and sample temperature, thermo-mechanical properties of the sample) on the magnitude 
and direction of thermal drift during elevated temperature nanoindentation. 

4.3. Sample oxidation 

Sample oxidation can be one of the most important challenges associated with testing 

at elevated temperatures. However, this was not a critical issue for Al/SiC 

nanolaminates, in which tests could be carried out in air at temperatures up to 300ºC. 

The most limiting factor in this case is the growth of the native oxide layer of Al2O3, 

which can contribute to errors in the determination of the hardness and modulus at low 

indentation depths. AFM images of indents carried out 100ºC, 200ºC and 300ºC in a 1 

μm monolithic Al coating in air are shown in figure 4-11. The maximum indentation 

depth was 250 nm in all cases. They show that surface oxidation becomes apparent at 

100ºC and affects considerably the surface topography at 300ºC. However, these 

effects were limited in monolithic SiC coatings as well as in the Al/SiC multilayers, even 

in air that were indented up to 300 ºC without any oxidation effects. 

4.4. Indenter tip effects 

The most important indenter tip effects to be taken into account when performing 

elevated temperature nanoindentation are: 
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Figure  4-11: AFM topography images (8 μm scan size) of the indentation imprint of  a 
monolithic Al coating at (a) 100°C, (b) 200°C, and (c) 300°C. 

(a) Thermal expansion of the indenter: it can lead to errors in the tip area function 

which is usually calibrated at room temperature. However, in the case of diamond 

indenters, properties like hardness and reduced modulus can be accurately extracted 

from high temperature data using area calibrations performed at ambient temperature 

because the thermal expansion of the diamond geometry is less than 0.04% at 400°C 

[129]. 

(b) High temperature degradation of the tip: transformation to graphite of diamond 

indenters can occur above 400ºC. Thus, sapphire and cubic boron nitride indenters are 

recommended above 400ºC. 

(c) Interaction between indenter material and specimen: This interaction can occur 

due to chemical reactions between the indenter and the tip, accelerated wear of the 

indenter tip as well as adhesion effects that might result on loss of material from the tip 

and/or material transfer from the specimen to the indenter tip, resulting in indenter tip 

contamination. Chemical indenter-material interactions that have been observed so far 

during elevated temperature nanoindentation are summarized in table 4-2 [130]. Figure 

4-12 shows an example of severe material loss in a diamond tip after indenting a steel 

sample at 500ºC. It should be noted that this kind of interactions are often the most 

limiting factor to carry out high temperature nanoindentation of a given material. 

In this work, a diamond indenter was used to carry out nanoindentation of the Al/SiC 

nanolaminates as well as the monolithic Al and SiC layers at 300ºC. Different tip effects 

were observed in each case: 
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Table  4-2: Chemical indenter-materials interactions during high temperature 
nanoindentation [130]. 

Indenter 
Material 

Sample Material Classes 
Alkali Metals Alkaline 

Earth Metals 
Early Transition 

Metals 
Ferrous Metals Noble 

Metals 
Coinage 
Metals 

Metalloids 

Li, Na, K, Rb, Cs Be, Mg, Ca, Sr Se, Ti, V, Cr, Y, Zr, 
Nb  Mo  Hf  Ta  W Mn, Fe, Co, Ni Ru, Rh, Pd, 

Re  Os  Ir  Pt 
Cu, Zn, Ag, Cd, 

In  Sn  Au  Pb  Bi Al, Si, Ge 

Diamond Inert Inert 
Dissolves 

carbon/Forms 
carbides 

Dissolves 
carbon 

e.g. Fe ~400°C 

Dissolves 
carbon 

>1000°C 
Inert 

Forms 
Al4C3>700°C 

with Al 
Forms 

SiC>1200°C 
with Si 

Carbides 
B4C Unknown Inert B4C reacts 

with Ti & Zr 
B4C forms 

borides/carbides Inert Inert Forms 
borides 

SiC Unknown Inert Inert Dissolves SiC Inert Inert Forms Al4C3 
with Al 

WC Unknown Inert 
Mostly Inert – 

may lose carbon 
by diffusion 

Mostly Inert – 
may lose carbon 

by diffusion 
Inert Inert Inert 

Nitrides 
cBN Unknown Inert 

Mostly Inert 
Mo, Ti & Cr may 

form 
nitrides/borides 

Dissolves 
e.g. Ni ~300°C Inert Inert 

Forms 
borides & 
nitrides 

Oxides 
Al2O3 

Dissolves May reduce 
oxide 

Mostly Inert 
Ti & Cr may 
reduce oxide 

e.g. High Cr steel 
~700°C 

Dissolves 
e.g. Ni ~300°C 

Dissolves 
in Pd & Pt 

Dissolves 
in Zn & Bi 

Reduces 
oxide 

e g. Al ~400°C 

 

 
Figure  4-12: SEM image of a degraded diamond tip after indenting a steel sample at 
500°C [130]. 

• In the case of the Al/SiC nanolaminates (with hardnesses in the range 3 to 10 

GPa depending on individual layer thickness), the diamond tip could be used to 

carry out a large number of indents (up to 300°C) without dimensional changes, 

tip degradation and/or contamination. 

• In the case of monolithic SiC coating (with hardness around 30 GPa), 

accelerated wear of the diamond tip was observed after a small number of 



Nanomechanical testing at elevated temperature 

 69 

indentations at 300ºC. Continuous re-calibration of the indenter tip was required 

to account for the change in the tip shape to obtain accurate results afterwards 

(figure 4-13). 

 

Figure  4-13: AFM 3D topography images of (a) a new diamond Berkovich tip and (b) after 
nanoindentations in SiC monolithic coating at 300ºC (2 μm scan size). 

• In the case of the monolithic Al coatings, severe degradation of the tip was 

observed after indentation at 300ºC, resulting in irregular hardness impressions, 

as shown in Figure 4-14 (c). 

 
Figure  4-14: (a) AFM 3D topography images of  (a) diamond Berkovich tip (2 µm scan 
size), and hardness impressions on a monolithic Al coating at (b) 200 °C and (c) 300 °C 
(3.5 µm scan size). 

Degradation of the tip after indentation of Al at 300ºC occurred due to transfer of 

material from the coating to the indenter tip, as shown in figure 4-15 (b), presumably 

coming from the oxidation of the Al surface. Several strategies were followed to clean 
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the diamond indenter tip after high temperature nanoindentation, such as the use of 

different solvents (ethanol, acetone), sliding a piece of scotch tape through the indenter 

tip and performing large indents in wood and Si surfaces. The most successful cleaning 

procedure began with the application of small drops of hot phosphoric acid to the tip 

using a cocktail stick for a few seconds, taking care of not attacking the diamond holder. 

This was followed by indentation on a wood surface and final washing in ethanol. This 

cleaning procedure was repeated several times until most of the oxide was removed, as 

shown in figure 4-15 (c), allowing the re-utilization of the tip after severe contamination. 

 
Figure  4-15: AFM 3D topography images (2 µm scan size) of the diamond Berkovich tip 
used for high temperature nanoindentation of monolithic Al coatings: (a) before testing, 
(b) after several nanoindentations 300°C and (c) after cleaning to remove the oxide 
contamination. 

4.5. High temperature testing of Al/SiC nanolaminates 

The testing procedure to minimize thermal drift, sample oxidation and tip degradation 

under either passive heating or active heating is described in detail in this section. The 

tests were carried out between ambient temperature and 300ºC using diamond 

indenters. Sample oxidation and tip degradation were minimum even when the tests 

were carried out in air, with the exception of the monolithic Al coatings, as described 

above. So, the most critical issues to obtain reliable results under active or passive 

heating were: 

• Mounting of the samples: mechanical clips to fix the samples (available in the 

Hysitron platform) gave rise to an increase in system compliance at high 

temperature. So, thermally conductive cement, “Omega Bond 400”, was used in 

all cases to mount the samples. 
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• Control of surface temperature: the use of hot plates to heat up the specimens 

introduces some uncertainty when the heater temperature is used as reference. 

This is particularly important for thick coatings of low thermal conductivity 

materials, because a large thermal gradient can develop between the bottom 

and the top coating surfaces. A good recommendation is therefore to limit the 

sample thickness to less than 1 mm. In this case, sample thickness was limited 

by the thickness of the Si substrate (0.7 mm) and an additional thermocouple 

was attached to the sample surface using the same thermally conductive 

cement, so that the surface temperature was continuously monitored. The 

temperature gap observed between the bottom and the top surface of the 

coating was typically of the order of 5ºC for a target temperature of 100°C, 10°C 

for 200°C, and 20°C for 300°C. 

• Thermal drift: control of thermal drift was by far the most critical factor to obtain 

reliable results. The procedure followed is described below, depending on the 

use of passive or active heating of the indenter tip. 

4.5.1. Passive indenter heating 

This was the approach followed in the Hysitron TI950 TriboIndenter system: 

1) Sample temperature was gradually increased using the PID controller using a 

heating rate of 10 ºC/min; 

2) Once the sample temperature was stabilized (temperature changes were below 

1ºC per 10 minutes), the indenter was brought into contact with the sample with a 

small contact force of 2 μN. The extension of the piezoscanner was monitored 

and the vertical displacement was compensated with the Z-motor of the stage to 

ensure that thermal expansion of any part of the system did not lead the scanner 

out of its vertical range (~3 μm). The time required to reach thermal equilibrium 

was of the order of 60 minutes. Afterwards, the PID controller of the heater was 

disabled and operated at constant power, in order to avoid small fluctuations in 

sample temperature caused by the feedback loop. 

3) To minimize thermal transient effects, a series of indents at different locations 

were performed by moving the sample without losing contact between the 

indenter and the sample surface. 
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4) For each indent, both pre-loading and unloading thermal drift rates were 

measured using the procedure described in section 4.2. Only those tests with a 

drift rate < 0.1 nm s-1 were considered for analysis. 

5) Despite of these precautions, it was found that, thermal transients do actually 

occur during indentation when using passive indenter heating due to the 

continuous change of the contact area, and hence thermal conduction between 

sample and indenter during loading and unloading. So, reliable results were only 

possible when using fast loading and unloading rates to minimize drift rate 

effects. In particular, a loading time of 1 s and an unloading time of 0.5 s were 

used thorough this work. Interestingly, thermal drift during loading and unloading 

was less pronounced in micropillar compression compared with indentation. This 

is probably due to the fact that, contrary to indentation tests, the contact area 

between the flat punch and the micropillar remains constant during loading and 

unloading. 

4.5.2. Active indenter heating 

This was the approach followed in the Micro Materials NanoTest system, providing a 

much better control of thermal drift. The procedure must ensure that both tip and 

sample are heated to the same temperature, so that thermal transient effects are 

negligible even when the contact area is changing. The procedure followed in this case 

is briefly described below: 

1) The system was purged in Ar overnight, achieving an atmosphere with oxygen 

content < 0.1 %. 

2) Sample and indenter temperature were gradually increased using the two 

independent PID controllers using a very low heating rate of 2-5 ºC/s, to avoid 

thermal shock. 

3) Depending on sample and indenter combination, the temperature may vary when 

they are brought into contact due to thermal flow between them. So, some 

preliminary indents were performed in order to fine tune the parameters of the 

PID controllers to achieve the same temperature and minimize the drift rate, 

which was monitored both at the beginning and at the end of the test. It is 

actually possible to generate a calibration plot of measured indenter-sample 

surface temperature as a function of indenter temperature set point [128]. After 
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fine tuning, the PID controllers were disabled and the heaters operated at 

constant power to avoid any temperature fluctuations. 

4) Using this approach, it was actually possible to carry out indentations at elevated 

temperature with negligible drift rates (<0.01 nm s-1) over periods of several 

minutes. This approach was used to carry out the indentation creep tests 

described in section 3.4.4 during 10 minutes at 150ºC. 
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5 Nanoindentation of Al/SiC 

nanolaminates  

This thesis is aimed at providing a detailed study of the relationship between the 

microstructure and the mechanical properties of Al/SiC nanolaminates. Taking into 

account the current state of the art in this field, this information is important to 

understand the critical deformation and fracture mechanisms in this novel class of 

materials. Many important mechanical properties (such as the elastic modulus, the 

hardness and the time-dependent behavior) can be obtained by means on 

nanoindentation and they are presented below. 

This chapter begins with the analysis of the morphology and microstructural features of 

the Al/SiC nanolaminates manufactured by magnetron sputtering. Afterwards, the 

elastic modulus and hardness of Al and SiC monolithic layers are reported as a function 

of temperature. This is followed by a systematic analysis of the influence of Al and SiC 
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layer thickness and volume fraction on the mechanical properties at ambient 

temperature. After that, the mechanical properties of one nanolaminate containing Al 

and SiC layers on 40 nm in thickness were measured from ambient temperature up to 

300ºC. Following these tests, it was decided to focus the systematic analysis of the 

influence of Al and SiC layer thickness and volume fraction on the mechanical 

properties to the temperature range between 50ºC and 150ºC. Finally, the strain rate 

sensitivity of the Al/SiC nanolaminates was determined from 50ºC to 150ºC as a 

function of the layer thickness/volume fraction. 

5.1. Morphology and microstructure of Al/SiC nanolaminates  

Al/SiC nanolaminates were deposited by magnetron sputtering on a Si (111). The layers 

were relatively uniform throughout the thickness of the laminate (figure 5-1). Analysis by 

TEM showed that the Al/SiC interfaces were clean with no evidence of any chemical 

reaction, figure 5-1 (b). The first layer deposited on the atomically smooth thermally 

grown SiO2 substrate layer was Al. 

 

 

Figure  5-1: (a) Microstructure of Al/SiC nanolaminate. (b) The interface between Al and 
SiC are chemically abrupt, with no evidence of chemical reaction. 

 
The amorphous structure of SiC can be attributed to the relatively low deposition 

temperature (below 100°C). The Al layers were nanocrystalline, with columnar grains 

whose average width (parallel to the layers) was of the order of 2-3 times the layer 

thickness. A small degree of roughness is associated with the individual layers due to 

the columnar grain structure of the Al layers. The roughness of the SiC appears to 
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follow the roughness of the previously deposited Al layer. The total degree of roughness 

also increases with the distance from the Si substrate. 

 

 

Figure  5-2: TEM bright-field images of the cross-section of various Al/SiC nanolaminates. 
(a) Al50SiC50, (b) Al50SiC2, (c) Al50SiC10, and (d) Al10SiC50. The arrows indicate pores. 

 
Representative TEM bright-field images of the cross-section of various nanolaminates 

are shown in figure 5-2. They include (a) Al50SiC50, (b) Al50SiC2, (c) Al50SiC10, and 

(d) Al10SiC50. All multilayers with different layer thickness are physically rough as a 

result of the competitive columnar grain growth during deposition of each Al layer. The 

layer roughness was not large enough to break up the layered structure, even in the 

case of the Al50SiC2 nanolaminate, where the SiC layers were only 2 nm thick, figure 
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5-2 (b). The actual layer thicknesses, as measured by TEM, compared well with the 

nominal layer thicknesses and were uniform through the entire thickness of each 

nanolaminate. All nanolaminates were apparently pore free, except for the 

nanolaminate Al10SiC50. It showed evidence of porosity, presumably aligned along 

columnar grain boundaries, as indicated by the arrows in figure 5-2 (d). This TEM image 

was recorded at slightly under focused conditions to reveal the Fresnel contrast 

associated with the pores. 

5.2. Mechanical properties of Al and SiC monolithic layers 

In order to understand the influence of the nanolaminate architecture on the mechanical 

behavior, it is important to know the properties of the individual constituents (Al and 

SiC). This is not always possible because the nanolaminate structure changes the 

microstructure (e.g., the Al grain size) as well as the deformation mechanisms but other 

properties (such as the elastic modulus of Al and SiC or the hardness of SiC) should not 

be significantly modified. Thus, 1 μm thick SiC and Al thin films were grown by 

magnetron sputtering on a Si (111) substrate under the same conditions used to deposit 

the nanolaminates. 

The Al thin film was made of columnar nanograins with the <111> orientation mostly 

perpendicular to the substrate, while the SiC thin film was amorphous. The mechanical 

properties (elastic modulus and hardness) were measured as function of temperature in 

square samples of 1 x 1 cm2 using the TriboIndenter platform. Indentations were carried 

out using fast loading cycles in order to minimize the influence of thermal drift on load-

indentation depth curves. Tests were performed with a loading rate of 5 mN sec-1 up to 

a maximum load of 10 mN. The maximum load was held constant for a dwell period of 

0.5 s at peak load prior to unloading at 20 mN sec-1. In the case of the Al thin film, 

maximum loads of 1, 2.5, 5, 7.5 and 10 mN were used in order to get a better estimation 

of the hardness and modulus by extracting the substrate contribution using the 

extrapolation method described in the standard ISO 14577 parts four. The elastic 

modulus and hardness of the SiC and Al thin films were determined as a function of 

temperature by means of the Oliver and Pharr method as well as from AFM images of 

the residual indents. At least 20 indentations were performed for each sample and 

temperature. 
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Figure  5-3: Hardness of (a) SiC and (b) Al thin films as a function of temperature. 
Hardness was determined using the Oliver and Pharr method and the AFM images of the 
residual indents. 

The evolution of the hardness of SiC and Al with temperature is plotted in figures 5-3 (a) 

and (b), respectively. No significant differences were found in the results obtained using 

either the Oliver and Pharr method or the area of the residual indents. The hardness of 
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SiC decreased slightly from 35 ± 0.7 GPa at ambient temperature to 29 ± 0.6 GPa at 

300ºC, while the hardness of the Al thin film dropped from 0.9 ± 0.04 GPa to 0.4 ± 0.02 

GPa from ambient temperature to 200ºC.  

The Poisson’s ratio of SiC and Al were taken as 0.14 and 0.34 to compute their elastic 

moduli from the indentation tests [131, 132]. The evolution of the elastic modulus of SiC 

and Al with temperature is plotted in figure 5-4. There was a slight increase in the elastic 

modulus of SiC with temperature from 297 ± 7 GPa at ambient temperature to 320 ± 3 

GPa at 300ºC, which was attributed to the densification of the thin film because no 

evidence of crystallization was found. The elastic modulus of Al decreased from 88 ± 6 

GPa at ambient temperature 70 ± 3 GPa at 100ºC. The thermal drift was too large at 

200ºC and accurate values of the elastic modulus of Al could not be obtained. 

 

Figure  5-4: Evolution of the elastic modulus of SiC and Al thin films as a function of 
temperature. Elastic modulus was determined using the Oliver and Pharr method and the 
AFM images of the residual indents. 

5.3. Mechanical behavior of nanolaminates at room temperature 

The elastic modulus and hardness of Al/SiC nanolaminates were measured by means 

of nanoindentation as a function of the layer thicknesses/volume fraction of Al and SiC. 

The total number of layers of each nanolaminate was selected to reach a total film 

thickness above 10 μm. This large film thickness ensured negligible substrate effects 
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during indentation testing. Nanoindentation was carried out at room temperature using 

the NanoTest platform. Drift rates lower than 0.01 nm sec-1 was achieved prior to 

testing. Tests were performed with a loading rate of 10 mN sec-1 up to a maximum load 

of 100 mN. The maximum load was held constant for a dwell period of 5 seconds at 

peak load prior to unloading at 20 mN sec-1. The creep rate was computed in all cases 

at the end of the hold period and it was always below 0.1 nm sec-1, ensuring negligible 

creep effects on the determination of the elastic modulus from the unloading stiffness. 

Upon unloading, thermal drift was measured again by introducing a 60 second hold 

segment at 10% of the maximum load. The drift rate was measured over the last 40 

seconds of the hold segment. At least 8 indentations were performed in each sample. 

 

Figure  5-5: Load-indentation depth of Al-SiC nanolaminates with different layer thickness 
at room temperature. 

Representative load-indentation depth curves at room temperature of three different 

nanolaminates are plotted in figure 5-5. They correspond to Al10SiC50, Al50SiC50 and 

Al50SiC10 and the Al volume fractions were 0.17, 0.50 and 0.83, respectively. As 

expected, the resistance to the indenter penetration decreased with the Al content due 

to the much higher hardness of SiC. The maximum indentation depth was always below 

1200 nm and, therefore, within 10% of the total film thickness, which is a widely 
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accepted rule-of-thumb to avoid substrate effects in the indentation response. The load-

indentation depth curves of all the nanolaminates were similar to those shown in figure 

5-5. They were analyzed using the Oliver and Pharr method to compute the hardness 

and the elastic modulus of the different nanolaminates. The Poisson’s ratio of each 

nanolaminate was estimated as the average of the direct and the inverse rule of 

mixtures assuming that the Poisson’s ratio of Al and SiC were 0.34 and 0.14, 

respectively. The hardness and elastic modulus of all the nanolaminates are 

summarized in table 5-1. 

Table  5-1: Elastic modulus and hardness of Al/SiC nanoscale multilayers at room 
temperature. 

Series Sample H(GPa) E(GPa) 

S1 

Al10SiC50 9.7 ± 0.1 172 ± 1 
Al25SiC50 8.1 ± 0.5 161 ± 4 
Al50SiC50 5.7 ± 0.3 141 ± 3 
Al100SiC50 5.5 ± 0.4 127 ± 5 

S2 

Al50SiC2 3.3 ± 0.2 92 ± 4 
Al50SiC10 4.1 ± 0.1 105 ± 2 
Al50SiC25 4.8 ± 0.1 113 ± 2 
Al50SiC100 7.6 ± 0.3 152 ± 3 

S3 
Al100SiC100 5.7 ± 0.1 140 ± 2 
Al25SiC25 6.8 ± 0.2 141 ± 2 
Al10SiC10 6.5 ± 0.3 142 ± 3 

 
It is well known that the Oliver and Pharr method may not provide accurate values of the 

hardness and elastic modulus if significant pile-up takes place around the indentations. 

The contact area was measured from the surface profile of indentation imprints by 

means of AFM in all nanoscale multilayer series in order to confirm the applicability of 

the Oliver and Pharr method to these materials. The topography around the residual 

indents is shown in figure 5-6 for two nanolaminates with different Al/SiC volume 

fraction ratios (Al10SiC50 and Al50SiC10). No significant pile-up was found around the 

indentations, confirming the accuracy of the data in table 5-1. 

To ascertain the actual deformation and fracture mechanisms, selected indentation 

imprints were cross-sectioned using FIB and analyzed by TEM. An indentation cross-

section in the Al50SiC10 nanolaminate is shown in figure 5-7. Remarkably, the layered 

structure was preserved in the deformed region and the strain imposed by the indenter 

was accommodated by the plastic deformation of the Al layers, plus the elastic 

deflection of the SiC layers. No dislocations could be found in the Al layers, but their 



Nanoindentation of Al/SiC nanolaminates 

 83 

thickness was reduced under the indented area, evidencing that they deformed 

plastically under the constraint of the stiff and hard SiC layers. 

It is also worth noting that the SiC layers underwent substantial bending under the 

indenter, because their small thickness allowed large elastic deformations without 

fracture. Nevertheless the SiC layers could not always accommodate the shear 

deformation imposed by the indenter, and were broken, as shown by the arrow in figure 

5-7 (b). Similar observations in other Al/SiC nanoscale multilayers [17, 83, 133], 

together with the results of the numerical simulations [84, 134, 135], led to the 

conclusion that the high hardness of Al/SiC nanolaminates is a consequence of 

constrain imposed by the SiC layers to the plastic deformation of the Al layers. 

 

 

Figure  5-6: AFM topography scans of residual indents of (a) Al10SiC50 and (b) 
Al50SiC10. No evidence of any significant pile-up was found. 
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Figure  5-7: Indentation cross-section in the Al50SiC10 nanolaminate. (a) General view. (b) 
Detail of the fracture of SiC layers. 

 

 

Figure  5-8: Indentation cross-section in nanolaminate Al50SiC2. (a) General view. (b) 
Underneath the indented area, but far away from the surface. 

 
TEM observations of the remaining nanolaminates were similar. Changes in the 

deformation and fracture mechanisms with layer thicknesses were not found, except in 

the nanolaminate Al50SiC2. In this particular case, the SiC layer thickness was so 

small, 2 nm, that the layered structure was apparently not preserved under the indenter 

(figure 5-8). 



Nanoindentation of Al/SiC nanolaminates 

 85 

5.3.1. Effect of the layer thickness on the elastic modulus 

The elastic moduli of the Al/SiC nanolaminates of series 1 and 2 are plotted in figure 5-9 

as a function of the Al volume fraction. The data clearly show that, as expected, the 

elastic modulus only depends on the volume fraction of the constituents and is 

independent of the individual layer thicknesses. For instance, Al25SiC50 and 

Al50SiC100 nanolaminates, both with an Al volume fraction of 0.33, present the same 

elastic modulus even though the layer thickness in the latter is twice that of the former. 

The same behavior was found in Al50SiC25 and Al100SiC50, both with an Al volume 

fraction of 0.67. Moreover, the nanolaminates of series 3, which contained the same 

volume fraction of Al and SiC but with different layer thickness (10, 25 and 100 nm), 

presented the same elastic modulus, see table 5-1. 

Due to the layered structure, the nanolaminates are expected to display a very 

anisotropic behavior, with bounds given by the Voigt and Reuss averages. Assuming a 

perfect interface, Al and SiC deform under isostrain conditions in the longitudinal 

direction, and therefore, the longitudinal nanolaminate elastic modulus will approach the 

Voigt average given by: ܧ௟ = ஺௟ܧ ஺ܸ௟ + ௌ௜஼ܧ ௌܸ௜஼ ( 5-1)
 
while the nanolaminate deform under isostress conditions in the transverse direction, 

and the elastic modulus approaches the Reuss average: 

௧ܧ = 1஺ܸ௟ܧ஺௟ + ௌܸ௜஼ܧௌ௜஼ ( 5-2)

 
where V represents the volume fraction of each constituent, as indicated by the 

subscripts. The dotted and solid lines in figures 5-9 represent the Voigt and Reuss 

averages, respectively, as obtained from the elastic moduli of Al and SiC at room 

temperature. The agreement of the nanoindentation modulus with the Reuss average 

was excellent, with the only exception of the Al10SiC50 nanolaminate, which was below 

the Reuss average. This result can be explained by the intercolumnar porosity observed 

by TEM (figure 5-2 (d)). The origin of this porosity is not clear but it could be the result of 

some problem during deposition. 
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Figure  5-9: Elastic modulus of the nanolaminates as a function of Al volume fraction at 
ambient temperature. The dotted and solid lines stand for the predictions of the Voigt 
(rule of mixtures) and Reuss (inverse rule of mixtures) averages, respectively. 

The excellent agreement of the nanoindentation elastic modulus with the Reuss 

average was somewhat surprising. Even though the indentation loading direction is 

perpendicular to the layers, the stress field under the indenter is very complex, and 

substantial deformation is expected to take place both in the longitudinal and transverse 

directions. Therefore, the indentation modulus was expected to be somewhere between 

the Voigt and Reuss averages. In any case, the results are in good agreement with 

previous results on Al/SiC nanolaminates with equal Al and SiC layer thicknesses [17, 

83, 136]. Moreover, the elastic modulus measured by nanoindentation is in good 

agreement with that obtained by micropillar compression in the next chapter, with the 

former only being slightly larger than the latter, even though loading during micropillar 

compression is uniaxial and transverse to the layers. There might be two explanations 

for this. Firstly, even though the nanoindentation stress field is very complex, the major 

contribution to the elastic recovery takes place in the indentation direction [137]. As a 
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matter of fact, it is well known that the projected area of the indentation imprint remains 

fairly constant and that only the depth is recovered during elastic unloading. Secondly, 

the assumption of a perfect interface between the layers may not be accurate. In fact, 

micropillar compression studies in Al/SiC nanolaminates, shown in the next chapter, 

demonstrated that slight interface sliding might take place during deformation at room 

temperature. 

5.3.2. Effect of the layer thickness on hardness 

The evolution of the ambient temperature hardness with the Al volume fraction is plotted 

in figure 5-10 for the nanolaminates of series 1 and 2. These results show that the 

hardness of the nanolaminates decreased more or less linearly as the Al volume 

fraction increased from 9.7 GPa for VAl=16% down to 3.3 GPa for VAl=96%. The 

hardness of the nanolaminates was not given by some rule of mixtures of the hardness 

and volume fraction of the constituents but it did not depend either on the layer 

thickness. This result was surprising because the hardness should be controlled by the 

dominant deformation mechanisms, which involve the elastic bending of SiC layers and 

the plastic deformation of Al constrained by the SiC layers. It is well established that the 

yield stress of the Al layers increases rapidly as the layer thickness decreases (following 

a potential law with a power exponent in the range -1 to -0.5) [138], and thus it should 

be expected that (for a given volume fraction of Al) the nanolaminate with thinner Al 

layers should be stronger. However, since the indentation also involves substantial 

elastic bending of the SiC layers, thinner SiC layers might require lower loads to bend, 

because the flexural modulus of a plate scales with the cube of the plate thickness. 

Moreover, if interface sliding also occurs during deformation, the area fraction of 

interfaces (which is inversely proportional to the layer thickness) should also play a role. 

Therefore, the surprising observation in figure 5-10 showing that, in the range of layer 

thicknesses studied, the room temperature hardness is determined by the volume 

fraction of the constituents might be due to the fact that the increase in the yield stress 

of Al upon the reduction of layer thickness is balanced by the reduction in the flexural 

modulus of the thinner SiC layers. As such, nanolaminates Al25SiC50 and Al50SiC100, 

both with VAl=0.33, display the same hardness within experimental error, and so do 

Al50SiC25 and Al100Si50, both with VAl=0.67, even though the layer thicknesses and 

the interface densities vary by a factor of 2. 
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Figure  5-10: Influence of Al (and SiC) volume fraction on the ambient temperature 
hardness of Al/SiC nanolaminates. 

 
It is also worth noting the difference in hardness between the monolithic Al coating and 

the Al50SiC2 nanolaminate. Introducing 2 nm thick SiC interlayers between 50 nm thick 

Al layers increased the hardness from 0.9 GPa for Al up to 3.3 GPa for Al50SiC2. As 

shown in figure 5-2 (b), the thin SiC interlayer interrupts the growth of the columnar 

grains of Al, forcing the Al layers to re-nucleate on each SiC layer. The impact of this 

microstructural change on the elastic modulus is negligible, as shown in figure 5-9, yet 

the hardness increased by more than a factor of 3 that has to be attributed to an 

increase in the yield strength of Al because the thin SiC layers are not expected to 

constrain the deformation of the Al layers, as evidenced in figure 5-8. Further increase 

of the SiC layer thickness in series 2, keeping the Al layer thickness at 50 nm, led to an 

increase in the hardness, due to the contribution of the constraint imposed by the SiC 

layers. 
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In this regard, it is interesting to follow the evolution of the so-called plasticity index, i.e., 

the ratio H/E, with the volume fraction of Al (and SiC), which is plotted in figure 5-11. 

Two different regimes are found in this plot. The ratio H/E remains constant at roughly 

0.4 (compare with H/E=0.01 for monolithic Al coatings) when VAl>0.5, while H/E 

increases as VAl decreases towards the H/E=0.1 (the ratio corresponding to monolithic 

SiC) when VAl<0.5. These results seem to indicate that hardness is mainly controlled by 

the plastic flow of the Al layers and the constraint imposed by the SiC layers when 

VAl>0.5, so that H and E follow the same trend with VAl. However, the deformation is 

controlled by the elastic deformation of the SiC layers, rather than by the constrained 

plastic deformation of Al, when VAl<0.5. As a result, H increases more rapidly than E 

and the ratio H/E increases as VAl decreases. 

 

Figure  5-11: Influence of Al (and SiC) volume fraction on the ambient temperature H/E 
ratio of Al/SiC nanolaminates. 

Finally, the evolution of the hardness with the layer thickness in plotted in figure 5-12 for 

the nanolaminates of series 3, which contain the same volume fraction of Al and SiC. 
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According to figure 5-11, the deformation is mainly controlled by the constrained plastic 

flow of Al and the hardness is expected to increase as the layer thickness decreases 

because of the smaller grain size of Al. Figure 5-12 confirms that this is the case, 

showing a reduced hardness of the nanolaminates with 100 and 50 nm layer 

thicknesses with respect to the nanolaminates with 10 and 25 nm layer thicknesses. 

Nevertheless, other factors that would lead to a reduction in hardness for smaller layer 

thickness (such as interface sliding or the development of an inverse Hall-Petch effect 

for Al layer thicknesses of the order of ≈ 10 nm) could also be active, explaining the 

plateau in hardness achieved for layer thicknesses below 25 nm. 

 

Figure  5-12: Ambient temperature hardness vs. Al and SiC layer thickness for the 
nanolaminates of series 3. 

 

5.4. High temperature stability of Al/SiC nanolaminates 

The mechanical properties and deformation and fracture mechanisms from ambient 

temperature up to 300ºC were studied in an Al/SiC nanolaminate made up by alternate 

layers of 40 nm in thickness. The nanolaminate was grown by magnetron sputtering on 

a (111) Si, as explained in chapter 3, and included 40 layers. The mechanical properties 

were obtained at ambient temperature, 100, 200 and 300ºC by nanoindentation using 

the TriboIndenter platform, using the approach detailed in chapter 4. Two types of 

indentation tests were carried out: conventional loading-unloading up to a maximum 
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load of 10 mN and multiple loading-unloading cycles to extract hardness and modulus 

as a function of indentation depth. At least 10 indentations were performed at each 

temperature and the samples were kept at the test temperature for at least 4 hours. 

After cooling down, nanoindentations were carried out at ambient temperature on each 

sample to measure the post-annealing hardness and modulus. 

 

 

Figure  5-13: (a) Representative load-indentation depth curves for different test 
temperatures. (b) Hardness vs. contact depth at each test temperature. 

Representative load-indentation depth curves at each test temperature are plotted in 

figure 5-13 (a), while the hardness evolution with contact depth is shown in figure 5-13 

(b). In this figure, the data for each temperature correspond to the average value from 

five multiple loading-unloading curves, while the error bars represent one standard 

deviation. It is evident that the test temperature had a marked influence on the 

indentation response, especially at 200°C and above. Figure 5-13 (b) shows that the 

hardness slightly increased with contact depth in the range between 100 and 400 nm, 

ruling out any substrate effects. For very shallow indents, below 100 nm, lower 

hardness values were measured probably due to the surface roughness of the 

multilayers. 

The evolution of hardness and elastic modulus with temperature is shown in figure 5-14 

(solid symbols). Both exhibited a marked reduction with temperature, particularly at and 

above 200°C. The drop in modulus was much larger than the one that could be 

expected from the temperature dependence of the elastic moduli of Al and SiC. Thus, 
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the reduction by ≈ 50% of the Al/SiC nanolaminate elastic modulus at 200°C has to be 

attributed to changes in the microstructure and/or the deformation micromechanisms. 

 

 

Figure  5-14: (a) Hardness and (b) elastic modulus as a function of test temperature, in 
solid symbols. The open symbols represent the post-annealing hardness and modulus at 
ambient temperature. 

 
Interestingly, the ambient hardness and modulus of samples annealed at 100, 200, and 

300°C during the 4 h were comparable to those measured in the as-received samples, 

as shown in figure 5-14 (open symbols), and exhibited a slight increase at 300°C. 

Interestingly, the post-annealing hardness results demonstrate the need of high-

temperature nanoindentation to ascertain the thermal stability of nanostructured 

coatings. Traditionally, the hardness after annealing has been used as a parameter to 

assess the thermal stability of coatings. However, in this particular case, post-annealing 

nanoindentation of Al/SiC did not reveal any effect of temperature on mechanical 

properties, while high temperature nanoindentation did show marked differences. 

Cross-sections across the indentations were prepared by FIB and examined in the 

SEM. The SEM micrographs of two indentation cross sections at ambient temperature 

and 300°C are shown in figures 5-15 (a) and (b), respectively. The small imprint of the 

10 mN indentation at ambient temperature is pointed out by the arrow and the typical 

microstructure of Al/SiC multilayers is observed. Both Al (light grey) and SiC (dark grey) 

layers were 40 nm in thickness and the layers were wavy (albeit continuous) due to the 

inherent columnar growth of the Al layers. Although SiC is brittle, the SiC layers 
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exhibited a considerable compliance due to their small thickness and sandwiching effect 

between the ductile Al layers. No cracking was observed at this indentation load, but it 

is known that the SiC layers tend to crack at ambient at larger indentation depths [17]. 

The residual imprint at 300°C was much larger at the same indentation load (figure 5-15 

(b)) as the hardness was reduced by a factor of five in comparison with the ambient 

temperature value. This drop in hardness could be attributed to several factors. 

 

 
Figure  5-15: Scanning electron microscope (SEM) images of indentation cross sections 
(a) at ambient temperature (dark grey: SiC; light grey: Al) and (b) at 300°C. Some reaction 
between Al and SiC can be observed at 300°C (dark areas). The white arrows in (b) 
indicate areas where the SiC layers were broken and the Al has plastically flown to heal 
the cracks, as shown in more detail in (c). 

 

 
Figure  5-16: (a) BF TEM image of the Al/SiC nanolaminate after annealing at 300°C. The 
white arrow indicates one of the layers that appear dark in the SEM image of figure 5-
15(b). (b) SADP, indicating the presence of reaction products between Al and SiC. (c) The 
element maps measured in the dashed rectangle indicate that the dark layer corresponds 
to a Si-rich area, presumably as a reaction product between Al and SiC. 
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Firstly, the flow stress of nanostructured Al decreases rapidly with temperature and the 

indentation load has to be mainly borne by the SiC layers as Al exhibits significant 

plastic flow. This led to the cracking of the SiC layers, especially at columnar 

boundaries (marked with white arrows in figure 5-15 (b)), further reducing the strength 

(as well as the stiffness) of the nanolaminate. Finally, it should be noted that the cracks 

in SiC layers tested at high temperature were always filled in by Al that plastically flowed 

to fill the gaps (see detail in figure 5-15 (c)). This is an indication of the development of 

a self-healing mechanism in these nanolaminates, which results from the small size of 

the Al grains (easy flow at high temperature) together with small layer thickness. 

Secondly, the FIB cross section at 300°C (figure 5-15 (b)) revealed many dark areas 

indicative of the development of chemical reactions between Al and SiC. Moreover, the 

SiC layers appear much thinner, enforcing the reaction hypothesis. Very little is known 

about the reactivity and diffusivity between Al and amorphous SiC when the layers are 

at the nanoscale and a detailed analysis is beyond the scope of this thesis [139]. 

Nevertheless, TEM foils were prepared by FIB from the region below the indenter in the 

samples tested at different temperature. Figure 5-16 (a) shows a high magnification 

bright-field (BF) TEM image of an area encompassing one dark layer (indicated by the 

white arrow). The selected area diffraction pattern (SADP) in figure 5-16 (b) shows the 

expected Al diffraction rings plus several rings that can be attributed to either AI4C3 or 

Al4SiC4, common reaction products between Al and SiC. According to previous works 

on SiC-particle-reinforced Al composites [140], the common reaction product between 

Al and SiC is AI4C3 through the following reaction: 4Al + 3SiC → AlସCଷ + 3Si ( 5-3)
 
but these results were obtained at higher temperatures and with crystalline SiC particles 

of much larger size. Therefore, other reactions such as: 4Al + 4SiC → AlସSiCସ + 3Si ( 5-4)
 
cannot be ruled out. In both cases, carbides plus some free Si are expected as reaction 

products resulting in interface embrittlement. The energy-dispersive X-ray spectroscopy 

mapping of figure 5-16 (c) of the nanolaminate tested at 300°C clearly shows the 

thinning of the SiC layers together with regions in which a complete layer of Al has been 

substituted by Si and carbides as a result of the reaction process (marked with white 

arrows). 
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Our TEM studies suggest that chemical reaction between the Al and the SiC layers did 

take place at 200°C and was widespread at 300°C. Thus, extensive chemical reaction 

between Al and SiC, leading to brittle reaction products, could also be responsible for 

the reduction in hardness and modulus beyond 200°C. It should be noted, however, that 

annealing of the nanolaminates for 4 h at high temperature did not modify either the 

hardness or the modulus (figure 5-14) at ambient temperature, so apparently they are 

not severely modified by the interface embrittlement. Therefore, the flow stress of Al 

together with the chemical reactions at the interface determines the high-temperature 

nanoindentation behavior of the Al/SiC nanolaminates. 

5.5. Effect of layer thickness on thermomechanical properties  

The effect of Al and SiC layer thickness and/or volume fraction on the high temperature 

mechanical properties was also studied by means of nanoindentation at 50°C, 100°C, 

and 150°C. Tests were not carried out at higher temperature because the properties 

become controlled by the chemical reaction between Al and SiC at higher temperatures 

(200°C). Nanoindentation was carried out using the NanoTest platform and the loading 

conditions were identical to those reported in section 5.3 to characterize the ambient 

temperature properties. As explained before, the samples were bonded to the heater 

plate using the high temperature adhesive and both sample and indenter were heated 

independently to the target temperature. The drift rates were lower than 0.01 nm sec-1 

prior to testing. The samples were kept at the test temperature for at least 4 hours prior 

to testing. A minimum of 8 indentations were carried out at each temperature in each 

sample. 

Representative load-indentation depth curves of Al50SiC50 nanolaminate at different 

temperatures are shown in figure 5-17. As expected, the indenter tip penetration 

increased with temperature. The maximum indentation depth was always below 10% of 

the total laminate thickness to avoid substrate effects. The Oliver and Pharr method was 

used to determine the elastic modulus and hardness from these curves. The topography 

of the residual imprints was measured by AFM and did not show significant pile-up 

around the indentation. The hardness and elastic modulus of all the nanolaminates of 

series 1, 2 and 3 are reported in table 5-2. 

TEM observation of the nanolaminates deformed at different temperatures (up to 

150°C) showed similar mechanisms than those tested at ambient temperature. The 
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deformation under the indenter was accommodated by the plastic deformation of Al 

layers and the elastic deflection of the SiC layers. No dislocations were found in Al 

layers after deformation. 

 

Figure  5-17: Load-indentation depth curves of the Al50SiC50 nanolaminate at different 
temperatures. 

 
Table  5-2: Average values and standard deviation of the elastic modulus (E) and 
hardness (H) of the Al-SiC nanoscale multilayers at 50ºC, 100ºC, and 150ºC. Hardness 
and elastic modulus are expressed in GPa. 

Series Sample 50°C 100°C 150°C 
H E H E H E 

S1 

Al10SiC50 9.2 ± 0.3 173 ± 5 7.4 ± 0.1 166 ± 4 6.1 ± 0.2 141 ± 2 
Al25SiC50 7.2 ± 0.2 153 ± 3 5.2 ± 0.1 141 ± 4 4.0 ± 0.1 149 ± 2 
Al50SiC50 5.3 ± 0.1 135 ± 1 3.9 ± 0.2 130 ± 3 3.1 ± 0.3 141 ± 7 
Al100SiC50 5.2 ± 0.4 122 ± 5 4.2 ± 0.3 116 ± 6 3.6 ± 0.2 116 ± 4 

S2 

Al50SiC2 2.8 ± 0.1 91 ± 1 1.5 ± 0.1 84 ± 6 1.2 ± 0.1 80 ± 8 
Al50SiC10 3.6 ± 0.2 101 ± 3 2.6 ± 0.1 104 ± 1 2.0 ± 0.1 106 ± 2 
Al50SiC25 4.4 ± 0.2 113 ± 3 3.5 ± 0.2 117 ± 4 2.7 ± 0.2 116 ± 5 
Al50SiC100 7.2 ± 0.3 144 ± 3 5.4 ± 0.1 135 ± 2 4.0 ± 0.2 140 ± 5 

S3 
Al100SiC100 5.4 ± 0.4 138 ± 6 4.7 ± 0.2 138 ± 6 3.4 ± 0.1 133 ± 3 
Al25SiC25 6.3 ± 0.3 134 ± 3 4.5 ± 0.1 126 ± 3 3.5 ± 0.2 122 ± 4 
Al10SiC10 5.8 ± 0.1 136 ± 0 4.3 ± 0.3 125 ± 5 3.9 ± 0.2 125 ± 3 
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The elastic modulus of series 1 and 2 Al/SiC nanolaminates at 100°C is plotted in figure 

5-18 as a function of Al volume fraction. The elastic modulus lies between the Voigt and 

Reuss averages. Laminates with higher Al volume fraction were closer to the Voigt 

average and the experimental results moved towards to the Reuss average as the SiC 

content increased. As at ambient temperature, only the Al10SiC50 nanolaminate was 

outside these bounds and this low modulus could be due to the intercolumnar porosity, 

figure 5-2 (d). 

 

Figure  5-18: Evolution of the elastic modulus as a function of Al volume fraction at 100ºC. 

The evolution of hardness with temperature is depicted in figures 5-19 (a) and 5-19 (b) 

for Series 1 and 2 nanolaminates, respectively. There was a marked reduction of the 

hardness with temperature in all cases but there were some distinctive effects of the 

layer thickness that were not evident at ambient temperature. For instance, the 

influence of the temperature on the mechanical properties of Al25SiC50 and 

Al100SiC50 nanolaminates was very different. The hardness of the former was 2 GPa 

higher at ambient temperature, while both presented very similar hardness at 150ºC. 
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Figure  5-19: Evolution of hardness with temperature for Al/SiC nanolaminates. (a) Series 
1. (b) Series 2. 

It is instructive to analyze the influence of temperature on the hardness using an 

Arrhenius type equation: 

ܪ = ݌ݔ଴݁ܪ ൬ܧ௔ܴܶ൰ ( 5-5)

 
where H0 is the extrapolated hardness at 0 K, Ea some apparent activation energy for 

hardness and R the universal gas constant. Figures 5-20 (a) and 5-20 (b) show the 
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corresponding Arrhenius plots and activation energies for each nanolaminate. The 

variation of the SiC layer thickness between 100 nm and 25 nm had no influence in Ea 

when the Al layer thickness was held constant and equal to 50 nm, figure 5-20 (b). 

 

Figure  5-20: Arrhenius plots to determine the apparent activation energy for hardness of 
the Al/SiC nanolaminates. (a) Series 1. (b) Series 2. 

This is not surprising because only Al should contribute to the drop in hardness with 

temperature as SiC is deforming elastically. The activation energy only increased 

considerably when the SiC layer thickness was reduced below 10 nm, and especially at 

2 nm. This can only be explained as a consequence of the increase in interface area, 
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meaning that some interface-mediated deformation mechanism, like interface diffusion 

or dislocation climbing at the interfaces [141], might become the critical processes 

influencing the strength reduction with temperature. 

The same trend was observed in the case of Series 1 nanolaminates. Excluding 

nanolaminate Al10SiC50 that presented a large porosity, Ea increased as the Al layer 

thickness decreased when the SiC layer thickness was equal to 50 nm. As a 

consequence, even though Al100SiC50 and Al50SiC25 nanolaminates, both with 

VAl=0.67, presented the same ambient temperature hardness, the reduction of 

hardness with temperature was much higher in the Al50SiC25 nanolaminate because of 

the higher interface density. Similar trends were found for Al50SiC100 and Al25Si50 

nanolaminates. The role of the interface in the deformation at high temperature is 

supported by the high temperature micropillar compression tests in Al50SiC50 

nanolaminates presented in the next chapter. They showed a marked increase in the 

contribution of interface sliding to the deformation as temperature increased from 

ambient temperature to 100ºC. 

 

Figure  5-21: Evolution of the plasticity index H/E with temperature for series 3 
nanolaminates. 

Finally, the evolution of the plasticity index (ratio H/E) with temperature is plotted in 

figure 5-21 for the series 3 nanolaminates, which contain the same volume fraction of Al 

and SiC. The plasticity index decreased with temperature in all cases and this trend was 
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particularly important at 100ºC and above. The softening of the nanocrystalline Al layers 

together with the activation of interface sliding during deformation would contribute to 

the reduction of the plasticity index at high temperature. 

5.6. Strain rate sensitivity 

As explained in chapter 3, the depth-sensing, constant-load (h-CL) method was used to 

study the strain rate sensitivity of the Al/SiC nanoscale multilayers. Nanoindentation 

tests were performed at ambient, 50°C, 75°C, 100°C, 125°C, and 150°C using the 

NanoTest platform with a standard Berkovich tip. The indentations were carried out at a 

loading rate of 10 mN sec-1 until a maximum load of 50 mN, which was held constant for 

120 s. The maximum load was chosen according to two requirements: the indentation 

depth should be smaller than 1/10 of the laminates thickness in order to avoid any 

substrate effect, and the indentation depth should be larger than the bilayer thickness 

even in the case of laminates in which the thickness of each layer is 100 nm. At least 5 

tests were carried at each temperature. 

 
Table  5-3: Average value and standard deviation of the strain rate sensitivity (m) of series 
1, 2 and 3 nanolaminates at different temperatures. 

Series Sample 25ºC 50°C 75°C 100°C 125°C 150°C 

S1 

Al10SiC50 0.04 
(±0.003) 

0.04 
(±0.002) 

0.05 
(±0.004) 

0.05 
(±0.004)

0.08 
(±0.003) 

0.07 
(±0.021) 

Al25SiC50 0.05 
(±0.006) 

0.07 
(±0.003) 

0.06 
(±0.003) 

0.07 
(±0.002)

0.09 
(±0.006) 

0.15 
(±0.007) 

Al50SiC50 0.04 
(±0.007) 

0.07 
(±0.010) 

0.09 
(±0.009) 

0.10 
(±0.008)

0.09 
(±0.003) 

0.13 
(±0.008) 

Al100SiC50 0.04 
(±0.000) 

0.04 
(±0.000) 

0.05 
(±0.004) 

0.06 
(±0.003)

0.06 
(±0.006) 

0.08 
(±0.003) 

S2 

Al50SiC2 0.04 
(±0.002) 

0.07 
(±0.004) 

0.07 
(±0.005) 

0.06 
(±0.003)

0.07 
(±0.005) 

0.08 
(±0.009) 

Al50SiC10 0.05 
(±0.004) 

0.07 
(±0.003) 

0.07 
(±0.007) 

0.07 
(±0.006)

0.07 
(±0.004) 

0.11 
(±0.008) 

Al50SiC25 0.05 
(±0.005) 

0.07 
(±0.004) 

0.08 
(±0.008) 

0.08 
(±0.003)

0.08 
(±0.003) 

0.12 
(±0.015) 

Al50SiC100 0.04 
(±0.004) 

0.06 
(±0.007) 

0.09 
(±0.009) 

0.11 
(±0.063)

0.12 
(±0.030) 

0.12 
(±0.071) 

S3 

Al100SiC100 0.04 
(±0.000) 

0.04 
(±0.000) 

0.05 
(±0.004) 

0.06 
(±0.003)

0.06 
(±0.003) 

0.08 
(±0.005) 

Al25SiC25 0.06 
(±0.011) 

0.06 
(±0.001) 

0.06 
(±0.009) 

0.05 
(±0.004)

0.08 
(±0.007) 

0.10 
(±0.008) 

Al10SiC10 0.04 
(±0.002) 

0.04 
(±0.003) 

0.04 
(±0.002) 

0.04 
(±0.002)

0.04 
(±0.003) 

0.05 
(±0.005) 
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Figure  5-22: Experimental results of (a) strain rate sensitivity, and (b) activation volume, 
as a function of temperature for series 1 and 2 nanolaminates. 

The experimental results of strain rate sensitivity of the series 1, 2 and 3 nanolaminates 

at different temperatures are summarized in table 5-3 and figures 5-22 (a) and 5-23 (a). 

All the nanolaminates presented similar strain rate sensitivity (0.04 < m < 0.05) at 

ambient temperature. In addition, the strain rate sensitivity increased slightly with 

temperature in all cases. No consistent pattern with layer thicknesses was found. The 

strain rate sensitivities at ambient temperature were in good agreement with those 

reported previously for ultrafine grain aluminum by Hayes et al. [142] and support the 
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hypothesis that the creep deformation of the multilayer was controlled by the plastic 

deformation of Al with negligible contributions from SiC or interface sliding. 

 

Figure  5-23: Experimental results of (a) strain rate sensitivity, and (b) activation volume, 
as a function of temperature for nanolaminates with same volume fraction of Al and SiC. 

At higher temperatures, the strain rate sensitivity increased in the range between 0.07 

and 0.15. The increase in strain rate sensitivity with temperature could support the 

hypothesis that deformation at higher temperature is controlled by the balance between 

strain hardening/dislocation multiplication and dynamic recovery in the Al layers, with 

less constraint effects from the SiC layers. The strain rate sensitivity values reported by 

Semiatin et al. [143] and Hayes et al. [142] for nanocrystalline Al were in the same 
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range, between 0.04 at RT and 0.16 at 200°C. They associated their strain rate 

sensitivity values with dislocation nucleation and annihilation processes at the grain 

boundaries. Since, dislocation sources no longer reside within the grains at grain sizes 

of 100 nm or less, dislocations are nucleated within grain boundaries, glide across the 

grain and absorbed into the opposite grain boundary. One could imagine the same 

scenario in the Al/SiC nanoscale multilayers, where the Al grain size is less than 100 

nm and the Al layers are sandwiched between two SiC layers, with both the grain 

boundaries and the Al/SiC interfaces acting as sources and sinks for dislocations. 

The activation volume for all the nanolaminates ranged between 1b3 and 15b3 in the 

whole temperature interval (25ºC to 150ºC), as shown in figures 5-22 (b) and 5-23 (b). 

These values are also consistent with an interface/grain boundary controlled 

deformation mechanism, as dislocation-dislocation interactions typically yield much 

larger activation volumes (>100b3) [142, 144, 145].This result is in agreement with the 

fact that no dislocations were observed in any of the deformed Al/SiC nanolaminates, 

even after substantial plastic deformation of the Al layers, as shown in figures 5-7 and 

5-8, supporting a deformation mechanism mediated by the nucleation of dislocations at 

grain boundaries and/or crystalline/amorphous interfaces. 

5.6.1. Activation energy 

Since creep is a thermally activated process, activation energies can provide valuable 

insights into the mechanisms that control the deformation behavior. Based on equation 

3-15, the determination of activation energy requires computing the strain rate at a 

constant stress value as a function of temperature. Unfortunately, the stress is 

determined by the nanolaminate hardness in the case of indentation creep, and, it is not 

possible to follow this approach because (as shown in the ݈݊  ሶ௜௡ௗ vs. hardness plot inߝ

figure 5-24 for one of the nanolaminates under study) the stress varies with 

temperature. Each line in figure 5-24 corresponds to the average of at least 5 

indentations at each temperature. 

To overcome this limitation, the stress exponent was determined from the slope of the 

corresponding line at each temperature. Next, all data in between the two dash lines of 

figure 5-24, were represented in a graph of ݈݊ሺߝሶ௜௡ௗሻ − ݊ ݈݊ሺܪሻ vs. 1 ܶ⁄  , as shown in 

figure 5-25. Following this approach, all data at each temperature between the two dash 

lines of figure 5-24 collapse into a single point, as shown in figure 5-25, and the 
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activation energy could be computed from the linear slope the data across the whole 

temperature range. 

 

Figure  5-24: Experimental evolution of ࢔࢒ ሶࢿ  vs. hardness for Al100SiC50 ࢊ࢔࢏
nanolaminates tested at different temperatures. 

 

 

Figure  5-25: The best fit to the experimental results for Al100SiC50 nanolaminate to 
calculate the activation energy for creep, Q. 
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The computed activation energies of each nanolaminate are summarized in table 5-4. 

The results indicate a complex temperature dependency of the activation energy with 

the layer thickness. For instance, the results for series 1 and 2 in figure 5-26 show that 

the activation energy decreases with the Al volume fraction from above 300 kJ/mol for 

an Al volume fraction of 16% to a around 150 kJ/mol for nanolaminates with an Al layer 

thickness of 50 nm and Al volume fraction larger than 66%. It is instructive to compare 

these values with the creep activation energies for SiC and Al. The, activation energy of 

bulk SiC is higher than 800 kJ/mol [146], while the activation energy of pure Al is in the 

range between the activation energies for self-diffusion (150 kJ/mol) [147, 148] and for 

grain-boundary diffusion (80 kJ/mol) [148, 149]. The trend observed in figure 5-26 might 

therefore arise from the increasing contribution of plastic flow in the SiC layers as the Al 

volume fraction decreases, which must necessarily take place to accommodate the 

indentation imprint. 

Additionally, and comparing the activation energies for nanolaminates with equal 

volume fraction, Al25SiC50 shows a lower activation energy than Al50/SiC100, and so 

does Al50SiC25 compared with Al100SiC50. They are re-plotted in figure 5-27, together 

with the activation energies for the nanolaminates in series 3, as a function of Al layer 

thickness. 

Table  5-4: Activation energies for creep deformation of Al/SiC nanolaminates in the 
temperature range 25ºC to 150ºC. 

Series Sample Activation Energy (kJ/mol) 

S1 

Al10SiC50 314 
Al25SiC50 231 
Al50SiC50 192 
Al100SiC50 191 

S2 

Al50SiC2 140 
Al50SiC10 150 
Al50SiC25 144 
Al50SiC100 270 

S3 
Al100SiC100 236 
Al25SiC25 158 
Al10SiC10 112 

 
Figure 5-27 demonstrates that, keeping the Al volume fraction constant, the activation 

energy decreases with decreasing the Al layer thickness. In particular, the Al10SiC10 

nanolaminate displays an activation energy of 112 kJ/mol, getting close to the activation 

energy for grain boundary diffusion in Al, and suggesting a larger contribution from 
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interfaces (grain boundaries and Al-SiC interfaces) to creep deformation of Al/SiC 

nanolaminates. 

 

Figure  5-26: Activation energy for indentation creep deformation for series 1 and 2 Al/SiC 
nanolaminates as a function of Al volume fraction. 

 

Figure  5-27: Activation energy for indentation creep deformation of Al/SiC nanolaminates 
as a function of Al layer thickness at different Al volume fraction. 
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6 Micropillar compression of 

Al/SiC nanolaminates 

The characterization of the mechanical properties of Al/SiC nanolaminates by high 

temperature nanoindentation –presented in the previous chapter– showed that the 

hardness decreased rapidly with temperature. At 200ºC and above, this reduction was 

the result of the chemical reactions at the SiC/Al interface. However, it was also found a 

marked reduction in hardness from ambient temperature to 100ºC (in the range of 1.5 

GPa to 2.0 GPa, see figure 5.19) that could not be attributed to the chemical reactions 

at the interface. The apparent activation energies for hardness, computed from the 

variation of hardness with temperature for different nanolaminates, suggested the 

interface sliding could be responsible for the reduction in hardness at 100ºC but this 

could not be confirmed by the TEM analysis of the deformation mechanisms under the 

indenter. It should be noted that indentation is not the ideal test to check the influence of 

the interface sliding on the mechanical properties of nanolaminates because of the 

constraint induced by the elastic material surrounding the indented volume. Thus, it was 
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decided to study the influence of the temperature on the mechanical properties by 

means of micropillar compression tests. The free surfaces of the micropillar should 

provide clear evidence of interface sliding if this mechanism was operative at high 

temperature. 

Al/SiC nanolaminates with a total number of 40 layers (20 Al and 20 SiC) were 

deposited by magnetron sputtering on Si (111). A high magnification cross-sectional 

bright-field TEM image of the as-processed Al/SiC nanolaminate near the Si (111) 

substrate is shown in figure 6-1. The individual layer thickness was 60 ± 2 nm for Al and 

59 ± 3 nm for SiC. Focused Ion Beam (FIB) milling was used to manufacture the 

micropillars, with a diameter of 1 μm and a length of 2 μm, following the techniques 

indicated in chapter 3. Two micropillars machined by FIB using annular milling and lathe 

milling are shown in figures 6-2 (a) and 6-2 (b), respectively. As expected, the pillars 

fabricated by annular milling showed a slight taper, of ~ 2.5º in average, while the pillars 

fabricated by lathe milling showed virtually no taper. 

 

Figure  6-1: Bright-field TEM cross-section image of the as-processed Al/SiC 
nanolaminate. 
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Figure  6-2: SEM images of Al/SiC nanolaminate micropillars fabricated by (a) annular 
milling, with slight taper (≈ 2º) and (b) lathe milling, without taper. 

 

 

Figure  6-3: Compression stress-strain curves at 23ºC and 100ºC. The colors in the curves 
at 100ºC indicate that the tests were carried out either under displacement control (red) 
or load control (blue). 
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Uniaxial compression tests of the micropillars were conducted using the TriboIndenter 

platform. The samples were mounted on a heating stage using mechanical clips. A flat 

diamond punch with a diameter of 8 μm was used to apply the load. The tests were 

carried out at 23ºC and 100ºC. The flat tip was maintained in contact with the pillar 

surface using a very low force (2 μN) for 1 hour prior to testing to attain thermal 

equilibrium and minimize thermal drift. Thermal drift was then measured both before 

loading and during unloading over a 20 s hold segment. Typical thermal drift values at 

23ºC and 100 ºC were 0.1 and 0.15 nm s-1 respectively. Experiments were performed 

under displacement control at a strain rate of 10-3 s-1 and under load control. The initial 

strain rate in the latter was 10-3 s-1, but the strain rate varied significantly upon plastic 

yield. A multiple loading-unloading strategy was used in most cases to measure the 

elastic stiffness of the micropillar during the test from unloading segments. The stresses 

and strains, including the Sneddon correction for the sink-in effect at the base of the 

pillar, were calculated using the methods detailed in chapter 3. 

The engineering stress-strain curves in compression at 23ºC and 100ºC are plotted in 

figure 6-3. They correspond to taper-free micropillars to avoid any artifacts (strain 

hardening) coming from tapering. The elastic modulus and the flow stress at 8% plastic 

strain, ߪ௙, at 23ºC and 100ºC are summarized in table 6-1, together with the hardness H 

and the ratio ܪ ⁄௙ߪ . 

Table  6-1: Elastic modulus, E, flow stress at 8% plastic strain, ࢌ࣌, and ࡴ ⁄ࢌ࣌  ratio of Al/SiC 
nanolaminates as function of temperature. 

T=23 ºC  T=100 ºC 
E 

(GPa) 
σf 

(GPa) H / σf  E 
(GPa) 

σf 
(GPa) H / σf 

123 ± 2 3.1 ± 0.2 1.6  111 ± 3 1.6 ± 0.2 2.3 

 
The initial loading slope of the stress-strain curves at 23ºC and 100ºC was much more 

compliant than the one expected from purely elastic loading. This behavior was 

attributed to the local plastic yielding at the top of the micropillar, due to slight 

misalignments between the micropillar surface and the flat punch, before full contact is 

established between the two. This effect is clearly seen in the variation of elastic 

modulus of the micropillar, determined from the slope of the unloading steps during the 

test, as a function of the applied displacement (figure 6-4). The elastic modulus 
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increases until the applied displacement has reached 50 to 100 nm and full contact was 

established between the top of the pillar and the flat punch, leading to a constant value, 

independent of the applied displacement (table 6-1). 

 

Figure  6-4: Elastic modulus of the Al/SiC nanolaminate obtained from slope of the 
unloading steps during the micropillar compression tests as a function of the applied 
displacement. 

The theoretical transverse elastic modulus of the Al/SiC multilayer, E, can be computed 

from laminate theory according to this equation: 1ܧ = ஺ܸ௟ܧ஺௟ + ௌܸ௜஼ܧௌ௜஼ ( 6-1)

 
where VAl and VSiC stand for the volume fraction of Al and SiC (50% in this case), and 

EAl and ESiC are the corresponding elastic moduli. They were determined from 

instrumented nanoindentation tests in the monolithic films at 23ºC and 100ºC (see 

section 5.2) and can be found in table 6-2. The theoretical values of transverse modulus 

according to equation 6-1 were 135 GPa and 114 GPa at 23ºC and 100ºC, respectively, 

which are very close to the experimental results. 
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Table  6-2: Hardness, H, and elastic modulus, E, measured from instrumented indentation 
tests in monolithic Al and SiC films and the Al/SiC nanolaminate. 

Materials T=23ºC  T=100ºC 
E (GPa) H (GPa)  E (GPa) H (GPa) 

Al 88 ± 6 0.91 ± 0.04  70 ± 3 0.60 ± 0.02 

SiC 297 ± 7 35.6 ± 0.7  320 ± 3 30.8 ± 0.8 

Al/SiC 128 ± 7 4.9 ± 0.5  118 ± 11 3.7 ± 0.4 
 
Interestingly, the elastic modulus of the Al/SiC nanolaminates determined from 

micropillar compression tests were similar, albeit slightly lower, than those determined 

from instrumented nanoindentation, shown in table 6-2. The difference, although very 

small, is very likely caused by the elastic anisotropy of Al/SiC laminates due to the layer 

orientation. While the transverse elastic modulus is measured directly during micropillar 

compression, nanoindentation tests perpendicular to the layers are be influenced both 

by the transverse and the longitudinal elastic moduli due to the multiaxial stress state. 

Thus, when loading perpendicular to the layers, in nanoindentation one would expect a 

slightly higher modulus because of the contribution from loading parallel to the layers. 

While elastic moduli at 23ºC and 100ºC were very similar, the differences in plastic 

behavior were dramatic, considering the small variation in temperature. The micropillars 

tested at 23ºC presented a very high strain hardening rate, reaching 3.1 GPa at 8% 

applied strain, while the micropillars tested at 100ºC displayed a much softer behavior 

and the flow stress seemed to saturate at 1.6 GPa when the applied strain reached 

~8% (figure 6-3). It is worth noting that these marked differences in the strain hardening 

capacity and in the flow stress were triggered by small changes in the homologous 

temperature T/Tm from 0.3 (23ºC) to 0.4 (100ºC) in Al. 

Nanoindentation experiments in monolithic films of both materials showed no variation 

in the properties of SiC between 23ºC and 100ºC while the hardness of Al dropped by 

30%, from 0.9 GPa to 0.6 GPa (table 2). These hardness values cannot be extrapolated 

directly to the properties of the Al layers within the nanolaminate because the thickness 

of the monolithic Al film was 1 μm, while the Al layers within the nanolaminate were only 

60 nm thick. In this temperature range, the hardness of Al/SiC nanolaminate was also 

reduced by ~ 30%, the same percentage that in the monolithic Al coatings (table 6-2). 
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6.1. Deformation mechanisms 

The compressed micropillars were studied by SEM to get a better understanding of the 

mechanisms of deformation as a function of temperature. The micrographs 

corresponding to two micropillars deformed up to a plastic strain of 8% at 23ºC and 

100ºC are shown in figures 6-5 (a) and 6-5 (b), respectively. The differences are 

obvious and correspond well with the differences in the stress-strain curve. The 

micropillars deformed at 23ºC showed evidence that the plastic deformation of the Al 

layers was constrained by the elastic SiC layers. Limited extrusion of the Al layers at the 

edges of the pillar was observed, especially towards the top, where the stresses are 

expected to be larger. On the contrary, Al was flowing out of the multilayer structure in 

the form of “tongues” at 100ºC, and this behavior can be a result of either a large 

reduction in the flow stress of the nanocrystalline Al, as compared with the behavior at 

23ºC, or of a substantial difference in the constrain imposed by the SiC layers as a 

result of interface sliding. 

 

 
Figure  6-5: SEM micrograph of Al/SiC nanolaminate micropillars deformed up to a plastic 
strain of 8% at (a) 23ºC and (b) 100ºC. 
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TEM analysis of the deformed pillars, made by extracting thin foils through the center of 

the pillar using FIB, provided additional information about the different deformation 

micromechanisms. A bright-field (BF) image of the full pillar deformed at ambient 

temperature up to 8% strain is depicted in figure 6-6 (a). It shows that the plastic strain 

of the nanolaminate was accommodated by the plastic deformation of the Al layers. The 

strain was homogenously distributed along the different Al layers, except for the Al layer 

just at the micropillar base that showed extensive plastic deformation due to the stress 

concentration in this area. 

 

 
Figure  6-6: TEM images of Al/SiC nanolaminate micropillar deformed up to 8% at 23ºC. (a) 
Full view. (b) Detail of upper region of the micropillar. (c) Detail of the lower region of the 
micropillar. 

As a result of plastic deformation, the Al grains were slightly elongated perpendicular to 

the compression axis as compared with as-deposited grains (figure 6-1), and some Al 
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was extruded out at the free surfaces. The Al extrusion was more predominant towards 

the top of the pillar where the stresses were higher as a result of the slight taper of this 

particular pillar, as can be seen in figure 6-6 (b). This image also shows one grain (see 

arrow) which has been extruded out of the multilayer indicating that interface sliding was 

also present during deformation. This result is in agreement with the lack of chemical 

bonding between Al and amorphous SiC, which should be able to accommodate sliding. 

It should be noted, however, that extrusion of Al at 23ºC was limited and most of the Al 

layers did not extrude out in the pillar deformed at room temperature, as shown in figure 

6-6 (c). 

It is not clear from the TEM images whether the deformation of the nanocrystalline Al 

layers at room temperature was diffusion or dislocation flow controlled. As a matter of 

fact, no dislocations could be found in the deformed Al layers, except for some 

dislocation pile-ups at the free surface of some layers, as pointed out by the white arrow 

in figure 6-6 (c). It is interesting to note that the only evidence of any dislocations was in 

these areas of no constraint from the brittle SiC layers. This is consistent with the work 

of Sun et al. [150] who showed no dislocations after indentation of Al/SiC nanolaminates 

at room temperature. It is possible that some dislocations could be annihilated at the 

numerous grain boundaries and Al/SiC interfaces after slip, although this does not 

explain the complete absence of dislocations in the Al layers. We can hypothesize that 

the fine grain size of the Al layers and the large degree of interfacial area would be 

conducive to interfacial and/or grain boundary diffusion at this temperature, contributing 

to a large degree of plastic flow in the Al layers. 

The pillar deformed at 100ºC showed widespread extrusion of the Al layers at the free 

surfaces along the micropillar (figure 6-7). Plastic deformation was also homogenously 

distributed along all the Al layers, except for the bottom layer that underwent more 

extensive plastic deformation. No dislocations were found either at 100ºC but Al grain 

extrusion was prevalent along the surfaces of the micropillar, indicating that interface 

sliding was dominant at 100ºC, as compared with the behavior at 23ºC. 

It is important to point out that this change in the interface sliding behavior was not due 

to any chemical reactions at the Al/SiC interface. The interfaces between the crystalline 

Al and the amorphous SiC layers remained clean of any reaction products after testing 

at 100ºC, as shown in the high resolution TEM image of Figure 6-8. 
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Figure  6-7: TEM images of Al/SiC nanolaminate micropillar deformed up to 8% at 100ºC. 
(a) Full view. (b) and (c) Details of lateral surface showing extrusion of the Al grains out 
of the micropillar. 

 
Figure  6-8: High resolution TEM image of the Al/SiC interface after micropillar 
compression at 100ºC. The interface is clean of any chemical reaction products. 
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In summary, micropillar compression tests of the Al/SiC nanolaminates showed a 

dramatic reduction in the strain hardening rate and in the flow stress from 23ºC to 

100ºC, while the nanoindentation hardness was only reduced by 30% in this 

temperature range. It is obvious that the temperature increase will lead to some 

softening of the nanocrystalline Al layers, as shown by the nanoindentation experiments 

performed in monolithic Al thin-films (table 6-2), but this mechanism cannot explain the 

reduction in the strain hardening rate, nor the variation in the indentation constrain 

factor ܪ ⁄௙ߪ  from ~ 1.6 at 23ºC to ~ 2.3 at 100ºC (table 6-1). 

SEM and TEM analysis confirmed that the deformation of the Al/SiC micropillars was 

controlled by the plastic deformation of the nanocrystalline Al layers constrained by the 

elastic amorphous SiC layers. The TEM studies did not provide any evidence of 

dislocations in the Al layers. TEM analysis also demonstrated that interface sliding was 

limited at 23ºC and important at 100ºC. These observations, together with the changes 

in indentation constrain factor ܪ ⁄௙ߪ , suggest that changes in the elastic constrain of the 

Al flow by the SiC layers with temperature was also an important factor leading to the 

differences in the mechanical behavior between 23ºC and 100ºC. However, the role 

played by Al softening and interface sliding could not be quantified from the 

experimental observations. The numerical simulations presented in next chapter were 

aimed at clarifying this point. 
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7 Numerical simulation of 

micropillar compression 

Finite element simulations of the micropillar compression tests were carried out to 

determine the influence of the Al flow stress and the interface properties (strength, 

friction coefficient) on the overall stress-strain response of the Al/SiC micropillars. The 

combination of micropillar compression experiments, TEM observations and numerical 

simulations were used to obtain a systematic and thorough understanding of the high 

temperature mechanical behavior of Al/SiC nanolaminates. 

7.1. Geometrical model and materials properties 

Numerical simulations of the micropillar compression test of Al/SiC nanolaminates were 

performed using the commercial finite element software Abaqus [151]. The simulations 

were not aimed at predicting the stress-strain behavior but at elucidating the influence of 

the flow stress of the Al layers and of the Al/SiC interface properties on the overall 

mechanical behavior of the micropillars under compression. 
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The geometrical model of the micropillar compression tests as well as the boundary 

conditions are depicted in figure 7-1. It consists of a cylindrical pillar with a length of 2 

µm and radius of 0.5 µm (the dimensions of the experimental micropillars) and a circular 

flat punch. The pillar was composed of 30 alternative layers of Al and SiC with identical 

thickness. The bottom of the pillar was bonded to a semi-infinite elastic homogeneous 

medium with the effective properties of the Al/SiC nanolaminate to simulate accurately 

the testing conditions. The dimensions of the semi-infinite medium were large enough to 

avoid any effect of the boundary conditions on the simulated load-displacement curves. 

The flat punch was modeled as a rigid body assuming frictionless contact between the 

micropillar and the flat punch. 

 
Figure  7-1: Axisymmetric finite element model of micropillar compression composed of 
15 bilayers of Al/SiC with a total height of 2 μm and 1 μm in diameter. 
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Taking advantage of the axial symmetry, the model was meshed using two-dimensional 

four–node linear axisymmetric elements with reduced integration (CAX4R). 3600 

elements were used to mesh the pillar and 14440 elements for the semi-infinite 

medium. The mesh was refined at the edges of the Al layers to capture accurately their 

extrusion during the compression test. Finally, cohesive surfaces were inserted between 

the Al and the SiC layers to account for the effects of interface fracture and sliding. 

The model included three different bulk materials, namely SiC, Al and the homogenized 

nanolaminate, and the Al/SiC interface. The SiC layers were modeled as elastic 

isotropic solids with an elastic modulus of 300 GPa and a Poisson’s ratio of 0.14. The Al 

layers were modeled as elastoplastic, isotropic solid following the Von Misses yield 

criterion. The elastic modulus and Poisson’s ratio were, respectively, 88 GPa and 0.34. 

It was assumed that the strain hardening capacity of the Al layers was negligible due to 

their nanocrystalline structure and the small layer thickness. The homogenized elastic 

medium at the base of the pillar was assumed to be transversally isotropic and the five 

independent elastic constants, estimated from laminate theory, are found table 7-1 [132, 

138]. 

Table  7-1: Elastic constants of the transversally isotropic homogenized medium. The 
direction 1 is perpendicular to the isotropy plane 23. 

E1 (GPa) E2 (GPa) G12 (GPa) ν12 ν23 
114 185 60.3 0.24 0.21 

 
To account for the effect of interface sliding, the Al-SiC interface was modeled 

phenomenologically as a cohesive crack. In this model, the total stress acting on the 

interface, ݐ = ඥݐۃ௡ۄଶ + ߜ ௦ଶ , is related with the corresponding displacement jumpݐ = ඥߜۃ௡ۄଶ +  ௦ stand for, respectively, the normal and shearݐ ௡ andݐ ௦ଶ , whereߜ

stresses transferred through cohesive crack while ߜ௡ and ߜ௦ are the corresponding 

normal and shear displacement jumps across the cohesive interface. The ۃ  symbol ۄ

stands for the Macaulay brackets, which returns the argument, if positive, and zero 

otherwise because compressive normal stresses do not open the crack. The simplest 

constitutive equation for the cohesive crack is the bilinear model, figure 7-2. In the 

absence of damage, the interface behavior is linear with an initial stiffness, K (1012 

GPa/m), which is a numerical parameter large enough to ensure the displacement 

continuity at the interface and to avoid any modification of the stress fields in the 
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sliding was opposed by Columbian friction, with a friction coefficient, μ, which together 

with the interface shear strength, ݐ௦௖, and the interface toughness, ߁, determine the 

interface properties. More details about the cohesive crack model can be found 

elsewhere [98, 153, 154]. 

7.2. Numerical results 

A parametric study was carried out using the model outlined in previous section to 

ascertain the influence of the Al yield stress ߪ௬ (in the range 50-1000 MPa), and of the 

interface shear strength, ݐ௖ (between 0 and 1 GPa) and friction coefficient, μ (in the 

range 0 to 0.3) on the compressive stress-strain curve of the nanoscale multilayer. 

Nanocrystalline Al was assumed to have a negligible strain hardening capacity. 

Moreover, interface toughness was set to ߁ = 100 J/m2 in all cases, in good agreement 

with the available experimental data for this type of metal-ceramic interfaces [155]. 

 
Figure  7-3: Simulation of micropillar compression: Effect of the Al yield stress ࢟࣌ for the 
case of a perfect interface. 

The compressive stress-strain curves as a function of the Al yield stress ߪ௬ are plotted 

in figure 7-3 in the case of a perfect interface between Al and SiC. The initial yield stress 
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of nanolaminate was proportional to the Al yield stress. After yielding, the micropillars 

showed a very substantial strain hardening capacity despite of the fact that Al flow 

stress was independent of the plastic strain. As a result, the compressive strength at 

10% strain was approximately five times higher than the Al yield strength. This behavior 

comes about as a result of the elastic constrain imposed by the SiC layers on the plastic 

deformation of Al [156]. Constrain leads to the development of high compressive 

hydrostatic stresses, increasing the uniaxial applied stress required for yielding. 

This is shown in figure 7-4, in which the contour plots of hydrostatic pressure are plotted 

as a function of the applied strain for the multilayer with ߪ௬ = 350 MPa. They increased 

rapidly in the Al layers during the elasto-plastic transition (from 1.5% to 7.5% applied 

strain) and were maximum in the centre of the pillar. They were relieved at the free 

edges as a result of the extrusion of the Al out of the pillar, which took place in the 

absence of interface sliding. 

 

 
Figure  7-4: Contour plots of hydrostatic pressure as a function of the applied strain for 
nanolaminates with perfect interface. 
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The effect of the interface strength ݐ௖ on the compressive stress-strain curve is depicted 

in figure 7-5 assuming matrix yield strength of 350 MPa and a frictionless interface after 

fracture. Although the frictionless hypothesis is not realistic, it is useful to understand 

independently the effects of interface strength and friction. The curves are superposed 

until the shear stresses at the interface overcame the interface strength leading to free 

interface sliding in the absence of friction. As a result, no hydrostatic stresses were 

built-up in the Al layers during deformation after interface fracture and the strain 

hardening capability of the nanolaminate disappeared beyond this point. Thus, the 

nanolaminate strength depended on the interface shear strength which determined the 

critical strain for interface fracture. The influence of the elastic constrain on the 

mechanical behavior is readily appreciated in figure 7-5 if the curves of multilayers with 

different interface strength are compared with that of the material with a perfect 

interface. 

 

 
Figure  7-5: Simulation of micropillar compression: Effect of the interface strength ࢉ࢚ for 350=࢟࣌ MPa and 0=ࣆ. 
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Figure  7-6: Contour plots of hydrostatic pressure as a function of the applied strain for 
nanoscale multilayers with Weak frictionless interface (ࢉ࢚ = ૙ and ࣆ = ૙). 

In the limit of a very weak (ݐ௖ = 0) frictionless (μ = 0) interface, the constraint of the SiC 

layers was negligible (figure 7-6) and the Al/SiC micropillar would yield at the yield 

stress of Al without any strain hardening (figure 7-5). 

Finally, the effect of the interface friction of the mechanical response is shown in figure 

7-7 for an Al/SiC nanolaminate with Al yield strength of 450 MPa and a weak interface 

௖ݐ) = 0). Even though the interface strength is negligible, the constraint imposed by 

frictional stresses on interface sliding leads to the build-up of hydrostatic stresses and to 

the development of strain hardening in the nanolaminate. It is worth noting that a friction 

coefficient above 0.25 induces a constrain equivalent to that of a perfect interface. 

7.3. Comparison with experiments 

The simulations above demonstrated that the compressive behavior of Al/SiC 

nanolaminate micropillars was controlled both by the yield stress of the Al layers (ߪ௬) 

and the interface properties (ݐ௖, μ). Assuming a reasonable value of the interface 
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friction coefficient (μ =0.1-0.3), the simulations also show that the interface strength is 

not a critical parameter, since even for a very weak interface, sliding will be dominated 

by frictional forces. 

 
Figure  7-7: Simulation of micropillar compression: Effect of the interface friction ࣆ for ࢟࣌ = ૝૞૙ MPa and ࢉ࢚ = ૙ MPa. 

Interface sliding affects the constrain imposed by the SiC layers, which in turn 

determines the ratio of compressive strain required for plastic flow of the Al/SiC 

micropillar with respect to the Al yield stress, which ranges between 1 for a frictionless 

weak interface to 5 for a perfect interface. So, in modifying the interface properties, only 

the frictional coefficient will be taken into account. Therefore, the Al yield stress and the 

friction coefficient have to be chosen as a function of temperature in order to reproduce 

the experimental results. The experimental curves of figure 6-3 in previous chapter, 

clearly show that the strain hardening rate at 23ºC was much more pronounced than at 

100ºC, indicating different levels of constrain and thus differences in the amount of 

interface sliding during deformation. This conclusion is supported by the limited 

interface sliding observed at 23ºC by TEM (figure 6-6), as opposed to the behavior 

found at 100ºC (figure 6-7). 
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Figure  7-8: Comparison between experimental and numerical compressive stress-strain 
curves at 23ºC. The yield stress of Al was set to 650 MPa while the interface properties 
were varied considering either a perfect interface or a weak interface (ࢉ࢚ = ૙) with a 
friction coefficient ࣆ of 0 or 0.3. 

Based on this information, and assuming a perfect interface at 23ºC (no sliding), a good 

correlation between experimental results and simulations at 23ºC could be obtained for ߪ௬ = 650 MPa, as shown in figure 7-8, which also depicts simulation results for 

different friction coefficients (0.3 and 0). This value of the Al yield strength is reasonable 

for a 60 nm thick Al layer, considering that the yield stress of a 1 μm thick Al thin-film 

deposited in the same conditions should be of the order of 340 MPa, as estimated from 

its hardness of 910 MPa (table 6-2) and using ܪ ≈  ௬. It is important to note thatߪ 2.8

the differences in the elastic slope between experiments and simulations are due to the 

imperfect contact between the flat indenter and the micropillar at the beginning of the 

test (figure 6-4). 

Regarding the results at 100 ºC, it is difficult to provide an accurate estimation of yield 

strength of the Al layers at this temperature. Assuming a perfect interface, the 
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experimental results were well fitted with ߪ௬ = 350 MPa, which would imply a reduction 

of ≈ 50% with respect to the room temperature yield stress (figure 7-9). 

 
Figure  7-9: Comparison between experimental and numerical compressive stress-strain 
curves at 100ºC. The yield stress of Al was set to 350 MPa and a perfect interface or to 
450 MPa with a weak interface (ࢉ࢚ = ૙) and interface friction μ in the range 0 to 0.2. 

The experimental TEM observations of extended interface sliding at 100ºC (figure 6-7) 

favored, however, the selection of an interface friction μ = 0.2 in combination with ߪ௬ = 450 MPa. This choice led to a very good fit of the experimental data and was 

compatible with the extended interface sliding observed experimentally. Moreover, it is 

interesting to note that the reduction in the yield stress of the Al layers of ≈ 30% at 

100ºC is equivalent to the reduction in hardness determined for 1 μm thick Al thin-films, 

although this should not necessarily be the case for Al films of different thicknesses, and 

thus, different grain sizes (table 6-2). All in all, the large reduction in the flow stress and 

the strain hardening rate of Al/SiC nanolaminates from 23ºC to 100 ºC can be explained 

by a combination of two mechanisms: the drop in the yield stress of nanocrystalline Al 

together with easier interface sliding at the Al/SiC interfaces. This is likely to occur in 
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nanocrystalline Al as a result of the increased activation of dislocation climb and/or 

interface diffusion, as the homologous temperature was raised from 0.3 to 0.4. 

Finally, it is worth noting that these combinations of changes in yield stress and 

interface friction can explain the discrepancy between the ܪ ⁄௬ߪ  ratios between 23ºC 

and 100ºC. (table 6-1). The simulations showed that interface sliding was a controlling 

mechanism during micropillar compression and that Al was extruded out of the pillar 

due to the lack of constrain in the lateral surfaces. However, Al plastic flow during 

nanoindentation was constrained vertically by the SiC layers and laterally by the 

surrounding undeformed material. As a result, interface sliding contributes to a lesser 

extent and the hardness of Al/SiC at 100ºC was reduced by the same amount that the 

Al yield stress, i.e., ≈ 30%. On the contrary, the flow stress during micropillar 

compression was reduced by ≈ 50% due to the additional effect of interface sliding 

leading to the unconstrained extrusion of Al at the free micropillar surfaces. 
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8 Concluding remarks 

8.1. Summary of research findings 

The work presented in this thesis can be summarized in three main blocks: the 

implementation of the optimum procedure to carry out nanomechanical testing at high 

temperature; the application of these methods to study the hardness of Al/SiC 

nanolaminates as a function of Al and SiC layer thickness; and a more throughout study 

of their deformation mechanisms by indentation creep, micropillar compression and 

numerical simulations. The main conclusions obtained in each block are summarized 

below: 

Nanomechanical testing at high temperature 

o The main challenges to carry out high temperature nanoindentation are thermal 

drift, environmental control and the sample-indentation tip interactions in the form 

of accelerated wear of the tip and tip contamination. 

o Even though the use of passive tip heating can provide reliable results provided 

the testing time is low, active tip heating constitutes the only possible alternative to 
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carry out nanoindentation tests at elevated temperature for prolonged times (over 

minutes), without the drawbacks of thermal drift. 

Thermomechanical behavior of Al/SiC nanolaminates 

o Al/SiC multilayers grown by magnetron sputtering with individual layer thickness 

below 100 nm display amorphous SiC and nanocrystalline Al layers, with clean 

interfaces free of interfacial reaction products. 

o The Al/SiC nanolaminates are thermally stable at temperatures up to 150ºC. 

Above 200ºC, thermal stability is impaired by chemical reactions between Al and 

SiC, leading to a dramatic drop in hardness and elastic modulus. 

o The elastic modulus of the nanolaminates was in good agreement with the Reuss 

average (inverse rule-of-mixtures) of the constituents in the temperature range 

between 28ºC and 150ºC. 

o The Al/SiC nanolaminates display very high room temperature hardness, between 

3 and 10 GPa, mainly controlled by the volume fraction of the constituents and 

independent of the individual Al and SiC layer thicknesses, in the range between 

10 and 100 nm. 

o The hardness of all the nanolaminates decreased rapidly with temperature up to 

150ºC, and the reduction in hardness increased as the layer thickness decreased 

(higher interface density) for nanolaminates with the same volume fraction of Al 

and SiC. 

o The Al/SiC multilayers presented very high strain hardening rates at 23ºC, but the 

hardening rate decreased dramatically at 100ºC, as shown by micropillar 

compression. 

Deformation mechanisms in Al/SiC nanolaminates 

o The deformation of the Al/SiC nanolaminates at room temperature was controlled 

by the plastic deformation of the Al layers, constrained by the SiC layers, and the 

elastic bending of the SiC layers. At higher temperatures, loss of the SiC constrain 

has been observed, due to interface sliding, leading to marked reduction in strain 

hardening. 

o The strain rate sensitivity and activation volume of the Al/SiC nanolaminates have 

also been determined in the temperature range between 28ºC and 150ºC. The 

strain rate sensitivity ranged between 0.04 and 0.15 and the activation volumes 
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between 1ܾଷ and 15ܾଷ. These values agree well with those obtained in previous 

studies in nanocrystalline Al, indicating that deformation is controlled by interface-

mediated dislocation flow in the Al layers, presumably due to the nucleation and 

annihilation of dislocations at grain boundaries and/or the Al-SiC interfaces. 

o Indentation creep activation energies ranged between 112 and 314 kJ/mol, with 

the upper values associated with a higher SiC content. For a constant volume 

fraction, the activation energies were found to decrease with layer thickness, 

indicating a larger contribution from interface mediated plastic flow. 

o Numerical simulations show that the compression of Al/SiC nanolaminates at room 

temperature is well explained by the plastic flow of the Al layers, constrained by 

the hard and stiff SiC layers. As a result of the constrain imposed by the SiC 

layers, the nanolaminates show a very large strain hardening rate, as a result of 

the build-up of hydrostatic stresses in the Al layers.  

o The numerical simulations also suggest that that the constrain imposed by the SiC 

layers is reduced at high temperature, as a result of the onset of interface sliding 

at the Al-SiC interfaces. This is consistent with the increase in strain rate 

sensitivity and with the reduction in strain hardening with temperature. 

8.2. Recommendations for future work 

a) Even though the current Al/SiC nanolaminates were not prone to oxidation, it is highly 

recommended to establish the high temperature nanoindentation capability under high 

vacuum, instead of inside an environmental chamber. This will avoid potential oxidation 

problems at higher temperatures and/or in other materials, as found in this work for 

monolithic Al coatings. 

b) Interface sliding was demonstrated to play a significant role in strength, strain 

hardening and creep resistance. The direct determination of interface strength and 

interface friction as a function of temperature is therefore recommended. The use of 

novel nanomechanical testing methods, such as testing the nanolaminates at different 

loading angles with respect to the layer orientation, would be of great interest. 

c) Finally, the behavior of laminates under dynamic loading conditions such as fatigue 

remains to be investigated. 
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