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RESUMEN

El objetivo principal de esta disertación es el estudio de la teorı́a de las álge-

bras de Lie–Jordan Banach y su papel en el marco de la mecánica clásica y cuánti-

ca y sus aplicaciones en diferentes ámbitos de las matemáticas.

La investigación algebraica de los fundamentos de la fı́sica surgió de la búsqueda

de una formulación “excepcional” para la mecánica cuántica, que finalmente cul-

minó en la formulación de las álgebras de Jordan y las posteriores C∗–álgebras.

Ası́ el programa para descubrir un nuevo escenario algebraico para la mecánica

cuántica propuesto por Jordan, identifica el producto simétrico

a ◦ b ≡ 1

2
(ab+ ba), (0.0.1)

como la operación observable fundamental. Las propiedades fundamentales de

este producto, además de su obvia conmutatividad, es la noción de asociatividad

generalizada dada por:

a2 ◦ (b ◦ a) = (a2 ◦ b) ◦ a. (0.0.2)

Un álgebra conmutativa real que satisface esta propiedad se llama un álgebra de

Jordan. El propio Jordan, von Neumann y Wigner mostraron que, salvo para un

álgebra de dimension 27, todas las álgebras de Jordan se derivan de un producto

asociativo. Esto condujo a Segal al estudio de los fundamentos de la mecánica

cuántica en términos de C∗–álgebras, que han tenido tenido una profunda influen-

cia tanto en el desarrollo como en las aplicaciones de la fı́sica cuántica y de la

teorı́a cuántica de campo.
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Uno de los resultados de esta tesis es una nueva demostración del teorema que

caracteriza a las álgebras de Jordan (Banach) que están en correspondencia con

C∗–álgebras. La solución viene dada por la introducción de una estructura de Lie

[·, ·] en el álgebra, que es compatible con la de de Jordan, en el sentido de que se

verifica la identidad Leibniz:

[a, b ◦ c] = [a, b] ◦ c+ b ◦ [a, c] , (0.0.3)

y el asociador del producto de Jordan está relacionado con la paréntesis de Lie a

través de la ecuación

(a ◦ b) ◦ c− a ◦ (b ◦ c) = κ [b, [c, a]] , (0.0.4)

donde κ es un número real positivo. Esto nos conduce al estudio de las álgebras

de Lie–Jordan Banach.

Este formalismo resulta ser adecuado para describir al mismo tiempo la mecáni-

ca clásica y cuántica. Ademas podremos analizar los conceptos de ligaduras y

simetrı́as de sistemas clásicos y cuánticos desde esta perspectiva. El enfoque alge-

braico a la mecánica cuántica y la teorı́a cuántica de campos convierte el problema

de la reducción del sistema cuántico por simetrás o ligaduras en el problema de

reducción de la C∗–álgebra del sistema. Este programa ha sido desarrollado con

éxito para algunas teorı́as de gauge, en cuyo caso el correspondiente mecanismo

de reducción se denomina T–reduction. En esta tesis hemos abordado este pro-

blema fundamental de la reducción de los sistemas clásicos y cuánticos usando la

teorı́a de las algebras de Lie–Jordan Banach. Se obtiene en este contexto un pro-

cedimiento que consiste en la identificacion de un ideal del álgebra definida por

las ligaduras del sistema, y se identifica el cociente de su normalizador de Lie por

dicho ideal como el álgebra de Lie–Jordan Banach que determina el sistema fı́sico

correcto. Esta reducción se muestra además que es equivalente a la T–reducción

abstracta.

Un procedimiento alternativo de tratar las simetrı́as y ligaduras de un sistema

es la llamada simetrı́a BRST. Se muestra a continuación en esta tesis como exten-

der las ideas de la simetrı́a BRST al marco de las álgebras de Lie–Jordan Banach.



CONTENTS ix

En analogı́a con los sistemas clásicos, definimos una aplicación momento como

un homomorfismo fuertemente continuo, que envı́a cada elemento del álgebra de

Lie del grupo de simetrı́a en derivaciones “skew–order” del álgebra Lie–Jordan

Banach. Con el fin de obtener el adecuado sistema reducido cuántico en este

marco, hemos de introducir además la noción de álgebras de Lie–Jordan super-

simétricas, que son esencialmente álgebras de Lie–Jordan en un espacio vectorial

graduado. Esta extensión de la noción de Lie–Jordan Banach álgebra permite tra-

tar adecuadamente todos los grados de libertad de la teorı́a que ahora incluyen

los correspondientes campos “(anti-) ghost”. Finalmente se construye un comple-

jo diferencial (K•, D̂) con operador diferencial D̂ determinado por la acción del

grupo de simetrı́a en la correspondiente álgebra de Lie–Jordan Banach. El álgebra

reducida se identifica ası́ con el grupo de cohomologı́a cero del complejo BRST

(K•, D̂).

Una posible aplicación importante de la teorı́a de Lie–Jordan Banach álge-

bras la constituyen los sistemas dinámicos. Los sistemas dinámicos constituyeron

originalmente una formulación matemática de la dinámica, de cómo el sistema

fı́sico evoluciona en el tiempo. Mediante la exploración de las propiedades alge-

braicas de la dinámica se ha reconocido el concepto de sistema dinámico como

un marco común para el estudio de la evolución temporal y grupos de simetrı́a

en la mecánica clásica y cuántica. La evolución temporal de un sistema dinámico

clásico está dado por una acción continua de R (visto como un grupo) en el es-

pacio de estados. Si la acción está dada por un grupo general G, llegamos a una

noción que nos permite estudiar por ejemplo la evolución temporal y las simetrı́as

de forma simultánea. En mecánica cuántica, la acción del grupo viene dada por

una representación unitaria en el espacio de Hilbert H. Simetrı́as de un sistema

mecánico cuántico deben ser biyecciones en el conjunto de los estados S(H). Es-

tas simetrı́as deben preservar una estructura algebraica, identificada por Wigner

con las transiciones de probabilidades. El célebre teorema de Wigner establece

que una biyección que preserva las probabilidades de transición es necesariamen-

te un operador unitario o antiunitario en H. Esto significa que una representación

π de una C∗– álgebra que describa un sistemas cuántico debe satisfacer una pro-

piedad de covariancia del tipo

π(αt(a)) = U∗
t π(a)Ut, (0.0.5)
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es decir que (π,U) es una representación covariante del sistema dinámico (A,R, α).
El estudio sistemático de las representaciones covariantes lo inicia Mackey en su

estudio de la teorı́a de las representaciones inducidas de los grupos localmente

compactos. Takesake extendió el formalismo de Mackey a las álgebras no con-

mutativas donde se introduce la noción de crossed product algebra A ⋉α G y

prueba que hay una relación uno a uno entre las representaciones no degeneradas

de A ⋉α G y las representaciones covariantes de (A, G, α). Posteriormente las

álgebras crossed products han aportado algunos de los ejemplos más importantes

de C∗–álgebras y fueron fundamentales para el desarrollo de la geometrı́a diferen-

cial no conmutativa. Finalmente hemos desarrollado alguno de los fundamentos

necesarios para la extensión de esta teorı́a al contexto de las álgebras de Lie–

Jordan Banach y la correspondiente teorı́a de sistemas din ’amicos en álgebras de

Lie–Jordan Banach.



1
INTRODUCTION

The main objective of this dissertation is the study of the theory of Lie–Jordan

Banach algebras, their role in the framework of classical and quantum mechanics,

and their applications to different branches of Mathematics.

The algebraic research in Physics arose from the search for an “exceptional” set-

ting for quantum mechanics, which eventually culminated in the formulation of

Jordan algebras and the subsequent theory of C∗–algebras.

In the usual interpretation of quantum mechanics (the “Copenhagen interpreta-

tion”), the physical observables are represented by self-adjoint operators on a Hil-

bert space or Hermitian matrices. The basic operations on operators are multiplic-

ation by a complex scalar, addition, multiplication of operators, and forming the

adjoint operator. But these underlying operations are not “observable”: the scalar

multiple of a Hermitian matrix is not again Hermitian unless the scalar is real, the

product is not Hermitian in general unless the factors happen to commute, and the

adjoint is just the identity map on Hermitian matrices.

In 1933 the physicist Pascual Jordan proposed a program to discover a new
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algebraic setting for quantum mechanics [Jor33], which would be free from the

matrix structure but still enjoy all the same algebraic benefits as the Copenhagen

model. He wished to study the intrinsic algebraic properties of Hermitian matrices

and recast them in formal algebraic properties in order to see what other possible

non-matrix systems satisfied these axioms.

Jordan decided that the fundamental observable operation was the symmetric

product

a ◦ b ≡ 1

2
(ab+ ba), (1.0.1)

now called Jordan product [HOS84],[McC04]. The key law governing this product,

besides its obvious commutativity, is

a2 ◦ (b ◦ a) = (a2 ◦ b) ◦ a. (1.0.2)

A real commutative algebra satisfying this property is now called Jordan algebra,

and is called special if it can be realized as the Jordan algebra of an associative

algebra as above (1.0.1), otherwise it is called exceptional.

Jordan’s hopes were that by studying finite-dimensional algebras he could find

families of simple exceptional algebras parameterized by natural numbers, so that

in the infinite limit this would provide a suitable infinite-dimensional exceptional

generalization for quantum mechanics.

In a fundamental paper in 1934 [JvNW34], Jordan, von Neumann and Wigner

showed that there are only five basic types of simple finite-dimensional Jordan

algebras: four types of Hermitian n × n matrix algebras Mn×n(K) where K can

be the field of real numbers, complex numbers, quaternions and octonions (but for

octonions only n ≤ 3 is allowed), and the spin factors. The spin factors turn out

to be realized as a subspace of Hermitian matrices, whereas the 27–dimensional

Jordan algebra of 3×3 matrices with octonion entries M3×3(O) is an exceptional

Jordan algebra, now called Albert algebra.

This result was quite disappointing to physicists since the only exceptional algebra

M3×3(O) was too tiny to provide a generalization for quantum mechanics and the

possible existence of infinite-dimensional exceptional algebras.

In 1979 the mathematician Zelmanov finally showed that even in infinite dimen-

sions there are no simple exceptional Jordan algebras other than the Albert algebra
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[Zel79]: it is an unavoidable fact of mathematical nature that simple algebraic sys-

tems obeying the basic Jordan identity (1.0.2) must (except in dimension 27) be

derived from an associative structure.

However, the Jordan structure allows to recover most of the mathematical

basis for the description of quantum systems, like the concept of compatible ob-

servables and the joint probability distribution for compatible observables [Emc84].

Eventually, the mathematical language becomes easier if one makes the tech-

nical assumption that the algebra L can be embedded in a complex extension

A = L⊕ iL generated by complex linear combinations of elements of L. This led

Segal to the foundations of the so called today C∗–algebras [Seg47], which have

had a profound influence on both the foundations and applications of quantum

physics and quantum field theory [Haa96].

From the above discussion it is clear that special Jordan algebras admit such an

extension. One of the main results of this thesis is the novel proof of a theorem

which characterizes the Jordan (Banach) algebras that are in correspondence with

C∗–algebras. The solution is given by introducing a Lie structure [·, ·] on the

algebra, which is compatible with the Jordan one [FFIM13c], in the sense that

Leibniz identity is verified:

[a, b ◦ c] = [a, b] ◦ c+ b ◦ [a, c] , (1.0.3)

and the associator of the Jordan product is related to the Lie bracket by

(a ◦ b) ◦ c− a ◦ (b ◦ c) = κ [b, [c, a]] , (1.0.4)

κ being a positive real number. This leads us to the study of Lie–Jordan Banach

algebras [Emc84], [Lan98].

The problem of when a given Jordan–Banach algebra is the real part of a C∗–

algebra had already been faced in the past by A. Connes on one side [Con74]

and Alfsen and Shultz on the other [AS98]. The characterization obtained by

Alfsen and Schultz in terms of the existence of a dynamical correspondence on a

Jordan–Banach algebra amounts to state that the relevant structure to discuss the

properties of the state space of a quantum system is exactly that of a Lie–Jordan

Banach algebra. By making explicit this connection with the Lie structure also
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the physical interpretation becomes clear since it reflects the dual role played by

the observables: they are measurable quantities but also the generators of motions

of the state space.

One of the merit of Lie–Jordan algebras is that they provide a neat algebraic

framework common to classical and quantum mechanics. In the Hamiltonian pic-

ture of classical mechanics, one is naturally lead to the Lie algebraic structure

of the Poisson brackets, which provide the equations of motion of the classical

system. This could eventually help us to shed light on the intriguing problem of

the classical limit of quantum mechanics and the quantization procedures. There

have been in fact various ways in the literature of constructing quantum systems

out of classical ones. All of them rely on a certain geometrical structure already

present in the classical system, for example the Weyl quantization, the geomet-

rical quantization and the deformation quantization. Following the previous ideas

we would arrive to various descriptions of quantum systems, mainly of their al-

gebra of observables, but the geometry that we used originally has faded out.

However not all descriptions of quantum systems hide so thoroughly its geomet-

rical structure. Because of a theorem by Kadison [Kad51] it is well-known that

the C∗–algebra of observables of a given quantum system is isomorphic to the

space of affine continuous functions on the convex space of states of the system.

Thus, it would be convenient to identify the geometrical structures on the state

space of a quantum system that will make Kadison correspondence more trans-

parent. Such programme has been successfully developed along the last twenty

years providing a consistent decription of the fundamental geometrical structures

of quantum systems [CL84], [AS99], [CCGM07]. Moreover, a geometrical de-

scription of dynamical systems provides a natural setting to describe symmetries,

and/or constraints. For instance, if the system carries a symplectic or Poisson

structure, several procedures were introduced along the years to cope with them,

like Marsden–Weinstein reduction, symplectic reduction, Poisson reduction, re-

duction of contact structures, etc. However, it was soon realized that the algebraic

approach to reduction provided a convenient setting to deal with the reduction of

classical systems [GLMV94], [IdLM97].

Whenever constraints are imposed on a quantum system or symmetries are
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present, both dynamical or gauge, some reduction on the state space must be con-

sidered either because not all states are physical and/or because families of states

are equivalent. In the standard approach to quantum mechanics, constraints are

imposed on the system by selecting subspaces determined by the quantum oper-

ators corresponding to the constraints of the theory, called Dirac states, and equi-

valence of quantum states was dealt with by using the representation theory of

the corresponding group of symmetries. However many difficulties emerge when

implementing this analysis for arbitrary singular Lagrangian systems or other sin-

gularities arise (like singular level sets of momentum maps for instance).

Taking as a departing point the algebraic approach to quantum mechanics and

quantum field theory the problem of reduction of the quantum system becomes

the problem of reducing the C∗–algebra of the system. Such programme was suc-

cessfully developed for some gauge theories and was called T–reduction [GH85].

Another one of the main objectives of this thesis is to address the fundamental

problem of reducing classical and quantum degenerate systems by using the the-

ory of Lie–Jordan Banach algebras. It is the task of the physicist to extract the

relevant physical (sub)system from such a degenerate one. Reduction means the

procedure aiming to identify this physical algebra. In Chapter 3 we develop the

algebraic framework for reducing systems in classical and quantum mechanics.

This is done by identifying the ideal generated by the constraints and quotienting

its Lie normalizer with respect to it. We also obtain a generalized reduction in

classical mechanics which, apart from technical difficulties, is very promising at

the quantum level since it encompasses the case of quantum anomalies. We then

prove that our reduction procedure is equivalent to the T–reduction developed by

Grundling et al.

One of the main outstanding problems of mathematical physics is to construct

a C∗–algebra which describes a nonlinear field theory (higher than quadratic).

An interesting feature of the reduced system in the classical realm is that it may

turn out to be non-linear even if the starting one was linear. Motivated by this

consideration, the quantum algebraic reduction theory could be also valuable in

understanding how to provide mathematical descriptions of non-linear field theor-

ies.

In the subsequent chapters, we apply the reduction of Lie–Jordan Banach al-
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gebras to different and important fields of mathematics and physics. In Chapter

4 we extend the theory of the BRST symmetry to Lie-Jordan Banach algebras of

observables. The BRST mechanism has been introduced to quantize constrained

dynamical systems without having to explicitly solve for the constraints and hence

lose covariance and locality. It introduces auxiliary degrees of freedom, called

“ghosts” and “antighosts” and replaces the local gauge symmetry by a global su-

persymmetry generated by a single operator Q called the “supercharge”, whose

square vanishes, and transforming the symmetry in a (co-) homology theory.

Then the role of this operation is to select the “true” physical states of the the-

ory. The extension of the BRST symmetry to Lie–Jordan Banach algebras can be

considered as an “intrinsic” quantum approach since we are not using any quant-

ization scheme to do that. This led us to define a strongly Hamiltonian action of

a symmetry group G (with Lie algebra g) on a quantum systems. This is a map

ρ̂ : g → DerL such that the derivations are inner, that is there exists a map (4.5.4)

a : g → L such that

ρ̂(ξ)x = [x, a(ξ)] (1.0.5)

∀x ∈ L and ξ ∈ g. The map a is the quantum co-momentum map. This enables

us to construct the BRST complex (S•, D̂), whose zeroth cohomology group is

the quantum constrained algebra of the system.

Another important application of the ideas developed in this thesis are dy-

namical systems. Dynamical systems constitute a mathematical formulation of

dynamics, of how a physical system changes in time, but replacing the group R
by an arbitrary group G. By exploring the algebraic properties of dynamics it

has been recognized the notion of dynamical system as a common framework for

studying time evolutions and symmetry groups in classical and quantum mech-

anics. The time evolution in a classical dynamical system is given by a continu-

ous action of R (seen as a group) on the state space. If we let the action being

given by a general group G we arrive at a notion which allows us to study time

evolution and symmetry simultaneously. In quantum mechanics the action of the

group is given by a unitary representation on the Hilbert space H. Symmetries

of a quantum mechanical system should be bijections on the set of states S(H).
One would expect these symmetries to preserve the algebraic structure we have

imposed, and Wigner identified the transition probabilities as the key feature for
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that. Wigner’s celebrated theorem states that a bijection which preserves transition

probabilities is a unitary or antiunitary operator on H [Wig31]. In the context of

C∗–algebraic quantum systems, a symmetry group is given by a strongly continu-

ous action α : G → Aut(cA) of G by automorphisms of A. In the Heisenberg

picture the observables evolve according to the rule α : t 7→ U∗
t π(a)Ut. If we

represent the algebra as bounded operators on the Hilbert space, then the repres-

entation π must satisfy

π(αt(a)) = U∗
t π(a)Ut, (1.0.6)

that is (π,U) is a covariant representation of the dynamical system (A,R, α). Co-

variant representations arose first in Mackey’s theory of induced representations

of locally compact groups. Takesaki subsequently extended Mackey’s machinery

to noncommutative algebras and they were further developed by Green, who in-

troduced the crossed product A ⋉α G (which, interestingly, had been introduced

earlier with physics applications in mind [DKR66]). This C∗–algebra is gener-

ated by a covariant representation of (A, G, α) and there is a one-to-one corres-

pondence between representations of A ⋉α G and covariant representations of

(A, G, α) [RW98]. Thereafter crossed products have provided many of the most

important examples of C∗–algebras and became fundamental for the development

of noncommutative differential geometry [Con94]. We finally tried to give the ba-

sic fundamentals for the extension of such a theory to the context of Lie–Jordan

Banach algebras.

Last, there is a remarkable similarity bewtween the theorem relating the reduc-

tion of Lie–Jordan Banach algebras and their counterpart C∗–algebras discussed

in Chapter 3 and the Hitchin-Kobayashi correspondence. This relation will be

considered by using a particular example in Section 5.1.





2
STATES AND OBSERVABLES IN CLASSICAL AND

QUANTUM SYSTEMS: C∗–ALGEBRAS AND

LJB–ALGEBRAS

2.1. The emergence of the algebraic approach

The idea of an algebraic approach to quantum mechanics was already present

in the matrix formulation developed by Heisenberg, Born, Jordan, Dirac and oth-

ers. At this stage von Neumann formulated the quantum theory as an eigenvalue

problem in a Hilbert space [vN96] and analyzed the concept of state from the point

of view of the theory of probability. The reader is assumed to be familiar with the

usual mathematical formulation of quantum mechanics which we will review in

this section in the form of three postulates.

Postulate 2.1.1. To each observable A on a given physical system there corres-

ponds a linear self-adjoint operator π(A) acting on a Hilbert space Hπ and

conversely.
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Notice that the converse part of the postulate is now known to be untenable due

to the existence of superselection rules [SS78]. However we will not be concerned

with this possibility in the following.

If we denote by L the set of all observables on the physical system considered, we

can already observe that the first postulate equips L with the structure of a real

vector space.

Notice also that if A and B are two arbitrary elements of L, π(A)π(B) in general

does not belong to π(L), whereas the combinations π(A)π(B) + π(B)π(A) and

π(A)π(B) − π(B)π(A) do.1

The symmetrized product

a ◦ b = 1

2
(ab+ ba), ∀ a, b ∈ L, (2.1.1)

satisfies a number of interesting properties. It is commutative and bilinear and

its introduction does not require the knowledge of the ordinary product of two

noncompatible observables (i.e., two observables such that the corresponding op-

erators do not commute in the ordinary sense). By defining a2 = a ◦ a, we have

indeed

a ◦ b = 1

2
((a+ b)2 − a2 − b2), (2.1.2)

which involves only operations like (2.1.1). This symmetrized product is not as-

sociative in general, that is

(a ◦ b) ◦ c− a ◦ (b ◦ c) 6= 0 (2.1.3)

for arbitrary a, b, c ∈ L, as can be seen by simple inspection. The product (2.1.1)

is called the Jordan product [Jor33],[JvNW34] and will be further examined in

Section 2.2 where we will give the axiomatic algebraic formulation of quantum

mechanics motivated by the previous considerations.

The state of a physical system is understood intuitively as a way to express the

maximal simultaneous knowledge of the expectation values of all observables on

1In the following we will indicate, for brevity, the operators π(A), π(B), . . . with lower case

letters a, b, . . ., and commit the sin of denoting π(L) with L itself.
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the physical system considered. From the standard theory of quantum mechanics

we know that to each state is associated a density matrix:

Postulate 2.1.2. To each state ψ of the physical system considered corresponds

a positive self-adjoint operator ρ of trace 1, acting on the Hilbert space Hπ of

Postulate 2.1.1, and such that the expectation values ψ(a) of the observable a in

the state ψ, are given by ψ(a) = Tr (ρa).

Let us stress some properties of states that follow immediately from Postulate

2.1.2. For any linear combination of elements ai ∈ L

ψ
(∑

i

ciai

)
= Tr

(
ρ
∑

i

ciai

)
=

∑

i

ciTr (ρai) =
∑

i

ciψ(a), (2.1.4)

i.e. states act linearly on observables.

Finally concerning the dynamics we have the third postulate

Postulate 2.1.3. The dynamical evolution of a closed quantum system described

by a density state ρ is given by von Neumann’s equation

i~
∂ρ

∂t
= [H, ρ], (2.1.5)

where H is the Hamiltonian (observable) operator of the system.

This is Schrödinger’s equation in the space of density states. If we require that

the states do not evolve in time, then we can equivalently describe the dynamics by

letting the observables evolve and obtaining the Heisenberg equation of motion:

d

dt
a(t) =

i

~
[H, a(t)] +

∂a(t)

∂t
. (2.1.6)

Remark. Observe that the above dynamical equations are valid only for closed

quantum systems, i.e. systems which do not interact with any external environ-

ment and do not have dissipative behaviour.
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The commutator

[H, ρ] = Hρ− ρH (2.1.7)

which arises here because of Postulate 2.1.3, endows the physical observables

with the role of generators of the motion on state space and satisfies a number of

remarkable properties. Thus it is immediate to check that it is bilinear, antisym-

metric and satisfies the Jacobi identity:

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0, (2.1.8)

for all a, b, c ∈ L. The antisymmetry of the bracket ensures that time-independent

Hamiltonians are conserved [CS99]. The linearity guarantess that if a(t) and b(t)
are two observables which only have dynamical evolution (i.e. without intrinsic

time dependence), and λ1, λ2 two real constants, the observable c1(t) = λ1a(t)+
λ2b(t) is also free of intrinsic time dependence. The Jacobi identity ensures that

the observable c2(t) = [a(t), b(t)] also evolves dynamically:

dc2
dt

=
[da
dt
, b
]
+

[
a,
db

dt

]
(2.1.9)

= [[a,H], b] + [a, [b,H]] (2.1.10)

= [[a, b],H] = [c2,H]. (2.1.11)

In particular this property also ensures the preservation of the canonical relations

among canonical variables during time evolution.

2.1.1. Topological structure of the algebra of observables

With the wealth of information contained in their paper [JvNW34], Jordan,

von Neumann, and Wigner demonstrated the power of a purely algebraic approach

to quantum theories. However, there is a major weakness in their pioneering work,

namely that they assumed that L has a finite linear basis. This had to be correc-

ted by the introduction of an appropriate topological structure before the claim

could be made that the theory provides a formalism general enough for the need

of quantum problems. The aim would be to imitate the weak topology of operat-

ors acting on Hilbert spaces. Before proceeding to an axiomatic presentation of



2.1. The emergence of the algebraic approach 13

LJB–algebras in Section 2.2 we show how to endow L with a natural topology in

which the concept of state plays a significant role.

If we denote by S(L) the space of states associated to the quantum system,

and define ‖a‖ ≡ sup
φ∈S(L)

|φ(a)|, it follows immediately that for all λ ∈ R, all a

and b in L, ‖λa‖ = |λ|‖a‖, ‖a + b‖ ≤ ‖a‖ + ‖b‖ and that the vanishing of ‖a‖
occurs only when a = 0. Therefore ‖ · ‖ is a norm for L and φ(a) ≤ ‖a‖ for all

a ∈ L, φ ∈ S(L).
As a result of these considerations, L is now equipped with the structure of a real

Banach space relative to the natural norm introduced above, and the states φ in

S are continuous (positive linear) functionals on L with respect to the topology

induced by this norm.

From a phenomenological point of view we might remark at this point that

one actually never deals in the laboratory with any observable a for which φ(a)
is not finite; it is current practice nevertheless to consider in the theory “idealized

observables” that are unbounded. There are probably novel approaches to get rid

of this troubles by relaxing the Banach structure in favour of the more flexible

structures like Frechet or Riesz structures.

2.1.2. The algebra of observables in classical mechanics

In classical mechanics one is usually introduced to the Newtonian formalism

whose laws are shown to be equivalent to the more mathematically convenient

Hamiltonian formalism. In Hamiltonian mechanics, we describe the state of a

system by a point (q, p) in a symplectic manifold P , known as phase space. In all

real physical systems, the position q and momentum p of the particle must remain

bounded, and hence it is natural to assume that P is compact.

It is an experimental fact that we can never measure something with infinite pre-

cision. There are however quantities that we can, in principle, measure to an

arbitrary precision. We call such quantities classical observables.

We would like to come up with a mathematically precise, physically motivated

way to characterize classical observables. A first natural requirement is that ob-

servables depend on the state of the system, that is, observables are functions of
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q and p. Moreover these functions must be real valued since we cannot measure

complex quantities. Let us assume, as an experimental fact, that in the classical

realm we can always measure q and p with arbitrary precision. Assume now that

we want to measure the function f with error less than some ǫ > 0. Since I can

make the error in q and p arbitrarily small, there exist errors δq and δp such that

∀ q ∈ (q0 − δq, q0 + δq) and p ∈ (p0 − δp, p0 + δp), the experimental value of

f(q, p) satisfies

f(q0, p0)− ǫ < f(q, p) < f(q0, p0) + ǫ.

But this is just the definition of a continuous function. We are then naturally lead

to the characterization of observables in classical mechanics as the continuous

real-valued functions on the phase space P .

We shall introduce in the algebra of observables one more operation, which is con-

nected with the evolution of the mechanical system. For simplicity the discussion

to follow is conducted using the example of a system with one degree of freedom.

The equations of motion are given by Hamilton’s equations which have the form:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, H = H(q, p), (2.1.12)

with solutions q(t) and p(t). The equations above generate a one-parameter group

of transformations of the phase space into itself and in turn they generate a family

of transformations of the algebra of observables:

f(q, p, t) = f(q(t), p(t)). (2.1.13)

The function f(q, p, t) satisfies the differential equation

∂f

∂t
=
∂H

∂p

∂f

∂q
− ∂H

∂q

∂f

∂p
= {H, f}, (2.1.14)

where {·, ·} is the Poisson bracket, which makes the classical observables a Pois-

son algebra. That is, it satisfies

i) {f, g} = −{f, g},
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ii) {f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0,

iii) {f, gh} = g{f, h} + {f, g}h,

for all f, g, h ∈ C∞(P ). It is interesting to point it out that the Poisson bracket

is not defined on the full algebra of classical observables C0(P ) but only on a

dense subalgebra, its smooth part C∞(P ). Notice again that the smooth part is

determined by the choice of a smooth structure on the phase space P , however in

more general terms, such smooth subalgebra can be determined by a dynamical

system (we will come back to that in Section 5.2).

2.2. Lie–Jordan Banach algebras

Motivated by the previous considerations, we are ready to define in this section

the abstract algebraic properties describing classical and quantum observables.

Let L be a real vector space on which it is defined a symmetric bilinear dis-

tributive product ◦, called Jordan product which satisfies the generalized associ-

ative law:

(a2 ◦ b) ◦ a = a2 ◦ (b ◦ a), ∀ a, b ∈ L, (2.2.1)

which is the usual replacement for associativity for Jordan algebras; and an anti-

symmetric Lie product [·, ·] satisfying the Jacobi identity

[[a, b] , c] + [[c, a] , b] + [[b, c] , a] = 0, ∀ a, b, c ∈ L. (2.2.2)

We require these two operations to be compatible in the sense that Leibniz

identity is verified:

[a, b ◦ c] = [a, b] ◦ c+ b ◦ [a, c] , (2.2.3)

or, in other words, the linear map Da(·) ≡ [a, ·] is a derivation of the Jordan

product ◦.

By abstracting the previous properties, one says in general that a vector space

with a symmetric operation ◦ and an antisymmetric one [·, ·] satisfying the proper-

ties (2.2.1),(2.2.2),(2.2.3), is called “unlocked” Lie–Jordan algebra. The com-

plete definition of a (“locked”) Lie–Jordan algebra requires that the associator
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of the structure product is related to the Lie product by:

(a ◦ b) ◦ c− a ◦ (b ◦ c) = κ [b, [c, a]] , (2.2.4)

κ being a positive real number. Then we will call (L, ◦, [·, ·]) satisfying (2.2.4)

a Lie–Jordan algebra with constant κ. The rational behind axiom (2.2.4) comes

from the example discussed in the previous section oh physical observables as

self-adjoint operators on a Hilbert space and that we will discuss again from this

perspective. Thus if we consider for instance the real vector space of bounded

self-adjoint operators on a Hilbert space H, and the Jordan product ◦ defined by

a ◦ b = 1

2
(ab+ ba), (2.2.5)

and the Lie product given by

[a, b] =
i

2~
(ab− ba) = 0, (2.2.6)

we obtain that (2.2.4) requires:

κ = ~2, (2.2.7)

if κ 6= 0. We have introduced an additional factor i
2~ in (2.2.6) with respect to

the familiar definition of commutator (2.1.7). In this way the space of observables

actually acquires the structure of a Lie algebra. Moreover we insert the constant

~ for dimensional reasons and we actually see that the Lie–Jordan algebras thus

defined depend on the physical constant ~.

Notice that if the Jordan product is associative and κ 6= 0 then, as it is

proved in the next Theorem, the Lie structure becomes commutative, i.e. [a, b] =
0 ∀ a, b ∈ L.

Theorem 2.2.1. A Lie–Jordan algebra L with constant κ 6= 0 is commutative if

and only if the Jordan product is associative.

Proof. Assume first that L is commutative. Then, trivially, from the associator

identity (2.2.4) it follows that the Jordan algebra L is associative. Conversely,
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if the Jordan product is associative, then any triple commutator vanishes, so that

∀ a, b ∈ L

0 = [a, [b2, a]]

= [a, 2b ◦ [b, a]]
= 2b ◦ [a, [b, a]] + [a, 2b] ◦ [b, a]
= 2b ◦ [a, [b, a]] − 2[a, b]2

= −2[a, b]2,

where we used the Leibnitz identity in the second and the third equality. In con-

clusion [a, b] = 0, ∀ a, b ∈ L.

If we consider a classical carrier space, for instance a Poisson manifold, the

algebra of smooth functions on the manifold becomes a Lie–Jordan algebra with

constant κ = 0 when equipped with the (associative) pointwise product f◦g (x) =
f(x)g(x), and Lie bracket [f, g] = {f, g}, with {·, ·} being the Poisson bracket

defined on the manifold. Thus it follows that from an algebraic point of view it is

quite appropriate to consider a Poisson algebra as a Lie–Jordan algebra with κ =
0. From this perspective we may consider the parameter κ a sort of deformation

parameter connecting the classical and the quantum picture of a system. With this

intuition in mind we may call Lie–Jordan algebras with κ = 0 classical. Notice

that as we mentioned already there is no Lie–Jordan algebra structure on C0(P ),
however it could be a good idea to call them unbounded Lie–Jordan algebras.

In order to accomodate infinite dimensional systems in this formalism, we need to

define a topological structure on the algebra.

Definition 2.2.2. A Lie–Jordan Banach algebra (or LJB–algebra for short) is Lie-

Jordan algebra (L, ◦, [·, ·]) such that it carries a complete norm ‖ · ‖ verifying:

i) ‖a ◦ b‖ ≤ ‖a‖ ‖b‖,

ii) ‖a2‖ = ‖a‖2,

iii) ‖a2‖ ≤ ‖a2 + b2‖,

∀ a, b ∈ L.
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In particular a LJB–algebra is a Jordan–Banach algebra (or JB–algebra) when

considered with the Jordan product alone. On the other hand, if we are given

a LJB–algebra L, by taking combinations of the two products we can define an

associative product on the complexification LC = L⊕iL. Specifically, we define:

ab = a ◦ b− i
√
κ [a, b] , ∀ a, b ∈ L,

and extend it by linearity to LC. Then LC becomes an associative ∗–algebra,

where (a + ib)∗ = a − ib. Such associative algebra equipped with the norm

‖x‖ = ‖x∗x‖1/2 where x = a + ib, is the unique C∗–algebra whose real part is

precisely L (see Section 2.3).

Notice that if the LJB–algebra L is classical, i.e. κ = 0, its associated

C∗–algebra is isomorphic to the space of continuous functions on a compact to-

pological space with the supremum norm, hence if such space carries a differen-

tiable structure the Lie bracket will define a family of unbounded derivations on

the dense subspace of smooth functions, otherwise trivial. In other words we will

need weaker topologies to accomodate classical LJB–algebras in the same picture.

Then, from now on, we will just consider non–classical LJB–algebras, i.e., κ 6= 0.

We must point out here that the study of unbounded LJB–algebras has never been

started.

2.2.1. Spectrum and states of Lie–Jordan Banach algebras

The concept of spectrum of an observable is very important since it provides

the possible outcomes of a measurement of the observable on the physical system.

In this subsection we explore the definition of spectrum and states in algebraic

terms.

Definition 2.2.3. Let L be a unital LJB–algebra. The spectrum σ(a) of a ∈ L is

defined as the set of those λ ∈ R for which a− λ1 has no inverse in L.

Note that a LJB–algebra L is a complete order unit space with respect to the

positive cone [HOS84]:

L+ = { a2 | a ∈ L} (2.2.8)
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or equivalently an element is positive if and only if its spectrum is positive.2

We shall in this section prove some useful properties of the spectrum and then the

Cauchy–Schwarz like inequalities.

Lemma 2.2.4.

σ(a21 + a22 + ρ[a1, a2]) ∪ {0} = σ(a21 + a22 − ρ[a1, a2]) ∪ {0} (2.2.9)

∀ a1, a2 ∈ L and ∀ ρ ∈ R.

Proof. For λ 6= 0 the invertibility of a21 + a22 + ρ[a1, a2]− λ1 implies the invert-

ibility of a21 + a22 − ρ[a1, a2]− λ1. Namely, one computes that

(a21 + a22 + ρ[a1, a2]− λ1)−1 = λ−1{2a1 ◦ (b ◦ a1)− a21 ◦ b+ 2a2 ◦ (b ◦ a2) +
−a22 ◦ b+ 2[a1, b ◦ a2] + 2a1 ◦ [b, a2]− 1}

with b = {a21 + a22 + ρ[a1, a2]− λ1}−1.

Lemma 2.2.5.

σ(a21 + a22 + ρ[a1, a2]) ⊂ R− ⇒ a21 + a22 + ρ[a1, a2] = 0 (2.2.10)

∀ a1, a2 ∈ L and ∀ ρ ∈ R.

Proof. Note that a21+a
2
2−ρ[a1, a2] = 2a21+2a22− (a21+a

2
2+ρ[a1, a2]) and then

under the assumptions of the lemma σ(a21 + a22 − ρ[a1, a2]) ⊂ R+. This implies,

by the previous lemma, that σ(a21 + a22 − ρ[a1, a2]) = {0}.

Theorem 2.2.6.

X = a21 + a22 − ρ[a1, a2] ∈ L+ (2.2.11)

∀ a1, a2 ∈ L and ∀ ρ ∈ R.

2An alternative way to express this would be: an element a ∈ L is positive if σ(a) ⊂ R+. It is

possible to show that the cone of positive elements is given by L+ = { a2 | a ∈ L}. Moreover it is

a consequence of the completeness of a LJB–algebra to show that it is a complete order unit space.



20 C∗–ALGEBRAS AND LIE–JORDAN BANACH ALGEBRAS

Proof. Every X ∈ L has the decomposition [Lan98] X = X+ + X−, where

X+,X− ∈ L+ and X+ ◦ X− = [X+,X−] = 0. It follows that X3
− = −(b21 +

b22−ρ[b1, b2]) ≥ 0 with b1 = a1 ◦X−+ρ[a2,X−] and b2 = ρ[a1,X−]+a2 ◦X−.

But X3
− = −2b21 − 2b22 + (b21 + b22 + ρ[b1, b2]) which is a negative quantity and

then in turn implies that X− = 0 and then X = X+ ≥ 0.

Motivated by the considerations of Section 2.1, we can define the space of

states S(L) of a LJB–algebra as the set of all real normalized positive linear

functionals on L, i.e.

ρ : L → R (2.2.12)

such that ρ(1) = 1 and ρ(a2) ≥ 0, ∀ a ∈ L. The state space is convex and

compact with respect to the w∗–topology.

We shall now prove the Lie–Jordan algebra version of the Cauchy–Schwarz

inequalities. These are a very important “ingredient” for many subsequent proofs.

Theorem 2.2.7. Let L be a unital LJB–algebra with constant ~2 and ρ a state on

L. Then if a, b ∈ L we have

ρ(a ◦ b)2 ≤ ρ(a2)ρ(b2), (2.2.13)

and

ρ([a, b])2 ≤ 1

~2
ρ(a2)ρ(b2). (2.2.14)

Proof. Let λ ∈ R, then we have

0 ≤ ρ(λa+ b)2) = λ2ρ(a2) + 2λρ(a ◦ b) + ρ(b2). (2.2.15)

If ρ(a2) = 0 then ρ(a ◦ b) = 0 since λ is arbitrary. If ρ(a2) 6= 0, let λ =
−ρ(a ◦ b)ρ(a2)−1, and the first proof is immediate.

The second inequality is proved similarly by using the positivity of a21 + a22 +
2~[a1, a2] as stated in Thm. (2.2.6).

Example 2.2.8. As we have discussed beforem the self-adjoint subalgebra Bsa =
L(H) of the algebra B(H) of bounded linear operators on a Hilbert space H with
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the operator norm is a Lie–Jordan Banach algebra and the states are the positive

linear functional on Bsa. Letϕ be a continuous state with respect to the ultrastrong

topology on B(H) [vN36], i.e. the topology on B(H) given by the open neigh-

bourhood base

N(a; (xi)
∞
1 , ǫ) = { b ∈ B(H) :

∞∑

i=1

‖(a− b)xi‖2 < ǫ }, (2.2.16)

for a ∈ B(H), ǫ > 0 and any sequence (xi) ∈ H satisfying
∑∞

i=1 ‖xi‖2 < ∞.

Then there is a positive linear trace class operator ρ ∈ Bsa such that

ϕ(a) = Tr(ρa) (2.2.17)

for all a ∈ Bsa.

Conversely, if ρ is a positive trace class operator, then the functional a 7→ Tr(ρa)
defines an ultrastrongly continuous positive linear functional on Bsa.

We have shown that the algebra of observables of a quantum mechanical sys-

tem is a LJB–algebra and described the quantum states as positive linear function-

als on the algebra. As it is evident from the previous example not all the states on

the algebra can be realized as density matrices. Those states realized as density

matrices are called normal. It is nevertheless recognized the important of non-

normal states in the mathematical approaches to quantum statistical mechanics

[BR03].

A natural question may now arise. That is, can the algebraic framework accomod-

ate something more general than the standard quantum theory we have seen? Is it

possible to provide realizations of a LJB–algebra (or equivalently a C∗–algebra)

different from the usual quantum mechanics? The answer to this question gives

actually a solid background to the algebraic theory since it can be proved that

LJB–algebras and C∗–algebras can always be represented as algebras of operat-

ors on a Hilbert space.

Theorem 2.2.9 (Gelfand, Naimark, Segal). Let L be a unital LJB–algebra. A

representation of L on a complex Hilbert space H, is a strongly continuous Lie–

Jordan homomorphism π of L into the self-adjoint bounded operators on H, i.e.
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∀ a, b ∈ L
π(a ◦ b) = π(a) ◦ π(b) (2.2.18)

[π(a), π(b)] = π([a, b]). (2.2.19)

Moreover given a state ω of L there exists a Hilbert space Hω and a representation

πω : L → Bsa(Hω) and a unit vector |0〉 ∈ Hω such that for all a ∈ L, ω(a) =
〈0|πω(a)|0〉.

We will say that the representation π is nondegenerate if span{π(a)|φ〉 | a ∈
L, |φ〉 ∈ H} is dense in H.

Given two representations (π1,H1) and (π2,H2) of L, we say that they are equi-

valent if there exists a unitary map U : H1 → H2 such that U ◦π1(a) = π2(a)◦U ,

∀ a ∈ L.

Remark. If we replace the LJB–algebra by a Jordan–Banach algebra, as it was

originally proposed by P. Jordan, then the above theorem is not true. It is in fact

known (as discussed in the Introduction) that there is an “exceptional” Jordan

algebras (i.e. a Jordan algebra which do not arise from an associative product)

which cannot represented as an algebra of operators on a Hilbert space. This is

the so called Albert algebra of 3× 3 matrices with values in the Octonions.

2.3. C∗–algebras and dynamical correspondence

R. Haag’s algebraic approach to quantum systems [Haa96] has had a pro-

found influence in both the foundations and applications of quantum physics.The

background for that approach is to consider a quantum system as described by a

C∗–algebra A whose real part are the observables of the system, and its quantum

states ω are normalized positive complex functionals on it. However the state

space S of the quantum system does not determine univocally the C∗–algebra

structure of the system but only its Jordan–Banach real algebra part [JvNW34]–

[Seg47]. In fact as Kadison’s theorem shows [Kad51], the real (or self-adjoint)

part of a C∗–algebra A, is isometrically isomorphic to the space of all w∗– con-

tinuous affine functions on the state space of A. A. Connes on one side [Con74]

and Alfsen and Shultz on the other [AS98], solved the problem of when a given
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Jordan–Banach algebra is the real part of a C∗–algebra. The characterization

obtained by Alfsen and Schultz in terms of the existence of a dynamical corres-

pondence on a Jordan–Banach algebra amounts to state that the relevant struc-

ture to discuss the properties of the state space of a quantum system is that of

a LJB–algebra [Emc84]–[Lan98]. In fact the topological properties of the state

space are completely captured by the Jordan–Banach algebra structure and the

Lie algebra structure allows to construct the C∗–algebra setting for them, their

GNS representations, etc.

In this section we are going to prove one of the main results in the theory of

LJB–algebras, which we already anticipated in the previous sections. Namely, the

equivalence between the category ofC∗–algebras and the category of LJB–algebras.

We will prove that a C∗–algebra is always a complexification of a LJB–algebra.

In order to do this, we briefly give few definitions on C∗–algebras and derivations

of LJB–algebras.

Definition 2.3.1. A C∗–algebra A is a Banach algebra over the field of complex

numbers, together with an antilinear map ∗ : A → A called involution, which

satisfies (x∗)∗ = x and

‖x∗x‖ = ‖x‖‖x∗‖, ∀x ∈ A. (2.3.1)

Following [AS98] we will define a derivation of a JB–algebra L by focusing

first only on the order structure with respect to the positive cone L∗ defined be-

fore, ignoring for the mooment the algebraic multiplicative aspect. All the proofs

contained in [AS98] will be omitted.

Definition 2.3.2. A bounded linear operator δ on a JB–algebra L is called an order

derivation if etδ(L+) ⊂ L+, ∀ t ∈ R.

We denote the Jordan multiplier determined by an element b ∈ L by δb. Thus

for all a ∈ L
δb(a) = b ◦ a.

Notice that etδb is the multiplier associated to etb = (e
tb
2 )2 ∈ L+. Then Jordan

multipliers δb are order derivations ∀ b ∈ L.
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Definition 2.3.3. An order derivation δ on a unital JB–algebra L is self-adjoint

if there exists a ∈ L such that δ = δa and is skew-adjoint if δ(1) = 0.

Again, it can be shown that if δ is an order derivation, then δ is skew if and

only if δ is a Jordan derivation, i.e., it is a derivation with respect to the Jordan

product:

δ(a ◦ b) = δa ◦ b+ a ◦ δb, ∀ a, b ∈ L. (2.3.2)

We will establish now the main notion in [AS98].

Definition 2.3.4. A dynamical correspondence [AS98] on a unital JB–algebra

L is a linear map

ψ : a→ ψa (2.3.3)

from L into the set of skew order derivations on L which satisfies:

i) there exists κ ∈ R such that κ [ψa, ψb] = − [δa, δb] , ∀ a, b ∈ L, and3

ii) ψaa = 0, ∀ a ∈ L.

It follows immediately from the definitions that:

ψab = −ψba, ∀ a, b ∈ L. (2.3.4)

The dynamical correspondence then assigns a “skew order derivation” ψa to

each element a of the given algebra L. The skew order derivations are generat-

ors of one-parameter groups of unital order automorphisms of L [AS98], and by

duality also of one-parameter groups of motions on the state space of L. Thus a

dynamical correspondence gives the elements of L a double identity, which re-

flects the dual role of physical variables as observables and as generators of a

one-parameter group of motions of the state space.

Definition 2.3.5. Let L be a unital JB–algebra. A C∗–product compatible with L
is an associative product on the complex linear space L ⊕ iL which induces the

given Jordan product on L and makes L ⊕ iL into a C∗–algebra with involution

(a+ ib)∗ = a− ib and norm ‖x‖ = ‖x∗x‖1/2 where x = a+ ib.

3The notations [ψa, ψb] and [δa, δb] are not related to any Lie bracket and stand for the com-

mutator of the operators in the arguments, i.e. [ψa, ψb] = ψaψb − ψbψa, [δa, δb] = δaδb − δbδa.
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Note that if a JB–algebra L is the self-adjoint part of a C∗–algebra A, then

there are a natural product and a norm induced in L ⊕ iL by using the represent-

ation A = a + ib with A ∈ A and a, b ∈ L. Such product and norm organize

L⊕ iL into a C∗–algebra. It follows that a JB–algebra is the self-adjoint part of a

C∗–algebra if and only if there exists a C∗–product compatible with L on L⊕ iL.

Yhe main result in [AS98] provides an explicit relation between JB–algebras and

C∗–algebras provided that the former are equipped with a dynamical correspond-

ence.

Theorem 2.3.6 ([AS98]). A unital JB–algebra L is Jordan isomorphic to the self-

adjoint part of a C∗–algebra if and only if there exists a dynamical correspond-

ence on L. Each dynamical correspondence ψ on L determines a unique associ-

ative C∗–product compatible with L defined as

ab = a ◦ b− i
√
κ ψab (2.3.5)

and each C∗–product compatible with L arises in this way from a unique dynam-

ical correspondence ψ on L.

We will now show that the existence of a dynamical correspondence on L is

equivalent to the existence of a Lie product organizing L into a LJB–algebra. First

we need the following lemmas:

Lemma 2.3.7. Let (L, [·, ·]L , ◦) be a LJB–algebra. Then there exists an associat-

ive bilinear product on L × L defined as

a · b = a ◦ b− i
√
κ [a, b]L , ∀ a, b ∈ L, (2.3.6)

and extended linearly to L ⊕ iL.

Proof. Bilinearity of the product follows directly from the bilinearity of the Jordan

and Lie products. We have to prove the associativity, i.e.:

a · (b · c) = (a · b) · c, ∀ a, b, c ∈ L. (2.3.7)

The l.h.s. of the previous equation leads to:

a·(b·c) = a◦(b◦c)−i√κ a◦[b, c]L−i
√
κ [a, b]L◦c−i

√
κ b◦[a, c]L−κ [a, [b, c]L]L ,
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and the r.h.s.:

(a·b)·c = (a◦b)◦c−i√κ b◦[a, c]L−i
√
κ a◦[b, c]L−i

√
κ [a, b]L◦c−κ [ [ a, b ]L , c ]L ,

Then

a · (b · c)− (a · b) · c = a ◦ (b ◦ c)− (a ◦ b) ◦ c− κ [a, [b, c]L]L − κ [c, [a, b]L]L
= κ

(
[b, [c, a]L]L + [a, [b, c]L]L + [c, [a, b]L]L

)

= 0.

where we have used (2.2.2),(2.2.3) and (2.2.4).

Note that the Jordan and Lie products can be obviously expressed in terms of

the associative product as:

a ◦ b = 1

2
(a · b+ b · a), (2.3.8)

[a, b]L =
i

2
√
κ
(a · b− b · a). (2.3.9)

Lemma 2.3.8. Let (L, [·, ·]L , ◦) be a LJB–algebra. Then e[a,·]L is a Jordan auto-

morphism ∀ a ∈ L.

Proof. We have to prove that

e[a,·]L (b ◦ c) = (e[a,·]L b) ◦ (e[a,·]L c). (2.3.10)

By Hadamard’s formula [Ser65], the l.h.s. of the previous equation is:

e[a,·]L (b ◦ c) = ea ·(b ◦ c) · e−a .

By using formula (2.3.8), the r.h.s. of (2.3.10) becomes:

(e[a,·]L b) ◦ (e[a,·]L c) = (ea ·b · e−a) ◦ (ea ·c · e−a)
=

1

2
ea ·(b · c) · e−a+1

2
ea ·(c · b) · e−a

= ea ·(b ◦ c) · e−a .
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Lemma 2.3.9. Let (L, [·, ·]L , ◦) be a LJB–algebra. Then [a, ·]L is an order deriv-

ation on L ∀ a ∈ L.

Proof. From Definition 2.3.2, we have to prove that et[a,·]L (L+) ⊂ L+, ∀ a ∈ L
and ∀ t ∈ R. Since et[a,·]L is a Jordan automorphism (Lemma 2.3.8), we have:

et[a,·]L(b ◦ b) = (et[a,·]L b) ◦ (et[a,·]L b),

∀ a, b ∈ L and ∀ t ∈ R, i.e. et[a,·]L preserves the positive cone (2.2.8) L+.

Then we can finally conclude:

Theorem 2.3.10 ([FFIM13c]). Let L be a unital JB–algebra. There exists a dy-

namical correspondence ψ on L if and only if L is a LJB–algebra with Lie product

[·, ·]L such that

[a, b]L = ψab (2.3.11)

Proof. First assume that L is a LJB–algebra. From Definition 2.3.4 we have to

check that ∀ a, b ∈ L
κ [ψa, ψb] = − [δa, δb]

that is

κ([a, [b, c]L]L − [b, [a, c]L]L) = b ◦ (a ◦ c)− a ◦ (b ◦ c)
which is an easy computation once the Jordan and Lie products are expressed as

in (2.3.9) and (2.3.8). From the antisymmetry of the Lie product it is also true

that ψaa = [a, a]L = 0 ∀ a ∈ L. Hence the linear map a → [a, ·]L from the

LJB–algebra L to the skew-order derivations on L is a dynamical correspond-

ence.

Conversely, assume L is a JB–algebra with a dynamical correspondence ψ. Then

from (2.3.4) ψab = [a, b]L is antisymmetric. The Jacobi property (2.2.2) fol-

lows from the defining property i) of the dynamical correspondence (Definition

2.3.4), the Leibniz identity (2.2.3) follows from (2.3.2) and also the compatibility

condition (2.2.4) is easy to check with a simple computation using the properties

of the dynamical correspondence (Definition 2.3.4). Hence a JB–algebra with a

dynamical correspondence is a LJB–algebra.
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Corollary 2.3.11. A unital JB–algebra L is Jordan isomorphic to the self-adjoint

part of a C∗–algebra if and only if it is a LJB–algebra.

Proof. This is an obvious consequence of Theorems 2.3.6 and 2.3.10.

This finally proves the equivalence between the category of C∗–algebras and

that of LJB–algebras. We conclude with

Corollary 2.3.12. Let (L, ◦, [·, ·]L) be a LJB–algebra and A = LC the natural

C∗–algebra defined by the complexification of L. Then there is a natural iden-

tification between the states S(L) of L and the states S(A) of the C∗–algebra

A.

Proof. Given a state ω of L, we define a linear functional ω̃ of A by extending it

linearly. The linear functional ω̃ is positive and normalized because ω is positive

and normalized. Notice that if x = a+ ib ∈ LC, then x∗x = a2 + b2, then if ω̃ is

a functional extending ω (chosen continuous by the Hahn–Banach theorem), then

ω̃(x∗x) = ω̃(a2 + b2) = ω(a2 + b2) ≥ 0, (2.3.12)

because ω is positive. The converse is trivial.

Notice in addition that if α : A → B is a morphism of C∗–algebras, then

α(a∗) = α(a)∗, thus α restricts to a morphism αsa : Asa → Bsa. Now let

σ : L1 → L2 be a morphism of Lie–Jordan algebras, i.e. ∀ a, b ∈ L1

σ(a ◦ b) = σ(a) ◦ σ(b) (2.3.13)

σ([a, b]) = [σ(a), σ(b)] (2.3.14)

then we can define σ̃ : LC1 → LC2 as

σ̃(a+ ib) = σ(a) + iσ(b). (2.3.15)

Then we have for all a, b ∈ L1

σ̃(a · b) = σ̃(a ◦ b− i
√
κ[a, b]) = σ(a ◦ b)− i

√
κσ([a, b]) (2.3.16)

= σ(a) ◦ σ(b)− i
√
κ[σ(a), σ(b)] (2.3.17)

= σ̃(a) · σ̃(b). (2.3.18)

Therefore we have proved
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Theorem 2.3.13. Given a morphism σ : L1 → L2 of LJB–algebras, there is a

unique extension σ̃ of σ to a morphism of the corresponding C∗–algebras σ̃ =
A1 : LC1 → A2 = LC2 and 1̃L = 1LC . Moreover the functors from the category

LJB of Lie–Jordan Banach algebras in the category C∗A of C∗–algebras is an

isomorphism of categories.





3
REDUCTION OF LIE–JORDAN BANACH ALGEBRAS

A degenerate system is a physical system that when it is described mathem-

atically it possesses extra, nonphysical degrees of freedom. Then a complete de-

scription of it is usually attained by adding supplementary conditions, by the ac-

tion of a gauge group on it or by any other mean that allows to identify the true

degrees of freedom of the theory. The task of the physicist is to extract the rel-

evant physical subsystem from such a degenerate one. Indeed, physical inform-

ation such as boundary conditions or constraints is often injected into a theory

through the use of supplementary constraints. The treament of degenerate sys-

tems in classical mechanics was developed by Dirac [Dir01] who provided an

algorithmic procedure and has now reached a high degree of mathematical ma-

turity. It was formalized first by P. Bergmann [Ber61] and later on M. Gotay et

al. set its geometrical foundation, being known as the presymplectic constraints

algorithm [GNH78], [GN79], [GN80]. Later on Marmo, Mendella and Tulczyjew

established its simplest geometrical structure by considering it as a consistency

condition for implicit differential equations [MMT95]. Later on the algorithm has

widespread to other areas like optimal control theory [LM00], [DTI03]. As for the
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quantum setting, these systems still remain within heuristic formulations without

earning much from their classical rigor, due to the dubious nature of quantization.

There is however a whole set of very successful ideas in tackling with degenerate

systems in quantum field theory grouped under the name of BRST–BFV quantiz-

ation theories. We will come back to this in the next chapter.

The aim of this chapter is to review first the classical treatment of constraints

in the language of differential geometry and translate it in the more abstract algeb-

raic framework, which turns out to be appropriate for both classical and quantum

constraints. We then provide a quantum mechanical procedure for eliminating

the degeneracy in a mathematically consistent way, by focusing on the algebra of

observables and comparing this approach with the T-procedure in the C∗–algebra

framework, developed along the years by Grundling and collaborators [GH85],

[GH88], [GL00].

3.1. Symplectic reduction and Dirac’s theory of constraints

In this section we rephrase Dirac’s theory of constraints in the modern lan-

guage of symplectic geometry. We start discussing the symplectic reduction with

respect to a coisotropic submanifold of a symplectic submanifold. Then the par-

allel with Dirac’s theory of constraints is naturally elucidated.

3.1.1. Symplectic reduction

Let (M,Ω) be a symplectic manifold, that is, Ω is a closed non-degenerate

2-form. Fix a point p ∈M and consider the vector space TpM of tangent vectors

to M at p. The symplectic form determines a non-degenerate antisymmetric form

on TpM , making it into a symplectic vector space. In a symplectic vector space

V , we can define four kind of subspaces. Let W be a subspace of V , and denote

by W⊥ its symplectic complement relative to the symplectic form Ω:

W⊥ = {X ∈ V | Ω(X,Y ) = 0 ∀Y ∈W}. (3.1.1)
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Subspaces W obeying W ⊆ W⊥ are called isotropic and they necessarily obey

dimW ≤ 1
2dimV . On the other hand, if W ⊇ W⊥ , W is called coisotropic

and it must obey dimW ≥ 1
2dimV . If W is both isotropic and coisotropic, then

it is its own symplectic complement, it obeys dimW = 1
2dimV and it is called a

lagrangian subspace. Finally, if W ∩W⊥ = 0, W is called symplectic.

Notice that if W is lagrangian, the restriction of Ω to W is identically zero;

whereas if W is symplectic, Ω restricts to a symplectic form. In particular, sym-

plectic subspaces are even dimensional. If W is coisotropic, Ω restricts to a non-

zero antisymmetric bilinear form on W which, nevertheless, is degenerate since

any vector in W⊥ ⊆ W is symplectically orthogonal to all of W . But it then fol-

lows that the quotient W/W⊥ inherits a well defined symplectic form and hence

becomes a symplectic vector space. The passage from V to W/W⊥ (which is a

subquotient) is known as the symplectic reduction of V relative to the coisotropic

subspace W . In the following we will make this procedure global by generalizing

it to symplectic manifolds.

We similarly define a submanifold M0 to be isotropic, coisotropic, lagrangian,

or symplectic according to whetever at all points p ∈ M0, the tangent spaces

TpM0 are isotropic, coisotropic, lagrangian or symplectic subspaces of TpM re-

spectively.

Suppose now that a submanifold M0 is a coisotropic submanifold of M , let

ι : M0 →֒M denote the immersion and Ω0 = i∗Ω the pull back of the symplectic

form of M onto M0. This defines a distribution which we denote by TM⊥
0 , as

follows. For p ∈M0 we let (TM⊥
0 )p := (TpM0)

⊥. This distribution is involutive:

let X,Y ∈ TM⊥
0 , for all vector fields Z tangent to M0, we have that

0 = dΩ0(X,Y,Z) (3.1.2)

= XΩ0(Y,Z)− Y Ω0(X,Z) + ZΩ0(X,Y ) (3.1.3)

−Ω0([X,Y ], Z) + Ω0([X,Z], Y )− Ω0([Y,Z],X). (3.1.4)

But all terms except the fourth are automatically zero since they involve Ω0 con-

tractions between TM0 and TM⊥
0 . Therefore the fourth term is also zero and
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this implies [X,Y ] ∈ TM⊥
0 ∀X,Y ∈ TM⊥

0 . Therefore, by Frobenius’ the-

orem, TM⊥
0 are the tangent space to the leaves of a foliation and we denote by

π : M0 → M̃ the natural surjection mapping the points of M0 to the unique con-

nected leaf they belong to. Then if M̃ is a smooth manifold, whose tangent space

at a leaf would be isomorphic to TpM0/TpM
⊥
0 for any point p lying in that leaf.

We can therefore give M̃ a symplectic structure Ω̃ by demanding that π∗Ω̃ = Ω0.

In other words, let X̃, Ỹ be vectors tangent to M̃ at a leaf. To compute Ω̃(X̃, Ỹ )
we merely lift X̃ and Ỹ to vectors X0 and Y0 tangent to M0 at a point p in the leaf

and then compute Ω0(X0, Y0). The result is clearly independent of the particular

lift since the difference of any two lifts belongs to TM⊥
0 and is independent of the

particular chosen point p of the leaf since, if Z is a tangent vector to the leaf, the

Lie derivative of Ω0 along Z

LZΩ0 = diZΩ0 + iZdΩ0 = 0. (3.1.5)

Therefore (M̃ , Ω̃) becomes a symplectic manifold and it is called the symplectic

reduction of (M,Ω) relative to the coisotropic submanifold (M0,Ω0).

Suppose now thatM0 is a symplectic submanifold ofM and let i : M0 →֒M
denote its inclusion. We can give M0 a symplectic structure merely by pulling

back Ω to M0. Hence (M0,Ω0), Ω0 = i∗Ω, becomes a symplectic manifold,

called the symplectic restriction of M onto M0. In this case we can obtain ex-

plicitly the Poisson bracket of M0 in terms of the Poisson bracket of M, as we are

going to show in the following.

Let f and g be smooth functions on M0, and let us extend them to smooth

functions onM , and we will use the abuse of notation of still calling them f and g.

Let Xf and Xg be their respective hamiltonian vector fields on M (see Appendix

A). Since M0 is symplectic, the tangent space of M at every point p ∈M0 can be

decomposed in the following direct sum

TpM = TpM0 ⊕ (TpM0)
⊥, (3.1.6)

according to which a vector fieldX can be decomposed as the sum of two vectors:

XT , tangent to M0, and X⊥ symplectically perpendicular to M0. The Poisson
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bracket of the two functions f and g on M0 is simply given by

{f, g}0 = Ω(Xf −X⊥
f ,Xg −X⊥

g ). (3.1.7)

Now suppose that {Zα} is a local basis for TM⊥
0 . Then the normal part X⊥ of

any vector X can be written

X⊥ =
∑

α

λαZα. (3.1.8)

Then we notice that

Ω(X,Zα) = Ω(X⊥, Zα) =
∑

β

λβΩ(Zβ, Zα) (3.1.9)

and define the square matrix M whose entries are Mαβ = Ω(Zα, Zβ), which is

invertible since M0 is a symplectic submanifold. Hence we call the inverse Mαβ

which satisfies ∑

β

MαβM
βγ = δγα. (3.1.10)

It follows that the coefficients λα are given by

λβ =
∑

α

Ω(X,Zα)M
αβ . (3.1.11)

Then by putting Eq. (3.1.11) into Eqs. (3.1.8) and (3.1.7) we obtain

{f, g}0 = {f, g} −
∑

α,β

Ω(Xf , Zα)M
αβΩ(Zβ ,Xg). (3.1.12)

If we further assume that the vector fields Zα are hamiltonian vector fields asso-

ciated (via Ω) to the funcions χα, then

{f, g}0 = {f, g} −
∑

α,β

{f, χα}Mαβ{χβ , g}. (3.1.13)

Therefore {·, ·}0 is nothing but the Dirac bracket associated to the constraints

χα.
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3.1.2. First and second class constraints

In this subsection we will show that the submanifold defined by a set of

first/second class constraints is respectively coisotropic/symplectic.

Let (M,Ω) be a symplectic manifold on which it is defined a set of smooth func-

tions {ψa} which are called constraints. This means that the allowed “phase

space” of the relevant dynamical system is the zero locus of the constraints

{p ∈M | ψa(p) = 0 ∀ a}. (3.1.14)

Any other set of functions with the same zero locus gives an equivalent description

of the physics. This fact will be crucial in the algebraic description of constraints

of the subsequent sections.

Following Dirac [Dir01] let us denote by Ψ the linear subspace generated by

the {ψa}, and by J the ideal of C∞(M) they generate, i.e. linear combinations

of the {ψa} whose coefficients are arbitrary smooth functions. Then let F be a

maximal subspace of Ψ with the property that

{F,Ψ} ⊂ J . (3.1.15)

Let {ϕi} be a basis of F : Dirac defines this functions as first class constraints.

Let now define the subspace S ⊂ Ψ complementary to F to be spanned by the

functions {χα}: Dirac calls these functions second class constraints.

Dirac proves that the matrix of functions {χα, χβ} is nowhere degenerate, which

is equivalent to the statment that the submanifold defined by the second class

constraints is symplectic. In fact, let us define the function χ : M → Rk whose

components are the second class constraints, i.e.

χ(m) = (χ1(m), . . . , χk(m)) (3.1.16)

and assume that the submanifold N = χ−1(0) is a closed imbedded submanifold

of M (see Section 4.1 for the sufficient conditions). Then the vectors tangent

to N are precisely those vectors which are perpendicular to the gradients of the

constraints. That is, X is a tangent vector to N if and only if dχα(X) = 0 for
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all α = 1, . . . k. By definition of hamiltonian vector fields Zα associated to the

constraints, the above condition is

X ∈ TN ⇐⇒ Ω(X,Zα) = 0 ∀α. (3.1.17)

It follows that the Zα span the symplectic complement of TN . Therefore we can

restrict ourselves to the symplectic manifold N with the Poisson bracket given by

(3.1.13).

We now restrict the first class constraints {ϕi} to N where they are still first

class constraints and we will denote them again by {ϕi}, with a little abuse of

notation. We again put them together by defining the function ϕ : N → Rl and

assume that N0 ≡ ϕ−1(0) is a closed imbedded submanifold. We will now show

that N0 is a coisotropic submanifold of N .

The tangent space to N0 is again characterized by those vectors which are anni-

hilated by the gradients of the constraints

X ∈ TN0 ⇐⇒ dϕi(X) = 0 ∀ i (3.1.18)

which, by using the definition of the hamiltonian vector fieldsXi associated to the

constraints {ϕi}, it translates into

TN0 = 〈Xi〉⊥, (3.1.19)

where 〈Xi〉 is the linear span of the Xis. Since the constraints now are first class,

it follows

dϕi(Xj) = {ϕi, ϕj} = ckijϕk, (3.1.20)

which is zero on N0. Therefore the Xi are tangent to N0. This is equivalent to

TN⊥
0 ⊂ TN0 (3.1.21)

and hence N0 is a coisotropic submanifold of N .

There is a slightly more geometrical version of the previous picture. It can be

done by combining Gotay’s presymplectic embedding theorem [GS81] with the

previous discussion. This is, according to the presymplectic embedding theorem,
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given any presymplectic manifold (C,ω) where exists an essentially unique, sym-

plectic manifold (S, Ω̃) such that C is embedded in S, ι : C →֒ S and ω = ι∗Ω̃.

Then given a symplectic manifold (M,Ω) and a submanifold C ⊂ M , provided

that the restriction ω of Ω to C is presymplectic (here we assume constant value of

ω), then there exists a symplectic manifold (S, Ω̃) and a symplectic map j : S →֒
M such that j∗Ω = Ω̃ and ι∗Ω̃ = ω. Notice that S is defined as a submanifold

of M by the ideal JS of functions vanishing at S. Because S is symplectic the

ideal is generated by second class constraints. Moreover C is defined inside S
by another ideal JC and because C is coisotropic in S, this ideal consists of first

class constraints.

3.2. Reduction of Poisson algebras

The power of the algebraic formalism is that it continues to make sense in

situations where the geometry might be singular. The aim of this section is to

show how it is possible to recast the symplectic and coisotropic reduction purely

in the category of Poisson algebras.

Dual to a manifoldM we have the commutative algebra C∞(M) of its smooth

functions which characterize it completely. To every point p ∈ M there corres-

ponds a closed maximal ideal I(p) of C∞(M) consisting of those functions van-

ishing at p. It turns out that these are all the maximal closed ideals. So that as a

set, the manifold M is the set of maximal closed ideals of C∞(M).

Similarly, if ι : M0 →֒ M is a submanifold, it can be described by an ideal

I(M0) consisting of the smooth functions vanishing on M0. Clearly I(M0) =⋂
p∈M0

I(p). For the submanifolds described by the regular zero locus of a set of

smooth functions, the ideal I(M0) is generated by the constraints on the manifold.

We have the following isomorphism:

C∞(M0) ∼= C∞(M)/I(M0). (3.2.1)

If (M,Ω) is a symplectic manifold and M0 →֒ M is a symplectic submanifold

then I(M0) is generated by the second class constraints.
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We now provide an algebraic description of the case in which M0 is coisotropic.

Recall that vector fields are derivations of the algebra of functions: X(M) =
DerC∞(M). From the above isomorphism, a derivation of C∞(M) gives ries to

a derivation of C∞(M0) if and only if it preserves the ideal I(M0):

DerC∞(M0) = {X ∈ DerC∞(M) | X(I(M0)) ⊂ I(M0)}. (3.2.2)

As we have seen in the previous subsection, the vector fields in TM⊥
0 are pre-

cisely the hamiltonian vector fields which arise from functions if I(M0), whence

the coisotropy condition TM⊥
0 ⊂ TM0 becomes the condition that the vanishing

ideal is closed under the Poisson bracket: {J ,J } ⊂ J .

If we denote by Ω0 the restriction of Ω to M0, then kerΩ0 is an integrable distri-

bution (we assume that the rank of Ω0 is constant). Then the quotient space M̃ of

M0 with respect to the connected leaves of ker Ω0, inherits a symplectic structure

provided it is a manifold. Finally the functions on M̃ are those functions on M0

which are constant on the leaves of the foliation defined by ker Ω0. Since the tan-

gent vectors to the leaves are the hamiltonian vector fields of functions in I(M0),
we have an isomorphism

C∞(M̃ ) = {f ∈ C∞(M0) | {f, I(M0)} = 0}, (3.2.3)

where {f, I(M0)} = 0 on M0. Extending f to a function on M , the isomorphism

becomes

C∞(M̃) = {f ∈ C∞(M0) | {f, I(M0)} ⊂ I(M0)}/I(M0). (3.2.4)

By generalizing these constructions, if we have a Poisson algebra (i.e. an as-

sociative Lie–Jordan algebra) (L, {·, ·}) and an ideal J with respect to the Jordan

product, we can work out the algebraic reduction by taking the normalizer NJ

with respect to the ideal J

NJ = {x ∈ L | {x,J } ⊂ J } (3.2.5)

which is a Poisson subalgebra, and a straightforward computation shows NJ ∩J
is its Poisson ideal. Therefore L̃ = NJ /(NJ ∩ J ) inherits the structure of a

Poisson algebra.
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The example in which (M,Ω) is a symplectic manifold, L = C∞(M) and J
is the ideal

J = {f ∈ C∞(M) | f |M0
= 0} (3.2.6)

shows the connection with the discussion before. By using the second isomorph-

ism theorem for vector spaces

N/(N ∩ J ) ≃ (N + J )/J (3.2.7)

and taking into account that the quotient by J can be identified with the restriction

to the submanifold M0, the right hand side can be described as the restriction

to M0 of the functions in NJ + J , but NJ + J = C∞(M) for second class

constraints.

3.2.1. Reduction by symmetries

Suppose that we have a Lie group G acting on a symplectic manifold M and

we want to restrict our Poisson algebra to functions that are invariant under the

action of the group.

The infinitesimal action of the group induces a family of vector fields E ⊂
X(M) that are an integrable distribution and actually the action ofG onM induces

a map ρ̂ : g → DerC∞(M) = X(M) which is a Lie algebra homomorphism.

Then E = ρ̂(g). If the action of G on M is faithful then E ∼= ρ̂(g). With these

geometric data we introduce the subspace

E = {f ∈ C∞(M) | Xf = 0, ∀X ∈ E} (3.2.8)

that is a Jordan subalgebra (E ◦ E ⊂ E), but not necessarily a Lie subalgebra.

When this is the case, i.e. if

{E , E} ⊂ E , (3.2.9)

the restrictions of the operations to E endows it with the structure of a Poisson

subalgebra.

From the algebraic point of view the action of vector fields on functions is a

derivation of the Jordan algebra product ◦:

X(f ◦ g) = Xf ◦ g + f ◦Xg, (3.2.10)
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and if this derivation is also a Lie derivation:

X{f, g} = {Xf, g} + {f,Xg}, (3.2.11)

then one easily sees that E is a Lie subalgebra.

An example of the previous situation happens when E is a family of Hamilto-

nian vector fields, i.e. there exists a Lie subalgebra G ⊂ C∞(M) such thatX ∈ E
if and only if there is a g ∈ G with Xf = {g, f} for any f ∈ C∞(M). This kind

of derivations, defined through the Lie product, are called inner derivations, they

are always Lie derivations and therefore they define a Lie-Jordan subalgebra with

the procedure described above.

Then if J : M → g∗ denotes the momentum map of the action, for any ξ ∈ g,

Xξ ∈ E = ρ̂(g) is a Hamiltonian vector field with Hamiltonian Jξ = 〈J, ξ〉. Thus

we have Xξ(f) = {Jξ , f} and in this case

Xξ{f, g} = {Jξ , {f, g}} = {{Jξ , f}, g} + {f, {Jξ , g}}
= {Xξf, g}+ {f,Xξg}. (3.2.12)

The submanifold J−1(0) (provided that 0 is a regular value of J) is coisotropic

and the corresponding reduction is called Marsden–Weinstein reduction [MW74].

Actually Marsden–Weinstein reduction corresponds to reduce with respect to the

manifold J−1(µ), µ ∈ g∗ which now is not coisotropic in general. As a particular

instance of this situation consider a symplectic manifold (M,Ω) with a strongly

Hamiltonian action of the connected Lie group G.

3.3. More general Poisson reductions

One attempt to combine the previous reductions (by constraints and by sym-

metries) to define a more general one is contained in [MR86]. We shall rephrase

here in algebraic terms the original construction that was presented in geometric

language.

The data are an embedded submanifold ι : N → M of a Poisson manifold

and a subbundle B ⊂ TNM := ι∗(TM). With these data we define the Jordan

ideal I = {f ∈ C∞(M) | f |N = 0} as before, and the Jordan subalgebra
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B = {f ∈ C∞(M) | Xf = 0 ∀X ∈ Γ(B)}. The goal is to define an associative

Lie-Jordan structure in B/(B ∩ I).
Following [MR86] we assume that B is also a Lie subalgebra, then if B ∩ I is

a Lie ideal of B the sought reduction is possible.

However, the condition that B is a subalgebra is a rather strong one [FZ08]

and, consequently, the reduction procedure is much less general than initially ex-

pected. Actually, as we will show, it consists on a succesive application of the

reductions introduced in the previous section. One can prove the following result.

Theorem 3.3.1 ([FZ08]). With the previous definitions, if B is not the whole al-

gebra, i.e. B 6= 0, and in addition it is a Lie subalgebra, then the following

statements hold:

a) B ⊂ N := {g ∈ C∞(M) | {I, g} ⊂ I}.

b) B ∩ I is Poisson ideal of B.

c) B/(B ∩ I) always inherits a Poisson bracket.

d) Take another 0 6= B′ ⊂ TN (M) and define B′ accordingly. If B ∩ TN =
B′ ∩ TN ⇔B + I = B′ + I by the second isomorphism theorem we have

B/(B ∩ I) ≃ (B + I)/I ≃ B′/(B′ ∩ I) (3.3.1)

and the two Poisson brackets induced on (B + I)/I coincide.

Proof. We prove a) by contradiction. Assume that B 6⊂ N then there exist func-

tions f ∈ B, g ∈ I and an open set U ⊂ N , such that

{g, f}(p) 6= 0, for any p ∈ U. (3.3.2)

But certainly g2 ∈ B as a simple consequence of the Leibniz rule for the action of

vector fields. Therefore, using that B is a Lie subalgebra we have

{g2, f} = 2g{g, f} ∈ B (3.3.3)

and due to the fact that g ∈ I and {g, f}(p) 6= 0 this implies g ∈ BU , where

BU is the set of functions whose restriction to U coincide with the restriction of

someone in B.
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So far we know that g ∈ BU ∩ I and therefore hg ∈ BU ∩ I for any h ∈
C∞(M). But using that BU is a Lie subalgebra as it is B (due to the local character

of the Poisson bracket) we have

{hg, f} = h{g, f} + g{h, f} ∈ BU ⇒ h{g, f} ∈ BU ⇒ h ∈ BU . (3.3.4)

But h is any function, then BU = C∞(M) and B|U = 0 which implies B = 0 as

we assumed that it is a subbundle. This contradicts the hypothesis of the theorem

and a) is proved.

b) follows immediately from a). Actually if B ⊂ N we have {I,B} ⊂ I and

moreover {B,B} ⊂ B. Then {I ∩ B,B} ⊂ I ∩ B.

c) is a simple consequence of the fact that B is a Lie-Jordan subalgebra and

B ∩ I its Lie-Jordan ideal.

To prove d) take fi ∈ B and f ′i ∈ B′, i = 1, 2, such that fi+ I = f ′i + I . The

Poisson bracket in (B + I)/I is given by

{f1 + I, f2 + I} = {f1, f2}+ I ∈ (B + I)/I, (3.3.5)

where for simplicity we use the same notation for the Poisson bracket in the

different spaces, which should not lead to confusion. We compute now the al-

ternative expression {f ′i + I, f ′2 + I} = {f ′1,+f ′2} + I . We assumed f ′i =
fi + gi with gi ∈ I ∩ (B + B′) and therefore, as a consequence of a), we have

{f1, g2}, {g1, f2}, {g1, g2} ∈ I , which implies

{f ′1,+f ′2}+ I = {f1, f2}+ I (3.3.6)

and the proof is completed.

Last property implies that the reduction process does not depend effectively

on B but only on B ∩ TN . Actually one can show that this procedure is simply

a successive application of the two previous reductions presented before: first

we reduce the Poisson bracket by constraints to N and then by symmetries with

E = B ∩ TN .

For completeness we would like to comment on the situation when B = 0. In

this case B = C∞(M) and, of course, it is always a Lie subalgebra. Under these

premises the reduction is not possible unless I is a Lie ideal which is not the case
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in general. Anyhow, if the conditions to perform the reduction are met and we

consider some B′ 6= 0 such that B′∩TN = 0 and B′ is a Lie subalgebra, then we

obtain again property d) of the theorem: the Poisson brackets induced by B = 0
and B′ on B/I are the same.

The question that arises here actually is, is this reduction the most general one

that can be performed using N and B? Or, in other words, if we are given N and B
does there exists a more general way to obtain the desired associative Lie-Jordan

structure in B/(B ∩ I) where B and I are defined as before?

To answer this question we will rephrase the problem in purely algebraic

terms. We shall assume that together with an associative Lie-Jordan algebra we

are given a Jordan ideal I and a Jordan subalgebra B. Of course, a particular

example of this is the geometric scenario discussed before. Under these premises

B∩I is a Jordan ideal of B and B+I is a Jordan subalgebra, then it is immediate

to define Jordan structures on B/(B ∩ I) and on (B + I)/I such that the corres-

ponding projections πB and π are Jordan homomorphisms. Moreover, the natural

isomorphism between both spaces is also a Jordan isomorphism. The problem

is whether or not we can also induce a Poisson bracket in the quotient spaces

compatible with the Jordan product. One first step to carry out this program is

contained in the following theorem.

Theorem 3.3.2 ([FFIM13a]). Given an associative Lie-Jordan algebra, (L, ◦, { , }),
a Jordan ideal I and a Jordan subalgebra B, assume

a) {B,B} ⊂ B + I, b) {B,B ∩ I} ⊂ I, (3.3.7)

then the following commutative diagram

B × B B + I

B/(B ∩ I)× B/(B ∩ I) B/(B ∩ I) (B + I)/I

{ , }

ππB×πB

≃
(3.3.8)

defines a unique bilinear, antisymmetric operation in B/(B ∩ I) that satisfies the

Leibniz rule.
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Proof. In order to show that we define uniquely an operation we have to check that

πB is onto and that ker (πB)×B and B × ker (πB) are mapped into ker (π) = I .

But first property holds because πB is a projection and the second one is a con-

sequence of (3.3.7,b). The bilinearity of the induced operation follows form the

linearity or bilinearity of all the maps involved in the diagram and its antisym-

metry derives form that of { , }. Finally Leibniz rule is a consequence of the

same property for the original Poisson bracket and the fact that π and πB are

Jordan homomorphisms.

The problem with this construction is that, in general, the bilinear operation

does not satisfy the Jacobi identity as shown in the following example.

Example 3.3.3. Consider M = R3 × R3, with coordinates (x,y) and Poisson

bracket given by the bivector Π =
∑3

i=1
∂
∂xi

∧ ∂
∂yi

. take N = {(0, 0, x3,y)} and

for a given λ ∈ C∞(N) define B = span{∂x1 , ∂x2 − λ∂y1} ⊂ TNM and

B = {f ∈ C∞(M), | Xf |N = 0,∀X ∈ Γ(B)}. (3.3.9)

Notice that TNM is a direct sum of B and TN , therefore we immediately get

{B,B} ⊂ B + I = C∞(M) and {B,B ∩ I} ⊂ I, (3.3.10)

and we meet all the requirements to define a bilinear, antisymmetric operation on

B/(B ∩ I) ≃ C∞(N).

Using coordinates (x3,y) for N the bivector field is

ΠN =
∂

∂x3
∧ ∂

∂y3
+ λ

∂

∂y1
∧ ∂

∂y2
(3.3.11)

that does not satisfy the Jacobi identity unless ∂x3λ = ∂y3λ = 0.

Now the problem is to supplement (3.3.7) with more conditions to guarantee

that the induced operation satisfies all the requirements for a Poisson bracket. We

do not know a simple description of the minimal necessary assumption but a rather

general scenario is the following proposition:
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Proposition 3.3.4 ([FFIM13a]). Suppose that in addition to the conditions of the-

orem 3.3.2 we have two Jordan subalgebras B+, B−

B− ⊂ B ⊂ B+ and B± + I = B + I, (3.3.12)

such that

a) {B−,B−} ⊂ B+, b) {B−,B+ ∩ I} ⊂ I. (3.3.13)

Then the antisymmetric, bilinear operation induced by (3.3.8) is a Poisson bracket,

i.e. it fulfils the Jacobi identity.

Proof. To prove this statement consider any two functions f1, f2 ∈ B and, for

i = 1, 2, denote by fi,− a function in B− such that fi + I = fi,− + I ⊂ B + I .

Due to (3.3.7) we know that

{f1,−, f2,−}+ I = {f1, f2}+ I, (3.3.14)

but if (3.3.13,a) also holds,

{f1,−, f2,−} ∈ B+, (3.3.15)

in addition we have that

{f1,−, f2,−}− − {f1,−, f2,−} ∈ B+ ∩ I, (3.3.16)

and using (3.3.13,b)

{{f1,−, f2,−}−, f3,−}+ I = {{f1,−, f2,−}, f3,−}+ I. (3.3.17)

Therefore the Jacobi identity for the reduced antisymmetric product derives from

that of the original Poisson bracket.

Notice that the whole construction has been made in algebraic terms and there-

fore it will have an immediate translation to the quantum realm. But before going

to that scenario we reexamine the example before, Ex. 3.3.3, to show how it fits

into the general result.
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Example 3.3.5. We take definitions and notations from example 3.3.3. Now let λ̃
be an arbitrary smooth extension of λ to M , i.e. λ̃ ∈ C∞(M) such that λ̃|N = λ,

we define E = span{∂x1 , ∂x2 − λ̃∂y1} ⊂ TM and B− = {f ∈ C∞(M) | Xf =
0, ∀X ∈ Γ(E)}.

If we define B+ = B, it is clear that B− ⊂ B ⊂ B+, B± + I = B + I and

{B−,B+ ∩ I} ⊂ I . But {B−,B−} ⊂ B+ if and only if ∂x3λ = ∂y3λ = 0.

Therefore, in our construction we can accommodate the most general situation

in which the example provides a Poisson bracket. We believe that this is not

always the case, but we do not have any further counterexamples.

We want to end this section with a comment on the possible application of the

reduction described in this section to quantum systems. In this case the Lie-Jordan

algebra is non-associative and due to the associator identity there is a deeper con-

nection between the Jordan and Lie products. As a result the different treatment

between the Jordan and the Lie part, that we considered in the case of associative

algebras, is not useful any more and the natural thing to do is to consider a more

symmetric prescription.

3.3.1. Generalized reduction of Lie–Jordan algebras

We propose in this subsection a generalisation of the standard reduction pro-

cedure (the quotient of subalgebras by ideals) for Lie–Jordan algebras along sim-

ilar lines to those followed in the associative case.

The statement of the problem is the following: given a Lie-Jordan algebra L
and two subspaces B, S the goal is to induce a Lie-Jordan structure in the quotient

space B/(B ∩ S).
If we assume the following conditions:

B ◦ B ⊂ B + S, [B,B] ⊂ B + S, (3.3.18a)

B ◦ (B ∩ S) ⊂ S, [B,B ∩ S] ⊂ S, (3.3.18b)

then a diagram similar to the one in Theorem 3.3.2 allows to induce commutat-

ive and antisymmetric bilinear operations in the quotient. Now, in order to ful-

fil the ternary properties (Jacobi, Leibniz and associator identity) we need more
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conditions. We can show that, again, it is enough to have two more subspaces

B− ⊂ B ⊂ B+ such that B± + S = B + S and moreover we get the conditions

substituting (3.3.18a) and (3.3.18b):

B− ◦ B− ⊂ B+, [B−,B−] ⊂ B+, (3.3.19a)

B− ◦ (B+ ∩ S) ⊂ S, [B−, (B+ ∩ S)] ⊂ S. (3.3.19b)

Then, under these conditions, one can correctly induce a Lie-Jordan structure in

the quotient. Conditions (3.3.19a) constitute a weaker version of the notion of

Lie–Jordan subalgebra. Actually if B− = B = B+, then we are just claiming that

B− is a Lie–Jordan subalgebra. On the other hand conditions (3.3.19b) constitute

a weaker version of the notion of ideal. If B− = B = B+ then (3.3.19b) just

implies that S is an ideal of B. Because of this we will say that the pair B−, B+

is a weak Lie–Jordan subalgebra, and that S is a weak Lie–Jordan ideal of

(B−,B+). Then we have proved:

Theorem 3.3.6. Let L be a Lie–Jordan algebra and B− ⊂ B ⊂ B+ a weak Lie–

Jordan subalgebra and S a weak Lie–Jordan ideal of (B−,B+). Then B/B ∩ S
inherits a canonical Lie–Jordan structure

There are at least two aspects of this construction that need more work. The

first one is to find examples in which this reduction procedure is relevant, similarly

to what we did for the classical case in the previous section. The second problem

is of topological nature: given a Banach space structure in the big algebra L,

compatible with its operations, we can correctly induce a norm in the quotient

provided B and S are closed subspaces. However, the induced operations need

not to be continuous in general; though they are, if B is a subalgebra and S an

ideal. The study of more general conditions for continuity and compatibility of

the norm will be the subject of further research.
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3.4. Quantum constraints and reduction of Lie–Jordan Banach algebras

In this section we show how to deal with quantum constraints in the LJB–algebra

setting.

In quantum physics the set of constraints is a set {Ai, i ∈ I} (I an index set)

of operators on some Hilbert space together with a selection condition for the

subspace of physical states:

HC ≡ {ψ | Aiψ = 0 ∀ i ∈ I}. (3.4.1)

The set of physical observables is then the set of observables which preserve HC .

The final constrained system is the restriction of this algebra to the subspace HC .

By going into the abstract level of LJB–algebras, one starts with an algebra L con-

taining all physical observables, and assume that the constraints should appear in

L as a subset C. This assumption is justified by the fact that kerAi = ker A∗
iAi,

hence we can assume the constraint algebra to be self-adjoint, this is it belongs to

the LJB–algebra L.

Remark. Note that in physical relevant situations the operatorsAi are not bounded.

Then, by following the seminal works of Grundling et al. [GH85], [GL00] some

possibilities may arise which we can handle within the algebraic framework:

1. if the Ai are unbounded but essentially selfadjoint, we can take the unitaries

U ≡ {exp(itAj) | t ∈ R} and identify the constraint set with C = {U−1 |
U ∈ U}sa, i.e. taking the selfadjoint part defined by those unitaries.

2. If the Ai are unbounded and normal, we can identify C with {f(Aj) | j ∈
I}, where f is a bounded real valued Borel function with f−1(0) = {0}.

3. If the Ai are unbounded, closable and not normal, we can replace each Ai
with the essentially selfadjoint operator A∗

iAi, which is justified by the fact

that as mentioned above kerAi = ker A∗
iAi, reducing then to the case of

essentially selfadjoint constraints.

The constraint set C select the physical state space, also called Dirac states

SD = {ω ∈ S(L) | ω(c2) = 0, ∀ c ∈ C }
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where S(L) is the state space of L. This is the analogue of selecting the constraint

submanifold in the classical reduction. Now, in the algebraic setting, we also

need a kind of “generalized” constraint subalgebra, which is a subalgebra of L
which gives rise to the same set of Dirac states. Hence we define the vanishing

subalgebra V as:

V = { a ∈ L | ω(a2) = 0, ∀ω ∈ SD }.

Proposition 3.4.1. V is a non-unital LJB–subalgebra.

Proof. Let a, b ∈ V . From (2.2.4) it follows:

(a ◦ b)2 = κ [b, [a ◦ b, a] ] + a ◦ (b ◦ (a ◦ b) ). (3.4.2)

If we introduce c = [a ◦ b, a] and d = b ◦ (a ◦ b), Eq. (3.4.2) becomes:

(a ◦ b)2 = κ [b, c ] + (a ◦ d ). (3.4.3)

From the inequalities (2.2.13)(2.2.14) it is easy to show that if ω(a2) = 0 then

ω(a ◦ b) = 0 = ω([a, b]) ∀ b ∈ L. (3.4.4)

Then if we apply the state ω to the expression (3.4.3), from (3.4.4) it follows:

ω( (a ◦ b)2 ) = κ ω([b, c ]) + ω(a ◦ d ) = 0. (3.4.5)

By definition of V , this means that ∀ a, b ∈ V , a ◦ b ∈ V .

By applying the state ω to the relation

(a ◦ b)2 − κ [a, b]2 = a ◦ (b ◦ (a ◦ b))− κ a ◦ [b, [a, b] ],

we obtain ω( [a, b]2 ) = ω((a ◦ b)2) = 0, that is ∀ a, b ∈ V , [a, b] ∈ V . Hence V is

a Lie–Jordan subalgebra.

V also inherits the Banach structure since it is defined as the intersection of closed

subspaces.

We can use the vanishing subalgebra to give an alternative description of the

Dirac states that will be useful in the sequel.
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Proposition 3.4.2. With the previous definitions we have

SD = {ω ∈ S(L) | ω(a) = 0, ∀a ∈ V}

Proof. As V is a subalgebra and it contains C it is clear that the right hand side is

included into SD.

To see the other inclusion it is enough to consider that for any state ω(a)2 ≤
ω(a2), therefore any Dirac state should vanish on V .

Define now the Lie normalizer as

NV = { a ∈ L | [a,V] ⊂ V } (3.4.6)

which corresponds roughly to Dirac’s concept of “first class variables” [Dir01].

Proposition 3.4.3. NV is a unital LJB–algebra and V is a Lie–Jordan ideal of

NV .

Proof. Let a, b ∈ NV and v ∈ V . Then by definition of normalizer it immediately

follows:

[[a, b], v] = [[a, v], b] + [[v, b], a] ∈ V. (3.4.7)

Let us now prove that ∀ v ∈ V, v ◦ a ∈ V , this is V is a Jordan ideal of NV :

ω((v ◦ a)2) = κ ω([a, [v ◦ a, v]]) + ω(v ◦ (a ◦ (a ◦ v))) (3.4.8)

which gives zero by repeated use of properties (2.2.13) and (2.2.14).

Then it becomes easy to prove that NV is a Jordan subalgebra:

[a ◦ b, v] = [a, v] ◦ b+ a ◦ [b, v] ∈ V. (3.4.9)

Finally, since the Lie bracket is continuous with respect to the Banach structure,

it also follows that NV inherits the Banach structure by completeness.

In the spirit of Dirac, the physical algebra of observables in the presence of

the constraint set C is represented by the LJB–algebra NV which can be reduced

by the closed Lie–Jordan ideal V which induces a canonical Lie–Jordan algebra

structure in the quotient:

L̃ = NV
/
V . (3.4.10)
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We will denote in the following the elements of L̃ by ã.

The quotient Lie-Jordan algebra L̃ carries the quotient norm,

‖ã‖ = ‖ [a] ‖ = inf
b∈V

‖a+ b‖,

where a ∈ NV is an element of the equivalence class [a] of NV with respect to the

ideal V . The quotient norm provides a LJB–algebra structure to L̃.

Hence the reduction of the Lie–Jordan algebra L with respect to the constraint

set C is given by the short exact sequence

0 → V → NV → L̃ → 0. (3.4.11)

In the Subsection 3.4.2 we will prove that the states on the reduced LJB–algebra

L̃ are exactly the Dirac states restricted to the physical algebra of observables NV .

3.4.1. Reduction of Lie–Jordan Banach algebras and constraints inC∗–algebras

Following [GH85], [GL00] we briefly recall how to deal with quantum con-

straints in a C∗–algebra setting. The aim of this section is to prove that the reduc-

tion procedure of C∗–algebras used to analyze quantum constraints, also called

T–reduction, can be equivalently described by using the theory of reduction of

LJB–algebras discussed above.

A quantum system with constraints is a pair (F , C) where now the field algebra

F is a unital C∗–algebra containing the self–adjoint constraint set C, i.e. C =
C∗ ∀C ∈ C. The constraints select the Dirac states

SD ≡ {ω ∈ S(F) | ω(C2) = 0, ∀C ∈ C }

where S(F) is the state space of F .

Define D = [FC]∩ [CF ] where the notation [·] denotes the closed linear space

generated by its argument and satisfies the following

Theorem 3.4.4. D is the largest non-unital C∗–algebra in
⋂

ω∈SD

ker ω.
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For any set Ω ⊂ F , define as before its normalizer or “weak commutant” as

ΩW = {F ∈ F | [F,H] ⊂ Ω, ∀H ∈ Ω }. (3.4.12)

Consider now the multiplier algebra of Ω as

M(Ω) = {F ∈ F | FH ∈ Ω and HF ∈ Ω, ∀H ∈ Ω } (3.4.13)

i.e. the largest set for which Ω is a bilateral ideal. M(Ω) is clearly an unital

C∗–algebra and we have the following

Theorem 3.4.5. O ≡ DW = M(D).

That is, the weak commutant of D is also the largest set for which D is a

bilateral ideal and it will be denoted by O. It follows that the maximal (and unital)

C∗–algebra of physical observables determined by the constraints C is given by:

F̃ = O/D. (3.4.14)

To show that this procedure is equivalent to the reduction of the corresponding

LJB–algebra (as discussed in Section 3.4), we need to prove some simple state-

ments.

Lemma 3.4.6. Let Z and I be two Lie-Jordan subalgebras of a LJB–algebra L.

Then ZC = Z ⊕ iZ is the weak commutant (or Lie normalizer) of IC = I ⊕ iI if

and only if Z is the Lie normalizer of I , i.e. Z = NI .

Proof. Assume first ZC is the weak commutant of IC and let a + ib ∈ ZC with

a, b ∈ Z . By definition

[a+ ib,I ⊕ iI] ⊂ I ⊕ iI

that is

[a+ b,I] ⊂ I and [a− b,I] ⊂ I.
Since the normalizer is a vector space, this implies

[a,I] ⊂ I and [b,I] ⊂ I, ∀ a, b ∈ Z,
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that is Z is the Lie normalizer of I . Conversely assume Z is the Lie normalizer

of I:

[a,I] ⊂ I, ∀ a ∈ Z,
then it follows

[a+ ib, x+ iy] ∈ I, ∀ a, b ∈ Z and ∀x, y ∈ I,

that is ZC is the weak commutant (or Lie normalizer) of IC.

Lemma 3.4.7. Let Z and I be two Lie-Jordan subalgebras of L. Then I is a

Lie–Jordan ideal of Z if and only if IC = I ⊕ iI is an associative bilateral ideal

of ZC = Z ⊕ iZ .

Proof. Using the expressions provided by eqs. (2.3.8) and (2.3.9), the statement

becomes an easy computation.

Let us define L and L̃ such that F = L⊕ iL and F̃ = L̃⊕ iL̃, i.e. they are the

self-adjoint part of F and F̃ respectively. From Corollary 2.3.11 it follows that L
and L̃ are unital LJB–algebras. Similarly define the LJB–algebras NJ and J as

the self-adjoint parts of O and D respectively, i.e. O = NJ ⊕ iNJ , D = J ⊕ iJ .

Theorem 3.4.8. With the notations above, let F = L⊕ iL be the field algebra of

the quantum system and C a real constraint set. Let D = [FC] ∩ [CF ], O = DW

be as in Thm. 3.4.5, and F̃ = O/D = L̃⊕ iL̃ be the reduced field algebra. Then:

L̃ = NV/V,

with V and NV being the vanishing subalgebra of L and its Lie normalizer re-

spectively.

Proof. Observe that the space of states on F is the space of states on L extended

linearly by complexification and conversely S(L) = S(F)|L. Then from Thm.

3.4.4 it follows that D is exactly the vanishing subalgebra for SD, that is D =
V ⊕ iV . Then from the Lemmas 3.4.6 and 3.4.7 everything goes straightforward

and the two procedures are clearly equivalent.
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The equivalence of the two approaches can be illustrated pictorially by the

following “functorial” diagramme:

L

J , NJ
��

F = L ⊕ iL

D, O��

L̃ F̃ = L̃ ⊕ iL̃

3.4.2. The space of states of the reduced LJB–algebra

The purpose of the remaining two sections is to discuss the structure of the

space of states and the GNS construction of reduced states for reduced LJB–algebras

with respect to the space of states of the unreduced one.

As it was discussed in the previous section, let A be a C∗–algebra, L = Asa

its real part and V the vanishing subalgebra of L with respect to a constraint set C
and let NV be the Lie normalizer of V . Then we will denote as before by L̃ the

reduced Lie–Jordan Banach algebra NV/V and its elements by ã.

Let S̃ = S(L̃) be the state space of the reduced LJB–algebra L̃, i.e. ω̃ ∈ S̃
means that ω̃(ã2) ≥ 0 ∀ ã ∈ L̃, and ω̃ is normalized. Notice that if L is unital,

then 1 ∈ NV and 1+ V is the unit element of L̃. We will denote it by 1̃.

We have the following:

Lemma 3.4.9. There is a one-to-one correspondence between normalized pos-

itive linear functionals on L̃ and normalized positive linear functionals on NV

vanishing on V .

Proof. Let ω′ : NV → R be positive. The positive cone on L̃ consists of elements

of the form ã2 = (a+ V)2 = a2 + V , i.e.

K+

L̃
= { a2 + V | a ∈ NV } = K+

NV
+ V.
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Thus if ω′ is positive on NV , ω′(a2) ≥ 0, hence:

ω′(a2 + V) = ω′(a2) + ω′(V)

and if ω′ vanishes on the closed ideal V , then ω′ induces a positive linear functional

on L̃. Clearly ω′ is normalized then the induced functional is normalized too

because 1̃ = 1+ V .

Conversely, if ω̃ : L̃ → R is positive and we define

ω′(a) = ω̃(a+ V)

then ω′ is well-defined, positive, normalized and ω′|V = 0.

Notice also that given a positive linear functional on NV there exists an exten-

sion of it to L which is positive too.

Lemma 3.4.10. Given a closed Jordan subalgebra Z of a LJB–algebra L such

that 1 ∈ Z and ω′ is a normalized positive linear functional on Z , then there

exists ω : L → R such that ω(a) = ω′(a), ∀ a ∈ Z and ω ≥ 0.

Proof. Since L is a JB–algebra, it is also a Banach space. Due to the Hahn–

Banach extension theorem, there exists a continuous extension ω of ω′, i.e. ω(a) =
ω′(a), ∀ a ∈ Z , and moreover ‖ω‖ = ‖ω′‖.

From the equality of norms and the fact that ω′ is positive we have ‖ω‖ =
ω′(1), but ω is an extension of ω′ then ‖ω‖ = ω(1), which implies that ω is a

positive functional and satisfies all the requirements stated in the lemma.

We can now prove the following:

Theorem 3.4.11. The set SD(NV) of Dirac states on L restricted to NV is in

one-to-one correspondence with the space of states of the reduced LJB–algebra

L̃.

Proof. In Prop. 3.4.2 we characterised the Dirac states as those that vanish on V .

Combining this result with that of Lemma 3.4.9 the proof follows.
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3.4.3. The GNS representation of reduced states

Finally, we will describe the GNS representation of a reduced state in terms

of data from the unreduced LJB–algebra. Let L̃ be, as before, the reduced LJB–

algebra of L with respect to the constraint set C. Denote by Ã = L̃ ⊕ iL̃ the

corresponding C∗–algebra and by S̃ its state space. Let ω̃ ∈ S̃ be a normalized

state on Ã. The GNS representation of Ã associated to the state ω̃, denoted by

πω̃ : Ã → B(Hω̃),

is defined as

πω̃(Ã)(B̃ + Jω̃) = ÃB̃ + Jω̃, ∀ Ã, B̃ ∈ Ã,
where the Hilbert space Hω̃ is the completion of the pre–Hilbert space defined on

Ã/Jω̃ by the inner product

〈Ã+ Jω̃, B̃ + Jω̃〉 ≡ ω̃(Ã∗B̃)

and Jω̃ = {Ã ∈ Ã | ω̃(Ã∗Ã) = 0} is the Gelfand left-ideal of ω̃. Let ω be a

state on A = L ⊕ iL that extends the state ω′ on NC
V induced by ω̃ according to

Lemmas 3.4.9 and 3.4.10. Notice that ω vanishes on V , thus the Gelfand ideal Jω
of ω contains V . We will have then:

Theorem 3.4.12. There is a unitary equivalence between Hω̃ and the completion

of the pre–Hilbert space:

H′ = NC
V

/
NC

V ∩ Jω

with the inner product defined by

〈A+NC
V ∩ Jω, B +NC

V ∩ Jω〉′ ≡ ω(A∗B), ∀A,B ∈ NC
V .

Proof. Notice first that 〈·, ·〉′ is well defined because of the properties of the Gel-

fand ideal Jω. Morover we have that

Hω̃ = Ã/Jω̃
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and from Thm. 3.4.8, Ã = NC
V /VC and Jω̃ = Jω′/

(
Jω′ ∩ VC

)
.

Hence because Jω′ = NC
V ∩ Jω and VC ⊂ Jω′ , we have:

Hω̃ = Ã/Jω̃ =

(
NC

V

/
VC

)/(
NC

V ∩ Jω
/
VC

)

∼= NC
V

/
NC

V ∩ Jω .

Notice that

H′ = NC
V

/
NC

V ∩ Jω ∼=
(
N C

J + Jω
)/
Jω .

Thus the reduced GNS construction corresponding to the state ω̃ is the GNS con-

struction of any extension ω of ω̃ restricted to NC
V + Jω. Notice that ω̃ will be

a pure state if and only if πω̃ is irreducible, i.e. if the representation of πω of ω
restricted to NC

V +Jω is irreducible. Then if NC
V +Jω = A, πω will be irreducible

if ω is a pure state. If NC
V + Jω  A, then the state ω extending ω̃ might be non

pure.



4
BRST SYMMETRY AND REDUCTION OF

SUPERSYMMETRIC LIE–JORDAN BANACH ALGEBRAS

Since Becchi, Rouet, Stora [BRS74] and Tyutin [Tyu75] introduced today’s so

called BRST symmetry, it has been proven to be very useful to quantize degenerate

systems with gauge symmetries. An important property of the BRST symmetry is

that it can be described geometrically and as we will see in this chapter algebraic-

ally in the setting of Lie–Jordan Banach algebras. In its classical setting the BRST

symmetry describes the structure of first class constraints in phase space. We will

extend in this chapter such ideas to the context of Lie-Jordan Banach algebras of

observables where the notion of first class submanifold is substituted by a closed

ideal of the LJB–structure.

The fundamental idea of this mechanism consists in introducing auxiliary degrees

of freedom, called “ghosts” and “antighosts” and replace the local gauge sym-

metry by a global supersymmetry generated by a single operator called the “su-

percharge”, whose square vanishes, and transforming the symmetry in a (co-)

homology theory. Then the role of this operation is to select the “true” physical
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states of the theory as we will see later on.

We will be here interested in extending the standard BRST symmetry to the setting

of Lie–Jordan Banach algebras. In this sense this can be considered an “intrinsic”

quantum approach to BRST where we are not using any quantization scheme. The

aim of this effort is to emphasize the algebraic nature of the theory and make it

useful in other areas of Mathematics and Physics.

There are various presentations of the BRST techniques. We will adopt here a

generalization of the Hamiltonian approach (see for instance [Hen85], [HT88]),

but we will reduce the construction to its bare essentials in order to make clear

the basic ingredients. Actually, as it will be shown, the Hamiltonian structure is

not needed at the classical level and the construction is purely geometric. The

Hamiltonian structure is substituted by a group action. However the Hamiltonian

picture will surface again in the LJB–algebra setting where it is intrinsic to the

model.

Thus we will review first the well-established BRST symmetry and then we will

move to the abstract realm of operator algebras.

4.1. The classical BRST symmetry

We will consider first, as in the Hamiltonian setting, a smooth manifold M
and a submanifold C ⊂M defined by certain set of constraint functions. We will

assume that C is a regular submanifold, or in other words, that there is a smooth

function Φ: M → V ∗, where V is a finite dimensional vector space (so it is V ∗)

such that C = Φ−1(0) and 0 a regular value of Φ. Let us recall that 0 is a regular

value of Φ if ∀m ∈ C , the tangent map TΦ(m) : TmM → T0V
∗ ∼= V ∗ is

surjective. Under these conditions, C is an embedded submanifold of M and the

tangent space to C at m ∈ C is just the kernel of the map TΦ(m)

TmC = ker TΦ(m) (4.1.1)

Remark. The regularity condition for 0 ∈ V ∗ it is often too strong, however it can

be replaced by a weaker condition, just asking that 0 is a weakly regular value of

Φ, that is:
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i) C = Φ−1(0) is a regular submanifold of M , and

ii) ∀m ∈ C , TmC = ker TΦ(m), i.e. Eq. (4.1.1) holds.

Now we may consider that there is a Lie group G acting on M leaving invari-

ant Φ, i.e. Φ(g ·m) = Φ(m) ∀ g ·m ∈ G, ∀m ∈ G. We want to describe the

space of orbits C/G. Even better, we will try to describe the space of G–invariant

functions on G. That will provide a description of the space C/G suitable for

algebraic generalizations.

4.2. The classical BRST complex

We will assume as before that we have a smooth manifold M and a submani-

fold C = Φ−1(0) described as the zero level set of a map Φ: M → V ∗, such that

0 is a weak regular value of Φ. We will also assume that there is a Lie group G
acting smoothly on M and such that it preserves the submanifold C , i.e. if x ∈ C
then g ·x ∈ C ∀ g ∈ G. We will show in what follows that the algebra of smooth

functions on C/G can be identified with the zeroth order cohomology group for a

differential operator D = d1 + d2 defined on a double complex (S, d1, d2) which

is obtained as the tensor product of the Chevalley complex (Λ•g∗, d2) of the Lie

group G and a certain Koszul complex (K•, d1) described below.

This construction combines both algebraic and geometric aspects. Let us begin

with the algebraic ones.

Let g be the finite dimensional Lie algebra of the Lie group G and Λ•g∗ =⊕
k≥0

Λkg∗ be the exterior or Grassmanian algebra over its dual space g∗. Elements

in Λ•g∗ will be denoted by α, β, . . . and they are in one-to-one correspondence

with left (or right) invariant forms on the group G. Clearly Λ•g∗ is a graded

commutative associative algebra of dimension 2dimg with respect to the exterior

product ∧. Consider now the unique derivation of degree one over Λ•g∗

d2 : Λkg∗ → Λk+1g∗ (4.2.1)
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such that

(d2α)(ξ, η) = −〈α, [ξ, η]〉 (4.2.2)

where α ∈ Λ1g∗ and ξ, η ∈ g. Notice that and if α is an homogeneous element of

Λ•g∗ of degree |α|

d2(α ∧ β) = d2α ∧ β + (−1)|α|α ∧ d2β. (4.2.3)

Then it is easy to check that d22 = 0, hence (Λ•g∗, d2) defines a differential com-

plex, depicted by the sequence:

0 −→ R −→ g∗
d2−→ Λ2g∗

d2−→ Λ3g∗
d2−→ · · · d2−→ Λkg∗

d2−→ · · · d2−→ Λrg∗
d2−→ 0,

(4.2.4)

where r = dimg and d22 = 0 (i.e. im d2 ⊂ ker d2 at each step).

The cohomology of this complex is by definition the Chevalley’s cohomology of

the Lie algebra g, i.e.

Hk(g) ≡ ker d2 : Λkg∗ → Λk+1g∗

im d2 : Λk−1g∗ → Λkg∗
. (4.2.5)

Notice for instance that H0(g) = R. Then we say that this cohomology is con-

nected. The graded space

H•(g) =
⊕

k≥0

Hkg = H0(g)⊕H1(g)⊕ . . .⊕Hr(g) ∼= R⊕H1(g)⊕ . . .⊕Hr(g)

(4.2.6)

inherits a graded commutative algebraic associative structure by defining

[α] ∧ [β] ≡ [α ∧ β]. (4.2.7)

Remark. It can be shown that any differential complex (S, d) with S =
⊕
k≥0

Sk

satisfying the previous properties is the exterior algebra complex of a Lie algebra.

We define g∗ = S1 and the Lie algebra structure by using Eq. (4.2.2).

Suppose now that (K•, d1) is another differential complex whereK• =
⊕
k

Kk

is a commutative graded algebra and d1 is an operator of degree one such that
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d21 = 0. We will assume that we have a representation ρK of G on K• preserving

the graduation of K•, i.e.

ρK : G→ Aut(K•) (4.2.8)

such that ρK(gh) = ρK(g) ◦ ρK(h) and ρK(g)Kk ⊂ Kk, ∀ g, h ∈ G, ∀ k.

Actually we will only need a representation ρ̂K of the Lie algebra g of G on K•

by derivations of degree 0, i.e.

ρ̂K : g → Der(K•) (4.2.9)

such that

ρ̂K([ξ, η]) = [ρ̂K(ξ), ρ̂K(η)], ∀ ξ, η ∈ g. (4.2.10)

Moreover we require that ρ̂KK
k ⊂ Kk and

ρ̂K(ξ)(f · g) = (ρ̂K(ξ)f) · g + f · (ρ̂K(ξ)g), ∀ f, g ∈ K•. (4.2.11)

If we have a representation ρK of the group G on K• which is “regular” enough,

we can differentiate it to obtain the representation ρ̂K of its Lie algebra with the

properties above. In general such map will be defined only on the “smooth” part

of K• (see later on in Section 5.2).

Now we will assume that the operator d1 is ρ̂K–invariant, i.e.

ρ̂K(ξ)(d1f) = d1(ρ̂K(ξ)f), ∀f ∈ K•, ξ ∈ g. (4.2.12)

We will call a complex (K•, d1) such that K• is a graded commutative algebra

together with a representation of a Lie algebra by zero order derivations of K•, a

Koszul complex.1

Definition 4.2.1. A Koszul complex (K•, d1) is said to be acyclic if its cohomo-

logy is trivial except, possibly, at order 0, i.e.:

Hk
d1(K

•) = 0, ∀ k 6= 0. (4.2.13)

1This is not the most general definition of a Koszul complex, but it is an adapted one for the

needs of this work.
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Consider now the graded tensor product of an ρ̂K–invariant Koszul complex

K• (or (K•, d1, ρ̂K)) and the Chevalley complex (Λ•g∗, d2). We will get then

the double graded commutative algebra S•• = K• ⊗ Λ•g∗. The algebra S•• is

equipped with a double graduation

S•• =
⊕

k,j

(Kk ⊗ Λjg∗) =
⊕

k,j

Skj, (4.2.14)

where Skj = Kk ⊗Λjg∗. The graded commutative associative product is defined

in the obvious way extending by linearity the product of monomials:

(f ⊗ α) · (g ⊗ β) = (−1)|α||g|(f · g)⊗ (α ∧ β), (4.2.15)

with f, g ∈ K• homogeneous elements and α, β ∈ Λ•g∗.

Then the double graded algebra S•• inherits a single graded structure S• (called

anti-diagonal) defined by:

S• =
⊕

k≥0

Sk, Sk =
⊕

i+j=k

Sij. (4.2.16)

Moreover both d1, d2 can be extended in a unique way to operators of bidegree

(1, 0) and (0, 1) respectively over S•• by means of:

d1(f ⊗ α) = d1f ⊗ α (4.2.17)

and d2:

d2(f ⊗ 1) ∈ K• ⊗ g∗, d2(f ⊗ 1)(ξ) = (−1)|f |ρ̂K(ξ)f ⊗ 1 (4.2.18)

or

d2(f ⊗ α) = d2f ⊗ α+ (−1)|f | ⊗ d2α, (4.2.19)

with (d2f)(ξ) = (−1)|f |ρ̂K(ξ)f . When we consider the double degree of S••

reduced to the antidiagonal degree above we will denote it by S•.

Proposition 4.2.2. If (K•, d1) is a ρ̂k–invariant complex, the operators d1, d2
induced in the graded tensor product algebra S• = K• ⊗ Λ•g∗ are such that the

operator D = d1 + d2 is a cohomology operator, i.e. D2 = 0.
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Each one of the three operators d1, d2,D on S• define its own cohomology

H•
d1
(S),H•

d2
(S),H•

D(S) which are not independent. However, even if the rela-

tion between d1, d2 andD is very simple, this is not so in the case of their cohomo-

logy algebras. The relation between them is obtained explicitely by using the so

called associated spectral sequence (see for instance [BT82], Ch. 3, Sec. 14).

However the fact that (K•, d1) is acyclic greatly simplifies the problem because

in such case it can be shown that the associated spectral sequence degenerates at

the term E2 (again [BT82], Ch. 3, Sec. 14 pp. 166 and ff.) and then:

Hk
D(S

•) = Hk
d2(H

0
d1(S

•)), k ≥ 0. (4.2.20)

The equality here is abstract, this is, up to isomorphisms, or in other words, once

the isomorphism has been established, finding the element in Hk
D(S

•) that corres-

ponds to a given element in Hk
d2
(H0

d1
(S•)) is done by solving a family of equa-

tions (whose solutions are not unique in general) known as descending equations.

We will call the complex (S•,D) thus obtained the BRST complex correspond-

ing to (K•, d1) and g, and D the abstract BRST cohomology operator.

Let us emphasize here that except for supporting a representation of g, the Koszul

complex (K•, d1) is arbitrary. We will use this fact later on to construct the BRST

complex of a Lie–Jordan Banach algebra supporting a representation of a Lie

group.

Notice again that we have not made use of any Hamiltonian structure so far like

Poisson brackets, momentum map, etc. We could have done that by assuming

that M is a Poisson manifold. In such case we will end up with (S•,D) be-

ing a Poisson superalgebra and the BRST operator being Hamiltonian with odd

Hamiltonian function Q, i.e. D = {·, Q}. Then because D2 = 0, it must be

satisfied that {Q,Q} = 0.

In general the complex (K•, d1) is obtained from simpler data, suggested by the

concrete problem at hand. Now we will describe the construction of (K•, d1) in

the classical situation.
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4.3. The classical Koszul complex (K•, d1)

Let V be a finite dimensional linear space and let R be a commutative algebra

with unit 1 (not graded). We assume that both V and R support representations

of g that will be denoted by ρ̂V and ρ̂R respectively. This is ρ̂V : g → End(V )
such that

[ρ̂V (ξ), ρ̂V (η)] = ρ̂V ([ξ, η]), ∀ ξ, η ∈ g (4.3.1)

and ρ̂R : g → Der(R) such that

[ρ̂R(ξ), ρ̂R(η)] = ρ̂R([ξ, η]). (4.3.2)

Consider now a linear map a : V → R such that

ρ̂R(ξ)(a(v)) = a(ρ̂V (ξ)v), ∀ v ∈ V, ∀ ξ ∈ g; (4.3.3)

i.e., a is g–equivariant. We will define nowK• as the graded commutative algebra

K• = R⊗ Λ•V , with Kk = R⊗ ΛkV and K• =
⊕
k≥0

Kk. Moreover

(x⊗ v) · (y ⊗ u) = (x · y)⊗ (v ∧ u), (4.3.4)

where x, y ∈ R and v, u ∈ Λ•V .

Now we define d1 as the unique derivation of degree −1 of K• that extends a and

that acts trivially on R, thus d1 : K
k → Kk−1 with2:

d1(x⊗ v) = x · a(v), ∀x ∈ R, ∀ v ∈ V. (4.3.5)

Moreover, d1x = 0 if x ∈ K0 = R and, if v ∈ V , then d1(v) = a(v) ∈ R. This

induces the sequence

· · · −→ R⊗ ΛkV︸ ︷︷ ︸
Kk

d1−→ R⊗ Λk−1V︸ ︷︷ ︸
Kk−1

−→ · · · d1−→ R⊗ V︸ ︷︷ ︸
K1

d1−→ R︸︷︷︸
K0

d1−→ 0

(4.3.6)

2Notice that in order that d1 will have degree +1 instead of −1, we should consider K• with

the opposite graduation: Ki = R⊗ Λ−iV .
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Notice that d1 being a derivation means that

d1(x⊗ v ∧ u) = x⊗ d1(v ∧ u) = x⊗ (d1v ∧ u+ (−1)|v|v ∧ d1u). (4.3.7)

Then if v ∈ V , we have d1(x⊗ v ∧ u) = x · a(v) ⊗ u− x⊗ v ∧ d1u, but then

d21(x⊗ v ∧ u) = x · a(v) ⊗ d1u− x · d1v ∧ d1u+ x⊗ v ∧ d21u
= x · a(v) ⊗ d1u− x · a(v)d1u+ x⊗ v ∧ d21u (4.3.8)

i.e., d21(x⊗ v∧u) = x⊗ v∧d21u. But again repeating the argument, if u = w∧ z,

with w ∈ V
d21(x⊗ v ∧ w ∧ z) = x⊗ v ∧ w ∧ d21z, (4.3.9)

but eventually always the last term will be d21z with z ∈ V , then d21z = d1(a(z)) =
0, since a(z) ∈ R. This proves that d21 = 0.

A simple computation shows that

H0
d1(K

•) =
ker d1 : K

0 → 0

im d1 : K1 → K0
= R

/
R · a(V ) , (4.3.10)

or what is the same H0
d1
(K•) = R/Ja, where Ja is the ideal of elements gener-

ated by the image of the map a.

In order to apply the result expressed by Eq. (4.2.20) we have to be able to show

that the complex (K•, d1) so constructed is acyclic, i.e. Hk
d1
(K•) = 0, ∀ k > 0,

that in general will not be.3

In the next section we will apply this construction to describe the space of

G–invariant functions C∞(C/G) on a constraint submanifold C and along the

way we will provide sufficient conditions for the complex (K•, d1) before to be

acyclic, with R being the algebra of smooth functions on a manifold M .

3Even if (K•, d1) were not acyclic, it can be shown that there always exists an extension

(K̃•, d̃1) of (K•, d1) which is acyclic, however we will not use this argument here.
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4.4. Classical BRST reduction

Let G be as before a connected Lie group with Lie algebra g and let M be

a smooth manifold on which G acts (see Appendix A). Let R be the algebra of

smooth functions C∞(M) on M . The action of G on M induces a representation

of g on R given by ρ̂R : g → Der(R) associating to each element ξ ∈ g the fun-

damental vector field Xξ . Let V be a finite dimensional vector space supporting

a linear representation of G, ρV : G → GL(V ). Such representation defines a

representation ρ̂V of g on V as

ρ̂V (ξ)(v) =
d

dt
ρV (e

−tξ(v))|t=0. (4.4.1)

Finally we assume that there is a map Φ: M → V ∗ which is g–equivariant in the

sense that:

〈Φ(x), ρ̂V (ξ)v〉 = 〈(ρ̂R(ξ)Φ)(x), v〉, ∀ v ∈ V, ξ ∈ g, x ∈M. (4.4.2)

Notice that Φ defines a map

a : V → C∞(M) = R (4.4.3)

by means of a(v)(x) ≡ 〈Φ(x), v〉 which is g–equivariant, that is

ρ̂R(ξ)(a(v)) = a(ρ̂V (ξ)(v)). (4.4.4)

So, the map a : V → R above satisfies the requirement discussed in the previous

section to construct the Koszul complex (K•, d1), K
• = R⊗ Λ•V .

Let us denote the zero level set Φ−1(0) by C . We have three questions that

arise naturally: under which conditions we will have that

i) C is a submanifold of M ,

ii) H0
d1
(K) = C∞(C), and

iii) the complex (R ⊗ Λ•V, d1) is acyclic?
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The answer to the first question has already been anticipated: 0 must be a weakly

regular value of Φ. Regarding the other questions, we have the following theorems

that provide a complete answer.

Theorem 4.4.1. If 0 is a weakly regular value of Φ, then

H0
d1(K

•) = C∞(C) (4.4.5)

with (K•, d1) being the Koszul complex K• = C∞(M)⊗ Λ•V defined before.

Proof. If 0 is weakly regular, then for any x ∈ C there exist local coordinates

(x1, . . . , xp, xp+1, . . . , xp+q) with p+q = dimM and q = dimC and the subman-

ifold C is defined by C = {x1 = . . . = xp}, where we are assuming dimV ≥ p.

The coordinates x1, . . . , xp are chosen from the components Φi of the map Φ in

some linear basis {vi} of V .

Notice that H0
d1
(K•) = C∞(M)

/
C∞(M) · a(V ) .

It is clear that a(v) ∈ JC , with JC the ideal of smooth functions vanishing at C:

JC = {f ∈ C∞(M) | f |C= 0} (4.4.6)

and

a(v)(x) = 〈Φ(x), v〉 = 0, ∀x ∈ C = Φ−1(0). (4.4.7)

Thus a(v) ⊂ JC but locally JC is generated by x1. . . . xp which are obtained

from the components of Φ, i.e. they have the form a(vi) = xi. It follows JC =
C∞(M) · a(V ).

Theorem 4.4.2. Suppose that 0 is a weakly regular value of Φ. Then the Koszul

complex K• = C∞(M)⊗ Λ•V is acyclic iff 0 is a regular value.

Proof. We will assume first that 0 is a regular value of Φ. Notice that we can

compute the cohomology of K• = C∞(M) ⊗ Λ•V with respect to d1 locally

because d1 acts trivially on C∞(M), this if α is a k-cocycle, d1α = 0, α ∈
C∞(M) ⊗ ΛkV , then for any open set U ⊂ M we can find a smaller open set V
and a compact set W such that V ⊂ K ⊂ U , and a “bump” function σ adapted to

it, that is, σ is smooth and

σ(x) =

{
1 x ∈ V

0 x /∈W.
(4.4.8)
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Then σα is a d1–cocycle with support contained inU (actually in V ⊂ U ) because

d1(σα) = σd1α = 0.

Similarly if β is a d1–coboundary, i.e. ∃ γ such that β = d1γ, then σβ is a d1–

coboundary too, because d1(σγ) = σd1γ = σβ. We will distinguish two cases,

depending if U ∩ C = ∅ or U ∩ C 6= ∅. However in both cases we will prove

the result by showing that there exists a homotopic contraction for d1 on U1 i.e. a

linear map

h : C∞(U)⊗ ΛkV → C∞(U)⊗ Λk+1V (4.4.9)

such that the operator hd1 + d1h is the identity in the kernel of d1, then α =
(hd1 + d1h)α = d1(hα) if d1α = 0, then α is a coboundary and Hk

d1
(K•) = 0,

i.e.

(hd1 + d1h)α = α (4.4.10)

and α ∈ C∞(U)⊗ Λ+V , with Λ+V =
⊕
k>0

ΛkV .

If U∩C 6= ∅, then using local coordinates x1, . . . , xp, xp+1, . . . , xp+q like in The-

orem 4.4.2, and now dimV = p (0 is regular) we define hα by using “Poincare’s

trick”:

(hα)(x) =

∫ 1

0
ds sk∂iα

i1...ik(s · x)vi ∧ vi1 ∧ . . . ∧ vik (4.4.11)

where α ∈ C∞(U) ⊗ ΛkV and x belongs to a star-shaped open neighborhood

contained in U . Now after some long and tedious computations we check that h
is the homotopy contraction we were looking for.

If U ∩ C = ∅ we may just use

ha =
1∑

i

(φi)2

∑

i

φivi ∧ α. (4.4.12)

Let us prove now the converse. Assume that 0 is a weakly regular value of Φ
but not regular. This implies that p < dimV . Then the differentials dφi must be



4.4. Classical BRST reduction 71

linearly dependent over C . Then there will exist functions fi on C (not all of them

vanishing at the same time) such that

∑

i

fidΦ
i |C= 0 (4.4.13)

which implies that
∑

i fiΦ
i ∈ J 1

C , i.e. the ideal of functions that vanish on C as

well as its first derivative.

However a theorem by Tougeron [Tou68] on ideals of smooth functions, shows

that

J 1
C = JC · J |C (4.4.14)

then ∃hi, gj ∈ C∞(M) such that

∑

i

fiΦi

︸ ︷︷ ︸
∈J 1

C

= (
∑

j

hjΦj)

︸ ︷︷ ︸
∈JC

(
∑

l

glΦl)

︸ ︷︷ ︸
∈JC

(4.4.15)

i.e.
∑

i(fi−
∑

j gjhiΦj)vi is a d1–cocycle, but it cannot be a coboundary because

fi −
∑

i

gihiΦj|C 6= 0 (4.4.16)

at least for some i.

Then it follows from the previous theorem the result we were looking for:

Corollary 4.4.3. If 0 is a regular value of Φ, then

H0
D(K

•) = C∞(C/G). (4.4.17)
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4.5. BRST symmetry for Lie–Jordan Banach algebras

As it was pointed out in the previous sections, most of the constructions lead-

ing to the BRST symmetry can be cast in a broader setting, this is the algebra R
that we used to construct the Koszul complex K•, even the Koszul complex, is

largely undetermined. We also require representations of a Lie algebra and a g–

equivariant map a : g → R. What we will explore now is what happens when we

will choose a Lie–Jordan Banach setting for R. We will arrive easily to a BRST

symmetry that reproduces the theory of reduction of LJB–algebras if the Koszul

complex that will be constructed satisfies the appropriate conditions.

Notice that the BRST symmetry reproduces (under the conditions discussed in the

previous section) faithfully the theory of reduction at the classical level, i.e. when

R = C∞(M). Then the BRST symmetry has been used as a tool to quantize

gauge symmetries. The idea was that quantizing the BRST operator D is some-

times easier, and then the physical states of the theory would be “defined” to be

those such that D̂|φ〉 = 0 module those of the form |ψ〉 = D̂|χ〉, with D̂ the

quantum operator associated to D acting on some Hilbert space H. This is, the

physical states of the quantum theory will be defined as H(D̂) = ker D̂
/
im D̂ ,

thinking that this is the quantum counterpart of H0
D(S) = C∞(C/G).

This argument is, as one may see, not rigorous at all, even if it has proved to

be very successful in concrete applications and it has been widely used in deal-

ing with gauge symmetries in quantum field theories. In these section we will

explore a different road. LJB–algebras represent the algebra of observables of

quantum systems by themselves and the reduction theory we have already con-

structed in Chapter 2 should provide the algebra of quantum observables of the

reduced quantum system. Thus if L̃ is a reduced Lie–Jordan Banach algebra, we

want to understand if we can obtain L̃ by using a “quantum” BRST symmetry, i.e.

under what conditions L̃ is the cohomology of a BRST operator D̂.

We will assume as in Chapter 2 that L is a LJB–algebra with unit, i.e. the self-

adjoint or real part of a unital C∗–algebra A. We will also assume that G is a Lie

group represented on the LJB–algebra L. This is, there is a strongly continuous4

4Strongly continuous means that the map ρx : G → L sending g → ρ(g)x is continuous
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homomorphism

ρ : G → Aut(L) (4.5.1)

g 7→ ρ(g) : L → L (4.5.2)

such that ρ(e) = 1 and ρ(g)ρ(h) = ρ(gh).
We will also assume that for every ξ ∈ g there exists:

ρ̂(ξ) ≡ lim
t→0

ρ(etξ)− 1

t
, (4.5.3)

so that ρ̂ : g → DerL is a continuous Lie algebra homomorphism5 . Finally we

will require that the derivation ρ̂(ξ) associated to each Lie algebra element ξ is

skew-symmetric, i.e. we will assume that ∀ ξ ∈ g, there exists an element a(ξ) ∈
L such that

ρ̂(ξ)x = [x, a(ξ)] (4.5.4)

∀x ∈ L, where [·, ·] is the Lie bracket in L. The map a : g → L mapping each ξ
into a(ξ) will be called the (co)-momentum map and it is exactly the analogue of

the map a dual to Φ discussed in the Section 4.4. We will assume that the map a
is g–equivariant, or in other words that it is a Lie–algebra homomorphism:

[a(ξ), a(η)] = a([ξ, η]), ∀ ξ, η ∈ g (4.5.5)

Definition 4.5.1. Let L be a LJB algebra and G a connected Lie group acting on

L. We will say that the action of G on L is strongly Hamiltonian if there exists

a map a : g → L such that Eqs. (4.5.4) and (4.5.5) are satisfied. We will call this

map the (co-)momentum map of the action6.

Now if (L, G, a) is a LJB algebra with a strongly Hamiltonian action a, we

can construct easily its Koszul complex (K•, d1), as the graded LJB–algebra

K• = L ⊗ Λ•g (4.5.6)

∀x ∈ L.
5This restriction could be removed because such map always exists restricting the LJB–algebra

L to its smooth part L∞ which is dense, but we will not consider this generality here.
6See the comments about the comomentum map at the end of Appendix A.
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K• =
⊕

k≤0

Kk; Kk = L ⊗ Λ−kg, (4.5.7)

and the cohomology operator d1 : K
k → Kk+1 is the unique derivation of degree

one that acts trivially on L and restricts to a on g, i.e.

d1(x⊗ ξ) = x ◦ a(ξ), ∀x ∈ L,∀ξ ∈ g. (4.5.8)

and

d1(x) = 0, ∀x ∈ L. (4.5.9)

The operator d1 induces the following sequence:

· · · −→
d1

L ⊗ Λkg︸ ︷︷ ︸
Kk

−→
d1

L ⊗ Λk+1g︸ ︷︷ ︸
Kk+1

−→
d1

· · · d1−→ L⊗ g ∧ g︸ ︷︷ ︸
K−2

d1−→ L⊗ g︸ ︷︷ ︸
K−1

d1−→ L︸︷︷︸
K0

d1−→ 0

(4.5.10)

Now the BRST complex S• is constructed by taking the graded tensor product

(see Section 4.8):

S•• = K• ⊗ Λ•g∗ (4.5.11)

and restricting to the diagonal grading:

S• =
⊕

k≥0

Sk, Sk =
⊕

i+j=k

Λig∗ ⊗K−j (4.5.12)

the BRST operator is given by

D̂ = d1 + d2 (4.5.13)

Notice that the BRST complex S• is a graded LJB algebra with the natural norm

induced from the norm ‖ · ‖ of L.
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4.6. Reduction of LJB–algebras and BRST symmetry

Let (L, ◦, [·, ·]) be a LJB–algebra and ρ : G→ Aut(L) a strongly Hamiltonian

action ofG on L with (co-)momentum map a : g → L. If we pick-up a linear basis

ξa for g, then Ĵα ≡ a(ξa) ∈ L are real observables that could be interpreted as the

components of a quantum momentum map or as the quantum conserved quantities

of the system. Notice that because of the assumption that the action is strongly

Hamiltonian then

[Ĵα, Ĵβ ] = cγαβ Ĵγ , (4.6.1)

where cγαβ are the structure constants of the Lie algebra g, i.e. [ξα, ξβ] = cγαβξγ ,

so no anomalies are permitted in our theory (which is again an unnecessary re-

striction that can be released in a slightly more general presentation of the subject

that will be conducted elsewhere).

Then the analogue of the zero level set Φ−1(0) = C constraint in the classical

theory is given here by the family of constraints C determined by the components

Ĵα,

C = {Ĵα, α = 1, . . . , r}. (4.6.2)

The reduced LJB–algebra L//G is defined here as

L//G = NJ /J , (4.6.3)

where NJ is the Lie normalizer of the ideal J = L ◦ C generated by the con-

straints C. Notice that in general L//G is not the same as L̃ = N/V where V
is the vanishing subalgebra defined by C, i.e. the annihilator of the Dirac states

of C, and N its normalizer, as discussed in Section 3.4. As in the classical case

some “regularity” condition must be demanded to the action a in order to have

L̃ = L//G. We will discuss this in the next section.

We have the following theorem whose proof is the same as in the classical situ-

ation:

Theorem 4.6.1. Let L be a LJB–algebra supporting a strongly Hamiltonian ac-

tion of the connected Lie group G. If a : g → L denotes its (co-)momentum map

and if the nontrivial Koszul complex associated to it K• = L ⊗ Λ•g is acyclic,
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then the zeroth cohomology group of the BRST operator D̂ is exactly L//G:

H0
D̂
(S•) ∼= L//G. (4.6.4)

The natural question that arises here is under what conditions it is possible

to guarantee that the Koszul complex (K•, d1) is acyclic? In order to provide an

answer to this question we need to introduce first a few notions of modules on

LJB–algebras.

4.7. Modules and Lie–Jordan Banach algebras

4.7.1. Topological modules and topological algebras

Let R be a topological associative algebra with unit, i.e. R is a Banach space

with a complete norm ‖ · ‖.

Let M be a topological left R–module, i.e. M is a linear space with a norm

‖ · ‖ such that it is a Banach space (this condition could be weakened) and there

is a continuous action of R on M by continuous linear operators, i.e. there is a

continuous map

· : R×M → M (4.7.1)

(x,m) 7→ x ·m

such that it is distributive x · (m + m′) = x · m + x · m′, (λ1R) · m = λm,

λ ∈ R,C7 and associative (x · y) ·m = x · (y ·m), ∀x, y ∈ R, m ∈M .

The linear map φm : R→M given by φmx = x·m (m ∈M fixed) is continuous,

i.e. ∃ k > 0 such that ‖φmx‖ ≤ k‖x‖ since ‖x ·m‖ ≤ k̃‖x‖‖m‖ for some k̃. In

this setting all algebraic notions to the theory of R–modules pass without change

into the category of topological modules over topological algebras.

If A is a topological ∗–algebra, there is a natural notion of ∗–module M over

A. It is a topological A–bimodule with a ∗ operation

∗ : M →M (4.7.2)

7Depending whether R is a real or complex algebra.
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such that (a · m)∗ = m∗ · a∗ and m∗∗ = m, ∀x ∈ A, m ∈ M . Notice that

if λ ∈ C, then (λm)∗ = m∗λ∗ = λ∗m∗. Moreover ((ab)m)∗ = m∗(ab)∗ =
m∗(b∗a∗) = (m∗b∗)a∗ = (bm)∗a∗ = (a(bm))∗, ∀ a, b ∈ A, m ∈M .

Thus a topological A–module over a unital C∗–algebra is a ∗–module M over A
which is a topological bimodule over A. Notice that in this case

(a∗a) ·m = (a∗a)∗ ·m = (a∗a) · (m∗)∗ = (m∗ · (a∗a))∗ (4.7.3)

then ‖(a∗a) ·m‖ = ‖m∗ · (a∗a)‖ and taking a = 1A, it follows ‖m‖ = ‖m∗‖.

Thus ∗ is a unitary morphism.

In what follows we will omit “topological” whenever we consider modules over

topological algebras understanding that we are always in the appropriate category.

4.7.2. Topological modules over LJB–algebras

LetL be a unital LJB–algebra with unit and A = LC its associated C∗–algebra.

Given a ∗–module M over A, we will say that an element m ∈ M is real if

m∗ = m. We will denote by Msa the real elements of M . Now it is clear that the

real elements of M form a real linear subspace but not an A–submodule because

(a ·m)∗ = m∗ · a∗ = m · a∗ that in general will be different from a ·m.

Consider an A–bimodule M , then we can define the composition law a ◦ m =
m ◦ a = 1

2(a ·m+m · a). Then (M,A, ◦) is a Jordan A–module.

Now suppose that a ∈ A and m ∈ M are real, i.e. a∗ = a and m∗ = m, then

am is not real but a ◦m is, as it can be checked by simple inspection. Thus the

LJB–algebra L = Asa acts on Msa. Notice also that because a ◦m = m ◦ a and

that:

(x2 ◦m) ◦ x = (x2 ◦m) ◦ x, m ∈Msa, x ∈ L, (4.7.4)

which is the identity replacing the associativity property (a(bm)) = (ab)m in an

A–module.

In addition to the composition ◦, there is another operation induced in the real part

of a ∗–bimodule over a ∗–algebra. We define

[a,m] ≡ λ(am−ma), λ ∈ R. (4.7.5)
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Then we can recover the left (and right) module structure out of x ◦m and [x,m],
x ∈ L, m ∈Msa. The real part inherits a double structure too.

The two operations ◦ and [·, ·] in the linear space Msa satisfy the following axioms

[x, [y,m]] = [[x, y],m] + [y, [x,m]], (4.7.6a)

[x, y ◦m] = [x, y] ◦m+ y ◦ [x,m], (4.7.6b)

x ◦ (y ◦m)− (x ◦ y) ◦m = τ [y, [x,m]], (4.7.6c)

∀x, y ∈ L, ∀m ∈Msa and where τ = − 1
4λ2 ∈ R

Definition 4.7.1. A topological real linear space E is a Lie–Jordan module over

the Lie–Jordan algebra L if there are two continuous bilinear operations:

◦ : L × E → E (4.7.7)

(x, u) 7→ x ◦ u

and

[·, ·] : L× E → E (4.7.8)

(x, u) 7→ [x, u]

satisfying the above axioms (4.7.6a), (4.7.6b) and (4.7.6c). Moreover if E is a

Banach space, L a LJB–algebra and the operations ◦, [·, ·] are bounded, we will

say that E is a normed Lie–Jordan module over L (or just a LJ–module for short).

Example 4.7.2. a) If M is a ∗–A–bimodule, where A is a C∗–algebra, Msa is a

Lie–Jordan module over Asa.

b) Consider a LJB algebra L and J ⊳ L a closed Lie–Jordan ideal of L, then J
is a Lie–Jordan module.

c) Consider the direct product E = L× L × · · · × L︸ ︷︷ ︸
n

of L with itself n-times.

Then E is a free Lie–Jordan module over L.

It is clear that a morphism of LJ–modules E, E′ over L is a continuous linear

map ϕ : E → E′ such that ϕ(a ◦m) = a ◦ ϕ(m) and ϕ([a,m]) = [ϕ(a),m].
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This notion can be extended to LJ–modules over different LJB–algebras L, L′

if needed in the obvious way.

A LJ–submodule V ⊂ E of a LJ–module E is a closed subspace such that

[a, V ] ⊂ V , a ◦ V ⊂ V, ∀ a ∈ L. Then clearly V is a LJ–module over L by

itself. The quotient space E/V equipped with the quotient topology becomes

a LJ–module over L with the standard definitions

[a,m+ V ] = [a,m] + V (4.7.9a)

a ◦ (m+ V ) = a ◦m+ V. (4.7.9b)

The canonical projection π : E → E/V is a LJ–morphism.

d) If F is a free Lie–Jordan module over L and if F
π−→ U −→ 0 is a sequence

of Lie–Jordan morphisms, then U is a projective Lie–Jordan module over L if

there exists a Lie–Jordan morphism σ : U → F such that π ◦ σ = id.

4.7.3. Regular actions on Lie–Jordan Banach algebras

Given a R–module M there always exists a left resolution of it, i.e. an exact

sequence of R–modules and morphisms

· · · −→Mk
φk−→Mk−1

φk−1−→ · · · φ1−→M0
φ0−→M −→ 0 (4.7.10)

with all the Mk modules over R and imφk = kerφk−1, ∀ k = 0, 1, . . .
In particular if I ⊂ R is an ideal generated by elements {xi} ⊂ R, then we

may think of R as an I–module and the previous statement tells that there exists

a left resolution of R which is just the Koszul complex discussed before. If the

number of generators is finite and they correspond to a basis of a Lie algebra

represented on R, then the Koszul complex associated to R is just the Koszul

complex constructed before (K• = R⊗ Λ•g, d1).

Definition 4.7.3. We will say that x ∈ R such that x 6= 0 is a zero divisor in the

R–module M if there exists m ∈ M , m 6= 0 such that x ·m = 0, otherwise we

say that x is a non-zero divisor.
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Definition 4.7.4. We will say that {xi}∞i=1 ⊂ R is a regular sequence if xk is

a non-zero divisor for the module M
/
Jk ·M , for all k, where Jk = (xi, i =

1, . . . , k − 1) denotes the ideal generated by the elements xi, i = 1, . . . , k − 1

and Jk ·M is the submodule of M of the form

r∑

j=1

wjmj , wj ∈ Jk, mj ∈M .

Theorem 4.7.5. Suppose thatM is anR–module andR is generated by the family

{xi}, then the Koszul resolution of the R–module M is acyclic if {xi} is a regular

sequence.

Proof. The proof of the theorem is standard. It proceeds by induction on the

order k of the left resolution of M . We will do it for k = 1, and it is obvious

how to proceed for k > 1. Consider the free R–module over the generators {xi}
of R. We denote it by R̃. Then an element of R̃ has the form

∑

i

rix̃i, where

the sum is finite, ri ∈ R and x̃i are the generators of R̃. Then M1 = M ⊗R R̃,

M2 =M ⊗R Λ2R̃, etc.

The map φ1 : M1 = M ⊗ R̃ → M is given by φ1(
∑

imi ⊗ x̃i) =
∑

i xi · mi

and φ2 : M2 →M1 is given by φ2(
∑

ijmij x̃i∧ x̃j) =
∑

ij(ximij x̃j−xjmij x̃i).
Clearly φ1 ◦ φ2 = 0.

· · · −→M2
φ2−→M1

φ1−→M −→ 0. (4.7.11)

Clearly the map φ1 is surjective. Now let
∑

imi ⊗ x̃i ∈ M1 be such that

φ1(
∑

imix̃i) = 0, i.e.
∑

i ximi = 0. We will assume that
∑

imix̃i is not of the

form φ2(x) i.e. mi 6=
∑

j xjmij . Then let m1 6= 0 (we can reorder if we want the

elements m1,m2, . . . to satisfy such condition). Hence x1m1 = −x2m2− · · · . If

all mj = 0 for j ≥ 2, then it would imply x1m1 = 0 which is impossible because

{xi} is a regular sequence and hence x1 cannot be a non-zero divisor in M . Let

m2 6= 0, then because m1 6= x2m21+xjmj1+ · · · and x2 6= x1m12+xjmj2, · · ·
we have that x1m1 + x2m2 6= 0, but now x2m2 + xjmj + · · · = 0 on M/J1M .

Iterating the argument we see that eventually xnmn will be inM/Jn−1M but this

is impossible because {xi} is a regular sequence.

All previous ideas can be translated “mutatis mutandis” to the category of

Lie–Jordan modules. Then the previous theorem can be applied to the instance
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of M0 = L being a LJB–algebra which is a J –module where J is the ideal

generated by the elements Jα = a(ξα), α = 1, . . . , r, ξα being a basis of g. Then

we will have the following theorem:

Theorem 4.7.6. Given a LJB–algebra L with a strongly Hamiltonian action of a

connected Lie group G and (co-)momentum map a : g → L, the Koszul complex

K• = L ⊗ Λ•g is acyclic if the sequence of elements Jα ∈ L, α = 1, . . . , r is

regular, this is Jα is a non-zero divisor of L
/
(Jβ , β = 1, . . . , r − 1) · L

We will say that the action of G on the LJB–algebra is regular if the sequence

of elements a(ξα), ξα basis of g, is a regular sequence. Then we have

Corollary 4.7.7. Let G be a connected Lie group acting with a regular strongly

Hamiltonian action on the LJB–algebra L with (co-)momentum map a. Then

H0
D(S

•) = L//G, (4.7.12)

where (S•,D) is the BRST complex of the action and L//G is the reduced Lie–

Jordan Banach algebra defined by Eq. (4.6.3).

We expect that the regularity of the action a is the required condition in order

to have L̃ = L//G. However we still do not have a proof for this and prefer to

leave this open problem as a conjecture:

Conjecture. If the action of G on L is regular then L̃ = L//G where L̃ is the

reduced LJB–algebra of L with respect to the constraint set C = {Jα, α =
1, . . . , r}.

4.8. Super Lie–Jordan Banach algebras

The construction of the BRST symmetry in the setting of LJB–algebras leads

naturally to the introduction of the notion of a super–LJB algebra. We can proceed

as follows:
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Definition 4.8.1. A super Lie–Jordan algebra is a graded algebra together with

two bilinear operations preserving the grading, the graded Jordan product:

◦ : LS × LS → LS, (4.8.1)

and the graded Lie product (or supercommutator):

[·, ·] : LS × LS → LS , (4.8.2)

such that Lm ◦ Ln ⊂ Lm+n. We require the graded Jordan product to be graded

commutative:

a ◦ b = (−1)|a||b|b ◦ a, (4.8.3)

whereas the graded Lie product defines a Lie superalgebra

[a, b] = −(−1)|a||b|[b, a], (4.8.4)

(−1)|a||c|[a, [b, c]] + (−1)|b||c|[c, [a, b]] + (−1)|a||b|[b, [c, a]] = 0. (4.8.5)

For the compatibility conditions we require them to satisfy the superderivation

property:

[a, b ◦ c] = [a, b] ◦ c+ (−1)|a||b|b ◦ [a, c], (4.8.6)

and the usual associator identity

(a ◦ b) ◦ c− a ◦ (b ◦ c) = k [b, [c, a]], (4.8.7)

for some k ∈ R+. The weak associativity of the graded Jordan product follows of

course from the associator identity.

Regarding the topological structure, we define a super Lie–Jordan Banach algebra

if it carries a complete norm ‖ · ‖ verifying the usual conditions (see Definition

2.2.2:

i) ‖a ◦ b‖ ≤ ‖a‖ ‖b‖,

ii) ‖a2‖ = ‖a‖2,

iii) ‖a2‖ ≤ ‖a2 + b2‖,
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∀ a, b ∈ LS .

A trivial example of super Lie–Jordan algebra of degree 0 is a (non-graded)

Lie–Jordan Banach algebra L0.

A more interesting example is given when we construct from a Lie group G, with

Lie algebra g, the exterior algebra Λ(g⊕ g∗), which possess a super(–associative)

LJB–algebra structure with associative Jordan multiplication given by the wedge

product and the Lie bracket defined for X,Y ∈ g and α, β ∈ g∗ by

[α,X] = α(X) = [X,α] [X,Y ] = 0 = [α, β]. (4.8.8)

We then extend it to all of Λ(g⊕ g∗) as an odd derivation.

This is a Z–graded SLJB–algebra with elements of g having degree −1 and ele-

ments of g∗ having degree +1.

4.8.1. Graded differential algebras

Given two super LJB–algebras P and Q, their tensor product P ⊗ Q can be

given the structure of a super LJB–algebra. According to the Eqs. (B.2.3 and

(B.2.4) of the Section B.2, ∀ a, b ∈ P and u, v ∈ Q we define

(a⊗ u) ◦ (b⊗ v) = (−1)|u||b|(a ◦ b⊗ u ◦ v +
√
k1k2 [a, b]⊗ [u, v]), (4.8.9)

[a⊗ u, b⊗ v] = (−1)|u||b|(
√
k2 a ◦ b⊗ [u, v] +

√
k1 [a, b]⊗ u ◦ v), (4.8.10)

where k1 and k2 are the constants appearing in the associator identity of the algeb-

ras P and Q respectively. These operations satisfy the axioms of a graded (super)

LJB–algebra (4.8.3)-(4.8.7).

Notice that if we require that the canonical immersions P →֒ P ⊗Q,Q →֒ P ⊗Q
to be morphisms, then we arrive to the condition that k1 = k2 (see Section B.2).

The topology in P⊗Qwill be the one induced from the corresponding C∗–algebra

(see Appendix B). For nuclear LJB–algebras it would be unique. An interesting

example is given by the tensor product C = L ⊗ Λ(g ⊕ g∗), where Λ(g) is the

exterior algebra over the Lie algebra g. It is a Z–graded LJB–algebra:
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C =
⊕

n

Cn =
⊕

i−j=n

Ci,j =
⊕

i−j=n

Λi(g∗)⊗ Λj(g)⊗L. (4.8.11)

Although the bigrading is preserved by the exterior product, the Lie bracket

does not preserve it, in fact

[Ci,j, Ck,l] ⊂ Ci+k,j+l ⊕ Ci+k−1,j+l−1, (4.8.12)

but the total degree is preserved.

A superderivation of degree k is a linear map D : Cn → Cn+k such that

D(a ◦ b) = (Da) ◦ b+ (−1)k|a|a ◦ (Db), (4.8.13)

D[a, b] = [Da, b] + (−1)k|a|[a,Db]. (4.8.14)

The map a → [Q, a] for some Q ∈ Ck is a superderivation of degree k, called

inner.

The total differential or BRST operator is an inner superderivation of degree −1,

given by D = [Q, ·], where Q ∈ C1 is explicitly written as:

Q = Jαθ
α − 1

2
cαβγθ

β ∧ θγ ∧ ξα, (4.8.15)

where {ξα} (antighosts) are a basis of g which satisfies [ξα, ξβ ] = cγαβξγ and

{θα} (ghosts) are the dual basis for g∗. It is also verified that [Q,Q] = 0 which is

equivalent to D2 = 0.

4.8.2. Reduction of super Lie–Jordan Banach algebras

It is clear that we can define the reduction of super LJB–algebras very much

as we did for standard LJB–algebras. Thus if LS is a super-LJB algebra we define

a state as a normalized positive linear function ρ on LS . Then given a family of

constraints C we define its space of Dirac states in the standard way:

SD(C) = {ρ ∈ SD(LS) | ρ(c2) = 0, ∀ c ∈ C}, (4.8.16)
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and the super–LJB vanishing subalgebra as:

V = {a ∈ LS | ρ(a2) = 0, ∀ ρ ∈ SD(C)}. (4.8.17)

Then the reduced super–LJB algebra is given by:

L̃S = NV/V, (4.8.18)

where NV is the normalizer of V in LS with respect to the supercommutator [·, ·].





5
APPLICATIONS AND FURTHER DEVELOPMENTS: THE

HITCHIN–KOBAYASHI CORRESPONDENCE AND

DYNAMICAL SYSTEMS

We have seen in the previous chapter how to give a description of the reduced

LJB–algebra in terms of a BRST symmetry and left an open problem, this is the

proof of the Conjecture 4.7.3 establishing the condition under which L̃ = L//G.

In the first section of this chapter we will deal with the Hitchin-Kobayashi

correspondence and show in a simple example that this is nothing but the cor-

respondence between the reduction of C∗– and LJB– algebras. Further work is

however still needed in order to understand if this correspondence still holds true

as in the general case of Theorem 5.1.1.

Then in the second section we laid the foundations for the theory of dynam-

ical systems and crossed product algebras in the LJB–algebra setting. One main

motivation for this study is given by the paper of Doplicher, Kastler and Robinson

[DKR66]. The main idea there was that the field algebra of a relativistic quantum
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system should encode all the algebraic relations of the operators describing the

system and its representation theory should comprise only of those covariant rep-

resentations with respect to the Poincaré group. Here we follow a rather abstract

approach by constructing the crossed product LJB–algebra for a locally compact

group G. We leave for future work the task of understanding the role of the ∞–

dimensional algebra arising from finite dimensional groups with physics applica-

tions in mind, for instance when G is the Poincaré group.

This chapter ultimately shows interesting applications of the theory of LJB–

algebras but at the same time leaves open space for further developments and

generalizations.

5.1. The Hitchin–Kobayashi correspondence

The Hitchin–Kobayashi correspondence establishes the equivalence of two

reduction proccesses: symplectic reduction of Kähler manifolds and holomorphic

reduction. This is, let (M,ω, g) be a compact Kähler manifold and G a connected

compact Lie group acting on M possessing an equivariant momentum map:

J : M → g∗ (5.1.1)

and preserving the Kähler structure. If 0 is a regular value of the momentum map

and the action is proper, the quotient space M̃ = J−1(0)/G inherits not only

a symplectic structure but a Kähler one, becoming in this way a reduced Kähler

manifold (M̃ , ω̃, g̃).

The Kähler manifold structure on the quotient space was already known in

the community of algebraic geometry and was sometimes called the Mumford

quotient [MFK65]. It was obtained as follows: let GC be the complexification of

G. Then there is a natural holomorphic action of GC on M . We will consider now

the semistable points M ss on M , i.e. the unstable submanifold of J−1(0) with

respect to the gradient flow of |J |2 and the Kählerian metric. Then we have:
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Theorem 5.1.1 (Atiyah-Hitchin-Kirwan-Kobayashi-Mumford). The symplectic

reduction of M with respect to the zero level set of J and the holomorphic re-

duction are isomorphic:

J−1(0)
/
G ∼= M ss/

GC , (5.1.2)

isomorphism means as Kähler structures.

The simplest example of this situation is provided by G = U(1) acting on

Cn+1 = M (in this case M is not compact but we may consider M = CPn

instead). In this case J(z) = |z|2 and taking J−1(1) (0 is not a regular value

of J , however 1 is), the symplectic reduction of Cn+1 by the level set 1 of the

momentum map J is just CPn:

J−1(1)
/
U(1) = S2n+1

/
U(1) ∼= CPn. (5.1.3)

On the other hand the semistable points of J−1(1) under the gradient flow of J2

are just Cn+1 \ {0}. Note that U(1)C ∼= C∗, the multiplication group of complex

numbers, hence Cn+1 \ {0}/C∗ ∼= CPn as it should be according to the previous

theorem.

The description of the previous correspondence using the theory of LJB or

C∗–algebras will be done by using the geometrization approach to quantum mech-

anics proposed by A. Ashtekar [AS99] and developed by G. Marmo et al. [EMM10],

[CCGM07], [GMK05]. In the next subsection we review very briefly the geomet-

rical formulation of quantum mechanics starting with a standard Hilbert space

formulation.
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5.1.1. The geometrical formulation of quantum mechanics

The physical carrier space of our formulation (the space of pure states) should

be identified with the space of rays of the Hilbert space H. The true space of pure

quantum states is the complex projective Hilbert space P(H). Any vector φ ∈ H
defines a constant vector field Xφ : H → TH ∼= H×H by Xφ(ψ) := (ψ, φ).

Similarly, a bounded linear operator A : H → H gives rise to a bundle morph-

ism TA : TH → TH defined as follows TA(ψ, φ) := (ψ,Aφ). Moreover, one

introduces a complex structure J : TH → TH defined by the (1, 1)–tensor field

J(ψ, φ) := (ψ, iφ), and a linear structure ∆: H → TH defined by the Li-

ouville vector field ∆(ψ) := (ψ,ψ). Finally the so called phase–vector field

Γ: H → TH is defined by Γ := J ◦∆ , i.e. Γ(ψ) = (ψ, iψ).

The Hermitian product 〈ψ|ψ〉 on H is replaced by an Hermitian tensor field

on H:

h(Xφ1 ,Xφ2)(ψ) := 〈φ1|φ2〉 (5.1.4)

on the corresponding real differential manifold HR. The real part of h is a Rieman-

nian metric tensor g, while its imaginary part is a symplectic tensor field ω on HR.

Then h = g + iω, and ω(X,Y ) = g(JX, Y ). The above tensor fields endow H
with the structure of a Kähler manifold. If we denote by G and Λ the contravari-

ant counterpart of the covariant tensors g and ω respectively, they give rise to two

bi-differential operators which may be used to define two brackets on the space of

one-forms.

These tensor fields may also be used to define the metric structure and Poisson

bracket on the space of rays P(H). Note, however, that neither G nor Λ can be

directly projected from H to P(H). It is easy to show that the corresponding tensor

fields which are projectable are given by

G̃ := eσG−∆⊗∆− Γ⊗ Γ; Λ̃ := eσΛ− (∆⊗ Γ− Γ⊗∆), (5.1.5)

where the conformal factor eσ ≥ 0 is defined by σ(ψ) := ln〈ψ|ψ〉. The projected

tensor fields, that will be denoted again as G and Λ without creating confussion,

allow for the definition of two products in the space of functions on P(H): the

symmetric bracket

f1 ◦ f2 := G(df1, df2) + f1 · f2, (5.1.6)
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and the antisymmetric Poisson bracket

{f1, f2} := Λ(df1, df2), (5.1.7)

with f1, f2 arbitrary real valued functions in F(P(H)). In this formulation quantum

observables are defined to be functions f whose Hamiltonian vector fields are also

Killing vector fields, i.e.

K(P(H)) := {f ∈ F(P(H)) | LXf
G = 0}, (5.1.8)

where Xf = Λ(df). We call such function f a Kählerian function. A com-

plex valued function is Kählerian if and only if both real and imaginary parts are

Kählerian. On the space A(P(H)) of complex Kählerian functions we may define

an associative bilinear product f ⋆ g associated to the contravariant Hermitian

tensor H = G+ iΛ:

f ⋆ g := f · g +H(df, dg). (5.1.9)

One shows that for any two Kählerian functions f and g the nonlocal product

f ⋆g defines a Kählerian function. We observe that any complex valued Kählerian

function on P(H) corresponds to an operator A ∈ B(H) by means of:

A 7→ fA([ψ]) ≡
〈ψ | Aψ〉
〈ψ | ψ〉 , (5.1.10)

that is, fA is an expectation value function. It is easy to show that fA ⋆ fB =
fAB. Thus quantum observables correspond to real valued Kählerian functions

and hence they are represented by Hermitian operators on H.

The space A(P(H)) equipped with the above associative noncommutative

product provides a realization of a C∗–algebra isomorphic to the C∗–algebra of

bounded operators on the Hilbert space H, with the supremum norm

‖f‖∞ = sup
[ψ]∈PH

‖f([ψ])‖, ∀ f ∈ A(P(H)). (5.1.11)

Consider now a general Kähler manifold (M,h) not necessarily a projective Hil-

bert space. It is clear that one may define a nonlocal ⋆–product as before: f ⋆g :=
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f · g+H(df, dg), for arbitrary Kählerian functions f , g on M . Now, for an arbit-

rary manifold M the corresponding space of complex valued Kählerian functions

is not closed under the ⋆–product. The Poisson bracket {f, g} = i
2(f ⋆ g− g ⋆ f)

is again Kählerian, however, the symmetric bracket f ◦ g = 1
2(f ⋆ g + g ⋆ f), in

general is not. The condition that the space of Kählerian function overM is closed

with respect to the symmetric bracket puts strong conditions on the Kähler struc-

ture, namely the holomorphic sectional curvature of M is constant [CL84]. This

in turn implies that M is a projective Hilbert space PH or the covering space of

the symplectic orbit in u(H). Thus only orbits of the unitary group are associated

with C∗–algebras under this correspondence.

5.1.2. Correspondence between symplectic and Kähler reduction

Now consider a compact group G acting by Kähler transformations on PH,

i.e. symplectic and isometric transformations. For instance we may imagine G =
U(1) acting on PH as

eiϕ[z1, z2, . . . , zn, . . .] = [eiϕ z1, . . . , e
iϕzn, zn+1, . . .], n ≥ 2 (5.1.12)

i.e. it acts just on the first n homogeneous coordinates zk, where |φ〉 =
∞∑

k=1

zk|k〉

and |k〉 is an orthonormal basis on H. The symplectic reduction of M = CPn by

the action of U(1) before in the first homogeneous coordinate will be CPn−1. In

infinite dimensions the reduction is going to be PH′, where H′ ⊂ H is a closed

subspace (still infinite dimensional) of H. Now this reduction can be performed

either using the LJB algebra (K(PH), ◦, [·, ·]) or the C∗–algebra (A(PH), ⋆). We

will obtain that the reduced LJB–algebra because:

K̃(PH) = K(PH′), (5.1.13)

which is the self-adjoint part of the reduced C∗–algebra

Ã(PH) = K(PH′) = K(J−1(1)/U(1)), (5.1.14)
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indicating that the equivalence between symplectic and Kähler reduction is just

the correspondence discussed in Section 3.4.1, Thm. 3.4.8 between reduced LJB–

algebras and C∗–algebras.

5.2. Dynamical systems on LJB–algebras

Dynamical systems are the mathematical formulation of dynamics, this is,

how physical systems change in time. By exploring the algebraic properties of

dynamics, it has been recognized that C∗–algebras provide the algebraic frame-

work for studying the time evolution of physical systems. Moreover the theory

of dynamical systems on C∗–algebras plays an important role in the applications

of the theory and in the development and foundations of noncommutative differ-

ential geometry. In this section we will develop some of the foundations of the

corresponding theory for LJB–algebras and derive some of its basic results.

5.2.1. The LJB–algebra of a group G

In this subsection we discuss how to construct a LJB–algebra from generators

and relations. Given a generic set S whose elements will be viewed as generators,

we can consider the free ∗–algebra generated by S∪S∗, where S∗ is a collection of

elements a∗, a ∈ S. This free ∗–algebra F(S) is the family of all noncommutative

polynomials with complex coefficients in the variables a and a∗ with a ∗–operation

defined in the evident way:

(ab)∗ = b∗a∗, (a∗)∗ = a, ∀ a, b ∈ S. (5.2.1)

We will call the free Lie–Jordan algebra L(S) generated by S, the selfadjoint part

of F(S) with the classical Lie–Jordan algebraic structure induced from F(S), i.e.

L(S) = {ξ ∈ F(S) | ξ∗ = ξ}, (5.2.2)

ξ ◦ ζ =
1

2
(ξζ + ζξ); [ξ, ζ] = λ(ξζ − ζξ), (5.2.3)
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for some real number λ. Notice that a /∈ L(S), however a+a∗, i(a−a∗) ∈ L(S).

Relations are polynomials in the generators a ∈ S ∪ S∗. We will denote by

R ⊂ F(S) a set of relations. Let J (S,R) be the Lie–Jordan ideal generated by

R in L(S). Then we define the Lie–Jordan algebra generated by S with relations

R the quotient Lie–Jordan algebra:

L(S,R) ≡ L(S)
/
J (S,R) . (5.2.4)

Notice that a relation could be for instance a = a∗, this would imply that a ∈ S
would become a real element and it would belong to L(S,R) (notice that 1

2 (a+a
∗)

is always in L(S,R)).

Now we can look for representations of L(S,R) in a Hilbert space H as dis-

cussed in Subsection 2.2.1. We define the universal Lie–Jordan Banach norm for

any x ∈ L(S,R) as:

‖x‖LJB ≡ sup{‖π(x)‖H | (π,H) is a representation of L(S,R)}. (5.2.5)

Then we define the LJB–algebra generated by the set S and the relations R as the

closure of L(S,R) with respect to the universal LJB–norm ‖·‖LJB . We will keep

in the following the same notation for L(S,R) and its closure.

Remark. Notice that the universal norm can be infinite, for instance if S = {x},

then π(x) ∈ R can be any number, and hence sup ‖π(x)‖ = +∞. We will

say that the LJB–algebra generated by S and R does not exist if for at least one

element x ∈ L(S,R), ‖x‖LJB = +∞.

Example 5.2.1. Let S = {1, u} and R = {uu∗ = 1 = u∗u, 1u = u1 =

u, 1∗ = 1}. Then L(S,R) is the set of polynomials f =

N∑

k=−N

cku
k such that

c∗k = c−k. Notice that any Lie–Jordan representation π of L(S,R) can be exten-

ded to a ∗–representation of F(S,R) = F(S)/J (S,R). Denoting with the same

symbol such representation we get then that

π(u)∗ = π(u∗) = π(u)−1 (5.2.6)
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and π(u) is a unitary operator. Then ‖u‖C∗ = 1, where ‖·‖C∗ is the universal C∗–

norm of the C∗–algebra generated by 1 and u with relations R. Then this algebra,

denotedy A(S,R), is the closure with respect to the norm ‖ · ‖C∗ of commutative

polynomials on the variable u, that is complex continuous functions on the circle

S1, i.e. A(S,R) = C(S1,C). The corresponding LJB–algebra L(S,R) is given

by the real continuous functions on the circle with the sup-norm.

Let G be a group. Consider the set S = G and the collection of relations:

R = {gh = k, g∗ = g−1, g∗g = 1 = gg∗ | g, h, k ∈ G}. (5.2.7)

We will call the LJB–algebra of the group G the LJB–algebra generated by S and

R and it will be denoted by L(G).
Then any representation π of the Lie–Jordan algebra L(G) = L(R, S) can be

extended to a ∗–representation of the ∗–algebra generated by S and R. But then

any such representation is unitary: π(g)∗ = π(g−1) = π(g)−1. If we denote by

A(G) the ∗–algebra generated by G, by L(G) the Lie–Jordan algebra of G, and

by C∗(G) the C∗–algebra generated by G, i.e. C∗(G) = A(G)
‖·‖C∗

, then the

LJB–algebra generated by G is the self-adjoint part of C∗(G)

L(G) = C∗(G)sa. (5.2.8)

If our group G is a locally compact topological group, then there exists a left-

invariant measure on it, called the Haar measure µG. We consider then the Hilbert

space L2(G,µG) and the left-regular representation L of G on L2(G,µG):

(L(g)ψ)(h) = ψ(g−1h) ∀ψ ∈ L2(G,µG), g, h ∈ G. (5.2.9)

When we consider A(G), its elements are (noncommutative) polynomials on ele-

ments of g, i.e. a =
∑

g∈G

a(g)g, a(g) ∈ C.

Then we define the norm of a ∈ A(G) as the norm of an operator on L2(G), i.e.

‖a‖L ≡ ‖L(a)‖L2(G), (5.2.10)
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with L(a)ψ =
∑
a(g)L(g)ψ. We can also consider the closure of A(G), and

in the same way of L(G), with respect to the norm induced by the left regular

representation of G. Notice that in this case both A(G)
‖·‖L

and L(G)‖·‖L will be

closed algebras inside B(L2(G)). The question then is when is ‖a‖L = ‖a‖C∗?

We can actually use this as a definition of “amenability”.

Definition 5.2.2. We will say that the locally compact topological group G is

amenable if ‖ · ‖L = ‖ · ‖C∗ . In such case the closed algebras generated by A(G)
and L(G) via the left regular representation (also called the reduced algebras)

coincide with the universal C∗– and LJB– algebras C∗(G) and L(G) generated

by G.

Many groups of common use are amenable, for instance finite groups, com-

pact groups, nilpotent and solvable discrete groups, etc. However free groups,

SL(2,Z), etc. are not amenable.

5.2.2. Dynamical systems on Lie–Jordan Banach algebras

Let G be a discrete group. Suppose now that ρ : G → Aut(L) is a morphism

where L is a LJB–algebra and Aut(L) denotes its group of automorphisms. We

will call (G, ρ,L) a discrete dynamical system on L.

Example 5.2.3. If L = C(M), the space of continuous real functions on a cp-

mpact manifold M , then for every g ∈ G, ρ(g) induces a homomorphism of M ,

i.e. a discrete dynamical system on M . Conversely any discrete group G acting

by continuous maps on M defines a discrete dynamical system in the sense of the

previous definition.
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5.2.3. The crossed-product algebra L⋉ρ G
Let (G, ρ,L) be a dynamical system on the LJB–algebra L and G a discrete

group. Consider the set Cc(G,L) of all real functions f : G → L which are zero

except on a finite subset of G, i.e.

f =
∑

g∈S
S⊂G finite

fgxg. (5.2.11)

Now suppose that we have a unitary representation U of G on a Hilbert space H,

i.e. U : G→ U(H); then a representation π of L on H will be said to be covariant

with respect to the dynamical system (G, ρ,L) if:

π(ρg(x)) = Ugπ(x)U
−1
g , ∀ g ∈ G, ∀x ∈ L. (5.2.12)

Remark. This is exactly the covariance condition for quantum fields, i.e. a quantum

field Φ is an operator-valued distribution on a space-time X, i.e. Φ: C(X) →
B(H). Then suppose there is a group G acting on X with action ρ and represen-

ted unitarily on H by U . The covariance property is writtern:

Φ(ρg(x)) = UgΦ(x)U
−1
g , ∀ g ∈ G, ∀x ∈ X. (5.2.13)

See for instance [BIMM11] for a recent discussion on this topic.

Now if we have a covariant representation π of the LJB–algebra L we can

consider the LJB–algebra generated by the operators π(x) ∈ B(H), x ∈ L and

Ug ∈ B(H), g ∈ G, satisfying the covariance relation

Ugπ(x) = π(ρg(x))Ug. (5.2.14)

Notice that because of the previous expression, words in this algebra can always

be rearranged to be of the form π(x)Ug (i.e. we can always pass π(x) over Ug to

the left by using (5.2.14)). Thus finite sums of them become

∑

g∈G

fgπ(xg)Ug =
∑

g∈G

π(fgxg)Ug, (5.2.15)
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In other words each function f ∈ Cc(G,L) determines an element of the LJB–

algebra generated by G and L as before:

ξf =
∑

g∈G

π(f(g))Ug . (5.2.16)

Now if f, h ∈ Cc(G,L), then we can define two products among them: ◦ and [·, ·]
as

ξf ◦ ξh ≡ ξf◦h (5.2.17)

[ξf , ξh] = ξ[f,h]. (5.2.18)

A simple computation shows:

ξf ◦ ξh|φ〉 =
∑

g

π(f(g))Ug ◦
∑

g′

π(h(g′))Ug′ |φ〉

=
∑

g,g′

π(f(g)) ◦ π(ρgh(g′))UgUg′ |φ〉

=
∑

g

((∑

g′

π(f(g))π(ρg(h(g
′′g−1)

)
Ug′′ |φ〉

)

=
∑

g′′

(∑

g

π(f(g) ◦ ρg(h(g′′g−1))
)
Ug′′ |φ〉

=
∑

g′′

π(f ◦ h(g′′))Ug′′ |φ〉

= ξf◦h|φ〉, (5.2.19)

that is

(f ◦ h)(g) =
∑

g′

f(g′) ◦ ρg′h(gg′−1), (5.2.20)

where we have used gg′ = g′′ and g′ = g′′g−1.

In a similar way we can prove that

[f, g](g) =
∑

g′

[f(g′), ρg′h(gg
′−1)] (5.2.21)



5.2. Dynamical systems on LJB–algebras 99

and the combination f ∗ g = f ◦ g + i [f, g] is the standard convolution product

on the C∗–algebra LC.

Moreover notice that

‖ξf‖ ≤
∑

g∈G

‖f(g)‖ ‖Ug‖ =
∑

g∈G

‖f(g)‖ = ‖f‖1. (5.2.22)

Then ‖f ◦ g‖1 ≤ ‖f‖1‖g‖1. Similarly we may prove that [f, g] is continuous.

Let us define now the norm ‖ · ‖ρ on Cc(G,L) as

‖f‖ρ = sup{‖ξf‖H | ξf =
∑

g

fgπ(xg)Ug, (π,U) cov. repr. of (G,L, ρ)}.

(5.2.23)

Then we will denote then the LJB–algebra generated in this way as:

L⋉ρ G, (5.2.24)

and will be called either the covariance LJB–algebra or the crossed product LJB–

algebra for (L, G, ρ).
It is clear that the previous construction can be repeated “mutatis mutandi”, for

a locally compact group G replacing functions f : G → L defined on finite sets

by functions with compact support and replacing the sums
∑

g∈G

with the integrals

∫

G
dµG. So in what follows we will assume that G is a locally compact group.

It is natural now to investigate the representations of L⋉ρ G.

Consider any representation (π0,H0) of L, and let H be now the Hilbert space of

square integrable functions on G with values in H0, i.e.

H = L2(G;H0). (5.2.25)

Let U : G→ U(H) be defined as

(Ugψ)(g
′) = ψ(g−1g′) (5.2.26)
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and π : L⋉ρ G→ B(H) as

(π(x)ψ)(g) = π0(ρg−1(x)
︸ ︷︷ ︸

∈L

)

︸ ︷︷ ︸
∈B(H0)

ψ(g)︸︷︷︸
∈H0

. (5.2.27)

For any element f ∈ Cc(G,L) as before we get:

(π(f)ψ)(g) =
(
π
( ∫

G
dµG(g

′)f(g′)xg′
)
ψ
)
(g)

=

∫

G
dµG(g

′)f(g′)(π(xg′)ψ)(g)

=

∫

G
dµG(g

′)f(g′)π0(ρg−1(xg′))ψ(g). (5.2.28)

Notice that

(Ug(π(x)ψ))(g
′) = (π(x)ψ)(g−1g′) = π0(ρg′−1g(x))ψ(g

−1g′)

= π0(ρg′−1(ρg(x)))(Ugφ)(g
′) = (π(ρg(x))Ug)(g

′),

that is

Ugπ(x) = π(ρg(x))Ug. (5.2.29)

We will call these representations natural representations of L ⋉ρ G (and they

play a similar role as the regular left representation for L(G)).

So we may set for f ∈ Cc(G,L)

‖f‖r = sup{‖π(f)‖, π natural representation}. (5.2.30)

In general this norm is different from the universal norm on L⋉ρG defined before:

‖f‖r 6= ‖f‖ρ.

Then again as in the case of C∗(G) and L(G), we will say that the dynamical

system (L, G, ρ) is amenable if ‖f‖r = ‖f‖ρ.

It is clear that if G is amenable then (L, G, ρ) is amenable. However the converse

is not true.
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5.2.4. A simple example

Let G be a finite group, G = {g1 = e, g2, . . . , gN}. Then it is clear that the

C∗–algebra generated by G is just the group algebra

C [G] = {f =
∑

g∈G

f(g)g =

N∑

i=1

f(gi)gi}, (5.2.31)

where g∗ = g−1. The algebraic product is the convolution product

f ∗ h =
∑

g

f(g)g
∑

g′

h(g′)g′ =
∑

g,g′

f(g)h(g′) gg′︸︷︷︸
g′′

=
∑

g′′

(∑

g

f(g)h(g−1g′′)
)
g′′ =

∑

g′′

(f ∗ h)(g′′)g′′ (5.2.32)

i.e.

(f ∗ h)(g′′) =
∑

g

f(g)h(g−1g∗), (5.2.33)

where the involution ∗ is given by

f∗ =
∑

g

f(g)g∗ =
∑

g

f(g)g−1 =
∑

g

f(g−1)g, (5.2.34)

i.e. f∗(g) = f(g′).
Now the LJB–algebra generated by G is the real part of C [G], i.e.

L(G) = {f | f∗ = f} = {f | f(g−1) = f(g)}. (5.2.35)

This is,

L(G) = {f =
∑

g∈G

f(g)g | f(g) = f(g−1)}. (5.2.36)

The LJB–algebra L(G) carries the Jordan product

g ◦ g′ = 1

2
(gg′ + g′g), ∀ g, g′ ∈ G, (5.2.37)
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or, in other words:

(f ◦ h) =
∑

g

f(g)g ◦
∑

g′

h(g′)g′ =
∑

g,g′

1

2
f(g)h(g′)(gg′ + g′g). (5.2.38)

If G is abelian gg′ = g′g, then f ◦ h =
∑

g,g′ f(g)h(g
′)gg′ = f ∗ g.

Similarly, the Lie product is given by

[g, g′] = λ(gg′ − g′g), ∀ g, g′ ∈ G. (5.2.39)

Then the LJB algebra L(G) becomes a Lie algebra of dimension |G|. Again if

G is abelian then [g, g′] = 0. Now suppose that U : G → U(H) is any unitary

representation of G on some finite dimensional Hilbert space H and let χ be its

character, i.e.

χ : G −→ C (5.2.40)

g 7→ TrU(g). (5.2.41)

Then χ ∈ C[G] and χ =
∑

g

χ(g)g, but

χ∗ =
∑

g

χ(g−1)g =
∑

g

χ(g)g = χ, (5.2.42)

because χ(g−1) = TrU(g−1) = TrU(g)∗ = TrU(g) = χ(g). This implies that

χ ∈ L(G).
Notice that χ(gg′) = χ(g′g) ∀ g, g′ ∈ G, i.e. χ(gg′ − g′g) = χ([g, g′]) = 0,

which implies χ([f, h]) = 0, ∀ f, h ∈ L(G).
Now it is clear that:

Lemma 5.2.4. If F is a central function on L(G) then [F,H] = 0, ∀H ∈ L(G).

Proof.

(F ∗H)(g) =
∑

g′

F (g′)H(g′−1g), (5.2.43)



5.2. Dynamical systems on LJB–algebras 103

then if F is central F (g′g−1) = F (g−1g′) or F (gg′g−1) = F (g′). This implies

∑

g′

F (g′)H(g′−1g) =
∑

g′

F (gg′g−1)H(g′−1g︸ ︷︷ ︸
g′′

) =
∑

g′′

F (gg′′−1)H(g′′)

=
∑

g′′

H(g′′)F (g′′−1g) = (H ∗ F )(g), (5.2.44)

hence F ∗H = H ∗ F and [F,H] = 0.

Corollary 5.2.5. The center of the Lie algebra structure of L(G) is given by the

central functions of G.

Notice that the center of (L(G), [·, ·]) are the Casimirs of the Lie bracket and

then because of the previous lemma they are determined by the orbits gg′g−1 of

the group G. The characters of G are central functions and actually the characters

of irreducible representations form an (orthonormal) basis of the space of central

functions. Then we have that

[χα, χβ] = 0. (5.2.45)

Finally it is easy to check that

χα ◦ χβ = δαβχβ. (5.2.46)

A similar analysis could be performed also in the case of compact Lie groups.





FINAL CONCLUSIONS

In this dissertation we developed the theory of Lie–Jordan Banach algebras

and its applications in mathematical physics. The main idea driving this research

is the algebraic approach to symmetries and constraints in classical and quantum

mechanics. We will summarize briefly the main results of this thesis and underline

the topics which deserve further investigation.

In Chapter 2 we have shown that the concept of dynamical correspondence

[AS98] on Jordan–Banach algebras is equivalent to the definition of Lie–Jordan

Banach algebras, thus providing a theorem on the correspondence between C∗–

algebras and Lie–Jordan Banach algebras: a C∗–algebra A is always the com-

plexification of a Lie–Jordan Banach algebra L, A = L ⊕ iL, and conversely a

Lie–Jordan Banach algebra is always the self-adjoint part of a C∗–algebra.

Then in Chapter 3 we have cast the geometric reduction of classical mechanics

in the algebraic language of associative Lie–Jordan algebras. Then we have ad-

dressed the problem of quantum constraints in algebraic terms and obtained a

theory of reduction of Lie–Jordan Banach algebras, which is equivalent to the T-

reduction of C∗–algebras developed by Grundling et al. [GH85]. In this context

it would be interesting to extend the generalized Poisson reduction developed in

Section 3.3 to the quantum case. As explained at the end of the same section, it

is not trivial to induce a Banach structure in the quotient space B/(B ∩ S). This

generalized reduction is very appealing in the quantum setting since conditions

3.3.18a very much resembles the presence of quantum anomalies. Then a notion

of generalized Lie–Jordan Banach reduction would provide a good framework to
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study quantum anomalous systems.

In Chapter 4 we have extended the classical theory of BRST symmetry to the

quantum case. This led us to define a strongly Hamiltonian action of a symmetry

group G (with Lie algebra g) on a quantum systems as a map ρ̂ : g → DerL such

that the derivations are inner, that is there exists a map (4.5.4) a : g → L such that

ρ̂(ξ)x = [x, a(ξ)] (5.2.47)

∀x ∈ L and ξ ∈ g. We call the map a quantum co-momentum map. This enables

us to construct the BRST complex (S•, D̂), whose zeroth cohomology group is

the quantum constrained algebra (4.6.3) L//G. Then further work is needed to un-

derstand under which conditions this reduction is the same as the one developed

in Section 3.4.

Finally in the last chapter, we deal with the Hitchin-Kobayashi correspondence

and show in a simple example that this is nothing but the correspondence between

the reduction of C∗– and LJB– algebras as stated by Theorem 3.4.8. Further in-

vestigation is however still needed in order to understand if this correspondence

still holds true as in the general case of Theorem 5.1.1.

Then we develop the foundations for the theory of dynamical systems and crossed

product algebras in the LJB–algebra setting. We follow a rather abstract approach

by constructing the crossed product LJB–algebra for a locally compact group G.

We leave for future work the task of understanding the role of the ∞–dimensional

algebra arising from finite dimensional groups with physics applications in mind,

for instance when G is the Poincaré group. We expect in this case to obtain the

field algebras of relativistic quantum systems which encode the appropriate algeb-

raic relations and whose representation theory should be covariant with respect to

the Poincaré group.

In conclusion, the message we tried to convey in this thesis is that Lie–Jordan

Banach algebras represent an original algebraic approach with many applications

in Mathematics and Physics, and a fertile ground for exploration and better under-

standing of consolidated theories.



A
DIFFERENTIABLE AND SYMPLECTIC GROUP ACTIONS

Let G be a connected Lie group and g its Lie algebra. Suppose G acts

smoothly on a differentiable manifold M , i.e. there is a smooth map ρ : G×M →
M such that ρ(g,m) ≡ g ·m, and g · (h ·m) = (gh) ·m, ∀ g, h ∈ G, m ∈M and

e ·m = m ∀m ∈M , with e being the identity element of the group.

Let X(M) denote the Lie algebra of vector fields on M. Given the action ρ we

have a map

ρ̂ : g → X(M) (A.0.1)

ξ 7→ Xξ

associating to each ξ ∈ g a vector field Xξ on M , called fundamental vector

field defined by its action on the functions f ∈ C∞(M):

Xξf(m) =
d

dt
f(e−tξm) |t=0 . (A.0.2)
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The map (A.0.1) is a Lie algebra homomorphism

X[ξ,ζ] = [Xξ ,Xζ ], (A.0.3)

where in the rhs we have the Lie bracket of vector fields.

If G)R, then an action of R on M provides a one-parameter family of diffeo-

morphisms φS : M →M , which we call an autonomous dynamical system. Such

terminology can be extended to a general action of G on M , however this is only

done in the setting of C∗–algebras and, by extension, as we do for actions of

groups on LJB–algebras, as described in Chapter 5.

If Y ∈ X(M), then g acts on it via the Lie bracket [Xξ, Y ].
Similarly, if θ ∈ Ω1(M) is a one-form, then for all ξ ∈ g we have the action of ξ
on θ given by:

LXξ
θ(Y ) = Xξθ(Y )− θ([Xξ, Y ]). (A.0.4)

In general if ω ∈ Ωp(M) is a p-form, we define:

LXξ
ω ≡ (diXξ

+ iXξ
d)ω, (A.0.5)

where d is the exterior derivative and iXξ
is the contraction operator defined by

(iXξ
ω)(Y1, . . . , Yp−1) = ω(X,Y1, . . . , Yp−1). (A.0.6)

By simple inspection, notice that its action agrees on functions and on one-forms

(recall that the operator LX = diX + iXd is called the Lie derivative).

Now let (M,Ω) be a symplectic manifold, that is, Ω is a closed non-degenerate

2-form. In other words, dΩ = 0 and the natural map Ω̂ : TM → T ∗M is an

isomorphism. Thus on a symplectic manifold there is a natural map between

vector fields and one-forms:

β : X → Ω1(M) (A.0.7)

X 7→ iXΩ = Ω̂(X), (A.0.8)

which is an isomorphism with inverse β−1 : Ω1(M) → X(M). In local coordin-

ates,

Ω =
1

2
Ωijdx

i ∧ dxj , (A.0.9)
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and nondegeneracy of Ω implies that det(Ωij) 6= 0.

We now take a connected Lie group G acting on M via symplectomorphisms,

i.e. diffeomorphisms which preserve Ω. Infinitesimally, this means that if ξ ∈ g

then

0 = LXΩ (A.0.10)

= diXΩ+ iXdΩ (A.0.11)

= diXΩ, (A.0.12)

where X is the vector field associated to ξ. The one-form iXΩ is closed. A vector

field X such that iXΩ is closed is said to be a symplectic vector field. It is clear

that the symplectic vector fields are the image of closed forms under β−1.

If β(X) is exact, we say that X is a Hamiltonian vector field. This means that

there exists fX ∈ C∞(M) such that

β(X) + dfX = 0. (A.0.13)

This function is not unique because we can add to it a locally-constant function

and still satisfy the above equation. We have that the Hamiltonian vector fields are

the images of exact form under β−1. A G-action on M said to be Hamiltonian if

to every ξ ∈ g we can assign an Hamiltonian vector field Xξ .

In a symplectic manifold, the functions define a Poisson algebra. If f, g ∈
C∞(M), we define the Poisson bracket by

{f, g} ≡ Ω(Xf ,Xg), (A.0.14)

where Xf is the Hamiltonian vector field such that β(Xf ) + df = 0. The Poisson

bracket is clearly skew-symmetric and obeys the Jacobi identity (since dΩ = 0),

and is a derivation on functions. Hence it gives C∞(M) the structure of a Lie

algebra. A Hamiltonian action is said to be Poisson or strongly Hamiltonian if

there is a Lie algebra homomorphism g → C∞(M) sending X to fX in such a

way that β(X)+dfX = 0 and that f[X,Y ] = {fX , fY }. In such case we can define

the momentum map J : M → g∗ of the action by:

〈J, ξ〉 = fXξ
. (A.0.15)
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The map

a : g → C∞(M) (A.0.16)

ξ 7→ fξ

is sometimes called the comomentum map, however in the setting of LJB–algebras

described in this work (see Chapters 4 and 5) we will not distinguish them.



B
TENSOR PRODUCTS OF C∗–ALGEBRAS AND

LIE–JORDAN BANACH ALGEBRAS

B.1. Tensor products of C∗–algebras

Let A1 and A2 be C∗–algebras. We can define their ∗–algebra tensor product

as the standard algebraic tensor product of algebras A1 ⊗ A2 with product (a ⊗
b)(a′ ⊗ b′) = aa′ ⊗ bb′ and involution (a⊗ b)∗ = a∗ ⊗ b∗.

The norm of a C∗–algebra is unique in the sense that on a given ∗–algebra A
there is at most one norm which makes A into a C∗–algebra. Still, on a ∗–algebra

A there may exist different norms satisfying the C∗–property. The completion

with respect to any of such norms results in a C∗–algebra which contains A as

a dense subalgebra. This is precisely what happens when the tensor product of

C∗–algebra is considered: in the general case there are many different norms on

the algebraic tensor product A1⊗A2 (which is a ∗–algebra) with the C∗–property.
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For example we may define

∥∥∥
∑

ai ⊗ bi

∥∥∥
∧
=

∑
‖ai‖‖bi‖. (B.1.1)

This seminorm becomes a norm on A1 ⊗A2 on an appropriate subspace, and

its completion is denoted A1⊗̂A2 and called the projective tensor product of A1

and A2. We also have

∥∥∥
(∑

ai ⊗ bi

)∗∥∥∥
∧

=
∥∥∥
∑

a∗i ⊗ b∗i

∥∥∥
∧
=

∑
‖a∗i ‖‖b∗i ‖

=
∑

‖ai‖‖bi‖ =
∥∥∥
∑

ai ⊗ bi

∥∥∥ , (B.1.2)

so A1⊗̂A2 is a Banach ∗–algebra. But it fails to satisfy theC∗–axiom (‖x∗x‖ =
‖x‖2):

‖(∑ ai ⊗ bi)
∗ (
∑
ai ⊗ bi)‖ = ‖(∑ a∗i ⊗ b∗i ) (

∑
ai ⊗ bi)‖

= ‖∑ a∗i aj ⊗ b∗i bj‖
=

∑ ‖a∗i aj‖‖b∗i bj‖
≤ ∑ ‖ai‖‖aj‖‖bi‖‖bj‖
= (

∑ ‖ai‖‖bi‖)2
= ‖∑ ai ⊗ bi‖2

. (B.1.3)

It turns out that representations on A1 and A2 allow us to define norms on

A1 ⊗A2 that make it a C∗–algebra.

Definition B.1.1. Let ρA1
: A1 → B(H1) and ρA2

: A2 → B(H2) be represent-

ations on A2 and A2. We define the product representation ρ = ρA1
⊗ ρA2

on

H1 ⊗H2 as

ρ(a⊗ b) = ρA1
(a)⊗ ρA2

(b) ∈ B(H1)⊗ B(H2). (B.1.4)

Since we always have the trivial representations, the set of representations of

A1 on H1 and A2 on H2 are never empty.
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Definition B.1.2. We define the minimal C∗–norm on A1 ⊗A2 by

∥∥∥
∑

ai ⊗ bi

∥∥∥
min

= sup
ρA,ρB

∥∥∥ρ
(∑

ai ⊗ bi

)∥∥∥

= sup
ρA,ρB

∥∥∥
∑

ρA(ai)⊗ ρB(bi)
∥∥∥

(B.1.5)

where the two norms on the right are operator norms.

This is clearly finite (hence a norm) and satisfies the C∗–axiom. The comple-

tion of A1 ⊗ A2 with this norm is a C∗–algebra called the minimal (or spatial)

tensor product of A1 and A2 and will be denoted by A1 ⊗min A2.

Definition B.1.3. Let ρA : A → B(H) be a representation and N ⊆ H be the

largest subspace of H such that ρ(a)(x) = 0 for all a ∈ A and x ∈ N . Then N⊥

is called the essential subspace of H, and we will denote it E(H). If E(H) = H,

then ρA is said to be nondegenerate.

Proposition B.1.4. If ρA1
: A1 → B(H) is a nondegenerate representation,

then there are unique nondegenerate representations ρA1
: A1 → B(H) and

ρA2
: A2 → B(H) such that ρ(a⊗ b) = ρA1

(a)ρA2
(b) = ρA2

(b)ρA1
(a).

But arbitrary representations of the tensor product of algebras cannot be broken

into pieces. This gives us the following.

Definition B.1.5. Let H be a Hilbert space and A1 ,A2 be C∗–algebra. We define

the maximal C∗–norm on A1 ⊗A2 as

∥∥∥
∑

ai ⊗ bi

∥∥∥
max

= sup
ρ

∥∥∥ρ
(∑

ai ⊗ bi

)∥∥∥ (B.1.6)

where ρ : A1 ⊗A2 → B(H). This is also a C∗–norm, and the completion of

A1 ⊗ A2 under this norm is a C∗–algebra called the maximal tensor product of

A1 and A2 and will be denoted by A1 ⊗max A2.

An important result [Bla06] is that

‖ · ‖min ≤ ‖ · ‖∗ ≤ ‖ · ‖max ≤ ‖ · ‖∧ (B.1.7)
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where ‖ · ‖∗ is any C∗–norm. It follows that ‖(a ⊗ b)‖∗ = ‖a‖‖b‖. Then clearly

the natural map A1 ⊗max A2 → A1 ⊗min A2 is continuous.

We conclude by defining nuclear C∗–algebras.

Definition B.1.6. A C∗–algebra A1 is nuclear if for every C∗–algebra A2, there

is a unique C∗–norm on A1 ⊗A2, i.e. A1 ⊗max A2 = A1 ⊗min A2.

For instance if G is discrete, C∗(G) is nuclear if and only if G is amenable

(however this is not true if G is not discrete). Examples of non-nuclear algebras

for discrete groups are given for instance by C∗
r (F2), the reduced C∗–algebra of

the free group generated by two elements [Tak64].

B.2. Tensor products of Lie–Jordan Banach algebras and the uniqueness of

the Planck constant

The tensor product of two LJB–algebra describes the interaction of two quantum

systems, which should result in a composite system describable within the same

framework. We are here seeking to find a Lie–Jordan structure on the tensor

products of two Lie–Jordan algebras. This can be easily obtained by the rules

of the algebraic tensor product of two C∗–algebras A1 and A2. We can in fact

define an associative ∗–product on A1 ⊗A2 by

(x1 ⊗ y1) · (x2 ⊗ y2) = (x1 · x2)⊗ (y1 · y2), (B.2.1)

where x1, x2 ∈ A1 and y1, y2 ∈ A2 and choosing an appropriate norm as ex-

plained in the previous section in order to make A1⊗A2 into a C∗–algebra. From

our Theorem 2.3.6 we know we can then obtain the Lie and Jordan product by

requiring

(x1 ⊗ y1) · (x2 ⊗ y2) = (x1 ⊗ y1) ◦ (x2 ⊗ y2)− i
√
k [x1 ⊗ y1, x2 ⊗ y2]. (B.2.2)

Hence, given the Lie–Jordan algebras (L1, ◦, [·, ·], k1) and (L1, ◦, [·, ·], k2), we

can endow the tensor product L1 ⊗ L2 with a Lie–Jordan structure with constant

k by the following definitions:

(a1⊗ b1) ◦ (a2 ⊗ b2) = (a1 ◦a2)⊗ (b1 ◦ b2)+
√
k1k2 [a1, a2]⊗ [b1, b2], (B.2.3)
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[a1⊗ b1, a2⊗ b2] =
√
k2
k

(a1 ◦a2)⊗ [b1, b2]+

√
k1
k

[a1, a2]⊗ (b1 ◦ b2), (B.2.4)

where a1, a2 ∈ L1 and b1, b2 ∈ L2. It can be checked by simple inspection that

these products B.2.3 and B.2.4 satisfy all the axioms 2.2.1-2.2.4. Regarding the

Banach structure, we know from the theory of tensor products ofC∗–algebras (see

previous section) that is always possible to define a compatible Banach structure

on the tensor algebra.

Remark. Notice that the tensor product of Lie–Jordan algebras so far defined is

well “categorically” defined, in the sense that given a third Lie–Jordan algebra L3,

for all c1, c2 ∈ L3 the tensor product composition is associative with respect to

the Jordan

{(a1⊗b1)⊗c1}◦{(a2⊗b2)⊗c2}−{a1⊗(b1⊗c1)}◦{a2⊗(b2⊗c2)} = 0 (B.2.5)

and Lie product

[(a1 ⊗ b1)⊗ c1, (a2 ⊗ b2)⊗ c2]− [a1 ⊗ (b1 ⊗ c1), a2 ⊗ (b2 ⊗ c2)] = 0. (B.2.6)

We will now require another natural property, that the restriction of the products

on L = L1 ⊗L2 to the two subalgebras L1 and L2 must be compatible. From the

subalgebra immersions

L1 →֒ L1 ⊗ 1, L2 →֒ 1⊗ L2, (B.2.7)

the restriction requirement means that

(a1 ⊗ 1) ◦ (a2 ⊗ 1) = (a1 ◦ a2)⊗ 1 (B.2.8)

and

[a1 ⊗ 1, a2 ⊗ 1] = [a1, a2]⊗ 1, (B.2.9)

and the same for b1, b2. In particular the Eqs. B.2.9 and B.2.4 imply that

k1 = k2 = k, (B.2.10)

that is all the Lie–Jordan algebras must have the same defining constant. Remem-

ber from Eq. 2.2.7 that for quantum systems k = ~2, which proves the uniqueness

of the Planck’s constant ~ for composite systems from purely algebraic consider-

ations.
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