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Abstract
Tagging has become a popular indexing method for interactive systems in the
past decade. It offers a simple yet effective way for users to organize an ever
increasing amount of digital information for themselves and/or others. The linked
user vocabulary resulting from tagging is known as folksonomy and provides a
valuable source for the retrieval and exploration of digital resources.

Although several models and representations of tagging have been proposed,
there is no coherent conceptualization that provides a comprehensive and pre-
cise description of the concepts and relationships in the domain. Furthermore,
there is little systematic research in the area of folksonomy visualization, and so
folksonomies are still mainly depicted as simple tag clouds. Both problems are
related, as a well-defined conceptualization is an important prerequisite for the
interoperable use and visualization of folksonomies.

The thesis addresses these shortcomings by developing a coherent conceptualiza-
tion of tagging and visualizations for the interactive exploration of folksonomies.
It gives an overview and comparison of tagging models and defines key concepts of
the domain. After a comprehensive review of existing tagging ontologies, a unified
and coherent conceptualization is presented that incorporates the best parts of
the reviewed ontologies. The conceptualization is implemented in a standardized
ontology language and enables scalable reasoning on folksonomies.

Based on the conceptualization, different tag cloud layouts and their ability
to support users in information seeking tasks are investigated. Extensions to
tag clouds are developed and combined into an analysis system, enhanced by
sophisticated natural language processing and intuitive interaction techniques.
Furthermore, existing work on visualizing folksonomies as graphs is analyzed and
a new type of graph visualization tailored to the tag-based exploration of digital
resources is introduced.

The work presented in this thesis has been successfully applied in different contexts.
The developed conceptualization has been used in knowledge and requirements
engineering, the tag cloud extensions have been applied in visual text analysis, and
the novel graph visualization has proved useful in image retrieval and requirements
analysis. These examples demonstrate the utility of the developed approaches
beyond the topic of tagging and open up interesting questions for future research.
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Resumen
El etiquetado se ha convertido en la última década en un método popular para la
indexación de contenidos en sistemas interactivos. Ofrece una forma sencilla y
eficaz para que los usuarios organicen una cantidad cada vez mayor de información
para ser usada por ellos mismos y/o por terceros. El vocabulario de los usuarios
resultante del etiquetado se conoce como folcsonomía y puede ser muy útil en la
búsqueda y exploración de contenidos digitales.

Aunque se han propuesto varios modelos y representaciones para el etiquetado,
todavía no hay una conceptualización coherente que describa completamente los
conceptos y relaciones de la materia. Además, existe poca investigación sistemática
en el área de visualización de folcsonomías, por lo que éstas se representan princi-
palmente como simples nubes de palabras. Ambos problemas están relacionados,
ya que una conceptualización precisa y bien definida es importante para el uso
interoperable y la visualización de folcsonomías.

La tesis aborda estos dos problemas mediante el desarrollo de una conceptual-
ización coherente de etiquetado y de visualizaciones para la exploración interactiva
de folcsonomías. En primer lugar, se ofrece una visión general de los modelos de
etiquetado y se definen los conceptos clave. Después de un análisis exhaustivo
de las ontologías de etiquetado existentes, se presenta una conceptualización
unificada que combina las mejores características de las ontologías analizadas. La
conceptualización se implementa en un lenguaje de ontologías estandarizada y
permite el uso de algoritmos de razonamiento eficientes.

Sobre la base de la conceptualización, se investigan diferentes formas de las nubes
de etiquetas y las propiedades que ayudan a los usuarios en la búsqueda de
información. Se desarrollan extensiones de las nubes de etiquetas y se las integra
en un único sistema de análisis que utiliza técnicas avanzadas de interacción y
de procesamiento del lenguaje natural. En un segundo paso, se analizan y se
clasifican los enfoques de visualización gráfica de folcsonomías y, finalmente, se
presenta un nuevo tipo de visualización gráfica que permite la exploración de
contenidos digitales basada en etiquetas.

Los desarrollos de esta tesis se han aplicado con éxito en diferentes contextos.
La conceptualización se ha utilizado tanto en la ingeniería del conocimiento y
de requisitos. Las extensiones de las nubes de etiquetas se han integrado en un
sistema de análisis del texto. Además, la visualización gráfica se ha aplicado tanto
en la recuperación de imágenes como en el análisis de requisitos. Estas aplicaciones
muestran los diversos usos de los desarrollos más allá de etiquetado y plantean
preguntas interesantes para la investigación futura.
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Zusammenfassung
Tagging ist im vergangenen Jahrzehnt zu einer beliebten Methode für die Index-
ierung von Inhalten in interaktiven Systemen geworden. Es bietet Nutzern eine
einfache und effektive Möglichkeit, immer größere Mengen digitaler Informationen
für sich selbst und/oder andere zu organisieren. Das durch Tagging entstehende
Vokabular wird als Folksonomie bezeichnet und kann die Suche und Erschließung
von digitalen Inhalten hilfreich unterstützen.
Obwohl mehrere Modelle und Repräsentationen für Tagging vorgeschlagen wurden,
gibt es bislang keine umfassende Beschreibung der Konzepte und Beziehungen des
Themengebiets. Zudem existiert wenig systematische Forschung im Bereich der
Visualisierung von Folksonomien, so dass diese hauptsächlich in Form einfacher
Wortwolken dargestellt werden. Beide Probleme bedingen sich gegenseitig, da
eine präzise und konsistente Konzeptualisierung wichtige Voraussetzung für die
interoperable Nutzung und Visualisierung von Folksonomien ist.
Diese Dissertation setzt sich mit den genannten Problemen auseinander, indem
sie eine umfassende Konzeptualisierung für Tagging und Visualisierungen für die
interaktive Analyse von Folksonomien entwickelt. Zunächst wird ein Überblick
über Tagging-Modelle gegeben und werden wichtige Begriffe des Themengebiets
definiert. Nach einer sorgfältigen Analyse vorhandener Tagging-Ontologien wird
eine konsistente und wohldefinierte Konzeptualisierung präsentiert, die kompatible
Teilbereiche der betrachteten Ontologien aufgreift und vereint. Die Konzeptual-
isierung ist in einer standardisierten Ontologiebeschreibungssprache implementiert
und ermöglicht die Nutzung skalierbarer Reasoning-Verfahren auf Folksonomien.
Ausgehend von der Konzeptualisierung untersucht die Dissertation anschließend
verschiedene Darstellungsformen für Wortwolken und wie sie Nutzer bei der
Informationssuche unterstützen. Es werden visuelle und interaktive Erweiterun-
gen für Wortwolken entwickelt und zu einem Analysesystem integriert, das mit
maschineller Sprachverarbeitung und intuitiven Interaktionstechniken ausgestat-
tet ist. Darüber hinaus werden vorhandene Umsetzungen der Darstellung von
Folksonomien als Graphen analysisiert und schließlich eine neuartige Graphvisu-
alisierung präsentiert, die die tag-basierte Erschließung von digitalen Inhalten
ermöglicht.
Die entwickelten Ansätze wurden erfolgreich in verschiedenen Kontexten ange-
wandt. Die Konzeptualisierung kam im Wissens- und Anforderungsmanagement
zum Einsatz, die erweiterten Wortwolken halfen bei der visuellen Textanalyse und
die neuartige Graphvisualisierung fand in der Bildersuche und Anforderungsanal-
yse Anwendung. Die Beispiele zeigen die vielfältigen Verwendungsmöglichkeiten
der entwickelten Ansätze über das Themengebiet Tagging hinaus und führen zu
interessanten Fragestellungen für zukünftige Forschung.
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Introduction

Since its beginnings more than 20 years ago, the World Wide Web has
experienced an impressive growth in the amount of information it contains.
More and more digital resources are added to the web each day, making it
not only for search and hosting services difficult to keep track and index
all these resources. The information explosion [40] is also and especially a
challenge for web users who try to efficiently retrieve and organize informa-
tion that is relevant to them. Traditional organization principles based on
taxonomies and folder hierarchies do not scale well with the massive amount
of information that needs to be classified every day.

Driven by these developments, a new kind of manual indexing emerged in
the last decade that is commonly known as tagging. In this indexing practice,
users of an interactive system annotate digital resources with free-form text
strings, so-called tags, in order to organize the resources for themselves
and/or others. Having its roots in social bookmarking [113] and media
sharing [139]1, this way of indexing became very popular over the last couple
of years and can now be found in many interactive systems, either as an
additional feature or as a substitute for traditional forms of information
management.

1 The social bookmarking service Delicious [6] (formerly del.icio.us) was the first widely
recognized software system starting to feature tagging in late 2003 [226, p. 162ff.], followed
by the photo sharing website Flickr [8] in 2004, adding much to its popularity [100, 240].
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Tagging works in principle with all kinds of resources. What is considered a
resource depends on the application context of the tagging system. It can be
a web page bookmarked with a service like Delicious [6], a photo or video
on media sharing websites like Flickr [8] or YouTube [35], or an email in a
webmail client like the one of Gmail [10]. Even digital references of physical
objects can be tagged, as long as they are uniquely addressable by the tagging
system. For instance, books that are referenced in cataloging websites like
LibraryThing [12] or products in online shops such as Amazon.com [1]
are also subject to tagging.
In contrast to other keyword-based indexing methods, the annotators are
not professionals (e.g., authors, publishers, librarians, etc.) but common
users. Furthermore, tagging breaks radically with most traditional forms of
indexing by using neither a controlled vocabulary nor a hierarchical structure
for classification. Instead, a tag can be any text string a user considers helpful
in organizing a resource. Even though many tagging systems recommend
tags, no terms are ‘forced’ onto users but they are free to use their own
vocabulary. This vocabulary of the users along with the many links resulting
from tagging is known as folksonomy.

1.1 Problem Statement
Tagging and folksonomies have become popular research topics in the last
couple of years. They have been analyzed and utilized in a number of
works, resulting in several interesting findings, for example, on tag use and
distribution (see Chapter 2). However, tagging and folksonomies are still
relatively young research topics that lack a shared understanding. Although
several models and representations of tagging have been proposed, there is
no coherent conceptualization that provides a precise and comprehensive
description of the concepts and relationships in the domain.
A coherent conceptualization is not only important for a better domain
understanding but also for the interoperable use of folksonomies. If the
conceptualization is explicitly specified in an ontology, folksonomies can be
accessed and shared in a uniform manner and validated against the ontology.
This is especially useful for folksonomy visualizations, as it allows to develop
them in a generic and reusable way, independently of individual tagging
systems. In addition, the conceptualization describes the design space for
folksonomy visualizations. It can help to identify limitations of existing
approaches and to build new visualizations that address these limitations.
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The lack of a proper conceptualization may be one reason why visualizations
of folksonomies have so far mainly been limited to weighted tag lists, so called
tag clouds. In fact, there is little systematic research in the area of folksonomy
visualization that goes beyond simple tag clouds. However, a folksonomy is
more than the sum of its tags. The ‘heart’ of folksonomies are the many links
that evolve between the resources, tags, and users. These links are often used
for recommendation, navigation, and filtering purposes, but their potential
for the visualization of folksonomies is largely unexplored. Considering these
links in folksonomy visualizations promises to reveal interesting patterns
and relationships that are not visible in simple tag clouds. The close relation
between the conceptualization and visualization of tagging and folksonomies
is the main reason why both are jointly investigated in this thesis.

1.2 Goals of the Thesis
Based on the previous considerations, we identified a need for conceptual-
izations and visualizations that provide interoperable and reusable repre-
sentations of tagging and folksonomies. Accordingly, the main goal of this
thesis is twofold:

1. to develop a precise and coherent conceptualization of tagging;

2. to develop visualizations for the interactive exploration of folksonomies.

A major challenge in the development of the conceptualization and its
implementation in an ontology is to find a good balance between compre-
hensiveness and comprehensibility. On the one hand, the ontology must be
capable to represent different forms and aspects of tagging. On the other
hand, it must not be too complex but remain easily understandable to the
people who use it. This is why we aimed for a modular design consisting of a
compact core ontology that can be extended when needed. Such a modular
approach also helps to keep the conceptualization relatively stable with
regard to future developments and advancements in the domain of tagging.

In addition, we built upon existing conceptualizations where appropriate.
For this purpose, we looked at available tagging models and representations
to identify parts that can be reused in the conceptualization. Since tagging
combines different domains, we also looked at conceptualizations of related
topics and examined their suitability to describe, for instance, the resources
that are being tagged or the users who perform the tagging.
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In contrast to the conceptualization, the goal of the visualizations is less
to provide a comprehensive representation but rather to show the parts of
the folksonomy that are of interest in a certain situation. Basically, we can
distinguish two categories of folksonomy visualizations: (1) Those focusing
on the elements of folksonomies (i.e., the resources, tags, users, etc.), and
(2) those focusing on the relationships between these elements, i.e., the
many links that emerge in tagging (see Section 2.4). An example of the first
category are tag clouds, since they visualize the set of tags. Folksonomy
graphs depicting relationships between tags, resources, users, and/or other
elements belong to the second category.

Tag clouds and folksonomy graphs are also the two types of visualization
addressed in this thesis. We will first have a closer look at tag clouds with
the goal to learn more about how they perform and are perceived by users.
We will then develop extensions for tag clouds that support the visual
exploration and analysis of folksonomies and other data. Finally, we will
look at folksonomy graphs with the goal to develop a new kind of graph
visualization that supports the tag-based exploration of digital resources.

1.3 Structure of the Thesis
The thesis is structured as follows: Chapter 2 starts with an introduction
into tagging and folksonomies. We define the key concepts and explain
how they are related and used in tagging systems. We aim for short and
precise definitions that provide a consistent terminological basis for the
conceptualization. We also give an overview of the benefits and limitations
of tagging and folksonomies in Chapter 2. Finally, we introduce basic models
of tagging and discuss their strengths and weaknesses. We show that they
describe only a small portion of the domain and argue for the need of a
more comprehensive conceptualization.

In Chapter 3, we review conceptualizations of tagging available in the
literature and on the web. We analyze and compare nine tagging ontologies
in detail and also consider ontologies that have not been developed specifically
with the goal to describe tagging but may be used for this purpose. Finally,
we classify the found concepts and discuss the integration of the reviewed
ontologies into a unified and coherent conceptualization.

Based on the review of Chapter 3, we developed the Modular Unified Tagging
Ontology (MUTO) that is presented in Chapter 4. MUTO takes the ‘best’
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parts of the reviewed ontologies and combines them into a coherent concep-
tualization. We describe MUTO in detail and discuss modeling alternatives.
We provide an example scenario and report on two projects that make
use of MUTO: the Semantic Web Ontology for Requirements Engineering
(SWORE) and the Visual Notation for OWL (VOWL).

The MUTO ontology provides the conceptual basis for the systematic
investigation of folksonomy visualizations starting in Chapter 5. We first
look into tag clouds and examine how different tag cloud layouts perform and
are perceived by users. We then elaborate how tag clouds can be extended
to better support the visual analysis of folksonomies and other data. We
present prefix tag clouds and time-varying co-occurrence highlighting as two
developments that increase the analytical power of tag clouds. The chapter
concludes with a description of the Tag Cloud Explorer, an integrated analysis
system that uses tag clouds as its main visualization method and equips
them with advanced natural language processing and intuitive interaction
techniques.

After looking into tag clouds in Chapter 5, we shift the focus to folksonomy
graphs in Chapter 6. We first deal with the decomposition of folksonomy
graphs into smaller subgraphs that can be reasonably visualized. Based on
that, we classify existing work in this area and identify common limitations.
To overcome these limitations, we developed the ChainGraph, a new kind of
graph visualization that supports the visual exploration of folksonomies. We
explain how a ChainGraph can be created and discuss two alternatives to
optimize its layout. We evaluate the approach in a user study and discuss
its strengths and limitations.

Chapter 7 concludes the thesis and provides an outlook on possible directions
for future research. We summarize the presented work and discuss limitations,
extensions, and application areas. We also point to open research challenges
in the domain of tagging and beyond.

1.4 Contributions
In order to illustrate the main contributions of the thesis, we make use of
the conceptual framework presented by Hevner et al. [127]. The framework
helps to structure, understand, and evaluate research in information science,
with strong references to design science and pragmatic research paradigms.
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Figure 1.1 — Illustration of the thesis contributions using the conceptual
framework of Hevner et al. [127].

We slightly adapted the framework to fit within the context of this work
and applied it to the thesis contents as shown in Figure 1.1.

The framework is composed of three main components: 1) the environment
defining the problem space and consisting of the technology and the peo-
ple who use it, 2) the research that is conducted, and 3) the knowledge
base providing the “raw materials from and through which [...] research is
accomplished”, in particular “foundations and methodologies” [127].

The research component consists of two complementary activities: The
development of artifacts and their evaluation with appropriate methods. The
main artifacts of the thesis are the coherent conceptualization of tagging and
visualizations for the interactive exploration of folksonomies. Depending on
the type of artifact, we used different methods for the evaluation. The MUTO
ontology implementing the conceptualization was analytically evaluated
by comparing it with related ontologies and discussing its strengths and
limitations. The Tag Cloud Explorer and the ChainGraph were empirically
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evaluated in user studies. In addition, all three artifacts have been applied
in different contexts and projects: The MUTO ontology has been used in
knowledge and requirements engineering, the Tag Cloud Explorer in visual
text analysis, and the ChainGraph in image retrieval and requirements
analysis.

Regarding the environment component of the framework (see Figure 1.1),
the research conducted in this thesis mainly addresses two groups of people:
On the one hand, these are the researchers and developers who benefit from
a precise and coherent conceptualization of tagging. The MUTO ontology
does not only contribute to a better understanding of tagging but also
allows for the interoperable use and visualization of folksonomies. On the
other hand, there are the users who benefit from visualizations for the
interactive exploration of folksonomies and other data. While the intuitive
tag cloud extensions support both casual and expert users, the ChainGraph
visualization requires some explanation and is therefore mainly intended for
expert users.

The foundational knowledge of this work consists of tagging models and
ontologies that need to be carefully reviewed in order to create a coherent
conceptualization of tagging. In turn, the insights gained in the review and
conceptualization extend the knowledge on tagging and related ontologies.
Furthermore, knowledge on the visualization of folksonomies is needed to
identify limitations and develop extensions and improvements. In particular,
different types of tag clouds and graph visualizations are studied in the thesis.
The results of the empirical study on tag cloud perception and performance
extend the body of knowledge in the field. The ChainGraph as a new kind of
graph visualization is of interest to the information visualization community
and may inspire future work on visualizing graphs. Finally, knowledge on
methodologies and best practices from the fields of ontology engineering
and visualization is needed to develop and graphically represent the MUTO
ontology. For the user studies conducted in the thesis, knowledge about
empirical evaluation methods is required.

The conceptual framework does not only summarize the contributions of
the thesis, but it also illustrates the interdisciplinary character of the work.
While most of the contents belong to the field of computer science, knowledge
and methods from other disciplines are incorporated in order to study the
conceptualization of tagging and the visualization of folksonomies in a
holistic way.
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Tagging and Folksonomies

As tagging and folksonomies are still relatively new topics to computer
science, we will give some background knowledge in this chapter. After
a definition of the key concepts, we will summarize the pros and cons
of tagging and folksonomies. We will then take a closer look at the core
elements of tagging and provide models that form the basis for the later
conceptualization and visualizations.

2.1 Basic Definitions
Several definitions for concepts in the domain of tagging are used in the
literature. The problem is that many of them are hardly compatible. They
do not only use different terminology [205, p. 153ff.] but are partly not even
based on the same understanding of tagging and folksonomies, as it has
been criticized by Vander Wal [241].
This was the main reason why we decided to create own definitions in cases
where we could not find conceptually and terminologically compatible ones.
Although our understanding of the concepts can, of course, also differ from
the viewpoints of others, this guarantees conceptual and terminological con-
sistency, which is important for a coherent domain description. In addition,
we aim to contribute to a better understanding and framing of tagging with
Parts of this chapter have already been published in [165], [166], and [168].
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our definitions. We therefore published them under a creative commons
license on the web to make them available to a broader audience and allow
others to use, adapt, and extend them.1

In the following, we provide short definitions and explanations for the most
basic concepts. Further concepts are defined later in this chapter.

Definition 1. A tag is an arbitrary text label associated with a resource.

Definition 2. Tagging is the annotation of resources by users with tags.2

Definition 3. A tagging system is an interactive system that uses tagging
for indexing.

The term tagging system must be taken with caution, as no system is
purely made for tagging but always serves some other purpose (e.g., social
bookmarking, photo sharing, etc.). However, we will use the term, as it has
proven its worth to give this class of systems a name. It is thus comparable
to terms like distributed system or web-based system that also emphasize one
out of many aspects of a system but help to frame the work. Since we focus
on tagging in this thesis, the term ‘tagging system’ is quite appropriate in
our case.

A popular tagging system is the social bookmarking service Delicious
already mentioned in the introduction. It offers a website to save, share,
organize, and search web resources (or more precisely bookmarks, i.e., the
URIs of web resources). The bookmarks can be annotated with tags and
are accessible from anywhere via the Delicious website.

Figure 2.1 shows one of the web user interfaces to tag, comment, and save
the URIs of web pages with Delicious. It can be installed as an extension
to the web browser. The title and URL of the web page to be bookmarked
are automatically gathered by the browser extension and pre-populated into
the corresponding text boxes. The only user input required for tagging the
web page is a comma-separated list of tags entered in another text box.3

1 The definitions are publicly available at http://www.socialtagging.org.
2 The terms tagging and tag can have different meanings in computer science. In this
work, we mainly refer to the meanings as given in Definition 1 and Definition 2, with
only a few exceptions, such as in the term part-of-speech tagging we use in Chapter 5.

3 Other browser extensions and bookmarklets for Delicious use spaces as tag delimiters
or let the user enter every single tag in a separate text box.

http://www.socialtagging.org
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Title of web page 

URL of web page 

Text box for tags 

Recommended tags 

Text box for comments 

Option for private tagging 

Figure 2.1 — Web user interface to tag, comment, and save bookmarks
with the social bookmarking service Delicious.

It is important to distinguish between the indexing method of tagging and
its result. While a single annotation resulting from tagging is also called
tagging, the sum of the annotations is called folksonomy.

Definition 4. A single annotation resulting from tagging is also called
tagging. The sum of these taggings is the folksonomy.

The term folksonomy, a combination of “folk” and “taxonomy” [240], was
first used by Vander Wal in 2004. Although there has been some debate
about the adequacy of this portmanteau [113, 227, 205, p. 153ff.], it has
become the de-facto term to denote the vocabulary and link structure that
result from tagging. Therefore, we will also use it in this work. Vander Wal
defines folksonomy as follows:

Definition 5. “Folksonomy is the result of personal free tagging of informa-
tion [...] for one’s own retrieval. The tagging is done in a social environment
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(usually shared and open to others) [...] by the person consuming the infor-
mation.” [238, 240]

On the one hand, the definition emphasizes that tagging is usually performed
by the person “consuming” the information for his or her “own retrieval”.
On the other hand, it points out that tagging often happens in a “social
environment”, which refers to open online environments like Delicious in
this context. Tagging in such environments has a ‘social’ component, as the
tags of the users are typically also available to others. This powerful aspect
of combining the tags from different users led to the coinage of terms like
social tagging or collaborative tagging.4

Definition 6. Social tagging is tagging in an open online environment where
the tags of the users are available to others.

In social tagging, tags are often used for recommendation. For instance,
the Delicious user interface shown in Figure 2.1 recommends a number
of tags that have previously been entered by other Delicious users who
bookmarked the same web page.
In addition, many social tagging services provide an opportunity to mark
those taggings as private that the user does not want to share with others.
In Figure 2.1, this is possible by activating the corresponding check box at
the very bottom of the user interface. Such private tagging can be regarded
as the opposite of social tagging, as it is only visible to its creator.

Definition 7. Private tagging is tagging that is only visible to its creator
(unless the creator has explicitly granted access to others).

There may be different forms of private tagging, such as a less strict variant
where the friends of a user have also access to his or her private taggings, as
it can, for instance, be configured on Flickr. However, a comprehensive
conceptualization of tagging must at least carefully distinguish between
public and private taggings.
The sum of the taggings of a single user is sometimes called personomy [207,
129], independently of whether the taggings are private or public. Strictly
4 Strictly speaking, tagging in open online environments is rather a collective than a
collaborative activity (cp. [239]). Hence, we prefer terms like collective tagging or social
tagging over the term collaborative tagging, which can nevertheless often be found in
the literature.
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speaking, a folksonomy can also denote purely the taggings of a single
user, since it is simply “the result of personal free tagging” according to
Definition 5, without any further quantification. Hence, a personomy is
always a folksonomy (i.e., a personal folksonomy), while a folksonomy can
contain one or more personomies (i.e., personomy ⊇ folksonomy). However,
the term ‘personomy’ makes immediately clear that the taggings of a single
user, not of many users, are meant.

Definition 8. Personomy is the sum of the taggings of a single user.

2.2 Advantages and Limitations
There has been much debate about the pros and cons of tagging and
folksonomies (cp. [205, p. 247ff.]). They are often compared to classical
indexing methods, such as controlled vocabularies or taxonomies, and it
is sometimes overlooked that they are usually not a replacement but a
complement to these indexing methods. In the following, we summarize
some of the main advantages and disadvantages of tagging and folksonomies:

2.2.1 Advantages of Tagging and Folksonomies
Two main drivers for the rapid spread of tagging are apparently its simplicity
and flexibility. They meet the needs of users who are looking for a quick way
to manage an ever-growing amount of information. Tagging can also be a
very fast indexing method, as illustrated by the user interface of Delicious
in Figure 2.1. In accordance with the literature [226, 205, 183], we can
therefore summarize the main advantages for the users of tagging systems
as follows:

• Tagging is simple: Users simply enter some arbitrary text labels,
separated by spaces, commas, or others delimiters (depending on the
design of the user interface).

• Tagging is fast: Entering some arbitrary text labels requires few in-
teractions and little indexing time (e.g., compared to choosing an
appropriate place in a folder hierarchy).

• Tagging is flexible: The text labels can consist of whatever character
sequence a user considers helpful to organize resources.
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These benefits are, of course, influenced by the usability of the tagging
system and the tagging skills of the user, but they are usually true to a
certain extent.

Folksonomies provide descriptive metadata that would otherwise often not
exist. Especially for non-text-based resources, such as photos, videos, or
music files, it is difficult to automatically extract descriptive metadata,
in particular metadata that is based on inferred understanding. The tags
added by the users partly contain such metadata. They can be used to
retrieve, navigate, recommend, or explore digital resources. They reflect the
language of the users, not of authorities, and provide linguistic variation [205,
p. 212ff.]. Thus, folksonomies can help to bridge the semantic gap between
different user types and reduce the vocabulary problem often reported in
human-computer interaction: “users [...] use the wrong words and fail to
get the actions or information they want” [97]. Furthermore, folksonomies
are said to be sensitive to trends and developments, as they quickly adopt
terminology that arises in a subject area [205, p. 213].

The main benefits of folksonomies for users and developers of tagging
systems can therefore be summarized as follows, again in accordance with
the literature [183, 226, 205, p. 212ff.]:

• Metadata source: Folksonomies provide metadata that would otherwise
often not exist.

• User language: Folksonomies ‘speak’ the language of the users which
broadens access to information.

• Dynamic vocabulary: The vocabulary of folksonomies is said to quickly
adopt new terms and trends.

The linguistic variety of folksonomies is easily recognizable in many tag
cloud visualizations. A typical tag cloud is given in Figure 2.2. It shows
the “all time most popular tags” of the photo sharing website Flickr [36],
i.e., a selection of 150 tags that have most often been used to index photos
on Flickr (until August 2010, when this screenshot of the tag cloud was
taken).

Definition 9. A tag cloud displays “a certain number of most often used
tags [...]. A tag’s popularity is expressed by its font size (relative to the
other tags) [...]. Sometimes, further visual properties, such as the font color,
intensity, or weight, are manipulated [...]. Next to their visualization function,
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Figure 2.2 — Tag cloud of the 150 most often used tags on the photo
sharing website Flickr [36].

tag clouds are also navigation interfaces, as the tags are usually hyperlinks
leading to a collection of items they are associated with.” [176]

There are several tags in the cloud that may denote the same or very similar
things, such as ‘holiday’ and ‘vacation’ or ‘trip’ and ‘travel’ (see Figure 2.2).
There are also cases of multilingualism, such as ‘italy’ which is listed with
its English and Italien name (‘italia’), and inflected word forms, such as
plural forms of terms that are also given in singular (e.g., ‘birds’, ‘flowers’,
and ‘trees’). The tag ‘newyorkcity’ and its abbreviation ‘nyc’ both refer to
the City of New York, whereas the U.S. state of New York is either written
as one tag (‘newyork’) or as two (‘new’ and ‘york’). Likewise, the expression
‘black and white’ can be found in three different variations in the tag cloud,
as one tag (‘blackandwhite’), as two (‘black” and ‘white’), and abbreviated
as ‘bw”.

Since the tag cloud displays only a small selection of tags, these are just a few
of the many linguistic variations that can typically be found in folksonomies.
Other common examples, such as misspellings (e.g., typing errors), spelling
variants (e.g., British vs. American English), or personal style (e.g., ‘kidz’
instead of ‘kids’), are not visible in this highly filtered view but can often
be found in folksonomies [110].



18 Chapter 2 • Tagging and Folksonomies

2.2.2 Limitations of Tagging and Folksonomies

On the one hand, the linguistic variety of folksonomies can broaden access
to digital resources (e.g., both ‘holiday’ and ‘vacation’ may return relevant
results in the Flickr case of Figure 2.2). On the other hand, they cause
problems that are usually to be avoided in indexing, for example, by using
controlled vocabularies. For instance, synonym tags can negatively affect
the recall of queries against the folksonomy, since only a part of the possibly
relevant resources is returned (e.g., just photos tagged with ‘holiday’ and
not those tagged with ‘vacation’).

Next to the problem of synonymity, ambiguity can demand a lot of guessing
and filtering from the users. One such example in the Flickr tag cloud is
the tag ‘party’ that can have multiple meanings, among others it can refer to
a ‘social gathering’ or ‘political organization’. Since the tag cloud is from a
photo sharing website, it is likely that most of the photos tagged with ‘party’
are about social gatherings, leading to many irrelevant results for someone
who is looking for photos of political parties. Thus, ambiguity lowers the
precision of searches against the folksonomy, making it particularly difficult
to search for a meaning of a tag that is not popular in a certain context.

In addition, the meaning of tags such as ‘bw’ or ‘macro’ is not clear and
can only be guessed from the context. Typically, the user would need to
select further thematically related tags to clarify the meaning of ambiguous
tags. However, a multiple tag search is also restrictive, as it only returns
resources that are indexed with all the tags entered by the user.

Generalizing from the above examples, the main limitations of folksonomies
can be summarized as follows (cp. [183, 102, 79, 180]):

• Synonymity: Different tags have the same or a very similar meaning,
as it may often be the case for the tags ‘holiday’ and ‘vacation’ from
the Flickr tag cloud of Figure 2.2. This includes abbreviations, such
as the tag ‘bw’ that can also be found in its long form ‘blackandwhite’
in the tag cloud. Related to this are cases of multilingualism (‘italy’
vs. ‘italia’), spelling differences (e.g., British vs. American English),
misspellings, or different treatments of multiword tags (‘newyork’ vs.
‘new york’).

• Ambiguity: Identically spelled tags have different meanings. This in-
cludes all forms of ambiguity that can typically be found in natural
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language, such as homonyms, homographs, heteronyms, and polysemes,
including ambiguous abbreviations.

Golder and Huberman [102] point to another limitation of folksonomies
compared to controlled vocabularies that they call “basic level problem”.
It denotes the fact that tags in a folksonomy “vary along a continuum of
specificity ranging from very general to very specific” [102]. This results as
“people may consider terms at different levels of specificity to be most useful
or appropriate for describing” a resource. For instance, the tag ‘animals’ is
more general than ‘birds’ in the Flickr tag cloud of Figure 2.2, and there
are also more specific tags for birds on Flickr that are not visible in this
highly aggregated view, such as ‘pigeon’, ‘dove’, or ‘citydove’. These varying
degrees of specificity can also negatively affect indexing and retrieval, as it
is well known from other application contexts, such as web search.

2.2.3 Semantifying Folksonomies
There are several approaches that try to overcome some of these limitations.
Basically, they can be divided into two groups:
The first group of approaches aims to reduce the problems by automatically
transforming folksonomies into more controlled vocabularies, for instance,
by using statistical and/or lexical methods. Common techniques include
the analysis of tag co-occurrences [74, 79], tag clustering [46], deriving
hierarchies from folksonomies [128], and automatic mappings of tags to
well-defined entities from lexical databases [74, 180], such as DBpedia [51]
or Wordnet [191].
The second group of approaches involves the users to overcome some of
the limitations. For instance, they let the users explicitly resolve ambiguity,
either during the act of tagging [180, 202] or afterwards. The latter has
been described with the image of tag gardening where the user ‘cares’ about
his or her personomy like a gardener, i.e., he or she keeps it clean and well
organized, for instance, by defining semantic relations between tags [103, 206].
The general ideas in these works are roughly the same as in the automatic
approaches, with the difference that they are manually performed. However,
one has to be careful with the application of such manual approaches, as
they can change the nature of tagging and hence risk to lower the benefits
of tagging described above (see Section 2.2.1).
The manual approaches are sometimes combined with techniques from the
first group in a semi-automatic manner [74, 206, 202]. A popular example
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is the disambiguation of tags that is often supported by an automatically
generated list of suggestions. Yet, it is ultimately the user who selects the
suggestion that matches the meaning he or she intended. This approach of
linking tags to well-defined entities of the web [180, 202] is known as semantic
tagging [180]. Since it is not the whole tagging that is disambiguated but the
individual tags, we call these tags semantic tags. Note that a semantic tagging
must not consist purely of semantic tags but can also include ‘ordinary’ ones,
i.e., whenever a tagging is composed of at least one semantic tag, we call it
a semantic tagging.

Definition 10. A semantic tag is a tag with an explicitly defined meaning
(e.g., expressed by a link to a well-defined entity).

Definition 11. Semantic tagging is tagging with semantic tags.

Examples of systems that support semantic tagging are SemKey [180] or
Faviki [7]. A comprehensive conceptualization of tagging must consider
these approaches of ‘semantifying’ folksonomies. It must at least be capable
to represent semantic tags and tag relations in order to be useful for these
approaches.

2.3 Core Elements
Tagging consists of three sets of elements that form the basis for its concep-
tualization [188, 182, 111, 226, 128, 205, p. 157]:

1. Resources that are being tagged.

2. Tags that are associated with the resources.

3. Users who perform the tagging.

Though these elements are differently named in the literature, their semantics
and relationships are always the same: One or more users (or people, actors,
etc.) annotate resources (or objects, instances, etc.) with one or more tags
(or keywords, labels, etc.).

Before we discuss the link structure of tagging in more detail, we will first
take a look at each of the three element sets to get a better understanding
of what need to be conceptualized.
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2.3.1 Resources
The first set of elements are the resources that are being tagged by the users.
As mentioned in the introduction, these resources can be anything, as long
as they are uniquely addressable by the tagging system. This is why we
prefer the term resource over other terms sometimes used in the literature,
such as content [102, 190] or document [252]. Other authors use terms like
object [108, 74, 128], item [56], or instance [188] instead, which are more
appropriate alternatives. However, the term resource fits especially well
with the terminology of the World Wide Web, which is the most popular
application area of tagging and also focused in this thesis.5

Definition 12. A resource is anything that is uniquely addressable within a
software system or computer network. In web contexts, it is broadly defined
as “whatever might be identified by a URI. Familiar examples include an
electronic document, an image, a source of information with a consistent
purpose [...], a service [...], and a collection of other resources. A resource is
not necessarily accessible via the Internet; e.g., human beings, corporations,
and bound books in a library can also be resources.” [48, p. 5]

This definition emphasizes that anything can be resource, as long as it has
a unique identifier, in web contexts a URI (or IRI [84]). Books, events, or
places can all be subject to tagging, and even “human beings” are explicitly
included in the definition. This is reflected in the idea of people tagging where
tagging is used to “classify people by their skills and projects” [91]. Examples
of systems for people tagging are, for instance, given in [92] and [57].

Ultimately, the tagging system determines what is considered a resource.
Many tagging systems are specialized on a certain type of resource,
such as photos (e.g., Flickr), videos (e.g., YouTube), slideshows (e.g.,
SlideShare [22]), or books (e.g., LibraryThing), while others, like most
social bookmarking systems, can in principle be used to tag anything with
a URI (though they are in fact also specialized, for instance, on web pages).

Some tagging systems allow to tag parts of resources, such as single slides
from a slideshow [73] or selected scenes from a video [212, 33] – a tagging
practice that is sometimes called deep tagging [43, 226, p. 185f.]. However,
parts of a resources can be considered resources on their own, as long as
they can be equipped with a unique identifier (e.g., a URI).
5 The term resource has quite some history in web contexts, as outlined by Berners-Lee [47].
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2.3.2 Users

The second set of elements are the users who perform the tagging. In this
context, the term user denotes all people who use the tagging system to
index or retrieve resources, independently of their role and motivation. Other
terms sometimes used in the literature are actor [188, 74], people [226], or
tagger [108].

In most cases, the users are information seekers who want to index resources
for personal organization and later retrieval, such as in social bookmarking
systems like Delicious. However, a user can also be the author of a
resource who tags the resource for himself and/or others, such as in media
sharing websites like Flickr. In some cases, users may even be professional
indexers who tag resources to increase their findability, such as in e-commerce
applications like Amazon.com. However, tagging by professionals, not
common users, is the exception and would usually not be called tagging but
free indexing or alike.

It is important to note the distinction between user and user account. While
each tagging is associated with one user account, this does not mean that
users can have only one account. Instead, users may create several accounts
in a tagging system to separate, for instance, leisure- and work-related
taggings.

A special case is group tagging where the indexing is done by a group of users.
As an example, think of a team of people that search and index resources
for a project. While each user performs these activities individually, the
taggings of all team members are grouped in a shared project view.

Definition 13. Group tagging is tagging performed by a group of users.

Basically, three different forms of group tagging can be distinguished: The
simplest is to agree on a tag that uniquely identifies the group. The tag
can then be used to aggregate taggings from the individual group member
accounts into a shared view. An alternative is to create a shared user account
that all group members can log in to perform the tagging. The third and most
advanced solution is to create a group account that the user accounts of all
group members are linked to (e.g., as possible in Flickr or Bibsonomy [4]).
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2.3.3 Tags

The third set of elements are the tags, i.e., arbitrary text labels associated
with the resources (see Definition 1). Tags can be common words, slang,
abbreviations, emoticons, ratings, or text strings that are only meaningful
to the person who uses them. Theoretically, there are no restrictions on
the number and kind of tags a resource can be annotated with. Practically,
however, the possibilities are restricted by the tagging system, such as
the maximum number of tags per tagging6 or the supported character
encoding (ASCII, unicode, etc.). Some tagging systems (e.g., Amazon.com)
filter objectionable words and many convert tags to lowercase for different
reasons (e.g., aesthetics, aggregation, homogeneity, etc.). Sometimes, certain
characters are reserved for special purposes and can thus not be used in
‘normal’ tags, such as spaces or commas if used as delimiters. Apart from
that, no restrictions are usually made on what character string can be used
as tag.

As the space character is often used as delimiter to separate tags, several
workarounds have been invented by users of tagging systems to cope with
multiple word tags (e.g., compounds such as ‘new york’). A very common
practice is to simply omit the space and write the words as one tag (cp. the
tag ‘newyork’ in the Flickr tag cloud of Figure 2.2). Camel case (‘NewYork’)
usually does not work, since the tags are converted to lowercase in many
tagging systems. Other common workarounds are the use of abbreviations
(‘nyc’) or separate tags (‘new’, ‘york’), as also visible in the Flickr tag cloud
of Figure 2.2. However, adding compounds as several tags (e.g., ‘new’ and
‘york’) can lead to ambiguities in the folksonomy, as discussed in Section 2.2.2.

Some systems try to solve this problem by using commas instead of spaces
as tag delimiters. Others require to add quotes to compound tags or to
enter each tag in a separate text box. However, such approaches run the
risk of slowing down tagging speed and therefore reducing one of the main
advantages of tagging (see Section 2.2.1). Furthermore, they may affect
other components of the tagging system that have not been designed for
multiple word tags. For instance, tags in a tag cloud are usually separated
by whitespace so that it is not easily distinguishable whether a tag is a
multiple word tag purely by looking at the tag cloud.

6 At time of writing, Delicious allows a maximum of 50 tags per tagging (which is more
than sufficient for common bookmarking), and Flickr limits the number of tags per
photo to 75 [9].
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Although tags are freely chosen text labels, they are not free from convention.
Some types of tags can often be found in tagging systems. For instance, the
self-referential tag ‘me’ is frequently used in media sharing to refer to photos
or videos that show the users themselves [183] (e.g., it is also included in
the Flickr tag cloud of Figure 2.2), whereas tags like ‘toread’ or ‘todo’ are
popular in social bookmarking to assign a future task to resources (e.g., to
read an interesting web blog article at a later time).

Tag Categories

In an analysis of more than 165,000 tags from the social bookmarking service
Delicious, Kipp and Campbell found that 16% of the tags are ‘time and
task related’ [146]. Examples include the aforementioned tags ‘toread’ and
‘todo’, as well as similar ones, such as ‘tobuy’, ‘readme’, ‘gtd’ (for ‘getting
things done’). These tags are characterized by pointing to some task in
the future. As another class of tags that is frequently used, they identified
affective tags “dwelling on a user’s emotional response” [146]. Examples of
affective tags include ‘interesting’, ‘fun’, and ‘cool’. Related to this are tags
used to rate resources via stars (‘***’) or numbers (‘3/5’).
In a related analysis of tagging data from Delicious, Golder and Huberman
found seven main categories for tags [102]. Further categories are proposed by
Sen et al. [220], Xu et al. [255], and Smith [226, p. 67], among others. Bischoff
et al. [50] combined these categorization approaches into one classification
and demonstrated its validity for different tagging systems. In particular,
they used the categorization of Golder and Huberman and extended it
by the classes ‘time’ and ‘location’. The resulting classification is given in
Table 2.1, along with examples gathered from tagging systems in three
different domains, namely music (Last.fm [11]), photos (Flickr), and
bookmarking (Delicious).
The category ‘topic’ contains tags that describe the contents of resources.
Tags such as ‘bird’, ‘flower’, or ‘girl’ from the Flickr tag cloud are examples
for this category. Tags in the ‘time’ and ‘location’ categories add contextual
information to the resource. For instance, the tags ‘winter’ or ‘july’ in the
Flickr tag cloud may provide information on when a photo was taken,
while the tags ‘sanfrancisco’ or ‘italy’ describe where it was taken. Tags
can also specify the ‘type’ of a resource, such as the file format (e.g., ‘jpeg’
in photo sharing) or media type (e.g., ‘blog’ in social bookmarking). This
category can additionally include camera settings and photographic styles
in photo sharing, such as tags like ‘portrait’ or ‘macro’ in the Flickr tag
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Category Last.fm Flickr Delicious

Topic love, revolution people, flowers webdesign, linux

Time 80s 2005, july daily, current

Location england, african toronto, kingscross slovakia, newcastle

Type pop, acoustic portrait, 50mm movies, mp3, blogs

Author,
owner

the beatles, wax
trax

wright wired, alanmoore

Opinions,
qualities

great lyrics scary, bright annoying, funny

Usage
context

workout, study vacation, birthday,
science

work, travelling

Self
reference

albums i own,
seen live

me, 100views frommyrssfeeds

Table 2.1 — Common tag categories with tag examples from the domains
of music (Last.fm), photos (Flickr), and bookmarking (Delicious) [50].

cloud. The ‘author’ category contains tags that tell who created the resource
(e.g., the name of the author of a blog article), while the ‘opinion’ category
comprises the aforementioned affective tags and ratings (‘fun’, ‘cool’, ‘***’).
Tags in the category ‘usage context’ describe the context or task associated
with a resource, whereas ‘self referring’ tags are personal tags that are mainly
of interest to the users themselves.
Bischoff et al. [50] emphasize that the categories are not equally useful
for different tagging systems but that the distribution of tags among the
categories depends on the resources that are being tagged. For instance,
while more than 50% of the tags in Flickr and Delicious are content
descriptions, most tags in Last.fm describe the type of music [50].

Specific Types of Tags

It is often hard to decide which category a tag belongs to. A challenge is
not only tag ambiguity, as introduced in Section 2.2.2, but also the often
unclear function of a tag. Take, for instance, a photo annotated with the
tag ‘alice’. Does it mean that the photo shows Alice or that it was taken
by Alice? It may also mean that the creator of the tag thinks the photo
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would be of interest to Alice? To overcome this problem, triple tags have
been proposed as a way to add facets to tags.

Triple Tags Triple tags (also known as machine or system tags) are
tags with a special syntax consisting of a namespace, a predicate, and a
value [71, 9, 226, p.111]. The namespace defines the facet the tag belongs
to (e.g., ‘system’), while the predicate is the name of a property for that
namespace (e.g., ‘filetype’). Namespace and predicate are separated by a
colon, predicates and values by an equals sign (e.g., ‘system:filetype=raw’).
Triple tags allow for structured tagging and can help to reduce ambiguity.
They can also refer to well-defined vocabularies like the Dublin Core Metadata
Element Set (DC) [54]. For instance, ‘dc:subject=alice’ would state that the
photo shows Alice, while ‘dc:creator=alice’ would mean that it was taken
by Alice. However, triple tags do not resolve tag ambiguity in all cases. For
instance, the tag ‘dc:subject=apple’ only tells that a resource is about ‘apple’
but it does not clarify the meaning of the word ‘apple’ itself. While such
a complete disambiguation would only be possible with semantic tags (see
Definition 10), the idea of triple tags is rather to express the category or
function of tags and make it more machine processable.

Namespace collisions can be prevented by referencing URIs with the help
of other triple tags (e.g., xmlns:dc=http://purl.org/dc/elements/1.1/).
While this idea is adopted from XML namespaces [58], the triple structure is
similar to microformats [13, 141] and the Resource Description Framework
(RDF) [147]. The namespaces and predicates of triple tags are often not for-
mally specified. They can in principle be freely chosen by the user. However,
as for special tags like ‘toread’ or ‘me’, conventions have emerged over time.
Some triple tags can even be automatically processed by tagging systems,
especially in geotagging, which is a popular application area of triple tags.

Geotags Geotags are a special type of triple tags that can be used to anno-
tate resources with geographical information. By convention, the geographic
location of a resource is given by its latitude and longitude (in decimal
degrees, as specified by the World Geodetic System) with the namespace
‘geo’ and the properties ‘lat’ and ‘lon’. For instance, geotags added to a
photo showing the central square ‘Puerta del Sol’ in Madrid could look
like this: geo:lat=40.416618, geo:lon=-3.703748. This pair of tags may be
accompanied by a tag like ‘geotagged’ (depending on the convention) telling
the tagging system that geotags are used. The tagging system might then
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handle these tags differently, for instance, by processing the coordinates and
presenting the associated resources on a geographic map.
There are several extensions to the basic geotagging convention that allow,
for instance, to additionally encode the altitude, viewing direction, or place
names. Geotags are usually not entered as decimal degrees by the users
but are either added by selecting a location from a map or automatically
attached to a digital resource (e.g., using data from the Exchangeable Image
File Format (EXIF) in case of photo sharing). Since more and more devices
(e.g., cameras, smartphones, etc.) are equipped with GPS units and network-
based positioning systems nowadays, geographic information is increasingly
available for tagging systems.

Automatic tags The method of automatically assigning tags to resources
is known as automatic tagging [244, 41, 89]. Strictly speaking, it is not a
form of tagging, as there is no user involved. However, as automatic tagging
is an important concept in the domain of tagging, it must be taken into
account in a comprehensive conceptualization.

Definition 14. An automatic tag is a tag that is automatically assigned to
a resource (e.g., by the tagging system).

Definition 15. Automatic tagging is tagging with automatic tags.

2.4 Basic Models
A comprehensive conceptualization must not only consider the resources,
tags, and users, but also the relationships between these elements created
through tagging. In the following, we will examine basic models and rep-
resentations that describe these relationships. They form the basis for the
conceptualization of tagging and the visualization of folksonomies that are
addressed later in this thesis.
To start with, we can define three finite and disjoint sets R = {r1, r2, ..., rk},
T = {t1, t2, ..., tl}, and U = {u1, u2, ..., um} that represent the resources,
tags, and users (or more precisely user accounts).7 They are interconnected
by taggings, i.e., a set of annotations A = {a1, a2, ..., an} that follow the
7 Though we stressed the importance of distinguishing between users and user accounts in
Section 2.3.2, we will use these terms largely interchangeable in the following to simplify
matters.
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fundamental tagging principles. These principles must not be violated if
common processing of the resulting folksonomy should be guaranteed (e.g.,
to generate tag clouds or to allow for pivot browsing [190]). Therefore, we
defined them as axioms:

Axiom 1. Each tagging links exactly one resource with one user account
and one or more tags.

Axiom 2. Each resource can be tagged at most once by each user account.

Axiom 3. Each tag can be assigned at most once to each resource by each
user account.

Axiom 4. A tag consists of exactly one text label – otherwise it is not a
tag.

These axioms are true for any folksonomy, i.e., if one of these principles is
violated, it is not a valid folksonomy.

2.4.1 Three-Layer Model of Tagging
Tagging is often illustrated by means of a three-layer model similar to the
one shown in Figure 2.3. It arranges the three element sets in layers that are
connected by lines indicating the taggings. Similar illustrations can be found
in several works on tagging and folksonomies [237, 182, 111, 128, 74, 229,
p. 41].
The three-layer model illustrates the many links that emerge in tagging.
Apart from the explicit links created through tagging, several implicit links
result. These implicit links connect elements within the layers and are
indicated by dashed lines in the model. For instance, two users are implicitly
connected if they tag the same resource (as users u2 and u3 in Figure 2.3)
or if they use the same tag (as users u3 and u4). Likewise, implicit links on
the resource layer emerge if two resources are annotated with the same tag
(r1 and r2) or if they are tagged by the same user. On the tag layer, implicit
links result if two tags are used for the same resource (t2 and t3) or by the
same user (t3 and t4).
The link weights between elements in a layer increase with the number of
times the elements are used together. For instance, if the same two tags (t4
and t5) are associated with several resources (r4 and r5), the implicit link
between these tags gets stronger. Similarly, links between two resources get
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Figure 2.3 — Three-layer model of tagging, illustrating the links that
emerge between and within the layers.

stronger if they are annotated with the same tag multiple times, or between
two users if they repeatedly use the same tags.
The implicit links can, of course, also connect more than two elements on a
layer. For instance, since users u2, u3, and u4 annotate all the same resource
r3 in the example of Figure 2.3, they are implicitly connected. However, as
users u3 and u4 use even the same tag (t3) for indexing, the link between
these two users is stronger than their links to user u2.
These implicit, weighted links open up interesting opportunities for social
recommendation and navigation, such as collaborative filtering [235] or peer
finding [91]. They are also useful in the visualization of folksonomies, as we
will detail in Section 6.
Note that the model assumes that all tags with identical spelling are rep-
resented by the same element tx, independently of their meaning. Such
an aggregation is common to folksonomies and considered one of the four
criteria that make up a folksonomy according to Smith [226, p. 84]. With
tag clouds, we already introduced a popular visualization for aggregated
tag vocabularies and discussed its limitations in Section 2.2.2. While tag
aggregations are not considered by the basic models presented here, it is im-
portant to distinguish between tags and aggregated tags in a comprehensive
conceptualization, as we will explain later (see Section 3.1).
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Figure 2.4 — Graph representations of tagging and folksonomies, (a) ac-
cording to the three-layer model, (b) with relations between users and
resources, and (c) with ternary relations connecting all three element sets.

2.4.2 Formal Folksonomy Representation
A simplified version of the three-layer model is given in Figure 2.4a. Com-
pared to the illustration in Figure 2.3, the example has fewer elements and
a different link structure for demonstration purposes. It is basically an undi-
rected tripartite graph where each partition represents one model layer (i.e.,
one set of elements) and the layers are connected by binary relations. Each
annotation consists of at least two binary relations that connect one resource
with one user account via one or more tags, as given by Axiom 1. The set of
annotations can thus be formally defined as A2x2 ⊆ (R× T ) ∪ (T × U).
Although the three-layer model provides an intuitive illustration of tagging,
it is not suitable to represent folksonomies, as it misses information on
which user annotated which resources. It is, for example, impossible to say
from Figure 2.4a if resource r3 has been annotated by user u2 or user u3
(or even by both). This is vital information that needs to be included in
representations of folksonomies [240].

Three-Uniform Folksonomy Hypergraph

To include that information, we need to add connections between the resource
and user layers, as illustrated in Figure 2.4b. The formal definition of
the set of annotations is thereby extended to A3x2 ⊆ (R × T ) ∪ (T ×
U) ∪ (U × R). However, with the extended representation, it is still not
possible to unambiguously describe which tags have been added by which
user. To overcome this problem, we can replace each set of three binary
relations by one ternary relation, resulting in a three-uniform hypergraph as
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illustrated in Figure 2.4c. The set of all annotations can now be defined as
A1x3 ⊆ R× T × U .
This hypergraph representation of folksonomies was first introduced by
Mika [188]. Strictly speaking, it consists not only of the set of annotations
A1x3, i.e., the ternary relations between the users, tags, and resources, but
also includes the three element sets themselves. The folksonomy hypergraph
can thus be defined as G(F ) = (V,E) with V = R ∪ T ∪ U and E =
{{r, t, u} | (r, t, u) ∈ A1x3}. Alternatively, it can be represented in tuple
form, as proposed by Hotho et al. [129].

Definition 16. A folksonomy can be formally described as a quadruple
F = (R, T, U,A) where R, T , and U are the finite and disjoint sets of
resources, tags, and users, and A ⊆ R×T ×U is the set of ternary relations
resulting from tagging (cp. Definitions 4 and 5).

The folksonomy quadruple for the example in Figure 2.4c would then look
as follows:

Fex = ({r1, r2, r3}, {t1, t2, t3}, {u1, u2, u3},
{(r1, t1, u1), (r1, t2, u1), (r2, t3, u2), (r3, t3, u3)})

(2.1)

Given the triadic character of this representation, parts of the folksonomy
can be derived by restricting the hypergraph or quadruple to a specific
element or subset of elements. For instance, the personomy Pu of a user
u ∈ U is the restriction of F to u. In tuple form, it can be defined as
Pu = (Ru, Tu, Au) where Au = {(r, t) | (r, t, u) ∈ A1x3} is the user’s set
of annotations, Tu = {(t) | (r, t) ∈ Au} is the user’s set of tags, and
Ru = {(r) | (r, t) ∈ Au} is the set of annotated resources [178].

Non-Uniform Folksonomy Hypergraph

Although the three-uniform hypergraph and related quadruple representa-
tion are straightforward ways to describe folksonomies, they are conceptually
imprecise, as all taggings are represented by ternary relations. Taggings that
consist of more than one tag (which is the usual case [111]) must be split
into several relations in these models. A conceptually more accurate repre-
sentation would be a non-uniform hypergraph that allows for n-ary relations
of variable n, as illustrated in Figure 2.5a. The folksonomy quadruple Fex

would then look as follows:
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Figure 2.5 — Further graph representations of folksonomies, with (a) n-
ary relations connecting more than one tag, (b) additional time information,
and (c) links within the element sets.

Fex = ({r1, r2, r3}, {t1, t2, t3}, {u1, u2, u3},
{(r1, t1, t2, u1), (r2, t3, u2), (r3, t3, u3)})

(2.2)

A non-uniform hypergraph is not only conceptually more accurate than
a three-uniform hypergraph, but it also allows for a more compact repre-
sentation. On the other hand, it does not consist of triples but of n-ary
relations, which may be seen as technical drawback (e.g., in RDF contexts,
see Section 4). Ultimately, both hypergraph representations contain the
same information and can be transformed into one another. This is possible
due to Axiom 2, stating that each resource can be tagged at most once by
each user account. So if we know the user and resource, we can always get
the associated tags, also in the three-uniform hypergraph representation
defined above.

2.4.3 Beyond Basic Representations
There is more than the linked resources, tags, and users that must be
considered in a comprehensive conceptualization of tagging and folksonomies.
Another important piece of information is the date and time of tagging. Many
systems use this information to display taggings in reverse chronological
order, while others enable users to specify time intervals when browsing
folksonomies [160]. Time information can also be used for trend detection in
folksonomies [130] or timeline visualizations of tag sets [26, 83, 186]. This is
why some consider time as another core element of folksonomies [253, 226,
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p. 101]. We illustrate that in the extended hypergraph representation of
Figure 2.5b by adding set D containing date and time information.

Others emphasize the source of tagging as an important piece of information.
It becomes vital when folksonomies leave the borders of one tagging system,
for example, to be exchanged with other systems or stored in a central
repository. This is addressed by Gruber who proposes an alternative tuple
representation for folksonomies that includes “some notion of source” [108].

Besides time and source, there are further elements that must be considered
in a comprehensive conceptualization of tagging. One example are comments
entered along with the tags by the users (cp. the text box for comments in
the Delicious user interface of Figure 2.1). Another example are different
kinds of tag relations, such as the hierarchical relations that can be defined
in some tagging systems (e.g., Bibsonomy [4]). Hotho et al. [129] extend
the folksonomy hypergraph to include hierarchical tag relations. They define
the set ≺ ⊆ U × T × T for this purpose and add it as fifth element to the
folksonomy quadruple introduced in Section 2.4.2.

Note that ≺ contains the set of the users U , i.e., each tag relation is linked
to the account of the user who created it. This is important, as it cannot
be assumed that the user-defined tag relations are valid for the whole
folksonomy. Such a generalization would quickly result in conflicts and
disagreements between users having different understandings of how tags
are related. Instead, hierarchical tag relations are usually only valid for the
personomy of the user who defined them.

There are other cases where it makes sense to represent relations between
tags on the folksonomy level (e.g., in tag clustering [46] or for the generation
of folksonomy graphs, as they will be introduced in Chapter 6). Figure 2.5c
sketches such a global tag relation by linking tags t2 and t3. Likewise, there
can also be direct links between resources (e.g., hyperlinks) or between users
(e.g., group links), as illustrated in Figure 2.5c for r2 and r3 as well as u1 and
u2. Although these links are not part of the folksonomy itself, they need to
be taken into account in a comprehensive conceptualization of the domain
of tagging.

Yet other relations are only valid for single tags (e.g., links to well-defined
entities as they may be used with semantic tags, see Definition 10). This is
also true for other tag properties, such as the order in which tags are entered
by the users. Regardless of whether this order is of importance to the users
or not, they would expect it to remain the same whenever they access their
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taggings. In general, a conceptualization must carefully distinguish between
individual tags, as entered by the users, and aggregated tags, as used for
the generation of tag clouds and other representations.
A powerful way to formally describe all this information is an ontology. In
computer science, an ontology is briefly defined as “an explicit specification
of a conceptualization” [107]. It describes the concepts and relationships in
an area of knowledge in a logic-based language that is machine-processable
and provides means for automated reasoning. In the following, we will detail
the possibilities of conceptualizing tagging and folksonomies with ontologies.
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Ontologies for Tagging and

Folksonomies

Ontologies gained much popularity with the rise of the Semantic Web as a
way to give information well-defined meaning [49, 120]. They are used by
people and software systems that need to share information about a domain.
Numerous ontologies for various domains have been developed in the last
years. Most of the modern ones are implemented in the OWL Web Ontology
Language [185], which is based on the Resource Description Framework
(RDF) [147] and closely related to RDF Schema (RDFS) [59]. All three
languages are recommendations of the World Wide Web Consortium (W3C).
The latest version of OWL is OWL 2, which became a W3C recommendation
in late 2009 and is available in its second edition since late 2012 [106].

There is also quite a number of ontologies for the domain of tagging and
folksonomies. In this chapter, we will review the available ontologies and
discuss their strengths and weaknesses. Older reviews of a part of these
ontologies are provided by Kim et al. [145, 144]. Although these reviews
provide a good starting point, they are not detailed enough for our purpose.
Furthermore, they are mainly focused on own developments (i.e., the later
discussed SCOT and MOAT ontologies), neglecting some relevant conceptual-
izations that have been proposed elsewhere. We reviewed and compared

Parts of this chapter have already been published in [166] and [169].
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the available tagging ontologies in detail with the goal to identify the most
adequate ways of conceptualizing the domain of tagging.

3.1 Review of Tagging Ontologies
In a survey of the literature and web, we found nine ontologies for the
domain of tagging and folksonomies. Table 3.2 lists these ontologies in
chronological order by their release dates. Our review is based on the most
recent RDF/XML serializations of the ontologies, as they were available at
time of writing. The dates of the latest updates are also given in Table 3.2.1

Popular ontologies are typically abbreviated by their common namespace
prefixes. Since there are yet no established prefixes for many of the reviewed
ontologies, we partly used own prefixes as given in Table 3.2. The namespace
URIs and prefixes of all vocabularies referenced in this thesis are listed in
Table A.1 in Appendix A. Abbreviations in uppercase refer to the ontologies
as a whole, while lowercase abbreviations denote certain classes, properties, or
individuals of the ontologies. Following conventions, classes and individuals
start with a capital letter after the namespace prefix and colon, while
properties are in small letters.
Relevant work on the ontology-based description of tagging and folksonomies
started in 2005 with the creation of a first tagging ontology by Newman et
al. [197]. In the same year, Gruber gave two talks in which he outlined his
ideas for an “ontology of folksonomy” [108, 109], followed by the formation
of the TagCommons initiative [25] to further develop these ideas. These early
conceptualizations model the key structure and elements of tagging and
folksonomies. They also consider some further concepts of tagging discussed
in Section 2.4.3, such as date and time information [197], relations between
tags [197], or the source of tagging (i.e., the used tagging system) [108]. While
Gruber’s conceptualization is a rather informal description of ideas, the
conceptualization of Newman et al. is a well-defined ontology implemented
in OWL.

3.1.1 Newman’s Tag Ontology
Newman’s ontology entitled Tag Ontology (TAGS) defines the fundamental
conceptual structure of tagging. A basic decision in the design of TAGS was to
1 In order to ensure that the reviewed versions of the ontologies continue to be available
in the near future, we provide copies of them on the web at http://purl.org/muto.

http://purl.org/muto
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assign all key elements, including tags, a URI for unique identification on the
web [197]. Accordingly, TAGS defines a class tags:Tag for the representation
of tags instead of using purely literals. Likewise, a class tags:Tagging is
defined that describes the “n-ary relationship between a tagger, a tag, a
resource, and a date” [197]. Such a class is key to any conceptualization of
tagging, as discussed in Section 2.4. To emphasize its central role, we prefer
the term tagging ontology over tag ontology for ontologies that describe the
domain of tagging.2

Though Newman precisely defines the concept of tagging, he does not
clearly state what is considered a tag. He mentions that representing tags as
instances with URIs gives them unique identity on the web and thus allows
for “repeated references to the same tag” [197]. He also provides examples
for URIs of tags (e.g., http://www.holygoat.co.uk/owl/redwood/tag/
great) that follow common patterns of tagging systems (e.g., http://www.
delicious.com/tag/great). However, since these URIs are generated from
the tag labels, it remains unclear how tags with same labels but different
meanings are represented. Though Newman distinguishes between “the same
tag” and “different tags with the same label” [197], he does not elaborate on
how these different cases are treated by the TAGS ontology. This can result in
confusion and inconsistent use of the ontology in software systems and other
ontologies. Most of the systems that use TAGS seem to aggregate tags with
same labels. An example is the reviewing and rating website Revyu [119]
that uses the aforementioned pattern and assigns the same URI to all tags
with identical spelling (e.g., http://revyu.com/tags/party). This is also
how the later discussed SCOT and MOAT ontologies seem to reuse TAGS (see
Section 3.1.4 and Section 3.1.5).
Another fundamental design decision in the development of TAGS was to
reuse existing ontologies for concepts that are not tagging-specific. For
instance, foaf:Agent from the Friend of a Friend (FOAF) vocabulary is used
to represent users, the tagging date (tags:taggedOn) is a subproperty of dc:
date from the Dublin Core Metadata Element Set (DC) [54] and tags:Tag is
a subclass of skos:Concept from the Simple Knowledge Organization System
(SKOS) [21]. The label of a tag (tags:name) is defined as a subproperty of both
dc:title and rdfs:label. Furthermore, TAGS distinguishes two types of
tag relations: tags:equivalentTag (defined as subproperty of owl:sameAs)
to relate synonym tags, and tags:related (defined as subproperty of skos:
2 A possible alternative would be the term ontology of folksonomy, as used by Gruber [108]
and [88] (see Section 3.1.3).
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semanticRelation) for all other kinds of tag relations (e.g., hierarchical
tag relations).

Finally, TAGS introduces the subclass tags:RestrictedTagging for taggings
that have “precisely one associated resource and one associated tag” [196].
While this is in-line with the three-uniform folksonomy representation pre-
sented in Section 2.4.2, it is not the most accurate conceptualization, as we
also discussed there.

A problematic part of TAGS is the property tags:taggedWithTag that di-
rectly links tags and resources. Although this direct link facilitates access to
the tag-resource relations from a pragmatic point of view [240], it is imprecise
and redundant from a conceptual point of view, as tags and resources are not
directly connected but indirectly by tagging instances. Such a direct linking
can be problematic for private tagging, as we will discuss in Section 4.4.

3.1.2 Knerr’s Tagging Ontology

Newman’s TAGS ontology was followed by a number of other tagging on-
tologies in the subsequent years, each focusing on different aspects of tag-
ging. One such ontology, entitled Tagging Ontology (TO), was developed by
Knerr in 2006 [148]. It takes up the idea of Gruber [108] and references
the source of tagging in the ontology, with the class to:ServiceDomain.
As mentioned in Section 2.4.3, this information can be important if folk-
sonomies are exchanged between systems or merged. The name and the
URL of the tagging system can be represented with to:hasServiceName
and to:hasServiceHomepage, which are subproperties of foaf:name and
foaf:homepage.

Apart from that, TO considers some other important concepts we intro-
duced in Chapter 2. Figure 3.1 depicts an illustration of the main con-
cepts and relationships of TO, as provided by Knerr [148]. Group tagging
(see Definition 13) is supported by linking not only foaf:Person but also
foaf:Group. Private taggings (see Definition 7) can be expressed with the
class to:VisibilityEnum defining the visibility of taggings with the indi-
viduals to:Private, to:Public, and to:Protected. According to Knerr,
public taggings are visible to everyone, while private taggings are only visible
to their creators and protected taggings to their creators and a “selected
group of people (e.g., friends)” [148]. However, Knerr does not further detail
how this group of people is referenced in TO.
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Figure 3.1 — Tagging Ontology by Knerr [148].

TO is also capable to represent information on the type of resources that are
tagged. For this purpose, it links to the DCMI Type Vocabulary (DCTYPE).
DCTYPE is a specification of the Dublin Core Metadata Initiative (DCMI)
and related to the DC vocabulary that has already been used by TAGS.
It defines twelve terms that roughly describe the “genre” of a resource
(e.g., dctype:Image or dctype:Text) [53]. Finally, TO considers comments
added to taggings (see Section 2.4.3), which are represented by the property
to:hasNote (not included in Figure 3.1).

Like TAGS, TO aligns to concepts from FOAF, SKOS, and Dublin Core (DC,
DCTERMS, DCTYPE), though not in all cases (e.g., to:prefTagLabel has no
link to skos:prefLabel). In contrast to TAGS, TO does not purely use
links (i.e., rdfs:range and rdfs:domain) and subsumptions (i.e., rdfs:
subClassOf, rdfs:subPropertyOf) for these alignments, but also an equiv-
alence relation (owl:equivalentProperty between to:hasType and dc:
type).3

Some modeling in TO is unnecessarily complicated (e.g., the introduction of
the to:VisibilityEnum class) or even semantically incorrect. For instance,
making to:hasTagging a functional property allows for only one tagging
per user, and defining it with two domain axioms (foaf:Person and foaf:
Group) results in a conjunction of the domains, and not in a disjunction as it
seems to be intended by Knerr. Similar to TAGS, it remains unclear how tags
3 Note that property equivalence is different from property equality. While equivalent
properties “have the same ‘values’ (i.e., the same property extension)”, they “may have
different intensional meaning (i.e., denote different concepts)” according to [76].
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are represented in TO. On the one hand, the ontology states that to:Tag
represents “a single tag” and that “each tag has a unique URI” [149]. On the
other hand, Knerr writes that instances of to:Tag “can have multiple labels
[...] and a default label” to “allow for variations in spelling or language” [148].
The latter contradicts the idea of tagging where a tag always consists of
exactly one text label (see Axiom 4).

The lack of clarity in the definition of what a tag is and how it is represented
in the ontology can be regarded as one of the main drawbacks of both TO and
TAGS. In particular, it is unclear how tags are aggregated in these ontologies.
While TAGS seems to intend an aggregation of identically spelled tags (i.e.,
all tags with same spelling have the same URI), TO rather seems to aim for a
semantic aggregation that merges tags which denote the same thing, even if
they are differently spelled. This would require some kind of ‘semantification’
of tags, as outlined in Section 2.2.3, which is, however, not further discussed
by Knerr. Overall, both TO and TAGS define classes for aggregated tags, but
they do not consider the individual tags as entered by the users. Hence, they
can also not represent related properties, such as the order in which tags
are entered or other information of the individual tags. However, this kind
of information can be important and has to be included in a comprehensive
tagging ontology, as we will detail in Section 4.2.6.

3.1.3 Ontology of Folksonomy
In contrast to TO and TAGS, the Ontology of Folksonomy (OF) published
by Echarte et al. in 2007 [88] makes a clear distinction between individual
and aggregated tags. OF defines two classes for this purpose: While of:Tag
is semantically nearly identical to to:Tag (except from that it is not a
subclass of skos:Concept), of:AnnotationTag represents the actual tags as
entered by the users, i.e., without merging tags that have the same spelling
(like in TAGS) or meaning (like in TO). It means that a new instance of
of:AnnotationTag is created for each entered tag, without any aggregation.
Instead, the instances of of:AnnotationTag are linked to instances of of:
Tag, which are called “tag concepts” by Echarte et al. [88] and contain
different variations of a tag that denote the same thing (like for to:Tag).

This modeling of taggings (of:Annotation) that are first linked to tags
(of:AnnotationTag) and from there to well-defined entities (of:Tag) is
actually a conceptualization of semantic tagging (see Definition 11). Every
“tag concept” must have exactly one preferred label (of:hasPrefLabel)
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according to OF, and can have additional hidden labels (of:hasHiddenLabel,
e.g., for frequent misspellings) or alternative labels (of:hasAltLabel, e.g.,
for synonym tags). This is very similar to the modeling of to:Tag and
the general idea of skos:Concept with its distinction between preferred,
alternative, and hidden labels.
OF does not define any links to other vocabularies, neither to well-known
vocabularies like SKOS, FOAF, or DCTERMS nor to the previously published
tagging ontologies TO and TAGS. Like TAGS, it defines a direct relation between
tags and resources (of:hasRelatedResource) for “efficiency” reasons [88].
As we already pointed out in Section 3.1.1, this is conceptually imprecise and
can be problematic, especially for the representation of private taggings (see
Section 4.1.4). Like TO, OF incorporates source information, as introduced
by Gruber [108], with the class of:Source. It also adopts Gruber’s idea
of “negative tagging”, with the class of:Polarity [108]. However, as this
idea never found its way into tagging systems, it can be neglected in a
conceptualization of tagging.
The clear distinction between individual and aggregated tags enables OF
to define individual tag properties. For instance, the aforementioned tag
order is represented by adding an integer value to each instance of of:
AnnotationTag (with of:hasPosition) that represents the position in the
user-entered list of tags. OF is the only tagging ontology that is capable to
represent this information.
Finally, OF makes a first attempt to distinguish between different types of tags
by introducing two basic tag categories (see Section 2.3.3): of:TagPersonal
and of:TagCommon. While the first captures all tags of “personal type”,
i.e., those related to the “planning of personal tasks” or “self-reference
tags”, the second is for “the rest of tags” according to Echarte et al. [88].
Unfortunately, these two categories are defined as subclasses of of:Tag, not
of of:AnnotationTag, which is problematic if the same tag has a “personal”
function in one context and a “common” function in another.

3.1.4 Social Semantic Cloud of Tags
The Social Semantic Cloud of Tags (SCOT) [142] has been developed by Kim
et al. with a different goal than the previously discussed ontologies, as already
indicated by its name. Instead of describing the domain of tagging, it focuses
on the sharing of numeric data and selected sets of tags, i.e., information
that is often visually presented in the form of tag clouds (see Definition 9).
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Figure 3.2 — Social Semantic Cloud of Tags by Kim et al. [144].

For this purpose, SCOT reuses Newman’s TAGS ontology and extends it by
the class scot:Tagcloud (see Figure 3.2). According to Kim et al., this
class can be regarded as a “specific type of container for grouping metadata
relevant to tagging” [143]. For instance, it defines datatype properties for
the total number of tags contained in the tag cloud (scot:total_tags) or
for the number of associated resources (scot:total_items). In addition, it
contains information about the creator of the tag cloud (scot:created_by),
associated user groups (scot:has_usergroup), and the source of tagging
(scot:tagspace). Taggings and tags are linked to scot:Tagcloud by the
properties scot:contains and scot:tagging_activity (see Figure 3.2).

Apart from scot:Tagcloud, SCOT defines the classes scot:Tag and scot:
Cooccurrence. The first is a subclass of tags:Tag and “describes a tag that
is aggregated from individual tagging activities” [144]. Unfortunately, this
statement is very vague, leaving it unclear what scot:Tag actually denotes,
as it was already a problem in TO and TAGS. It seems that instances of
this class are created by aggregating tags with same labels, i.e., it might
be used the same way as tags:Tag is commonly used. This interpretation
is also indicated by the properties of scot:Tag that describe the absolute
and relative usage frequencies of a tag, among others. The class scot:
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Cooccurrence, on the other hand, describes which tags are used together
in taggings and how frequently they are used together.
However, all this information can be inferred from other tagging concepts
and does not need to be described redundantly. A separate description
might be beneficial for technical reasons – e.g., to facilitate querying or to
shorten query response times when the ontology is used for data storage
– but it is better avoided in a general conceptualization of tagging we
aim for in this thesis, since it makes the ontology unnecessary complex,
partly redundant and prone to inconsistencies. In our view, a tag cloud
is rather one type of visualization for folksononomies than a part of the
conceptualization. Although the visualization concept of tag clouds can be
formally described as an ontology, we would not integrate it into the core
conceptualization. Tag clouds are rather generated by tagging systems based
on the conceptualization, as we will further detail in Chapter 5.
More relevant to this work are the many tag relations defined by SCOT which
describe some of the linguistic variations discussed in Section 2.2.2. For in-
stance, if a tag is an abbreviation of another tag, this can be indicated by the
property scot:acronym. There are also property relations for plural forms
(scot:plural) or synonym tags (scot:synonym). Finally, SCOT introduces
properties that represent the type of delimiter used to separate multiple
word tags (cp. Section 2.3.3), such as scot:underscored or scot:spaced.
However, as discussed in Section 2.2.3, it can be difficult to automatically
detect tag variations that go beyond simple cases, such as different spellings
(e.g., British vs. American English) or tag delimiters (e.g., underscore).
Apart from that, SCOT is the first tagging ontology that integrates the
Semantically-Interlinked Online Communities (SIOC) vocabulary [55]. SIOC
is linked with the purpose “to define the range values of tagging properties
more specifically” [144]. For instance, SIOC classes are used to represent cre-
ators of tags (sioc:User), sources of tag clouds (sioc:Site), or user groups
associated with tag clouds (sioc:Usergroup). Furthermore, sioc:Item is
defined as range for tagged resources (as expressed by scot:tag_of). Even
though explicit ranges for properties usually increase the interoperability
of the conceptualization, they can also make the ontology less flexible with
regard to different application contexts. In this case, it means that SCOT
should only be used with resources that are instances of sioc:Item, which
limits its applicability. Furthermore, SCOT can only be used along with TAGS,
as it is not a complete tagging ontology but an extension of TAGS describing
information related to tag clouds.
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3.1.5 Meaning of a Tag
MOAT [204] is the second tagging ontology that explicitly reuses and extends
Newman’s TAGS ontology. Like SCOT, it is thus not a complete tagging
ontology but has been developed with the goal to describe the “meanings
of tags” [14], i.e., to support semantic tagging (see Definition 11). This is
realized with concepts that enable a disambiguation of tags by linking them
to URIs of well-defined entities from the Semantic Web, such as DBpedia
resources [51].

MOAT distinguishes between local and global meanings: While the first denotes
a particular meaning of a tag, as assigned by a user in a certain tagging
context, the second represents the list of all meanings assigned to a tag by
different users in various tagging contexts. The latter is described by the
class moat:Meaning that contains the URI of the Semantic Web resource
(moat:meaningURI) and the user who linked that URI (foaf:maker). Several
moat:Meaning instances can be added to the same tag, as illustrated on the
right hand side of Figure 3.3.

The information of which users added what meanings is additionally rep-
resented by the local meaning concept, as shown on the left hand side of
Figure 3.3. Here, the class tags:RestrictedTagging from the TAGS ontol-
ogy is reused and enriched by the property moat:tagMeaning that allows
to link a tagging to a resource of the Semantic Web. This is conceptually
imprecise, as not whole taggings but single tags are to be disambiguated (cp.



46 Chapter 3 • Ontologies for Tagging and Folksonomies

Section 2.2.3). However, it works in the case of tags:restrictedTagging,
because instances of this class consist of only one tag. In addition, the
property moat:localMeaning can be used to directly link a tag to its ‘local
meaning’ (not shown in Figure 3.3). Although this relation is conceptually
more accurate, it does not provide information on which users added what
meanings to a tag. Similarly, MOAT allows to define a direct link between the
resource that is tagged and the resource that gives the meaning for that tag
(with the property moat:taggedWith). However, this relation also misses
user information and does not even contain the label of the tag. It can also
be problematic for private tagging (see Section 4.4).

In summary, though the general idea of disambiguating tags is useful, the
modeling approach of MOAT is comparatively complicated and redundant.
This is mainly due to the limitations of the TAGS ontology that describes
only aggregated but not individual tags, as discussed before.

Apart from semantic tagging, MOAT introduces further interesting extensions
to the TAGS ontology. First, it specifies that each tag has exactly one label –
a key principle of tagging we defined in Axiom 4. This is done by making the
class moat:Tag a subclass of tags:Tag and equipping it with a corresponding
cardinality restriction for the property tags:name. Another interesting
extension is the integration of automatic tagging (see Definition 15) in
the ontology. Here, MOAT defines the class moat:TagType with individuals
moat:AutomatedTagging and moat:ValidatedTagging, indicating whether
a tagging has been automatically added (e.g. by the tagging system) or
manually by a human being. This concept has been added since “some
tools may rely on automatic semantic tagging approaches” and it can be
“worthwhile to know if the tag has been made by the user himself or by
a dedicated software agent” [203]. While this statement may suggest that
automatic tagging is strongly related to semantic tagging, it is important
to note that both are rather independent concepts. For instance, imagine
a case where tags are automatically extracted from a text-based resource,
without any disambiguation.

The class moat:TagType is linked with the taggings and not with the tags
because of the aforementioned limitation of TAGS that provides only a class
for aggregated tags but not for individual ones. Linking the concept for
automatic tagging with the representation of individual tags instead would
result in a more flexible and accurate conceptualization, as we will detail in
Section 4.2.3.
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Figure 3.4 — Basic structure of the CTAG ontology [18].

3.1.6 Common Tag
The idea of linking tags with well-defined resources from the Semantic Web
is also addressed by the Common Tag (CTAG) ontology that was released in
2009 by a consortium of people from research and industry [5]. It has been
designed as a “minimal” tagging vocabulary that can be easily embedded
in XHTML via RDFa. The basic structure of CTAG is very compact, as
illustrated in Figure 3.4: It does not distinguish between taggings and
tags but consists of only one class (ctag:Tag) that is linked to the tagged
resource, a tagging date, a tag label, and the URI of the resource providing
the ‘meaning’ for that tag.
In addition, three subclasses are defined for ctag:Tag. One of the sub-
classes (ctag:AutoTag) is for automatic tags (see Definition 14). The other
two subclasses are for manually assigned tags, distinguishing between 1)
tags added by the authors of a resource (ctag:AuthorTag), and 2) tags
used by people consuming the resource (ctag:ReaderTag). Finally, a class
ctag:TaggedContent is defined providing a “rel-tag-like minimal tagging
option” [132] in combination with the property ctag:isAbout, i.e., it allows
to directly link a resource with URIs that add “meaning” to the resource,
similar to the MOAT property moat:taggedWith described above.
CTAG defines all concepts in its own namespace, without integrating con-
cepts from other vocabularies. The only exception is the property ctag:
taggingDate which is defined as a subproperty of dcterms:created in the
CTAG ontology. However, mappings to related concepts from SIOC, SIOCT,
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TAGS, MOAT, and SKOS are given in a separate “mappings” module [133]
deployed together with the ontology.
CTAG includes no cardinality constraints, so that any number of properties
can be used along with ctag:Tag. In the understanding of CTAG, a minimal
tagging does not even require a tag label but can purely consist of a link
giving meaning to a resource. The opposite case of adding several labels
to a tag would, however, not only be against Axiom 4 but would also be
problematic against the context of semantic tagging, as it could not be
clearly said to which label the linked meaning belongs.
However, missing cardinality constraints are only one drawback of CTAG. Even
more problematic is the fact that CTAG does not include a concept for taggings.
Thus, it cannot express which tags are part of the same tagging. This
information can also not be represented with tag relations, as ctag:Tag seems
to serve as a class for aggregated tags, like tags:Tag and moat:Tag. This
interpretation is at least suggested by the “mappings” module (see above)
that makes ctag:Tag a subclass of tags:Tag and moat:Tag, among others.
However, the authors of CTAG seem to interpret tags:Tag and moat:Tag
differently from how it is commonly used by developers. Their interpretation
rather follows Newman’s distinction between same tags and tags with same
labels but different meanings. Otherwise, it cannot be explained why the
property ctag:means is linked to ctag:Tag.
Another core concept of tagging that is missing in CTAG is the user who added
the tags. In one of their examples, the authors use foaf:maker to include
this information [18], but this is not further specified in the ontology. Instead,
the authors state that they expect CTAG to be extended as needed with
“additional information from other RDF vocabularies” [18]. Hence, CTAG
rather relies on the emergence of conventions than offering a comprehensive
specification for the domain of tagging.
For all these reasons, CTAG cannot be regarded as a complete tagging ontology.
From the four core concepts of tagging introduced in Section 2.3, only
resources and tags are included, but there are no descriptions for users and
taggings. In contrast to SCOT and MOAT, CTAG does not even reuse these
concepts from another tagging ontology, such as TAGS.

3.1.7 Upper Tag Ontology
Similar to CTAG, the Upper Tag Ontology (UTO) [78] by Ding et al. was
developed with the goal of “making it easy and simple to use” [256]. However,
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Figure 3.5 — Concepts and relationships of the Upper Tag Ontology [78].

in contrast to CTAG it is not intended as a minimal vocabulary but aims to
provide a comprehensive yet simple structure for tagging. This structure
consists of the central class uto:tagging that is linked to a number of other
tagging concepts, as illustrated in Figure 3.5.

UTO does not reuse concepts from other ontologies but defines all concepts
in its own namespace. The concepts are modeled as a combination of a class
and a property that are all labeled according to the same pattern. Besides
the fact that this modeling approach leads to more classes than necessary,
it can cause irritation when applying UTO. For instance, while the date of
tagging is a datatype property in all other tagging ontologies (i.e., it links to
data values), it is an object property in UTO, linking to the class uto:Date.
Interestingly, the authors of UTO use a simple text string instead of an object
to represent the tagging date in the example they present [256]. Furthermore,
they state in the ontology that uto:Date should be a timestamp in the form
“MmmYY”. The question remains why the tagging date and similar concepts
(e.g., tagging comment, vote) are represented as classes and not as literals in
UTO. The reason may be that UTO is intended to serve as an “upper ontology”
for tagging, i.e., an ontology that other tagging ontologies can be aligned to.
Unfortunately, this is not further discussed by the authors.

Related to this, UTO does not define a separate concept for tag labels.
However, as we know from Axiom 4 and the other tagging ontologies,
tag labels are an essential element of tagging. Instead, it seems that UTO
expects this information to be part of the URI of the tag instances (e.g.,
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http://www.delicious.com/tag/great) – a common practice in tagging
systems we already mentioned in the discussion of Newman’s TAGS ontology
in Section 3.1.1. In this approach, the character string following the last
slash sign in the URI is the tag (i.e., ‘great’ in the above case of Delicious).
This means that UTO aggregates tags with same labels, which results in
some limitations, as we also already discussed in the context of TAGS (see
Section 3.1.1).
While UTO defines all concepts in its own namespace, it aligns these concepts
with DCTERMS, FOAF, SIOC, and SKOS.4 For instance, the class that represents
the tags (uto:Tag) is aligned to skos:Concept, as in most of the other
tagging ontologies. However, instead of using a subclass relation for this
alignment, UTO uses an equivalence relation (owl:equivalentClass). Other
classes and properties are also aligned with equivalence relations (e.g.,
uto:Tagger, uto:hasCreator). In some cases, these equivalence relations
may lead to semantic inconsistencies, for instance, when uto:hasRelatedTag
is defined to be equivalent to all three SKOS properties skos:narrower,
skos:broader, and skos:related.
Inspired by Gruber’s thoughts on “voting” with tags [108], Ding et al.
equipped UTO with the class uto:Vote. According to them, instances of
uto:Vote can be “the number of different Taggers who assign a Tag to
a bookmark in Delicious, a photo indicated as a favorite in Flickr, or the
number of stars given to a video in YouTube” [78]. This is a very broad
understanding of what can be represented with uto:Vote. The class seems
to denote many different things what limits its semantic interoperability
and makes it hardly applicable in practice. From the examples provided by
Ding et al. [78, 256], it seems to be mainly used to represent the number
of users who tagged a resource. However, this value can easily be inferred
by summing up the number of taggings (or the number of users) that exist
for that resource. As in the case of scot:Cooccurrence, it is unclear why a
separate definition of this frequency value is needed in the conceptualization.
The main reason seems to be faster access to this value, as indicated by the
examples [78, 256].
Furthermore, UTO considers comments added to taggings (uto:Comment),
like they are mentioned in Section 2.4.3 and are also defined by TO. Finally,
4 Note that the version of the ontology published under the namespace URI of UTO
does not include these alignments. However, they are formally defined in two papers
on UTO [78, 256] and in the version of the ontology that is attached to one of these
papers [78].
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it contains a class called uto:Source. However, this class does not describe
the source of tagging as proposed by Gruber (see Section 2.4.3) but the
“place where the object is hosted” that is being tagged [78]. Although both
the source of a tagging and of the tagged resource can be identical (as e.g.,
in Flickr or Youtube), they can also be different (as e.g., in Delicious).
It seems that UTO does not make this distinction but uses uto:Source for
both notions of source [78].

3.1.8 Tagora Tagging Ontology
Another tagging ontology has been developed within the larger context of
the TAGora project [27], as part of the TAGora Sense Repository (TSR) [28].
Similar to MOAT and CTAG, the TSR services aim to support semantic tagging
(see Definition 11). However, while the aforementioned approaches address
mainly the manual disambiguation of tags, the TSR services focus on an
automatic disambiguation [230]. The services are based on three ontolo-
gies: The TAGora Tagging Ontology (TT), a second ontology for enriching
DBpedia resource descriptions, and a third one that models the tag sense
disambiguations. While the latter two ontologies contain concepts needed
for the automatic disambiguation, TT is used to represent the taggings of
the users.
Figure 3.6 shows an illustration of the concepts and relationships of TT.5 Tag-
gings are described by tt:Post and are linked to resources (tt:Resource),
users (tt:Tagger), tags (tt:TagSegment), and the date and time of tag-
ging (tt:taggedOn). This is similar to the basic structure in most other
tagging ontologies and in accordance with the hypergraph model presented
in Section 2.4.2.
Apart from tt:TagSegment, there are other classes representing tags in TT.
As in OF, it is distinguished between individual tags as entered by the users
(tt:TagSegment) and aggregated tags (tt:Tag). Among others, this allows
to define the order in which tags are entered, as described by the property
tt:hasNextSegment. The subclass tt:FinalTagSegment is used for the tag
that is entered last in a tagging.
tt:TagSegment is in turn linked to tt:UserTag. This class seems to ag-
gregate individual tags with same spelling, similar to of:Tag from the OF
5 The illustration is from the website of the TSR services (http://tagora.ecs.soton.ac.uk/
tsr/) that is no longer available. A similar illustration of an earlier version of TT can be
found in [231].

http://tagora.ecs.soton.ac.uk/tsr/
http://tagora.ecs.soton.ac.uk/tsr/
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Figure 3.6 — Tagora Tagging Ontology by Szomszor.

ontology (see Section 3.1.3). This is at least indicated by the property
tt:hasUserFrequency which seems to represent the number of times a tag
is assigned by some user. Apart from the aggregation on the user level,
TT also describes aggregations on the domain and global level with the
classes tt:DomainTag and tt:GlobalTag, each having its own property
to represent corresponding frequency values (tt:hasDomainFrequency and
tt:hasGlobalFrequency). Unfortunately, we could not find any documen-
tation of TT so that we cannot say for sure how these aggregation levels
differ from each other and what they are good for.

Finally, TT defines the class tt:CooccurrenceInfo that seems to describe
which tags are used together and how frequently they are used together. It
has thus the same semantics as scot:Cooccurrence from the SCOT ontology.
As we already discussed in Section 3.1.4, this information does not need to be
explicitly represented from a conceptual point of view, as it can be inferred
from other tagging concepts. However, since TT has a rather technical nature,
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a separate description seems reasonable, as it was also the case in SCOT (see
Section 3.1.4).
TT was primarily designed to support the TSR services within the TAGora
project. It is not intended to serve as a general conceptualization of the do-
main of tagging and has only limited semantic interoperability. For instance,
apart from three functional properties (linking tt:Post, tt:TagSegment,
and tt:UserTag), it does not define any cardinality contraints. In contrast
to most other tagging ontologies, it includes no alignments to related ontolo-
gies, neither to tagging ontologies nor to more general ontologies like SKOS
or SIOC (see Table 3.2). As already mentioned, it is only poorly documented
and does not offer textual descriptions or comments that clearly state the
purpose and semantics of the concepts.

3.1.9 NiceTag Ontology
The last tagging ontology we examined for this review is the NiceTag
Ontology (NT) developed by Limpens et al. [163, 192]. It was first published
on the web in January 2009, under the name Semantically Related Tag
Ontology [162]. Since then, it underwent several changes with its latest
update in September 2010 [193].
In particular, NT addresses the “diverse nature and uses of tags” [161, p. 62]
partly discussed in Section 2.3.3. Limpens et al. consider taggings as “social
actions” that are comparable to speech acts [192]. Following this analogy,
they call the taggings “tag actions” and regard tags as “signs”. With NT,
they aim to describe the “manifold relations between a tagged resource
and a tag” in more detail [161, p. 62]. For this purpose, NT defines the
property nt:isRelatedTo along with a number of subproperties. Examples
are nt:makesMeFeel to represent affective tags (see Section 2.3.3), nt:
elicitsAction if a “resource elicits an action to be performed” [193], or
nt:hasForMedium for tags that describe the media format of the resource
(e.g., “video”, “mp3”, etc.)
Likewise, NT defines several subclasses for the tagging class nt:TagAction
“to capture other dimensions of the tag including context and other prag-
matic dimensions” [192]. For instance, nt:SetTask is for tags like “todo” or
“toread”, while nt:Evaluate represents tag-based ratings like “nice” or “***”
(see Section 2.3.3). Using subclasses of nt:TagAction to describe tag func-
tions is possible, as its instances consist of exactly one resource and one tag.
It is therefore similar to the class tags:RestrictedTagging from the TAGS
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ontology (see Section 3.1.1) that defines the same restriction. Consequently,
nt:TagAction has also similar limitations as tags:RestrictedTagging, in-
cluding that taggings consisting of more than one tag are split into multiple
ternary relations.
In addition, nt:TagAction is defined as a subclass of sioc:Item to “ac-
count for the shareable nature of tags, which can be seen as some sort
of post” [192]. This allows to describe the source of tagging with sioc:
has_container and the creator of “tag actions” with sioc:has_creator. In
addition, nt:TagAction is defined to be either of type nt:OwnerTagAction
or of type nt:VisitorTagAction. These classes have the same semantics
as ctag:AuthorTag and ctag:ReaderTag from the CTAG vocabulary, i.e.,
they allow to distinguish between tags that are added by the authors of
the resources and tags used by the people consuming the resources (see
Section 3.1.6). Another concept that can similarly be found in CTAG is
nt:autoTagAction for the representation of automatic tags (see Defini-
tion 14). NT also supports semantic tagging (see Definition 11) with the sub-
classes nt:DisambiguatedTagAction and nt:WebConceptTagAction. Fi-
nally, it includes a class for tag collections (nt:TagCollection), which has
a similar function as scot:Tagcloud from the SCOT ontology.
Apart form that, NT introduces some interesting new concepts, such as the
subclass nt:MachineTagAction to represent machine tags (also known as
triple tags, see Section 2.3.3). It also supports deep tagging, i.e., the tagging
of resource parts (see Section 2.3.1), with the class nt:Point. If tagging
is used to provide access rights to a resource for someone else, this can be
defined with the subclass nt:GiveAccessRights, while nt:Share is used
for tags that are added to share resources with others. Unfortunately, it is
not explained by Limpens et al. when to use subclasses of nt:TagAction
and when subproperties of nt:isRelatedTo. It seems that both are used
in combination, such that nt:GiveAccessRights can, for instance, either
be used along with nt:canBeReadBy or along with nt:cannotBeReadBy.
However, the benefit of describing one and the same tag function with partly
redundant concepts remains unclear.
As for taggings (nt:TagAction) and tag relations (nt:isRelatedTo),
Limpens et al. aim at a more nuanced description of the resources that are
being tagged. For this purpose, NT integrates the Identity of Resources on the
Web (IRW) ontology that distinguishes between resources (irw:Resource)
and their representation on the web (irw:WebRepresentation). This ac-
counts for the fact that resources can, in principle, be anything, even people
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Figure 3.7 — Tagging represented with the NiceTag ontology [161].

or events (see Section 4.4), but that only the web representations of the
resources can be tagged – at least in web contexts, which is the primary
application domain of NT. Instead of directly linking irw:Resource and
irw:WebRepresentation, NT defines its own classes nt:TaggedResource
and nt:AnnotatedResource which are set to be equivalent.

Another difference of NT compared to the other tagging ontologies is that
it represents each “tag action” as a named graph [61]. This is realized by
making nt:TagAction a subclass of rdfg:Graph from the Named Graphs
(RDFG) vocabulary. Limpens et al. decided for this modeling, as it enables
NT to serve as “a meta-model of tagging, able to bridge the gap between
existing ontologies” [192]. This is illustrated in Figure 3.7 which shows a
tagging of an image from the website Twitpic.com [161]. The named
graphs containing the RDF triples of the “tag actions” are indicated by
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dotted ellipses. All “tag actions” are of type nt:ManualTagAction, i.e., they
are not automatic tags (see Definition 14) but have been entered by a human
being. In addition, they have all been created by the same user, as it is
indicated by the sioc:has_creator property relations that all point to the
same URI. Since each resource can be tagged at most once by each user
account (according to Axiom 2), all shown tag actions belong to same tagging.
Most importantly, Figure 3.7 illustrates how NT can serve as a container for
concepts from other tagging ontologies. In this case, it integrates concepts
from CTAG, SCOT, and MOAT.

As NT focuses on the nature and functions of tags, it should not be regarded
as a comprehensive domain ontology. Most concepts are rather vaguely
defined, without making use of the full capabilities of OWL. Other concepts
are not included at all. For instance, NT does not contain a concept for tags
but argues that nearly everything can serve as a tag. Instead, it provides
descriptions of the manifold relations that can exist between resources and
tags. However, the question of how to derive these differentiated relations
from common taggings has not yet been sufficiently answered.

3.2 Related Ontologies and Vocabularies
Many of the reviewed tagging ontologies reuse concepts from more gen-
eral and well-known vocabularies, in particular from DCTERMS, FOAF, SKOS,
and SIOC (cp. Table 3.2). They either directly link concepts from these
vocabularies (e.g., foaf:Person to describe users) or define tagging-specific
classes and properties as specializations (e.g., make the tag class a subclass
of skos:Concept).

However, none of these more general vocabularies (i.e., neither SIOC, nor
SKOS, FOAF, or DCTERMS) is capable to sufficiently describe the domain of
tagging by itself. Most importantly, they do not contain a concept that
links resources, tags, and users, and could thus serve as tagging class. Also
other domain-specific concepts, such as private tagging, automatic tagging,
or the tag order, cannot be represented with these vocabularies. This is
also not changed by available extensions to these vocabularies, such as the
SIOC Types Ontology Module (SIOCT) [20] that defines only a class for tags
(sioct:Tag) but not for taggings.

The missing tagging class is also the reason why the SNaP Tag Ontology
(PNT) [114] cannot be regarded as a complete tagging ontology. It has
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been created by Harman et al. in 2011 as one module of the Simple News
and Press Ontologies [184] and defines only two classes, one for resources
(pnt:Taggable) and one for tags (pnt:Tag)
The same is true for microformat vocabularies like rel-tag [90] and xFolk [101].
Rel-tag specifies how to embed tags into web pages by utilizing the rel
attribute of (X)HTML for typed hyperlinks. It introduces the value “tag”
for the rel attribute to indicate that the text of a hyperlink is the tag label
and its href attribute refers to the URI of that tag. If used in combination
with xFolk, the rel-tag information can be decoupled from the web page
and even used to describe tags of other web resources. In addition, it can
be placed in a container (with the class xfolkentry) and equipped with a
description (with the class description).
Overall, rel-tag and xFolk are rather simple data models, as it is typical
for microformats [13, 141]. They do not provide a comprehensive domain
description but mainly define semantic markup that can be embedded into
web pages, similar to RDFa [39, 104].

3.2.1 Annotea Schemas
Since tagging is a form of annotation (see Definition 2), we also looked
at more general annotation ontologies and examined their suitability to
describe tagging and folksonomies. One well-known project in this area
dating from the early 2000s is Annotea [2]. It defines two ontologies entitled
Annotea Annotation Schema (A) and Bookmark Schema (B). Figure 3.8
shows two example instances that illustrate these ontologies, as provided by
the authors [136, 152]. Especially the Bookmark Schema might be used to
represent basic tagging. It defines the two classes b:Bookmark and b:Topic
that are linked by b:hasTopic and assigned to resources by b:recalls.
Despite the different terminology, these classes are capable to represent
taggings and tags, as demonstrated by Koivunen [151]. Koivunen also shows
how the Bookmark Schema can be enriched with concepts from DC and FOAF
to represent users, comments, and dates along with taggings and tags [151].
Since the Bookmark Schema has not been specifically designed for tagging
(it was already released in 2003), it can also not be regarded as a conceptual-
ization of the domain of tagging. Though it may be appropriate to represent
basic tagging, it does not provide descriptions for more advanced concepts,
such as private, semantic, or group tagging. Similar to CTAG, it also misses
a clear description of how users are represented. Finally, the Bookmark
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(a)
"2000-01-11T12:21Z"

a:created

"2000-01-13T15:15Z"

dc:date

XDoc.svg

b:recalls

http://
www.w3.org/

...#head

b:hasTopic

dc:title

"Head"

"Mia"
dc:creator

Bookmark

rdf:type

F2C75X5

"Funny head 
for demos"

dc:description

(b)

Figure 3.8 — Annotea schemas for (a) annotations [136] and (b) book-
marks [152].

Schema provides only textual descriptions but no formal specifications of
the domains, ranges, and cardinalities of properties, limiting the possibilities
for machine interpretation and automatic validation of the folksonomy.

3.2.2 Other Annotation Ontologies
Inspired by the Annotea project, Ciccarese et al. started development on the
Annotation Ontology (AO) in 2010 [64, 67]. AO serves a similar purpose as
Annotea but aims to overcome some of its limitations. One difference is that
it does not distinguish between annotations and bookmarks but integrates
both in one ontology. Furthermore, AO uses the Provenance Authoring and
Versioning (PAV) module [65] of the SWAN ontology [66] to include a
“curation process” for annotations [67]. However, it remains unclear how
tagging would benefit from such a curation process. It rather seems to
address more complex forms of collaborative annotation.

Similar to NT, AO reuses other ontologies to represent tagging, such as
MOAT and TAGS. Concepts from these ontologies are linked by the property
ao:hasTagging. Figure 3.9 shows an example of semantic tagging provided
by the Ciccarese et al. [67] that contains concepts from MOAT and TAGS.
However, the resulting representation is comparatively complex and it would
be much easier to directly use MOAT and TAGS.

An interesting aspect of AO is the annotation of resource parts, such as
portions of images, like it is illustrated in Figure 3.9. This capability to
represent deep tagging (see Section 2.3.1) is one of the key characteristics of
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Figure 3.9 — Annotation of an image with the Annotation Ontology [67].

AO. However, it would also be possible with most of the reviewed tagging
ontologies, as long as the tagged part of the resource has its own URI.

A project similar to AO had been started by Sanderson and Van de Sompel in
2011. It was also inspired by Annotea and focused on the development of an
ontology for Open Annotation (OAC) [216]. The core structure is very similar
to that of the Annotea Annotation Schema, consisting of the three classes
oac:Annotation, oac:Body, and oac:Target. Therefore, it has also similar
limitations as Annotea when it comes to the representation of tagging and
folksonomies.

Recognizing the close relation of their work, the authors of AO and OAC joined
forces in 2012 with the goal to integrate their conceptualizations and create
a “common, RDF-based, specification for annotating digital resources” [16].
Since then, they published several draft specifications, with the latest version
being released as W3C community draft for an Open Annotation Data Model
(OA) in early 2013 [215]. OA implements a similar structure as OAC but
additionally incorporates ideas of AO and related attempts.
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Figure 3.10 — Open Annotation Core Data Model [214].

Figure 3.10 depicts a summary of OA from one of the draft specifications [214].
It illustrates the conceptual separation of annotation, body, and target, as
it was already used in OAC. Each element is further detailed by a number of
concepts. However, as the core structure of OA is very similar to OAC and
the Annotea Annotation Schema, it misses some concepts that are central
for the domain of tagging, such as a class for tags and related properties.
Like the above ontologies, OA does also not include concepts that could be
used to represent more specific forms of tagging, such as private, semantic,
or group tagging (see Chapter 2).

Another annotation ontology that explicitly addresses tagging is the NEPO-
MUK Annotation Ontology (NAO) [217]. It has been developed as part of the
Social Semantic Desktop project in 2007 [15]. Since much of the indexing is
based on tagging in that project, NAO provides a class for tags (nao:Tag).
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However, like most of the aforementioned vocabularies, it does neither con-
tain a tagging class nor other concepts of tagging, such as users or resources.
Instead, it is rather comparable to SKOS by offering preferred and alternative
labels as well as descriptions for tags.

There are several other ontologies that address the annotation of resources.
Examples include Co-annotea [131], Lemo [115], and M3O [211] that all
define metadata vocabularies for multimedia resources. However, as these
approaches do not explicitly describe tagging and folksonomies, they are not
further discussed here. None of them can be regarded as a comprehensive
description of the domain of tagging and folksonomies.

3.3 Towards a Unified Tagging Ontology
The reviewed ontologies revealed a large number of concepts that are impor-
tant for a comprehensive description of tagging and folksonomies. Based on
the review, we classified the concepts into four categories:

1. Core concepts: These tagging-specific concepts are essential for an
interoperable conceptualization of tagging and folksonomies. They
must be included in any tagging ontology.

2. Generic concepts: These concepts are essential but not tagging-
specific. They are already defined in related ontologies and better
reused than redefined.

3. Inferable concepts: These concepts are also important, but there is
no need to define them in a tagging ontology, as they can be inferred
from other concepts.

4. Rare concepts: These concepts have been proposed as extensions to
tagging but are rarely used in practice. They do not need to be part of
the core ontology but can be integrated with extensions when needed.

The result of the classification is shown in Table 3.4. Note that some
of the concepts are relatively abstract and may be described by several
classes and properties. Others are the result of grouping similar concepts
from different tagging ontologies (e.g., moat:AutomatedTagging and ctag:
AutoTag are grouped into ‘automatic tagging’). Note that ‘semantic tagging’
was considered a core concept as well as private and automatic tagging,
since these forms of tagging are key to the idea of the Semantic Web.
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1. Core 2. Generic

Tagging User

Private tagging User group

Automatic tagging Resource

Semantic tagging Date & time

Tag Tag relations

Tag label Source

Tag order Comment

3. Inferable 4. Rare

Tag cloud Tag category

Tag co-occurrence Resource type

Tag frequency Restricted tagging

Author vs. user tag Tag polarity

Votes Tag variations

Table 3.4 — Classification of tagging concepts.

None of the reviewed ontologies includes all concepts needed for a compre-
hensive domain description (i.e., all concepts listed under the categories ‘core’
and ‘generic’ in Table 3.4). Taking one tagging ontology and extending it is
difficult due to conceptual incompatibilities and limitations. As discussed
before, many of the reviewed ontologies define direct relations between tags
and resources, which makes it difficult to integrate private tagging. Further
problems are caused by partly quite restrictive domain and range axioms or
imprecise alignments with concepts from other ontologies. Most importantly,
only few of the reviewed ontologies are capable to represent properties of
individual tags, such as the order in which tags are entered by the users
or hierarchical relations on the individual tag level. The representation
of individual tag properties is also required for an accurate and flexible
description of semantic tagging, as we will show in Section 4.2.4.

An integration and alignment of different tagging ontologies results in
similar problems. The only exceptions are MOAT and SCOT that have already
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been aligned to TAGS during their development [144]. But even in these
cases results an unnecessarily complex conceptualization, as can be seen
in Figure 3.11. Additional extensions would further complicate matters
and likely result in the aforementioned limitations (i.e., restrictive domain
and range axioms and alignments, difficulties in representing individual tag
properties, etc.).
For these reasons, we decided to develop a new ontology that takes the
best parts of the reviewed ontologies, adds missing pieces and combines all
in a coherent conceptualization. The next chapter describes the developed
ontology in detail.
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The Modular Unified Tagging

Ontology (MUTO)

Based on our review, we developed the Modular Unified Tagging Ontology
(MUTO) as a unifying conceptualization of the domain of tagging. MUTO
supports various forms of tagging, including semantic, group, private, and
automatic tagging, and is easily extensible.

We chose a modular design that separates the core concepts from the
generic and advanced ones. Like most of the reviewed ontologies, we reused
concepts from well-known ontologies, such as SIOC and SKOS, for the generic
parts. Advanced concepts can be added via modules, as it is known from
other vocabularies, such as SIOC (with its access, types, and services
modules [55]) and RSS (with its DublinCore, Syndication, and Content
modules [45]). Furthermore, we defined a module for mappings between MUTO
and other tagging ontologies (currently restricted to TAGS), but separated
these mappings from the core ontology, similar to as it was done in CTAG.
This modularization reduces the complexity of the ontology and leads to a
compact and understandable core conceptualization. It also avoids conceptual
inconsistencies and varying levels of expressiveness. Finally, it helps to keep
the core ontology stable with regard to future evolutions and advancements
in the domain of tagging.

Parts of this chapter have already been published in [166], [169], [175], and [194].
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The ontology is implemented in OWL, more specifically in the sublanguage
OWL Lite, to allow for the highest possible tool support. In Description Logic
(DL) terminology, its expressivity is ALHIF(D), i.e., in contains inverse,
functional, and datatype properties, as well as some subproperty relations,
but we avoided to use OWL constructs that are not part of OWL Lite, such
as owl:disjointWith or owl:unionOf. With regard to the profiles defined
by OWL 2 – which are all more restrictive than OWL DL [106] – MUTO
is compliant with OWL 2 RL. This profile fits particularly well with the
idea of tagging ontologies, as it is recommended for “relatively lightweight
ontologies [that] are used to organize large numbers of individuals” and
approaches “where it is useful or necessary to operate directly on data in
the form of RDF triples” [106].
In addition, MUTO defines several cardinality constraints to ensure that the
fundamental principles of tagging (as defined by the axioms in Section 2.4)
are not violated. Since these fundamental principles are important for the
interoperability and processability of folksonomies, we finally decided to
define them globally, i.e., we used owl:FunctionalProperty instead of
owl:Restriction.1 This decision is also motivated by the fact that the
maximum cardinality is one for all properties that need to be constrained in
MUTO. Furthermore, functional properties do not force their use but can also
be omitted [76], keeping MUTO flexible despite all constraints.
Figure 4.1 illustrates the main concepts and relationships of version 1.0 of the
MUTO core ontology in a compact diagram.2 The ontology defines two central
classes, one for taggings (muto:Tagging) and one for tags (muto:Tag), which
are the ‘heart’ of the conceptualization. They are both specializations of more
general classes from the well-known SIOC [55] and SKOS [189] vocabularies.
The other two key concepts, i.e., resources and users, are not unique to
tagging. We do not need to define new classes or specializations here, as
we can directly reuse concepts from existing vocabularies, namely sioc:
UserAccount and rdfs:Resource in our case.
Furthermore, the MUTO core ontology includes the domain-specific concepts
of private and automatic tagging (see Definition 7 and 15). They are defined
as specializations of the central classes muto:Tagging and muto:Tag. Note
that there is no need to define the ‘counterpart’ concepts of public and
1 Note that this is different from earlier versions of MUTO where we used property restrictions
exclusively [169].

2 Note that inverse properties (owl:inverseOf) and subproperties (rdfs:subproperty)
are not shown in this compact diagram.
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muto:taggedResource
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http://www.w3.org/2000/01/rdf-schema#
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rdfs

xsd

:

:

:

:

:0..1

Class

Literal

Property

Subclass

Cardinality

Figure 4.1 — Modular Unified Tagging Ontology (MUTO).

manual tagging, as these are the default tagging modes, i.e., the usual case
is public tagging with user-assigned tags. Therefore, taggings that are not
instances of muto:PrivateTagging are public by default. Likewise, all tags
that are not instances of muto:AutoTag are assumed to be manually entered.
A more detailed and complete depiction of the MUTO core ontology in the
form of a UML class diagram is given in Figure 4.2. We created it according
to the Ontology Definition Metamodel (ODM) specification of the Object
Management Group (OMG) [201]. ODM defines a family of metamodels for
mappings between languages of the Semantic Web (e.g., RDF and OWL)
and of Software Engineering (e.g., UML and MOF). The UML diagram
shows version 1.0 of the ontology – like the compact diagram in Figure 4.1.
Note that domain and range information of inverse properties is not shown in
Figure 4.2 and that the global cardinality constraints of functional properties
are not visually encoded. In addition, we used a special compact notation
for property relations, as they are defined by rdfs:domain, rdfs:range,
and owl:inverseOf, in combination with the “class notation” of ODM [201]
for the representation of the properties themselves. This allows us to show
further property details, such as inverse properties, subproperty relations,
and property types (e.g., owl:FunctionalProperty).
Figure 4.2 includes all concepts of SIOC, DC, and SKOS that are reused in
MUTO. To roughly indicate the ontology parts where they are used, we added
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boxes for the three vocabularies on top of the UML diagram. The complete
MUTO specification is publicly available on the web at the persistent URL
http://purl.org/muto. Its RDF/XML serialization is also given in Listing C.1
in Appendix C of this thesis.

Based on the four key element sets of taggings, tags, users, and resources
defined in Section 2.4, we describe the MUTO ontology in more detail in the
following. We also discuss modeling alternatives, as used by the ontologies
we reviewed in Chapter 3, and illustrate the application of MUTO in an
example scenario. Finally, we evaluate MUTO by comparing it with the
reviewed ontologies. We also report on two projects where the ontology has
been successfully applied.

4.1 Taggings
The central class muto:Tagging describes the taggings, i.e., the set of anno-
tations A we defined in Section 2.4. Its instances describe the n-ary relations
that link the resources, tags, and users, as illustrated in Section 2.4.2. They
are enriched with further information, such as the date and time of tagging
(see Section 2.4.3). Using classes to represent n-ary relations is well-known
from many modeling languages (like UML with its association class con-
struct) and common practice in OWL [199]. It thus comes as little surprise
that nearly all reviewed tagging ontologies use this kind of modeling (see
Chapter 3).

Furthermore, we define muto:Tagging to be a subclass of sioc:Item. We
regard this as an adequate alignment, since SIOC has been designed to
describe “user-generated content [from] online community site[s]” [19]. Oddly
enough, apart from NT, none of the reviewed tagging ontologies made this
alignment. Although SCOT and CTAG also link to sioc:Item, they use it
to describe the resources that are being tagged and not for the taggings
themselves. Though this use of sioc:Item is semantically possible, it is very
restrictive, as we will detail in Section 4.4.

Apart from sioc:Item, there is a number of other concepts from the SIOC
vocabulary that can fruitfully be reused in the domain of tagging. For
instance, we do not need to create a new concept for comments assigned to
taggings, as we can take sioc:note. Likewise, we do not need a new concept
for the tagging source but can reuse the concepts that are already provided
by SIOC. In particular, we can first group taggings with sioc:Container

http://purl.org/muto
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and then link them to a joined source with sioc:has_space. This way of
describing the source of tagging with SIOC concepts has also been used by
NT (see Section 3.1.9).

4.1.1 Tagging Comments
Apart from sioc:Item, there are a number of other concepts from the SIOC
vocabulary that can fruitfully be reused in the domain of tagging. Since we
made muto:Tagging a subclass of sioc:Item, it can be directly enriched
with SIOC properties. For instance, we do not need to create a new property
for comments assigned to taggings, as we can take sioc:note.
UTO and TO are the only two reviewed ontologies that explicitly consider
tagging comments. In contrast to MUTO, UTO does not directly use sioc:note
but defines its own property (uto:hasComment), making it equivalent to
sioc:note (via owl:equivalentProperty). The range of this property is
given with xsd:string. TO also defines its own property to:hasNote to
represent tagging comments, though without making any alignments or
defining an explicit range.

4.1.2 Tagging Source
Likewise, we do not need to define a new concept for the source of tagging
(as done in TO or OF), but can reuse the concepts that are already provided
by SIOC. In particular, we can first group taggings with sioc:Container
and then link them to a joined source with sioc:has_space (see example
in Section 4.5). Providing a concept for the source of tagging is important,
for example, if folksonomies from different tagging systems are merged (see
Section 2.4.3).
TO defines the class to:ServiceDomain and the properties to:hasService
Domain, to:hasServiceName, and to:hasServiceHomepage to represent
the source of tagging. OF uses a similar modeling structure with of:Source,
of:hasSource, and of:hasSourceName.
Though SCOT and UTO also define source concepts, these concepts do not
represent the source of tagging but of other ontology elements: In SCOT, the
source concept is for tag clouds (scot:Tagcloud). It links to sioc:Site, a
subclass of sioc:Space that can also be used in MUTO instead of sioc:Space.
UTO, in turn, defines the source for the resource that is tagged (uto:Object)
with the class uto:Source and the property uto:hasSource. It aligns these
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concepts to SIOC by making uto:Source a subclass of sioc:Community and
uto:hasSource equivalent to sioc:has_host. However, this alignment is
semantically problematic, as sioc:has_host and sioc:Community are not
linked with each other in SIOC.

In addition, UTO links to DCTERMS by defining an equivalence relation be-
tween uto:hasSource and dcterms:source. The property dcterms:source
would indeed provide a possible alternative to link to the tagging source,
but we decided to stay in the SIOC vocabulary, as muto:Tag is already a
subclass of sioc:Item. Moreover, sioc:Container and sioc:Site provide
efficient means to group taggings and reference the source in our case. A
future extension to the MUTO core ontology might further detail the source
description by defining tagging-specific subclasses and properties for the
SIOC concepts.

4.1.3 Date and Time of Tagging
As already mentioned in Section 2.4.3, date and time of tagging are important
information that should be part of the core conceptualization. This is also
reflected by the large number of reviewed tagging ontologies that consider
this information: All ontologies but CTAG (which has no tagging class) include
a corresponding concept. While OF and UTO define each their own concept
for this purpose, TAGS reuses the Dublin Core Metadata Element Set [54] by
making tags:taggedOn a subproperty of dc:date. Since MOAT and SCOT are
based on TAGS, they also include this property (see Section 3.1.4 and 3.1.5).
TO uses dcterms:date which is semantically the same as dc:date but
additionally specifies a range of type rdfs:Literal [52].

However, specifying rdfs:Literal as range is still very general. Although
DCTERMS recommends the use of some kind of “encoding schema”, such as
the W3CDTF profile of ISO 8601, it allows to “express temporal information
at any level of granularity” [52]. A part of the reviewed ontologies include
more precise specifications of the date and time format. UTO and A (the
Annotea Annotation Schema) describe the expected format in rdfs:comment
statements: While UTO expects only information about the month and year
of tagging (“MmmYY”), A recommends to write date and time information
as standardized by ISO 8601, i.e., in the form “yyyy-mm-ddThh:mm:ssZ”.
Though these specifications inside ontology comments are helpful for human
readers, they are not sufficient for machine interpretation and automatic
validation of the folksonomy data.
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In order to define this information as explicitly and precisely as possible
in MUTO, we decided to take up the modeling of TO, OF, and TT and used
xsd:dateTime from the “XML Schema Datatype” vocabulary as range
for muto:taggingCreated. The datatype xsd:dateTime implements the
aforementioned ISO 8601 standard that is also supported by W3C docu-
ments [246, 251]. This explicit range increases the interoperability of the
ontology, as it forces the use of a standardized format for date and time
information that can be unambiguously interpreted. This is important, as
a wrong interpretation of the date and time information could result in a
wrong use of the folksonomy data and biased statistics.

The clearly specified range was one reason why we did not directly use
dcterms:created in the MUTO core ontology but defined our own subprop-
erty. Another reason was that we wanted to make muto:taggingCreated a
functional property with a global cardinality of one. This ensures that there
is one unique creation date for each instance of muto:Tagging. It is again
the same modeling as in TO, while it is similar to the modeling in OF that
uses a local cardinality constraint instead (i.e., with owl:Restriction and
owl:onProperty).

Apart from the creation date and time, MUTO is also capable to repre-
sent the date and time when taggings are edited. This can be useful in-
formation for tagging systems, for instance, to sort taggings by date of
last modification. The only other tagging-related vocabulary that explic-
itly considers modifications is the Annotea Annotation Schema defining
a:modified and a:created as subproperties of dc:date. In contrast, we
made muto:taggingModified a subproperty of dcterms:modified. This is
conceptually more accurate but only possible in DCTERMS, since DC does not
contain such a concept. As for muto:taggingCreated, we set the range to
xsd:dateTime.

4.1.4 Private Tagging
MUTO supports the special case of private tagging (see Definition 7) with
its dedicated subclass muto:PrivateTagging. Apparently, MUTO can only
provide a description of the concept; the correct implementation of privacy
constraints remains the duty of the interactive system. As mentioned above,
taggings that are not instances of this subclass are public by default. Also
note that private taggings can be made available to specific users or user
groups with to:grantAccess, as we will detail in Section 4.3.2.
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The only other reviewed tagging ontology that contains a concept for private
taggings is TO. It defines the class to:VisibilityEnum with individuals to:
Private, to:Public, and to:Protected. We decided against this solution,
as it decouples the privacy information from the tagging instances which
can be problematic (e.g., if only parts of the ontology are used or accessed).

4.1.5 Linking Taggings and Tags
Taggings and tags are linked by the property muto:hasTag. The cardinality
of this property is not restricted, as a tagging can theoretically consist of an
unlimited number of tags. MUTO even allows for taggings without any tags to
support cases where users first purely index a resource and add tags later,
as it is possible in some systems (e.g., Delicious). However, the cardinality
of the inverse property muto:tagOf is restricted, since each instance of
muto:Tag belongs to exactly one tagging (therefore, the functional property
type). This results from the fact that tags with the same label are not
merged in MUTO but that each tag is a unique instance (see Section 4.2).
Some of the reviewed tagging ontologies limit the number of tags per tagging.
For instance, the already mentioned tags:restrictedTagging class of the
TAGS ontology is specified to have “precisely one associated resource, and
one associated tag” [196]. MOAT reuses tags:RestrictedTagging and thus
also applies this restriction. Such restrictions are conceptually inaccurate,
as they contradict Axiom 1 stating that a tagging can consist of more than
one tag. Unfortunately, the authors of TAGS and MOAT do not further explain
why they define these restrictions. One can only speculate that they aim
to model the tripartite character of folksonomies discussed in Section 2.4.2.
However, the benefit of this modeling remains unclear, especially as it likely
results in a redundant representation of certain tagging information (e.g.,
the date and time of tagging). OF, in contrast, defines a minimum cardinality
of one tag for its of:hasAnnotationTag property, which is more restrictive
than MUTO, since it does not allow for taggings without tags.

4.2 Tags
The second core class of the MUTO ontology is muto:Tag. Each tag is an
instance of that class with its own URI, as in nearly all of the reviewed
tagging ontologies. However, in contrast to most other tagging ontologies,
tags with same labels are not merged in MUTO. In our understanding, such an



74 Chapter 4 • The Modular Unified Tagging Ontology (MUTO)

aggregation of tags is not part of the core conceptualization, as discussed in
Chapter 3. Among others, this would take the possibility to define properties
for individually entered tags, such as the later described muto:tagMeaning
or muto:nextTag (see Section 4.2.1). We rather consider the aggregation of
tags a feature of the tagging system (e.g., required for the generation of tag
clouds).
However, if aggregated tags should also be part of the conceptualization,
the MUTO core ontology may be extended by a specific class or module for
this purpose, similar to the modeling in OF and TT. These two ontologies
are the only reviewed tagging ontologies that clearly distinguish between
aggregated and individual tags. OF defines the class of:AnnotationTag and
TT the class tt:TagSegment to represent the actual tags as entered by the
users, which is similar to the modeling in MUTO.
Semantically, tags are related to what is commonly represented by skos:
Concept. We thus made muto:Tag a subclass of skos:Concept, like in many
of the reviewed tagging ontologies. The benefits of subclassing skos:Concept
are similar to those described above for the subclassing of sioc:Item. For
instance, it allows us to reuse SKOS concepts in MUTO, such as skos:narrower
and skos:broader for the representation of hierarchical tag relations (see
Section 4.2.5).

4.2.1 Tag Label
However, not all SKOS concepts can reasonably be used with muto:Tag.
Especially the application of skos:altLabel, skos:hiddenLabel, and skos:
prefLabel to muto:Tag does not make sense, as a tag has always exactly
one label according to Axiom 4. Accordingly, a tag that has more than
one label is, strictly speaking, not a tag. This is implemented in MUTO by
making muto:tagLabel a functional property, which allows for only one
label per tag instance. If additional labels are added to the tag, the tag
would transform into a meaningful concept that would then be linked with
muto:tagMeaning in MUTO (see Section 4.2.4).
This is different in TO which defines the subproperty to:prefTagLabel in
addition to to:hasTagLabel for tags with multiple labels. Similarly, OF
defines the specialized properties of:hasAltLabel, of:hasHiddenLabel,
and of:hasPrefLabel, which are semantically identical (though not linked)
to the aforementioned SKOS properties. However, these are the only two
tagging ontologies that distinguish between different types of tag labels, and
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it remains unclear why they do not directly use the semantically identical
properties of skos:Concept.
The only other tagging ontology that explicitly specifies Axiom 4 is MOAT.
It equips the class moat:Tag with a cardinality constraint that permits
only one label per tag instance. While this is similar to our modeling, we
decided for a functional property, since we regard the cardinality constraint
an inherent characteristic of the muto:tagLabel property.

4.2.2 Date and Time of Tags
The date and time information for tags (muto:tagCreated) is conceptually
separated from that for taggings described in Section 4.1.3. This is useful if
certain tags of a tagging are added at a later time. Omitting the separate
date and time information in these cases may result in biased tag statistics
and wrong conclusions about the evolution of the folksonomy. As for muto:
taggingCreated, the range of muto:tagCreated is xsd:dateTime to force
a standardized format and increase the ontology’s interoperability (see
Section 4.1.3). In addition, muto:tagCreated is once again a functional
property to ensure that there is no more than one date and time of creation
for each instance of muto:Tag.
However, since the creation date and time of a tag is usually the same
as the creation date and time of the associated tagging, we made muto:
tagCreated an optional property to prevent a redundant representation of
this information. If no separate date and time information is given for a tag,
it is assumed that the tag has been created at the same date and time as
the associated tagging (i.e., muto:tagCreated = muto:taggingCreated).
As discussed before, a tag consists of exactly one label. In other words,
editing a tag label means the substitution of one tag by another. This is
the reason why MUTO does not define a separate modification date and time
for tags. If a tag label is edited by the user, a new tag instance is created
having the same property values as the original one except from the creation
date and label. If other properties of a tag are changed (e.g., the tag order),
this can be considered as a change of the tagging and can be described with
muto:taggingModified. Prohibiting changes to tag labels helps to prevent
misuse and wrong interpretation of folksonomy statistics.
The only two reviewed tagging ontologies that define date and time in-
formation for tags are SCOT and CTAG. Instead of the creation date and
time, SCOT represents the date when a tag was last used (ctag:last_used).
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However, this information only makes sense for aggregated tags and is
thus not required in MUTO. In case of CTAG, the definition of the property
ctag:taggingDate is necessary, as CTAG does not define a tagging class.
The property is thus rather comparable to muto:taggingCreated than to
muto:tagCreated.

4.2.3 Automatic Tags

The MUTO core ontology is also capable to represent automatic tagging
(see Definition 15) by defining the subclass muto:AutoTag for muto:Tag.
Describing manual and automatic tagging in the same ontology makes sense,
as it avoids a redundant modeling and facilitates the transformation of
automatic tags into manual (i.e., user validated) ones. In addition, it allows
to associate both types of tags with a single tagging instance, which is
conceptually in line with how automatic tags are often applied, namely as a
complement to the tags entered by the user.

This is the main difference to CTAG, NT, and a prior version of MUTO [169]
that all define automatic taggings as a specialization of the tagging class.
In these cases, it is not possible to have manual and automatic tags in the
same tagging instance. The same holds for MOAT which defines an extra
moat:TagType class with individuals moat:AutomatedTagging and moat:
ValidatedTagging. As this class is linked to tags:RestrictedTagging,
it can contain only one tag and hence not a combination of manual and
automatic tags.

Note that MUTO defines no separate class for manual tags in contrast to CTAG,
NT, and MOAT. As mentioned above, every tag that is not an instance of
muto:AutoTag is assumed to be manually added, as this is the default case
of tagging. If there are automatic tags, it is assumed that they have been
created by the tagging system. Since the tagging system can be represented
along with the tagging class as source information (see Section 4.1.2), there
is no need for an additional property representing this information. If the
source of automatic tags is not the tagging system itself but some external
service, this information can be represented by using skos:note and adding
a corresponding comment to the instances of muto:AutoTag.
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4.2.4 Semantic Tags
MUTO follows Axiom 4 and strictly distinguishes between tags (which have
exactly one label) and concepts (which can have more than one label).
However, it supports the mapping between tags and concepts through the
property muto:tagMeaning. This is particularly useful in semantic tagging,
where the meaning of tags is disambiguated by linking them to well-defined
resources (see Definition 11 and Section 3.1.5). Basically, we can distinguish
between two forms of disambiguation: Linking a tag to an existing concept,
such as a DBpedia resource [51] or WordNet term [191], or transforming
it into a new one, for instance, by adding a definition and/or further labels
to the tag. Both forms can be expressed via muto:tagMeaning. Like muto:
taggedResource, it has no explicit rdfs:range and can thus be linked to
any type of resource, i.e., all instances of rdfs:Resource, as indicated in
Figure 4.1.

This approach of disambiguating tags by linking them to well-defined re-
sources is similar to the ones of MOAT and CTAG. However, MOAT and CTAG
disambiguate complete taggings, not single tags, which is conceptually less
precise (see Section 2.2.3. It furthermore requires that a new tagging in-
stance is created for every single tag, which is not wanted in MUTO for the
aforementioned reasons (see Section 4.1.5).

The property muto:tagMeaning can also be used to indicate synonym tags
(see Section 2.2.2), simply by linking all tags with identical meaning to the
same resource. This includes tags that are different variations of the same
term (e.g., if one tag has an underscore as delimiter and another a hyphen).

Note that a tag has always a label on its own (Axiom 4), even if it is linked
to a concept having the same label. This is important, as muto:tagLabel
represents the label that is chosen by the user (e.g., manually entered or
selected from a list of suggestions) – at least in manual tagging. It may not
be identical to the label defined for the referenced concept by some authority
(e.g., via skos:prefLabel). Also note that muto:tagMeaning is an optional
property that is only needed for semantic tagging.

The cardinality of muto:tagMeaning is not restricted, as there may be
several resources describing the semantics of a tag (e.g., a Wordnet term
and a DBpedia resource). In other cases, it might be difficult to assign a
unique meaning to a tag, for instance, in the automatic disambiguation of
tags [42, 99]. MUTO defines the subproperty muto:autoMeaning to indicate
automatic disambiguations. Like in the above cases, all disambiguations
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that are not of type muto:autoMeaning are assumed to be specified by the
user who assigned the tag. Thus, it can always be inferred which user added
a meaning to a tag.

4.2.5 Tag Relations
Since muto:Tag is a subclass of skos:Concept, we can reuse the properties
of skos:Concept to define basic relations between tags. In particular, we can
use the aforementioned skos:narrower and skos:broader properties for
hierarchical relations and skos:related for associative ones. These relations
are a good example why it is important to have a concept for individual tags
in the ontology: Only because one user defines a relation between two tags,
this does not mean that other users would also agree with that relation.
As we know from Chapter 3, some of the reviewed tagging ontologies define
own tag relations: TAGS specifies the property tags:relatedTag and UTO
the property uto:hasRelatedTag that describe both some kind of relation
between tags. However, we see no reason to define such a property in MUTO,
as we can directly reuse skos:related. This solution is also proposed by
TO [148].
A second tag relation defined in TAGS is tags:equivalentTag which de-
scribes an equivalence relation between tags, expressing that “whenever one
[tag] is associated with a resource, the other tag can be logically inferred to
also be associated” [196]. TO defines a semantically identical relation with
to:sameTag. However, we do not need such a relation in MUTO, as we can
express semantic equivalence between tags by linking them to the same
resource with the property muto:tagMeaning (see Section 4.2.4).

4.2.6 Tag Order
The only tag relation we explicitly defined in the MUTO core ontology is
muto:nextTag (and its inverse counterpart muto:previousTag) to describe
the sequential order in which tags are entered by the users during the act of
tagging. A comprehensive tagging ontology must be able to represent this
information, as users would expect the ordering of tags to remain the same
whenever they access a tagging (see Section 2.4.3).
The only two reviewed tagging ontologies that include information about
the order of the tags in a tagging are OF and TT. OF defines the property
of:hasPosition to assign each tag an integer value representing its position
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in the list of entered tags (xsd:int). This solution can cause problems of non-
unique positioning, for instance, if counting starts at zero instead of one or if
the same integer value is assigned to several tags by accident. Thus, we finally
decided to use the modeling with muto:nextTag and muto:previousTag
(after adopting OF’s modeling in an earlier version of MUTO [169]). Since there
should be no more than one preceding and/or following tag, we made both
muto:nextTag and muto:previousTag functional properties. This is similar
to the modeling in TT, though MUTO does not define an extra concept to
indicate the last tag of the sequence in contrast to TT.

Using such property relations to describe sequences is common practice in
OWL. RDF constructs like rdf:List or rdf:Seq are no alternatives in our
case, as they are not compatible with OWL Lite and limit the possibilities
for reasoning. Other alternatives could be the Ordered List Ontology [38]
or the List Ontology [82]. However, such approaches would be conceptually
and computationally too expensive for a concept as simple as tag order.

4.3 Users
MUTO reuses sioc:UserAccount to represent the accounts of the users who
created the taggings (i.e., the set of users U). Linking users by their accounts
is more accurate and flexible in this case than linking them directly (e.g.,
by using foaf:Agent as in TAGS), since it allows one user to have several
accounts (e.g., one for work-related and one for personal taggings).

An alternative to sioc:UserAccount would have been the semantically
nearly identical class foaf:OnlineAccount. We decided for the SIOC variant
because we also used other concepts of this vocabulary along with muto:
Tagging and can thus stay in one namespace. Moreover, it provides a
good possibility to represent group tagging, as we will describe below.
However, since sioc:UserAccount is a subclass of foaf:OnlineAccount,
concepts from the FOAF vocabulary can easily be linked and used to describe
users and user-related information (e.g., foaf:gender or foaf:age). Other
useful concepts from the SIOC vocabulary are, for instance, sioc:email
or sioc:follows. The latter tells that one user is following the taggings
of another and is represented by linking the corresponding instances of
sioc:UserAcccount

MUTO does not directly use sioc:has_creator to link the user accounts, but
defines its own subproperty muto:hasCreator. It is a functional property, i.e.,
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it has a global cardinality of one. It thus implements Axiom 1 by specifying
that each tagging is linked to exactly one user account. We used the same
combination of a subproperty relation and a functional property for the
earlier described muto:taggingCreated and muto:tagCreated properties.
A functional property is also used by TO to define this cardinality constraint,
while OF uses a local property restriction (with owl:cardinality). TAGS and
its extensions SCOT and MOAT do not define this cardinality, neither do UTO,
CTAG, and NT. Furthermore, none of the reviewed tagging ontologies links to
the user account. Instead, they link either directly to the representation of the
user (e.g., to foaf:Agent like TAGS) or define their own class for this purpose
(e.g., of:User or uto:Tagger). However, we decided for sioc:UserAccount
for the above reasons.
In addition, CTAG distinguishes between ctag:AuthorTag and ctag:UserTag
(see Section 3.1.6). Similarly, NT differs between nt:OwnerTagAction and nt:
VisitorTagAction (see Section 3.1.9). We did not include similar concepts
in the MUTO core ontology for two reasons: 1) this information is often not
available, i.e., the author of a resource is not known or not provided in a
machine-readable form, and 2) if the author of the tagged resource is known,
it can be easily be inferred if he or she is the same as the creator of the
tagging. Hence, it does not need to be separately represented.
Note that there is no direct link between users and tags in MUTO, as there
is also no direct link between users and resources. It would not only be
redundant and conceptually imprecise to add such direct links, but could
also be problematic with regard to private tagging (see Section 4.2 and 4.4).

4.3.1 Group Tagging
Since MUTO links to user accounts and not to users, it is flexible with regard to
the representation of group tagging (see Definition 13). It enables the repre-
sentation of different forms of group tagging, including the three variants out-
lined in Section 2.3.2. Our recommended modeling is to use sioc:Usergroup
which can be linked to sioc:UserAccount by sioc:member_of. That way,
it remains transparent which user added which taggings (assuming that each
user account is used by only a single user).
The representation of group tagging is more restrictive in the reviewed
ontologies that include this concept: TO links to foaf:Group in addition
to foaf:Person, SCOT uses sioc:Usergroup to indicate the creators of tag
clouds, and uto:Tagger is not only a subclass of foaf:Agent but also of
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sioc:Usergroup. However, all these modeling alternatives are less flexible
than the one we used in MUTO, as they do not link to the user accounts but
directly to the representation of the user group. This also results in a lower
traceability compared to the recommended MUTO modeling, as it cannot be
said which user actually created the tagging.

4.3.2 Access Control
As indicated by its name, the muto:grantAccess property grants access to
selected taggings for certain users (e.g., a friend) or user groups (e.g., all
friends), as already mentioned in Section 4.1.4. It is mainly meant to provide
exclusive access rights for private taggings, i.e., to allow others besides the
creator of a private tagging to access this tagging. The range of this property
is not further specified in MUTO.3 The property may be linked to instances
of sioc:UserAccount or sioc:Usergroup, but it could also be linked to
instances of foaf:Agent, dcterms:Agent, or similar. Ultimately, the actual
range depends on the application context and the concrete implementation
in the tagging system.
The property muto:grantAccess may, however, also be used in public
tagging, for instance, to state that a tagging has been sent to another user,
as it is possible in some tagging systems (e.g., Bibsonomy). Generally
speaking, the property simply states that there is some kind of relation
between a tagging and a user who is not the creator of that tagging. This
rather vague specification is intended to offer a flexible representation for all
features that define such a relation. Though none of the reviewed tagging
ontologies includes such a property, its inclusion in the core ontology makes
sense, not only but especially to allow for the sharing of private taggings
with other users.

4.4 Resources
Resources are linked by the property muto:taggedResource. Like muto:
tagMeaning and muto:grantAccess, the property has no explicit range
and can thus be linked to all instances of rdfs:Resource, as indicated in
Figure 4.1. Since rdfs:Resource is “the class of everything” and “all other
classes are subclasses of this class” [59], it means that taggings can be linked
3 Note that this was different in an earlier version of MUTO that specified a range (in
combination with owl:unionOf) [169].
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to any kind of resource.4 This is in line with the general idea of tagging,
where the tagging system determines what is considered a resource (see
Section 4.4).

While this modeling is also used by the early TAGS and TO ontologies, many
of the later developed tagging ontologies define a specific class that resources
must be instances of. SCOT reuses sioc:Item for this purpose, which is
still relatively generic but nevertheless limited to the thematic context of
SIOC, i.e., user-generated content in online community sites [19]. Similarly,
CTAG defines the class ctag:TaggedContent as subclass of sioc:Item in
its “mappings” module (see Section 3.1.6). UTO is even more restrictive by
aligning uto:Object to foaf:Document, foaf:Image, and sioc:Post (a
subclass of sioc:Item). OF defines its own class of:Resource. All these
modelings are too restrictive in our view if we take into account that a
resource can be “anything that is uniquely addressable within a software
system or computer network” (see Definition 12).

muto:taggedResource is semantically close to sioc:about, a property of
sioc:Item specifying that the item “is about a particular resource” [55].
We thus made muto:taggedResource a subproperty of sioc:about (see
Figure 4.2). Furthermore, we made muto:taggedResource a functional
property, since a tagging is always uniquely linked to a single resource
according to Axiom 1. Note that the inverse property muto:taggedWidth
does not define any cardinality constraint, as several taggings from different
users are often associated with one and the same resource.

This is again the same modeling as in TO where to:hasTaggedResource
is also a functional property. OF, by contrast, does not implement this
cardinality constraint globally for the property but locally for the tagging
class using owl:cardinality. owl:cardinality is also used in TAGS to
define this constraint – unfortunately, without any explanation why the
constraint is applied to the subclass tags:restrictedTagging and not to
tags:Tagging. Since this cardinality constraint is an inherent characteristic
of the muto:taggedResource relation, we decided to use the modeling of
TO and made it a functional property in MUTO.

In contrast to many of the reviewed tagging ontologies, MUTO does not define
a link between the tag and the resource that is being tagged. Tags and
resources are only indirectly linked by muto:Tagging in MUTO. Though a
4 However, note that the linked resources must be of type owl:Thing if compliance with
sublanguage OWL Lite and OWL 2 RL should continue to be satisfied.
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Figure 4.3 — Example RDF graph depicting a private tagging.

direct link between tags and resources may be beneficial in some cases
(e.g., when querying the folksonomy [240]), it is redundant and conceptually
imprecise, as we already discussed in Section 3.1.1. In addition, it would
be problematic in private tagging, as the privacy information is part of the
taggings, not of the tags. For instance, if the direct link is used to retrieve
tags for a certain resource, there is a danger that the privacy information is
not considered and tags from private taggings are also retrieved and shown
to users who shall not have access to them.

4.5 Example Scenario
Figure 4.3 depicts a scenario of using the MUTO ontology with the social
bookmarking system Example.org. It shows the RDF graph of user Alice
who annotated a photo from the website Example.net.5 Assume that Alice
interacts with a well-designed user interface. She does not get in touch with
the ontology but it is rather used for the design and internal representation
5 Visualizing RDF graphs as node-link diagrams is very common and also used in the
RDF-related recommendations of the W3C [147, 179].
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in the interactive system and/or for sharing the folksonomy with other
systems. Listing 4.1 provides the OWL code of the example in RDF/Turtle
format.

@pref ix muto : <http :// pur l . org /muto/ core#> .
@pref ix s i o c : <http :// r d f s . org / s i o c /ns#> .
@pref ix skos : <http ://www.w3 . org /2004/02/ skos / core#> .
<http :// example . org / tagg ing / tagging1> a muto : PrivateTagging ;

muto : taggedResource <http :// example . net /photos /photo1 >;
muto : hasCreator <http :// example . com/ user / a l i c e >;
muto : hasTag <http :// example . org / tag / tag1 >,

<http :// example . org / tag / tag2 >,
<http :// example . org / tag / tag3 >;

muto : tagg ingCreated "2011−11−11T11 : 1 1 : 1 1Z " ;
muto : tagg ingModi f i ed "2011−11−12T09 : 4 3 : 0 3Z " ;
muto : grantAccess <http :// example . com/ user /bob>;
s i o c : has_container <http :// example . org / tagg ings /group1 >;
s i o c : note " Photo o f Bob in downtown Madrid . " .

<http :// example . org / tag / tag1> a muto : Tag ;
muto : tagLabel "madrid " ;
muto : nextTag <http :// example . org / tag / tag2 >.

<http :// example . org / tag / tag2> a muto : Tag ;
muto : tagLabel " s o l " ;
muto : tagCreated "2011−11−12T09 : 4 3 : 0 3Z " ;
muto : tagMeaning <http :// dbpedia . org / r e sou r c e /Puerta_del_Sol >;
skos : broader <http :// example . org / tag / tag1> .

<http :// example . org / tag / tag3> a muto : AutoTag ;
muto : tagLabel " bob " ;
muto : autoMeaning <http :// example . com/ user /bob> .

<http :// example . org / tagg ings /group1> a s i o c : Container ;
s i o c : has_space <http :// example . org> .

Listing 4.1 — OWL code of the example in RDF/Turtle format (‘a’ =
shortcut for rdf:type).

Imagine the following scenario that led to the creation of the tagging in-
stance:6 Alice logs into her account of the social networking service Exam-
ple.com (sioc:hasCreator). From there, she uses the social bookmarking
system Example.org to annotate a photo she uploaded to the media shar-
ing website Example.net (muto:taggedResource). As the photo shows
her friend Bob in downtown Madrid, she starts tagging with entering the tag
‘madrid’ (muto:Tag). Then, she recognizes that the system has automatically
identified Bob on the photo and added his name as a tag (muto:AutoTag).
The system got his name (and further information) from the social network-
ing service Example.com, of which Bob is also a member. In addition,
the system links Bob’s name to his account (muto:autoMeaning, a subprop-
erty of muto:tagMeaning). Though Alice marked the tagging as private
6 In brackets, we give the ontology classes and properties used to represent the information.
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(muto:PrivateTagging), she decides to share it with Bob and grants him
access (muto:grantAccess). She also adds a comment to the tagging de-
scribing the contents of the photo (sioc:note).

One day later, Alice looks at the photo again and recognizes that it was
taken at Puerta del Sol, a central square in Madrid. She opens the tagging
and adds the tag ‘sol’ (muto:Tag) to the previously assigned tags ‘madrid’
and ‘bob’. Furthermore, she decides to ‘semantify’ the tag so that she will
later remember what ‘sol’ means. First, she makes ‘sol’ a subtag of ‘madrid’
(skos:broader) to indicate that it is a specific location in Madrid. Second,
she gives the tag explicit meaning by linking it to the corresponding DBpedia
resource (muto:tagMeaning).

The information that the tag ‘sol’ was added at a later time than the other
two tags is given by its property muto:tagCreated. This property would
not be necessary if the tag would have been entered along with the others.
Accordingly, the timestamp of muto:tagCreated is the same as of muto:
taggingModified but different from the one of muto:taggingCreated.
Source information is linked with sioc:has_space after the tagging has
been assigned to a container with sioc:has_container.

4.6 Discussion
The example illustrates an advanced case of tagging that showcases the
expressive power of MUTO by using many of its concepts. The most basic
variant of tagging – a list of tags without disambiguations, hierarchical
relations, comments, or automatic tags – can be described with much fewer
concepts from the ontology and results in a smaller RDF graph. This
capability of supporting different forms of tagging, from simple to semantic,
from manual to automatic, and from public to private, was one of the main
goals in the development of the MUTO ontology. On the other hand, we avoided
to make MUTO unnecessary complex but tried to keep it understandable to
the people who use it. Finding a good balance between comprehensiveness
and compactness was thus another major goal in the development of the
MUTO ontology, as we already mentioned in Section 3.3.

The example also indicates the benefits of a precise domain description
for the development of tagging systems. There would be many different
ways to represent the information from the scenario; having one common
conceptualization helps to create a joint understanding. In particular, it can
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increase the interoperability between different tagging systems, as illustrated
by the scenario: It links taggings of a social bookmarking system with photos
of a media sharing website and user profiles of a social networking service.
It would even be possible to represent the “tagging of tags” with MUTO, as it
was proposed by [232].
Two major challenges in the application of ontologies are performance and
scalability. In this work, we focus mainly on a precise conceptualization
rather than on a technical optimization for large folksonomies. In such cases,
other representations that allow for a fast processing and efficient storage of
the folksonomy might be more useful. Furthermore, specific modules may be
integrated into the MUTO ontology that speed up processing, such as property
relations that directly link the resources, tags, and users in order to avoid
the indirection via taggings. However, such pragmatic extensions should be
used with care as they may lead to conceptual inconsistencies (e.g., direct
relations between tags and resources can conflict with the concept of private
tagging).
Apart from these conceptual constraints, we took care to design MUTO in a
way that allows for efficient reasoning. By making it compliant to OWL 2
RL, polynomial time reasoning algorithms can be used that operate directly
on the RDF triples that make up the folksonomy [106]. This is different to
the majority of the reviewed ontologies that are implemented in OWL Full
(see Table 4.2) and hence do not support efficient reasoning. The only two
reviewed tagging ontologies that are also compliant to OWL 2 RL are TT
and UTO (except from its aligned version, see Section 3.1.7.).
On the one hand, we tried to specify the conceptualization as precisely
as possible in MUTO. We defined global cardinalities to ensure that the
fundamental principles of tagging, as defined in the axioms of Section 2.4,
are not violated. In addition, we used typed instead of plain literals [147]
in most cases to clearly define the expected range of datatype properties.
On the other hand, we avoided to overly specify the ontology but kept it
flexible where appropriate. In addition, we did not want to unnecessarily
increase the formal complexity of the ontology.
If we compare MUTO with the reviewed ontologies, it is most closely re-
lated to the Tag Ontology [197] and the Bookmark Schema of the Annotea
project [151]. However, it additionally considers several concepts that are
missing in these approaches, such as some advanced tagging concepts de-
scribed in OF and MOAT. We did not included links to other tagging ontologies
in the MUTO core ontology, as this would have inevitably resulted in concep-
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Name Abbr.1 OWL
sublanguage

OWL 2
profile

Tag Ontology TAGS OWL Full –

Tagging Ontology TO OWL Full –

Ontology of Folksonomy OF OWL DL –

Social Semantic Cloud
of Tags SCOT OWL Full –

Meaning of a Tag MOAT OWL Full –

Upper Tag Ontology UTO OWL Lite OWL 2 RL

Common Tag CTAG OWL Full –

Tagora Tagging Ontology TT OWL Lite OWL 2 RL

NiceTag Ontology NT OWL Full –

Modular Unified Tagging
Ontology MUTO OWL Lite OWL 2 RL

1 Abbreviations as used in this work.

Table 4.2 — OWL sublanguages of the tagging ontologies.

tual inconsistencies. Instead, we decided to use a separate mappings module
that defines such alignments, as in was also done in CTAG. However, note
how tagging-specific concepts from the MUTO ontology are combined with
concepts from more general ontologies in the above example. For instance,
Alice’s comment is added with sioc:note, the hierarchical relation between
the two tags ‘sol’ and ‘madrid’ is described by skos:broader, and the used
tagging system is linked with sioc:has_space.

4.7 Application
The MUTO ontology has been applied in different contexts and projects. In
the following, we report on two such projects in which the author of this
thesis was involved.



88 Chapter 4 • The Modular Unified Tagging Ontology (MUTO)

4.7.1 SWORE Ontology of the SoftWiki Project

One application context where MUTO has been successfully applied is the
Semantic Web Ontology for Requirements Engineering (SWORE). SWORE pro-
vides the semantic basis for the methods and tools that were developed in
the SoftWiki project [171, 172], a research project focusing on semantic col-
laboration in requirements engineering. The project aimed at enabling large
groups of spatially distributed stakeholders to collect, semantically enrich,
classify, and aggregate software requirements. Semantic technologies were
used to support the collaboration as well as the interlinking and exchange of
requirements information. Several methods and tools have been developed
in the project that enable the elicitation, analysis, and exchange of software
requirements [171].

SWORE describes several concepts of requirements engineering that are
relevant in many software development projects. Figure 4.4 depicts the
main concepts and relationships of version 2.0 of the SWORE ontology, as
published on the web in early 2012 [209]. The core classes of SWORE are
req:Requirement, req:Source, and req:Stakeholder. Furthermore, it
provides a set of relation types that describe dependencies between re-
quirements, such as details, entails, or invalidates. It also supports
the definition of pointers to parts of a system or prototype that requirements
may refer to [208, 175].

SWORE integrates several other vocabularies. For instance, stakeholders are
represented by the FOAF class foaf:Agent and its subclasses foaf:Person,
foaf:Group, and foaf:Organization. Further FOAF concepts can be used
to express additional information on stakeholders, such as contact details or
projects they are involved in. Online discussions between the stakeholders
are represented with SIOC. A stakeholder’s account is described by the
SIOC class sioc:UserAccount, comments are a subclass of sioc:Post and
ratings are represented by the class sioc:Poll. SKOS is used to represent
the topic hierarchy that assists in the classification of requirements. Each
topic is a skos:Concept and the hierarchical relations are described with
skos:broader and skos:narrower.

Since its version 2.0, SWORE also integrates the MUTO ontology [209]. In par-
ticular, it uses the classes muto:Tagging and muto:Tag along with some
of their properties to represent the tagging of requirements. This possi-
bility of tagging requirements is a rather unique feature of the SoftWiki
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Figure 4.4 — Version 2.0 of the Semantic Web Ontology for Requirements
Engineering (SWORE) [209].
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approach [172]. It allows for a collective categorization of requirements based
on tags in addition to the typical taxonomy classification.
The tagging feature has been implemented in the central web platform
developed within the project [170]. The platform enables a large number of
geographically distributed stakeholders to collaboratively collect, semanti-
cally enrich, and classify software requirements. The requirements can be
edited, tagged, and discussed by the users of the web platform. Figure 4.5
shows a screenshot of the web platform implemented within the OntoWiki
framework [126].
The web platform offers two ways of classifying requirements: They can
either be assigned to a category of a pre-defined taxonomy or associated
with freely chosen tags. These tags are aggregated and visualized in the
form of a tag cloud in the user interface of the web platform (see Figure 4.5).
As muto:Tag is a subclass of skos:Concept, tags can easily be transformed
into concepts. This ‘semantification’ of tags is explicitly supported in the
web platform by offering a possibility to enrich tags with definitions. Such
‘defined tags’ are indicated by a different color in the tag cloud. They may
be added to the taxonomy at some point in the requirements engineering
process. Note that tags with same spelling are assumed to have the same
meaning in this case. This is important in requirements engineering to reduce
the ambiguity of the used terms as much as possible. It affects particularly

Figure 4.5 — Web platform for collaborative requirements engineering.
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the ‘defined tags’, which are represented with skos:Concept and not with
muto:Tag.
The web platform provides access to the requirements and related data
with the RDF query language SPARQL [105]. In addition, instance data
of SWORE and all integrated ontologies can be exported and imported in
RDF format [175]. This flexible access opens up a large range of possibilities.
Among others, it supports the utilization of the requirements data in other
tools while semantic interoperability is maintained.

4.7.2 Visual Notation for OWL (VOWL)
A second application of the MUTO ontology was in a research project concerned
with the visual representation of ontologies. The project was motivated by
the observation that there are nearly no well-specified visual representations
for OWL ontologies besides the UML profile of the ODA specification [201]
introduced in Section 4. Many authors use their own visualization, as can
be seen, for instance, by the various illustrations we found in the review of
available tagging ontologies (see Chapter 3).
These custom visualizations often focus on specific aspects of the ontologies
and are partly hard to read for casual users. In addition, most of these
visualizations do not give an explicit description of the visual notation, i.e.,
a specification that clearly defines the semantics of the graphical elements.
In many cases, they rather provide only a basic overview of the ontology
that is not sufficient to gain a deeper understanding of the concepts and
relationships in a domain of knowledge.
Motivated by the work on MUTO, we aimed for a comprehensive and
comprehensible visualization that is also understandable to users less familiar
with ontologies. It should be printable but also provide intuitive ways to
interactively explore the visualized ontology. Having these goals in mind,
we developed the Visual Notation for OWL Ontologies (VOWL) [195] that
provides a well-specified visual language for the user-oriented representation
of ontologies. It defines graphical depictions for many OWL elements that
are combined to a graph visualization representing the ontology.
The experiences gained with MUTO were very helpful in the development of
VOWL, and MUTO served as one of the key ontologies on which the VOWL
visualization was tested. In particular, MUTO was used in a qualitative
user study that investigated the strengths and weaknesses of VOWL in
comparison to UML. The study examined version 1.0 of VOWL that has
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Figure 4.6 — VOWL notation applied to the MUTO ontology [194].

been released in early 2013 by Negru and the author of this thesis.7 Figure 4.6
depicts the conceptual layer of the VOWL notation applied to the MUTO
ontology [195]. It was one of the visualizations shown to the participants of
the user study.

Both visual notations provide a comparatively complete and comprehensive
set of graphical elements for the representation of OWL ontologies. Further-
more, they are well-specified and also understandable to users less familiar
with ontologies. On the other hand, they follow quite different approaches:
While one reuses the well-established UML notation, the other has been
specifically designed for OWL. Still, the notations are comparable, as they
both employ some kind of node-link diagram.

7 The VOWL specification is publicly available on the web at the persistent URL http:
//purl.org/vowl.

http://purl.org/vowl
http://purl.org/vowl
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The study focused on qualitative aspects of the visualizations with the goal to
identify strong and weak points of each notation. The overall goal was to get
insights that help in the development of a unified visual notation for OWL
ontologies. MUTO was selected as example ontology for the study because of
“its manageable size and because it is relatively easy to understand for users
who have not come in contact with ontologies before” [194].
The compactness of the visual representation was considered as one of the
main strengths of the VOWL notation by the study participants. Most
participants preferred that notation over the UML one. They found it
“less cluttered” and liked that “one immediately sees the concepts of the
ontology” [194]. On the other hand, many participants found it troublesome
to read the directional indicators of inverse properties (e.g., of creator_of
and has_creator). Others had problems understanding the dashed arrows
(the graphical representation of the subclassOf property) and the meaning
of datatype properties, which, unlike object properties, had no arrow at
either end of the line (e.g., taggingcreated). More information on the user
study and its results can be found in [194].
The comparative study revealed several key challenges regarding the visual-
ization of OWL ontologies. Examples include the treatment of special classes
like owl:Thing and owl:Nothing, the adequate representation of domain
and range axioms, and the indication of subclass and subproperty relations.
Apart from that, it illustrated the compactness of the MUTO core ontology.
It also demonstrated that MUTO is easily understandable, as the study par-
ticipants reported no serious problems in understanding the ontology and
solving the tasks.
However, in the remainder of this thesis, we will focus on the visualization
of folksonomies rather than ontologies. We are interested in different possi-
bilities of visualizing folksonomies and how they can be effectively used in
interactive systems. The MUTO ontology will serve as the conceptual basis
for these considerations.





C
h

a
p

t
e

r 5
Tag Cloud Visualizations

Various visualizations of folksonomies have been developed since tagging
emerged on the web in late 2003. For instance, there are visualizations of sets
of tags using maps (e.g., TagMaps [24, 134], Topigraphy [96]) or timelines
(e.g., TagLines [26, 83], Aging Tag Clouds [186]). Other approaches depict
the links that emerge in tagging, such as the folksonomy graph visualizations
we will discuss in Chapter 6. However, certainly the most popular type
of visualization for folksonomies is the tag cloud we already introduced in
Chapter 2 (see Definition 9).
Viégas and Wattenberg call tag clouds “vernacular visualizations” [242],
as they are simple yet exciting visualizations that originated outside the
research community. They became popular in the context of community-
oriented websites that use tagging as indexing method, such as Flickr [8],
Delicious [6], or Technorati [31]. Meanwhile, they have evolved as a
core technique of information visualization and are applied in many different
contexts [242, 226].
In this chapter, we first take a closer look at tag cloud performance and
perception by investigating different tag cloud layouts and their ability to
support users in typical information seeking tasks. Based on these results,
we examine how tag clouds can be extended to better support the visual
analysis of folksonomies.

Parts of this chapter have already been published in [60], [125], [167], and [176].
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5.1 Research on Tag Clouds

Most research on tag clouds falls in one of two categories: It either investigates
the effectiveness and visual perception of tag clouds or develops improvements
and extensions to tags clouds. Both research directions are addressed in
this chapter. In the following, we start with an overview of basic tag clouds
types and summarize work that studies the performance and perception of
tag clouds

5.1.1 Types of Tag Clouds

Several extensions to the basic tag cloud visualization have been presented
in the last couple of years. Many of them address layout issues of tag
clouds, such as large white spaces or the restriction to specific boundaries.
Kaser and Lemire [138], for instance, use slicing trees, nested tables, and
rectangle packing to optimize the distribution of space in HTML-based
tag clouds. Seifert et al. [219] present a related algorithm for white space
optimization that can cope with differently shaped tag clouds. It places tags
in a circular fashion with the most frequent ones in the center and those
with lower frequency towards the boundaries. Advanced layouts can also be
generated with freely available tag cloud generators, such as Wordle [34],
Tagxedo [30], or Tagul [29]. They offer several options to customize the tag
cloud visualization by adapting typography, color, word orientation, or the
general shape of the tag cloud.

Other works use clustering techniques along with different kinds of tag cloud
layouts, ranging from line-by-line layouts [116, 138, 218] to force-directed
layouts [62] and topographical tag landscapes [96]. An example of a clustered
tag cloud created by Clark [69] is shown in Figure 5.1b. It displays frequent
tags of the famous speech “I Have a Dream” by M. L. King Jr.

However, the most popular tag cloud layout for folksonomy visualizations on
the web is presumably still a rectangular tag arrangement with alphabetical
sorting in a sequential line-by-line layout. Figure 5.1a shows an example of
this well-known type of tag cloud from the website of Amazon.com. We
already introduced this layout with the Flickr tag cloud in Chapter 2 (see
Figure 2.2). One reason for the popularity of this layout might be its ease of
implementation. However, a sequential arrangement of tags does not provide
optimal support for all purposes a user consults a tag cloud for.
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(a) (b)

Figure 5.1 — Examples of tag cloud layouts: (a) sequential layout with al-
phabetical sorting, showing the “most popular tags” on Amazon.com [37],
(b) clustered tag cloud, displaying frequent tags of the famous speech “I
Have a Dream” by M. L. King, Jr. [69].

Although little is known about the benefits of tag clouds and the situations
in which they are consulted, some typical user goals have been identified
– from getting an overview or general impression of a website’s contents
to searching for specific topics or tags [112, 210, 225]. It has also been
conjectured that tag clouds serve a social purpose by conveying a sense
of activity in a web community [118]. The ability of different tag cloud
layouts to support certain user goals and information needs, however, is still
a largely open research issue.

5.1.2 Performance and Perception of Tag Clouds
There are several works that study the effectiveness and perception of tag
clouds. Most of them investigate tag clouds at a general level by comparing
them with other types of user interfaces. For instance, Halvey and Keane
compare tag clouds with unweighted, horizontal and vertical lists by asking
participants to find and select specific tags in both interface types [112].
The results indicate that unweighted lists perform better than tag clouds
and that alphabetical sorting further accelerates search. In addition, the
tags’ font sizes had a strong effect on search speed and tags in the upper
left corner of the cloud were found most quickly. Based on the times the
study participants needed to find tags in specific target regions of the cloud,
the authors also concluded that tag clouds are rather scanned than read.
Kuo et al. got similar performance results by comparing tag clouds and
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lists as alternative presentation forms for search result summarization in
the biomedical domain [154]. Though the study participants solved the
descriptive tasks more quickly with the lists, they attributed the tag clouds
a higher level of satisfaction.

Sinclair and Cardew-Hall [225] conducted an experiment in which the sub-
jects could either use a tag cloud or a search box to complete given tasks.
While participants preferred the search box to enter specific tags, they
favored the tag cloud for more open-ended tasks. They concluded that tag
clouds are not a replacement of but a valuable extension to other types of
user interfaces.

Other work takes a closer look at the visual features of tag clouds. Bateman
et al. [44] systematically varied eight tag cloud properties and measured
their effects on the users’ attention by counting how often certain tags are
selected. They found that the properties with the largest effect on the users’
attention are font size and weight, while the intensity of a tag’s color or its
number of characters play minor roles. Furthermore, they found that tags
in the middle of the cloud were selected more often on average than tags
near the borders.

Rivadeneira et al. conducted two experiments [210]: The first examined the
effects of font size, location, and proximity-to-the-largest-tag. The user task
was to recall tags that were previously presented in tag clouds. In accordance
with Halvey and Keane [112] and Bateman et al. [44], a strong effect of
font size was observed, while proximity-to-the-largest-tag had no significant
impact. Furthermore, tags in the upper left quadrant were recalled more
often, but the authors attributed this to the sparseness of the tag clouds
used in the study. In the second experiment, Rivadeneira et al. investigated
the effects of font size and tag cloud layout on impression formation and
recognition. Font size had again a strong effect on the results. The tag cloud
layouts had no impact on recognition but affected the accuracy of impression
formation.

5.2 Comparison of Tag Cloud Layouts
While the presented studies provide valuable findings on tag cloud per-
formance and are first steps towards a better understanding of tag cloud
perception, they mainly focus on sequential tag cloud layouts without con-
sidering further ways to arrange tags. The only study that evaluates different



5.2 • Comparison of Tag Cloud Layouts 99

tag cloud layouts [210] is very limited in its conclusions as these layouts
were highly diverse, leading to many dependencies in the visual features.
Moreover, layout performance was only examined regarding recognition and
impression formation in that study but not with respect to more typical
situations of tag cloud interaction.
Additionally, the experimental material is comparatively artificial in many
of the reported studies. For instance, the tag clouds consist of a very limited
number of tags in some cases (e.g., only 10 tags [112] or 13 tags [210] in
total) or few font size variations (e.g., only 3 different font sizes [112]). Most
importantly, none of the studies addressed the visual exploration of tag
clouds directly. All conclusions regarding tag cloud perception have been
indirectly inferred from the tags that were either selected or recalled by the
study participants.

5.2.1 Experimental Design
In contrast to related work, we pursued the following objectives with our
user study:

• Defining user tasks that simulate situations of nearly realistic tag cloud
interaction.

• Presenting tag clouds with a common number of tags and font size
variations.

• Generating tag cloud layouts that differ only in tag arrangement but
no other visual properties.

• Using eye tracking to measure the actual attention areas and perception
patterns of tag clouds.

User Tasks

From the range of purposes tag clouds might be used for, we selected three
search tasks that are very common according to the literature [44, 112, 154,
210, 225]:

1. Finding a specific tag

2. Finding the most popular tags

3. Finding tags that belong to a certain topic
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Figure 5.2 — Most user interfaces follow a grid layout that conceptually
structures the interface by intersecting horizontal and vertical lines.

By providing a scenario along with the tasks, a somewhat realistic interaction
situation was simulated. For example, one text for the first task was: “You
always wanted to visit Nizza. At the moment, you do not have enough
money for traveling and can only dream about it. . . Please click on the tag
‘Nizza’ in the following tag cloud.” Accordingly, the participants were asked
to search for a target tag and click on it in this task. In the second and
third task, the participants had to search and select three tags of choice
that were either among the most popular ones (task 2) or related to a given
topic (task 3). All study participants reported that they had understood
the tasks; none needed further explanation or complained in the post-test
questionnaire.

Tag Cloud Layouts

In order to reduce the countless variations of possible tag arrangements to a
manageable and reasonably representative number, we made the following
assumption: Most graphical user interfaces are based on a two-dimensional
grid layout that conceptually divides the interface into a number of rectangles
by horizontal and vertical lines, as illustrated in Figure 5.2. Consequently,
a typical requirement for a balanced integration of tag clouds into user
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interfaces is that they (1) are displayed in a rectangular area and (2) fill
this area with tags as completely as possible. Based on these requirements,
three general ordering principles can be distinguished:

1. Sequential layout, with either a horizontal or vertical arrangement of
tags, sorted alphabetically or by some other criteria (e.g., popularity,
chronology, etc.)

2. Circular layout, with the most popular tags in the center and tags
with decreasing popularities towards the borders (or vice versa)

3. Clustered layout, in which the distance between tags follows a certain
clustering criteria (e.g., semantic relatedness) and related tags are
positioned in close proximity (cp. [69, 116])

We generated one prototypical tag cloud for each of these three layout
strategies. In addition, we created a forth tag cloud with no variation in the
tags’ font sizes as reference layout (see Figure 5.3).

Tag Corpora

Since we aimed to compare the different tag cloud layouts independently of
interpersonal differences, we decided to present all four layouts in a series to
every study participant. We used tag corpora from four different domains to
prevent learning effects that would likely have resulted if we had presented
the same tags in each layout.

Tag corpora from ‘real’ contexts were not well suited for our controlled
experiment as they usually contain tags with heterogeneous connotations
and little semantic consistency. We aimed at minimizing any bias caused
by personally affecting or political tags (such as ‘terrorist’). Furthermore,
we wanted to present tags that are well-known to the study participants to
avoid effects that result from different interests and educational backgrounds.
Additional requirements for the tag corpora included a reasonable way of
categorizing the tags for the clustered tag cloud and the usage of tags that
are common in Germany, since the study participants were all German-
speaking. For these reasons (and due to a lack of alternatives) we decided to
develop our own tag corpora for the study that consisted of neutral tags from
common knowledge areas (France, sports, furniture, animals) and could be
used to create nearly realistic interaction scenarios. Each corpus consisted
of 100 tags with varying popularity values.
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(a) (b)

(c) (d)

Figure 5.3 — Tag cloud layouts for the corpus ‘France’: (a) sequential with
alphabetical sorting, (b) circular with decreasing popularity, (c) clustered
with thematic clusters, (d) reference with sequential, alphabetical sorting
and no weighting of tags.

Generation of the Tag Clouds

Since our goal was to evaluate general layout types and not specific algo-
rithms, we decided to generate the tag cloud layouts by our own instead of
using available algorithms. That way, we could apply the same design guide-
lines for all tag clouds and strictly control tag distribution. Nevertheless,
the tag clouds were designed to largely follow typical algorithms and were
not perceived as artificial or unusual by the study participants.

We generated the tag clouds for all four layouts as follows: We used an
equally sized rectangle with an aspect ratio of 3:2 and filled it with the 100
tags of one of the four corpora. We mapped the tags’ popularity values on
six discrete font sizes, resulting in one tag of 30 pt up to 27 tags of 15 pt for
each tag cloud. Every quadrant of the tag cloud got the same number of
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tags of each font size to avoid biases caused by an unbalanced presentation.
In accordance with the ordering principle of the circular layout, the 30 pt
tag was placed in the middle of the cloud. In the sequential and clustered
layout, the 30 pt tag was placed in another quadrant for each of the four
corpora.

We also considered the different user tasks in the tags’ distribution: We
varied the size and quadrant position of the tags the participants were asked
for in the first task. Likewise, we distributed the thematic clusters that were
of interest in the third task among all four quadrants of the tag clouds.
We kept all other visual features, such as font styles, weights, colors, or
intensities, constant in order to avoid interdependencies as reported in [44].

Figure 5.3 shows the resulting four layouts that were generated for the
corpus ‘France’. The colored lines, circles, and arrows indicate quadrant
separations and ordering principles of the layouts for the readers of this
thesis; they were, of course, not visible to the study participants.

Procedure

36 participants, mainly students, with an average age of 26 (min 17, max
57) took part in the experiment. All had normal or corrected-to-normal
vision. The general familiarity with tag clouds was given with a median of
4 on a scale of 1 to 10. Five participants could not remember having seen
any tag clouds before. In order to create a nearly identical understanding of
tagging and tag clouds, the experiment started with a short introduction
into these topics, consisting of an oral explanation accompanied by a paper
demonstration (see Figure 5.4a). In addition, we presented three tag clouds
from popular websites (Flickr, Delicious, and Last.fm [11]) that all
followed a sequential layout with alphabetical sorting. We expected that
many participants had already come across this well-known layout – effects
caused by a higher familiarity cannot be avoided but somewhat compensated
by presenting this type of tag cloud to all participants in advance.

After the introduction, the participants were randomly assigned to one of the
three tasks, resulting in 12 participants per task. We applied a Graeco-Latin
square design to counterbalance the layout-corpus-combinations in the series
of trials for each experimental group. Table 5.1 shows the resulting four series
for the first task. The second and third experimental groups (task 2 and 3)
were assigned to corresponding layout-corpus-combinations also following a
Graeco-Latin square design.
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SG Tr1 Tr2 Tr3 Tr4

1 L1 / C1 L2 / C3 L3 / C4 L4 / C2

2 L2 / C2 L1 / C4 L4 / C3 L3 / C1

3 L3 / C3 L4 / C1 L1 / C2 L2 / C4

4 L4 / C4 L3 / C2 L2 / C1 L1 / C3

Table 5.1 — Graeco-Latin square design for the first task (presented to
one group of participants): Combinations of tag cloud layouts (L) and tag
corpora (C) for the four subgroups (SG) and four trials (Tr).

(a) (b)

Figure 5.4 — a) Paper demonstrator to explain tagging and tag clouds,
b) Presentation of the tag clouds on a 17" TFT monitor with embedded
eye tracking system.

The tag clouds were presented on a 17" TFT monitor with a screen resolution
of 1280 x 1024 px. They were placed in the middle of a blank screen in
an area of 20 x 13.3 cm (see Figure 5.4b). Before the presentation of each
layout, a short text was displayed explaining the scenario and task. The
text of the task was identical within each group; the scenario was adapted
to the corresponding tag corpus. The participants were asked to carefully
read the task before moving on. When one tag cloud layout was completed
by clicking on the tag(s), the group’s task was again displayed along with
the next scenario and layout. After all four layouts had been presented, the
participants filled out a questionnaire in which they had to state their layout
preference among others. All four layouts were reprinted in the questionnaire
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to aid recognition. The click times were recorded by the presentation software.
Gaze data was captured by an eye tracking system that was embedded in
the TFT monitor.

5.2.2 Task-Layout-Performance
We measured the task-layout-performance as the time the participants
needed to accomplish the tasks. For the first task, we measured the time
until the target tag was selected. For the second and third tasks, we calculated
the mean value of the time needed for the three selections as indicator for
task-layout-performance.

We ran a Kruskal-Wallis test on the data to get an objective ranking on how
the layouts perform for each of the three tasks. In addition, we calculated a
subjective ranking by counting the study participants’ votes for the layouts
in the post-test questionnaire. Table 5.3 shows these values for all three
tasks along with the mean values and standard deviations (in seconds) of
the times needed for task completion. In the following, we discuss the results
for each task in more detail.

Results for Task 1

For the first task (finding a specific tag), the reference layout (the layout
without any weighting of tags) performed best with a value of 17.8 when
comparing the mean ranks, followed by the sequential tag cloud layout
(mean rank: 22.5). Since both layouts were alphabetically sorted and hence
highly supported scanning for a particular tag, we expected these layouts to
score well in this task, though the differences were not significant (p > .05).
Furthermore, we found some evidence that tags with large font sizes are
selected more quickly than small tags in this task. However, we cannot
provide reliable values as this effect seemed to be influenced by other visual
features, such as a tag’s number of characters or its position and neighboring
tags in the cloud.

Interestingly, only 3 of this group’s 12 participants voted for the reference
layout in the questionnaire (two of them have never come in contact with tag
clouds before). Although the font sizes did not provide additional value in
this task, most participants (8 out of 12) preferred the sequential tag cloud
layout. It seems that their choice was not only driven by rational factors
but largely influenced by aesthetic aspects, since many subjects mentioned
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Task Layout N
KW Mean

Rank
User
Votes Mean SD

sequential 22.5 8 8.6 5.5

circular 27.8 1 13.6 11.1

clustered 30.0 0 14.3 9.6
1

reference

12

17.8 3 6.9 4.7

sequential 20.8 1 2.6 2.3

circular 18.7 8 2.2 1.9

clustered 24.4 3 3.1 2.9
2

reference

12

34.1 0 4.5 3.5

sequential 26.5 4 7.3 6.9

circular 22.0 3 5.4 4.4

clustered 19.4 5 4.9 4.1
3

reference

12

30.2 0 6.9 4.0

Table 5.3 — Performance values of the tag cloud layouts for the 12
participants (N) of each experimental group: Kruskal-Wallis (KW) mean
rank, user votes, mean value, and standard deviation (in sec).

the more appealing appearance of the tag clouds compared to the reference
layout in the questionnaire.

Results for Task 2

In the second task (finding the most popular tags), the circular layout showed
the significantly best performance results (mean rank of 18.7, p < .05). It
was also selected as the preferred layout by most participants (8 out of
12). Unsurprisingly, the reference layout failed both in click times and user
ratings as it does not contain any information about tag popularity.

Interestingly, the two participants that needed the longest time to accomplish
the task preferred the clustered layout – it seems that the circular layout
supports the identification of objectively popular tags (i.e., tags with large
font sizes) whereas the clustered layout encourages subjective decision making
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on most important tags (i.e., considering not only a tag’s font size but also its
position in the clustered layout). However, this interpretation needs further
validation.

Results for Task 3

The results of the third task (finding tags that belong to a given topic)
also met our expectations as the clustered tag cloud layout performed best
(though not significantly, p > .05). However, not all participants seemed to
recognize its ordering principle; some even selected tags from topic areas
we did not ask for in the task. Interestingly, most participants that chose
tags in accordance with the task voted for the clustered tag cloud in the
questionnaire.

Font size had again a strong effect on tag selection, as the selected tags had
a mean size of 23.6 pt (median: 25 pt) compared to a mean size of 19.6 pt
(median: 18 pt) for all tags, even though the study participants could freely
choose any tags that belong to the given topic area, independently of their
font size.

5.2.3 Analysis of Eye Tracking Data
We analyzed the eye tracking data in an exploratory manner by looking for
typical patterns in the visual search behavior. We focused on the spatial
distribution of fixations over the three tag cloud layouts (the reference layout
was not of interest here). All fixations of the subjects’ eyes with a minimum
duration of 100 ms were considered, using a fixation radius (i.e., the smallest
distance that separates fixations) of 50 px. We analyzed the fixation data of
the first six seconds of each trial, which represent well the main phase of
the search process.

In a first analysis, we divided the whole tag cloud areas into 5 x 5 rectangular,
equally sized subareas and counted fixations in these areas. Figure 5.5 shows
the distribution of fixations over the 25 subareas. In the circular layout,
fixations are quite strongly focused on the central part of the tag cloud.
They are more dispersed and oriented towards the upper left quadrant in the
sequential layout. In the clustered layout, they are more evenly distributed.
The lower right attracts less attention in all three layouts.

The uneven distribution of fixations among the quadrants becomes even
more apparent when we aggregate the 25 subareas into partly overlapping
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6% 3% 2% 2% 1% 

3% 9% 6% 3% 1% 

3% 11% 14% 10% 1% 

3% 5% 6% 3% 2% 

1% 2% 1% 1% 1% 

(a) Circular

6% 10% 2% 4% 2% 

3% 11% 4% 7% 3% 

4% 7% 8% 7% 2% 

2% 3% 4% 4% 1% 

0% 1% 1% 1% 1% 

(b) Sequential

6% 5% 5% 3% 2% 

8% 7% 8% 7% 1% 

2% 3% 5% 5% 3% 

4% 4% 6% 4% 1% 

2% 3% 3% 3% 1% 

(c) Clustered

Figure 5.5 — Distribution of fixations in percent over the 5 x 5 subareas
for the three tag cloud layouts. The coloring illustrates the pattern of the
distribution.

1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

16 17 18 19 20 

21 22 23 24 25 

1st Ring 

Center 
 

Periphery 
 

One of the 
overlapping 
quadrants 

(a)

32-36% 22-26% 

20-25% 19-21% 

(b)

Figure 5.6 — a) Definition of areas of interest, b) Distribution of fixations
over the quadrants.

quadrants (see Figure 5.6a). Compared to a strict quadrant separation,
fixations near the quadrant borders are counted for more than one quadrant
in this variant what further strengthens the results in our case. Interestingly,
the distribution of fixations over the quadrants varies only marginally among
the layouts (see Figure 5.6b). In all layouts, the upper left quadrant got the
most fixations (32-36%) and the bottom-right the fewest (19-21%). This
might be explained by Western reading habits.

To further analyze the tendency towards the center we aggregated the 25
subareas to three larger, concentric zones as illustrated in Figure 5.6a: 1) a
center zone consisting of the single rectangle in the middle, 2) a first ring
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Figure 5.7 — Fixation density for the central-to-peripheral zones.
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Figure 5.8 — Distribution of fixation density in the center, first ring, and
periphery zones for the three time periods.

of rectangles around the center, and 3) a second ring of rectangles (we call
‘periphery’). In this case, we calculated the number of fixations per unit of
area (fixation density). The data for the center, first ring, and peripheral
zones show that the highest proportion of fixations lies in the central parts
of the cloud (center + first ring), regardless of the layout (see Figure 5.7).
For the circular layout, the small center rectangle has even more than double
the fixation density than the surrounding first ring, indicating a very strong
central focus.
In order to gain insight into the temporal variation of the gaze focus, we
divided the overall time interval analyzed (seconds 0-6) into three subinter-
vals: seconds 0-1 (period 1), seconds 1-3 (period 2), and seconds 3-6 (period
3). We chose three periods of increasing length since we were interested in
contrasting a short initial phase indicative of a subject’s orientation at the
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beginning of the trial with the gaze focus in later intervals where the visual
search becomes more expansive and covers larger areas. Figure 5.8 shows
the gaze distribution over the center-to-periphery zones for the three time
periods. As already observed in the overall gaze distribution, the circular
layout generates the highest central orientation, which is slightly decreasing
over time for the benefit of the first ring and peripheral zones. The change
in distribution is less pronounced for the sequential layout. In the clustered
layout, the decrease in central orientation is strongest. A possible explana-
tion is that the gaze tends to stay in the target cluster once the thematic
relation with it has been recognized.

5.2.4 Discussion
The results of our comparative study on tag cloud layouts show clearly that
there exists no single best way to arrange weighted tags in a cloud – as
common in interaction design, the optimal solution depends strongly on the
specific user goals and intentions of the designer. However, regarding the
layout classes and user goals investigated in our experiment, the following
task-layout-combinations are supported by our results:

1. Finding a specific tag: Sequential layout with alphabetical sorting.

2. Finding the most popular tags: Circular layout with decreasing popu-
larity.

3. Finding tags that belong to a certain topic: Thematically clustered
layout.

Generalizing from the layouts and tasks, we got some results that are largely
in line with the findings and assumptions made in related work. Table 5.5
summarizes the findings by contrasting the general results of our study with
the results of related work (cp. Section 5.2). As already indicated in previous
studies [44, 112, 210], we also found that tags with large font sizes seem
to ‘pop out’ to the viewers – they were on average identified more quickly
in the first task and more often selected in the third. Although tag clouds
perform worse than unweighted lists on average [112, 154], they seem to
accelerate the identification of very frequent tags.
When aggregating the eye tracking data of all layouts and tasks, we observed
a tendency towards the center: Tags in the middle of the cloud attracted
more user attention than tags near the borders. Also, an effect of position
could be observed in the eye tracking data: The upper-left quadrant received
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Aspect Description &
literature source

Evaluation based on our results

Tag size Large tags attract
more user attention
than small
tags [44, 210] and are
found more
quickly [112].

Basically, our results support these
findings, though they also indicate
that further properties, such as the
number of characters, the position of
a tag in the cloud, or neighboring
tags, influence this effect (cp. [44]).

Scanning Users scan rather
than read tag
clouds [44, 112].

The eye tracking data clearly
support this finding. However, in
contrast to the assumption of [112],
no general scanning direction could
be identified.

Centering Tags in the middle of
the cloud attract
more user attention
than tags near the
borders [44].

This seems to be true for most kinds
of tag clouds though the layout can
increase (e.g., circular) or decrease
(e.g., clustered) this effect.

Position Tags in the upper left
quadrant are better
recalled [210] and are
found more
quickly [44].

The eye tracking data show that the
upper left quadrant receives the
most fixations in all layouts.

Layout The layout of a tag
cloud influences its
perception [210].

This finding is strongly supported
by our eye tracking data.

Exploration Tag clouds provide
suboptimal support
when searching for
specific tags
[112, 154, 225].

In general, our results support this
finding. However, very popular tags
can be found comparatively quickly.

Table 5.5 — Findings on tag cloud perception and performance, con-
trasting related work and our own results (including both quantitative and
qualitative observations).
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more fixations than the others. Thus, a tag’s general visibility is largely
influenced by its position in the tag cloud, which might be used by designers
to direct users’ attention to certain tags.

The feedback and ratings of the study participants suggest that fun and
aesthetic aspects largely affect the user’s perception of tag clouds. Partic-
ipants partly preferred layouts that did not yield the best performance
results. Thus, such aspects must be included in any design decision and
usability evaluation of tag clouds. Furthermore, our findings clearly show
that interface designers must consider the possible user tasks before deciding
for a certain type of tag cloud or for using tag clouds at all.

5.3 Prefix Tag Clouds
As we already mentioned in Chapter 2, a major limitation of folksonomies
is that they 2.2.2 treat different forms of the same word as individual tags.
Typical examples are inflections (e.g., singular and plural), nominalizations
(e.g., the gerund -ing), or spelling differences (e.g., British vs. American
English). Such variations of words either also appear in the tag cloud or are
not shown at all if not frequent enough. In the first case, they take up screen
space that could better be used to display other information or additional
tags. In the second case, the viewer has no indication whether there are
other forms of a word in the text or not.

Especially the latter is problematic: Assume, for example, an information
retrieval context where a user is interested in all resources related to the topic
of “visualization”. Searching for this tag would likely not return all relevant
documents, as the tag would not be associated with all resources. However,
if other word forms like “visualisation” or “visually” are less frequently used,
they might not be shown in the tag cloud. Hence, there would be no hint
that would tell the user what else to try as search term.

To overcome this limitation, we have developed an extension of the tag
cloud visualization that we call prefix tag cloud. It creates a prefix tree that
groups different word forms and visualizes the subtrees as tag cloud. Color
is used to emphasize the grouping, while the relative frequencies of the word
forms are indicated by font size, as common in tag clouds. The grouped
word forms are arranged in a circular tag cloud layout that supports the
quick identification of the most frequent words and word forms.
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The process of creating prefix tag clouds consists of three main components:
First, a prefix tree is generated from a set of tags. This requires us to
order the tags lexicographically and to compute a prefix hierarchy from the
resulting list. In a second step, the prefix subtrees are rendered as node-link
diagrams. The font sizes of the prefixes in the diagrams are scaled according
to the tag frequencies. Finally, the tag cloud is composed from the subtrees
and placed in a given drawing area. We use a circular tag cloud layout that
makes efficient use of the available screen space. In the following, we will
detail these three components of the visualization process.

5.3.1 Prefix Tree Generation
Initial input is a non-empty set of tags T = {t1, . . . , tn} with individual tags
ti, 1 ≤ i ≤ n, as we already defined it in Section 2.4. The tags are composed
of a finite sequence of characters from the alphabet Σ := {σ1, . . . , σm}. Since
ti ∈ Σ+, each tag ti contains at least one character and is not an empty
string.

In addition, each tag is associated with a quantitative value expressing its
occurrence frequency. This mapping is given by the function ffreq : T −→ N .
Likewise, we define Tfreq to denote that the tag set T is ordered by frequency,
while we use Tlex if it is ordered lexicographically.

The prefix tree P is generated from the set of tags T with the function
ftree : T −→ P . Algorithm 5.1 provides the pseudo code for that function
which consists of the following steps:

• Adding the empty string λ to T : It serves as prefix1 for all tags ti ∈
T that do not have another tag tj ∈ T as prefix.

• Ordering T lexicographically: Fast sorting algorithms such as
merge sort can do this in O(n log n) time. As a result, we obtain
the lexicographically ordered list Tlex with the empty string λ as first
element.

• Generating the prefix tree from Tlex: This step processes the
entire list Tlex once and checks if tag tj ∈ Tlex is a prefix of tag
ti ∈ Tlex, where j < i. If true, it subtracts tj from ti and saves the
resulting string (i.e., the prefix) as vertex vi ∈ V . In addition, it creates

1 Note that the term prefix is not used in its linguistic sense but in its meaning related to
data structures in this work.
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PrefixTree(T ):
1: // T : set of tags
2: T := T.add(λ); // add empty string λ to T
3: Tlex := lex_order(T ); // order T lexicographically
4: n := size(Tlex);
5: V := Tlex; // vertices of prefix tree
6: E := ∅; // edges of prefix tree
7: for i := n to 1 do
8: j := i− 1;
9: while (!(tj ≺pref ti) ∧ (j ≥ 1)) do
10: j −−;
11: end while
12: vi := ti − tj ; // subtract tag tj from tag ti
13: E := E ∪ (vi, vj); // add edge to prefix tree
14: end for
15: return P = (V,E); // prefix tree P

Algorithm 5.1 — Prefix tree generation. .

an edge between vi and vj ∈ V . Since it uses two nested loops, one
being conditional, it has O(n2) time complexity in worst case and
O(n) in best.

The result of Algorithm 5.1 is the prefix tree P := (V,E) for T , i.e., a
graph where the vertices V represent the prefixes and the edges E ⊂ V × V
describe the hierarchical structure of the prefix tree. The root node vroot ∈ V
of the tree is the empty string λ.

Figure 5.9 illustrates the generation of the prefix tree Px for a sample list
of tags Tlexx

. The list contains a small number of lexicographically ordered
tags starting with the letter “v”. The occurrence frequencies ffreq of the
tags are also depicted, as they will later be used to scale the font sizes in
the prefix subtrees. Figure 5.9b depicts the hierarchical structure of the
prefix tree, while Figure 5.9c shows the actual prefix tree as it results from
Algorithm 5.1. The tree is displayed in a left-to-right orientation that is
later also used to display the subtrees in the prefix tag cloud.

The mapping between prefixes and tags is described by the bijective function
fmap : V −→ T , i.e., each prefix vi ∈ V is associated with exactly one tag
ti ∈ T and vice versa. In the example of Figure 5.9, it means that the
prefix “visual” is associated with the tag “visual”, while the prefix “ization”
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(a) (b) (c)

Figure 5.9 — Transforming a list of tags into a prefix tree: (a) Lex-
icographically ordered list of tags and their frequencies. (b) Node-link
diagram illustrating the prefix tree structure, with tags shown in full length.
(c) Node-link diagram of the vertically aligned prefix tree, with tags split
into prefixes.

is mapped to the tag “visualization”. Note that the ending “s” following
the prefix “ization” is also called prefix in our case. It represents the tag
“visualizations” and is treated like the other prefixes.

5.3.2 Subtree Rendering
Before we generate the prefix tag cloud, we split the prefix tree P at its root
node vroot into a set of subtrees P ′ := (V ′, E ′) with V ′ ⊂ V and E ′ ⊂ E.
Each subtree P ′i represents either a group of word forms (if |V ′i | > 1) or a
single word (if |V ′i | = 1). The latter is the case for tags that have vroot as
prefix and no child node, such as the word “virtual” in Figure 5.9.

The subtrees of P ′ are visualized as node-link diagrams in a left-to-right
orientation. Parent nodes are placed in the vertical center and to the left of
their child nodes, as it was sketched for the whole prefix tree in Figure 5.9c.
This left-to-right orientation is consistent with the dominant reading direc-
tion in English and other languages. The diagrams have different background
colors so that they can be more easily distinguished. However, color is not
necessary to read and understand the visualization.
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(a) (b)

Figure 5.10 — Alternative renderings of the same prefix subtree: (a) show-
ing the complete tags, (b) showing only the prefixes.

The font sizes of the prefixes in the subtrees are scaled according to the
frequency values (given by ffreq) of the associated tags (given by fmap).
Since a linear change of the font size has a roughly quadratic effect on the
text area, we use the square root of the frequency values for scaling. Using a
linear scale instead would overstate the larger tags, while a logarithmic scale
would understate them. There may be cases where such scales are more
suitable, even though they increase the “lie factor” [236] of the visualization.
For instance, a logarithmic scale is often used if the frequency values of the
tags tend to follow a power law distribution, as in many folksonomies [225].

Figure 5.10 shows two alternative renderings of subtree P ′visual ⊂ Px that
was already depicted in Figure 5.9c: One visualizes the tags ti ∈ Tx and the
other the prefixes vi ∈ Vx. As the latter diagram is less redundant and more
space-efficient, we use it for the prefix tag clouds.

5.3.3 Tag Cloud Generation
The subtrees are visualized in a circular tag cloud layout with the most
frequent tags in the center and tags with decreasing frequencies towards the
boundary. As we found in the user study (see Section 5.2), this layout sup-
ports particularly well the identification of popular tags, which we consider
a key task related to prefix tag clouds.

We create the circular layout with a simple yet effective algorithm that is
similar to the one presented in [93]. It places the subtrees of P ′ along a
spiral path, as sketched in Figure 5.11.2

2 Note that the actual distance between turns of the spiral must be much smaller than
sketched to get results like in this work.
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Figure 5.11 — Spiral placement of the prefix subtrees to create the
circular tag cloud layout.

First, the drawing area is defined, which can, in principle, be of any shape.
As graphical user interfaces are usually based on 2D grid layouts, a rectangle
may be the ‘shape of choice’ in most cases. Drawing starts with the subtree
that contains the tag with the highest frequency value, i.e., tag t1 from the
descending ordered list of tags Tfreq. This first subtree is placed in the center
of the drawing area. In the example of Figure 5.11, it consists of the tags
“system” and “systems”, i.e., the diagram shows the prefixes “system” and
“s” accordingly.

Subsequently, subtrees with decreasing frequencies are placed along the
spiral path. This is done by traversing Tfreq and rendering the associated
subtrees as described above. As long as a subtree would intersect with any
previously placed subtrees in the drawing, it is moved further along the
spiral path. It is also moved if it would be placed outside the drawing area.
If there is not enough free space left to place a subtree in the drawing area,
it is continued with the next subtrees until some predefined threshold or
until the last element of Tfreq is reached. Rendered subtrees are marked as
rendered to avoid multiple placement of the same subtree.

If we would strictly adhere to the circular layout as described above (Sec-
tion 5.2.1), we would not be allowed to place tags with small font sizes close
to the center of the cloud. However, we would waste a lot of space in such
a strict layout, as we do not only place tags of rectangular shape but also
subtrees with more complex shapes. Hence, we decided to fill free space
between larger subtrees with smaller ones. We do this by starting the spiral
placement for each subtree in the center of the drawing area so that smaller
subtrees are rendered whenever there is enough space, also between already
drawn subtrees.
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Subtree drawing continues until one of three conditions is met: 1) all subtrees
of P ′ have been rendered, 2) a user-defined number of subtrees of P ′ has been
rendered, or 3) the drawing area is completely filled with subtrees. The first
two conditions result in a circle-shaped tag cloud due to the spiral placement
of the subtrees. The circle may be cut by the border of the drawing area if
it does not completely fit. The third condition results in a tag cloud with
the shape of the drawing area.

Finally, we implemented a method that combines the above conditions. It
automatically scales the font sizes of the prefixes so that a given number
of subtrees fits exactly in the pre-defined drawing area. Different scaling
factors are tested until a solution is reached, while the relative differences
between the font sizes are retained as much as possible. In the next section,
we provide examples of a circle-shaped tag cloud and a rectangle-shaped
one.

5.3.4 Application Examples
Apart from the visualization of folksonomies, a popular application area of
tag clouds is text summarization. In this context, tag clouds are typically
used to depict the words that occur most often in texts. The font sizes of
the tags indicate the word frequencies, i.e., the larger a tag the more often
it occurs in the text [93]. Such tag clouds can provide an overview on the
topics of a text and serve as a starting point for a deeper analysis [243, 225].
For instance, they help to judge whether a given text is relevant to a specific
information need or not. When a tag cloud visualization is used this way,
the ‘tags’ are words from a text. For this reason, the term word cloud is
often preferred over the term tag cloud in these contexts. However, we will
keep using the term tag cloud for this kind of visualization in this work.

We also applied prefix tag clouds in the context of text summarization to
evaluate their usefulness. The investigated text corpus is a large dataset
containing publication information of the computer science bibliography
DBLP [159]. We used the XML file of the DBLP dataset, dating from
February 25, 2013. It contains bibliographic information for more than 2.1
million publications in the field of computer science. We transformed the
publication titles into individual tags with techniques common in tag cloud
generation [81, 93]: We first used regular expressions to remove special
characters and separate words by spaces. We then converted the tags to
lowercase and removed stop words, i.e., common words like “the”, “is”, or
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(a) (b)

Figure 5.12 — Differently shaped prefix tag clouds, each showing 150
words from publication titles indexed in the computer science bibliography
DBLP: (a) most frequent words of all publication titles, b) most frequent
words of publication titles containing the string “visual”.

“at” that do not carry relevant meaning. Finally, we counted the frequencies
with which the words appear in the titles. As a result, we got the data
required to generate prefix tag clouds, i.e., a set of tags T and the mappings
T −→ N defined by ffreq.

Figure 5.12a depicts a rectangle-shaped prefix tag cloud showing the 150
words that appear most frequently in all publication titles. Very frequent
words, such as “system”, “network”, and “analysis”, become immediately
apparent. These words occur around 100,000 times in the titles. Words with
small font sizes, such as “integration” or “random”, occur around 14,000
times. Words below this frequency value are not displayed in this highly
filtered view.

The grouping in the prefix tag cloud reveals that the singular and plural
forms of several words occur with similar frequencies in the paper titles,
as the plural “s” has often nearly the same font size (e.g., “system” or
“network”). Other words occur more often in either singular (e.g., “image” or
“method”) or plural (e.g., “graph”). The word “model” is not only used in
singular and plural but additionally in its gerund form. The gerund is also
popular for the words “process” and “test”. Finally, the words “data” and
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“database” are grouped, while “data” is used more frequently, as indicated
by its larger font size.
Figure 5.12b depicts another prefix tag cloud generated from the DBLP
dataset. It has a circle shape and shows all words that occur most frequently
together with the word “visual” or any other word having “visual” as prefix.
We generated it from the subset of publication titles that resulted after
filtering for the string “visual”. As this string appears in all publication titles
of the subset (which is 31,802 times), it has the largest font size in the prefix
tag cloud.
The prefix tag cloud contains several subtrees that are similar to the ones
visualized in Figure 5.12a. There are also new subtrees, such as one consisting
of the prefixes “real” and “ity” or another grouping “audio” and “visual”.
Furthermore, we can observe that the word “program” is often used in
its gerund form while “technique” is mostly used in plural. The subtree of
“visual” is similar to the one that already served as an example in Figure 5.10.
The prefix is most often used in the word “visualization”, while it also
appears frequently in the words “visualizing”, “visualisation”, “visually”,
and the plural form of “visualization”. Interestingly, even the German word
“visualisierung” is part of the subtree, even though publications in computer
science are usually written in English.

5.3.5 Discussion
While there are several works on layout issues of tag clouds, only few address
the grouping of different word forms. One approach is presented by Cui et
al. who use the Porter stemming algorithm to collapse words with the same
stem and only include the most frequent word form in the tag cloud [72].
A similar approach is taken by Dörk et al. [81]. However, the viewer gets
no idea which word forms have been collapsed, as this information is not
shown in the tag clouds.
Stemming algorithms, on the other hand, are indeed a valid alternative
to the prefix trees used in our approach. However, they require knowledge
about the language of the tags, while prefix tag clouds can in principle be
used with any language that is based on Latin script and features inflected
word forms. They rely purely on lexicographical ordering, which makes them
versatile and easy to implement.
Another related approach is the work on Word Trees by Wattenberg and
Viégas [248]. They use a suffix tree to present search terms in their textual
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context. Instead of single words, they analyze complete sentences and vi-
sualize the sentence structure as tree. It is the only work we found that
uses a data structure similar to prefix trees for visualization purposes. It
is conceptually related to our approach but serves a different purpose by
displaying keywords in context instead of grouping word forms in tag clouds.

5.4 Considering Time and Tag Relations
As we have illustrated in Chapter 2 (especially in Section 2.4.1), many
relationships emerge if tags are used together. These relationships are not
considered in the tag clouds presented so far. While prefix tag clouds show the
relationships between different word forms, they do not reveal relationships
between different tags in the cloud. It is, for instance, not visible from
Figure 5.12b which tags are used together with ‘visualization’.

Another limitation of tag clouds is that they depict tag frequencies summed
up over time. They do not provide information on time-varying tag use. If
we refer to the example in Figure 5.12b again, we cannot see any trends, i.e.,
we cannot say which tags have been used exceptionally often in paper titles
in the last couple of years.

To overcome these limitations, we developed an interaction technique we
call time-varying co-occurrence highlighting. It uses visual highlighting of
co-occurrences combined with colored histograms to indicate time-dependent
tag relations in tag clouds.

5.4.1 Time-Varying Co-occurrence Highlighting
Essentially, the technique is based on two visual features:

• Each tag in the cloud is enhanced by a histogram that visually depicts
the variation in tag use over time.

• Whenever a tag is selected in the cloud, related tags are visually
highlighted and co-occurrence information is shown.

Both visual features are integrated as follows:

• Along with the co-occurrence highlighting, those bars in the histogram
are colored that represent the point in time of co-occurrence.
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(a) (b)

Figure 5.13 — Small tag cloud enhanced by (a) plain and (b) time-varying
co-occurrence highlighting.

Figure 5.13a shows a small example tag cloud that has been enhanced by
a feature we call co-occurrence highlighting. Hovering over a tag leads to a
highlighting of all co-occurring tags in the cloud. In the example, the tag
‘center’ has been selected, as indicated by its red color and border. Tags that
are used together with ‘center’ are highlighted in yellow, with the number
of co-occurrences given in parentheses.

Tags that are used very often together with ‘center’ are additionally colored
in red, such as the tag ‘tennis’ that co-occurs 391 times with ‘center’ in this
example. By contrast, the tag ‘game’ has a black color in Figure 5.13a, as it
co-occurs only five times with ‘center’. In general, the more often a tag has
been used together with the selected one, the stronger its red color, i.e., the
font color of the highlighted tags correlates with the co-occurrence frequency.
We decided to use this indirect method of visual highlighting, as drawing
direct links between the tags would result in visual clutter. We will discuss
this issue and alternative solutions Chapter 6.

Clicking on a tag reduces the set of tags displayed in the cloud to those
that co-occur with the selected one (including the selected tag itself). This
allows to explore a certain subset of possibly related tags separated from
the others. If there is no distraction by other tags, relevant relationships
and trends may be found more easily in the set of tags.

In addition, histograms are plotted in the background of the tags. They
show the variation in tag use over the analyzed time span. Those bars in
the tags’ histograms that represent the point of co-occurrence are marked in
red, while the other bars remain blue. For instance, in case of the tag ‘2011’,
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only the left bars of the histogram are red, indicating that all co-occurrences
of ‘center’ and ‘2011’ appear in the first half of the analyzed time span.
We distinguish between two forms of time-varying co-occurrence highlighting:
In the absolute variant, each co-occurrence leads to a complete coloring of the
corresponding bar in the histogram, as in Figure 5.13b. In the relative variant,
the bars are only partly colored, indicating the number of co-occurrences in
relation to the tag frequency at the corresponding point in time.

5.4.2 Application Example
As for prefix tag clouds (see Section 5.3.4), we applied the interaction
technique of time-varying co-occurrence highlighting in the context of text
summarization. In this case, we used short messages from the microblogging
service Twitter [32] as text corpus. We decided for the application context
of microblogging, as it is strongly time-dependent. However, we could have
also used folksonomies which are also very time-dependent [111, 226, p. 101].
We retrieved the microblogging messages from a large database of Twit-
ter [32] posts created and maintained by Thom et al. [233]. The database
contains all publicly available posts that come with geo-coordinates. These
posts are typically sent from mobile devices, such as smartphones. For our
example dataset, we used the geo-coordinates of the posts as initial filter and
selected a subset restricted to an area of New York. Furthermore, we filtered
the posts by date, using a time span from September 3 to 19, 2011. We then
applied the Spatiotemporal Anomaly Detector offered by Thom et al. to find
anomalies in the Twitter data that correspond to certain events. It analyses
the spatiotemporal density, word usage, and number of contributing users
to identify posts that are likely from local witnesses of an event (see [233]
for a detailed description of the approach and the related algorithms).
We found events related to tennis, the New York Yankees, and Electric
Zoo for days 3 to 5, and events related to Maker Faire as well as Occupy
Movement for days 16 to 18. Because the tag ‘party’ occurred most frequently,
we used it to pre-filter the microblogging messages. We then removed it from
the text corpus, as it would otherwise be associated with most messages
across all times, thus not adding any value. We finally got a sample of
4,934 posts that we used to examine the applicability and usefulness of
time-varying co-occurrence highlighting.
We processed the microblogging messages with NLP techniques typically
used in tag cloud generation, such as tokenization, lowercase conversion,
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Figure 5.14 — Visual interface showing a tag cloud where the time-
varying co-occurrences of the tag ‘tennis’ are highlighted.

and stop word removal [34, 81]. That is, we first split the text streams at
whitespace characters to get the individual words, then converted these
words to lowercase, and removed stop words, i.e., common words (such as
‘the’, ‘is’ and ‘at’) that usually do not carry meaning. Finally, we aggregated
syntactically identical words and printed them on the screen, with the
font size scaled to their frequency of use. Figure 5.14 shows the tag cloud
generated for the text corpus we retrieved from the database of Twitter
messages, embedded into the visual interface that enables to configure the
visualization.

The visual interface offers several parameters to adapt the visual appearance
of the tag cloud to the user’s needs (see Figure 5.14). The users can, for
instance, switch between linear and logarithmic scaling of the tags’ font size,
depending on the distribution in tag frequencies. Furthermore, they can
adapt the overall size of the tag cloud by specifying the maximum number
of tags that are shown, or the minimum number of times a tag must be
used to be displayed in the cloud. Finally, they can change the font and
background colors, the horizontal and vertical spacing, and the minimum
and maximum font sizes of the tags.

The histograms can also be configured. Among others, the user can specify
the aggregation interval of the histogram, i.e., how much time is represented
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by each bar in the histogram. In the example of Figure 5.14, an aggregation
value of 10 was chosen, meaning that each bar in the histogram represents
10 hours of microblogging (except from the last bar which is the remainder).
Since the aggregation method was set to ‘average’, the presented values
are the average occurrences within the 10 hour time frames. As for the tag
clouds, one can specify further parameters like the color of the histograms
or if the histograms are visible at all.

5.4.3 Discussion
There are related approaches that encode time in tag clouds, such as Spark-
Clouds [155] or ParallelTagClouds [70]. Parallel Tag Clouds combine the
ideas of tag clouds and parallel coordinates to show tag frequencies at mul-
tiple points in time simultaneously. They allow to compare changes in tag
use, but they do not directly visualize the evolution of the tags. This is
different in SparkClouds where a sparkline (i.e., a simplified line graph) is
added to each tag to explicitly show changes in tag use over time. While
this is similar to our histogram visualization, using histograms with discrete
bars instead of continuous sparklines to encode time has some advantages:
On the one hand, it allows to color-code certain bars, what is needed to
indicate time-dependent co-occurrences. On the other hand, it lets the user
specify the aggregation interval, i.e., how much time is represented by each
bar in the histogram.

Neither SparkClouds nor Parallel Tag Clouds show tag relations and are
thus not able to visualize time-varying co-occurrences. This is also true for
other visualizations that use line graphs or stack graphs to illustrate tag
evolution, such as Topic Streams [81] or Twitter StreamGraphs [68]. The
TIARA [164] system combines tag clouds with river flows similar to the
ThemeRiver visualization [117] to show trends in tag use. Finally, there are
approaches that enable users to interactively explore the tag use over time
with GUI elements such as sliders [186, 233]. However, they do also not
include co-occurrence information.

Co-occurrence information is, in turn, considered by approaches that visualize
tag relations in tag clouds, such as the clustered tag clouds mentioned above.
They implicitly indicate tag relations by spatial proximity, for instance,
by placing frequently co-occurring tags close to each other. Co-occurrence
information will also be used in the folksonomy graphs we present in the next
chapter. They make the tag relations explicit by connecting co-occurring



126 Chapter 5 • Tag Cloud Visualizations

tags with edges. Related to this are visualization techniques that combine
tag clouds and trees. For instance, Tree Clouds [98] arrange tags on a tree
to visually depict their relatedness. However, in contrast to the above works,
all these approaches do not contain information about time-varying changes
in tag use.

Time-varying co-occurrence highlighting combines both directions of ex-
tending tag clouds for visual analysis. It integrates information about the
temporal distribution and co-occurrence of tags in one interactive visualiza-
tion. It therefore takes into account that both can be important information
in the analysis of folksonomies and text contents and is best explored in an
integrated manner.

A possible drawback of the technique is the increased complexity of the
tag cloud visualization. Though we still regard tag clouds enhanced with
time-varying co-occurrence highlighting as relatively easy to understand and
use, they are not as simple and puristic as common tag cloud visualizations.
Especially the histograms create additional visual information that may
negatively affect the readability of tag clouds.

The co-occurrence highlighting, by contrast, should not have a relevant effect
on the perception of tag clouds, as it does not change the general appearance
of the tag cloud but purely equips it with interactive highlighting. The user
first sees a common tag cloud and can then use the interactive highlighting
to further explore the contents. That way, it adds contextual information
that can be helpful to identify multiword expressions or ambiguities.

5.5 Interactive Analysis with Tag Clouds
This approach of using a common tag cloud visualization and enhancing
it with interactive features was also the guiding principle in the tag cloud
based analysis system we developed. We call it the Tag Cloud Explorer,
as it uses tag clouds as its main visualization method. The tag clouds are
equipped with advanced natural language processing, intuitive interaction
techniques, and a high level of control for users in order to support different
kinds of analysis tasks. The Tag Cloud Explorer combines several ideas
of the previously presented work in one consistent analysis framework. It
makes heavy use of natural language processing to enrich the tag clouds with
linguistic information. It is therefore particularly useful for the analysis of text
contents, though several features can also be used to analyze folksonomies.
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Figure 5.15 — Tag Cloud Explorer consisting of the following components:
(a) tag cloud visualization, (b) tag filter, (c) search box, (d) tag statistics
panel, (e) info panel, (f) part-of-speech and named entity filters, (g) text
viewer, (h) stopword editor, and (i) cloud control panel.

5.5.1 Tag Cloud Explorer

In the following, we provide an overview of the Tag Cloud Explorer, which
is implemented in Java and depicted in Figure 5.15. As an example text for
this screenshot, we used the popular Sherlock Holmes novel “The Hound of
the Baskervilles” by Arthur Conan Doyle. The Tag Cloud Explorer consists
of the central tag cloud view and a number of other components providing
additional information and functionality for the analysis. The individual
components are marked with letters in Figure 5.15. In the following, we will
describe their functionality and explain how they support text analysis.
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Text Processing

One of the drawbacks of all tag cloud approaches presented so far is that
they provide a purely statistical summary of the tags without taking deeper
linguistic knowledge about the tags and their relations into account. To
overcome this limitation, we equipped the Tag Cloud Explorer with a compo-
nent for linguistic analysis. We use the Stanford CoreNLP tools [23] for this
purpose and perform several steps of natural language processing, consisting
of tokenization, sentence splitting, part-of-speech tagging, lemmatization,
and named-entity recognition.
Based on the results of the part-of-speech tagger, we additionally imple-
mented a detector for nominal multiword expressions. It joins all continuous
sequences of proper nouns that occur in the same sentence. With this simple
heuristic, we can detect most compound nominals and proper names in
the text (see [213] for a comprehensive summary of different multiword
phenomena).
The separate display of multiword expressions is important for many anal-
ysis tasks, especially those involving the identification of person or place
names which are often multiwords (e.g., “Michael Jordan” or “New York”).
Another benefit of considering multiwords is that the frequency counts of
the individual tags are not artificially increased (e.g., “new” as part of “New
York”).

Tag Cloud Layouts

The tag cloud forms the central visualization in the Tag Cloud Explorer. We
implemented three different tag cloud layouts that the users can choose from:
two sequential line-by-line layouts, one sorted alphabetically, the other by
frequency, and a circular layout showing the tags with the highest frequency
in the center of the cloud and the lower frequency tags closer to the perimeter
– similar to the one that was investigated in Section 5.2 and used in the
prefix tag clouds (see Section 5.3.3).
While the alphabetical layout supports users in quickly spotting specific
tags they are looking for, the frequency ordered layout lets them arrange
tags according to how often they occur in the text. The circular layout
complements the sequential line-by-line layouts as a space-efficient and
visually appealing alternative. Font size is scaled linearly with the occurrence
frequency of the tags for all layouts. As the Tag Cloud Explorer allows for a
free placement of tags, additional tag cloud layouts can easily be added to
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the implementation. Also, the mapping of the frequencies to the font sizes
of the tags can easily be adapted.

The Tag Cloud Explorer uses the information about different word forms
provided by the lemmatization component to subsume them under one
representative tag in the cloud. This means that, for example, not all
inflections of a verb are shown as separate tags in the cloud, but that
their counts are added up and only their most frequent representative is
displayed. Detected multiwords are displayed in camel case to make them
easily recognizable as one entity. However, both features can be disabled
in the menu if users do not want a special treatment of multiwords or the
merging of different word forms.

In addition, we implemented the above described technique of co-occurrence
highlighting for the tag clouds (see Section 5.4.1), i.e., users can hover over
tags to highlight related ones. In the current implementation, two tags are
related if they co-occur within the same sentence. However, the co-occurrence
context can easily be changed, i.e., to link all tags that are used within the
same tagging (cp. 2.4.2). In contrast to the implementation of co-occurrence
highlighting presented in Section 5.4.1, the degree of co-occurrence is not
expressed by font color in the Tag Cloud Explorer. Instead, the saturation of
the yellow box around the related tags indicates the co-occurrence frequency.
The box of tags that appear often with the selected one have a higher
saturation than boxes of tags that co-occur only few times. This allows to
use font color for different purposes, such as the part-of-speech coloring
shown in Figure 5.17.

The second effect of hovering over a tag is that further information about it
is displayed in the tag statistics panel (d) and info panel (e) we will describe
in the following.

Tag Statistics Panel

The tag statistics panel (d) displays information about a selected tag. This
is illustrated for the tag “looked” in Figure 5.15. The tag statistics panel
lists the number of occurrences of the tag within the filtered set of sentences
(Actual count), the number of tags currently present in the tag cloud (Actual
tags), the number of occurrences of the selected tag in the whole text corpus
(Overall count), and the overall number of tags in the corpus (Overall tags).
Finally, it gives the total number of sentences in which the focused tag
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occurs (which is identical to the above values in this case, as no filters are
selected).
The information from the tag statistics panel can, for instance, be used for
sanity checks. One apparent disadvantage of tag clouds is that the difference
in frequency between tags as judged according to their font size can give a
false impression about the true frequency count ratio of the tags. Showing the
absolute frequency values to users lets them easily correct false impressions.

Info Panel

The info panel (e) is part of the tabbed pane below the tag statistics panel.
It displays linguistic information about the focused tag, consisting of the
detected word forms, part-of-speech tags, and named entity types for that
tag, along with the respective frequency counts.
In the example of Figure 5.15, five different word forms have been detected
for the focused tag. The word form “looked” is chosen as the representative
because it appears most often in the text (as given by its count value).
Furthermore, it has been detected that the tag is mainly used as a verb in
the text and that it is not a named entity (indicated by the category name
“OTHER” in the list of named entities, see below).
This supports the analysis in two respects: First, it can be used to learn more
about a tag in the cloud. For instance, it might be relevant for an analysis
task if a tag occurs mainly in present or past tense, or if it is used as verb
or noun. Second, it can be used to cross-check the results of the linguistic
analysis. Although the accuracy of the used text processing techniques is
generally high, they are sometimes prone to errors depending on the type
and quality of the text.

Filtering and Searching

Tags can be selected by clicking on them. They are then added to the tag
filter (b). The tag cloud displays only those tags that co-occur with all of
the selected tags, i.e., it changes from a tag cloud for the whole text to
a ‘co-occurrence cloud’ as soon as tags are selected. Figure 5.16 shows a
co-occurrence cloud for a text corpus with research abstracts from the field
of visualization (cf. Section 6.3.4). The selected tags are colored red (in this
case, “text” and “visualization”). They can be added and removed from the
tag filter in any order and at any time, which triggers an update of the tag
cloud accordingly.
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Figure 5.16 — The tags text and visualization have been added to the
tag filter and are highlighted in the resulting co-occurrence cloud.

The tag filter functionality can be used to focus entirely on the co-occurrences
by removing all tags from the cloud that do not share any sentence with
the selected ones. Thus, an effective drill down to relevant information is
supported that facilitates iterative analytic processes.

Another way of adding tags to the tag filter is by using the search box (c).
Here, users can enter tags independently of whether they are part of the tag
cloud. If a word is entered that occurs in the text, the tag statistics panel (d)
and the info panel (e) on the right display information about it. If it is part
of the tag cloud, it is highlighted, along with all co-occurring tags. Users
can add words from the search box to the tag filter list. The search box thus
allows the construction of co-occurrence clouds for tags whose frequency is
too low to be displayed in the tag cloud.

Part-of-Speech and Named-Entity Filters

The filter tab (f) enables users to explore the tag cloud according to different
parts-of-speech (POS) and different named entities (NE). All POS types
of the Penn Treebank tagset [181] are supported by the CoreNLP POS
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Tagger [234]. They are condensed to nine major POS types in the user
interface of the Tag Cloud Explorer. Likewise, the NE types of the CoreNLP
NE Recognizer [94] are listed in the user interface (labeled with ‘categories’
for better understanding).

Users can hover over the POS and NE types to highlight all respective
tags in the cloud and see which tags belong to which category. As for the
co-occurrence highlighting, we used a yellow box whose saturation indicates
what fraction of occurrences of the tag has been categorized with the
respective type. The two numbers after each type name denote the number
of tags of the respective type being part of the cloud and of the overall text
corpus, respectively. For convenience, the two buttons on the bottom of the
filter tab allow users to select or deselect all types at once. Disabling one
POS or NE type has the effect that counts of this type are subtracted from
the overall frequency of the respective tags.

Being able to filter by part-of-speech and named entities is a powerful feature
of the Tag Cloud Explorer that enables users to explore specific aspects of
the tags and corresponding contents. The tag cloud can, for instance, be
set up to show only locations that occur together with a certain person, or
users can look at adjectives that co-occur with a specific organization.

Text Viewer and Stopword Editor

If the Tag Cloud Explorer is used to analyze text content, the text viewer
(h) can be used to list all sentences in the text that contain the selected
tags (as shown for the tag “looked” in Figure 5.15). This enables the users
to review tags in their original context and verify hypotheses, for instance,
about the relationship between two persons.

The text viewer has a very limited functionality in the current implemen-
tation. It might be extended to show more text context and allow for
sophisticated searching, filtering, and further interaction on its own. Another
option would be to reuse an existing text viewer and integrate it into the
Tag Cloud Explorer.

With the stopword editor (g), users can modify the stopword list and adapt
it to their analysis context. Any modification of the list triggers an instant
update of all views. The list can also be externally changed by editing the
corresponding text file.
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Figure 5.17 — Tag cloud for the text “The Hound of the Baskervilles”,
with the tags colored according to their most frequent part-of-speech.

Configuration of the Tag Cloud

The cloud control panel (i) allows to dynamically change the size of the
tag cloud and of the displayed tags. Users can set the maximum number of
tags, the maximum font size of tags, or the minimum frequency that tags
require to appear in the cloud. When one of these values is changed, the
other values are adapted accordingly.

In the menu of the Tag Cloud Explorer, users can disable stopword filtering,
define a cutoff frequency for the co-occurrence calculations, disable the
concatenation of multiword expressions, and turn the lemmatizer off. The
latter has the effect that different word forms are no longer merged but that
each tag represents a single word form, as in common tag clouds.

Another feature offered in the menu is a coloring of the tags according to
their most frequent part-of-speech. A screenshot of a tag cloud with this
functionality activated is depicted in Figure 5.17.

5.5.2 Use Case
As for the previously presented approaches, we will demonstrate the an-
alytical power of the Tag Cloud Explorer on the example of analyzing
text contents. For this purpose, we downloaded Reuters Corpus Volume 1
(RCV1), which is a large collection of manually categorized news articles
made available by Reuters Ltd. for research purposes [158].

We use the first week of articles from the corpus, ranging from August
20 to August 26 of the year 1996. Three major global sports events were
dominating the news during that week. First, the summer Olympic games
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Figure 5.18 — Initial tag cloud depicting one week of Reuters sports
news in a sequential line-by-line layout with alphabetical sorting.

that took place in Atlanta, GA that year. Second, the Wimbledon Tennis
Championships taking place in London a little earlier. Third, the U.S. Open
that started in New York in that week. We therefore restrict the Reuters
corpus to sports news by selecting all articles that have been categorized
accordingly. As analysis example, we use a task that was also part of the
qualitative user study reported in the next section: “Who are the most
frequently mentioned male and female Olympic champions during that
week?”
In the Tag Cloud Explorer, we first choose an alphabetically ordered, se-
quential tag cloud layout as shown in Figure 5.18. The most frequent tags
in this cloud are common words from the domain of sports, such as won,
played, match, and game. We can also spot some names of countries, cities,
and sports events, such as the aforementioned Wimbledon, Olympic games,
and U.S. Open. Since we are interested in Olympic champions, we hover
over the tag Olympic. In the tag statistics panel, we see that it occurs in
87 sentences of the text corpus. The info panel further informs us that it
occurs 90 times in those 87 sentences, seven of which are occurrences within
multiwords like Olympic Committee.
We switch to the co-occurrence cloud of Olympic (Figure 5.19a) and see
that the tag champion is used most often with it. Among the other tags in
the cloud, there are many athletes with their first and last names contracted
by the multiword feature. We further see numbers denoting scores, years,
distances, etc.
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(a) (b)

Figure 5.19 — (a) Alphabetically ordered co-occurrence cloud for the tag
Olympic, (b) Frequency ordered co-occurrence cloud for the tags Olympic
and champion with highlighted person names.

Next, we add champion to the tag filter and choose the frequency based
ordering (Figure 5.19b). We then use the named entity filter to show only
persons in the cloud (Figure 5.20a). We can see right away that Donovan
Bailey is the most frequently mentioned Olympic champion in the analyzed
part of the corpus. To read more about him, we open the text viewer that
lists all sentences containing his name. We learn that he is a Canadian
sprinter who set a speed record at the 1996 Olympic games.
Looking at the other names in the frequency ordered co-occurrence cloud of
Figure 5.20a, we can quickly spot the female Olympic champion most often
mentioned. Her name is the third tag in the cloud: Svetlana Masterkova.
We select this tag and deselect the Person filter to get the co-occurrence
cloud shown in Figure 5.20b. It reveals further information about Svetlana
Masterkova, for instance, that she seems to be Russian and that there
appears to be some connection to the distances of 800, 1, 000, and 1, 500
meters.
To verify these assumptions and get further information, we switch to the
text viewer and learn that Svetlana Masterkova is indeed a Russian sprinter
and double Olympic champion in the 800 and 1, 500 meter distances. We
also read that she set two world records shortly after her double win at the
Olympic games, one in the 1, 000 meter track at a competition in Brussels
and another in the mile distance of the track and field event Weltklasse
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(a) (b)

Figure 5.20 — (a) Frequency ordered co-occurrence cloud for the tags
Olympic and champion filtered by person names, (b) Frequency ordered co-
occurrence cloud for the tags Olympic, champion, and Svetlana Masterkova.

Zürich. Those four wins within a short time span caused a lot of attention
in the news during the week in focus.

The application example showcases some of the strengths of the Tag Cloud
Explorer. At the beginning of the analysis, users quickly get a rough idea of
the tag space by skimming through the cloud. The most frequent tags and
topics are thus conveyed immediately, offering a good starting point for the
analysis. We started the analysis with the tag Olympic in the application
example.

The different types of tag clouds facilitate the structured exploration by
letting users arrange the tag space according to their information needs. In
the example, the frequency-based layout helped to identify the persons most
often mentioned together with the tags Olympic and champion. Using the
co-occurrence clouds, users can filter the tag space and analyze parts of it in
more detail, as we did with the name Svetlana Masterkova. Co-occurrence
highlighting, on the other hand, was useful to interactively explore and
discover tag relations. The named entity feature allowed us to focus only
on person names. Finally, we could use the text viewer to refer back to the
relevant parts of the original contents in order to verify assumptions and
get further useful information.
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5.5.3 Qualitative User Study
We conducted a qualitative user study to gain further insight into the
effectiveness of the Tag Cloud Explorer and general approach.

Material and Tasks

We used three corpora in the study which we have already introduced in the
previous sections: The first was the novel “The Hound of the Baskervilles”
(see Section 5.5.1) that served as a training corpus in the study. The second
was Reuters Corpus Volume 1 (RCV1), restricted to one week of sports news,
as in Section 5.5.2. The third contained the abstracts of all publications of
the IEEE VIS conference series from the years 1998–2011 [124]. We selected
the latter corpus to include some research-oriented tasks in the study. A
part of it was already shown in the co-occurrence cloud of Figure 5.16.
For the Reuters and VIS corpus, we designed questionnaires, each of which
contained twelve tasks of varying difficulty. Basically, the tasks can be cate-
gorized into three major groups: (1) frequency based tasks, (2) exploration
tasks, and (3) tasks asking for specific tags, with many of the tasks be-
longing to more than one of these groups. Example tasks include “Who
was mentioned most often in connection with ‘Ferrari’?”, and “What is the
Nyquist theory about?”.

Procedure

The participants were five members of the Institute for Visualization and
Interactive Systems (VIS) of the University of Stuttgart. They were between
25 and 31 years of age and mostly male (one was female) with very good to
excellent English skills according to their own judgment. All participants had
experience with expert systems and analysis tasks, and most were familiar
with the topic of text analytics. We considered this beneficial as we aimed
for informed feedback from experts in this area.
The procedure for each of the participants consisted of the following five
steps:

1. Color vision deficiency test: Each participant was tested for color
vision deficiencies with the Ishihara color plates.

2. User training: We explained the features of the Tag Cloud Explorer
using the “The Hound of the Baskervilles” corpus. The participants
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could ask questions and try out the system until they felt confident to
use it.

3. Task completion: We asked the participants to solve the analysis
tasks, beginning with the Reuters sports news corpus followed by the
corpus with the VIS abstracts. In case participants were stuck during
a task, we kept hints on a separate sheet of paper that they could
consult. To get additional insight, we encouraged the participants
to articulate their thoughts during task completion according to the
think-aloud method.

4. Questionnaire:We asked the participants to complete a questionnaire
with demographic questions and questions about their experience with
and thoughts on the approach.

5. Discussion: Finally, we discussed the general approach and specific
analysis tasks with the participants.

Results

The study participants were surprised by the possibilities offered by such
a simple and straightforward visualization as tag clouds if enriched with
context information and sophisticated interaction techniques. Overall, they
performed very well in solving the analysis tasks with the Tag Cloud Explorer.
The paper with the hints was hardly ever used and the tasks were generally
solved quickly and correctly without any help. We were impressed by this
result, as we expected the participants to have more difficulties working
with the Tag Cloud Explorer.

With respect to the tag cloud layouts, an interesting finding was that all
participants preferred the sequential layouts over the circular one, although
they rated the circular one to be aesthetically most appealing. When asked
about this apparent contradiction, most participants answered that they
found it easier to visually compare relative tag sizes using the line-by-line
layout. This is because the lines could be used as visual anchors which
facilitate to compare font height. Furthermore, we could observe the partici-
pants switching between the frequency and alphabetically ordered layouts
according to whether they were interested in high frequency tags or searching
for a specific tags. This indicates that it is important to provide different
tag cloud layouts that users can choose from depending on the analysis task.
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However, most participants preferred the search box over the tag cloud
when searching for a specific tag. This result is not surprising, as using
the search box is fast and also allows to find tags that are not part of the
displayed tag cloud. Furthermore, it is in line with the finding of Sinclair
and Cardew-Hall [225] that a search box is preferred for specific tasks while
a tag cloud for more general ones.

The participants were in disagreement about the usefulness of the part-of-
speech coloring. Some considered it a useful feature, while others found that
it has little analytical value. It was argued that the part-of-speech of most
words does not need to be visually communicated, as users normally know
the part-of-speech of a word once they read it. Using the part-of-speech
categories as a filter for the tag cloud was therefore considered more useful.

The named entity feature was unanimously found helpful and the partic-
ipants used it frequently to solve the analysis tasks. The aggregation of
multiwords and different word forms were also positively evaluated by all
participants. Overall, the participants assigned the linguistically and interac-
tively improved tag clouds many positive attributes (such as “tidy”, “clear”,
“efficient”, “useful”). The user study revealed that the main advantages of
tag cloud based analysis seems to be flexibility and intuitiveness, which
indicates that tag clouds might be particularly beneficial in environments
were training times should be minimal.

5.5.4 Discussion

There are other analysis systems that make use of tag clouds. Examples can
be found in domains such as patent analysis [150], opinion mining [254], or
investigative analysis [228]. However, most systems use tag clouds rather
statically as a visual summary of text documents.

An interactive tag cloud variant has been implemented in the VisGets
system [80]. It is used to filter tags in web-based information retrieval.
Multiple tags can be concurrently selected as filters, restricting the resources
in the result list to only those that are indexed with these tags. Related
tags in the tag cloud are highlighted, as well as related elements in other
views, such as temporal bar charts or geographic maps. However, tag clouds
are used as one visualization component among many in the VisGet system.
Although it is connected with other views by brushing and linking, the
analytical possibilities of the tag cloud itself are limited.
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A noteworthy exception is the POSvis system [245]. It is a literary analysis
system helping scholars to review the vocabulary of novels, filter it by parts-
of-speech, and explore networks of characters from the novel. It uses tag
clouds as one of its main views and is therefore closely related to our work.
It provides two main tag cloud views: One that displays extracted character
names and another showing words from selected part-of-speech categories.
In addition, it offers a third view consisting of multiple tag clouds, each
dedicated to a specific part-of-speech category. Users can customize the
order, size, and color of the tags in the cloud.
However, the analytical and interactive features of the tag clouds in the
POSvis system are limited compared to our approach. The Tag Cloud
Explorer offers generic focus-and-context techniques and direct interaction
with the tag cloud. It provides a broad range of interactive features and is
highly configurable. This makes it suitable for a wide variety of text analytics
problems, while POSvis has mainly been designed for the analysis of novel
characters and their relationships.
In future work, we plan to address the handling and comparison of multiple
tag sources. An interesting question in this respect is how to extend the
tag cloud to allow for the comparison of several tag spaces at a time. This
could, for instance, be done using different colors, similar to the tag cloud
component of the ManyEyes website [243]. Other alternatives could be
Parallel Tag Clouds [70] or the use of a tag cloud matrix [245, 254]. In
general, we aim to integrate the presented approach with related work to
allow for even more comprehensive analysis.
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Though tag clouds give a good impression of the folksonomy vocabulary, a
folksonomy is more than the sum of its tags. As we know from Chapter 2,
the ‘heart’ of folksonomies are not the tags but the taggings that link the
sets of resources, tags, and users. This core structure can be represented as
a hypergraph, as it was detailed in Section 2.4.
However, hypergraphs are rather cumbersome to visualize and difficult to
understand for users [177, 188]. We thus need to reduce the hypergraphs
to simpler graph structures that represent relevant parts of the folksonomy.
Depending on what we are interested in, different subgraphs can be derived
from the folksonomy hypergraph. We call this process the decomposition
of the folksonomy hypergraph and will describe it in the following. We will
then use the resulting subgraphs to classify existing work on visualizing
folksonomies as graphs. With the ChainGraph, we will finally show our own
development for the visualization of folksonomy graphs and similar data
structures.

6.1 Folksonomy Hypergraph Decomposition
Figure 6.1 shows a complete decomposition of the non-uniform and three-
uniform hypergraphs discussed in Section 2.4.2. Compared to the examples
Parts of this chapter have already been published in [121], [168], and [174].
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Figure 6.1 — Complete decomposition of the folksonomy hypergraph
(which is identical for the non-uniform and three-uniform variant due to
Axiom 2).

from that section, the hypergraphs have some more edges this time to better
illustrate the decomposition. However, both hypergraphs contain the same
information due to Axiom 2, stating that one and the same resource can
only be tagged once by each user (see Section 2.4). They are first split into
three bipartite graphs G(RT ), G(TU), and G(UR) that can then each be
further reduced into a pair of unipartite graphs, i.e., finally result the six
graphs G(RT ), G(TR), G(TU), G(UT ), G(UR), and G(RU) (cp. Figure 6.1).

Note that each of the resulting graph pairs has the same structure, i.e.,
the edges in graphs G(RT ) and G(TR), G(TU ) and G(UT ), as well as G(UR)
and G(RU) are connected to the same vertices. More interestingly, each
element set is represented by two graphs that are based on different link
types: While G(RT ) links the resources based on the associated tags, G(RU )
links the resources by the users who annotated them. Likewise, G(TR) and
G(TU ) each provide a different perspective on the tag set, while G(UT ) and
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Figure 6.2 — Folksonomy subgraphs with (a) weighted edges instead of
multi-edges, (b) edges filtered by weight, (c) edges restricted to a single
user.

G(UR) describe different types of links in the set of users. These subgraphs
nicely reveal the implicit links of tagging we introduced in the context of
the three-layer model in Section 2.4.

The folksonomy subgraphs can be further reduced for the visualization. A
common reduction would be the transformation into weighted graphs by
merging the multi-edges, as illustrated in Figure 6.2a for the example graphs
G(RT )ex and G(RT )ex from Figure 6.1. The edge weights represent the num-
ber of links that exist between two vertices. Usually, such a transformation
significantly reduces the number of edges, leading to a more compact and
readable graph visualization.

The weighted graphs can again be further reduced. For instance, we can
specify a threshold and hide all edges in the visualization that have a weight
below this threshold. Figure 6.2b illustrates this again for the G(RT )ex and
G(RT )ex subgraphs by showing only edges with a weight > 1. Alternatively,
we can rank the edges by weight and visualize exclusively the top k edges.
This is similar to idea of tag clouds where only a certain number of most
frequently used tags is shown.

Finally, further reductions can be performed by restricting the subgraphs to
specific elements, as described for the folksonomy quadruple in Section 2.4.2.
Restricting the G(RT )ex subgraph to the taggings of user u1 results in the
graph G(RT )exu1

and the subgraph G(RT )exu1
illustrated in Figure 6.2c.

6.2 Review of Existing Graph Visualizations
We can use the subgraphs resulting from the decomposition to categorize
related work in this area. Further useful categories are the folksonomy source
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and the graph layout used for the visualization. Another more specific
category is the way in which tag frequencies are visualized. Apparently, this
category can only be applied to those subgraphs that contain tags (i.e.,
graphs G(RT ), G(TU), G(TR), and G(TU)).

In the following, we use these four categories to characterize existing graph
visualizations of folksonomies we found in the literature and on the web.
Table 6.2 lists the reviewed approaches, ordered by the type of folksonomy
subgraph they visualize. As shown by the table, most of the work visualizes
the G(TR) graph or its restricted subgraph G(TR)u. These visualizations are
related to tag clouds as they show the set of tags, but they additionally
display relations between the tags based on their co-occurrence (or co-use
in case of the G(TU) graph). Some of the visualizations even adapt the tag
sizes to their frequencies of use, as in tag clouds. There is also a visualization
for the G(RT ) graph, but we could not find any visualization for the other
folksonomy subgraphs we derived in Section 6.1.

Visualizations of Subgraph G(TR)

Visualizations of the G(TR) graph are provided by Eaton [86] and Halpin et
al. [111]. Both display folksonomy data from Delicious [6] and draw the
graphs in a force-directed layout. Eaton’s Deltags tool lets the user enter a
tag and parses the “related tags” part of the HTML page which is generated
for that tag by Delicious. It then draws a force-directed graph from these
related tags using the TouchGraph library for Java. A screenshot of the
resulting graph visualization is shown in Figure 6.3a.

Deltags provides several parameters that enable the user to customize
the visualization. For instance, one can specify a search radius (i.e., the
number of edges traversed), limit the search results (i.e., the number of
edges shown), or restrict the displayed nodes by the number of incoming
edges. Unfortunately, Deltags is not working with the current version of
Delicious and is not documented, so that we cannot further examine the
approach.

The G(TR) graph visualized by Halpin et al. [111] consists of 15 tags from
Delicious that are all related to the tag “complexity” (including the tag
“complexity” itself). The tags are visualized as circle nodes, with the node
size indicating the tags’ usage frequencies, similar to the font size in tag
clouds. The edges are weighted by a cosine distance measure which calculates
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Figure 6.3 — Visualizations of subgraph G(TR) by (a) Eaton [86] and
(b) Halpin et al. [111].

the similarity of tags by their degree of co-occurrence. This similarity is
expressed by the distance of connected tag nodes in the graph visualization.

Halpin et al. used the network analysis and visualization tool Pajek [17] to
create the graph visualizations. They created two different types of graphs,
one showing only direct connections between the tag “complexity” and the
14 related tags in a radial layout, and the other considering 30 additional
connections that reached the highest co-occurrence values in the investigated
set of tags. Figure 6.3b shows the latter visualization created with the
Kamada-Kawai algorithm [137] for force-directed placement. Note that the
visualizations of Halpin et al. are generated for illustrative purposes and do
not provide any interaction possibilities.

Visualizations of Subgraph G(TR)u

This is different in the interactive visualizations of Zitvogel [257] and Ste-
faner [229, p. 56ff.]. Initially, their visualizations show only the tag nodes,
with the node or font size logarithmically scaled to the tag frequency, like in
tag clouds. The relations of a tag with other tags are shown on demand if
the user selects the tag. On the one hand, this reduces the number of visible
edges and hence visual clutter, but on the other hand, it does not allow for
analytical tasks which require to view the relations between all displayed
tag nodes at a time, such as the visual identification of highly connected
nodes.

Both Stefaner and Zitvogel use data from Delicious again, though only
from single user accounts, i.e., they visualize the restricted subgraph G(TR)u.
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(a) (b)

Figure 6.4 — Visualizations of subgraph G(TR)u by (a) Zitvogel [257]
and (b) Stefaner [229].

Zitvogel’s tool, called Delicious Soup, visualizes the tag nodes as animated
bubbles of different sizes that correlate to the tags’ usage frequencies (see
Figure 6.4a). Hovering over a node displays the frequency value at the
bottom of the visualization, along with information on the age of the tag
(i.e., since how many taggings it is used) and the number of related tags
(i.e., tags that have been used together with the tag). In addition, single
nodes or groups of related nodes can be marked with different colors.

Initially, Zitvogel uses a grid layout with random order that is similar to a
sequential tag cloud described in Section 5.2.1. If the user selects a tag, the
grid changes to a radial layout that is comparable to the second visualization
of Halpin et al. mentioned above. The distances of the radially arranged
nodes from the selected node in the center represent the relatedness of the
tags. However, it remains unclear how this relatedness is calculated and how
the radial layout is generated, as the work also misses a documentation.

Stefaner uses a dimensionality reduction method called elastic maps to lay-
out the G(TR)u graph, in combination with a principal components analysis
(PCA) [229, p. 56ff.]. In addition, he performs a curvilinear component anal-
ysis (CCA), resulting in a visualization that places frequently co-occurring
tags close to each other and looks roughly like the inverse of a circular
tag cloud (see Section 5.2.1). Like in tag clouds, the tag nodes are simply
text labels with a font size that scales logarithmically to the tag’s usage
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frequency. The frequency values are given at the bottom of the visualization
in a bar chart that nicely depicts the power law distribution that can often
be found in folksonomies [111].

In contrast to the approach of Zitvogel, one can select multiple tags at a
time in the work of Stefaner to display their relations (see Figure 6.4b). The
relations are ranked according to different criteria, while only those with
the highest rank are displayed. The demo implementation is restricted to 14
pre-processed user accounts, each consisting of 150 tags.

A third visualization of subgraph G(TR)u is presented by Michlmayr and
Cayzer [187]. Like in the visualizations of Halpin et al., they use a force-
directed layout where the node distance is roughly in inverse proportion to
the number of tag co-occurrences, although they do not adapt the font size of
the tags to their frequencies counts. Furthermore, they rank the tag relations
and display only the top-ranked ones with their adjacent nodes to reduce
the size and density of the graph. This is similar to the approach of Stefaner
with the difference that Michlmayr and Cayzer base their rankings purely
on the co-occurrence frequency. An example for the resulting “co-occurrence
network” is shown in Figure 6.5a. It has been generated with the Java
Universal Network/Graph Framework (JUNG) using curved edges and the
force-directed algorithm of Fruchterman and Reingold [95].

A special focus of the work was on visualizing the evolution of a user’s
tag set. Michlmayr and Cayzer generated an animation where the tags
are iteratively added to the graph in the same order as they have been
created by the users of the tagging system. The graph visualization moves
upwards with every iteration, leading to a ‘river’ metaphor similar to the
one presented in [26, 83]. In addition, they applied an evaporation technique
to their visualization that let the edge weights decrease with the age of the
tags.

Visualization of Subgraph G(TU)

The G(TU) graph represents the links that result if different users assign
the same tag, and not if the same tag is used for different resources, as for
subgraph G(TR). We could only find one single approach that visualizes
this type of graph. It has been created by Shaw [221] from Delicious
data consisting of 200 tags from nearly 1500 users. A visualization of 100
tags from this dataset is shown in Figure 6.5b. Shaw uses weighted nodes
and semidefinite embedding for dimensionality reduction. This results in a
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(a) (b)

Figure 6.5 — Visualizations of subgraphs G(TR)u and G(TU) by (a)
Michlmayr & Cayzer [187] and (b) Shaw [221].

statistically grouped visualization that bears a resemblance to clustered tag
clouds (see Section 5.2.1), if enriched with tag relations. The tag distances
have been calculated using the Kullback-Leibler divergence. The main focus
of the work was on finding an optimal connectivity matrix for the graph
visualization. Unfortunately, the tag nodes overlap in the visualization, so
that many of them are not readable. This is also not significantly increased
by making the nodes slightly transparent (cp. Figure 6.5b).

Visualizations of Subgraphs G(RT) & G(RT)u

The G(RT ) graph does not only consider tags and their relationships but
also the resources the tags are connected with (see Section 6.1). Also for this
graph type, we found only one work that visualizes it. It is a tool created
by Oliphant [200] that uses a force-directed layout to visualize tag relations
between images from Flickr. Figure 6.6a shows an example of a part of a
graph generated with the tool. The resource nodes are thumbnails of images
that are interconnected by the tags they share. The graph is iteratively
created by the user, starting with a certain tag of interest. This tag becomes
the central graph node and a number of images indexed with it are arranged
radially around it. Users can add more images and/or tags to the graph.
If they select one of the tags, it becomes the focus and is turned into the
central graph node. This way, its is possible to iteratively create an G(TR)
graph visualized in a force-directed layout.
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(a) (b)

Figure 6.6 — Visualization of (a) subgraph G(RT ) by Oliphant [200]
and (b) extended folksonomy graph by Kern et al. [140].

Other Visualizations of Folksonomy Graphs

There are related approaches that use simple visualizations of the G(TR)
graph to depict tag hierachies [128] or tag clusters [46, 224] derived from
folksonomies. Others work extends folksonomy graphs by additional elements.
For instance, FolksoViz visualizes tag hierarchies by utilizing structural
information from Wikipedia [156]. As another example, Kern et al. [140]
extend folksonomy graphs with additional metadata associated with images,
such as the title or a description of the image. They use Flickr as data
source and apply spreading activation techniques to query the graph. That
way, the images are not only connected by tags but also by user IDs and
image titles, among others (see Figure 6.6b). Finally, there are also graph
visualizations of the social network underlying tagging systems, such as for
Flickr [249] or Delicious [87].

Discussion

The reviewed graph visualizations reach their limits in cases where resources
are highly interconnected with tags, as in many folksonomies. In these
cases, the following two drawbacks of graph visualizations can often be
observed [247] (cp. Figure 6.3 to 6.6):
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• Tag relations are partly hard to visually spot and track, making it
difficult to figure out how the tags and/or resources are interrelated.

• High graph densities and many crossing edges additionally impede the
visual tracking of tag relations.

These drawbacks can only in part be solved by optimizing the graph drawings.
A more effective solution rather needs to take the preceding step, the
generation of the graph representation, into account. We thus developed the
ChainGraph, a graph visualization that uses an alternative representation
to overcome the mentioned limitations. As we will show in the following, it
particularly supports the visual exploration of tag relations in folksonomy
graphs. We will focus on the bipartite folksonomy subgraph G(RT ). However,
ChainGraphs can also be used to represent other folksonomy subgraphs,
such as G(UR) or G(TU).

6.3 The ChainGraph Visualization
The ChainGraph approach is based on the idea of multiplying certain nodes
in the graph representation. In this case, all tags that are associated with
more than two resources are represented by several nodes in the graph so
that all tag relations become binary. Accordingly, the ChainGraph forms an
aggregation of several simple paths that we call ‘chains’ and that require a
special interpretation due to the node multiplication.

The basic idea of the ChainGraph is best illustrated by comparing it with the
straightforward way of visualizing a folksonomy graph. Figure 6.7a depicts
such a common graph that is similar to the one by Oliphant introduced above
(see Section 6.2). Like the visualization of Oliphant, it depicts tag relations
between images as they could be described by a folksonomy. Figure 6.7b
shows a ChainGraph that visualizes exactly the same folksnomy subgraph.
However, in contrast to the common graph visualization, all tag nodes along
one and the same chain represent the same tag, not different ones, this time.
Vice versa, all resources that are interconnected by the same tag chain are
related with each other via this tag. The ordering of the resource nodes in
the chains is irrelevant for this interpretation, since all relations within a
chain are transitive. Reordering the nodes in the chains has thus no effect
on the semantics of the visualization; however, it affects its readability, as
we will detail in Section 6.3.2.



152 Chapter 6 • Folksonomy Graph Visualizations

(a) (b)

Figure 6.7 — (a) Common graph and (b) ChainGraph visualization of
the same folksonomy subgraph.

A comparison of the two types of graph visualizations in Figure 6.7 reveals
that the ChainGraph overcomes the above-mentioned limitations of common
graph visualizations of folksonomies by having the following advantages:

• Tags are arranged in chains running in parallel between the resources
they connect, making the number and kind of tag relations immediately
visible.

• The visual tracking of tag relations is facilitated by a generally lower
graph density and fewer edge crossings than in the common graph
visualization.

These advantages hold true for nearly every ChainGraph. However, besides
a coloring and force-directed placement, an optimal ordering of the resource
nodes in the chains is crucial to get good results. This is one issue we will
discuss in the following. We will also discuss limitations of the ChainGraph
that result from the node multiplication and the special interpretation
of tag relations. First, we will describe the general process of creating a
ChainGraph.

6.3.1 Creating a ChainGraph
To create a ChainGraph for the folksonomy subgraph G(RT ), we take the
set of resources R = {r1, ..., rl} and the set of tags T = {t1, ..., tm}, as we
defined them in Section 2.4. In addition, we have a function f : R −→ P(T )
that represents the links between the resources and tags in the folksonomy
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Figure 6.8 — Resources are linked to tags which are bijectively mapped
to chains.

subgraph. From this input, a set of chains C = {c1, ..., cn} can be built. Each
chain c ∈ C represents one tag by the mapping g : C ←→ T , as illustrated
in Figure 6.8, and contains an ordered set of resources that are linked with
this tag, such that:

∀c ∈ C, r ∈ R : g(c) ∈ f(r)⇔ r ∈ c (6.1)

The order of the resources in each chain is defined by a relation o that is
irreflexive, asymmetric, and transitive, thus describing a strict total order.
For a certain chain cx, the set of all possible orders Ox =

{
ox1 , ..., oxm

}
contains m = |cx|! different orders, whereas each chain can only be in
one order ox ∈ Ox at a time (i.e., sorted one way). The initial orders of
the resources in the chains C are randomly chosen and form the initial
configuration δinit = (o1 ∈ O1, ..., on ∈ On).

Algorithm 6.1 describes the generation of the ChainGraph. All resources in
R are represented by resource nodes that are connected via edges with tag
nodes according to their orders in the chains.

6.3.2 Optimizing the Order in the Chains
The order of the resources in the chains is highly relevant for the readability
of the resulting ChainGraph visualization. Figure 6.9 shows two alternative
ChainGraphs generated for the same folksonomy subgraph G(RT )x. Whereas
the resources are ordered in a clear and consistent manner in the left
ChainGraph, the right one is comparatively hard to read. The difference is
only caused by the ordering of the resources in the chains, the configuration,
which we call δoptimal for the left ChainGraph and δrandom for the right.
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1: Nodes = R
2: Edges = ∅
3: for all c ∈ C do
4: rprior = null
5: for all r ∈ c do
6: if rprior 6= null then
7: newTagNode = newNode(g(c))
8: Nodes = Nodes ∪ newTagNode
9: newEdge1 =

(
rprior, newTagNode

)
10: newEdge2 = (newTagNode, r)
11: Edges = Edges ∪ newEdge1 ∪ newEdge2
12: end if
13: rprior = r
14: end for
15: end for
16: ChainGraph = (Nodes,Edges)

Algorithm 6.1 — Generation of the ChainGraph from a set of chains.

The general rule is that the more similar the orders in the chains of a con-
figuration, the better the resulting ChainGraph visualization. For example,
the two chains c3 and c4 in the left ChainGraph connect the resources r1,
r3, and r4 both in the order (r4, r3, r1), whereas in the right ChainGraph,
the orders of the resources in c3 and c4 differ, with c3 = (r1, r2, r3, r4) and
c4 = (r3, r1, r4). Due to the different orders of the chains, nodes in the right
visualization are rather crosswise than parallel connected what limits the
benefits of the ChainGraph.

To avoid these problems, an algorithm is needed that determines the op-
timal orders in the chains, the configuration δoptimal, and thus generates a
ChainGraph representation that leads to an optimal visualization. However,
we first have to define a similarity measure that allows us to compare the
orders of two arbitrary chains.

Similarity Measure

Basically, the similarity of two chains depends on a) the resources they
connect, and b) the order in which they connect these resources. To compute
a unique value for the similarity of two chains, we first transform each
chain into an isogram over the alphabet R with each resource being a letter
and the orders of the letters in the isograms being given by the orders of
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Figure 6.9 — An (a) optimal ChainGraph differs from a (b) random one
in the ordering of the resources in the chains.

the resources in the chains. To give an example, the isograms for the two
chains c3 = (r1, r2, r3, r4) and c4 = (r3, r1, r4) from the random configuration
δrandom of Figure 6.9 are iso(c3) = r1r2r3r4 and iso(c4) = r3r1r4.

Having the chains transformed into isograms allows us in a second step to
apply the Levenshtein distance to compute the similarity between these
chains. The Levenshtein distance defines the minimum number of edit
operations needed to transform one isogram into another [157]. Possible
edit operations are insertion, deletion, and substitution of single letters.
For instance, the Levenshtein distance between iso(c3) = r1r2r3r4 and
iso(c4) = r3r1r4 is three, since the following three edit operations change
iso(c3) into iso(c4), and there is no way to do it with fewer than three edit
operations:

1. iso(c3) = r1r2r3r4 → r1r3r4 (deletion of r2)

2. r1r3r4 → r1r4 (deletion of r3)

3. r1r4 → r3r1r4 = iso(c4) (insertion of r3)

The isograms of the analogous chains c3 and c4 from the optimal configuration
δoptimal of Figure 6.9 require only one edit operation:

1. iso(c3) = r2r4r3r1 → r4r3r1 = iso(c4) (deletion of r2)

An overall similarity measure sim for the orders of all chains C, with |C| = n,
in a certain configuration δx can therefore be computed on the basis of the
sum of all Levenshtein distances ld between all pairs of isograms, as described
in the following equation:
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sim(δx) = 1

1 +
n−1∑
k=1

n∑
l=k+1

ld(iso(ck), iso(cl))
(6.2)

Accordingly, two or more tag chains that connect exactly the same resources
in exactly the same order have a similarity of 1, since the sum of their
Levenshtein distances is 0.

Exact Solution

An exact solution for the optimal configuration δoptimal of a ChainGraph
Cx requires the computation of the similarity measures between all chains
of all possible configurations. The complexity of this computation can be
approximated as follows:
Given a set of chains C, with |C| = n, and a set of resources R, with |R| = l,
the maximum number of different configurations is n ∗ l!, since each resource
can at most occur once in each chain and hence l defines the maximum
number of resources in a chain.
For the similarity measure sim of a certain configuration δx, n2 Levenshtein
distances have to be computed. Computing the Levenshtein distance between
two isograms of maximal length l has O(l2) complexity [223]. The complexity
of computing an exact solution for an optimal configuration δoptimal can thus
be approximated by: O(n ∗ l! ∗ n2 ∗ l2) = O(n3 ∗ l! ∗ l2) ≈ O(n3 ∗ l!).
Hence, the computational complexity growths polynomially with the number
of chains n (i.e., with the number of tag relations) and factorially with the
maximum length of the chains l (i.e., the maximum number of resources that
are linked with the same tag) in worst case. A heuristic solution that speeds
up the computation by approximating an optimal ChainGraph visualization
in reasonable time is therefore highly desirable. In the following, we present
such a heuristic solution that we developed specifically for the ChainGraph.

Heuristic Solution

The heuristic solution uses an alternative approach to create the ChainGraph.
It adds the resources R stepwise to the chains C, as described in Algorithm
6.2. Two basic decisions are required in every step: Which resource to add
next and where to add it. In an optimal visualization, we want resources
that share many tags to be positioned as close as possible to each other.
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Accordingly, we start the graph building with the two resources that share
most tags (see Algorithm 6.2, lines 1 and 2).

1: FirstPair = {a, b ∈ R | ∀c, d ∈ R : (|f(a) ∩ f(b)| ≥ |f(c) ∩ f(d)|)}
2: addToChains(FirstPair, C)
3: Unbound = R− FirstPair
4: while Unbound 6= ∅ do
5: next = null
6: maxConstraintLevel = −1
7: for all rx ∈ Unbound do
8: if constraintLevel(C, rx) > maxConstraintLevel then
9: next = rx

10: maxConstraintLevel = constraintLevel(C, rx)
11: end if
12: end for
13: addToChains(next, C)
14: Unbound = Unbound − next
15: end while

Algorithm 6.2 — Stepwise creation of the chains. .

Next to the number of shared tags, some additional aspects need to be
considered when determining the order in which the resources are added to
the chains. We thus define a variable constraintLevel that takes these issues
into account and weights the selection priority of the resources accordingly.
Given a set of chains C, the constraintLevel of a certain resource rx is
computed by the following formula:

constraintLevel(C, rx) = numSharedTags(C, rx)
(numConnRes(C, rx) + |Alternatives(C, rx)|)2 (6.3)

The formula is based on three heuristic strategies:

1. numSharedTags: If a resource rx shares many tags with the resources
that are already added to the chains C it would produce many new
edges (i.e., more shared tags = higher constraint level).

2. numConnRes: If a resource rx would be connected to only a few of
the already added resources it produces a more parallel arrangement of
the chains (i.e., fewer connected resources = higher constraint level).
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3. Alternatives: If there exist only few alternatives to connect a resource
rx to the already added resources it should be added as early as possible
(i.e., fewer connection alternatives = higher constraint level).

In each generation step, the constraintLevel is calculated for all resources
that have not yet been added to the chains C (see Algorithm 6.2, lines 7-12).
The resource with the highest constraintLevel is added next (line 13). The
resource is added in a way that it is connected to as few of the already
drawn resources as possible.

The computational complexity of this solution can be approximated as
follows: The complexity of the two loops in Algorithm 6.2 (the while-loop
in line 4 and the for-loop in line 7) is in O(l2) (with l = |R|). Getting
the constraintLevel for a certain resource rx requires the computation
of numSharedTags(C, rx), numConnRes(C, rx), and Alternatives(C, rx) that
together have a complexity of O(n∗l) (with n = |C|). The overall complexity
of computing the heuristic solution can thus be approximated byO(l2∗n∗l) =
O(n ∗ l3).

Compared to the exact solution, the complexity does not grow polynomially
but linear with the number of chains n and not factorially but polynomially
with the number of resources l in the heuristic solution. This results in a
much lower complexity to compute an optimal ChainGraph. However, it has
to be noted that the resulting configuration is possibly only a local optimum.

6.3.3 Use Case
We implemented an interactive ChainGraph visualization for an example
graph G(RT )ex. It simulates a folksonomy subgraph as it could ideally result
from tagging on a photo sharing website like Flickr [8]. For instance, it
could be the result of a query that asks for images indexed with the tags
‘paris’ and ‘france’. As these two tags would be associated with all retrieved
images, they do not provide any value for the visualization and are hence not
part of the ChainGraph. Instead, the implemented ChainGraph visualizes all
other tags that are associated with at least two of the retrieved images. Tags
that are associated with only one image are not included in the visualization,
as they do not represent tag relations.

We implemented the application example in Apache Flex [3] (formerly
Adobe Flex) using the SpringGraph component [222] to draw the force-
directed layout. The resource nodes are thumbnails of the images. They
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Figure 6.10 — Using the ChainGraph to visually explore tag relations
between images of Paris.

can be moved by drag-and-drop and clicked on to enlarge. The tag nodes
connect the resource nodes in chains according to the ChainGraph idea.
Figure 6.10 shows a screenshot of the implementation.1

Assume a user is searching for a decorative image of Paris that she would
like to use as an illustration for a text about the French capital. She first
glances at the image that shows the Eiffel Tower in summer (see Figure 6.10,
step 1). After enlarging this image, she is not satisfied as it looks a bit boring
in her opinion. So she continues her search by following the chain labeled
with the tag “eiffel tower”. Another image of the Eiffel Tower catches her
attention and she enlarges it (step 2). She likes the monochromatic style
of the image and decides to look for further images of this kind. Thus, she
now follows the “black & white” chain. She recognizes that another chain,
1 A demo of the ChainGraph implementation is publicly available at http://chaingraph.
visualdataweb.org.

http://chaingraph.visualdataweb.org
http://chaingraph.visualdataweb.org
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labeled with “people”, meets the “black & white” chain and runs in parallel
with it (step 3) – she is on the ‘right path’, since people on an image help to
make it lively and interesting what is in line with her search goals. Finally,
she reaches a black-and-white image that shows the subway of Paris with
passengers inside (step 4). Since the image belongs also to the “eiffel tower”
chain, this symbol of Paris is shown on the image as well, visible in the
background through the window of the subway. After enlarging the image,
she decides that it perfectly meets her needs and takes it as a decoration of
her text about Paris.
As illustrated by this scenario, the ChainGraph can provide helpful assistance
in exploratory search processes [250]. Relatively vague user needs can be
iteratively refined by discovering and following certain chains of interest. If
the same set of tags has been associated with several resources, their chains
tend to run in parallel, making it easy for users to explore related resources
and to select the ones that fit best with their needs.
The use case illustrates how the chains can serve as ‘paths’ for visual
exploration. According to this metaphor, resource nodes are ‘crossroads’
where one path can be left in favor of another. Similar to the idea of
information scent [63], users keep switching paths (i.e., chains) until they
finally reach the resource they are looking for.
The use case gives also some idea of the manifold possibilities to tailor the
ChainGraph visualization. Besides the variety of coloring a ChainGraph,
interactive functionality, such as filtering or highlighting, can additionally
support the exploratory search process. The most appropriate implementa-
tion depends, of course, on the needs of the use case that the ChainGraph
is applied in.

6.3.4 Evaluation of the ChainGraph
We performed a user study in which we compared the ChainGraph with
the common graph visualization. Our goal was to get some insights into the
user acceptance, understandability, and effectiveness of the ChainGraph as
a visualization of folksonomies.

Experimental Design and Material

We generated three pairs of graph visualizations for the experiment, using
the heuristic optimization approach for the creation of the ChainGraphs
(see Section 6.3.2). Each pair consisted of one ChainGraph and one common
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Table 6.3 — Connectivity matrices for the three graphs G(RT )i of the
experiment with (a) 18, (b) 24, (c) 30 tag relations. The numbers in the
table heads indicate the tags, the letters in the leftmost and rightmost
columns indicate the resources.

graph visualizing the same folksonomy subgraph G(RT )i. The various tag
chains were differently colored for better distinction. We kept the sets of
resources and tags for all three pairs the same (|R| = |T | = 6) but gradually
increased the density of the graphs G(RT )i (i.e., the number of the tag
relations). Note that this means also an increase in density for the common
graphs, while it leads to an increase in the total number of nodes for the
ChainGraphs.

The minimum number of tag relations that is required to connect all six
resources of the graph is twelve (if each of the six tags connects exactly two
resources). However, including this extreme case in the evaluation would be
useless, since both graph visualizations (ChainGraph and common graph)
would look identical (i.e., both would form a cycle graph). The inclusion
of a maximally connected folksonomy subgraph, where all resources are
connected to all other resources via all tags, would also unnecessarily restrict
the experimental design. We thus decided to create more realistic cases,
consisting of three folksonomy subgraphs G(RT )i containing 18, 24, and 30
tag relations respectively. The tag relations were randomly distributed in a
way that every resource was connected to at least one tag and every tag to
at least two resources (as we were only interested in tag relations, not in
tags that are associated with only a single resource). Table 6.3 shows the
connectivity matrices for the three graphs G(RT )i we created.

We defined three user tasks in accordance with the goals of the ChainGraph
approach:
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1. Give the pair of resources that shares most tags. Also give the number
of tags that is shared by that pair of resources.

2. Give all tags that are shared by resources x and y.

3. Give all tags that are shared by resources x, y, and z.

The variables x, y, and z were replaced by letters indicating resources from
the folksonomy subgraphs G(RT )i (cp. Table 6.3). These resources were
randomly selected for every single task and pair of graph visualizations.
In sum, we thus applied a 2x3x3 within-subjects design with variables graph
type (common graph vs. ChainGraph), task type (task 1, 2, 3), and graph
density (18, 24, 30 tag relations).

Procedure

Twelve participants with a mean age of 29 years (standard deviation (SD)
= 6.2) took part in the experiment, mainly male PhD students with a
computing-related background. The general familiarity with graphs was
given with a mean value of 7.7 (SD = 2.6) on a ten-point scale (with 1 =
“no familiarity” and 10 = “high familiarity”). All subjects reported normal
or corrected-to-normal vision capabilities and no color blindness.
The graph visualizations were presented on a 17" TFT monitor with a screen
resolution of 1280 x 1024 px. Both graph types were separately introduced
and explained by an example. The graphs and tasks were displayed one at a
time, and all graphs of one type were presented in series before the other
type was shown. A change in the interpretation of the graph visualization
was thus demanded only once during the experiment and was accompanied
by an explanation.
We counterbalanced the order in which the graph types were presented to
cancel out carryover effects: One group of participants started with the
series of common graph visualizations, whereas the other group was first
confronted with the ChainGraph visualizations. The presentation order of
the tasks and graph visualizations within each series was the same and as
given above, i.e., with tasks 1, 2, and 3 in this order and increasing graph
densities (18, 24, 30) for each task. We did not change the order as we
expected the difficulty of task completion to raise with the graph density,
and wanted the same increase in difficulty for all subjects. While this likely
resulted in learning effects within the experimental conditions (especially for
the similar tasks 2 and 3), we did not consider these a problem, as we were
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only interested in differences between the conditions. We rather considered it
important to keep the order of the stimuli constant within both conditions
to control learning effects and ensure comparability of the two conditions.
All participants had to fill out an evaluation sheet after each condition
(i.e., after all graphs of one type have been presented). The graph types
had to be rated according to 23 pre-defined items on a five-point Likert
scale (with 1 = “strongly disagree" and 5 = “strongly agree"). The items
were then mapped to aggregated values on the dimensions effectiveness,
understandability, attractiveness, and controllability (accumulating 5-7 items
each). The items and mappings are given in Table B.1 in the appendix of
this thesis.
After completion of the experiment, the subjects had to compare both graph
types in a questionnaire (the graphs were neutrally labeled as ‘Graph A’ and
‘Graph B’ throughout the whole experiment). Furthermore, we measured
the time needed to complete the tasks and the accuracy of the solutions.

Results

The overall results of the user study are promising. Nine of the twelve
participants preferred the ChainGraph visualization to solve the tasks of
the experiment. The participants quickly understood how to interpret the
ChainGraph and reported no serious difficulties in using it. They considered
the larger sizes of the ChainGraph visualizations as a possible disadvantage
but complained more about the many crossing edges in the common graph
visualizations. They liked the parallel chain arrangement and the general
‘tidiness’ of the ChainGraph and considered the coloring helpful to solve the
tasks.
The positive reception of the ChainGraph is also reflected by the ratings of
the participants on the evaluation sheet. Table 6.4 list the average ratings
on the four evaluation dimensions (higher value = better rating), along with
the results from a Wilcoxon signed-rank test. We converted the ratings into
ranks and carried out this non-parametric test due to the relatively small
sample size of N = 12. As can be seen, the ChainGraph achieved slightly
better results on all four evaluation dimensions, with significant differences
in its perceived effectiveness and understandability (p < 0.5 and p < 0.1).
The positive ratings seem to stem especially from the first task of the
experiment, as indicated by the time measures and the feedback of the study
participants. Table 6.6 lists the average time and accuracy values, along with
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Co. Graph ChainGraph Wilcoxon

N Mean SD Mean SD Z p

Effectiveness 12 3.1 0.3 3.6 0.6 -2.1 <.05

Understandability 12 2.9 0.4 3.7 0.8 -2.8 <.01

Controllability 12 3.3 0.7 3.7 0.9 -0.9 >.05

Attractiveness 12 2.8 0.3 3.2 0.8 -1.4 >.05

Table 6.4 — Aggregated user ratings on the four evaluation dimensions.

results from corresponding Wilcoxon tests. The differences in the completion
times for the first task, i.e., the identification of the pair of resources that
shares most tags, are notable and significant for all three graph densities.
This finding is supported by comments from the questionnaire: Two subjects
reported difficulties in solving the first task with the common graph and
another three subjects stated that the first task was much easier to solve
with the ChainGraph. The accuracy values show a similar tendency for the
first task, though no significant differences for the small sample of subjects.

The differences in the time and accuracy for the second and third task are
not so clear. The ChainGraph performed better in some cases, the common
graph in others – the common graph achieved even significantly better
values in two cases. However, the differences are not systematic but both
graph types reached relatively balanced results over all densities. Thus, the
ChainGraph was neither better nor worse for these types of tasks regarding
time and accuracy.

Overall, the ChainGraph was well received and positively evaluated by the
study participants. It reached significantly better performance results than
the common graph for the first task and similar results for the second and
third. However, the tasks of the user study were rather narrow focused
and served particularly the benefits of the ChainGraph approach. Also,
the sample size was relatively small, and so were the presented graph
visualizations. Future evaluations should include more complex user tasks and
investigate the ChainGraph also in real use cases (in addition to controlled
experiments), such as the one presented in Section 6.3.3.
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Figure 6.11 — Using the ChainGraph to visualize shared metadata
relations between software requirements.

6.3.5 Discussion

With the ChainGraph, we introduced a graph visualization tailored to the
visual exploration of folksonomies. While we described its creation and
application for the folksonomy subgraph G(RT ), it can also be used with
the G(TU) and G(UR) subgraphs we introduced in Section 6.1. The general
ChainGraph approach is not even restricted to folksonomies but can also be
applied to similar data structures and bipartite graphs.

For instance, we used the ChainGraph in the SoftWiki project mentioned in
Section 4.7.1 to analyze tag relations between software requirements [122].
An example of this application is depicted in Figure 6.11. It shows the
chains of a selection of tags, with the ones for the tags “junk” and “spam”
highlighted.

Although there are many application possibilities, the ChainGraph should
not be regarded as a general alternative to common graph visualizations. It
rather offers a special kind of visualization serving a specific purpose. Due
to its large size, the ChainGraph is best used on large screens. Figure 6.12
shows examples of applying our ChainGraph implementation on a powerwall
and on a tabletop display.
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(a) (b)

Figure 6.12 — Exploring a folksonomy with the ChainGraph visualization
(a) on a powerwall and (b) on a multi-touch table.

Related Work

Much research has been conducted with the aim of drawing more understand-
able and readable graphs [77]. Popular optimization goals are a reduction
of crossing edges, an avoidance of overlapping nodes, or edges of more or
less uniform length. While an exact solution for these optimization prob-
lems is usually NP complete, many approaches propose heuristics such as
simulated annealing [75], multidimensional scaling [153], or a force-directed
placement [95] to compute nearly optimal solutions in much shorter time.

We used the force-directed placement to draw the ChainGraph representa-
tion on the screen. It helps to minimize node overlaps, what is especially
valuable in the case of parallel running chains. An alternative solution for
the visualization of parallel running chains could be drawings where edges
are visualized as polygonal lines. Though these drawings provide greater
flexibility, it can, however, be difficult to follow edges with several bends by
the eye [198].

In contrast to this line of research, the ChainGraph proposes not a new
drawing but a new type of graph representation. In this representation, tag
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nodes are multiplied and composed to chains. The general idea of node
multiplication is not new. It has, for instance, been proposed for graph-based
structures in the areas of network or compiler optimization [135]. However,
only few attempts have been made to use node multiplication as a technique
in information visualization. The work that is maybe most closely related
to ours is the TensionSplit algorithm [85] that multiplies nodes if they are
energized by conflicting connections in a force-directed layout. The algorithm
is based on the assumption that these nodes would most likely produce
crossing edges what can be avoided by their multiplication. The problem of
this layout-driven approach is that the reason for node multiplication is no
longer visible after application. The structure-driven node multiplication of
the ChainGraph, by contrast, remains clear and comprehensible also in the
resulting graph visualization.

Limitations

The ChainGraph requires a special interpretation due to the multiplication
and chain arrangement of nodes. This can be regarded as the main limitation
of the approach, since it is less intuitive than the interpretation of a common
graph and requires extra explanation. Another limitation of the ChainGraph
is its larger size that results from the node multiplication. This can, for
instance, be a problem if display space is limited and if common interaction
techniques, such as scrolling, panning, or zooming, have to be avoided.
Apart from these limitations, there are virtually no other constraints that
restrict the application of the ChainGraph. It is important to note that
the ChainGraph considers only indirect relations but no direct ones. Direct
(and other kinds of) relations can, of course, be easily added to the graph
visualization; however, this might lead to irritations, since the relations must
then be differently interpreted. More suitable might be the inclusion of tags
that are only linked with one resource (i.e., non-shared tags), even though
this can result in a large number of additional nodes in many cases.
Usually, exploration with the ChainGraph is only one in a series of activities
in a retrieval process. For instance, the ChainGraph in the scenario of
Section 6.3.3 could be the result of a search for the tags ‘paris’ and ‘france’.
The approach is less suitable for the visualization of complete folksonomy
subgraphs. Such cases require more compact graph representations.
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Summary and Outlook

This thesis addressed the conceptualization and visualization of tagging
and folksonomies. After defining the key concepts, we gave an overview and
comparison of basic tagging models, followed by a comprehensive review
of existing tagging ontologies and related vocabularies. With the Modular
Unified Tagging Ontology (MUTO), we presented a well-defined and coherent
conceptualization of tagging incorporating the best parts of the reviewed
ontologies.

MUTO supports different forms of tagging, including common, semantic,
group, private, and automatic tagging. It provides a compact and under-
standable core conceptualization that can easily be extended by modules.
The modular approach reduces the complexity of the ontology and increases
its stability with regard to future developments in tagging. Furthermore, it re-
flects the tripartite character of folksonomies by connecting the independent
domains of resources, tags, and users.

We designed MUTO for broad applicability and scalable reasoning. It is
implemented in the sublanguage OWL Lite to allow for the highest possible
tool support. By making it also compliant to OWL 2 RL, polynomial time
reasoning algorithms can be executed directly on the RDF triples that
constitute the folksonomy. However, the focus of this work was rather on a
precise conceptualization than on performance. If performance is an issue,
specific modules may be integrated into the MUTO ontology that speed
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up processing, such as a module defining direct links between tags and
resources.

Apart from such pragmatic extensions, further modules may be developed
in the future that detail certain parts of the domain. One possible extension
could be a module defining specific types of tags (geotags, tag-based star
ratings, etc.) and different tag relations (synonymy, part-of, etc.). However,
the question of how to derive typed tag relations from common tagging has
not yet been sufficiently answered.

The goal of the conceptualization was not only to contribute to a better
understanding of tagging but also to improve the semantic interoperability
of folksonomies and related visualizations. If folksonomies are represented
with the MUTO ontology, they can be accessed and shared in a uniform
manner and validated against the conceptualization. This allows for the
development of reusable visualizations that are independent of individual
tagging systems and that provide different perspectives on the folksonomies.

In this thesis, we focused on tag clouds and folksonomy graphs as two
popular types of folksonomy visualizations. We first looked into tag clouds
and examined their visual perception and performance. We reported on
a comparative user study that analyzed different tag cloud layouts with
regard to how well they support typical information seeking tasks. The study
results suggest that there exists no single best way to arrange tags in a
cloud but that the optimal layout depends on the user goals and intentions
of the designer – as it is often the case in interaction design. Still, we
found some task-layout-combinations that worked particularly well in the
study. Furthermore, we derived some interesting findings on visual attention
patterns in tag clouds from an analysis of the eye tracking data recorded in
the study.

Drawing upon these findings, we examined how tag clouds can be extended
to provide better support for the visual analysis of folksonomies and other
data. In particular, we were interested in the possibilities offered by tag
clouds to visually analyze text content. As a first approach, we developed
prefix tag clouds, a variation of tag clouds that uses a prefix tree to group
different word forms and visualizes the subtrees in a circular tag cloud
layout. The approach relies solely on lexicographical ordering, which makes
it language-independent and easy to implement.

As a second approach, we presented time-varying co-occurrence highlighting.
It supports the visual analysis by enhancing tag clouds with information



171

about tag relations and time-dependent tag use. We showed that the consid-
eration of these two dimensions can be of value for the interactive exploration
of folksonomies and text content. However, the increased complexity of the
tag cloud visualization can be considered as a drawback of the technique.

Therefore, we decided for a less intrusive way to extend tag clouds when
developing the Tag Cloud Explorer. The Tag Cloud Explorer is based on
a common tag cloud visualization enhanced by interaction techniques and
linguistic information in an intuitive way. It combines several ideas of our
previous work and makes heavy use of natural language processing. It is
particularly powerful in the analysis of text content but can also be used to
explore folksonomies and similar data.

Finally, we examined possibilities of visualizing the graph structure of folk-
sonomies. Such graph visualizations can reveal interesting patterns and
relationships that are not visible in simple tag clouds. Since a direct vi-
sualization of the folksonomy hypergraph is not useful in most cases, we
first discussed the decomposition of the hypergraph into simpler subgraphs
representing specific parts of the folksonomy. Based on these subgraphs, we
classified existing visualizations of folksonomy graphs and identified common
limitations.

To overcome these limitations, we developed the ChainGraph visualization
to support the exploration of folksonomies. While we described this visu-
alization approach on the example of a folkonomy subgraph representing
tag-resource relations, it can also be used for other folksonomy subgraphs
and bipartite graphs in general. For instance, we applied the ChainGraph in
the context of the SoftWiki project to visually analyze relations between
software requirements [122].

A key challenge related to folksonomy graphs in general and the ChainGraph
in particular is the large size of the visualizations. We discussed different
strategies to reduce this size, from displaying only selected nodes and edges
(e.g., the top weighted ones) to adaptive approaches where the user decides on
the elements shown in the graph. A related research question is the optimal
mapping of folksonomy subgraphs to a two-dimensional plane. While most
of the work discussed in this thesis uses force-directed algorithms for this
purpose, alternative graph layouts may provide even better results.

Several outcomes of this thesis have been successfully applied in different
research projects. The MUTO ontology has been integrated in the latest ver-
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sion of the Semantic Web Ontology for Requirements Engineering (SWORE)
to represent taggings in the context of the SoftWiki project [209].
The developed tag cloud extensions proved useful in visual text analysis.
Prefix tag clouds helped to group and analyze paper titles, while time-
varying co-occurrence highlighting supported the time-based analysis of
microblogging content. The Tag Cloud Explorer was used to explore different
kinds of text corpora, ranging from sport news to abstracts of research papers.
The ChainGraph visualization was applied in image retrieval and require-
ments engineering, as discussed before. Furthermore, it was a source of
inspiration for related works the author of this thesis was involved in. One
example is the RelFinder, which uses a visualization similar to the Chain-
Graph to show relationships between resources in RDF datasets [123, 173].
All these examples indicate the broad applicability of the works developed in
this thesis. Many of the outcomes are not limited to tagging and folksonomies
but can also be used in other contexts. It is our hope that the contributions
of this thesis will be of value for related projects and future research in the
domain of tagging and beyond.
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Referenced RDF Vocabularies

Table A.1 lists the names and URIs of all RDF vocabularies referenced in
this thesis. In addition, all namespace prefixes as used in the thesis and in
the MUTO ontology are given.

Vocabulary name Prefix URI reference

Annotea Annotation
Schema A http://www.w3.org/2000/10/

annotation-ns#

Annotation Ontology AO http://purl.org/ao/

(Annotea) Bookmark
Schema B http://www.w3.org/2002/01/

bookmark#

Common Tag CTAG http://commontag.org/ns#

DCMI Metadata
Terms DCTERMS http://purl.org/dc/terms/

DCMI Type
Vocabulary DCTYPE http://purl.org/dc/dcmitype/

Friend of a Friend FOAF http://xmlns.com/foaf/0.1/

Continued on next page

http://www.w3.org/2000/10/annotation-ns#
http://www.w3.org/2000/10/annotation-ns#
http://purl.org/ao/
http://www.w3.org/2002/01/
bookmark#
http://commontag.org/ns#
http://purl.org/dc/terms/
http://purl.org/dc/dcmitype/
http://xmlns.com/foaf/0.1/
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Table A.1 — Continued from previous page

Vocabulary name Prefix URI reference

Identity of Resources
on the Web IRW http://www.ontologydesignpatterns.

org/ont/web/irw.owl

Meaning of a Tag MOAT http://moat-project.org/ns#

Modular Unified
Tagging Ontology MUTO http://purl.org/muto/core#

NEPOMUK
Annotation Ontology NAO http://www.semanticdesktop.org/

ontologies/2007/08/15/nao#

NiceTag Ontology NT http://ns.inria.fr/nicetag/2010/
09/09/voc

Open Annotation
Data Model OA http://www.w3.org/ns/oa#

Open Annotation OAC http://www.openannotation.org/ns/

Ontology of
Folksonomy OF http://www.eslomas.com/

tagontology-1.owl

Ordered Lists
Ontology OLO http://purl.org/ontology/olo/core#

OWL 2 Schema
vocabulary OWL http://www.w3.org/2002/07/owl#

Provenance Authoring
and Versioning PAV http://purl.org/pav/

SNaP Tag Ontology PNT http://data.press.net/ontology/tag/

RDF Vocabulary RDF http://www.w3.org/1999/02/
22-rdf-syntax-ns#

(RDF) Named Graphs RDFG http://www.w3.org/2004/03/trix/rdfg-1

RDF Schema RDFS http://www.w3.org/2000/01/
rdf-schema#

RDF Site Summary RSS http://purl.org/rss/1.0/

Continued on next page
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Table A.1 — Continued from previous page

Vocabulary name Prefix URI reference

Social Semantic Cloud
of Tags SCOT http://scot-project.org/scot/ns#

Semantically-
Interlinked Online
Communities

SIOC http://rdfs.org/sioc/ns#

SIOC Types Ontology
Module SIOCT http://rdfs.org/sioc/types#

Simple Knowledge
Organization System SKOS http://www.w3.org/2004/02/skos

/core

Tag Ontology TAGS http://www.holygoat.co.uk/owl/
redwood/0.1/tags/

Tagging Ontology TO http://bubb.ghb.fh-furtwangen.de/
TagOnt/tagont.owl

TAGora Tagging
Ontology TT http://tagora.ecs.soton.ac.uk/

schemas/tagging

Upper Tag Ontology UTO http://info.slis.indiana.edu/
~dingying/uto.owl

XML Schema XSD http://www.w3.org/2001/XMLSchema#

Table A.1 — Names, namespace prefixes, and URIs of all referenced
vocabularies.

http://scot-project.org/scot/ns#
http://rdfs.org/sioc/ns#
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http://bubb.ghb.fh-furtwangen.de/TagOnt/tagont.owl
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ix B
Items of the ChainGraph

Evaluation

Co. Graph ChainGraph

N Mean SD Mean SD

Effectiveness:

I could quickly solve the tasks. 12 3.1 0.8 3.9 0.8

Searching for the resources that
share most tags was easy. 12 2.0 1.2 3.1 1.3

It was easy to find all tags that
were shared by two resources. 12 3.3 1.2 3.8 1.1

It was easy to find all tags that
were shared by three resources. 12 2.8 1.1 3.0 1.0

Solving the tasks took too long. 12 3.5 0.9 3.6 0.8

The graph visualizations made it
difficult to solve the tasks. 12 3.2 0.9 3.4 1.2

Continued on next page
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Table B.1 — Continued from previous page

Co. Graph ChainGraph

N Mean SD Mean SD

The colors helped me in solving
the tasks. 12 4.1 1.1 4.5 0.9

Understandability:

I immediately understood the
structure of the graphs. 12 4.1 1.1 3.6 1.2

I found my way well in the
graphs. 12 2.9 0.9 3.6 1.0

The graphs presented the
information in an understandable
and clear way.

12 3.2 0.7 3.3 1.0

I do not understand the way the
information is arranged. 12 1.4 0.7 4.3 1.0

The graph visualizations are too
complex. 12 2.8 0.8 3.7 0.7

Controllability:

I felt unsure when solving the
tasks. 12 3.3 1.0 3.4 1.1

I am not sure if I solved all tasks
correctly. 12 3.8 1.0 2.7 1.4

Some information was concealed
in the graphs so that I could not
read all.

12 4.0 0.9 4.7 0.7

I partly felt lost in the graphs. 12 3.1 0.9 3.6 1.1

I felt overwhelmed by all the
information. 12 2.7 0.9 3.9 0.9

Continued on next page
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Table B.1 — Continued from previous page

Co. Graph ChainGraph

N Mean SD Mean SD

The overlapping lines in the
graphs confused me. 12 2.9 1.3 3.8 1.5

Attractiveness:

I liked the optical appearance of
the graphs. 12 2.9 0.9 3.4 1.2

The visualizations are innovative. 12 2.0 1.0 2.9 1.1

The visualizations are
conventional. 12 3.7 0.9 3.4 1.2

The way of presenting the graphs
appears unprofessional. 12 2.8 1.1 3.7 1.0

I think the graphs are stylish. 12 2.3 1.1 2.4 1.1

Table B.1 — Items of the ChainGraph evaluation grouped by category
(negative items were positively coded), along with the ratings of the partic-
ipants. The items were presented in random order.
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ix C
RDF/XML Serialization of

MUTO

<?xml ve r s i on ="1.0" encoding="UTF−8"?>
<rd f :RDF

xmlns : dc="http :// pur l . org /dc/ e lements /1 . 1/ "
xmlns : dcterms="http :// pur l . org /dc/ terms /"
xmlns : f o a f ="http :// xmlns . com/ f o a f /0 . 1/ "
xmlns : owl="http ://www.w3 . org /2002/07/ owl#"
xmlns : rd f="http ://www.w3 . org /1999/02/22− rdf−syntax−ns#"
xmlns : r d f s="http ://www.w3 . org /2000/01/ rdf−schema#"
xmlns : s i o c="http :// r d f s . org / s i o c /ns#"
xmlns : skos="http ://www.w3 . org /2004/02/ skos / core#"
xmlns : xsd="http ://www.w3 . org /2001/XMLSchema#">
<!−− /// OWL DL compliance statements /// −−>
<!−− Annotation p r op e r t i e s −−>
<owl : AnnotationProperty rd f : about="http :// pur l . org /dc/

e lements /1 .1/ c r e a t o r "/>
<owl : AnnotationProperty rd f : about="http :// pur l . org /dc/

e lements /1 .1/ d e s c r i p t i o n "/>
<owl : AnnotationProperty rd f : about="http :// pur l . org /dc/ terms/

l i c e n c e "/>
<owl : AnnotationProperty rd f : about="http :// pur l . org /dc/

e lements /1 .1/ t i t l e "/>
<owl : AnnotationProperty rd f : about="http :// pur l . org /dc/ terms/

i s su ed "/>
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<owl : AnnotationProperty rd f : about="http :// xmlns . com/ f o a f /0 .1/
homepage"/>

<owl : AnnotationProperty rd f : about="http :// xmlns . com/ f o a f /0 .1/
dep i c t i on "/>

<!−− Clas s e s −−>
<owl : Class rd f : about="http ://www.w3 . org /2004/02/ skos / core#

Concept"/>
<owl : Class rd f : about="http :// r d f s . org / s i o c /ns#Item"/>
<owl : Class rd f : about="http :// r d f s . org / s i o c /ns#UserAccount"/>
<!−− Object p r op e r t i e s −−>
<owl : ObjectProperty rd f : about="http :// r d f s . org / s i o c /ns#about

"/>
<owl : ObjectProperty rd f : about="http :// r d f s . org / s i o c /ns#

has_creator "/>
<owl : ObjectProperty rd f : about="http :// r d f s . org / s i o c /ns#

creator_of "/>
<!−− Datatype p r op e r t i e s −−>
<owl : DatatypeProperty rd f : about="http :// pur l . org /dc/ terms/

crea ted "/>
<owl : DatatypeProperty rd f : about="http :// pur l . org /dc/ terms/

modi f i ed "/>
<!−− /// MUTO Core onto logy /// −−>
<owl : Ontology rd f : about="http :// pur l . org /muto/ core ">

<dc : t i t l e >Modular Un i f i ed Tagging Ontology (MUTO)</dc : t i t l e
>

<rd f s : l a b e l xml : lang="en">MUTO Core Ontology</rd f s : l abe l >
<dc : d e s c r i p t i on >The Modular and Uni f i ed Tagging Ontology (

MUTO) i s an onto logy f o r tagg ing and fo lk sonomie s . I t i s
based on a thorough review o f e a r l i e r tagg ing

on t o l o g i e s and u n i f i e s core concepts in one c on s i s t e n t
schema . I t supports d i f f e r e n t forms o f tagging , such as
common , semantic , group , pr ivate , and automatic tagging ,
and i s e a s i l y e x t e n s i b l e .</dc : d e s c r i p t i on>

<dc : c reator>S t e f f e n Lohmann</dc : c reator>
<dcterms : i s sued >2011−11−16</dcterms : i s sued>
<dcterms : l i c e n c e >http :// creativecommons . org / l i c e n s e s /by

/3.0/</dcterms : l i c e n c e >
<rd f s : seeAlso>http :// pur l . org /muto/ core#</rd f s : seeAlso>
<f o a f : homepage>http :// pur l . org /muto</ f o a f : homepage>
<f o a f : dep i c t i on>http :// pur l . org /muto/ core /muto−compact . png

</ f o a f : dep i c t i on>
<f o a f : dep i c t i on>http :// pur l . org /muto/ core /muto−UML. png</

f o a f : dep i c t i on>
<owl : v e r s i on In f o >Vers ion 1 .0 − Global changes ( compared to

e a r l i e r v e r s i on s ) : Some p r op e r t i e s have been renamed ;
c a r d i n a l i t y c on s t r a i n t s in c l a s s d e s c r i p t i o n s ( owl :
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Re s t r i c t i o n ) have been rep laced by g l oba l c a r d i n a l i t y
c on s t r a i n t s ( owl : Funct ionalProperty ) .</owl : v e r s i on In f o >

</owl : Ontology>
<!−− Clas s e s −−>
<owl : Class rd f : about="http :// pur l . org /muto/ core#Tagging">

<rd f s : l a b e l xml : lang="en">Tagging</rd f s : l abe l >
<rd f s : comment xml : lang="en">A tagg ing l i n k s a r e sou r c e to a

user account and one or more tags .</ rd f s : comment>
<rd f s : subClassOf rd f : r e s ou r c e="http :// r d f s . org / s i o c /ns#Item

"/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : Class>
<owl : Class rd f : about="http :// pur l . org /muto/ core#

PrivateTagging">
<rd f s : l a b e l xml : lang="en">Pr ivate Tagging</rd f s : l abe l >
<rd f s : subClassOf rd f : r e s ou r c e="http :// pur l . org /muto/ core#

Tagging"/>
<rd f s : comment xml : lang="en">A pr i va t e tagg ing i s a tagg ing

that i s only v i s i b l e to i t s c r e a t o r ( un l e s s the c r e a t o r
has not granted ac c e s s to o the r s v ia muto : grantAccess ) .
Every tagg ing that i s not an in s t ance o f muto :
PrivateTagging i s pub l i c by d e f au l t .</ rd f s : comment>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : Class>
<owl : Class rd f : about="http :// pur l . org /muto/ core#Tag">

<rd f s : l a b e l xml : lang="en">Tag</rd f s : l abe l >
<rd f s : comment xml : lang="en">A Tag c o n s i s t s o f an a rb i t r a r y

text l a b e l . Note that tags with the same l a b e l are NOT
merged in the onto logy .</ rd f s : comment>

<rd f s : subClassOf rd f : r e s ou r c e="http ://www.w3 . org /2004/02/
skos / core#Concept"/>

<owl : v e r s i on In f o >Vers ion 1 . 0 : The owl : d i s j o in tWith
statement was removed to make MUTO conform to OWL Li t e (
the statement i s not e s s e n t i a l in t h i s case ) .</owl :
v e r s i on In f o >
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : Class>
<owl : Class rd f : about="http :// pur l . org /muto/ core#AutoTag">

<rd f s : l a b e l xml : lang="en">Automatic Tag</rd f s : l abe l >
<rd f s : subClassOf rd f : r e s ou r c e="http :// pur l . org /muto/ core#

Tag"/>
<rd f s : comment xml : lang="en">An automatic tag i s a tag that

i s automat i ca l l y a s s o c i a t ed with a r e sou r c e ( e . g . by a
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tagg ing system ) , i . e . i t i s not entered by a human being
.</ rd f s : comment>

<owl : v e r s i on In f o >Vers ion 1 . 0 : muto : AutoTag was a subc l a s s
o f muto : Tagging ( c a l l e d muto : autoTagging ) in e a r l i e r
v e r s i on s . De f in ing i t as a subc l a s s o f muto : Tag i s more
appropr ia te and a l l ows f o r tagg ing s that conta in a
combination o f manually and automat i ca l l y c r ea ted tags
.</owl : v e r s i on In f o >
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : Class>
<!−− Object p r op e r t i e s o f c l a s s muto : Tagging −−>
<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#

hasTag">
<rd f s : l a b e l xml : lang="en">has tag</rd f s : l abe l >
<rd f s : comment xml : lang="en">A tagg ing c o n s i s t s o f a (

t h e o r e t i c a l l y un l imited ) number o f tags . A tagg ing may
a l s o c o n s i s t o f no tags , e . g . i f the system a l l ows i t s
u s e r s to mark a r e sou r c e f i r s t and add tags l a t e r .</ rd f s
: comment>

<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#
Tagging"/>

<rd f s : range rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tag"/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : ObjectProperty>
<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#

tagOf">
<rd f : type rd f : r e s ou r c e="http ://www.w3 . org /2002/07/ owl#

Funct ionalProperty "/>
<rd f s : l a b e l xml : lang="en">tag of</rd f s : l abe l >
<rd f s : comment xml : lang="en">Every tag i s l i nked to exac t l y

one tagg ing . This r e s u l t s from the f a c t that tags with
same l a b e l s are NOT merged in the onto logy .</ rd f s :
comment>

<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tag"/>
<rd f s : range rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tagging

"/>
<owl : inver seOf rd f : r e s ou r c e="http :// pur l . org /muto/ core#

hasTag"/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : ObjectProperty>
<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#

taggedResource">
<rd f : type rd f : r e s ou r c e="http ://www.w3 . org /2002/07/ owl#

Funct ionalProperty "/>
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<rd f s : l a b e l xml : lang="en">tagged resource </rd f s : l abe l >
<rd f s : comment xml : lang="en">Every tagg ing i s l i nked to

exac t l y one r e sou r c e . This can be any kind o f r e s ou r c e (
i . e . a l l s ub c l a s s e s o f r d f s : Resource ) , i n c l ud ing tags
and tagg ings .</ rd f s : comment>

<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#
Tagging"/>

<rd f s : subPropertyOf rd f : r e s ou r c e="http :// r d f s . org / s i o c /ns#
about"/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : ObjectProperty>
<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#

taggedWith">
<rd f s : l a b e l xml : lang="en">tagged with</rd f s : l abe l >
<rd f s : comment xml : lang="en">A re sou r c e can have s e v e r a l

tagg ings from d i f f e r e n t u s e r s . Tags are never d i r e c t l y
l i nked to r e s ou r c e s but can be i n f e r r e d from the
tagg ings .</ rd f s : comment>

<rd f s : range rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tagging
"/>

<owl : inver seOf rd f : r e s ou r c e="http :// pur l . org /muto/ core#
taggedResource "/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : ObjectProperty>
<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#

hasCreator ">
<rd f : type rd f : r e s ou r c e="http ://www.w3 . org /2002/07/ owl#

Funct ionalProperty "/>
<rd f s : l a b e l xml : lang="en">has creator </rd f s : l abe l >
<rd f s : comment xml : lang="en">Every tagg ing i s l i nked to at

most one user account . This property can be omitted f o r
automatic tagg ing s . In con t ra s t to i t s superproperty
s i o c : has_creator , i t i s f un c t i o n a l and with an e x p l i c i t
domain . Use s i o c : member_of to d e f i n e groups f o r group
tagg ing or l i n k to f o a f : Agent , f o a f : Person , or f o a f :
Group v ia s i o c : account_of .</ rd f s : comment>

<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#
Tagging"/>

<rd f s : range rd f : r e s ou r c e="http :// r d f s . org / s i o c /ns#
UserAccount"/>

<rd f s : subPropertyOf rd f : r e s ou r c e="http :// r d f s . org / s i o c /ns#
has_creator "/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : ObjectProperty>
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<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#
creatorOf ">

<rd f s : l a b e l xml : lang="en">c r ea t o r of</rd f s : l abe l >
<rd f s : comment xml : lang="en">A user account can have a (

t h e o r e t i c a l l y un l imited ) number o f tagg ing s . Use s i o c :
member_of to d e f i n e groups f o r group tagg ing or l i n k to
f o a f : Agent , f o a f : Person , or f o a f : Group v ia s i o c :
account_of .</ rd f s : comment>

<rd f s : domain rd f : r e s ou r c e="http :// r d f s . org / s i o c /ns#
UserAccount"/>

<rd f s : range rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tagging
"/>

<rd f s : subPropertyOf rd f : r e s ou r c e="http :// r d f s . org / s i o c /ns#
creator_of "/>

<owl : inver seOf rd f : r e s ou r c e="http :// pur l . org /muto/ core#
hasCreator "/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : ObjectProperty>
<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#

grantAccess ">
<rd f s : l a b e l xml : lang="en">grant access </rd f s : l abe l >
<rd f s : comment xml : lang="en">A ( usua l l y p r i va t e ) tagg ing can

be l i nked to one or more user accounts or user groups
that should have ac c e s s to i t ( apart from the c r e a t o r ) .
This property can a l s o be used in pub l i c tagg ing to l i n k
a user account or user group to a tagg ing ( e . g . i f the

c r e a t o r o f a tagg ing wants to sugges t the tagg ing to
another user ) .</ rd f s : comment>

<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#
Tagging"/>

<owl : v e r s i on In f o >Vers ion 1 . 0 : The range in fo rmat ion has
been removed f o r g r e a t e r f l e x i b i l i t y and OWL Li t e
conformance ( no longe r owl : unionOf ) . C la s s e s from
d i f f e r e n t vo cabu l a r i e s can now be used here − such as
s i o c : UserAccount , s i o c : Usergroup , f o a f : OnlineAccount ,
f o a f : Group , or dcterms : Agent −, though we recommend the
use o f s i o c : UserAccount or s i o c : Usergroup to remain in
the SIOC namespace .</owl : v e r s i on In f o >
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : ObjectProperty>
<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#

hasAccess ">
<rd f s : l a b e l xml : lang="en">has access </rd f s : l abe l >
<rd f s : comment xml : lang="en">A user account or user group

can have ac c e s s to a p r i va t e tagg ing from another user
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i f the a c c e s s i s e x p l i c i t l y permitted by the c r e a t o r o f
the tagg ing . This property can a l s o be used in pub l i c
tagg ing to l i n k a user account or user group to a
tagg ing ( e . g . i f the c r e a t o r o f a tagg ing has suggested
the tagg ing to another user ) .</ rd f s : comment>

<rd f s : range rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tagging
"/>

<owl : inver seOf rd f : r e s ou r c e="http :// pur l . org /muto/ core#
grantAccess "/>

<owl : v e r s i on In f o >Vers ion 1 . 0 : s e e muto : grantAccess </owl :
v e r s i on In f o >
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : ObjectProperty>
<!−− Datatype p r op e r t i e s o f c l a s s muto : Tagging −−>
<owl : DatatypeProperty rd f : about="http :// pur l . org /muto/ core#

taggingCreated">
<rd f : type rd f : r e s ou r c e="http ://www.w3 . org /2002/07/ owl#

Funct ionalProperty "/>
<rd f s : l a b e l xml : lang="en">tagg ing created </rd f s : l abe l >
<rd f s : comment xml : lang="en">Every tagg ing has exac t l y one

c r e a t i on date and time . The datatype o f t h i s property i s
xsd : dateTime ( in con t ra s t to i t s superproperty dcterms :

c r ea ted which has range r d f s : L i t e r a l ) .</ rd f s : comment>
<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#

Tagging"/>
<rd f s : range rd f : r e s ou r c e="http ://www.w3 . org /2001/XMLSchema#

dateTime"/>
<rd f s : subPropertyOf rd f : r e s ou r c e="http :// pur l . org /dc/ terms/

crea ted "/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : DatatypeProperty>
<owl : DatatypeProperty rd f : about="http :// pur l . org /muto/ core#

tagg ingModi f i ed ">
<rd f s : l a b e l xml : lang="en">tagg ing modif ied</rd f s : l abe l >
<rd f s : comment xml : lang="en">A tagg ing can have mul t ip l e

mod i f i c a t i on dates , as the number o f t imes a tagg ing can
be ed i t ed ( e . g . to add or remove tags ) i s t h e o r e t i c a l l y
un l imited . The datatype o f t h i s property i s xsd :

dateTime ( in con t ra s t to i t superproperty dcterms :
c r ea ted which has range r d f s : L i t e r a l ) .</ rd f s : comment>

<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#
Tagging"/>

<rd f s : range rd f : r e s ou r c e="http ://www.w3 . org /2001/XMLSchema#
dateTime"/>
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<rd f s : subPropertyOf rd f : r e s ou r c e="http :// pur l . org /dc/ terms/
modi f i ed "/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : DatatypeProperty>
<!−− Datatype p r op e r t i e s o f c l a s s muto : Tag −−>
<owl : DatatypeProperty rd f : about="http :// pur l . org /muto/ core#

tagCreated">
<rd f : type rd f : r e s ou r c e="http ://www.w3 . org /2002/07/ owl#

Funct ionalProperty "/>
<rd f s : l a b e l xml : lang="en">tag created </rd f s : l abe l >
<rd f s : comment xml : lang="en">The c r e a t i on date and time o f a

tag . This property can be omitted i f muto :
tagg ingCreated = muto : tagCreated ( i . e . in the common
case that a tag has been crea ted along with a tagging ,
not in a l a t e r ed i t o f the tagg ing ) . The datatype o f
t h i s property i s xsd : dateTime ( in con t ra s t to i t
superproperty dcterms : c r ea ted which has range r d f s :
L i t e r a l ) .</ rd f s : comment>

<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tag"/>
<rd f s : range rd f : r e s ou r c e="http ://www.w3 . org /2001/XMLSchema#

dateTime"/>
<rd f s : subPropertyOf rd f : r e s ou r c e="http :// pur l . org /dc/ terms/

crea ted "/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : DatatypeProperty>
<!−− Object p r op e r t i e s o f c l a s s muto : Tag −−>
<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#

tagMeaning">
<rd f s : l a b e l xml : lang="en">tag meaning</rd f s : l abe l >
<rd f s : comment xml : lang="en">The meaning o f a tag can be

expres sed by a l i n k to a wel l−de f ined r e sou r c e . This can
be any r e sou r c e that c l a r i f i e s the meaning o f the tag (

e . g . some DBpedia r e sou r c e ) .</ rd f s : comment>
<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tag"/>

<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/
core#"/>

</owl : ObjectProperty>
<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#

meaningOf">
<rd f s : l a b e l xml : lang="en">meaning of</rd f s : l abe l >
<rd f s : comment xml : lang="en">The number o f tags that can be

l i nked to one and the same meaning i s t h e o r e t i c a l l y
un l imited .</ rd f s : comment>

<rd f s : range rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tag"/>
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<owl : inver seOf rd f : r e s ou r c e="http :// pur l . org /muto/ core#
tagMeaning"/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : ObjectProperty>
<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#

autoMeaning">
<rd f s : l a b e l xml : lang="en">automatic tag meaning</rd f s : l abe l

>
<rd f s : comment xml : lang="en">This subproperty i n d i c a t e s that

the meaning o f a tag has been automat i ca l l y de f ined ( e .
g . by a tagg ing system ) , i . e . i t has not been de f ined by
a human being . The d e f au l t case i s d i sambiguat ion by

use r s v ia muto : tagMeaning .</ rd f s : comment>
<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tag"/>
<rd f s : subPropertyOf rd f : r e s ou r c e="http :// pur l . org /muto/ core

#tagMeaning"/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : ObjectProperty>
<owl : DatatypeProperty rd f : about="http :// pur l . org /muto/ core#

tagLabel ">
<rd f : type rd f : r e s ou r c e="http ://www.w3 . org /2002/07/ owl#

Funct ionalProperty "/>
<rd f s : l a b e l xml : lang="en">tag l abe l </rd f s : l abe l >
<rd f s : comment xml : lang="en">Every tag has exac t l y one l a b e l

( u sua l l y the one g iven by the user ) − otherwi se i t i s
not a tag . Addi t iona l l a b e l s can be de f ined in the
r e sou r c e that i s l i nked v ia muto : tagMeaning .</ rd f s :
comment>

<owl : v e r s i on In f o >Vers ion 1 . 0 : The subproperty r e l a t i o n to
r d f s : l a b e l has been removed f o r OWL DL conformance ( r d f s
: l a b e l i s an annotat ion property and one cannot d e f i n e
subprope r t i e s f o r annotat ion p r op e r t i e s in OWL DL) .</owl
: v e r s i on In f o >

<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tag"/>
<rd f s : range rd f : r e s ou r c e="http ://www.w3 . org /2000/01/ rdf−

schema#L i t e r a l "/>
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : DatatypeProperty>
<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#

nextTag">
<rd f : type rd f : r e s ou r c e="http ://www.w3 . org /2002/07/ owl#

Funct ionalProperty "/>
<rd f s : l a b e l xml : lang="en">next tag</rd f s : l abe l >
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<rd f s : comment xml : lang="en">This property i n d i c a t e s the tag
that f o l l ow s next in the l i s t o f tags . I t can be used

to de s c r i b e the order in which the tags have been
entered by the user .</ rd f s : comment>

<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tag"/>
<rd f s : range rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tag"/>
<owl : v e r s i on In f o >Vers ion 1 . 0 : E a r l i e r v e r s i on s o f MUTO

de f ined a datatype property muto : t agPos i t i on with
i n t e g e r va lue s which has some drawbacks compared to t h i s
s o l u t i o n .</owl : v e r s i on In f o >
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : ObjectProperty>
<owl : ObjectProperty rd f : about="http :// pur l . org /muto/ core#

previousTag">
<rd f : type rd f : r e s ou r c e="http ://www.w3 . org /2002/07/ owl#

Funct ionalProperty "/>
<rd f s : l a b e l xml : lang="en">prev ious tag</rd f s : l abe l >
<rd f s : comment xml : lang="en">This property i n d i c a t e s the tag

that i s preced ing in the l i s t o f tags . I t can be used
to de s c r i b e the order in which the tags have been
entered by the user .</ rd f s : comment>

<rd f s : domain rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tag"/>
<rd f s : range rd f : r e s ou r c e="http :// pur l . org /muto/ core#Tag"/>
<owl : inver seOf rd f : r e s ou r c e="http :// pur l . org /muto/ core#

nextTag"/>
<owl : v e r s i on In f o >Vers ion 1 . 0 : s e e muto : nextTag</owl :

v e r s i on In f o >
<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// pur l . org /muto/

core#"/>
</owl : ObjectProperty>

</rd f :RDF>

Listing C.1 — RDF/XML serialization of version 1.0 of the Modular
Unified Tagging Ontology (MUTO).
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