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Abstract   

 

In this paper we propose a new class of asymmetric stochastic volatility (SV) models, 
which specifies the volatility as a function of the score of the distribution of returns 
conditional on volatilities based on the Generalized Autoregressive Score (GAS) model. 
Different specifications of the log-volatility are obtained by assuming different return 
error distributions. In particular, we consider three of the most popular distributions, 
namely, the Normal, Student-t and Generalized Error Distribution and derive the 
statistical properties of each of the corresponding score driven SV models. We show 
that some of the parameters cannot be property identified by the moments usually 
considered as to describe the stylized facts of financial returns, namely, excess kurtosis, 
autocorrelations of squares and cross-correlations between returns and future squared 
returns. The parameters  of some restricted score driven  SV models can be estimated 
adequately using a MCMC procedure. Finally, the new proposed models are fitted to 
financial  returns  and  evaluated  in  terms  of their  in-sample  and  out-of-sample 
performance. 
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l. lntroduction 
 

 
 

There is a large literature on modelling the second arder dynamics of univariate 

financia! returns with leverage effect. The main interest is to obtain accurate volatility 

estimates which are important components of many financia! models. Two main 

alternative families of models are usually implemented to represent the dynamic 

evolution of asymmetric volatilities. The first family is based on the Generalised 

Autoregressive Conditional Heteroscedasticity (GARCH) model of Bollerslev (1986), 

with the volatility specified as a function of past returns and, consequently, observable 

one-step ahead; see Engle (1995), Giraitis et al. (2007) and Terasvirta (2009) for 

comprehensive reviews on GARCH models and Rodríguez and Ruiz {2012) for a 

review on popular GARCH models with leverage effect. Alternatively, the second 

family includes Stochastic Volatility (SV) models, which specify the volatility as a 

latent variable that is not directly observable; see Ghysels et al. (1996) and Cavaliere 

(2006) for reviews on SV models and their applications and Mao et al. (2013) for the 

comparison of popular alternative asymmetric SV models. 
 

Besides heteroscedasticity and leverage effect, another important and well documented 

empirical feature of standardized financia! returns is the fact that they are heavy-tailed 

distributed; see, for instance, Liesenfeld and Jung (2000), Jacquier et al. (2004) and 

Chen et al. (2008) among many others.  In arder to capture this latter feature, both 

GARCH and SV models have been extended by assuming fat-tailed return errors. 

Two examples are the GARCH-t model of Bollerslev (1987) and the asymmetric SV 

model with Student-t distribution of Asai and McAleer (2011).  Nonetheless, these 

traditional  models often specify the asymmetric volatility  as being driven by past 

return errors. Consequently, they can suffer from a potential drawback since a large 

realisation of the return error, which could be due to the heavy-tailed nature of its 

distribution, will be attributed to an increase in volatility. Therefore, in the GARCH 
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context, Creal et al. (2013) and Harvey (2013) have recently proposed models in which 

the dynamic of volatility is driven by the lagged score of the conditional distribution 

of returns to automatically correct for infiuential observations. This gives rise to the 

Generalised Autoregressive Score (GAS) models which are also known as dynamic 

conditional score (DOS) models. 
 

In this paper, we extend the GAS idea to SV models by specifying the unobserved 

volatility to be driven by lagged scores. Given that the conditional distribution of 

returns does not have an analytical expression, the score is computed with respect 

to the distribution of returns conditional on the volatilities. We show that this type 

of models lay in the Generalised Asymmetric SV (GASV) family recently proposed 

by Mao et al.  (2013).   We denote the new models as GAS-GASV  (GAS2V)  and 

consider three alternative GAS2V models depending on the assumed distribution 
 
of the return errors, namely, Normal, Student-t and Generalised Error Distribution 

(GED). Closed-form expressions of severa! relevant statistics of these models are 

derived to analyse their ability to represent the main empirical features often observed 

in financia! returns, namely, the excess kurtosis, positive autocorrelations of power-transformed 

absolute returns and negative cross-correlations between returns and future power-transformed 

absolute returns.   lt is important  to point  out that  analytical  expressions of these 

moments ofthe GAS2V model with Student-t errors can now be derived, in opposition 

to the traditional specifications of the SV models in which their derivation is hardly 
 
possible when the errors are Student-t. Moreover, we show that the GAS2V model 

with Student-t errors generates returns with very similar properties as those generated 

by the GAS2V model with GED errors as far as the parameters of both distributions 

are chosen to have the same kurtosis. Therefore, there could be difficulties in identifying 

the parameters of the GAS2V model when looking at the moments. 
 

Although SV models are considered competitive alternatives to GARCH models, 
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their estimation usually limits their empirical implementation due to the intractability 

of their likelihood function; see Carnero et al. (2004) for the advantages of SV models 

when compared with GARCH models. In recent decades, many efforts have been done 

in this direction and considerable advances have been achieved with simulation based 

procedures being a very popular alternatives; see Broto and Ruiz (2004) for a survey 

on the estimation of SV models.  Examples of procedures based on the Monte Cario 

likelihood evaluation are the simulated Maximum Likelihood  (MCL) procedure of 

Durbin and Koopman (1997) and the Efficient Importance Sampling (EIS) procedure 

of Liesenfeld and Richard (2003) and Richard and Zhang (2007); see also Asai and 

McAleer  (2011) for the implementation  of the latter procedure for estimating their 

exponential SV model and Koopman et al. (2014) for an extension.  Alternatively, 

Monte Cario Markov  Chain (MCMC) has become an standard estimation method 

because it is efficient without  relying on asymptotic approximations  for inference 

on the parameters;  see, for  example,  Jacquier  et al.  (1994),  Omori et al.  (2007), 

Abanto-Valle et al. (2010), Tsiotas (2012) and Yu (2005, 2012) among others for 

implementations of MCMC to estímate SV models. Furthermore, MCMC also allows 

obtaining one-step-ahead  densities of the underlying volatilities.  In this paper, we 

consider a MCMC estimator implemented by the user-friendly and freely available 

software BUGS; see Meyer and Yu (2000) and Yu (2005, 2012) for the reliability of 

BUGS when estimating the parameters of the SV model.  We conduct an intensive 

Monte Cado study on the finite sample properties of the MCMC estimator implemented 

using BUGS when estimating the model parameters and find that it is adequate when 

the model is restricted as to avoid the identification issues detected when looking at 

the statistical properties  of the GAS2V models.   Using the MCMC estimator, the 

three GAS2V models considered in this paper are fitted toa series of daily S&P500 

returns and two series of weekly financial returns , namely S&P500 and NIKKEI225. 

The performance is evaluated both in-sample and out-of sample. 
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The remainder of this paper is organized as follows. In section 2, the GAS2V model 

is proposed and its statistical properties are derived when the errors are Gaussian, 

Student-t and GED. In section 3, we perform a Monte Cario experiment to analyse 

the finite sample properties of the MCMC estimator of the model parameters. The 

GAS2V models are fitted to daily and weekly real time series of financia! returns and 

their in-sample and out-of-sample performances are evaluated in section 4. Finally, 

we conclude in section 5. 

 
 
2. Score driven asymmetric SV models 

 
 

In this section, we propase the GAS2V model and derive its statistical properties 

when the errors have Normal,  Student-t  and GED distribution.   In particular,  we 

obtain closed-form expressions of the marginal variance, the kurtosis, the autocorrelation 

function (acf) of power-transformed  absolute returns and cross-correlation function 

(ccf) between returns and future power-transformed absolute returns. 
 
 

2.1. The GASJ V model 
 

Let Yt be the return at time t,  t its volatility and ht = log  ;. The family of 

GAS2V models is defined as follows 1 

 
 

          t = 1,2,··· ,T, (1) 
 

ht- p, = <P(ht.-1- p,) +f(Ut-1)  + 'TJt-1, (2) 
 
 
where 'T}t is a Gaussian white noise with variance and Et is a strict white noise with 

variance one which is distributed independently of 'T}t for all leads and lags.  p,  is a 

scale parameter  related  with  the marginal variance  of returns  while  the parameter  <P 

 
1We only consider one lag of past scores and volatilities as this is the most popular specification 

in the empírica! implementation of related similar models for volatilities. 
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is related with the persistence of the volatility shocks. Finally, f( ·) is a function of 

the scaled conditional score of the lagged return, Ut-1, which is defined as follows 

 

                                                           (3) 
 
 

where C is any real number introduced to simplify the expression of the score and 

P(Ytlht) is the density of returns conditional on volatilities. Denoting by '1/;(Et) the 

probability  density  function  (pdf)  of  ft, the  density  function  of  Yt conditional  on  ht 

is given by P(ytlht)  = exp(-ht/2)'1/J(Yt exp(-ht/2)). It follows immediately  that 

 

                                                        (4) 
 

where '1/J'(Et)  denotes the derivative of '1/;(Et)  with respect  to ft.  Thus, Ut  depends on 

Et and, consequently, after writing f( Ut-d = f (-í + ÍEtJ E))) in equation (2), the 

GAS2V model  in equations  (1)  and  (2)  can be obtained  as a particular  case of  the 
 

GASV family defined by Mao et al. (2013) and the results on the properties of this 

family can be directly used. In particular, according to Theorem 2.1 of Mao et al. 

(2013), when  lif>l   < 1 and the distribution of Et  is such that  E(exp(f(Et)))  < oo, 

the GAS2V model is stationary.   Moreover,  for any non-negative integer e, if the 
 

distribution of Et is such that E(exp(0.5cf(Et))) < oo and E(IEt¡c) < oo, both Yt and 

IYtl have finite moments of arder c. In particular, the marginal variance and kurtosis 

of Yt are given by 

 

                                            (5) 
 
 
and 

 
 
 

(6) 
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respectively, where P(bi) - IT: E(exp(bd(ut-i))). 
 

Under the same conditions, Theorem 2.2 of Mao et al. (2013) established that the 

autocorrelation function of IYtlc is also finite and given by 

 

 
 
 

n-1 

where T(n,bt)- E(exp(bd(ut-i))) if n > 1and T(1, bi) - l. Finally, the finiteness 
i=l 

of the cross-correlation function between Yt and IYt+rlc, for T 1, 2, ···, is guaranteed 
 

when further E(letl2c) < oo. It is given by 
 

_ E(l tl0)exp(;(f;; u )E(cotexp(0.5ctf¡.-- 1f( t)))P(0.5(l+ctf¡.-) '- 1)·T .-;( t;) Pc1(T ) - ------'--i=== ============ -"-..:.._:u:_--'-- 

E(Icol2c)exp( 4C  i2l )P(ctf¡i-1)-[E(Icotlc)P(0 .5ctf¡'-l )]2 
 
 
 

Later in this paper, we obtain closed-form expressions of these  moments for 

particular assumptions on the function f(·) and on the error distribution. In particular, 

in order to represent the leverage effect often observed when dealing with time series 

of financial returns, we consider the following specification off(·) 
 
 

f(Ut-1)  = ct!(Et-1 <O)+ kut-1 + k*sign( -Et-1)(ut-1 + 1), (7) 
 
 
 
where I(·) is an indicator function that takes value one when the argument is true and 

zero otherwise. The parameter k represents an ARCH effect while the parameters a 

and k* represent the leverage effect with a dealing with changes in the scale parameter 

depending on the sign of past returns and k* with changes in the dynamics involving 

the score. Note that the last term in (7) is based on the proposal of Harvey (2013) in 

the context of asymmetric score GARCH models. As pointed out by Harvey (2013), 

although the statistical validity of the model does not require it, proper restriction 
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may be imposed on k and k* in order to ensure that an increase in the absolute value 

of a standardized observation does not lead to a decrease in volatility. 

 
In order to represent the leverage effect, besides the cross-correlations, Mao et al. 

(2013) propose the Stochastic News lmpact Surface (SNIS) that relates al with Et-1 

and "lt-1.  As in Engle and Ng (1993), the lagged volatilities are evaluated at the 

marginal variance, so that, at time t- 1, the volatility is equal to an "average" 

volatility. Consequently, the effect of level shocks, Et-b and volatility shocks, "lt-b on 

the volatility at time t is given by 

 
 

                                (8) 
 

 
 
where a is the marginal variance of Yt in (5) and f (Ut-1) is given in (7). 1t is important 

to note that the score, Ut, is different depending on the particular assumption on 

the error distribution.  Severa! distributions of  return  errors have been  proposed 

in the related literature being the Gaussian distribution the most popular; see, for 

example, Jacquier et al. (1994) and Harvey and Shephard (1996). When the errors 

are Gaussian, the score is given by 

 
 

Ut-1 = E -1 - l. (9) 
 
 
 
The corresponding SNIS is plotted in the top panel of Figure 1when the GAS2V model 

has parameters {a,</>, k"', k, a } = {0.07,0.98, 0.08, 0.1, 0.05}. The scale parameter, ¡;, 

is chosen so that exp((1- <f>)¡;,)a;cfo =l. It shows that the volatility response is larger 

when the lagged return is negative than when it is positive.  Therefore, this model 

is able to capture the leverage effect. Moreover, the difference in the response of 

the volatility to positive and negative Et-1 depends on the log-volatility noise, "lt-1. 

Stronger leverage effect is observed when 'Tft-1 is positive and large. The News lmpact 
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Curve (NIC), defined by Engle and Ng (1993), is obtained when 7Jt-l =O, which is 

also plotted in Figure l. The inclusion of 7Jt-l in the model allows it to be more 

flexible in representing the leverage effect. 
 

However, the Gaussian distribution does not fully capture the fat tails of financial 

time series often observed in practice and may suffer from a lack of robustness in the 

presence of extreme outlying observations. Consequently, several authors consider 

heavy-tailed distributions such as the Student-t or the GED distributions;2 see, for 

example, Chen et al. (2008), Choy et al. (2008) and Wang et al. (2011, 2013). Consider 

first the GAS2V model when ft has a Student-t distribution with 110 degrees offreedom. 

In this case, the score is given by 
 
 

                                                (10) 
 
 
The SNIS of the GAS2V model with Student-t errors is plotted in the middle panel 

of Figure 1 for the same parameters as above and 110 = 6. The asymmetric response 

of volatility to Et-l is similar to that of the GAS2V model with Gaussian errors. 

Finally, when ft is assumed to follow a GED(v) distribution, then the score 

function is given by 

                                                            (11) 
 
with r.p = y'2-2/vr(1/v)/r(3/v). The SNIS of the GAS2V model with GED errors 

when 11 = l.5 is plotted in the bottom panel of Figure l. The volatility responds 

asymmetrically to the positive and negative returns errors. However, no big difference 

can be observed among the SNISs of all the three GAS2V models. 

 
2There are also proposals to include simultaneously leptokurtosis and sk.ewness in the distribution 

of Et, such as the sk.ewed-Normal and skew-Student-t in Nakajima and Omori (2012) and the 
asymmetric GED in Cappuccio et al. (2004). It is not straightforward to capture the moments 
of returns when the distribution of Et is asymmetric. Consequently, we leave this extension for 
future research and focus on symmetric distributions. 
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2.2. Different GA$2 V models 
 
 

In this subsection, we analyze the properties of three GAS2V models corresponding 

to three different return error distributions. 

 
 

2.2.1. GA$2 V-N 
 
 

lf Et follows a Gaussian distribution, then, the scaled score, 'Ut is given by expression 
 

(9) and the specification of the log-volatility with JO defined as in (7) reduces to 
 
 
 

 
 
 
 
The resulting model is denoted as GAS2V-N.It is important to note that although the 

specification of the volatility in (12) is closely related to that in the T-GASV model 

of Mao et al. (2013), the way in which the leverage is introduced is different in both 

cases. In (12), the log-volatility depends on squared returns and the leverage effect is 

introduced in the same fashion as in the TGARCH model of Zakoian (1994). However, 

the log-volatility in the T-GASV model depends on past absolute returns and the 

leverage is introduced as in the EGARCH model. Rodríguez and Ruiz (2012) show 

that the TGARCH and EGARCH models are very similar. Therefore, we expect that, 

if Et is Gaussian, the GAS2V-N and T-GASV models have very similar properties. 

The analytical expressions of E( :¡exp(bf(t:t)))  and E(lt:tlcexp(bf(t:t)))  are given in 

Appendix A.l. Using these expressions we can verify that when I<PI < 1and k+ W'l < 
 

1/2, the model is stationary, Yt and IYtl have finite moments of order e and the acf of 

IYtlc and ccf between Yt and iYt+hic are finite when ck + lck*l < l. 
 

We first explore the kurtosis of the GAS2V-N model.  It is the kurtosis of the 

ARSV(1) model proposed by Harvey et al. (1994), k exp c:¡2 ), multiplying the 
factOr R = nn::,l,E(24>'-lf(uH)) . A an "ll trat"IOn, p·1gure 2 plOt R as a funct"IOn Of 

E2(1jJi-1f(ut-i)) S 
1 

1 US S 

the leverage parameters a and k* when  k = O and 0.1 for three different persistence 
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parameters, namely, 4> = 0.5, 0.9 and 0.98. For these particular parameter values, 

we can observe that the ratio is always larger than l. Therefore, the GAS2V-N 

model generates returns with larger kurtosis than the corresponding basic ARSV(1). 

Furthermore, the kurtosis increases with a, k* and k. The increment is more prominent 

when 4> is larger. 
 

In order to illustrate how the autocorrelations and the cross-correlations depend 

on the parameters, we have considered a particular GAS2V-N model with parameters 

4> = 0.98 and u = 0.05. The leverage parameters o: and k* take values between O 

and 0.2 and O  and 0.1, respectively.  Figure 3 plots the first order autocorrelations 

of squares, p2 (1) (top left panel), the first order autocorrelations of absolute returns, 

p1(1) (top right panel), and the first order cross-correlations between returns and 

future squared returns, p21(1) (bottom left panel) , and future absolute returns, p11(1) 

(bottom right panel) when k= O. These moments are also plotted in Figure 4 when 

k= O. l. We can observe that they have very similar patterns as those of the GASV 

model; see Figure 2 of Mao et al. (2013). First, the first order autocorrelations are 

positive and the surface is rather flat and it is not affected by the leverage effect 

parameters k* and a.  However, the first order autocorrelation  of absolute returns 

is larger than that of the squared returns and increases with the two parameters. 

Finally, the cross-correlations are negative and decrease with the two leverage effect 

parameters, a and k* linearly. By comparing Figure 3 and Figure 4, we can observe 

that larger value of k gives larger first order autocorrelations but negligible difference 

in cross-correlations. 
 

To illustrate the shape of these moments for different lags, Figure 5 plots the 

first twenty orders of these moments for a GAS2V-N model with parameters J.L =O, 

4> = 0.98, a = 0.05, a = 0.07, k* = 0.1 when k = O, while Figure 6 illustrates 

these moments when k = 0.1. The values of the parameters are chosen to be very 
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similar to those obtained when fitting these models to financial data; see section 4. 

The figures show that both the acf and absolute ccf decay exponentially towards 

zero. The absolute values of the moments related with absolute returns are larger 

than those of the squared returns. Therefore, we can conclude that the model is able 

to capture the Taylor Effect, phenomenon characterised by the autocorrelations of 

absolute returns to be larger than those of squares. Moreover, the larger value of k 

allows the model to capture larger autocorrelations of squared and absolute returns, 

therefore, volatility clustering . 
 
 

2.2.2.  GA$2 V-T 
 
 

Alternatively,  if ft  is distributed  as a standardized  Student-t  distribution  with 
"O+l 

 

degrees  of  freedom  v 2, pdf  7/Jo(ft) (1 
liO <po liO<flo 

 

with  <Po   = 
7rJIQ 

 

'then Ut is given by (10). We denote the model specified by equations (1), (2), 
 

(7) and (10) as GAS2V-T. When 14>1 < 1, the model is stationary. Moreover, for sorne 

non-negative integer e, if v0 > e, then the acf of IYtlc is finite. If further, v0 > 2c, 

the ccf between Yt and IYt+rlc for a positive integer T is also finite. The expectations 

needed to obtain the analytical expressions of the moments are derived in Appendix 
 
A.2. 

 
 

Analogously, we illustrate the kurtosis of GAS2V-T by plotting the factor R 

in Figure 2, for the same parameters chosen for the GAS2V-N model and v0 = 
11.8745. Note that va guarantees Et  to have the same kurtosis when it follows a 

GED distribution with degrees of freedom v = 1.5. We can observe that the ratio of 

the GAS2V-T model is smaller than that of the GAS2V-N when cf> = 0.98, while they 

are indistinguishable when cf>  is small. 
 
 

As previously, we illustrate the first order of the acfs and ccfs of GAS2V-T models 

in Figure 3 and Figure 4 when va = 11.8745.  The other parameters are the same 
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as those chosen for the GAS2V-N model. We observe that the GAS2V-N model 

generates larger first order autocorrelations for  both  absolute  and  squared  returns 

than the corresponding GAS2V-T models. Moreover, the absolute values of the cross-

correlations  are also larger for the GAS2V-N model than for the GAS2V-T when k = 

O. However, the absolute cross-correlation  between returns and future squared returns 

are smaller in the case of the GAS2V-N when k= 0.1 and k* approximates 0.1. 
 

We illustrate the first twenty orders of acfs and ccfs in Figure 5 and Figure 6 

for the same parameter values used in the illustrations of the GAS2V-N model while 

considering two different values ofthe degrees offreedom, namely 11.8745 and 19.8387, 

which guarantee the same kurtoses of Et when Et  "' GED with v = 1.5 and v = 
 

1.7,  respectively.  We  observe  that  the  autocorrelations   and  cross-correlations  of 

the absolute values are smaller than those of GAS2V-N models for the considered 

parameter values. Moreover, larger degrees of freedom imply larger autocorrelations 

and larger cross-correlation of absolute values. Therefore, we may conclude that fatter 

tails of Et imply smaller autocorrelations of both absolute and squared returns, which 

coincides with the conclusion of Carnero et al. {2004). 

 
 
2.2.3.  GA V-GED 

 

Finally, we assume that Et follows a GED(v) distribution with probability density 

function (pdf) 'lj;(Et) =  HI  1         exp (- 1       lv) with r.p = .j2-2/vf(1/v)/f(3/v). 
2 "¡pr(l+l/v) IP 

Then ut is given by  (11) where 9t = 1          lv follows a Gamma  (2, 1/v) distribution; see 
 
Harvey (2013).  The model  defined  by equations  (1),  (2),  (7) and  (11) are denoted 

as GAS2V-G. It is strictly stationary if 1q,1 < 1 and if further k+ lk*l < ;e, Yt and 

IYtl have finite and time-invariant  moments of non-negative  integer order c.  Under 
 

these conditions, the acfs and ccfs are also finite. The analytical expressions of the 

two expectations are given in Appendix  A.3. 
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In Figure 2, we also plot the ratio ofthe kurtoses between GAS2V-G and ARSV(l) 

for the same parameter values specified for the GAS2V-N model while v = 1.5. 

Though this GAS2V-G always generates returns with higher kurtosis than the ARSV(l) 

model, its kurtosis is smaller than that of the corresponding GAS2V-N with similar 

parameter values. As the Gaussian distribution is a special case of the GED distribution 

with v = 2, we might conclude that a fatter tailed GED generates less kurtosis . 

Moreover, the ratio of GAS2V-G is indistinguishable from that of the GAS2V-T 

model when the return errors are assumed to have the same kurtosis in both models . 

Apparently, the kurtosis of the return generated by the GAS2V model depends on 

the kurtosis of the errors and barely on the type of distribution . 
 

We also analyse the first order acfs and ccfs of the returns generated by the 

GAS2V-G model when v = 1.5 in Figure 3 and Figure 4. We find that when the 

kurtoses of return errors are the same as in GAS2V-T, these moments related with 

squared returns are indistinguishable for both models.  The first order autocorrelation 

of absolute returns and first order cross-correlation between returns and future absolute 

returns of GAS2V-T models are larger than those of the GAS2V-G model. 

Figure 5 and Figure 6 illustrate the first twenty orders of these moments for 

two different GAS2V-G models with two different values of the GED parameter, 

v = 1.5 and 1.7. As expected, the acfs of IYtl and Yt have both an exponential decay. 

Furthermore,  fatter tails of Et  imply smaller autocorrelations,  but  it has very mild 
 

influence on the cross-correlations. It verifies again that the acf of squared returns 

and ccf between returns and future squared return are indistinguishable to those of 

GAS2V-T model with ft having the identical kurtosis. 
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3. MCMC estimation 
 
 

3.1. Model estimation and  comparison method 
 
 

Due to the lack of observability of the volatilities, it is not possible to obtain 

an analytical expression of the likelihood function of SV models, which complicates 

the estimation of the parameters and underlying volatilities; see Broto and Ruiz 

(2004) for a survey on alternative procedures to estímate SV models. Fortunately, the 

user-friendly and freely available software BUGS provides a MCMC estimator which 

uses the Gibbs Sampling algorithm. There are two main versions of BUGS, namely 

WinBUGS and  OpenBUGS. WinBUGS is an established and stable, stand-alone 

version, which is not further developed; see Meyer and Yu (2000) for a description of 

WinBUGS and Yu (2012) and Wang et al. (2013) for its application. In this paper, 

we adopt OpenBUGS that is still being developed and refer to Mao et al. (2013) for 

the detailed algorithms. 
 

To compare two competitive models, saying M0 and M1, we consider the  Bayes 

Factor (BF). The BF, which is defined  as the ratio of the marginallikelihood  values 

of two competing models, :   , where p(yiMk) is the marginallikelihood of model k 

with k = O, l. If the prior  odds ratio is 1by Bayes' theorem, the posterior  odds ratio 

takes the same value as the BF. Jeffreys (1961) gave a scale for the interpretation 

of BFs. If ln(BF) is less (bigger) than O, there is evidence in favor of (against) M0 . 

Moreover, if ln(BF) E (0, 1), the evidence against M0 is barely worth mention; if 

ln(BF) E (1, 3), the evidence against M0 is positive; if ln(BF) E (1, 3) (Or (3, oo)), 

the evidence against M 0 is strong (or very strong). 
 
 

3.2. Sampling performance 
 
 

To check the reliability of this MCMC estimator ,  we simulate data from the 

three GAS2V models , GAS2V-N, GAS2V-T and GAS2V-G, with parameter values 
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{JL, e/>, u ,a, k*, v, v0}= {0,0.98, 0.05, 0.07, 0.08, 1.5, 11.8745}while imposing the restriction 
 
k = O. Recall that, in the previous section, we show that the GAS2V-G and GAS2V-T 

model generate returns with very similar properties when the parameters of both 

distributions are chosen to have the same kurtoses. Hence, there could be potential 

identification problem. Therefore, we  consider  the restricted  GAS2V  models  in the 

rest ofthe paper. For each model, T = 1000 observations are simulated. The posterior 

mean and standard deviation of  each parameter  in the  model  is obtained  by  fitting 

the model to these simulated data using the MCMC estimator. The total number of 

iterations is 30,000 with the first 10,000 iterations used as burn-in. We replicate the 

experiment  for r = 200 times. 
 

Table 1 reports the Monte Cario average of these posterior means and standard 

deviations together with the standard deviation of these posterior means based on 

these r replicates for each model. We find that the MCMC estimator is quite reliable 

for all parameters in all cases. 

 
 
4. Empirical  application 

 
 
4.1. Estimation results from daily data 

 
 

In this subsection, we fit the restricted GAS2V models to one daily mean-adjusted 

return series, namely S&P500, observed from September 1, 1998 till July 25, 2014 

with T = 4000 observations. The same data is analysed in Mao et al. (2013) and 

fitted to models of the GASV family. 

 
Table 2 reports the posterior mean, the 95% credible interval for each parameter 

and the marginallog-likelihood. From the table, several conclusions can be drawn. 

First, all the parameter  estimates  are different  from zero.  The credible intervals 

of the degrees of freedom in both GAS2V-T and GAS2V-G model exclude the case 

of the Normal distribution, which implies that the return error follows a fat-tailed 
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distribution. Regarding the goodness of fit of the models, we observe, analysing the 

log-likelihood values, that GAS2V-N model is outperformed by the other two models 

and that the GAS2V-T model fits the data better than the GAS2V-G model. However, 

the preference is negligible. 

 
 
4.2. Estimation  results from  weekly data 

 
 

In this subsection, we fit the restricted GAS2V models to the series of mean-adjusted 

S&P500 and NIKKEI225 weekly returns observed from January 13, 1992 to December 

27, 2010. The number of observations are T1 = 990 and T2  = 986, respectively. 

Although the sample size is relatively small, according to our Monte Cario experiments, 

we can obtain reliable estimation results. For completeness, we also fit two GASV 

models, namely, T-GASV-G and T-GASV-N, to these two series. Sorne relevant 

sample statistics are reported in Table 3. We observe that the sample autocorrelations 

of the squared returns are significantly positive and the cross-correlations between 

returns and future squared returns are significantly negative, confirming the volatility 

clustering and leverage effect. 

 

Estimation results are reported in Table 4. According to the log-likelihood, the 

GAS2V-G model fits the S&P500 returns the best while T-GASV-G provides the best 

fit to both S&P500 and NIKKEI225 series ofreturns. However, the advantage ofthis 

model compared to the others is barley worth mention. 

 
 
4.3. Forecasting results from weekly data 

 
 

A model good in-sample performance does not necessary imply a model good 

out-of-sample performance. In this section, we compare the out-of-sample performance 

of the proposed models using the two weekly return series described above. The three 

GAS2V models and two GASV models are fitted to the return data and used to obtain 

one-period-ahead out-of-the-sample forecasts of weekly volatility. We split the weekly 
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sample into an in-sample estimation period and an out-of-sample forecast evaluation 

period. For estimation we use the rolling window scheme, where the size of the sample, 

which is used to estímate the competing models, is fixed at Ti with i= 1and 2. The 

first forecast is made for the first week of January, 2011. When a new observation is 

added to the sample, we discard the first observation and re-estímate all the models. 

The re-estimated models are then used to forecast volatility. This process is repeated 

until we reach the end of the sample, December  30, 2013.  In total, we obtain 157 

forecasts from each model. 
 
 

Two alternative criteria are considered in this paper to compare the out-of-sample 

performances of these models, namely Mean Absolute Error (MAE) of the volatility 

forecasts and the Log Predictive Score (LPS), which is computed using the MCMC 

output. In Table 5, we report the MAE of the volatility forecasts. First, we calculated 

the weekly realized volatility (RV) obtained from the sum of daily squared returns. 

Let RVt denote the weekly RV and p(t, k) denote the k-th daily log-price in week 

t. Then RVt is defined as - :::1(p(t,k)- p(t, k- 1))2, where Nt is the number 

of trading days in week t and p(t, O) = p(t- 1,Nt_ 1).   We match each volatility 
 

forecast with the corresponding realized volatility. Table 5 summarizes the MAE of 

the volatility forecasts. We can see that all the models perform nearly equally in 

forecasting the volatility of the S&P500 and NIKKEI225 returns. 
 

On the other hand, LPS is a scoring rule introduced by Good (1952) that examines 

the model's performance when its implied predictive distribution is compared with 

observations not used in the inference sample. In this sense, it evaluates the out-of-sample 

behaviour of different models by mean of their divergence between the actual sampling 

density and the predictive density. The formula for the LPS is given as follows 

 
1 K 

LPS = K log(f(YT+kiYk, ··· , YT+k-1)), 
k=l 

 
 

(13) 
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where K is the total number of forecasts we've obtained. The one-step-ahead LPS 

are reported in the lower panel of Table 5. Again, it seems that these different models 

provide very similar forecasts. 

 
 
5. Conclusion 

 

 
 

In this paper, we propose a new score driven stochastic volatility model, named 

GAS2V, in the spirit of the proposal of Creal et al. (2013) and Harvey (2013). 

Particularly, three different GAS2V are considered, depending on the return error 

distribution, named  GAS2V-N  if the error distribution is Normal,  GAS2V-T if it 

is Student-t  and  GAS2V-G  if the return error  follows  a GED  distribution.   The 

closed-form expressions of the marginal variance, kurtosis, autocorrelations of power-transformed 

absolute returns and cross-correlations between returns and future power-transformed 

absolute returns are obtained for these models.  The GAS2V models are included in 
 
the GASV family and therefore are flexible to represent the empirical features of the 

data. Moreover, the GAS2V-T and GAS2V-G can represent very similar properties 

when the kurtosis of the return error is fixed. Therefore, there can be problem of 

identification of the parameters. Through Monte Carlo studies, we show that the 

MCMC estimator implemented by BUGS is able to estímate the parameters of sorne 

restricted GAS2V models  adequately.  These restricted  GAS2V models are fitted 

to both daily and weekly financia! data and we observe that the GAS2V-T model 

provides the best fit in-sample for the daily S&P500 return series. Regarding the 

out-of-sample performance of the models in forecasting the volatility of the weekly 

financia! returns of the S&P500 and NIKKEI225, all models provide similar mean 

absolute forecast errors when the volatility forecasts are compared with a consistent 

measure of volatility, the realized volatility. The same conclusion is obtained when we 

consider the alternative Log Predictive Score criterion. We leave for future research 
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the comparison of the GAS2V models with the robust GARCH models such as the 

Beta-t-EGARCH and Gamma-GED-GASV models of Harvey (2013). Moreover, the 

analysis of the robustness of our GAS2V models in front of outliers is in our research 

agenda. 
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Figure 1: SNIS ofGAS2V-N (top panel) with parameters (a,cf;, k*, k, u )= (0.07, 0.98, 0.08, 0.1, 0.05) 
and exp((1- cfJ)J.L)u;< > = 1, GAS2V-T (middle panel) with v0 = 6 and GAS2V-G (bottom panel) 
with v = 1.5 
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Figure 2: Ratio between the kurtoses of the GAS2V model and the symmetric ARSV(l) model with 
Gaussian (N), GED (G) and Student-t (T) errors when k = O (left column) and 0.1 (right column) 
for three different values ofthe persistence parameter, </J = 0.5 (first row), rjJ = 0.9 (middle row) and 
rP = 0.98 (bottom row). 
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Figure 3: First order autocorrelations of squares (top left), first order autocorrelations of absolute 
returns (top right) , first order cross-correlations between returns and future squared returns (bottom 
left)  and first  order  cross-correlations  between  returns  and future absolute returns  (bottom  right) 
of different GAS2V models when 1.1.  = O, rP  = 0.98, a = 0.05, v = 1.5, v0  = 11.8745 and k = O. 
The surface N represents the moments of the GAS2V-N model, T represents the moments of the 
GAS2V-T model and G represents the moments  of the GAS2V-G model. 
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Figure 4: First order autocorrelations of squares (top left), first order autocorrelations of absolute 
returns (top right) , first order cross-correlations between returns and future squared returns (bottom 
left)  and first  order  cross-correlations  between  returns  and future absolute returns  (bottom  right) 
of different GAS2V models when Ji. = O,  rjJ = 0.98, a = 0.05, v = 1.5, Vo = 11.8745 and k = 0.1. 
The surface N represents the moments of the GAS2V-N model, T represents the moments of the 
GAS2V-T model and G represents the moments of the GAS2V-G model. 
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Figure 5: Autocorrelations of squares (first column), autocorrelations of  absolute  returns  (second 
column), cross-correlations between returns  and future squared returns (third column) and cross-
correlations between returns and future absolute returns  (fourth  column)  for  different specifications of  
GAS2V models  when  4J  = 0.98,  u = 0.05,  a= 0.07,  k*  = 0.08 amd  k= O.   The 
solid line corresponds to the moments ofthe GAS2V-T model with v0 = 11.8745 while v0 = 19.8387 
for dashed lines. The dotted and dashdot lines corresponds to the moments of the GAS2V-G model 
when v = 1.5 and 1.7, respectively. Finally, the '+-' line represents the moments of the GAS2V-N 
model. 
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Figure 6: Autocorrelations of squares (first column), autocorrelations of absolute returns (second 
column), cross-correlations between returns and future squared returns (third column) and cross-
correlations  between  returns  and  future  absolute  returns  (fourth  column)  for  different 
specifications of GAS2V models when rjJ = 0.98, a = 0.05, a = 0.07, k* = 0.08 and k = 0.1. The 
solid line corresponds to the moments ofthe GAS2V-T model with v0 = 11.8745 while v0 = 19.8387 
for dashed lines. The dotted and dashdot lines corresponds to the moments of the GAS2V-G model 
when v = 1.5 and 1.7, respectively. Finally, the '+-' line represents the moments of the GAS2V-N 
model. 

 
 
 

1-' k* 0"2 V 

GAS2V-N       
 
True o 0.98 0.07 0.08 0.06  
Mean 0.131 0.976 0.067 0.083 0.054  

 (1.259) (0.010) (0.056) (0.021) (0.018)  
s.d. 1.548 0.007 0.060 0.020 0.014  
GAS2V-T       

 
True o 0.98 0.07 0.08 0.05 11.8745 
Mean 0.108 0.974 0.076 0.084 0.059 10.602 

 (1.274) (0.010) (0.056) (0.026) (0.027) (2.007) 

s.d. 

GAS2V-G 
1.362 0.008 0.058 0.022 0.016 2.845 

True o 0.98 0.07 0.08 0.05 1.5 
Mean 0.257 0.973 0.071 0.081 0.055 1.522 

 (1.438) (0.011) (0.073) (0.029) (0.025) (0.147) 

s.d. 1.529 0.008 0.067 0.024 0.016 0.104 
 

Table 1: Monte Cario results of the MCMC estimator of the parameters of the GAS2V model. The 
value reported are the Monte Carla average and standard deviation (in parenthesis) of the posterior 
means together with the Monte Carla average of the posterior  standard deviation . 
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GAS2V-N GAS2V-T GAS2V-G 
-2.401 -1.435 -1.892 

(-3.530, -0.215) (-1.782, -0.669) (-2.518, -0.169) 

0.978 0.980 0.982 
(0.966,0.989) (0.968, 0.989) (0.973, 0.992) 

0.104 0.080 0.067 
(0.003, 0.145) (0.048, 0.108) (0.050, 0.093) 

0.056 0.087 0.073 
(0.041, 0.071) (0.069, 0.104) (0.060, 0.080) 

0.020 0.011 0.008 
(0.009, 0.030) (0.007, 0.021) (0.001, 0.002) 

 3.929 1.395 

 (2.733, 3.176) (1.267, 1.422) 

 

 
 
 
 
 
 
 
 
 
 
 
 

1' 

 
"' 
" 
k' 

 
.-' 
" 

V 
 

   Log-Lik.elihood -6.070 -5.853 -5.900   
 

Table 2: Estimation results from daily S&P500. The values reported are the mean and 95% credible 
interval  (parenthesis)  of the posterior  distributions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Median     Maximum     Mínimum Std.  Dev. Sk.ewness     Kurtosis P2(1) P1(1) P21 (1) Pn (1)   
S&P500 0.125 11.245 -20.195  2.404 -0.813"' 10.354... 0.297* 0.332* -0.254* -0.229* 

    NIKKEI225 0.136 11.529 -27.805 3.113 -0.741* 9.945"' 0.120"' 0.171"' -0.125"' -0.139"'   
"' Significant  at 1% level. 

Table 3: Sample moments of mean adjnsted weekly S&P500 and NIKKEI225 retnrns observed from 
Jan 13, 1992 to Dec 27, 2010. 
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Data Model Log MargLik 1" 

S&P500 GAS2V-N -1.579 -2.534 

 
4> 

0.964 
(-3.914, -1.171) 

u' 
0.030 

(0.947, 0.982) 

 GAS2V-T -1.629 -2.032 0.971 0.018 

   (-3.651, -1.097) {0.9542, 0.9839) (0.004856, 0.02706) 

 GAS2V-G -1.577 -2.419 0.966 0.029 

   (-5.262, -0.492) (0.937' 0.982) (0.015, 0.054) 

 T-GASV-N -1.579 -1.548 0.962 0.032 

   (-3.576, 0.09023) (0.9436, 0.974) (0.01539, 0.05349) 

 T-GASV-G -1.527 -1.394 0.957 0.040 

   (-4.066, 0.516) {0.9283, 0.9788) {0.01514, 0.07397) 

NIKKEI225 GAS2V-N -7.975 1.288 0.882 0.060 

   (0.599, 1.873) (0.832, 0.932) (0.029, 0.105) 

 GAS2V-T -7.559 1.505 0.917 0.033 

   (0.821, 2.125) (0.848, 0.957) (0.015, 0.065) 

 GAS2V-G -7.966 1.348 0.877 0.064 

   (0.793, 2.017) (0.797' 0.929) (0.031, 0.119) 

 T-GASV-N -7.523 1.800 0.893 0.059 

   (0.700, 2.630) (0.833, 0.932) (0.033, 0.100) 

 T-GASV-G -7.208 1.897 0.873 0.074 

   (1.068, 2.666) (0.801, 0.924) (0.039, 0.126) 

 

"y¡Jk• 
 

V 

0.012  
(0.204, 0.380) (-0.015, 0.037) 

0.022 15.490 
(-0.005294, 0.04658) (9.894, 20.05) 

0.014 2.010 
(-0.017, 0.051) {1.802, 2.215) 

-0.047  
(-0.1132, 0.007123)  

-0.058 2.257 
(-0.1335, 0.02006) {1.969, 2.526) 

0.057  
(0.006, 0.107)  

0.074 13.050 
(0.029, 0.112) (8.252, 21.04) 

0.064 2.002 
(0.025, 0.114) (1.824,2.252) 

-0.150  
(-0.276, -0.041)  

-0.158 2.164 
(-0.273, -0.055) (1.964, 2.518) 

 

"' 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

"00

" 

 
0.281 

(0.013, 0.047) 

0.205 
{0.1375, 0.3335) 

0.245 
(0.106, 0.339) 

0.230 
(0.09363, 0.3669) 

0.221 
{0.07043, 0.353) 

0.164 
(0.024, 0.306) 

0.090 
(-0.024, 0.222) 

0.152 
(0.016, 0.276) 

0.041 
(-0.175, 0.258) 

0.030 
(-0.170, 0.229) 

 

Table 4: MOMO estimates of paxameters of GAS2V and GASV models fitted to weekly S&P500 and NIKKEI225. The values reported axe the mean 
and, in paxenthesis, 95% credible intervals of the posterior distributions. 
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MAE*lOOO  
 GAS2V-N GAS2V-T GAS2V-G T-GASV-N T-GASV-G 

S&P500 6.220 6.378 6.248 6.206 6.220 
NIKKEI 225 9.171 9.536 9.157 9.235 8.992 
LPS      

S&P500 -2.047 -2.047 -2.064 -2.049 -2.062 
   NIKKEI 225 -2.572 -2.524 -2.764 -2.579 -2.672   

 
Table 5:  Forecasting  results from weekly data.  MAE refers to the mean absolute forecasting error 
and LPS refers to the log-predictive likelihood. 

 
 
 
 

Appendix  A. Closed-form  of E(e exp(bf(e,)))  and  E(letlcexp(bf(e,))} 
 
 

Appendix    A.1.   Et    Normal 
 

 
Proposition l. Let e be a non-negative integer and b E lR and Et and f( Et) are defined 
as in GAf!l V-N model.  If bk + lbk*l < !, then 

 
exp -bk e+ 1 1 -<±2 1 1 -<2±1] 

E(IEtl 0 exp(bj(Et))) = )r (--) exp(ba) ( 
2 

-b(k+k*)) + ( -b(k- k*)) 

 
 

and 
2 2 2 

(A.1) 
 

E (E exp(bj(Et))) = ex: k)r (e; 
1

 [e-1)0 exp(ba) G- b(k + k*)r•!' + G- b(k- k*)r·!'l 

(A.2) 
 

 

Proof. 
 

 
 

= 1:(  
 
 
 
 
 

)c exp(ba + bkE - bk + bk*E ) exp (- ) dEt 

E(IEtlc exp(bf( Et))) 
-Et 

+ lXJ (E,)0 exp(bkE - bk- bk*E ) exp (- )dE, (A.3) 

Integrating by substitution with s, = -E, in the finite integral, we obtain 
 

E(IEtlc exp(bf( Et))) 
exp(b(a- k))  roo 1 exp(-bk)  roo 1 
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= ,j2ir lo (s,)0 exp((b(k +k*)- 2)s )ds, + ,j2ir lo (Et)0 exp((b(k- k*)- 2)E )dE,. 
(A.4) 
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) 

 
 

According to the formula 3.326-2 of Ryzhik et al. (2007), when e 2:: O and bk + lbk*l < 
' the former equation reduces to 

 
 

e (bf(  )))    exp(b(a- k)) r ( ) exp( -bk) r ( ) E ( 1 Et l exp ft to= c+l  + to= c+l 

v27r 2 G- b(k +k•))2- v27r 2 ( - b(k- k•))2- 

= ·x; k)r e1 [•xp(ba) G_ b(k+k')r"' + G- b(k- k')r"']· 
(A.5) 

 

Following the same steps, we can obtain the analytical expression of E (€fexp(bj(Et))) 
as follows: 

 

 
 

 
D 
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Appendix  A.2.  t "'t11 

 
Proposition 2. Let e be a nonnegative integer and bE R and <:t  and J( t) defined as 
in GASJ V-T model, then when v >e 

 
 

E(l le exp(bf(  ))) = (v- 2)e/ exp(-bk) B( , T) (! ) 
2 B 2' 2 

.{ X (ba:)  [ (rri-l C + 1+ 2j) (b(v + 1)(k + k*))il 
e p + L.,., v + 1+ 2 · '! 

i=l j=l J '¿ 

 
+  [1+E e+ 1+ 2j.)  (b(v + 1)_(k- k"'))íl} 

i=l j=l v + 1+ 2J z! 
(A.7) 

 

and 
 

E( e (bf( ))) = (v- 2YI 

 
 
 
exp(-bk) B( , T) 

ft exp ft  2 (! ) B 2' 2 

. {(-1)eexp(ba) [1+E (fi + + j·) (b(v + 1). k + k"'))il 
i=l j=l + + J '¿ 

+ [1+E (fi e+ 1+ 2j.)  (b(v + l)_(k- k"'))il}. 
i=l j=l l/ + 1+ 2J t! 

(A.8) 
 

Proof. The probability density function of ft is '1/Jo(t:t) = J:&.l   )(1+ 2)-"t 1 where 
¡¡.>o     11'11          2 11¡¡.>0 

'Po - y----¡;--, 
(2013). 

then Ut - (v + 1)bt - 1 and Ju..t  - HEU/((lIl¡I¡¡>.>) )  "' Beta(1 11 ) , see Harvey 
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+ + 

 
 

E(IEtle exp(bj(E,))) = I:( -E,)eexp (b(a- k)) exp (b(v + 1)(k + k*)b,) 1/>o(E,)dE, 

+ ¡+oo E exp( -bk) exp (b(v + 1)(k- k*)b,) 1/>o(Et)dEt 
 

= exp(b(a- k))¡: E exp (b(v + 1)(k + k*)b,) 1/>o(Et)dEt 
 

+ exp(-bk) la"" E exp (b(v + 1)(k- k*)b,) 1/>o(Et)dEt 
 

= exp(b(a- k)) E(IEtleexp(b(v+ 1)(k+k*)b,)) 
2 

+ exp( bk)) E (IEtleexp (b(v + 1)(k- k*)b,)), (A.9) 
 
 

We proceed to work out the expectation E(IEtle exp(mb,)) with respect toE,.  Note that 
E(IEtle exp(mb,)) = cp0E(vef 2b / 2 /(1-b,)"/ 2 exp(mb,)) with respect to b, BetaG,   ). 
It follows that 

 
 

E(IEtle exp(m)b,) 
 

= 'Pe ¡1vef2be/2/(1 - b )e/2 exp(mb ) bf-\1- b,) -1db 
o o t t t B(l  ") t 

- e  e/2B( , "?') 11 ( 2' 2 
 

)b;'- (1- b,)'T-1db 
l+c  1 

' 
- 'PoV B(l ") exp m., B( He "----") t 

2'2 o 2'2 
B(He  v-e) 

= <pevef 2 2   '  2 E(exp(mb )) (A.lO) 
o B(l ") t 

2' 2 
 

with the expectation taken with respect toa Betae!e, v e) when v > e, which is the 
moment generating function of b, Betae!e, v e). It yields that 

B t (He  v-e) { oo   (k-1 1 2  ) k } 

E(IEtle exp (mb,) = 'Pove/2 e a ,-:; 1+ L TI e+ +  r m, .  (A.ll) 
Beta(-2 ,-2 ) v 1 2r k. 

k=l r=O 
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1 

 
 

Combing equation (A.9) and (A.ll ) gives the expression. On the other hand, 
 
 

E(E exp(bj(Et))) = ¡:Efexp (b(a- k)) exp (b(v + 1)(k + k*)bt) 1/lo(Et)dEt 

+ 1+oo Ef exp(-bk) exp (b(v + l)(k- k*)bt) 1/lo(Et)dEt 
 

= (-1r exp(b(a- k))¡: Ef exp (b(v + 1)(k + k*)bt) 1/Jo(Et)dEt 
 

00 + exp(-bk) 
Ef exp (b(v + l)(k- k*)bt) 1/lo(Et)dEt 

 
= (-l)cexp(b(a- k)) E (lftlcexp (b(v + l)(k + k*)bt)) 

2 

+ exp( -bk)) E(IEticexp(b(v+1)(k-k*)bt)) (A.12) 
2 

 
The proof is completed. D 

 
 
Appendix  A.9. ft"' GED(v) 

 
Proposition 3. Let e be a nonnegative integer and b E lR. ft and f( Et) defined as in 
GASJ V-G model. Then, when bk + lbk*i < 1/v, 

 

2  1 
E(lftlcexp(bf(Et))) = exp(b(a- k)) (r(1/v)t/ - ;( ) (1- vb(k +k*))- , 

2 (r( )r1 
 

+ exp(-bk) (r(1/v)t/2-1 r( ) (1- vb(k- k*))- ' (A.13) 
2 (r( )r/2 

 

and 
 

 
E( fe e (bj(E ))) = (-1Yexp(b(a- k)) (r(l/v)t/2-1 r( ) (1- vb(k +k*))- 

t  xp t 2 (r(!))c/2 
 

+ exp(-bk) (r(l/v)t/2-1 r( ) (1- vb(k- k*))_ctl. (A.14) 
2 (r(!)t/2 
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¡:( 
1 

9t  exp + 9t + 9t  exp 9t 

) 

 
 

Proof. 
 
 
E(IEtlc exp(bj(Et))) 

= -Et)cexp(ba +bkUt + bk*'(ut + 1))'1/l(Et)dEt + 1+oo E exp(bkut- bk*'(ut + 1))'1/l(Et)dEt 
+oo l/ 1+oo v 

 

= exp(b(a- k)) 
0 

E exp(b(k + k*)'igt)'I/J(Et)dEt + exp(-bk) 
0 

E exp(b(k- k*')'igt)'I/J(Et)dEt 
exp(b(a- k)) e l/    

2 
= cpcexp(b(a- k)) E( (b(k         

= exp(b( - k)) E(IEtlc exp(b(k + k*') gt)) + exp -bk) E(IEtlc exp(b(k- k*') gt)) 
= E(cpcg[ exp(b(k + k*)'igt)) + 

2 E(cpcg[ exp(b(k- k*)'igt)) 
2 2 2 2 

 
 
 
According to the Appendix B.2 of Harvey (2013), when E(exp(b(k + k*Hgt)) < oo 
and E(exp(b(k- k*) gt)) < oo, the previous equation can be written 

 
 
cpcexp(b(a- k)) 2 r( ) E ( (vb(k+ k*)_)) cpcexp(-bk) 2 r( ) E ( (vb(k-k*)_)) 

2 r( ) exp 2 9t + 2 r( ) exp 2 9t ' 
 

 
 
 

where Yt "'Gamma(2, c1 
. When bk + lbk*'l < ' both E(exp(b(k + k*Hgt)) and 

E(exp(b(k- k") gt)) are finite and given by the generating moments function of the 
Gamma distribution, then 

 

 
 
 

The expression for E(IEtlcexp(bj(Et))) can be obtained following the similar steps. 
D 
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