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1
Introduction

Nothing in biology makes sense except in the light of evolution.
—Theodosius Dobzhansky.

1.1 A brief history of evolutionary theory

The theory of evolution based on natural selection was originally proposed by Charles
Darwin and Alfred Russel Wallace (Fig. 1.1, who independently presented their results
to the Linnean Society of London in 1858. It was, however, in 1859 when Darwin’s
celebrated book On the Origin of Species became published. The theory of evolution,
as conceived by Darwin, was based on two principles: (1) individuals in a population
show a certain degree of variation—spontaneously originated during reproduction—
that can be at least partially inherited by their progeny; and (2) due to resource limi-
tations, organisms are engaged into a struggle for life, such that only a small fraction
of seeds, eggs or other kind of descendants survives to adulthood and leaves offspring.
Provided that some specific variations improve the ability of an individual to survive,
it follows that individuals carrying favourable variations will succeed in the struggle
for life and such variations will be preserved. It is the accumulation of small useful
variations what results in adaptation and, eventually, evolution. In Darwin’s words:

“I have called this principle, by which each slight variation, if useful, is
preserved, by the term of Natural Selection, in order to mark its relation to
man’s power of selection.” (Darwin 1859)
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Figure 1.1: Charles Darwin (left) and Alfred Russel Wallace (right). Both proposed
the theory of evolution through natural selection in 1858. Photographs were taken in
1869 and ca. 1880, respectively.

The multidisciplinary approaches Darwin took during the development of his the-
ory are remarkable: not only did he merge empirical observations with formal rea-
soning but also designed and performed experiments that gave support to some of his
hypotheses. For instance, when considering the possibility that plants be transported
across the sea and settle down in new continents he writes:

“Until I tried, with Mr. Berkeley’s aid, a few experiments, it was not even
known how far seeds could resist the injurious action of sea-water. To my
surprise I found that out of 87 kinds, 64 germinated after an immersion of
28 days, and a few survived an immersion of 137 days.”

Or, when discussing the high mortality in the struggle for existence:

“on a piece of ground three feet long and two wide [...] I marked all the
seedlings of our native weeds as they came up, and out of the 357 no less
than 295 were destroyed, chiefly by slugs and insects.”

A point that remained unsolved in Darwin’s works was that of the mechanisms
behind variation and inheritance. At his time, it was widely believed that the off-
spring characters were an average of those of their parents—the blending inheritance
hypothesis—, which would make preservation of useful variants hardly feasible. One
of the strongest advocates of this idea was Darwin’s first cousin Francis Galton, for
whom this averaging precluded the possibility of departing from the initial types, and
thus of generating new species through Natural Selection. This difficulty was not over-
come until the rediscovery of Mendel’s laws by Hugo de Vries, Carl Correns and Erich
von Tschermak at the turn of the century and the advent of population genetics in the
decade of 1920.

A brief digression must be done here to discuss two pioneer works on mathematical
biology that were carried out in the first quarter of the 20th century. On the one hand,
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Figure 1.2: Spirals in nature. The ubiquity of some geometrical structures in nature
was addressed by D’Arcy Thompson in his book On Growth and Form, hinting at the
importance of Mathematics and Physics in understanding Biology.

there was the publication of the book On Growth and Form by D’Arcy W. Thomp-
son in 1917. This singular book described multiple examples of parallelisms between
biological forms and mechanical properties and explored the degree to which differ-
ences in the form of related animals could be described by means of relatively simple
mathematical transformations (Fig. 1.2). D’Arcy argued that some morphological and
structural traits might be the result of physical laws and mechanics acting on organisms
rather than a product of natural selection. Somewhat, his work foresaw the influence
that mathematical tools and physical concepts—such as dynamical systems, reaction-
diffusion equations, and self-organization—would later have in Biology:

“And while I have sought to shew the naturalist how a few mathematical
concepts and dynamical principles may help and guide him, I have tried
to shew the mathematician a field for his labour—a field which few have
entered and no man has explored.” (Thompson 1917)

On the other hand, it is also worth to mention the works of Alfred J. Lotka and Vito
Volterra, who independently arrived in 1925 and 1926 to the Lotka-Volterra equations
for describing predator-prey interactions. There is no need to insist on the influence
that ecological models, many of them derived from those equations, have exerted on
many branches of Biology—ecology, epidemiology and microbiology, among others—
and also on further disciplines, such as economics.

Back to evolutionary theory, the decade of 1920 set the dawn of population ge-
netics. Population genetics is the discipline that studies the genetic composition of a
population and its change under the influence of evolutionary processes. It was founded
on the works of Ronald A. Fisher, John B. S. Haldane, and Sewall Wright, who com-
bined Mendelian genetics, statistical analysis, and mathematical models; and showed
that inheritance according to Mendel’s laws is consistent with natural selection and
gradual evolution (Haldane 1924; Fisher 1930). In such a way, they took the first
step in producing a unified theory of how evolution works. The modern evolution-
ary synthesis crystallised between 1936 and 1947 and still remains, to a large extent,
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the current paradigm in evolutionary biology. Major figures in the development of
the modern synthesis were zoologist Julian Huxley (who coined the term), geneticist
Theodosius Dobzhansky, taxonomist Ernst Mayr, paleontologist George G. Simpson,
zoologist Bernhard Rensch and botanist G. Ledyard Stebbins.

Modern synthesis explains evolution as the result of changes in the genetic compo-
sition of a population along successive generations. The course of evolution is ruled by
the interplay of four main processes. First, mutation, which is the main source of ge-
netic variation in a population. Mutation is usually the consequence of errors in genome
replication and gives rise to new alleles (genetic variants). The particular set of alleles
that one individual possesses (out of all possible allele combinations) is what defines
its genotype. Second, natural selection, which consists of the differential survival and
reproduction of individuals with different characteristics. Selection acts on the phe-
notype, which is the observable manifestation of the genotype—i.e., an abstraction of
the characteristics displayed by an individual with a given genotype. The quantitative
effect that a phenotype exerts on survival and reproduction defines the fitness1 of such
a phenotype. Third, genetic drift, which is the stochastic variation in the composition
of a population due to random sampling along generations. Drift is specially relevant
in small populations or when population bottlenecks occur. Fourth and finally, gene
flow or transfer, which accounts for genetic exchange between different populations
(for instance, due to migration).

Population genetics provides a collection of models that can be used to predict,
under different circumstances, the probability that a new allele, produced through mu-
tation in a single individual, spreads to the whole population and reaches fixation. In a
converse manner, it also allows to calculate the probability that an old allele becomes
extinct. In short, the fixation probability for a new allele is larger the higher the fitness
associated to its phenotype, although random drift in small populations may counteract
fitness and lead to fixation of slightly detrimental alleles. Classical population genetics
mostly deals with homogeneous populations, for which the concept of fixation makes
sense—each time a mutation occurs, the new allele either disappears or gets fixed be-
fore further mutations come about. In contrast, if the rate at which new mutations are
produced is sufficiently high, populations become heterogeneous and multiple genetic
variants coexist at any time. The study of evolution on such heterogeneous populations
requires a wider framework—the quasispecies theory—that was introduced by Eigen
and Schuster (1979). Due to its relevance to the study of viral evolution, an ampler
discussion on quasispecies theory is carried out later in this chapter.

The fact that mutations take place at the genotype level while selection acts on the
phenotype has deep implications for evolutionary dynamics. That is because there is no
straightforward correspondence between genotype and phenotype—actually, the gen-
eral case is that many genotypes produce the same phenotype. As a result, the fitness
effects produced by mutations greatly vary. Indeed, as Motoo Kimura hypothesized af-
ter studying the aminoacidic sequences of proteins that became available in the decade
of 1960, it may be the case that most mutations are almost neutral to natural selection

1Here, as in the rest of the text, words in italics denote key terms whose definitions appear in the Glossary.
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(Kimura 1968). According to the Neutral Theory, the vast majority of evolutionary
changes at the molecular level are due to random drift of selectively neutral mutants.
Even though Kimura’s neutral model only referred to molecular evolution, the idea that
neutral, non-adaptive processes may play a more relevant role than previously thought
was later extended to the evolution of organismal traits (Gould and Lewontin 1979)
and, more recently, to the structure of ecosystems (Hubbell 2001), genomes (Lynch and
Conery 2003), and protein interaction networks (Fernández and Lynch 2011). Nowa-
days, bridging the gap between genotype and phenotype and determining the degree at
which selective and neutral processes contribute to evolutionary change remain central
problems in evolutionary biology (Wagner 2008; Wagner 2011; Manrubia 2012).

1.2 Viruses, quasispecies and genome structure

1.2.1 Viral biology

Viruses are among the simplest biological entities in nature. They display all kinds
of complex adaptive behavior and have found a large number of evolutionary solu-
tions that turn them into a paradigmatic model to study evolution at the molecular and
population levels.

From a structural point of view, viruses are generally composed of a genome—
one or several molecules of either DNA or RNA—packed into a proteic or glicoproteic
coat—the viral capsid. In some viruses there is also an envelope of lipids that surrounds
the capsid, and a few enzymes that accompany the genetic material. Free viral particles
are called virions and can survive in the environment for a limited period of time before
degradation.

Although there are many kinds of viruses and the details differ among them, it
is possible to extract some generalities of viral biology (Wagner and Hewlett 2004).
Above all, viruses must infect cells in order to reproduce. The viral cycle, depicted in
Fig. 1.3, starts when a virion adheres to a cell and gets into it2. The viral genome is then
released from the capsid. The next step varies according to the virus, but it basically
implies the replication of the viral genome and the expression of viral genes. In this
phase, the virus “hijacks” the cell’s machinery for its own benefit. The expression of
viral genes implies the translation of genomic information into viral proteins, some of
which will constitute the capsids. On the other hand, genome replication gives rise to a
high number of genome copies. The viral cycle ends with the packing of genomes into
capsids and the release of the new virions out of the cell.

From an epidemiological point of view, it is usual to characterize viruses according
to two basic traits: infectivity and replicative ability. The former refers to the ability of
the virus to enter new cells and carry out productive viral cycles; the latter is related to
the number of genome copies (or alternatively, new virions) produced at each infection
event.

2Note, however, that some viruses directly inject their genetic material into the cell, the capsid remaining
outside.
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Figure 1.3: Schematic of the viral cycle. Hexagons represent viral capsids; red scrawls
are viral genomes (packed into capsids or unpacked), while those coloured in orange
and pink correspond to mutant genomes.

There are some molecular aspects of viral replication that are worth to delve into.
First of all, when viral genomes are replicated some errors can be introduced, so that the
resulting genomic sequences are not exact copies of the original. As already stated in
the previous section, such errors are termed mutations and the rate at which they appear
is the mutation rate (in this context the term error rate can be used with a similar
meaning). Mutations occur from time to time in all living beings, but the mutation
rate is especially high in viruses with RNA genomes. The reason is that proofreading
and repair mechanisms—that account for fidelity in the copy of DNA genomes—do
not work during replication of RNA (Steinhauer et al. 1992; Ferrer-Orta et al. 2006;
Friedberg et al. 2006). The mutation rates in RNA viruses range from 10−3 to 10−5

mutations introduced per nucleotide copied (Batschelet et al. 1976; Drake and Holland
1999; Sanjuán et al. 2010). That roughly corresponds to one mutation per genome and
cell infection cycle. In comparison, it decreases to circa 10−2 mutations per genome in
the case of DNA viruses and prokaryotes, with the mutation rate per nucleotide ranging
from 10−6 to 10−10. As we will see later, evolutionary dynamics of RNA viruses is
strongly influenced by their high mutation rates.

Viral genomes code for a number of proteins with different functions: forming the
capsid, recognising and adhering to the host cell, replicating the viral genome, recruit-
ing the cell machinery required for gene expression, and mediating the assembly of
virions, among others. In standard conditions, all proteins are required for a successful
infection cycle to be completed. Viable genomes are those able to produce the whole
set of functional proteins. In contrast, mutant genomes that produce non-functional
proteins and are unable to complete the viral cycle by themselves are termed defective
genomes. A key aspect of viral biology is that some proteins can be shared by viral
genomes inside the same cell—it is said that proteins act in trans. As a result of trans-
acting interactions, some defective genomes can still survive if they are accompanied
by viable ones. This phenomenon is called complementation.

í 
Viral offspring Repllcatlon /t:\. 

Infective viral cycles ~ @ @ @ 
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1.2.2 Quasispecies theory

As already mentioned, classical population genetics deals with a scenario where muta-
tions scarcely appear in the population. It assumes that once a genome mutates there
is enough time for the mutation to become lost or fixed before new mutations occur.
From a formal point of view, that requires the processes of mutation and fixation to
take place at different time scales. On the one hand, the time scale for the occurrence
of new mutations is equal to the mutation rate (µ). On the other hand, neutral mu-
tations get fixed in a time scale equal to the inverse of the effective population size3

(Ne, measured in number of generations). Thus, classical population genetics applies
in situations where µNe � 1. If the error rate is large (µ� 1/Ne) new mutations ap-
pear before the preceding ones reach fixation. The result is a heterogeneous population
comprising multiple, coexisting mutants.

The quasispecies theory of molecular evolution was proposed to explain self-organ-
ization and adaptability of primitive RNA or RNA-like genetic elements—also termed
replicators or replicons—affected by error-prone template copying, and thus endowed
with a huge population diversity (Eigen 1971; Eigen and Schuster 1979). The evolu-
tionary dynamics of a quasispecies is determined by the interplay between mutation and
selection. Let us identify replicons with RNA sequences, then mutations occur through
errors made in the process of copying already existing sequences. Selection arises be-
cause different sequences replicate at different rates—slow-replicating sequences tend
to disappear in favor of sequences that replicate faster. The key finding of quasispecies
theory is that, in the regime of heterogeneous populations, selection does not lead to the
final loss of all but the fastest replicating sequence—termed the master sequence. The
reason is that mutations affecting the master sequence continuously replenish slower
replicating ones. At equilibrium, mutation and selection balance and shape the compo-
sition of the population, which usually consists of an heterogeneous repertoire of fast
and slow replicating sequences.

One of the main predictions of quasispecies theory is the existence of an error
threshold above which the population cannot maintain its identity (Eigen 1971; Swetina
and Schuster 1982; Schuster and Stadler 1994). The error threshold accounts for a con-
dition where the selective advantage of the master sequence is unable to compensate
for its continuous losses via mutations. As the mutation rate crosses the threshold, the
master sequence is lost from the population, which wanders in the sequence space as an
unstructured cloud of mutants (Fig. 1.4). This situation—termed error catastrophe—is
equated with the extinction of the quasispecies, understood as the disintegration of its
genetic information content.

The initial quasispecies theory made strong assumptions, that conditioned most
quasispecies models and the design of many experments based on them. For instance,
a one-to-one correspondence between genotype and phenotype was assumed, as well
as the absence of compensatory or beneficial mutations. Such assumptions proved
inadequate when contrasting quasispecies models with empirical observations on the

3The effective population size is a measure of the number of individuals that contribute with their off-
spring to the next generation
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Figure 1.4: Transition to error catastrophe in quasispecies theory. The sequence space
is represented as a bidimensional grid, with the master sequence corresponding to the
position in red. All mutant sequences have the same fitness, which is smaller than
the fitness of the master sequence. As the error rate increases, the relative abun-
dance of the master sequence decreases as the population spreads on the sequence
space and forms a mutant cloud. Above the error threshold, the master sequence disap-
pears and the mutant cloud dissolves. Modified from Schuster and Stadler (1994) and
http://www.tbi.univie.ac.at/ pks.
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evolution of RNA viruses. The theory has been subsequently modified to include back
mutations and a degenerate genotype-phenotype correspondence, so that models now
account for the richer and often counterintuitive behavior of natural viruses (Manrubia
et al. 2010). An ever increasing dialogue between experimental and theoretical studies
has turned to be essential is fostering these advances.

1.2.3 Evolutionary dynamics of viral quasispecies

Quasispecies theory has exerted great influence in virology because of the observation
that RNA viruses replicate in their hosts as complex ensembles of mutant genomes
(Domingo et al. 1978). Formation of such mutant distributions—also termed mutant
spectra or clouds—is fuelled by the high mutation rates of RNA genome replication.
Furthermore, the population structure of RNA viruses resembles that of the primitive
replicons as postulated by quasispecies theory (Domingo 2006; Lauring and Andino
2010; Domingo et al. 2012). The term viral quasispecies was therefore coined to
describe the complex structure and organization of viral populations.

The initial quasispecies theory emphasized that the population as a whole, rather
than individual genetic elements, was the true target of selection (Eigen and Schuster
1979). Within a quasispecies, genomes are mutationally coupled, such that the abun-
dance of a given variant is not only a function of its replicative ability in isolation but
also depends on how often it is produced through mutation of neighbouring genotypes.
For many years, the implications of a quasispecies organization were not tested with
viruses, fundamentally because of the lack of suitable experimental designs. However
it is now well established experimentally and through theoretical models that interfer-
ence and complementation occur within mutant spectra and influence viral performance
(reviewed in Domingo, Sheldon, and Perales 2012). Interaction among genomes in the
viral quasispecies is at the basis of phenomena such as lethal defection and genome
segmentation, described in chapters 2 and 4, respectively.

RNA viruses count amongst the most plastic organisms on Earth: the huge genetic
diversity whithin their quasispecies allows them to adapt to new environmental condi-
tions in relatively short time spans. Viral evolutionary dynamics is thus characterized
by fast responses to changes in the selective pressures, which are strongly dependent
on the environmental conditions. For instance, production of defective (not necessarily
interferring) mutants may either lead to stochastic extinction or be inocuous for the
virus, depending on the external constraints (the former in persistent infections, the
latter in lytic ones). Even more, if such defective mutants appear in a context of lytic
infections at a high multiplicity of infection4 and are capable of complementation, they
may give rise to a new version of the virus with a segmented genome. All these cases
will be thoroughly analysed in the following chapters. We will conclude that a care-
ful assessment of the selective pressures and environmental constraints acting on the
virus is essential when it comes to interpret the evolutionary oucomes observed in the
laboratory or in the wild.

4The multiplicity of infection (MOI) is the average number of viral particles infecting the same cell, see
Chapter 4
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The enormous adaptability and fast evolution of RNA viruses is a major obstacle
for the design of successful therapeutic strategies able to control their proliferation and
propagation (Richman 1996; Domingo et al. 1997). Drugs exert constant selection
pressures on viral populations and, as such, the question is not whether a resistant form
of the virus will appear, but when it will occur. In the search for novel antiviral strate-
gies, the idea of an error threshold derived from quasispecies theory has suggested that
virus-specific mutagenic agents can drive viral populations into extinction. Such a phe-
nomenon, that could be used to control viral infections, is known as lethal mutagenesis
(Eigen 2002; Biebricher and Eigen 2005; Domingo et al. 2005). In this respect, ex-
periments with a variety of RNA viruses—HIV and hepatitis C, among others—have
confirmed that mutageninc drugs inflict an adverse effect on viral production (Loeb
et al. 1999; Crotty et al. 2001; Graci and Cameron 2004; Anderson et al. 2004). It
must be pointed out, however, that the mechanism by which an excess of mutations
leads to the loss of viral infectivity is probably different from that postulated to occur
during the transition to error catastrophe in simple replicons. Actually, viral popula-
tions include multiple viable variants with different fitness values, and the loss of the
fittest—which can be regarded as the equivalent to the loss of superiority of the master
sequence—need not imply elimination of other components of the mutant spectrum
(Manrubia et al. 2010). Mutagen-induced viral extinction presumably involves di-
verse pathways that become manifest at different mutagen doses (e.g. competition and
interference with defective mutants, observed at moderate mutation rates). A deeper
discussion on the mechanisms by which mutagens cause viral extinction is developed
in Chapter 2. The implications that derive from the viral quasispecies concept entail
great clinical relevance, since they can be applied to viruses such as HIV (Hinkley et al.
2011; Woo and Reifman 2012), influenza (Koelle et al. 2006), hepatitis C (Jardim et al.
2013) and poliovirus (Lauring and Andino 2011)—the causal agent of poliomyelitis.

A remarkable aspect of viral quasispecies is that population and evolutionary dy-
namics take place together, within a time scale that can be captured in laboratory ex-
periments. Thus, it is possible to see in “real time” how the viral population evolves
and adapts to changing environments. A large fraction of this thesis deals, indeed, with
the theoretical interpretation of phenomena that have been observed for the first time
in experiments of viral evolution. It can be argued that evolutionary theory has been
historically quite often decoupled from observation, be it due to a limitation in the data,
to technical restrictions or to the interference with previously unknown processes. Our
lack of direct experience with natural selection—which usually acts at time scales that
we cannot probe—impairs our intuition for evolutionary processes. For this reason, the
continuous dialogue between theory and experiment is a must in our way to developing
a reliable evolutionary theory.

1.2.4 Evolution of genomes: neutrality or selection?

As already sketched when introducing viruses, genomes show a large structural diver-
sity in different organisms. At the whole genome scale, the number of molecules—
chromosomes—that constitute the genome, as well as their size and chemical nature,
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vary: eukaryotes possess DNA genomes that are segmented in a set of lineal chro-
mosomes, their total length ranging from 107 to 1011 base pairs; prokaryotes ususally
have a single circular DNA chromosome—although there are exceptions—with a size
of 106-107 base pairs, together with smaller pieces of circular DNA termed plasmids;
viruses display the largest diversity in what concerns genomes, which can be made of
either DNA of RNA, single- or double-stranded, in a single molecule or segmented into
several fragments. Such a diversity may partly be the result of the multiple origins that
viruses may have had (Forterre 2006; Koonin et al. 2006; Wessner 2010). In contrast,
the various degrees of genome segmentation may reveal different evolutionary strate-
gies adopted by organisms in connection with a necessity of exchanging genes. For
instance, the evolutionary implications of a segmented genome in viruses have been
largely discussed as an analogy to sexual reproduction, i.e. a mechanism that promotes
genetic exchange through segment recombination (Chao 1991). The case of multipar-
tite viruses, presented in Chapter 4, is other example where selective pressures may
have played a role in shaping genome structure.

The role of natural selection in determining the size of the genome is a classical
problem in the field of genome evolution. The traditional view stated that, provided that
small genomes can be replicated at a smaller cost, selection would positively favour ge-
nomes as reduced as possible. Two works challenged this view around a decade ago:
first, Mira et al. (2001) proposed that genome reduction could be the natural outcome
of prokaryotic genomes evolving under a deletional bias, with no need of positive selec-
tion favouring it; next, Lynch and Conery (2003) compared prokaryotic and eukaryotic
genomes with their characteristic population sizes and came to the conclusion that ge-
nome size in prokaryotes is controlled by purifying selection, while the larger size of
eukaryotic genomes results from the lack of it—i.e. genome complexity in eukaryotes
is a non-selected trait.

The structure of genomes also varies at a smaller scale. Genomes are composed of a
series of genomic elements—genes, introns, transposons, and so on—and their number
and distribution also differs notably among genomes. A current matter of research
deals with determining whether genome composition at this level is shaped by natural
selection or it is the result of neutral processes (Koonin 2011). A series of universal
behaviours in the dependencies and distribution of several genomic features suggests
the importance of mathematical and physical processes— not necessarily selection—
behind global aspects of genome evolution. In contrast, selection can be detected in
some particular cases, such as the frequency of specific genes (Lobkobsky et al. 2013)
or the abundance of group II introns in bacteria (Leclercq and Cordaux 1997). We
discuss in Chapter 5 the case of transposable elements, a class of genomic elements
able to move within and between genomes, formerly considered a paradigm of selfish
DNA and known to contribute to genome plasticity and evolvability.

Finally, an additional factor that can produce genomic changes is the interaction be-
tween parasites and hosts. Some viruses can insert themselves into their host’s genome
or transport pieces of DNA from one to another host. Furthermore, son e organisms
can modify their genomes in response to parasites. This is the case of prokaryotes har-
bouring the CRISPR-Cas antiviral defense system(Koonin and Makarova 2009). Such
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a system incorporates small pieces of viral DNA—spacers—to the host genome, and
uses them in order to recognize, target and destroy the virus in future infections (van
der Oost et al. 2009). We will explore the influence of parasite-host interactions on
prokaryotic genomes via the CRISPR-Cas system in Chapter 6.

1.3 Mathematical modelling of evolutionary processes

There is a great variety of approaches to model biological processes: depending on the
desired degree of detail, the objective pursued with the model, the available information
and many other factors, different kinds of models can be built. With no aim of making
a comprehensive introduction to this topic, we will introduce here some aspects of the
models that we will use in this thesis. A key point about them is that we generally
intend to understand a phenomenon rather than make accurate prediction. As a result,
we will mostly deal with simple, easy to interpret models.

All the models presented in this work are phenomenological models, in the sense
that they do not attempt to explain the observed phenomena from its very primary
causes—genotypes, molecular interactions, etc—but from a higher-level starting point.
Such a starting point depends on the desired degree of detail desired in each particu-
lar case. When studying evolution, phenomenological models are interesting because
they work directly on the phenotype and do not require an explicit exploration of the
genotype-phenotype relation, which is often unknown.

Many of the models discussed in this thesis are also toy models, i.e. very simple
models aimed to reproduce an observed phenomenon with as few parameters and pro-
cesses as possible. Toy models are not only useful as a first approximation to a problem,
but also when the interest lies in capturing general features of a system while allowing
for an intuitive interpretation of the phenomenon. Thus, these models often teach us
that simple mechanisms may be behind apparently complex phenomenology. From a
conceptual point of view, simple models are also appealing since they frequently can be
analytically solved. Analytical solutions make it easier to explore the parameter space
and detect alternative behaviors.

Capturing the subtleties of a phenomenon sometimes requires building more real-
istic—and complicated—models. For instance, we will see in Chapter 6 how the in-
troduction of host-virus ecological dynamics in a model of antiviral immunity results
in an easier explanation of some features observed in nature. More realistic models
require a more detailed knowledge of the underlying biological processes, what limits
the degree of detail that can be achieved without going into extensive hypothetical as-
sumptions. At odds with toy models, realistic ones must be numerically simulated and
their parameter space extensively explored (unless good estimates for the parameters
are available a priori). It is worth to mention that making a model more complicated
does not always result in a richer phenomenology; sometimes, the same qualitative be-
havior can be observed with simple models, with the advantage that they allow for an
easier understanding of the phenomenon.
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From a more technical point of view, simple models describing the evolution of
a population in time can be expressed in terms of either differential or discrete time
equations. Differential equations are appealing since they can be solved by simpler
mathematical procedures. However, discrete time equations may be preferable when
it comes to compare models with experimental data. Let us show that by taking the
example of viral replication, which occurs through discrete replication rounds. Viral
replication can be characterized by two key values: the number of genomes produced
from each parent genome and the mutation probability per replication round. If repli-
cation rounds are taken as the time unit, it is straightforward to identify the parameters
of a discrete time model with the aforementioned biological quantities.

We will show in Chapter 3 how a simple model can be used to make predictions on
the efficacy of antiviral therapies. To a certain extent, it is surprising and unusual that
models with so few parameters can make predictions, and the merit should be proba-
bly given to the relative simplicity of the viral system in the experimental conditions
assayed. However, a note of caution should be stated about the limitations of predic-
tive models. Mathematical models aimed at yielding specific predictions need to be
formulated in conjunction with empirical results and should focus on a single or few
observations to improve their predicting power (Manrubia 2012). Moreover, models
tailored to a particular population and environment necessarily suffer from restricted
applicability and should only be applied to other experimental systems (a different
virus, for instance) once the specific features of the new system have been formally
taken into account.

1.4 Outline of the thesis

This thesis deals with the mathematical modeling of evolutionary processes that take
place in heterogeneous populations. Its leitmotif is the response of complex ensembles
of replicating entities to multiple (and often opposite) selection pressures. Even though
the specific problems addressed in different chapters belong to different organizational
levels—genome, population, and community—all of them can be conceptualized as the
evolution of a heterogeneous population—let it be a population of genomic elements,
viruses, or prokaryotic hosts and phages—facing a complex environment. As a result,
the mathematical tools required for their study are quite similar. In contrast, the strate-
gies that each population has discovered to perpetuate vary according to the different
evolutionary challenges and environmental constraints that the population experiences.

Along this thesis, there has been a special interest on connecting theoretical mod-
els with experimental results. To that end, most of the work presented here has been
motivated either by laboratory findings or by the bioinformatic analysis of sequenced
genomes. We strongly believe that such a multidisciplinary approach is necessary in
order to improve our knowledge on how evolution works. Moreover, experiments are a
must when it comes to propose antiviral strategies based on theoretical predictions, as
we do in Chapter 3.
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This thesis is structured in two main blocks. The first one focuses on studying in-
stances of viral evolution under the action of mutagenic drugs, paying particular atten-
tion to their possible application to the development of novel antiviral therapies. This
block comprises chapters 2 and 3; the former dicussing the phenomenon of lethal defec-
tion and stochastic viral extinction; the latter dealing with the optimal way to combine
mutagens and inhibitors in multidrug antiviral treatments. The second block is devoted
to the study of the evolutionary forces underlying genome structure. In chapter 4, we
propose a mechanism through which multipartite viruses could have originated. Inter-
estingly, the pathway leading to genome segmentation shares some steps with lethal
defection, but each outcome is reached at specific environmental conditions. Chapter 5
analyses the abundance distributions of transposable elements in prokaryotic genomes,
with the aim of determining the key processes involved in their spreading. We explic-
itly explore the hypothesis that transposable elements follow a neutral dynamics, with a
negligible fitness cost for their host genomes. A higher level of organization is studied
in Chapter 6, where an agent based coevolutionary model based on Lotka-Volterra in-
teractions is used to investigate the evolutionary dynamics of the prokaryotic antiviral
immunity system CRISPR-Cas. This chapter also examines the environmental factors
that are responsible for its maintenance or loss. Finally, Chapter 7 summarizes the main
results obtained along the thesis and sketches possible lines of work based on them.
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2
Stochastic extinction of viral populations
mediated by defectors

2.1 Mutagen induced viral extinction: from lethal mutagenesis to
lethal defection

As we saw in the Introduction, populations of RNA viruses evolve at high mutation
rates and form heterogeneous groups—quasispecies—that can adapt to environmental
changes with relative easiness. The theory of quasispecies (Eigen 1971), a first attempt
to formalize the collective behavior of such populations, predicts the existence of an
error threshold—a critical value of the mutation rate—above which genetic information
can no more be conserved. With the help of mutagenic drugs it would be possible to
increase the viral mutation rate and push the virus beyond the error threshold, thus
provoking its extinction. This idea is the foundation of lethal mutagenesis, an antiviral
strategy that aims to kill the virus by inducing an excess of lethal mutations.

2.1.1 Life at the edge of the error catastrophe?

The feasability of lethal mutagenesis as an antiviral strategy relies on the premise that
natural mutation rates are not too far from the critical threshold, so that small doses of
a mutagen are capable of producing viral extinction. Quasispecies theory estimates the
value of the critical mutation rate as the inverse of the genome length. Interestingly,
studies with RNA viruses seem to confirm that natural mutation rates are close to that
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value (Drake and Holland 1999). The evolutionary explanation of this fact argues that
near the error threshold information is still preserved, while diversity (assumed to de-
termine adaptability) is maximal. Hence, RNA viruses living at the edge of the error
catastrophe, it can be expected that little increases in the mutation rate be lethal for the
virus.

At odds with those theoretical expectations, experimental observations in viruses
(Crotty et al. 2001) and ribozymes (Kun et al. 2005) reveal that they can withstand
mutation rates 3 to 8 times above their natural ones and still maintain their viability.
Such a disagreement may arise from the fact that the original quasispecies theory fo-
cuses on the genotype—the genetic sequence—while the survival of the virus depends
on the phenotype—the true object of selection. There is a very large number of po-
tencial genotypes expressing the same phenotype, therefore not every mutation affects
the phenotype. In consequence, the critical mutation rate takes different values at the
genotypic and phenotypic levels. An example of the large genotype-phenotype de-
generacy is provided by the average number Mn of RNA sequences—genotypes—of
length n whose folded state is compatible with a given secondary structure—a proxy
for their phenotype: Mn = 1.402n3/21.748n (Stein and Waterman 1978). More re-
alistic models of quasispecies distinguishing between genotype and phenotype predict
an error threshold at mutation rates several-fold higher than those expected only from
considerations on the genotype (Takeuchi et al. 2005; Saakian and Hu 2006). This
hints at the possibility that natural quasispecies are not that close to the error threshold.
It has been suggested, instead, that the natural mutation rate might result from a pro-
cess that minimizes adaptability time, the latter emerging from a compromise between
minimizing search time in the genome space –this occurs at high mutation rates—and
obtaining a rapid fixation of advantageous mutants—this takes place at low mutation
rates (Stich et al. 2007). As viruses do not live at the edge of the error catastrophe,
lethal mutagenesis requires high doses of mutagenic drugs.

2.1.2 Lethal mutagenesis: Error catastrophe or mutational meltdown?

Though increased mutagenesis is a robust experimental way to produce the extinction
of a viral population, a current matter of concern is whether extinction truly occurs
through crossing an error threshold (Bull et al. 2005; Wilke 2005; Bull et al. 2007;
Takeuchi and Hogeweg 2007; Manrubia et al. 2010), as postulated by classical qua-
sispecies theory. A different form of extinction is mutational meltdown, where all
genotypes in the quasispecies disappear simultaneously. At present, this seems to be
the mechanism that better describes experimental observations of viral extinction under
a strong increase in the mutation rate.

Let us illustrate those two extinction mechanisms with a simple example. Consider
a quasispecies formed by two phenotypes characterized by replicating at rates σ1 =
σ > 1 and σ2 = 1. At time t, each type is represented by ν1(t) and ν2(t) individuals,
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whose abundances evolve according to

ν1(t+ 1) = σ(1− µ)ν1(t) + µ′ν2(t)

ν2(t+ 1) = (1− µ′)ν2(t) + σµν1(t)− πν2(t) . (2.1)

Faster replicators mutate to lower replicators at a rate µ, while backward or compen-
satory mutations occur at a rate µ′ < µ. Slower replicators can be hit by lethal muta-
tions at a rate π. The error threshold is by definition the point where the high-fitness
class is lost from the population while low-fitness classes are maintained. According
to the model in Eq. (2.1), this would happen when ν1(t → ∞) = ν∗1 becomes zero,
while ν∗2 6= 0. It can be easily shown that both populations maintain positive values
for any µ′ 6= 0, irrespectively of the initial condition: There is no extinction threshold
if the class of fast replicators can be regenerated by the slower class. For µ′ = 0, the
extinction threshold occurs at σ(1 − µ) ≤ (1 − π). Note that it always exists in the
absence of lethal mutations while, for π ≥ µ, σ cannot simultaneously fulfill the pre-
vious inequality and be larger than one. The most relevant result is that the presence
of backward mutations, unavoidable in any model describing the phenotype (Manrubia
et al. 2003; Takeuchi et al. 2005), precludes the existence of an error threshold.

The mutational meltdown takes place when the population cannot replicate fast
enough to sustain itself, and both classes disappear simultaneously. Mathematically,
this happens when the largest eigenvalue of the matrix describing the dynamics of the
system becomes smaller than one, meaning that the average number of offspring is
less than one per parent individual. In the previous example, its value can be exactly
calculated. To first order in µ′, mutational meltdown occurs when

σ(1− µ) +
µσ

σ + π − 1− µσ
µ′ < 1 . (2.2)

At odds with extinction through an error threshold, mutational meltdown seems to be
a generic mechanism through which viral populations can undergo extinction.

2.1.3 From lethal mutagenesis to lethal defection

There might be still other mechanisms behind the loss of viability of viral populations.
For instance, it has been reported that mild increases in the mutation rate—smaller
than those required for lethal mutagenesis—can cause a loss of infectivity in viruses
under certain circumstantces. Grande-Pérez et al. (2005)performed experiments dur-
ing which persistent infections of lymphocytic choriomeningitis virus (LCMV) were
treated with a small amount of mutagen. Though the replicative ability of the virus
inside cells was not affected, the virus eventually lost its ability to produce infective
particles. As a result, the infection could no more propagate to new cells and came
to an end (see Fig. 2.1). The fact that this phenomenon was observed in persistent in-
fections is not accesory, but it provides some clues about the underlying mechanisms.
In a persistent infection, intracellular selection for higher replication rates is acting all
the time. However, viral particles are slowly released to the external medium and the
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Figure 2.1: Experimental observations support lethal defection. Absolute number of
RNA molecules and infective virions inside cells persistently infected with LCMV and
treated with 100µg/ml of the mutagen 5-fluorouracil. After about 90 hours of infection,
the cells cease to produce infective virions, though RNA replication is not impaired
(Grande-Pérez et al. 2005).

ability of the virus to infect new cells is not selected for. This situation is remarkably
different from lytic infections, where release of viral particles to the medium is a fast
step that implies breaking the cell. In the latter case, selection for replicative ability is
naturally coupled to selection for infectivity.

The extinction of infectivity in persistent infections of LCMV cannot be under-
stood in the framework of present quasispecies theory. It requires, instead, to explicitly
consider infectivity and replicative ability as two separate (decoupled) traits contribut-
ing to phenotype. The molecular mechanisms behind the decoupling of traits can be
summarized as follows. The replicative ability of a genome is related to its capacity
to bind to and be copied by replication enzymes (polymerases). This depends strictly
on the sequence of the genome. Unavoidable mutations in the copy process may affect
the binding and copying of a sequence. On the other hand, infectivity depends on the
performance of proteins codified by that same genome. Hence, changes in infective
ability are conditional on the genome experiencing a mutation, though not all muta-
tions have an effect in proteins, and thus only a fraction of those will affect infectivity.
The key issue is that, in a persistent infection, replicative ability and infectivity evolve
under different selective pressures: genomes able to replicate compete inside each cell,
while infectivity behaves as a neutral trait. A neutral trait, by definition, is not useful
in the current environment and thus can accumulate random mutations. Those muta-
tions may result in a loss of viability in the long run. It was conjectured (Grande-Pérez
et al. 2005) that the role of the mutagen is to enhance the appearance of a class of
defective mutants, able to replicate but unable to infect susceptible cells. This parasitic
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subclass eventually invades the cell and induces the extinction of the whole population.
Hence, this new pathway to viral extinction, that takes place at low mutagen doses and
is mediated by defective mutants, was termed lethal defection.

2.1.4 Towards a more realistic model of persistent viral infections

A step forward towards modelling real systems is to consider that phenotype is a multi-
trait feature that can be only rarely reduced to a single variable. Actually, there are
abundant examples in the literature where two phenotypic traits need to be considered
in order to appropriately describe the evolution and adaptation of heterogeneous pop-
ulations. Among them, growth rate and yield (Novak et al. 2006), robustness and
evolvability (Lenski et al. 2006; Aguirre et al. 2009), or virulence and replicative abil-
ity in competition assays (Herrera et al. 2007) have been pondered as characteristics
that simultaneously affect the survival ability of a viral population. Motivated by the
experiment of extinction of infectivity in LCMV, we here introduce a model for the
evolution of a population whose individuals are characterized by two traits subject to
positive and neutral selective pressures, respectively.

2.2 Model of a quasispecies with a two-traits phenotype

We consider a quasispecies formed by four different classes. Fast replicators have an
average of R offspring per replication cycle; slow replicators have r. Either type can
take a viable or a defective form. We assume that viable forms maintain the integrity
of their genomes and correctly code for the proteins that permit replication and infec-
tion. Thus, replication of either type is only possible if individuals of the viable type
are present. Defective forms can only replicate in the presence of an individual of
the viable type. The four types and the corresponding transition rates are depicted in
Fig. 2.2. The replicative ability decreases (increases) with probability p (q). Changes
in this trait fix new mutations that can affect viability. With probability w, an indi-
vidual mutating to the class of slow replicators can simultaneously lose its viability;
with the same probability, viability is recovered conditional on experiencing a muta-
tion increasing the replicative ability. The model includes lethal mutations with rate p
affecting slowly replicating individuals. The rates p, q, and w, actually stem from a
microscopic mutation rate characteristic of each virus. They can be treated as constant
on the average for a given genome (i.e. population, species, or organism). Dynam-
ics proceeds through discrete generations and the population size N is constant. The
matrix M characterizing the mean-field dynamics of the system reads

M =


R(1− p) q 0 qw
Rp(1− w) 1− p− q 0 0

0 0 R(1− p) q(1− w)
Rpw 0 Rp 1− p− q

 (2.3)

We set r = 1 without loss of generality, thus fixing the time scale. Let n(g) =
{nV (g), nv(g), nD(g), nd(g)} be the vector describing the evolution of the fraction of
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Figure 2.2: Schematic representation of the four types forming the quasispecies. Per-
mitted transitions between types are indicated as arrows, with their corresponding rates.

individuals in each type. The composition of the population evolves according to the
following equation:

n(g + 1) = α(g)Mn(g)/[α(g)λ] , (2.4)

where α(g) = nV (g)+nv(g) is the fraction of viable individuals at generation g, and λ
is the largest eigenvalue of M. As initial condition we assume n(0) = {1, 0, 0, 0}. Note
that though α(g) actually does not affect the average composition of the population, it
is the cause of extinction, since disappearance of the viable types means disappearance
of the whole population.

Assuming that viability is a neutral trait implies that cell-to-cell transmission is not
represented in the model. Hence, Eq. (2.4) describes intracellular dynamics, with a
typical time scale shorter than that of transmission of the infection. The size of the
system thus corresponds to the number of viral genomes inside a single cell.

This model has an explicit solution n∗ = n(g →∞) ≡ {nV , nv, nD, nd},

n∗ = N−1 {2q, (1− w)(c− a+), 2q(1− w), c− a+} (2.5)

with N = (2 − w)(c − a−), a± = (R − 1)(1 − p) ± q, c = [(1 − p)2(R − 1)2 +
2(R(1 + p)− (1− p))q + q2]1/2, and λ = 1/2[(R + 1)(1− p)− q + c]. As with the
example discussed in the introduction, no extinction threshold is found for q 6= 0, that
is, when backward mutations exist. Mutational meltdown is possible and holds for an
asymptotic growth rate at the mutation-selection equilibrium below one, that is λ < 1.

The solution given in Eq. (2.5) represents well the dynamics of the quasispecies
only for sufficiently large populations. For small population sizes the dynamics are
qualitatively different and dominated by the intermittent appearance of class D. In this
regime, stochastic extinction is a common event.

Viable class Defective class 
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There are different limits of the model worth mentioning. The case w = 0 corre-
sponds to a quasispecies described only by its replicative ability where back and lethal
mutations are considered (only classes V and v sustain finite populations). The case
w = 1 is formally identical, with classes V and d surviving. This model has been
analyzed for instance in (Bull et al. 2005). The case q = 0 is particularly interesting.
Since class D can only be generated through (rare) beneficial mutations appearing in
class d, class D can remain empty for extended periods of time when the population
size is small enough. Thus, in the biologically relevant limit of small N and q → 0,
the case q = 0 should approximate accurately the intervals where nD(g) = 0. The
stationary populations n∗0 = {nV0 , nv0, nD0 , nd0} in this limit are

n∗0 = N−1
0 {N0 −Rp,Rp(1− w), 0, Rpw} , (2.6)

with N0 = R+ p− 1 and λ0 = R(1− p).
In order to check the accuracy of our analytical results, we have performed numer-

ical simulations of the dynamical model. As initial condition, we take N individuals
in class V . At each generation g, the population replicates deterministically (with rates
R and 1) to generate the individuals at generation g + 1, which then mutate according
to the probabilities described. This step introduces stochasticity in the system. If the
population n(g + 1) > N , a random subset of N individuals is selected. This keeps
the population size bounded. When, as a result of fluctuations, the number of viable
individuals reaches zero, the population is considered extinct and the simulation halts.

2.3 Results

The different dynamical regimes of the population are illustrated in Fig. 2.3. As the size
of the population N increases, the behaviour changes from a stochastic regime domi-
nated by the intermittent appearance of classD and with average values well described
by Eq. (2.6) to a mean-field regime with average values following Eq. (2.5). Though
the transition is smooth, it will be shown that there exists a characteristic system size
Nm where the stochastic regime crosses-over to the mean-field regime.

2.3.1 Stochastic regime

For small q and finite system size, the population of defective, fast replicating individ-
uals appears in bursts that either are terminated after a finite number of generations or
(also in finite time) invade the population, thus causing its extinction. In this limit, the
probability p0 that class d does not produce any individual of classD in one generation
is p0 ' (1−q(1−w)/λ)Nn

d
0 . Hence, the probability P0(g) = pg0 of having an interval

of g generations without individuals of class D reads

P0(g) ' exp

{
−gN Rpw

R+ p− 1
ln

(
1− q(1− w)

R(1− p)

)}
. (2.7)
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Figure 2.3: Dynamical regimes of the model. (a) Stochastic regime, N = 200. For
small system sizes, the dynamics are dominated by the intermittent appearance of class
D. The dotted line corresponds to the value obtained in the approximation q = 0, nV0 '
0.8182. (b) Transition regime, N = 2500. For system sizes N ' Nm, the population
ofD individuals is always above zero, though fluctuations are still large. (c) Mean-field
regime, N = 105. For N → ∞, the population in each class approaches the mean-
field value. The dotted line corresponds to the asymptotic solution, nV ' 0.4317.
Parameters for all simulations are p = 0.1, q = 0.01, w = 0.1, R = 2, which yield
Nm ' 2116 (see below).

The exponent of this distribution, ln p0, is represented in Fig. 2.4(a) together with
the results of numerical simulations. The outbreaks of the D class for sufficiently
small p and q start with a single individual and follow the dynamics of a branch-
ing process with branching ratio m. To a first approximation, the value of m is the
average number of offspring of class D per individual in that class (≈ R(1 − p))
divided by the asymptotic growth rate of the population λ0. Hence, in this limit,
where the contribution from class d is neglected, m = 1 and the dynamics follows
a critical branching process (Harris 1963). The corresponding generating function,
f1(s) = es−1, allows to obtain a number of exact results. The probability of termi-
nation of the outbreak at any time in the future is the solution of f1(s∗) = s∗, which
has the known result s∗ = 1. The probability of termination after gb generations is
P (gb) = fgb(0)− fgb−1(0), where fk(s) = f [fk−1(s)]. It can be iteratively obtained
and, asymptotically, P (gb) ∝ (gb)−2. This function is compared with numerical sim-
ulations in Fig. 2.4(b). The existence of a neutral trait and the critical branching dy-
namics of the defective class are two sides of the same coin: Any coupling between
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Figure 2.4: Numerical and analytical results for the model in the stochastic regime.
(a) Exponent of the distribution of interval lengths (in number of generations) without
individuals of the D class. Two values of q = 0.01 (circles) and q = 0.05 (squares)
are shown for N = 100, R = 4 and w = 0.5. Solid symbols are results from sim-
ulations; open symbols are analytical results as in Eq. (2.7). (b) Probability P (gb)
of a D−outbreak of length gb generations. The solid line is the prediction of crit-
ical branching processes; circles correspond to numerical simulations for p = 0.1,
q = 0.01, w = 0.2, R = 2, and N = 100.

traits would imply deviations from neutral behaviour and values of the branching ratio
different from one.

2.3.2 Mean-field regime

As the size of the system increases, so does the duration of the outbreaks. At some
system size Nm, the previously isolated bursts merge, and the approximation of the
dynamics ofD as a critical branching process is no longer valid. ForN > Nm all types
are continuously represented in the quasispecies, albeit fluctuations in population sizes
might still be large. The system sizeNm can be estimated as the value ofN where class
d contributes on average one individual per time step to classD,Nmndq(1−w)/λ ' 1,
which yields

Nm '
(R+ p− 1)

q

(2− w)

(1− w)

(R(1 + p) + q − 1−R− c)
(R(1 + p) + q − 1 +R− c)

, (2.8)

using the value of nd in Eq. (2.5) and the corresponding λ. Series expansion of Nm in
powers of q yields

o 
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Nm =
2− w
1− w

[
1− p
q

+
R

(1− p)(R− 1)
+O(q)

]
, (2.9)

so Nm diverges as q → 0. Hence, for finite p, w, and R, in situations where the prob-
ability of hitting beneficial mutations is small enough, the dynamics is systematically
dominated by population fluctuations. The system size Nm separates the two relevant
dynamical regimes. Below Nm, the dynamics is mostly determined by stochastic ef-
fects and well described by the solution q = 0 plus the probabilistic appearance of
critical D−bursts: extinction is common. Above Nm, the dynamics is well described
by the mean field asymptotic solution. As N grows, extinction becomes increasingly
unlikely.

The transition between the stochastic and the mean-field regimes can be further
characterized through the distribution of probability densities for each of the four sub-
populations. In the stochastic regime, the abundances of viable and defective types
proceed in anti-phase, such that when the population of V + v is high that of D + d is
low (as in Fig. 2.3(a)). In this case the average population values agree with Eq. (2.6):
the distributions of V , v and d present a maximum near those values and the abun-
dance of D is close to zero. When outbreaks of D appear, the populations of V and
v decrease strongly while population D becomes abundant. Extinction supervenes if
the number of V + v attains zero, α(g) = 0 in Eq. (2.4). In the mean-field regime, the
size of the system is large enough to sustain finite populations of all four classes. The
maxima of the population size distributions move towards the average values predicted
by Eq. (2.5). In Fig. 2.5 we plot the main quantities characterizing the transition.

The average time to extinction Text grows exponentially with the system size,
Text ∝ exp{kN}, with k depending on the model parameters. For the case shown
in Fig. 2.5, k = 0.0054(1), so Text increases more than a thousand-fold between
N = 100 and N = 103. We do not have evidence that Text → ∞ at finite N , though
its rapidly increasing value asserts that, in practice, extinction will be rarely observed
once in the mean-field regime.

2.4 Discussion

Fitness is a multitrait feature with different expression in different environments. In
lytic infections, where cells are killed after a number of replication cycles, the require-
ment to maintain the ability of infecting susceptible cells acts as a purifying selection
pressure that regularly removes non-infective particles from the population. When in-
fections are persistent, selection pressure over infectivity is released. Since the number
of viral particles inside cells is relatively small (about 102−3), population fluctuations
are large, and, in the presence of one trait not subject to selection, a defective subpop-
ulation able to induce the extinction of the whole might appear. Stochastic extinction
through lethal defection (Grande-Pérez et al. 2005) becomes possible. From another
viewpoint, stochastic extinction occurs only if the characteristic time between infec-
tions of susceptible cells is larger than the time to extinction Text. Every new infection
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Figure 2.5: Transition from stochastic to mean-field regimes. We show the position of
the maxima for the distribution of populations D (solid circles) and V (open circles).
Solid squares correspond to the average value of nD(g), open squares to that of nV (g).
From Eq. (2.6), nV0 = 0.53, nD0 = 0 (in agreement with the maximal values at the
stochastic regime), while dashed lines signal asymptotic mean-field values obtained
from Eq. (2.5). The maxima of the distributions eventually converge to those values as
fluctuations disappear in the limit N →∞. The insets show three representative prob-
ability distributions for nD(g) (solid line) and nV (g) (dashed line), below, during, and
above the transition. The estimated system size separating stochastic from determinis-
tic behavior is Nm ' 696 according to Eq. (2.8). Parameters are p = 0.3, q = 0.01,
w = 0.2, R = 2.

event acts as a filter cleaning the population from defectors, unable to infect, and thus
resetting the dynamics to the initial condition. This mechanism can be generalized to
situations where a previously essential trait is temporarily unneeded (not selected for)
and then becomes essential again. This could be the case of genes that respond to un-
common environmental conditions or get rarely switched on: the absence of activity
could lead to the loss of viability. The molecular processes that turn a gene into non-
functional include deleterious mutations and insertion of transposable elements (TE).
In the latter case and according to our results in Chapter 5, gene interruption is re-
versible; as a result the population can be rescued if any reversion occurs before the
gene becomes essential. Interestingly, TE increase their mobility under stress condi-
tions, which could be a strategy to recover the functionality of interrupted genes and
avoid lethal defection-like extinction (McGraw and Brookfield 2006).

The model here presented shows how simple evolutionary mechanisms can cause
the extinction of populations of fast mutating pathogens under environmental changes,
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and strongly suggests that one could devise strategies to take advantage of those mech-
anisms in fighting viral infections. In this context, tuning the balance among intracel-
lular replication, frequency of infection of new cells and multiplicity of infection, or
applying mild increases in viral mutation rate, appear as therapies alternative to the
massive use of drugs. In a broader framework, a better understanding of the com-
plex population dynamics typical of these organisms should make possible to identify
and manage selection pressures over target traits, resulting in the development of new
control strategies at the host level for infectious diseases.



3
Tempo and mode of multidrug antiviral therapies

3.1 Inhibitors, mutagens, and multidrug antiviral therapies

RNA viruses are an iconic example of populations persistently escaping the action of
antiviral drugs (Richman 1996; Domingo et al. 1997). As explained in the previous
chapter, alternative therapies are continuously sought with the aim of impeding the ap-
pearance and fixation of resistance mutants (Endy and Yin 2000; Domingo et al. 2008;
Vignuzzi et al. 2008). In order to succeed, such therapies must take into account the
evolutionary properties of the viral population, for instance, by inducing opposite selec-
tive pressures that complicate viral adaptation. One example of how selective pressures
can be managed in order to facilitate viral extinction has already been discussed in the
context of lethal defection. In this chapter we explore an alternative strategy, namely
the use of multiple drugs—possibly with different action mechanisms—in the same
treatment.

Multidrug treatments have been established as an efficient way of delaying the ap-
pearance of resistant forms. Such treatments take advantage of the combination of
two or more antiviral drugs, that are administered in a concrete manner—tempo and
mode—in order to maximize their efficiency. However, in order to understand the
mode of action of combined treatments it is urgent to clarify the degree of interaction
between the different drugs used and the quantitative impact they have on the virus they
are affecting. The joint action of two drugs can rarely be reduced to the simple addition
of their independent effects (Torella et al. 2010), and the same drug might elicit dif-
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ferent responses in different viral systems, including the appearance of compensatory
mutations able to induce resistance (Handel et al. 2006). Thus, the complete charac-
terization of a multidrug treatment applied to a particular viral system might require
in the last term a systematic assay with a large number of drug doses delivered under
different administration protocols. A full characterization of the response of the viral
system in vitro seems prior to any in vivo assay of the treatment. This procedure de-
mands a costly amount of time and resources that can be significantly reduced through
the guide offered by formal approaches to therapies.

Knowledge derived from in vitro studies of the response of pathogens to the ac-
tion of one or a number of drugs might be combined with the information yielded by
well-designed mathematical models involving the relevant mechanisms of action of
and interaction among the drugs (Fitzgerald et al. 2006; Yeh et al. 2006), virus-host
interactions (Bonhoeffer et al. 1997), or the role of the immune response (Komarova
et al. 2003). An important feature, rarely taken into account, is the intrinsic replicative
ability of the pathogen. Many different ways to encode genomic information (double-
and single-stranded RNA and different polarities) and a repertoire of replicating strate-
gies have been selected by different RNA viruses. Hence, the knowledge gained for
a particular virus may not be extrapolable to other systems, though suitable modifi-
cations of dynamical models can likely account for these different replication modes
(Sardanyés et al. 2009; Loverdo et al. 2012).

The dynamics of the picornavirus foot-and-mouth disease virus (FMDV) have been
explored under different experimental regimes with the aim of disclosing protocols able
to cause its extinction during replication in cell culture. It has been demonstrated that
a combination of mutagenic agents and antiviral inhibitors is an efficient way to drive
FMDV to extinction (Pariente et al. 2003; Pariente et al. 2005). The mutagen succeeds
in raising the fraction of defective and lethal mutants in the population, thus decreasing
its overall fitness (see section 2.1). Defectors may also interfere with infectivity as
shown with specific mutants (Perales et al. 2007) and preextinction viral populations
(González-López et al. 2004), and thus accelerate extinction. For its part, the inhibitor
contributes to extinction by reducing the viral load1 (Fig. 3.1).

However, the joint effect of a mutagen and an inhibitor cannot be reduced to the
addition of their individual effects (Fitzgerald et al. 2006). Since the dawn of qua-
sispecies theory (Eigen and Schuster 1979), the use of mutagens has been proposed
as a plausible strategy to induce viral extinction (Eigen 2002; Domingo et al. 2005).
A significant increase in the mutation rate has been, indeed, successful to cause the
extinction of infectivity in many different viral systems (Lee et al. 1997; Crotty et al.
2001), though the mechanisms through which extinction supervenes are diverse and
related to a variety of molecular and population responses (Manrubia, Domingo, and
Lázaro 2010, see also section 2.1). In particular, increased mutagenesis can also bear
beneficial effects for viral populations through an enhancement of their diversity, which
promotes adaptation of low-fitness viruses (Cases-González et al. 2008) and facilitates

1Viral inhibitors are drugs that interfere with the viral cycle and impair the replicative ability of the virus.
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Figure 3.1: Schematic of the effect of inhibitors and mutagens on viral growth. In the
absence of drugs (top), viral growth is faster than degradation, so that the number of
viral particles increases exponentially. Inhibitors (middle) interfere with viral prolifer-
ation, which results in a reduction in the viral population. In turn, mutagens (bottom)
increase the fraction of viral offspring that is non-viable (represented in white), thus
reducing in practice the infective population.

the appearance of resistance mutants when an inhibitor of viral replication is present
(Perales et al. 2009).

There is a well stablished result in clinical practice, according to which the optimal
way of combining multiple inhibitors –with no mutagens involved– is dispensing them
simultaneously (Bonhoeffer et al. 1997; Ribeiro and Bonhoeffer 2000). In contrast, the
increased likelihood of developing resistance to the inhibitor when dispensed simulta-
neously with a mutagen advocates the sequential administration of the two drugs, with
the inhibitor followed by the mutagen. In a first study with FMDV subjected to the
action of the mutagen ribavirin (R) and the inhibitor of viral replication guanidinium
hydrochloride (GU), it was shown that under the experimental conditions assayed the
sequential therapy performs better than the simultaneous administration of both drugs
(Perales et al. 2009). This is an interesting result that immediately queries the range
of applicability and relative success of combined or sequential administration of those
two dissimilar drugs. In this chapter, we face the characterization of the response of
a general viral system to the action of an inhibitor of its replication and a mutagenic
agent through a model for the dynamics of two different viral classes in the viral pop-
ulation. We obtain several exact results that predict the preferred therapy as a function
of intrinsic viral characteristics and of the administered drug doses. Our predictions are
tested and confirmed by new experiments with FMDV at different doses of inhibitor.

•• No drug ••• •• ~ •• ••• 
•• Inhibitor • •• ~ •• 
•• Mutagen 0.0 

•• ~ 0.0 • ° 
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Figure 3.2: Schematic outline of the experimental protocol in cell culture. (a) Com-
bined therapy. A dose dGU of guanidine and a dose dR of ribavirin are simultaneously
added to the initial population. The viral titer Y CT is calculated after a single passage.
(b) Sequential therapy. A dose dGU is added to the initial population. After 24 hours,
the inhibitor is removed and a dose dR of ribavirin is added. The viral titer Y ST is
obtained after this second passage. (c) Experimental results in a case example. The
initial population has a titer of 3.7 × 106 PFU/ml (PFU—plaque forming units—is a
measure of the number of viral particles able to infect cells). The applied doses are
dGU = 18 mM and dR = 5 mM. With these drug doses, the viral titers after applying
the protocols described in (a) and (b) are Y CT = 2×102 PFU/ml and Y ST = 10 PFU/ml,
respectively. Passages are performed and quantified as described in Appendix A.

3.2 Mathematical model

The present model is intended to reproduce the dynamics of a viral population after the
addition of mutagens and/or replication inhibitors following the protocol represented
in Fig. 3.2. Mutagens mostly promote the appearance of deleterious variants, though
some particular mutations may however confer resistance to the inhibitor, thus favour-
ing its survival. In order to capture this double role of the mutagen, the model considers
that the dynamics is dominated by two types of individuals: viable susceptible to the
inhibitor (v) and viable resistant to the inhibitor (V ). Viable individuals are able to
infect cells and replicate by themselves.

Let w0 be the rate at which viable individuals produce, under replication, a non-
viable class including lethal variants, defective interfering forms, or any other mutant
unable to complete an infection cycle on its own [(1 − w0) is the intrinsic copying
fidelity of the virus]. Under low multiplicity of infection, only viable individuals can
infect new cells. Independently of the size of the population of non-viable mutants, they
are unable to produce infection in the next passage due to the low MOI (from 10−5
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to 10−1 PFU/cell, see Appendix A). This is the reason why the dynamic equations
for non-viable types are not explicitly considered. Resistant forms appear at a rate
µ0 = kw0. Since mutations providing resistance to the inhibitor are rare compared
to deleterious ones, k � 1. Addition of a mutagen is implemented by increasing the
mutation rate from its natural value w0 to a higher w > w0. As a consequence, the
rate of appearance of resistant mutants, µ = kw, increases when the mutagen is added.
Each time a viral genome replicates inside the cell m copies are produced, so m is the
replicative ability per genome and replication cycle. The effect of an inhibitor is to
slow down replication of the susceptible type by multiplying parameter m by a factor
0 < i ≤ 1.

For the sake of simplicity, back mutations are not considered in the model: they
would represent a small contribution to the population numbers of type v in the form
of an additive term of order mµ and do not significantly affect population dynamics.
This is so because, initially, only susceptible individuals are present. Note that a term
of the same order is however required to trigger the growth of population V . Once
resistant individuals have appeared, their dynamics are dominated by the term of order
(1− w)m, in front of which the first term could be then discarded.

Let v(g) and V (g) denote the number of individuals of each type at replication
cycle g. Populations after one replication cycle in the presence of a mutagen and an
inhibitor will be

v(g + 1) = i(1− µ− w)mv(g)

V (g + 1) = iµmv(g) + (1− w)mV (g) (3.1)

To study the dynamics of the model and to compare the sequential versus the com-
bined administration of the drugs, we will mimic the protocol described in Fig. 3.2. At
cycle 0 (initial condition) we will assume that the population is formed by S0 individ-
uals of type v, which due to mutations will populate the class or resistant mutants in
successive replication cycles. A full solution of the model is given in Appendix A. The
dynamics of the combined therapy correspond to applying equation (3.1) iteratively
for g = 1, . . . , G cycles with parameters i < 1 and w > w0; the dynamics of the
sequential therapy imply replication for G cycles in absence of the mutagen (i < 1
and w = w0) and use of the so generated population as initial condition to replicate
for G additional cycles in absence of the inhibitor and presence of the mutagen (i = 1,
w > w0).

3.3 Model analysis

Viral particles are released from the cell after G replication cycles. This finishes the
process for the combined therapy, while there is a second passage to undergo in the
sequential therapy. The size of the infective population –let us call it YT (G,w, i) to
make explicit the experimental parameters involved– is obtained by adding the popu-



36 Tempo and mode of multidrug antiviral therapies

1
0.999

0.998
0.997

10-4

10-2
100

w i

100

102

104

1
0.999

0.998
0.997

10-4

10-2

100

w i

YT
C

100

102

104

0.9990.9980.997
w

1

100

10-2

10-4

i

0.9990.9980.997
w

1

0.9990.9980.997
w

1

1
0.999

0.998
0.997

10-4

10-2
100

w i

100

102

104

(a) (b)

(c) (d)

(e) (f)

100

10-2

10-4

i

100

10-2

10-4

i

YT
S

Min(YT
C, YT

S)

CCS

Ce
C

Ce
S

Ci

Ce
S

Ce
C

wi→0

CR



3.3 Model analysis 37

lation of individuals in the two relevant classes after the first passage, YT (G,w, i) =
v(G) + V (G) (Appendix A), and therefore

YT (G,w, i) = S0m
G

(
iG(1− µ− w)G(1− i) + iµ(1− w)G−1

1− i 1−µ−w
1−w

)
(3.2)

which for i = 1 (absence of inhibition) yields YT (G,w, 1) = S0m
G(1 − w)G. The

size of a viable viral population after one passage with a mutagen and/or a replication
inhibitor is, thus, given by equation (3.2) with the corresponding parameters w and i.
In the absence of drugs, the total population obtained is S0m

G(1−w0)G, such that the
initial population is simply multiplied by m(1 − w0) at each replication cycle, which
is the basic reproductive ratio of the population.

3.3.1 Comparison between treatments. Viral titre

Let us call Y CT the viral titer after the application for one passage of the combined
treatment. According to the experimental protocol, the mutagen and the inhibitor have
been simultaneously administered, so the viral yield is immediately given by Eq. (3.2):
Y CT = YT (G,w, i). Analogously, Y ST is defined as the viral yield after the sequential

Figure 3.3 (facing page): Theoretical phase space representation of the model. (a,b)
Viral titres after application of the combination (a) or sequential (b) treatment. (d,e)
Doses that fall on the grey area cause viral extinction under application of the com-
bination (d) or sequential (e) treatment. The frontiers with the blue and red regions
corresponds to values {i, w} yielding Y CT = 1 and Y ST = 1, respectively, which define
curves CCe and CSe . (c) Comparison of the titres produced by combination and sequen-
tial therapies. In the z−axis we represent the minimum value of the viral yield for each
pair of {i, w} values. (f) In the grey area extinction occurs if the appropriate therapy
is used. Blue and red lines correspond to extinction with the combination or sequential
treatment, respectively . Black curve is CCS . It signals the pairs of {i, w} values where
both therapies produce the same titre. Curve CR indicates when both treatments pro-
duce the same amount of resistants. In the violet region between CR and CCS curves
the combined treatment yields the lower titre, but the sequential treatment is less prone
to produce resistants. In the limit of large amounts of mutagen (i→ 0), both therapies
perform equally well in regard to titre and resistant production. The expression for
the limit value of mutagen wi→0 (Appendix A) is indicated with an arrow in the plot.
Finally, the dotted line stands for curve Ci, which indicates which values of i (below
the curve) cause an efficient decrease of the population. Curve Cw, representing the
values of the mutagen above which the population of viable individuals decreases from
passage to passage is out of the range shown in the plots. Parameters for all plots are
m = 50, G = 2.5, w0 = 0.9, k = 0.01.
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administration of the drugs, first the inhibitor for one passage and then the mutagen for
a second passage

Y ST = S−1
0 YT (G,w0, i)YT (G,w, 1) , (3.3)

where the initial condition for the second passage requires S0 to be substituted by the
yield obtained, YT (G,w0, i). The comparison of the yields obtained following either
treatment determine which of them is more efficient for each dose of mutagen and
inhibitor. The curve CCS defined by Y CT = Y ST separates two regions in the space
of parameters {i, w} where one therapy or the other are better suited to obtain a low
viral titre (Appendix A has an approximate expression of curve CCS and its asymptotic
value at large values of the inhibitor). Figures 3.3(a), (b), and (c) show the viral titre
corresponding to the numerical solution of the equations above for the combined and
the sequential treatments.

3.3.2 Comparison between treatments. Appearance of resistant mutants

In addition to the viral titre produced after application of one or another therapy, it is
important to know what is the fraction of resistant mutants that each treatment pro-
duces on average. This quantity corresponds to the final populations of type V (G)
after one passage with both the mutagen and the inhibitor (combination therapy) or
one passage with the inhibitor plus a second passage with the mutagen (sequential
therapy). Let us call RC and RS the two final populations of resistants. The ex-
act expressions for the two quantities are obtained as RC = V (G,w, i) and RS =
S−1

0 v(G,w0, i)V (G,w, 1) +mG(1−w)GV (G,w0, i), analogous to the way in which
the titres were obtained. The amount of resistants produced with either treatment will
be equal at values of w and i that fulfill RC = RS . This defines curve CR. A conve-
nient way of calculating some of the properties of that curve is to express the differ-
ence in the number of resistants generated for a pair of values {w, i} as ∆R(w, i) =
∆Y (w, i) − ∆S(w, i) where ∆R(w, i) = RC − RS , ∆Y (w, i) = Y CT − Y ST , and
∆S(w, i) = S0(im(1 − µ − w))G(1 −mG(1 − µ0 − w0)G) is defined as the differ-
ence in the amount of susceptible virus produced by the combined and the sequential
treatments, with v(G,w, i) as calculated in Appendix A.

The values of ∆R(w, i) when the yields of the two treatments are equal (that is
on curve CCS , where ∆Y (w, i) = 0) are always positive, since ∆S(w, i) < 0 due
to the biological fact that the replication rate of the susceptible type is larger than one
in the absence of drugs: m(1 − µ0 − w0) > 1, and 1 ≥ µ + w. The production of
resistant mutants is thus lower through the sequential treatment when both therapies
are equally eficient in terms of total titre. This also implies that curve CR is always
above curve CCS [see Fig. 3.3(f)]. Hence, there is a region of doses of mutagen and
inhibitor, between curvesCR andCCS , where the combination treatment leads to lower
titres, but where at the same time the sequential treatment causes a lower population of
resistants.

In the limit of high doses of the inhibitor, i → 0, and since limi→0 ∆v(w, i) → 0
(the population of susceptibles is completely suppressed) the total population coincides
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with the population of resistants and ∆R(w, i) → ∆Y (w, i). As a result, the limit
value of w on curve CR coincides with the limit value of w on curve CCS (Eq. (A.5) in
Appendix A).

3.3.3 Effect of treatment and virus parameters

Not all possible drug doses are experimentally meaningful. First, there is a minimum
amount of mutagen required for the therapy to be effective, and it corresponds to those
values of w large enough to cause a decrease of viral yield in the absence of the in-
hibitor. This condition takes the formal expression m(1 − w) < 1. We thus define
curve Cw as those points where m(1− w) = 1, separating the regions of increase and
decrease of the population size under the action of the mutagen. A similar reasoning
leads to curveCi, which marks the values of i below which the inhibitor is able to cause
a decrease of the viable population before resistance appears, (im)G(1− w0)G = 1.

There is a limit under high enough values of the drug dose where either treatment
may cause the extinction of the virus with the applied protocol. CurveCCe is determined
by those combinations of {i, w} where the population size of the combined treatment
falls below 1. The exact solution for curve CCe can only be given in implicit form as
those values solution of YT (G,w, i) = 1. To first order in µ, the curve fullfils the
approximate expression mGS0(1 − w)G−1(iG(1 − w) + kwγ) ' 1. Analogously,
curve CSe is defined by those pairs {i, w} at which S−1

0 YT (G,w0, i)YT (G,w, 1) = 1.
Figure 3.3 illustrates in a representative case the response of a viral population to the
action of a combined or a sequential treatment. All curves defined above (except for
Cw, which occurs at values of w quite far from the domains shown) are represented in
Fig. 3.3(b), (d), and (f).

Parameters m and G depend significantly on the mode of replication of the virus
inside an infected cell. Single-stranded RNA viruses are characterized by large values
of m and probably quite low values of G. In double-stranded genomes with semi-
conservative replication one would expect a value m ≈ 2 and a larger value of G. In
either case, the accumulation of mutations proceeds differently, and so also w0 would
vary accordingly. The model presented here cannot be directly applied to viruses that
use other replication modes, such as retroviruses (with a DNA provirus phase) or DNA
viruses such as the herpesviruses that include a latency step. Extension to such systems
would require significant modifications of the dynamical rules.

3.4 Experimental validation of the model

The parameters of the model can be grouped into two categories, those related to the
virus and those depending on the therapeutical treatment. Most of them can be directly
estimated by means of simple experiments that are here described. As a case example
we use data obtained with FMDV under sequential and combined therapies involving
the inhibitor guanidine and the mutagen ribavirin.
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3.4.1 Viral parameters

Several parameters of the model describe the intrinsic characteristics of the virus in the
cells it is infecting. These are the number of replication cycles inside the cell (G), the
number of copies per viral genome and replication cycle (m), the rate of production of
non-viable mutants (w0), and the ratio (k) between resistance conferring mutations and
deleterious ones.

The experimental measure of the viral productivity P0 = mG(1− w0)G in the ab-
sence of drugs is easy to perform. If there is no limitation on resources, the population
grows exponentially at a rate equal to the viral productivity. As a result, if the pop-
ulation size along succesive passages is plotted in a semilogarithmic graph we obtain
a straight line whose slope is equal to the logarithm of the productivity. Viral pro-
ductivity is thus obtained by quantifying population size in several succesive passages
(Fig. 3.4). It is measured in units of PFU/ml and per passage.

When modelling the dynamics of single-stranded RNA viruses it should be noticed
that each replication cycle requires the synthesis of a complementary antisense RNA,
that is used as a template for the synthesis of new positive-sense genomes. For this
reason, the number of copies per replication cycle is equal to the mean number of
genomes produced from a single antisense RNA. Thus, parameterm could be estimated
as the ratio between sense and antisense genomes inside the cell. The few estimations
of that ratio available indicate a large excess of positive strands, from 50 to 1000 per
negative strand (Herrera et al. 2008).

Figure 3.4 (facing page): A case example of determination of model parameters from
experimental data. (a) Natural growth of the population. Three different sets of ex-
periments using triplicates for each condition have been used. The titre of the virus
(main plot) has been determined starting with different initial conditions, that is ini-
tial population sizes S0 = 20 (black circles), 50 (red squares), and 75 (green dia-
monds) at two consecutive passages. Least-squares regression with exponential func-
tions yield the productivity P (S0), which depends on S0. Representation of the so
obtained productivities as a function of S0 (inset) allows extrapolation to S0 → 1,
which finally yields the basal productivity P0 = 460 ± 35. (b) Decrease of the pop-
ulation in presence of the mutagen, without the inhibitor. We show the exponential
decay in the viral titre for three independent realizations of the experiment with a
dose of mutagen dR = 5 mM. The slopes of the curves have been averaged to ob-
tain an estimation of the productivity Pw in the presence of the mutagen, yielding
Pw = mG(1 − w)G = 4.72 × 10−2 ± 1.75 × 10−2. (c) Population growth in the
presence of the inhibitor and absence of the mutagen. Productivity in the presence
of the inhibitor has been determined using a single passage to avoid confounding ef-
fects due to the appearance of resistant forms. The slope of each curve corresponds to
Pi = imG(1− w0)G = iGP0. All productivities are measured in units of PFU/ml and
per passage.
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Our parameter w0 comprises those genomes that carry lethal mutations and all
defective genomes unable to replicate by themselves. This is so because the former
do not play any further role in the dynamics and the latter are cleared up from the
population at each passage when MOI is sufficiently low, as in the case studied. The
explicit consideration of the defective type does not modify the quantitative predictions
reached. This natural mutation rate can be estimated from a number of experiments
which have determined the effect of mutations on viral fitness and the ratio of defective
forms to wild type genomes. Lethal mutations affect from 20% to 55% of total genomes
produced under replication (Parera et al. 2007; Sanjuán 2010), so a reasonable though
still quite rough estimate for w0 would be between 0.4 and 0.9, assuming half of the
mutations are lethal and half cause defects that prevent completion of a viral infectious
cycle.

Regarding the mutation ratio k, biological knowledge about the virus is also neces-
sary to estimate its value. In any case, since it can be hypothesized that only one (or a
few) mutations at specific sites of the genome generate resistance to the inhibitor, the
ratio k should be of the order of the inverse of the genome size.

3.4.2 Parameters related to experimental conditions

The treatment is described by two experimental parameters: the inhibition factor i and
the increased mutation rate w ≥ w0.

In a particular realization of the therapy, both parameters can be experimentally
obtained as the decrease in viral productivity in the presence of the inhibitor or the
mutagen separately. In the presence of a mutagen, viral productivity is Pw = mG(1−
w)G. This value can be experimentally measured in the same way as before, by plotting
the evolution of the population size in semilogarithmic graph and taking the slope of
the resulting line. If the productivity with mutagen is lower than one, that slope will
be negative, which means that the population is decreasing. Once the productivity has
been determined the parameter w can be calculated by using the previously estimated
values for m and G. The case for the inhibitor is analogous. Now the expression of the
productivity becomes Pi = (im(1−w0))G and parameter i can be determined once the
productivity has been experimentally measured. In this case some care must be taken
when calculating productivity, since the slope changes as resistant mutants appear after
a few passages.

3.4.3 Predicted parameter values for FMDV

Comparison of the titres experimentally obtained with those predicted by the model
allows to fix the values of all model parameters. We use now the mathematical ex-
pressions obtained for the combination (Y CT ) or sequential (Y ST ) treatment and do as
follows. First, we select a pair of values m and w0 within the estimated interval and,
by using the basal productivity P0 = 460 ± 35, obtain that G is bounded between
1 and 3.8. Second, use of Pw immediately yields the range of possible values of w,
which is bounded between 0.992 and 0.999. Similarly, estimation of the productivity
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in the presence of different doses of the inhibitor permits estimating parameter i as
i = (Pi/P0)1/G. More accurate measurements of the viral parameters by means of
specific experiments directed to quantify m, G, and/or w0 could significantly narrow
the intervals compatible with the experimental results. Third, we represent the experi-
mentally obtained titre as a function of the calculated i. Since all parameters are now
fixed, the titre predicted by the model with varying i is obtained by direct substitution
into the expressions for Y CT and Y ST . Finally, we evaluate the error produced by this
set of parameters by calculating the sum of the squared distance between data and titre
estimated through the model. The steps above and the evaluation of the error are re-
peated for all compatible pairs m and w0. The combination yielding the smaller error
is accepted as optimal given the experimental data.

3.4.4 The case of FMDV with ribavirin and guanidine

Results with FMDV subjected to the therapeutic protocols described under fixed doses
of R and GU revealed that the sequential treatment could be better suited to cause
viral extinction (Perales et al. 2009). However, in the light of the model described,
the adequacy of a sequential versus a combination treatment with a mutagen and an
inhibitor of the viral replication depends (i) on the administered doses and (ii) on the
natural productivity of the virus when infecting a given host (i.e. parametersm,w0, and
G). In particular, the model predicts that, in most cases, at a sufficiently low amount
of inhibitor and for a fixed value of the amount of mutagen, the combination treatment
should yield a lower titre, the same change holding for a fixed amount of inhibitor and a
sufficiently low amount of mutagen. Increase of the doses dGU or dR above a threshold
value changes the treatment that produces the lower amount of infectious virions. In
order to test this prediction, we carried out several experiments at increasing doses of
inhibitor and compared the viral yield after both therapeutic protocols (Fig. 3.5(a)).
At low doses of inhibitor, the combined therapy causes lower viral yields than the
sequential therapy. However, for a dose of the inhibitor between 6 and 12 mM, it is the
sequential treatment that begins to yield lower viral titers. The effect of the therapies is
thus exchanged, as theoretically predicted (Fig. 3.5(b)).

3.5 Discussion

Ever since the quasispecies dynamics was revealed as general for pathogenic RNA
viruses and retroviruses, the problem of treatment failure due to selection of drug-
escape viral mutants was recognized (Domingo and Holland 1992). Several approaches
have been used in medical practice to minimize selection of viral mutants resistant to
antiviral agents. The most successful strategy was the implementation of combina-
tion therapy involving the simultaneous administration of two or more drugs directed
to different viral targets. The advantages of combination therapy over monotherapy
stem from basic statistical considerations on the frequency of generation of multidrug-
resistant mutants (Domingo and Holland 1992). The advantage of combination versus
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Figure 3.5: Experimental results employing FMDV infection of cell cultures. Compar-
ison with theoretical predictions. (a) Experimental results. Passages were carried out
by infecting 2×106 BHK-21 cells with pMT28 strain of FMDV (0.2 ml of supernatant
from the previous passage), and infectivity levels were determined as detailed in Ap-
pendix A. The combination or sequential protocol therapies were applied in the pres-
ence of a dose of mutagen dR = 5 mM and increasingly high doses of viral inhibitor,
dGU =3, 6, 12, or 20 mM, as indicated. The combination treatment is indicated in
brackets (left panels), while for the sequential treatment the order of administration
of GU and R is separated by a comma (right panels). A control measure is shown
for reference (first left bar in each panel), other columns represent the mean ± SD
(error bars) from triplicate determinations. The discontinuous lines in the virus titers
indicate the limit of detection of infectivity. (b) Comparison of experimental results
with the predictions of the model. Viral titers expected after appliying the sequential
or the combination protocol in the mathematical model are shown as continuous lines
(blue: combined treatment; red: sequential treatment; color code for data as in (a)).
Curves obtained with parameters that yield the least-squares deviation to the logarithm
of experimental data are shown as blue (combination) and red (sequential) curves. The
obtained parameters are w0 = 0.76, w = 0.998, k = 0.005, m = 195. The val-
ues of the inhibitor i = 4.25 × 10−2, 3.47 × 10−3, 2.10 × 10−4, and 1.41 × 10−4,
corresponding to the four doses assayed, are shown in the x−axis.
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various regimens of sequential or treatment interruption (structured treatment inter-
ruptions or drug holidays) regimens has been supported by results of multiple clinical
trials as well as by theoretical models of viral dynamics (Domingo 1989; Ho 1995;
Bonhoeffer et al. 1997; Ribeiro and Bonhoeffer 2000; Domingo et al. 2008; Müller
and Bonhoeffer 2008; Nijhuis et al. 2009). However, whenever residual viral replica-
tion is allowed, viral rebound and treatment failure often occur. For this reason, new
proposals for the administration of drugs have been made. A recent one, yet to be
tested in clinical trials, is the so called pro-active treatment in two steps: an induction
regime aimed at reducing the background of viral mutants, followed by a maintenance
regime to control the viral load for extensive time periods (von Kleist et al. 2011). An
alternative strategy is to target cellular factors needed for viral replication, either alone
or in combination with drugs directed to viral functions (Geller et al. 2007). Provided
no toxic effects on the cells intervene, resistance to inhibitors of cellular functions can
also develop when the host factor interacts with viral nucleic acids or proteins.

Lethal mutagenesis introduces an important new element in antiviral therapy in
that a mutagenic agent is involved in treatment. When administered together with a
non-mutagenic inhibitor, the mutagen can play a dual and opposite role: to deteriorate
viral functions due to the excess mutations it provokes, and to increase the frequency of
mutations that confer resistance to the partner, co-administered inhibitor. An advantage
of a sequential over a combination treatment during lethal mutagenesis protocols was
suggested by a study of lethal mutagenesis of FMDV (Perales et al. 2009), and this
prompted the theoretical generalization reported in the present study and that has been
further supported by additional experiments also reported herein.

In this chapter we have developed a theory that quantitatively describes the re-
sponse of a viral population under two different protocols which involve the action of
an inhibitor of viral replication and a mutagenic drug. A limited number of simple
experiments allows to estimate the parameters that describe the dominant processes,
and knowledge of those few relevant parameters permits to predict the behaviour of
the model for other combinations of drugs. Two important outcomes of the treatments
have to be considered when choosing between a combined or a sequential administra-
tion of the drugs: in a region of mutagen and inhibitor doses that can be calculated, the
viral titre produced by one or another therapy is minimized. Further, there is a domain
of drug doses where combination treatment yields the lower titre, but the probability
of appearance of mutants resistant to the inhibitor is lower with a sequential treatment.
The use of analogous models can significantly reduce the number of in vitro assays
to be performed in other viral systems as well, where different replication strategies
should translate into dynamical equations similar to our Eq. (3.1). The simulation of
an in vivo situation entails additional difficulties, like the development of a large viral
population from an infecting seed, the interaction with the immune system, or envi-
ronmental and individual characteristics that may not lead to deterministic equations,
but should be included as noisy, fluctuating dynamical variables. The predictions of
the model, once tested in vitro, could be taken only as a rough guide to apply one or
another administration protocol and to infer minimum drug doses in in vivo assays.
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Our predictions acquire more relevance in view of the evidence that lethal mutage-
nesis can indeed be effective in vivo (Ruiz-Jarabo et al. 2003), and that some clinical
trials for AIDS patients that involve administration of a mutagenic nucleoside analogue
have been implemented (Mullins et al. 2011). Our results will be particularly relevant
when considering a lethal mutagenesis approach to combat viruses for which a reper-
toire of non-mutagenic inhibitory agents is already available. Detailed predictions of
the viral response tailored to the particular system under study are now possible.



III
Evolution of genomes





4
Genome segmentation in multipartite viruses

4.1 Multipartite viruses: An evolutionary puzzle

The origin and evolutionary history of viral genomes is a classical problem that has
inspired a long series of questions and hypotheses in evolutionary biology (Eigen 1993;
Roosinck 1997; Manrubia and Lázaro 2006). One of those questions is the adaptive
meaning of genome segmentation, since it appears to be a common trait in a very
broad variety of viruses (Szathmáry 1992; Turner and Chao 1998; Ojosnegros et al.
2011). The case of multipartite viruses is particularly striking, since their genome
segments achieve complete independence at the apparent cost of reducing its infectivity
(Palukaitis and Garcı́a-Arenal 2003; Betancourt et al. 2008; González-Jara et al. 2009).

Multipartite viruses have their genomes fragmented into two or more (up to eight)
segments, each packed into a separate capsid and containing one or more genes that are
essential for the virus to complete an infection cycle. These viruses require comple-
mentation, since each genomic segment must be completed (i.e. complemented) with
the rest of segments in order to produce viral offspring. The complementation require-
ments for multipartite viruses have a strong impact in the way they are transmitted:
many viral particles have to enter each cell in order to assure that at least one represen-
tative of each segment will be present. The multiplicity of infection (MOI) is thus a key
quantity in the biology of multipartite viruses.

A noticeable fact about multipartite viruses is their asymmetry in host distribution:
while they are common among plant viruses, no multipartite virus has been described
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infecting animals (Lazarowitz 2007). It has often been claimed that a larger character-
istic MOI in plant infections may be behind this phenomenon (Nee 1987), but a quan-
titative analysis of this claim has not been carried out up to now. From an evolutionary
perspective, this asymmetry could be understood by taking into account a trade-off
between opposite selective pressures: while the complementation requirement acts as
a limiting factor –viral extinction supervenes if transmission bottlenecks occur– there
should be evolutionary forces that promote the fragmentation of viral genomes. Ac-
tually, the first step towards fragmentation might be the generation of incomplete ge-
nomes. The latter are known to arise spontaneously under replication of wild type (wt)
viruses (Holland 1990), which often produce the so-called defective interfering parti-
cles (DIPs) –that is, incomplete genomes able to infect cells but unable to complete
the infection cycle in the absence of the wt (Bangham and Kirkwood 1990; Roux et al.
1991). The effect of DIPs in the dynamics and evolution of viruses has been studied
by means of mathematical models (Kirkwood and Bangham 1994; Frank 2000), and
particular attention has been paid to the mechanisms allowing for the coexistence of
wt and defective forms (Szathmáry 1992; Szathmáry 1993; Wilke and Novella 2003).
Nonetheless, the advantage of fragmentation and especially the individual encapsida-
tion of the fragments still remain open questions.

Faster replication of shorter genomes and higher replication fidelity have been clas-
sically presented as factors favouring genome segmentation (Nee 1987; Chao 1991),
though there is no conclusive empirical evidence of their evolutionary advantage in
viruses. Recent experimental work, on the other hand, has compared the performance
of the wt, complete form of foot-and-mouth disease virus, with a fragmented (bipar-
tite) counterpart obtained by evolution in cell culture (Garcı́a-Arriaza et al. 2004).
Competition experiments have shown that the latter, shorter genomes, may possess a
larger average lifetime between infective events (Ojosnegros et al. 2011). These results
point at the stability of viral particles as a relevant feature that could counterbalance
the disadvantage of high MOIs required to produce infection.

While the possibility of obtaining complementary, segmented variants of an orig-
inally non-segmented virus had been confirmed through isolation of variants with ge-
nomes separated into two molecules (O’Neill et al. 1982) and by means of genetic
engineering techniques (Geigenmüller-Gnirke et al. 1991; Kim et al. 1997), the exper-
imental evolution of a bipartite virus from a complete, non-segmented wt provides an
insight into how multipartite viruses could have originated in nature. In this chapter,
we explore the hypothesis that multipartite viruses are the evolutionary outcome of the
competition among genomic segments of different lengths. These segments would be
naturally produced through deletions in the replication process of the original, wt virus
(Garcı́a-Arriaza et al. 2006). Provided that shorter genomes enjoy a certain evolution-
ary advantage, a set of segments may be able to outcompete the wt virus if the MOI
is high enough to guarantee complementation among the segments. We will focus on
reduced degradation as the selective pressure favouring segmentation, although alter-
natives will also be considered, and their formal equivalence investigated. We discuss
the likeliness that multipartite viruses with a large number of fragments could have
originated in that scenario.
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4.2 Model of multipartite virus dynamics

4.2.1 Formal scenario

A schematic of the basic mechanisms included in the model is depicted in Figure 4.1.
Let us consider a mixed population that contains wt viruses (those with a complete
genome, denoted as wt) as well as two smaller components whose genomes are com-
plementary segments (denoted as ∆1 and ∆2). Both components ∆1 and ∆2 constitute
together a bipartite variant of the wt virus. Each component requires complementation
for replication, either with the other component or with the wt. At each generation,
viruses in the population infect a set of cells at a given MOI m. Although, in general,
m is a quantity that depends on the viral load, we will study only the case of constant
m for the sake of simplicity. Replication takes place inside the cells depending on
complementation requirements. Thus, the amount of viruses of each class produced by
a single cell depends on the initial composition of the (small) infecting population –it
is an instance of frequency-dependent fitness (Smouse 1976). The sum of all viruses
produced by all cells constitutes the primary offspring. It is exposed then to differential
degradation, which preferentially affects the wt class. Survival of the wt relative to the
segmented classes is given by a parameter σ < 1. The viral population that results
after degradation is considered to be the infecting population for the next generation.
In such a way, the composition of the population can be traced for several generations
in an iterative way.

4.2.2 Evolution equation with differential degradation

The composition of the population can be expressed by a vector

p = (p∆1, p∆2, pwt)
T (4.1)

where p∆1, p∆2 and pwt are the fractions of classes ∆1, ∆2 and wt in the population,
such that p∆1 + p∆2 + pwt = 1. At generation n the composition of the population
will be denoted as pn.

Let us begin by considering a single cell that has been infected by a, b and c viral
particles of classes ∆1, ∆2 and wt, respectively. The MOI in this case would be m =
a+ b+ c. Vector (a, b, c)T will be referred to as the infection configuration. The viral
offspring produced by the infected cell can be expressed as a product of a fitness matrix
Ma,b,c and the infection configuration. The fitness matrix allows the introduction of
frequency-dependent fitness, provided that production of each viral class is affected by
the abundances of other classes in a linear way.

The complementation requirement can be implemented as follows. For a given
genome to reproduce there are two limiting factors: first, the availability of the own
genome; second, the availability of essential proteins (that depends itself on the amount
of genomes coding for them). As a result, a simple way to consider complementation
consists of assuming that the number of genomes of a given class produced inside a
cell is equal to the minimum between the number of genomes of that class that infected
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Figure 4.1: Schematic of the infective process. The MOI is the (average) number of
viral particles infecting a cell. Incomplete genomes (∆1 and ∆2) have an average
lifetime larger than that of the wt between infective events, as shown graphically by
the decrease in number of the wt relative to genomes with deletions. The process is
iterated until the equilibrium state is attained.

the cell and the number of the corresponding complementary genomes. For instance,
segment ∆1 requires ∆2 or wt for complementation; so the number of viral particles of
class ∆1 produced will be min{a, b+ c}. On the other hand, wt genomes do not need
complementation, and their final number will depend only on their initial abundance c.
Without loss of generality, we will fix the replication rate for the wt class equal to one.
Taking all this into account, the offspring produced by a single cell can be written as

Ma,b,c

ab
c

 =

min{a, b+ c}
min{b, a+ c}

c

 ≡
 f∆1|a,b,c

f∆2|a,b,c
σ−1fwt|a,b,c

 (4.2)

The previous expression defines conditional (frequency-dependent) fitness fi|a,b,c , i ∈
{∆1,∆2, wt}.

The next step is to obtain the global offspring produced by the whole set of cells.
Let us assume that the number of cells is large enough such that the global offspring can
be calculated by averaging the offspring of a single cell (eqn. 4.2) over the probability
of a given infection configuration. That probability depends on the MOI m as well as
on the population composition p. As an example, we consider here the case where the
MOI is Poisson distributed,

Pr(a, b, c|p) = e−m
m(a+b+c)

a! b! c!
pa∆1 p

b
∆2 p

c
wt . (4.3)
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Note that this joint distribution is equivalent to the product of three independent Pois-
son distributions with averages mpj , with j ∈ {∆1,∆2, wt}. The case of an MOI
following a multinomial distribution is dealt with in Appendix B.

Differential degradation is applied by multiplying the global offspring by a degra-
dation matrix D, that takes the form of a diagonal matrix with value one in the first
two positions (corresponding to ∆1 and ∆2) and σ < 1 in the third position (reduced
survival for the wt),

D =

1 0 0
0 1 0
0 0 σ

 (4.4)

All steps can be written in a single equation that provides the composition of the
population in succesive generations.

pn+1 = Z−1 D
∑
a,b,c

Pr(a, b, c|pn)Ma,b,c

ab
c

 (4.5)

where Z is a normalization factor (see Appendix B)
Equation 4.5 can be iterated in order to obtain the evolution of a mixed popula-

tion of single-particle wt virus and bipartite mutants derived from it, provided that the
selective advantage of the bipartite mutants is due to reduced degradation. Note that
according to the definition of conditional fitness (eqn. 4.2), it can be written in the form
of a replicator equation. Indeed, let 〈fi〉 be the average value of the conditional fitness
for a generic class i,

〈fi〉 =
∑
a,b,c

Pr(a, b, c|p)fi|a,b,c (4.6)

If pi is the fraction of class i in the population and we denote with a superscript the
generation in which a given quantity is measured, the evolution equation is equivalent
to the replicator equation

p
(n+1)
i =

〈fi〉(n)

Z(n)
i ∈ {∆1,∆2, wt} (4.7)

where

Z(n) =
∑
i

〈fi〉(n) (4.8)

The evolutionary dynamics reaches an equilibrium state for such compositions that
are fixed points of the replicator equation. They must fulfil the equilibrium condition

p∗i =
〈fi(p∗)〉

Z
, ∀i ∈ {∆1,∆2, wt} (4.9)
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In particular, we are interested in equilibrium points that are attractors of the evolu-
tionary dynamics. A detailed study of these points and their stability can be found in
Appendix B.

4.2.3 Generalization of the evolution equation

The evolution equation in the previous section can be modified to include additional
selective pressures. The set of fitness matrices will contain new parameters account-
ing, for instance, for replication and mutation rates, and in some cases, the number of
replication cycles inside the cell has to be explicitly considered. A detailed derivation
of generalized equations can be found in Appendix B.

Different replication rates

Owing to their smaller size, it has been argued that bipartite genomes may replicate
faster than wt ones (Nee 1987; Chao 1991). Without loss of generality, let R > 1 be
the replication rate of the segments ∆1 and ∆2 relative to that of the wt. In a discrete-
time model, R−1 is the average number of genomes of wt class produced after one
cycle of intracellular replication. Several replication cycles can take place before the
viral offspring is released out of the cell, let G be that number of cycles. Under these
circumstances, the conditional fitness that allow the evolutionary process to be written
as a replicator equation are the following:

f∆1|a,b,c = min{a, b+ cR1−G}
f∆2|a,b,c = min{b, a+ cR1−G} (4.10)

fwt|a,b,c = σcR−G

Loss of segments through mutation and replication fidelity

Let us consider the possibility that a genomic segment is lost during replication with
probability ρ. As a result, the probability that a wt virus replicates its whole genome
without losing any segment is (1 − ρ)2, where the square means that a genome with
two putative segments is considered. On the other hand, the probability that a single-
segment virus ∆1 or ∆2 replicates without errors is 1 − ρ. That is the reason why
bipartite mutants have, in principle, a higher probability of error-free copy than wt
ones. In addition, single-segment viruses can be produced from the wt with probability
ρ(1 − ρ). In this setting, the evolution of the population follows a replicator equation
where conditional fitness can be expressed as

f∆1|a,b,c = (1− ρ)G
[
min{a, b+ c(1− ρ)1−G}+ c

(
1− (1− ρ)G

)]
f∆2|a,b,c = (1− ρ)G

[
min{b, a+ c(1− ρ)1−G}+ c

(
1− (1− ρ)G

)]
(4.11)

fwt|a,b,c = σc(1− ρ)2G
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Constant per-cell viral productivity

The expressions in Eq. (4.2) implicitly assume that there are no restrictions to the max-
imal number of viral particles that an infected cell can produce. However, because
cellular resources are limited, viral production may be bound. This situation can be
tackled by normalizing the total number of viral particles produced. Without loss of
generality, we suppose that this value equals one and study the dynamics under the
conditional fitness

f∆1|a,b,c = z−1
a,b,c min{a, b+ c}

f∆2|a,b,c = z−1
a,b,c min{b, a+ c} (4.12)

fwt|a,b,c = z−1
a,b,cσc ,

with za,b,c = min{a+ b, 2a+ c, 2b+ c}+ c.

4.2.4 Multiple segments

The model can be easily expanded to describe the dynamics of genomes that are suscep-
tible to being partitioned into more than two segments. In a multiple-segment model,
viral classes are defined by the genomic segments they conserve. The extreme cases are
still the wt virus, that contains the complete genome, and the single-segment classes,
that constitute the genuine multipartite version of the virus. In addition, there will also
be classes with an intermediate number of segments. Provided that a genome is com-
posed of n putative segments, the total number of different viral classes is 2n − 1 (the
class containing no segments has been discounted), and the number of classes contain-
ing s segments is

(
n
s

)
= n!/(s!(n− s)!).

Complementation implies that replication is limited by the less abundant genomic
segment inside the cell. In the simplest scenario, we assume that the selective advantage
favouring shorter genome lengths is proportional to the number of segments that a given
class contains. In the case of degradative advantage, degradation is assumed to be zero
for the single-segment classes and to increase linearly with the number of segments up
to the value 1 − σ for the wt virus. By taking these considerations into account, the
extension of the bipartite model to the multipartite case is straightforward, the main
difficulties arising from the high dimensionality of the classes space. The case with
three segments is developed in detail in Appendix B. Other relationships between
genome length and degradative advantage are possible: the case where the selective
advantage is proportional to the volume of the packed genome—emphasizing the role
played by the interaction with the capsid—is studied in Appendix B.
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4.3 Results

4.3.1 Evolutionary shift from wt to a bipartite form

Analysis of the evolution equation (4.5) or the equivalent replicator equation (4.7) re-
veals two possible outcomes for the evolutionary process, depending on the values of
parameters σ and m. If degradation of the wt virus is high enough when compared to
that of the segments, then the wt gets extinct and single-segment variants ∆1 and ∆2
take over the population (Fig. 4.2(a)). Therefore, in this regime bipartite variants of a
single-particle virus are able to outcompete the latter and reach fixation in the popu-
lation. On the other hand, coexistence is the expected outcome if degradation of the
wt is low (Fig. 4.2(b)). Both regimes are separated by a critical value of the survival
parameter σcrit, so that σ < σcrit leads to extinction of the wt while σ > σcrit allows
for coexistence.

An analytic expression for the critical value σcrit can be obtained by means of
simple invasibility arguments. Provided that the point (1/2, 1/2, 0)T (corresponding
to a pure equilibrated population of the bipartite form) is a stable equilibrium point in
the absence of the wt class, the key point is to study its stability when an infinitesimal
amount of wt is introduced. The equilibrium point becomes unstable at a critical value
σ = σcrit, where

σcrit =
2

m

∑
a,b

Pr(a, b|12 ,
1
2 , 0) min{a, b} . (4.13)

Using Eq. (4.3) and after some algebra (see Appendix B), the critical value sep-
arating coexistence of all types from extinction of the wt can be written in terms of
modified Bessel functions of the first kind Iα(m):

σcrit = 1− e−mI0(m)− e−mI1(m) . (4.14)

A simple expression is obtained in the limit of large MOI, m� 1,

σcrit ∼ 1−
√

2

π
m−1/2 , (4.15)

and this same asymptotic result holds for a multinomial distribution of MOIs.
Figure 4.3 compares the numerical and asymptotic values of σcrit as a function of

m, and reveals that the asymptotic approximation actually recovers well the behaviour
of the system also at relatively small values of m. As intuitively expected, increasing
the relative degradation of wt virus implies increasing the selective pressure favourable
to the bipartite virus, what permits its fixation. Alternatively, an increase of the mul-
tiplicity of infection makes complementation easier, as there are more genomes inside
the cell providing complementation. As a consequence, greater MOI also favours fixa-
tion of the bipartite virus. Finally, note that there is no parameter region for which the
wt virus outcompetes the bipartite one.
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Figure 4.2: Evolutionary outcomes for the competition between a single particle virus
(wt) and its bipartite variant (∆1 and ∆2). (a,b) Equilibrium points in the population
simplex (open circles: unstable, full circles: stable), arrows indicating the evolutionary
trajectories. (c,d) Temporal evolution of population composition for a characteristic
realization (solid symbols: wt, open symbols: ∆1 and ∆2, legend for each viral form
as in the previous figure). (a,c) Fixation of the bipartite variant takes place if survival of
the wt is below a critical value σ < σcrit. (b,d) Coexistence of all viral classes occurs
if σ > σcrit. An analytical expression for σcrit is given in the main text.

The results obtained earlier remain qualitatively unchanged if the selective advan-
tage of the bipartite virus relies on a faster replication or if mutations leading to the
loss of segments are considered. In the former case, the conditional fitness defined
by eqn. (4.10) can be used to derive an analogous critical condition such that σcrit
is replaced by R−G. In the latter, σcrit is substituted by (1 − ρ)G. When resources
are limited by the cell, the critical condition is derived from a slightly more involved
mathematical relationship. Nonetheless, there are no qualitative differences with the
situation reported, but only minor quantitative differences (see Appendix B).

4.3.2 Viruses with multiple segments

As in the bipartite case, evolutionary outcomes include coexistence of all possible viral
classes and fixation of the single-segment classes. The latter would result in a net evo-
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Figure 4.3: Evolutionary regions depending on selective pressures (MOI and degrada-
tion of wt class). Regions corresponding to coexistence and extinction of wt (fixation
of bipartite virus) are separated by a series of critical points, whose values vary slightly
according to the probability distribution that governs the infection process (solid cir-
cles, multinomial; open squares, Poisson; dashed line, asymptotic behaviour).

lution from a single-particle virus to a multipartite virus with as many particles as ge-
nomic segments. As a novelty, there appears a whole range of intermediate equilibrium
states that successively lack the wt, the second longest classes and so on. Figure 4.4(a)
shows a map of the evolutionary regions for a genome with 3 possible segments. The
intermediate region corresponds to an equilibrium state that contains the three possible
two-segment classes as well as the three single-segment classes. This region is limited
by two series of critical points that separate it from the total coexistence region below
and the multipartite fixation region above. A comparison with the two-segment case
(Fig. 4.3) reveals that fixation of a multipartite virus with three segments requires a
much higher MOI. This result is expected because, in this case, complementation of
a single segment requires the presence of two different complementary segments. For
low values of the MOI, it may be impossible for the single segments to get fixation,
even with the maximum degradative advantage. This is because of the linear relation
between the degradative advantage and the number of segments: the minimum survival
for the wt virus, 0% related to that of a single segment, translates into a relative survival
of 50% for two-segment classes. That can be enough for the two-segment classes to
avoid extinction at not very high MOIs.

A relevant question is how high the MOI must be so that a multipartite virus with
a given number of segments can reach fixation. To address that point, let us take a
fixed value for the survival parameter and observe the critical MOI values that separate
one evolutionary region from another. Results for σ = 0.5 are shown in Figure 4.4(b).
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Figure 4.4: Evolutionary outcomes for genomes with multiple segments. (a) Coex-
istence and multipartite fixation regions for three segments. Rectangles schematically
indicate the number of segments that viral classes contain in a certain region (all classes
with such a number of segments will be present). Compare these curves with σcrit for
two segments, shown in Figure 4.3. (b) Critical value of the MOI required for fixation
of single-segment classes (thick line on the left), for σ = 0.5. Other lines indicate
further transitions: from double-single coexistence to triple-double-single, and so on.

The thick black curve on the left-hand side of the figure indicates the minimum MOI
required so that the single-segment classes are able to outcompete other classes with
longer genomes and, in consequence, a fully multipartite population is established.
That critical MOI rapidly increases with the number of segments in the genome, being
equal to two for two segments, around 30 for three segments and higher 100 for four
and more segments. If the selection pressure favouring shorter genomes is stronger
–let us take for instance σ = 0.1 for the survival of the wt– then critical MOIs decrease
(two for two segments, nine for three segments), but still remain above 100 for five
or more segments. The possibility that such a high MOI can be reached in nature is
clearly unrealistic (not so many viral particles are expected to enter one cell in biolog-
ical conditions); therefore, if the evolutionary origin of multipartite viruses is due to
genome segmentation and competition among genomes of different lengths, no mul-
tipartite virus with more than three or four segments should be expected. This result
remains unchanged if the advantage of segmented forms is proportional to the volume
they occupy, as shown in the Appendix B.

4.4 Discussion

We have presented a model of how viral genomes may become segmented and give rise
to a multipartite virus. Provided that mutants with shorter genomes can be produced
through deletion events and that these mutants are able to replicate if they receive com-
plementation, evolution of a multipartite variant of the original virus may be the result
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of the competition among genomes with different lengths. Two opposite selective pres-
sures determine if the multipartite virus will be able to reach fixation. On the one hand,
complementation among segmented genomes requires co-infection of cells by at least
one segment of each class. That is only possible if the MOI is high enough. On the
other hand, shorter genomes benefit from a reduced degradation rate, which favours
division of the genome into smaller segments (Ojosnegros et al. 2011). Other hy-
pothetical benefits of segmentation, such as faster replication or higher fidelity in the
replication process have also been considered, with no qualitative changes in the overall
results. The main evolutionary regions –coexistence of wt and fragmented forms and
extinction of the wt– are essentially unchanged when the production of viral particles
is limited by the amount of cellular resources. This leads us to conclude that it is how
the complementation rules are implemented what eventually determines the equilib-
rium state, and not the absolute number of viral particles produced. At the biochemical
level, the expression used to evaluate the fitness of the different infection configurations
implicitly assumes that gene products affected by segmentation are partially shared,
though the genome coding them can use them preferentially. That is, gene products act
in trans and partly in cis. Other models for complementation (Novella et al. 2004) have
analysed the case of gene products acting only in trans. Compared to our scenario, this
latter prescription confers a larger advantage to segmented forms. Hence, segmented
genomes would be fixed at lower values of MOI, other parameters being equal.

The case with two genomic segments giving rise to a bipartite virus has been solved
in a comprehensive, analytical way. It shows that an evolutionary shift from a single
segment virus to a bipartite one is the expected outcome when the MOI during evolu-
tion exceedes a critical value. This result explains, from a theoretical point of view, the
experimental observations by Garcı́a-Arriaza et al. (2004), where a bipartite virus was
obtained after culture of foot-and-mouth disease virus (a single-particle virus) at a high
MOI.

Our results for the bipartite case can be compared to those obtained in previous
theoretical scenarios. In a complementation model characterized by hyperbolic growth
(Szathmáry 1992), both coexistence and fixation of the bipartite form were found, to-
gether with a third regime where the wt virus cannot be invaded by segmented mutants.
The assumption of a hyperbolic viral growth is essential for this third regime to exist.
However, hyperbolic viral growth requires a tight spatio-temporal coupling between
synthesis of replication proteins and genome replication, a situation that is not repre-
sentative for many viruses (Ball 2007; Belsham 2005). A related work (Chao 1991)
studied differences in replicative ability and replication fidelity as the selective pres-
sures driving genome segmentation. Interestingly, the model also considered an addi-
tional class of parasitic-like, defective mutants that need complementation by single-
segment genomes to be replicated and provide no complementation to the rest of the
population. For high enough MOI, it was found that defective mutants were able to
invade a population of bipartite virus, driving it to extinction. This phenomenon is
conceptually similar to that of lethal defection (Grande-Pérez et al. 2005; Iranzo and
Manrubia 2009) that was presented in Chapter 2 and has not been considered here for
simplicity.
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Finally, we have extended our study to the case of multiple (more than two) seg-
ments. The main result is that a multipartite virus with a small number of segments can
outcompete the single-particle one and get fixed in the population at realistic values of
the MOI. According to experimental assays, the MOI in plant infections oscillates be-
tween 2 and 13 (González-Jara et al. 2009; Gutiérrez et al. 2010), which would allow
selection of multipartite viruses with two and three segments. For a greater number of
segments, total segmentation at realistic MOIs should not be expected in the framework
of our model.

4.4.1 Multipartite viruses are found only in plants

It is known from experimental assays that the need for complementation reduces the in-
fectivity of multipartite viruses to efficiencies below 10% (González-Jara et al. 2009).
One can calculate the probability that a multipartite virus with n segments achieves
complementation when infecting cells at MOI m. If we require that this probability
reaches a level of 0.1 (one out of 10 cells would effectively get infected), we find that
an MOI between once and twice the number of genome segments yields that efficiency,
even for multipartite viruses with many segments. This prediction coincides with the
MOI values that are indeed found experimentally in plants (Betancourt et al. 2008).
Contrary to that, infections in animals are frequently subject to bottlenecks, events for
which the MOI becomes severely reduced. The onset of viral infections in animals, as
well as intra-host dispersal, are processes that involve a very small number of viral par-
ticles (Frost et al. 2001; Kuss et al. 2008), too small for a multipartite virus to achieve
efficient infection. Hence, the asymmetry in the host distribution of multipartite viruses
may derive from differences in the characteristic MOIs for plants and animals, which
in fact are a consequence of the physiological constraints governing viral transmission
and dispersal in different organisms.

4.4.2 On the origin of multipartite viruses

Should the evolution of multipartite viruses in nature proceed through competition
among segments with different lengths, then a relatively small number of segments
is expected in the light of our model. This may have been the case for multipartite
viruses belonging to the families Geminiviridae, Secoviridae and Bromoviridae (the
former two composed of two segments, and the latter of three segments). Among
them, the family Geminiviridae is interesting, as it contains bipartite genera as well as
non-segmented ones (Lazarowitz 2007).

However, some of the multipartite viruses found in nature present a much larger
number of segments. In particular, members of the family Nanoviridae are composed
of six or eight segments (Gronenborn 2004), so that the MOI that is required to get
them fixed becomes of the order of 100 (or even higher). This value is very unlikely
to be attained in nature. Therefore, other conceptual frameworks are needed in order
to explain the origin of these highly multipartite viruses. Two alternative hypotheses
can be proposed at this respect. The first is that viral capsids and genome size have
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co-evolved, in such a way that as the genome becomes segmented a smaller capsid
is recruited. As the stability of the viral particle depends on the chemical interaction
between genome and capsid, it can be expected that if the new capsid fits the size of the
genome segments, the relative fitness advantage of a further segmentation will increase.
An argument supporting this idea is the fact that viral capsids in nanovirus indeed fit
the segment size; so no multiple-segment hypothetical progenitor could be packed into
them. A second hypothesis consists of accepting that there has been only one (or maybe
two) true segmentation events, favourably selected by a moderate MOI, and the rest of
segments have been recruited as genes captured from other viruses. In this respect,
we recall that interspecific recombination and gene transfer events are widespread in
multipartite viruses (Chare and Holmes 2006; Lefeuvre et al. 2009) and are thought to
have played a role in the particular evolution of nanoviruses (Gibbs and Weiller 1999;
Hu et al. 2007).



5
Neutral punctuations of mobile elements in
prokaryotic genomes

5.1 Introducing transposable elements

Transposable elements (TE) are pieces of DNA that can move within the genome that
hosts them, through a process termed transposition. They are widely distributed in
prokaryotes and eukaryotes, and in some cases they constitute substantial fractions of
the genome. Due to their relative autonomy, proliferative ability, and apparent lack of
a useful function, they were considered in the past a paradigm of selfish DNA, i.e. a
molecular parasite that proliferates at the cost of the genome it “infects” (Doolittle and
Sapienza 1980; Orgel and Crick 1980). Nowadays, the relationship between TE and
host genomes is known to be much more complex. Particular TE insertions may be
benefitial for the host, for instance by inactivating genes whose expression is no more
required (Schneider and Lenski 2004). Furthermore, some TE constitute a vehicle for
the exchange of useful genes (e.g. antibiotic resistance genes). TE also facilitate re-
combination, which promotes genomic plasticity and can accelerate adaptation to fast
environmental changes (Kazazian 2004; Treangen et al. 2009; Pál and Papp 2013).
Finally, even if TE did not play any benefitial role, genomes often possess regulatory
mechanisms that keep TE under control and minimize the risk of possibly deleteri-
ous insertions (Kleckner 1990; Chandler and Mahillon 2002; Slotkin and Martienssen
2007).



64 Neutral punctuations of mobile elements in prokaryotic genomes

Insertion sequences (IS) are the simplest form of TE, coding only for the informa-
tion required for their mobility and frequently found in prokaryotic genomes (Mahillon
and Chandler 1998; Chandler and Mahillon 2002). IS are classified in several families,
according to their sequence homology and other molecular features. The incorporation
of new IS families to a genome takes place through horizontal gene transfer (HGT);
afterwards, they are vertically inherited. Once an IS has settled into the genome, it
can transpose—change its location—through mechanisms whose details depend on the
particular IS family. It is a quite general fact, however, that IS elements often increase
its number during transposition. That can occur either as a part of the transposition
mechanism or if the transposition takes place during genome replication and the ele-
ment moves from a location that has already been replicated. IS elements can be lost if
they are unable to reinsert during transposition—a phenomenon termed excision—or
through non-homologous recombination and large deletions. In addition to that, small
deletions and other deletereous mutations result in IS inactivation and subsequent ero-
sion and loss.

The study of the abundance of ISs in different genomes has revealed several cases
of relative recent IS expansions, which have been related to episodes of host restriction
and/or environmental changes (Moran and Plague 2004; Mira et al. 2006). It is a
matter of debate wether such IS expansions ultimately lead to the extinction of the host
(Wagner 2009) or if they represent transitory punctuations that may even play a role
on host evolution (Zeh et al. 2009). A key question that remains unclear concerns the
causes and nature of IS expansions: are they a natural outcome of the IS transposition
dynamics or the consequence of environmental perturbations? Are reductions in the
host population size the main cause of IS expansions? Is it possible that IS stably
coexist with their hosts or does it constitute a doomed relationship? In order to solve
these questions, a better understanding of IS dynamics is required.

The first works modelling TE dynamics date back to the decade of 1980 (Langley
et al. 1983; Kaplan et al. 1985; Moody 1988; Basten and Moody 1991). Inspired by
the idea that IS are selfish elements, they depicted a scenario where TE spontaneously
tend to proliferate and either host regulatory mechanisms or purifying selection keeps
them under control (Charlesworth and Charlesworth 1983; Moody 1988). Due to the
limited data on TE abundance and distribuion available at that time, those works ei-
ther remained mostly theoretical or were mainly addressed to the study of eukaryotic
TE (Montgomery and Langley 1983). Two lines of progress have influenced more re-
cent approaches to the modelling of TE. The first one is the discovery of a complex
repertoire of interactions between TE and the host genome, and among TE themselves,
which has lead to propose an analogy between genomes and ecosystems (Brookfield
2005; Venner et al. 2009). Such an analogy has crystallized in complex models that
consider competition and complementation among TE, as well as different degrees of
activity and fitness cost to the host genome, reproducing some features of the long-term
TE dynamics in eukaryotes (Le Rouzic et al. 2007). The second line of progress is the
ever increasing number of sequenced genomes, which has provided us with an unprece-
dented amount of data on the abundance and distribution of prokaryotic IS. This has
made possible the evaluation of a series of hypotheses concerning IS dynamics (Mira
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et al. 2006; Wagner 2006; Touchon and Rocha 2007; Cerveau et al. 2011; Bichsel et al.
2012). In particular, Wagner (2006) reported a high homology of IS copies within ge-
nomes, which was interpreted on the basis of a fast proliferation dynamics following
the arrival of an IS element and ultimatelly leading to the extinction of the host. This
view has been challenged by Cerveau et al. (2011), who found a large proportion of
IS remnants in Wolbachia genomes, revealing that IS proliferation does not necessarily
imply extinction. Touchon and Rocha (2007) used an statistical approach to investigate
the causes behind IS abundance, finding that it correlates with genome size but not
with HGT rate, host pathogenicity or life style. The fitness cost of IS elements was
estimated by Bichsel et al. (2012), by comparing a simple model with the genomic
data available for IS5. They found that the fitness cost is small enough to consider that,
in practice, IS may be neutral or almost neutral for the host genome.

One of the main problems when modelling IS dynamics is the lack of reliable data
on the transposition rate. Even though some studies have overcome that by using es-
timates obtained for complex transposons—such as Tn10—it is unclear if simple IS
behave in the same way (Kleckner 1990). Moreover, transposition rate is known to
vary with environmental conditions such as stresses (Levy et al. 1993), what makes
experimental measures in laboratory conditions difficult to extrapolate to what is hap-
pening in the wild. On the other hand, it is usually accepted in the models that the main
mechanism for IS loss is excision, with an estimated rate as small as 10−10 for Tn10
(Kleckner 1989). Alternatively, reversion of mutants with an inserted IS3-like element
suggests an excision rate of the order of 10−6 (Christie-Oleza et al. 2008). In compar-
ison to such a wide range of values, it is conceivable that regular deletions and erosion
through accumulation of deleterious mutations play also a role in IS loss. The time
scale of IS dynamics probably falls in between those of laboratory experiments and
nucleotide substitutions, making it difficult to study it in the lab or with conventional
phylogenetic approaches (Wagner 2009).

In this chapter, we take advantage of the huge amount of genomic data currently
available and study the abundance distributions of 36 IS families in 1811 bacterial chro-
mosomes belonging to 1685 different strains. This allows us to evaluate simple models
of IS spreading, obtaining parameter estimations from the maximum likelihood fits.
We evaluate the roles of transposition, HGT, deletions, and selection in determining
IS dynamics. Specifically, we find that the observed abundances are compatible with
a neutral model of IS spreading, where IS proliferation is controlled by deletions in-
stead of purifying selection. Our approach also allows for a detection of recent IS
expansions, that can be interpreted as transient events—punctuations—during which
the equilibrium coexistence state of IS elements and host breaks down.

5.2 Models of IS spreading and loss

We aim at capturing the main mechanisms that are responsible for the spreading and
loss of ISs within and among genomes. To that end, we start by proposing a neutral
model that takes into account the following key processes: (a) IS duplication through
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Figure 5.1: Schematic of the neutral (a) and selection (b) models. A genome contain-
ing k copies of an IS may increase its copy number through duplication of the extant
elements, at a rate kr, or through horizontal transfer, at a rate h. Copies are lost through
deletion at a rate kd. In addition, if the IS has a fitness cost s, genomes that contain it
will die at a rate ks. Model parameters are defined as α = r/d (duplicacion-deletion
ratio), β = h/d (HGT-deletion ratio), and σ = s/d (cost-deletion ratio).

replicative transposition, (b) IS loss through excision, deletion or accumulative delete-
rious mutations, and (c) IS incorporation through horizontal gene transfer (HGT) from
an external source. Notice that the latter is the only mechanism able to introduce new
ISs into a genome with no former copies. As an alternative to this neutral model, we
also consider the case of IS copies entailing a fitness cost. The processes of duplica-
tion, deletion and HGT, complemented with a fitness cost that depends linearly on the
IS copy number, define a model of IS spreading with selection.

A schematic of the models is shown in Fig. 5.1. The key processes in the neutral
model can be summarized into two parameters: the duplication-deletion ratio (α) and
the HGT-deletion ratio (β). The model with selection includes an extra parameter, the
cost-deletion ratio (σ). The advantage of working with relative ratios becomes clear,
provided the difficulty of obtaining reliable estimates of the actual duplication, deletion
and HGT rates. From a formal perspective, working with relative ratios simply amounts
to rescaling time, in such a way that the deletion rate sets the time unit. Furthermore,
the duplication-deletion ratio can be easily interpreted in terms of the deletion bias, a
subject that will be further discussed in this chapter.

Both models can be solved to obtain the expected abundance distribution of an IS
family in the long-term stationary state. The models provide, for each IS family, the
probability of finding a genome with a given number of copies. By comparing that
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with the observed IS abundances one can estimate the value of the model parameters
and test whether the neutral model or the model with selection are valid to explain the
genomic abundances of ISs.

5.2.1 Neutral model

We study the neutral evolution of the number of copies in the genome as a generalized
birth and death process (Fig. 5.1(a)). A complete analysis of this kind of processes
applied to the study of proteomes has been carried out by Karev et al. (2002).

The neutral model focuses on a particular IS family in a single genome. Elements
belonging to the family can be duplicated through replicative transposition at a rate r
and lost through excision or deleterious mutations at a rate d. In addition, new copies
can be inserted through horizontal transfer at a rate h. We define the state of the genome
as the number of copies that it carries, with no upper limit for such copy number.

A genome with k copies will turn into a state with k + 1 copies after duplication
or HGT. Under the assumption that copies behave independently and HGT rate is a
constant, the transition rate k → k + 1 is equal to kr + h. On the other side, the
transition rate k → k − 1 due to copy deletion is equal to kd. As described in Fig. 5.1,
the relevant parameters in this case are α (duplication-deletion ratio) and β (HGT-
deletion ratio).

The duplication, deletion and transfer processes reach a stationary state where the
probability pk of finding a genome with k copies is equal to the following expression
(Karev et al. 2002):

p0 = (1− α)β/α

pk = (1− α)β/α β
αk−1

k!

Γ(k + β/α)

Γ(1 + β/α)
(5.1)

The duplication-deletion ratio, α, plays a central role in the dynamics. If α > 1
the number of copies inside the genome increases further and further until it invades
the genome. This scenario, termed supercritical, is unrealistic in the absence of natural
selection. In contrast, if α < 1 duplications are slower than deletions and the copies
inside the genome tend to dissapear. In this subcritical scenario the extinction of the IS
is prevented by the external contribution of horizontal transfer.

5.2.2 Model with selection

Adding natural selection to the model requires considering a whole population of ge-
nomes instead of a single genome. Inside each genome the dynamics of duplication,
deletion and horizontal transfer remains the same as in the neutral model. In addition,
the IS copy number k determines a fitness cost sk on the host genome. A schematic
of the resulting process is depicted in Fig. 5.1(b). For simplicity we assume that the
fitness cost is linear in the number of copies, sk = ks, and define the cost-deletion
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ratio σ = s/d. From a mathematical point of view, the model with natural selection
can be seen as a multitype branching process whose stationary behavior is described
by its generating matrix A (Moody 1988; Bichsel et al. 2012).

A =



−β0 1 0 0 · · ·
β0 −φ1 2 0 · · ·
0 α+ β −2φ2 3 · · ·
0 0 2α+ β −3φ3 · · ·
0 0 0 3α+ β · · ·
...

...
...

...
. . .


(5.2)

where φk = 1 + σ + α+ β/k.
The population evolves according to the following dynamical equation:

ṗ = Ap + σ

(∑
k

kpk

)
p (5.3)

The stationary composition of the population is described by the eigenvector p∗

associated with the greatest real eigenvalue of A. The stationary abundance distribution
p∗k is equal to the (k + 1)-th component of p∗. (Note that pk takes values from k = 0,
which corresponds to the first component of p). It is worth to mention that the neutral
model can be derived from the selection model in the limit σ → 0.

5.3 Results

5.3.1 Neutral evolution explains abundance and distribution of ISs

Starting from a dataset of 1811 bacterial chromosomes, we selected 1079 chromosomes
belonging to 1014 different bacterial species—multiple strains of the same species
were discarded in order to avoid redundancies. IS elements within those chromosomes
were detected and classified, and their abundance distributions fitted to both models by
means of a maximum likelihood approach (see Appendix C for further details).

The majority of the 36 IS families studied show abundance distributions that fit
well to the neutral model (Fig. 5.2 shows a representative example). This assertion is
supported by the goodness of fit tests, that render non-significant p-values even if no
correction for multiple comparisons is applied. The only exception is IS21 (p = 0.016),
but it becomes non-significant once corrected for the 36 comparisons. The detailed
results of the fits are provided in Appendix C. It is remarkable how a simple, neutral
model can explain the data with only two free parameters. We checked if the addition
of an extra parameter, namely different HGT rates to empty and infected genomes,
can improve the fits. That is not the case for 34 of the 36 families, once corrected for
multiple comparisons, thus suggesting that the HGT rates are similar regardless of the
genome copy number.
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Figure 5.2: Model fit to the IS110 abundance distribution. The histogram is the real
distribution obtained from the genomic data; the blue line is the fit to the neutral model.
For this IS family, the model with selection provides a fit as good as that of the neutral
model. The estimated parameters are α = 0.91, β = 0.27 (goodness of fit p = 0.636).

Next, we took the values of α estimated in the neutral setting and tried to refine
the fits by adding fitness cost and selection. We found that the optimal values of the
selection parameter σ lay close to zero. In concordance, selection does not significantly
improve the fit for any of the IS families (detailed results in Appendix C). That remains
true even if small changes in α are considered. As an alternative, we also explored
the selection model by adopting a completely different range of values of α, between
102 and 103, as suggested by Bichsel et al. (2012). In that scenario, duplications
are overwhemingly more frequent than deletions and negative selection is the only
factor able to prevent an explosive proliferation of the IS. As in the previous case,
no improvement in the fits is observed compared to the neutral model. It is worth to
mention that the estimated selection parameter σ is typically tenfold smaller than the
duplication-deletion ratio. Taken together, our results show that selection need not be
invoked to explain the abundance and distribution of ISs.

5.3.2 Relevance of duplications and HGT for IS spreading

A global analysis of the estimated parameters for the whole set of IS families reveals
that most families behave in a strikingly similar way, with α close to 0.9 (Fig. 5.3(a)).
Noticeable exceptions are Tn3 and Tn7, for which much smaller values of the duplication-
deletion ratio are found. Interestingly, complex regulatory mechanisms have been de-
scribed for those IS families.

In order to evaluate the relevance of HGT in determining the abundance distribu-
tions of ISs we studied the correlation between the HGT rate for different IS fami-
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Figure 5.3: Duplication and HGT play distinct roles in IS dynamics. (a) Histogram of
the estimated duplication-deletion ratios (α) for the whole set of IS families. (b) Cor-
relation between HGT-deletion ratios (β) and the fraction of genomes that contain the
IS family (R = 0.979, each point corresponds to an IS family). (c) Lack of correlation
between HGT-deletion ratios and the mean copy number within genomes with at least
one copy (R = −0.061).
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Figure 5.4: Criticality in IS dynamics. Each point corresponds to an IS family. The
dashed line indicates the critical relation between duplication and gross HGT-deletion
ratios: α + γ = 1. (a) Genomic data obey the critical relation (R = −0.983). (b)
Simulated data resembling non-equilibrium states do not follow the critical relation
(R = −0.230).

lies (measured as parameter β) and the fraction of genomes containing such a family
(Fig. 5.3(b)). A strong correlation is found (R = 0.979), which reflects the fact that
the entry of new IS families into the genome totally relies on HGT. In contrast, no
correlation is found between the HGT rate and the mean number of copies within ge-
nomes with at least one copy (Fig. 5.3(c), R = −0.061). This is in agreement with the
idea that duplication-deletion processes, rather than HGT, is what determines the copy
number once the genome has become “infected” (Touchon and Rocha 2007).

5.3.3 Criticality in IS dynamics

So far in this chapter, we have been taking the HGT rate as an independent parameter.
It makes sense to hypothesize, however, that whenever a piece of DNA is incorporated
via HGT, the probability that it carries a given IS is proportional to the abundance
of such an IS in the host population. In other words, our parameter β, referred to
the incorporation of an IS via HGT, could be interpreted in terms of the product of
a “gross” HGT rate (γ) times the mean abundance of the IS family in the population
〈k〉. Conversely, we define the gross HGT-deletion ratio γ = β/〈k〉. Notice that this
definition does not affect the process of parameter estimation from genomic data, but
only the interpretation of the results.

Figure 5.4(a) shows the relation between the estimated parameters α and γ for
all the IS families studied. It reveals a trend of the data to be located close to the
line α + γ = 1 (correlation coefficient R = −0.983). Parameters α and γ were
estimated independently in order to ensure that the observed trend is not a product of the



72 Neutral punctuations of mobile elements in prokaryotic genomes

fitting algorithm (see Appendix C). If parameters are estimated jointly, the correlation
coefficient rises to R = −0.999.

It can be proven (see Appendix C) that there exists a critical relation α+ γ = 1 so
that the IS dynamics remains stable. If α + γ > 1, the IS proliferates “explosively”,
whereas if α + γ < 1, the IS gets quickly extinct. In this way, if ISs and genomes are
to coexist for long periods of time, duplication, deletion and HGT rates must balance
according to the critical relation, as it indeed happens.

Interestingly, the critical relation allows for discrimination between equilibrium and
IS expansion or regression states. To check for that, we generated datasets by mimick-
ing situations where the HGT rate remains stable while the duplication rate increases
(IS expansion) or decreases (IS regression). We found strong deviations from the crit-
ical relation, even if the simulated values of α and β were kept inside the previously
observed range (Fig. 5.4(b)).

5.3.4 Recent IS expansions are detected as outliers

The models in this work account for the dynamics of ISs in an equilibrium state. The
fact that real abundance distributions fit the theoretical curves means that ISs are in
equilibrium in most genomes. We can also take advantage of the model distributions
to detect outliers: genomes that show an abnormally large copy number for a given IS
family (see Appendix C for further details on the detection procedure). From the per-
spective of the model, outliers can be interpreted as the result of transient imbalances
in duplication, deletion and HGT rates, that break down the critical relation.

The search for outliers gave as a result a set of 35 strains (of a total of 1685), that
span over a small number of species. For instance, all 12 strains of Yersinia pestis are
outliers with respect to IS200, and three of them also with respect to IS21. Genomes
belonging to the genus Shigella (S. boydii, S. dysenteriae, S. flexneri and S. sonnei) are
overcrowded with IS1, IS3 and IS4a. Other examples are four strains of Xanthomonas
oryzae (outliers for IS1595, IS5a, IS5b and IS701) and three strains of Salmonella
enterica subsp. enterica (outliers for IS200). The full list can be found in Table 5.1.

5.4 Discussion

Sequencing techniques have experienced a revolution in recent years, providing re-
searchers with an ever growing amount of data on whole prokaryotic genomes. Nowa-
days, it is becoming possible to exploit all that information in order to address funda-
mental questions on genome evolution. In this chapter, we combined bioinformatics,
statistical analysis and mathematical modelling of genome dynamics in order to ob-
tain a better understanding of the processes that govern the spreading and extinction of
transposable elements within genomes. Specifically, we focused on studying the abun-
dance distribution of ISs in prokaryotic genomes, and found that it can be explained
as the result of a random process that involves duplications, deletions and horizon-
tal transfer. Remarkably, only two parameters –the duplication-deletion ratio and the



5.4 Discussion 73

Table 5.1: List of outlier genomes.
Strain name IS families

Acinetobacter baumanii SDF IS5c (138), IS982 (141)
Bordetella pertussis CS IS481 (199)
Bordetella pertussis Tohama I IS481 (215)
Clavibacter michiganensis subsp. sepedonicus IS481 (89)
Microcystis aeruginosa NIES-843 IS630 (116)
Mycobacterium ulcerans Agy99 IS256 (71), ISAs1 (185)
Salmonella enterica serovar Typhi str. CT18 IS200 (27)
Salmonella enterica serovar Typhi str. P-stx-12 IS200 (27)
Salmonella enterica serovar Typhi str. Ty2 IS200 (27)
Shigella boydii CDC 3083-94 IS1 (194)
Shigella boydii Sb227 IS1 (171), IS3 (132)
Shigella dysenteriae Sd197 IS1 (477)
Shigella flexneri 2002017 IS1 (107), IS3 (96)
Shigella flexneri 2a str. 2457T IS1 (111)
Shigella flexneri 2a str. 301 IS1 (116), IS3 (108)
Shigella flexneri 5 str. 8401 IS1 (110)
Shigella sonnei 53G IS1 (172), IS3 (94), IS4a (35)
Shigella sonnei Ss046 IS1 (172), IS3 (104), IS4a (32)
Streptococcus suis ST1 IS200 (41)
Xanthomonas oryzae KACC10331 IS1595 (68), IS5a (70), IS5b (80), IS701 (65)
Xanthomonas oryzae MAFF 311018 IS1595 (73), IS5a (83), IS5b (73), IS701 (61)
Xanthomonas oryzae PXO99A IS1595 (76), IS5a (89), IS701 (95)
Xanthomonas oryzae BLS256 IS1595 (27)
Yersinia pestis A1122 IS200 (66), IS21 (44)
Yersinia pestis Angola IS200 (99)
Yersinia pestis Antiqua IS200 (68), IS21 (69)
Yersinia pestis biovar Medievalis str. Harbin 35 IS200 (60)
Yersinia pestis biovar Microtus str. 91001 IS200 (47)
Yersinia pestis CO92 IS200 (64), IS21 (43)
Yersinia pestis D106004 IS200 (58)
Yersinia pestis D182038 IS200 (63)
Yersinia pestis KIM 10 IS200 (52)
Yersinia pestis Nepal516 IS200 (63)
Yersinia pestis Pestoides F IS200 (54)
Yersinia pestis Z176003 IS200 (62)

Genomes that contain an abnormally high copy number for any IS family, which
reveals a non-equilibrium state deriving from recent IS expansions. The number in
parentheses is the copy number.
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HGT-deletion ratio– are required to recover the real distributions of all the 36 IS fam-
ilies considered. The simplicity of this result is surprising, provided that transposable
elements are supposed to be engaged in a broad repertoire of intragenomic “ecological”
interactions, that include, among others, competition and complementation (Brookfield
2005; Le Rouzic et al. 2007; Venner et al. 2009). Our analysis suggests, though, that
such complex interactions do not play a leading role in determining the dynamics of
ISs in bacteria.

By fitting the genomic data to a neutral duplication-deletion-HGT model, we were
able to observe two general trends: first, the estimated duplication rates are typically
one order of magnitude greater than the estimated HGT rates; second, the HGT rate
correlates with the number of genomes that host a given IS family, but does not cor-
relate with the IS genomic abundance. These findings together let us conclude, in
agreement with Touchon and Rocha (2007), that transposition and HGT play different
roles in the dynamics of ISs. Whereas HGT determines the spreading of ISs across
genomes, it only plays a minor role once a genome already contains a given IS. In-
side such infected genomes, the abundance of IS copies is mainly driven by stochastic
duplications and deletions. When looking at the duplication-deletion ratio, we found
that it takes a value slightly smaller than one, which can be easily interpreted in terms
of a genomic deletion bias at the level of ISs (Mira et al. 2001). Such a deletion bias
makes HGT essential for the long term persistence of ISs: in the absence of an external
income via HGT, IS copies tend to be deleted faster than they duplicate and, eventu-
ally, they disappear. This mechanism offers a possible explanation to the loss of ISs in
organisms whose life conditions limit their HGT rates, e.g. in anciently host-restricted
endosymbionts (Moran and Plague 2004).

The duplication rate in our model is restricted to those insertion events that are not
lethal for the host genome. As revealed by a recent work (Plague 2010), IS copies tend
to be located in places where their interference with gene expression is least, which
suggests that not every IS insertion is equally acceptable. From the perspective of a
neutral scenario, new insertions are assumed either neutral or lethal (if they interfere
with gene expression). In the latter case, the host genome dies shortly after the insertion
and contributes no more to population dynamics. Hence, only non-lethal insertions add
to the effective duplication rate.

Our results show that purifying selection at the host level needs not be invoked
to explain the abundance and distribution of ISs, because the genomic data are fully
compatible with a neutral scenario. In fact, the small differences in the distributions
derived from neutral and selection models may be not enough for discriminating be-
tween both scenarios. There are, however, some clues, that challenge the prevailing
role tradicionally given to selection. First, provided that there is a deletion bias, purify-
ing selection is no more essential to control ISs. Second, even if there were no deletion
bias and duplications greatly overwhelmed deletions (let us term that duplication bias),
the values we found for the selection-deletion ratio –typically ten-fold smaller than the
duplication-deletion ratio– bring along the possibility that IS control takes place in a
weak selection scenario. This same idea had been pointed out by Bichsel et al. (2012),
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who studied the abundance distribution of IS5 under the assumption of a strong dupli-
cation bias.

In a context of weak selection, the composition of the host population experiences
random variations that may allow fixation of slightly deleterious genotypes (Kimura
1968). Hence, when the host population dynamics is taken into account, opposite pre-
dictions are derived from deletion and duplication biased scenarios. In the former case,
the IS copy number is controlled by deletions, and selection may be neglected, which
results in an effectively neutral dynamics. In the latter case, an explosive IS prolifera-
tion would be the expected outcome, provided that weak purifying selection is unable
to compensate for IS duplications (see Appendix C for technical calculations). There-
fore, finding weak selection rates in a duplication biased scenario necessarily implies
that host genomes are out-of-equilibrium systems, in their way to becoming fully in-
vaded by ISs (Wagner 2006; Wagner 2009). Since the efficiency of selection increases
with the effective population size, it is expected that large host populations are able
to fight IS invasion and prevent explosive IS proliferation. Thus, the actuality of a
duplication bias could be ideally tested by comparing experiments where the popula-
tion sizes ranged from small –weak selection scenario– to large –potentially efficient
purifying selection. Alternatively, one could compare the genomes of bacteria with
different estimated population sizes and look for differences in the abundance of ISs.

At odds with the aforementioned scenario of non-equilibrium proliferative dynam-
ics, our results point towards a stable coexistence of ISs and hosts. Despite the fact
that molecular mechanisms of transposition vary (Chandler and Mahillon 2002), all
the 36 IS families considered show strikingly similar values of the dynamical param-
eters. Even more, duplication, deletion, and HGT rates balance according to a critical
relation, that allows for evolutionary persistence without explosive proliferation. Such
a narrow range of parameter values suggests an implicit role of stabilizing selection in
promoting ISs that somewhat behave like mild, persistent parasites (Nuzhdin 2000). In
fact, IS mutants that fall below the critical relation are doomed to dissapear; those that
surpass it proliferate quickly and –even if they entail a minimal fitness cost– eventually
kill their local host populations, thus causing their own extinction (Rankin et al. 2010).

Nonfunctional IS copies constitute a hallmark of the neutral dynamics based on
deletion bias: ISs are controlled via deletions, which turn functional IS copies into
nonfunctional. In contrast, if ISs are to be controlled via purifying selection, full ge-
nomes rich in ISs tend to disappear, without generation of any IS remnants. At this re-
spect, it is worth to discuss the case of Wolbachia, a genera of anciently host-restricted
endosymbiotic bacteria. Wolbachia endosymbionts have reduced genomes (∼ 1Mb)
and their effective population sizes are though to be very small. The strains of Wol-
bachia can be divided into two gropus: those associated to arthropods (e.g. Drosophila
melanogaster and Culex quinquefasciatus), and those associated to filarial nematodes
(Brugia malayi and Onchocerca ochengi). Importantly, the arthropod-associated group
is known to coinfect hosts and undergo HGT (Werren and Bartos 2001); while the
nematode-associated group seems to be transmitted in a strictly vertical way, which
greatly limits HGT (Bandi et al. 1998). In agreement with the idea that HGT is re-
quired for the maintenance of ISs, only the former group hosts functional IS copies.
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The key finding, however, arises when looking for nonfunctional copies. In a com-
parative analysis, Cerveau et al. (2011) observed that more than 70% of IS copies in
arthropod-associated Wolbachia are nonfunctional. Those nonfunctional copies span
over several IS families, which are also represented in nematode-associated Wolbachia
with no functional copies. This fact suggests that nonfunctional, fragmentary IS copies
may be prevalent in bacterial genomes, even if they have experienced strong reduc-
tions in size; and that deletions are an important force leadind to the loss of ISs. In
contrast, group II introns—another kind of TE in prokaryotes—display a smaller frac-
tion of fragmentary copies and, possibly, its dynamics is driven by selection (Leclercq
and Cordaux 1997).

The neutral dynamics that we present here can give rise to punctuated events of
IS proliferation. They occur whenever the HGT, duplication and deletion rates be-
come imbalanced and the critical relation breaks down. We have identified some of
those events by applying an outlier detection algorithm on the abundance distributions.
According to our analysis, the fraction of such outliers is small, hence confirming that
non-equilibrium states are the exception rather than the norm. It is not rare that multiple
IS families show expansions within the same genome, which suggests that the mech-
anisms behind IS punctuations do not lie at the IS but at the bacterial genome level.
Indeed, some of the IS expansions that we detected have been associated to episodes
where bacteria underwent host restriction (Moran and Plague 2004; Mira et al. 2006).
Tradicionally, the reduced efficiency of purifying selection in smaller populations has
been invoked to explain such expansion events. There are other mechanisms, though,
that may account for IS punctuations in the absence of selection. Transitory alterations
in the deletion and HGT rates may play the same role, as well as stress induced down-
regulation of host regulatory mechanims that limit IS transposition (Levy et al. 1993;
Zeh et al. 2009). In an indirect way, ecological changes –such as host restriction–
may imply reductions in the fraction of essential genes (Lan and Reeves 2002; Holden
et al. 2009), which leads to a higher probability of IS insertions being non-lethal, and
increases the effective duplication rate (Touchon and Rocha 2007).

In sum, our results indicate that the persistence of ISs in bacterial genomes may re-
sult from a neutral process, with little role for purifying selection. Most genomes con-
tain IS abundances compatible with an equilibrium state; albeit punctual imbalances
in the HGT, duplication and deletion rates –but not necessarily in the host population
size– may produce transient IS expansions. Provided the important role of transposable
elements in adaptation and genome evolution (Kazazian 2004; Schneider and Lenski
2004; Oliver and Greene 2009; Zeh et al. 2009), understanding the actual causes be-
hind IS expansions becomes an appealing challenge. From an “ecological” perspective,
the majority of IS families share closely similar values of the relevant dynamical pa-
rameters, which suggests that ISs and host genomes have coevolved towards an state of
stable coexistence. The apparent equivalence of different IS families brings to mind the
concept of a neutral ecosystem (Volvok et al. 2003). Hence, it would be interesting to
further explore the parallelisms between IS dynamics and neutral ecology, which could
provide us with novel insights into the processes that rule the architecture of genomes.
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Coevolution of phages and prokaryotic immunity

The contents of this Chapter are the result of a collaboration with Alexander Lobkovsky,
Yuri Wolf and Eugene Koonin, who share the authorship of the ideas and results pre-
sented here.

6.1 The CRISPR-Cas immunity system

The ubiquitous arms race between viruses and their hosts to a large extent shapes the
evolution of both (Forterre and Prangishvili 2009; Stern and Sorek 2011; Koonin and
Wolf 2012). All cellular life forms have evolved numerous, extremely diverse and
elaborate antiviral defense systems that occupy a substantial part of the genome, at
least in free-living organisms (Haaber et al. 2010; Makarova et al. 2011; Makarova
et al. 2013). Although some widespread defense mechanisms of bacteria and archaea,
in particular the restriction-modification systems, have been known for many years and
thoroughly characterized, recent advances in comparative genomics and experimental
study of virus-host interaction have revealed new antiviral defense mechanisms some
of which function on novel, unexpected principles (Blower et al. 2011; Leplae et al.
2011; Blower et al. 2012; Makarova et al. 2013; Vasu and Nagaraja 2013). Ar-
guably, the foremost of these new advances is the discovery of the adaptive immunity
system that became known as CRISPR (Clustered Regularly Interspaced Short Palin-
dromic Repeats)-Cas (CRISPR-associated genes) (Deveau et al. 2010; Marraffini and
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Sontheimer 2010; Bhaya et al. 2011; Wiedenheft et al. 2012; Koonin and Makarova
2013).

The CRISPR-Cas system employs a unique defense mechanism that involves incor-
poration of virus DNA fragments into CRISPR repeat arrays and subsequent utilization
of transcripts of these inserts (spacers) as guide RNAs to cleave the cognate virus ge-
nome (Jansen et al. 2002; Haft et al. 2005; Mojica et al. 2005; Makarova et al. 2006;
Koonin and Makarova 2009). Thus, CRISPR-Cas represents bona fide adaptive immu-
nity that until the discovery of this system has not been known to exist in prokaryotes
(Goren et al. 2012). However, an important distinction between CRISPR-Cas and
animal immune systems is that CRISPR-Cas modifies the host organism’s genome in
response to infection and hence provides heritable immunity. Thus, CRISPR-Cas is the
most compelling known case of Lamarckian inheritance whereby an organism responds
to an environmental cue by generating a heritable modification of the genome that pro-
vides an adaptive response to that specific cue (Koonin and Wolf 2009). The role of
CRISPR-Cas in antivirus defense was initially predicted on the basis of the detection
of spacers identical to short sequence segments from virus and plasmid genomes and
through comparative analysis of Cas protein sequences (Makarova et al. 2006). At
present, such a role has been successfully demonstrated experimentally (Barrangou
et al. 2007). In the few years that elapsed since this key breakthrough, the CRISPR
research evolved into a highly dynamic field of microbiology with major potential for
applications in epidemiology, biotechnology and genome engineering (Bikard et al.
2012; Carroll 2012; Fabre et al. 2012).

The mechanism of CRISPR-Cas is usually divided into three stages: 1) adaptation,
when new 30-84 base pair long, unique spacers homologous to proto-spacer sequences
in viral genomes or other alien DNA molecules are integrated into the CRISPR repeat
cassettes; 2) expression and processing of pre-crRNA into short guide crRNAs; and 3)
interference, when the alien DNA or RNA is targeted by a complex of Cas proteins
containing a crRNA guide and cleaved within the unique target site (van der Oost et al.
2009; Makarova et al. 2011; Wiedenheft et al. 2012).

Viruses can evade CRISPR-Cas through minimal mutational or recombinational
changes in proto-spacer regions. In several experiments, single proto-spacer mutations
have rendered CRISPR-Cas ineffectual (Barrangou et al. 2007; Andersson and Ban-
field 2008; Deveau et al. 2008) although other CRISPR-Cas systems showed less rigid
specificity (Semenova et al. 0011). Conversely, hosts can regain antiviral immunity
through new spacer additions (Andersson and Banfield 2008; Deveau et al. 2008; Hor-
vath et al. 2008; Heidelberg et al. 2009), thus driving coevolutionary arms races be-
tween the mutating virus and the spacer-incorporating host. This arms race apparently
can go multiple rounds and takes unexpected turns as demonstrated by the recent find-
ing that certain bacteriophages encode their own CRISPR-Cas system which targets
host innate immunity loci, thus turning a defense mechanism into an assault weapon
(Seed et al. 2013).

The CRISPR-Cas systems show a remarkably non-uniform distribution among pro-
karyotes, with nearly all sequenced hyperthermophiles (mostly archaea) but less than
50% of the mesophiles (largely bacteria) encompassing CRISPR-Cas loci (Makarova
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et al. 2006; Makarova et al. 2011; Weinberger et al. 2012). In bacteria, the CRISPR-
Cas loci demonstrate notable evolutionary volatility, with many cases reported when
some of several closely related bacterial strains possessed CRISPR-Cas but the others
lacked it (Jorth and Whiteley 2012; Pleckaityte et al. 2012). Numerous cases of appar-
ent horizontal transfer (HGT) of CRISPR-Cas loci also have been reported (Horvath
et al. 2009; Chakraborty et al. 2010). Furthermore, the CRISPR-Cas loci have been
shown to abrogate acquisition of foreign DNA via HGT (Bikard et al. 2012; Wein-
berger and Gilmore 2012) and consequently are rapidly lost under selective pressure
for horizontal gene transfer as demonstrated by the propagation of antibiotic-resistant
CRISPR- strains of Enterococcus faecalis derived from a CRISPR+ progenitor in a hos-
pital environment (Palmer and Gilmore 2010). Rapid acquisition and loss of CRISPR
spacers leading to intra-population heterogeneity also has been observed in experi-
ments on both archaeal (Erdmann and Garrett 2012) and bacterial (López-Sánchez
et al. 2012) models. Findings like these introduce the more general subject of the
fitness cost incurred by the maintenance of the CRISPR-Cas loci (Weinberger et al.
2012; Westra et al. 2012) that in addition to the curtailment of HGT, is likely to involve
the strong deleterious effect of autoimmunity caused by an occasional incorporation of
proto-spacers from the self DNA (Stern et al. 2010; Paez-Espino et al. 2013).

6.2 Precedent models of CRISPR-Cas dynamics

The arms race between the immune system and viruses, the common events of loss
and horizontal transfer of CRISPR-Cas loci and the fitness cost apparently incurred by
CRISPR-Cas combine to yield complex evolutionary dynamics. These types of dy-
namics provide fertile ground for mathematical modeling with a potential to elucidate
the interactions between different evolutionary processes and possibly discover unex-
pected evolutionary regimes. Thus, recently, several mathematical models of CRISPR-
Cas-virus coevolution have been developed and studied, using different assumptions
and approaches. Essentially, these modeling efforts focused on explaining the striking
features of the CRISPR-Cas systems that became apparent through comparative geno-
mic analyses (Han et al. 2013), namely their fast evolution, enormous diversity and old
end uniformity.

Kupczok and Bollback used maximum likelihood estimates to analyze purely mech-
anistic models of CRISPR evolution in which spacers are added and removed stochasti-
cally (Kupczok and Bollback 2013). The fits of the model to the observed CRISPR-Cas
loci content in collections of closely related bacteria yielded estimates of the spacer
addition and deletion rates, and indicated that single spacer deletions were more likely
than deletions of groups of spacers.

He and Deem were the first to introduce a stochastic population model with ex-
plicit CRISPR dynamics (He and Deem 2010) to analyze the dependence of the spacer
diversity on the relative position in the CRISPR array. Their approach has substantial
limitations in that the CRISPR cassettes in the model have an unrealistically short fixed
CRISPR length (as few as two CRISPR units in the mean field approach) and the im-
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munity is decoupled from the virus growth rate. In a follow-up study, the model was
extended to include the effect of viral recombination (Han et al. 2013).

A similar approach, but with an explicit coupling between immunity and virus
grows rate, also resulted in the observation that leading spacers were more likely to
confer immunity and that a small probability of CRISPR failure was irrelevant to the
dynamics (Childs et al. 2012).

Haerter et al investigated the conditions under which the diversity of CRISPR loci
can be maintained in a spatially inhomogeneous, agent-based model with a small finite
number of viral strains (Haerter et al. 2011; Haerter and Sneppen 2012). These studies
have concluded that spatial structure was required to explain the observed diversity of
the CRISPR loci.

Levin explored the conditions for the maintenance of a costly CRISPR-Cas locus
using a parameter-rich mean field model in which CRISPR immunity was parame-
terized rather than derived from an explicit coevolution dynamics of the spacer and
proto-spacer populations (Levin 2010). This study led to the conclusion that there
were narrow parameter regimes under which CRISPR-Cas provided bacteria with an
advantage over CRISPR-lacking counterparts with a higher Malthusian fitness and that
selection for maintaining CRISPR-Cas was weak, suggesting that antivirus defense
might not be the principal function of CRISPR-Cas. When the model was compared
to experiments that measured the phage/host population dynamics, several apparent
disagreements prompted the authors to conclude that the basic assumptions of the co-
evolutionary arms race models of CRISPR had to be reevaluated (Levin et al. 2013).

Weinberger et al. (2012) aimed to explain the old end uniformity of the CRISPR
loci by examining the dynamics of the diversities of the host and viral populations while
keeping the total population size fixed in a model that derived immunity directly from
the CRISPR locus dynamics. A variant of this model with the additional dynamics of
acquisition and loss of the entire CRISPR-Cas locus yielded the prediction of a viral di-
versity threshold above which CRISPR-Cas became ineffective and was therefore lost
due to the fitness cost associated with its maintenance (Weinberger et al. 2012). This
study further tested the hypothesis that CRISPR-Cas is nearly ubiquitous in hyperther-
mophiles but much less common in mesophiles due to the decreased rate of mutation
fixation in viruses infecting hyperthermophiles. Simulations that included competition
between CRISPR+ and CRISPR- hosts as well as loss and HGT of CRISPR-Cas loci
showed that the immunological benefits provided by CRISPR-Cas outweigh the costs
under moderate virus diversity that appears to be characteristic of hyperthermophilic
environments. These results offered a possible explanation for the higher prevalence of
CRISPR-Cas in hyperthermophiles compared to mesophiles and more generally iden-
tified the conditions for the evolutionary stability of sensor-type defense mechanisms.

We sought to investigate CRISPR-virus coevolution with as few simplifying as-
sumptions as possible and to this end, incorporated explicit population dynamics, al-
lowing virus and host extinction, unlike the previous model (Weinberger et al. 2012)
that formally assumed constant population sizes. This model setting allowed us to
exploit the thoroughly characterized stochastic agent based predator-prey framework,
which reduces to the Lotka-Volterra (LV) formalism in the limit of the infinite popula-
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tion size when fluctuations can be neglected (Hofbauer and Sigmund 1998; May 2001;
Grimm and Railsback 2004), for understanding virus-host coevolution in the presence
of CRISPR-Cas immunity. The results of the model analysis indicate that CRISPR-Cas
stabilizes the stochastic LV system in the intermediate range of viral mutation rate, i.e.
leads to extended coexistence of viruses and their microbial hosts. The model further
reveals the dependence of CRISPR-Cas efficacy (and accordingly, evolutionary stabil-
ity) on the population size, spacer incorporation efficiency, number of proto-spacers
per virus, and viral mutation rate.

6.3 A CRISPR-Cas model with explicit ecological dynamics

The model developed here aims to reproduce the coevolutionary process shaped by
immune interactions between viruses and bacteria or archaea carrying the CRISPR-
Cas system, with an underlying ecological dynamics that controls the population of
hosts and viruses. The model takes into account the fitness cost of the CRISPR-Cas
loci as well as the possibility of their loss and gain via horizontal transfer. Thus, the
model is suitable to study the evolutionary and ecological conditions that determine the
efficacy of CRISPR-Cas and its long-term fate in the host population.

The analyzed system consists of variable numbers of CAS-positive hosts (Nb+),
CAS-negative hosts (Nb−) and viruses (Nv). Hosts (bacteria or archaea) are abstracted
as variable size sets of (possibly non-unique) spacers. Viruses are represented as sets
of Ns distinct proto-spacers. The host-virus system evolves according to a stochastic
dynamics that is simulated using the Gillespie algorithm (Gillespie 1977). We consider
the following events: (i) growth of a CAS- host population with rate Nb− (this sets the
scale of time); (ii) growth of a CAS+ host population with rate Nb+/(1 + c), where
c is the fitness cost of the CRISPR system; (iii) encounter of viruses and hosts with
rates bNb+Nv and bNb−Nv for CAS+ and CAS- respectively; (iv) viral degradation
with rate dNv; and (v) CRISPR-Cas loci horizontal transfer from CAS+ to CAS- hosts
with rate σNb+Nb−/(Nb+ + Nb−). This implementation of horizontal gene transfer
as frequency-independent assumes that the DNA exchange mechanisms are saturated.
The effect of a non-saturated scenario will be briefly described later in this chapter, in
the context of a mean field model.

An encounter between a virus and a host may be immune or productive. An im-
mune encounter occurs if a CAS+ host contains at least one spacer that matches any
of the viral proto-spacers. Alternatively, both CAS+ and CAS- hosts can experience
“innate” immune encounters (whereby the immunity is provided by defence systems
other than CRISPR-Cas that do not depend on spacer acquisition), with a small proba-
bility s. Otherwise, the encounter is productive and results in the death of the host and
a viral burst of size M .

The model further incorporates genome-level dynamics of the host spacers and
viral proto-spacers. Every time a CAS+ host divides, the daughter cell may lose its
CRISPR-Cas locus and all the spacers with probability λ. Moreover, single spacers are
deleted with probability ` (per spacer). New spacers can be incorporated every time an
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immune encounter takes place: each proto-spacer of the infecting virus is added to the
spacer list of the host with probability a. Finally, the new viruses produced at every
viral burst mutate their proto-spacers with probability µ (per proto-spacer). We assume
an infinite allele scenario where mutations always give rise to novel proto-spacers.

6.3.1 Parameter setting

As we are dealing with a stochastic, agent-based model, the choice of parameter values
is limited by the computational cost. We set the model parameters in such a way
that simulation times become affordable while the key properties of the population
remain as realistic as possible. We varied the viral burst size M between 2 and 90
while the degradation rate was fixed at d = 0.5. This parameter choice provides an
equilibrium composition with viruses being 10 to 100-fold more abundant than hosts,
which is close to the actual virus to cell ratios observed in various habitats (Breitbart
and Rohwer 2005; Suttle 2007; Rohwer and Truber 2009). The mutation rate per proto-
spacer µwas varied between 0 and 0.1; the encounter rate b (whose inverse controls the
population size) was varied between 10−3 and 10−4. The CRISPR-related parameters
were set as follows: virus size Ns = 10 to 50 proto-spacers per virus, spacer loss
probability ` = 0.05 or 0.1 and the incorporation probability a between 0 and 0.1.
The probability of innate immunity was fixed to s = 0.1. These parameters translate
into spacer deletion bias so that in the absence of adaptive immunity, the host loses its
spacers. In the region of the parameter space that was chosen to explore, the parameter
values combine to yield a realistic range (10 to 100) of the steady state size of the
CRISPR cassette (Bhaya et al. 2011).

Simulations start with viral and host population sizes equal to their Lotka-Volterra
(LV) equilibrium values (see next section). Viruses are allowed to mutate once prior to
the beginning of the simulation, whereas hosts start as CAS+ with no spacers. Simula-
tion results were averaged over 100 independent realizations.

6.4 Results

6.4.1 Effect of CRISPR-Cas on the host-virus system dynamics

We first study the effect of the CRISPR-induced immunity on the dynamics of the
host-virus system. As a starting point, we simplified the model by assuming that the
CRISPR-Cas loci are constitutively maintained in the host population, i.e. there is nei-
ther loss of CRISPR-Cas loci nor HGT and the fitness cost incurred by the CRISPR-Cas
system is negligible. In terms of the model parameters, these assumptions translate into
λ = σ = c = 0.

To evaluate the effect of CRISPR-induced immunity, it is first necessary to char-
acterize the behaviour of the virus-host system in the absence of CRISPR-Cas. When
the population size is large and fluctuations can be neglected, the hosts and the viruses
comprise a Lotka-Volterra (LV) system that oscillates around an equilibrium state with
N∗b hosts and N∗v viruses. As shown in the Appendix D, the equilibrium sizes of the
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Figure 6.1: Effect of CRISPR in host and virus survival. A) Fraction of simulations
that survive extinction for at least 103 generations (color bar), for varying values of
the viral mutation rate µ and the spacer incorporation probability a. The small black
region at the upper left corner corresponds to viral extinction driven by adaptive immu-
nity whereas the main black region corresponds to the stochastic extinction of hosts.
B) Mean survival time of the population (color bar). The maximum survival time cor-
respond to populations with coexistence at the end of the simulation. Note that the
survival time has a peak as a function of µ or a when all other parameters are fixed.

host and virus populations are N∗b = d/(b(M −Ms− s)) and N∗v = 1/(b(1− s)) re-
spectively, and the period of the LV oscillations is 2π/

√
d. Because the host and virus

populations are finite, either viruses or hosts can become extinct. Simulations of the
model in the absence of adaptive immunity (a = 0) with b = 10−3 show that the mean
survival time for the hosts under the chosen parameters setting is approximately 102

generations whereas survival probability at T = 103 generations is negligible. Thus,
stochastic extinction (Donalson and Nisbet 1999) of the hosts within a timespan of
T = 103 generations is the expected outcome whenever the CRISPR system is unable
to provide antiviral immunity.

We assessed the effect of CRISPR-induced immunity on the host-virus system at
varying values of the viral mutation rate µ and the spacer incorporation rate a, after
a simulation time of T = 103 generations (Fig. 6.1A and 6.1B). According to the
final fate of the system, three regimes become apparent: (i) viral extinction at low µ
and moderate a, (ii) long-term coexistence at an intermediate range of the parameters,
and (iii) stochastic extinction of hosts at greater µ values. Viral extinction is fast and
occurs if the hosts achieve an average fraction of immune encounters greater than 1−
M−1 which makes the mean viral yield drop below one per encounter (this regime
corresponds to the black, upper left region in Fig. 6.1A and 6.1B). In contrast, host
extinction is the result of stochastic fluctuations in the discrete LV model and requires
much longer times to occur (main, right region in Fig. 6.1A and 6.1B). Within a rather
narrow range of both parameters lies the regime of stable virus-host coexistence (the
coloured area in Fig. 6.1A and 6.1B).
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Figure 6.2: CRISPR immunity affects population sizes. Average number of hosts (open
squares) and viruses (black circles) in the population at different values of µ. The
incorporation probability is fixed at a = 0.05. The solid curves correspond to the
analytical estimates based on the average degree of immunity in each simulation.

An important by-product of the CRISPR-induced immunity is that it increases the
host and the viral population sizes (Fig. 6.2). This effect might appear paradoxical
at the first glance but it is a direct consequence of the degree of CRISPR-mediated
adaptive immunity pc achieved by the hosts and can be captured by using pc instead of
the innate immunity s in the above expressions for N∗b and N∗v (solid lines in Fig. 6.2).
A higher level of immunity leads to increased survival of the hosts, and the larger
the host population, the more viruses it can sustain. There exists an optimal virus
mutation rate that maximizes the mean lifetime of the system before extinction and
therefore the total amount of viral particles produced during the infection (Fig. 6.3(b)).
This optimal mutation rate is associated with a relatively high level of CRISPR-induced
immunity, but not as high as to quickly extinguish the virus. Immunity allows for large
populations and long-term coexistence, which translates into sustained production of
viral particles. Conversely, virus mutation rates that render CRISPR-Cas ineffective
result in a decreased size of the host populations and consequently lead to a low total
production of viral particles. In a qualitatively similar manner, both the mean lifetime

Figure 6.3 (facing page): Effective immunity stabilizes the virus-host system. (a) Expo-
nential growth of the mean lifetime before extinction indicates that CRISPR stabilizes
the stochastic virus-host system when hosts have the upper hand. (b) The constant
a transect shows that stabilization is most effective in the intermediate viral mutation
regime when viruses and hosts coexist. (c) A transect of Fig. 6.1B for a constant µ
also shows that virus-host coexistence and LV stabilization are most pronounced in the
intermediate range of spacer acquisition rates a. The gap in the graph corresponds to
extremely long lifetimes.
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of the system and the probability of virus extinction show sharp dependencies on the
spacer acquisition rate a, with the longest lifetime at intermediate a values and a steep
drop in the lifetime associated with the deterministic virus extinction at higher a values
(Fig. 6.3(c)).

Furthermore, the exponential increase of the mean lifetime before extinction with
the population size (Fig. 6.3(a)) indicates that effective CRISPR-Cas stabilizes the sto-
chastic LV virus-host system (a linear increase in the life time is expected without the
stabilization effect). When viruses coexist with the hosts (see Fig. 6.1), the populations
are in a quasi-steady state in which the length L of the CRISPR array, the numberNt of
distinct proto-spacers in the viral population and the probability pc that CRISPR pro-
vides immunity fluctuate around their time-average values. We show in Appendix D
that the probability pc that there is a match between a spacer and a proto-spacer in a
encounter between a random virus and a random host can be expressed as a function of
the ratio L/Nt and the magnitude of the correlation between the relative abundances of
proto-spacers and the matching spacers. Fig. 6.4 illustrates that the steady state value
of the CRISPR associated immunity pc is well approximated by

pc = 1−
(

1− α L

Nt

)Ns

(6.1)

where α is a constant which depends on the strength of the correlation between the
relative abundances of matching spacers and proto-spacers. The spacer-proto-spacer
correlation reflected by α increases with the burst size M but does not seem to depend
on virus size Ns. However, because the ratio L/Nt does not seem to depend on Ns,
and Ns appears in the exponent, adaptive immunity pc grows rapidly with Ns.

To get a handle on the dependence of the CRISPR immunity pc on the model pa-
rameters, we examine L and Nt in Eq. (6.1) separately. In steady state the decay of the
CRISPR array due to spacer loss is balanced by the growth due to immune encounters
with viruses

1

2
L = bNvpNsa (6.2)

L =
2Nsap

1− p

where p = s + pc(1 − s) is the total immunity, and we used the expression Nb =
1/(b(1 − p)) for the average viral population size. Equation (6.2) is obtained under
the assumption that fluctuations in L and p are small and uncorrelated with each other
across a particular population. The empirically computed steady state value of L is
consistently above the prediction indicating that, not surprisingly,L and p are positively
correlated leading to a larger average L for the same p (see Fig. 6.5).

6.4.2 Effect of CRISPR-Cas on viral diversity

The selective pressure exerted by the CRISPR-Cas system on frequent viral proto-
spacers suggests that CRISPR-Cas might directly promote viral diversity. On the other
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Figure 6.4: Factors influencing CRISPR immunity. (a) CRISPR immunity pc is a func-
tion of only the ratio of the length L of the CRISPR array and the total number Nt of
distinct viral proto-spacers. The graph is obtained by varying the spacer incorporation
probability a and the viral mutation rate µ across the range of virus-host coexistence
while keeping the rest of the parameters fixed atM = 10, b = 10−4, d = 0.5, ` = 0.05,
s = 0.1. Solid lines are the predictions of Eq. (6.1) with parameter α = 4 which re-
flects the strength of correlation between spacers and proto-spacers. This correlation
seems to be independent of the number Ns of protospacers per virus. (b) Varying the
viral burst size M at a fixed Ns = 20 shows that the correlation between the spacers
and proto-spacers reflected by the parameter α grows roughly linearly with the burst
size M .

Figure 6.5: .The steady state length L of the CRISPR array computed for a range of
parameters. Spacer incorporation probability a is varied in each group of like-colored
points. The computed value of L is above the prediction (solid curve) of Eq. (6.2).
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Figure 6.6: (a) CRISPR does not promote viral diversity. The number of distinct viral
proto-spacers per virus Nt/Nv (symbols, y-axis) computed for a wide range of a and
µ and b = 10−4 is slightly below what it would be in a freely evolving viral population
of the same size (solid curves). Two different combinations of virus and burst sizes are
represented (red: Ns = 20, M = 10; green: Ns = 10, M = 20). (b) Mutation rate
and burst size determine viral diversity. The number of distinct proto-spacers Nt in a
freely evolving viral population divided by the product of the viral population size Nv
and the virus size Ns is proportional to µ (solid line has unit slope) in the limit of the
large burst size M . Red, green and blue circles correspond to M = 15, 45 and 95,
respectively.

hand, new viruses that manage to escape adaptive immunity tend to rapidly proliferate
thereby reducing viral diversity. We found that neither mechanism operates and that
the steady state number of viral proto-spacers Nt is closely approximated by the diver-
sity in a viral population of the same size evolving in the absence of CRISPR-mediated
immunity (a = 0) (see Fig. 6.6(a)). Thus, the proto-spacer diversity increases in the
presence of CRISPR-Cas only inasmuch as the virus population grows. This counter-
intuitive finding is likely the result of the high number of proto-spacers per viral ge-
nome which means that the beneficial effect of a mutation in a single proto-spacer is
small and accordingly positive selection driving the evolution of new proto-spacers is
weak if not negligible.

The diversity of a freely evolving virus population (Fig. 6.6(a)) is described by a
remarkably simple expression. In the limit of the large burst size we obtain

Nt ≈ µNsNv (6.3)

Perhaps counter-intuitively, Nt is a declining function of the burst size M for a fixed
viral population sizeNv (see Fig. 6.6(b)). This behavior can be explained by noting that
when µ is small and the total number of proto-spacers in a viral population is fixed, each
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burst of a virus carrying a particular set of proto-spacers produces a relatively greater
fraction of these spacers in the whole population and thus results in the reduction of
the number of distinct proto-spacer types.

6.4.3 Conditions for the maintenance of the CRISPR system

Motivated by the patchy distribution of the CRISPR-Cas system in prokaryotic ge-
nomes, we explored the conditions that govern the maintenance or loss of cas genes in
the host population. We first asked how the virus mutation rate affects the efficacy of
CRISPR-Cas. Eq. (6.1) can be used to derive a characteristic viral mutation rate µc at
which CRISPR associated immunity pc is equal to innate immunity s. When the viral
mutation rate is much smaller than µc, CRISPR immunity dominates over the innate
immunity and vice versa. When s� 1 we obtain

µc ≈
αL

sNv
≈ 4αNsa

Nv
(6.4)

where we used Eq. (6.2) to obtain the second expression. Eq. (6.4) predicts that the
threshold mutation rate of the virus, below which CRISPR-Cas is effective, is propor-
tional to the virus size Ns and the spacer acquisition probability a and inversely pro-
portional to the viral population size Nv . If viruses present a larger target for CRISPR
or if hosts are more efficient at incorporating viral genetic material, the viruses have
to mutate faster to escape immunity. Conversely, as the viral population grows, the
concomitant growth of the proto-spacer diversity renders CRISPR ineffective. In other
words, if the viral mutation rate is fixed, there exists a critical viral population size
below which CRISPR provides immunity and above which it is useless.

To further investigate the evolutionary dynamics of CRISPR-Cas, we explore the
“three species system” that consists of CRISPR+ and CRISPR- hosts and viruses. Here
we drop the simplifying assumptions of the preceding sections and assume that the
CRISPR-Cas system entails some fitness cost c and that the CRISPR-Cas loci can be
lost or horizontally transferred at rates λ and σ, respectively. As a first approach to the
problem, let us introduce the mean field approximation that is valid when fluctuations
can be ignored and the fraction of immune encounters in CAS+ hosts is assumed to be
a constant parameter p. The population of CAS+ hosts (Nb+), CAS- hosts (Nb−) and
virus (Nv) follows the equations:

Ṅb+ = Nb+

(
1− λ
1 + c

− b(1− p)Nv +
σNb−

Nb+ +Nb−

)
(6.5)

Ṅb− = Nb−

(
1− b(1− s)Nv −

σNb+
Nb+ +Nb−

)
+
λNb+
1 + c

Ṅv = Nv
(
b(M −Mp− p)Nb+ + b(M −Ms− s)Nb− − d

)
The analysis of the system of equations (6.5) shows that a minimum degree of

CRISPR-induced immunity is required if CAS+ hosts are to survive. That efficacy
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threshold, denoted as pmin, is equal to:

pmin = 1−
(

1− λ
1 + c

+ σ

)
(1− s) (6.6)

If the degree of immunity provided by CRISPR-Cas is smaller than pmin, the
CRISPR-Cas loci are lost. Horizontal transfer and deletion rates are involved in the
expression for pmin together with the fitness cost. Thus, deletion bias plays a role
equivalent to that of the fitness cost with respect to the maintenance of cas genes. Con-
versely, an enhanced rate of horizontal transfer might compensate for fitness cost. Here
we analyse a scenario with equal rates of deletion and horizontal transfer, λ = σ = 0.1,
and focus on the consequences of fitness cost. In modelling horizontal transfer, a sce-
nario with saturated DNA exchange was chosen. It is easy to generalize the model
to include non-saturated scenarios where the horizontal transfer rate is proportional to
the number of hosts (see Appendix D). In such a case, the value of pmin that allows
for CAS maintenance depends on the population size, with greater pmin required in
smaller populations.

The results of simulations addressing the maintenance of a costly CRISPR system
are plotted in Fig. 6.7. With the fitness cost set to c = 1, the fate of cas genes in the host
population has been studied for varying values of the mutation and spacer incorporation
rates Fig. 6.7A). Three regimes can be distinguished: (i) viral extinction, (ii) coexis-
tence of virus and host, with CRISPR-Cas maintained with and (iii) CRISPR-Cas loss.
Not surprisingly, these regimes roughly correspond to those obtained in Fig. 6.1A for
the case without cost. When CRISPR-Cas is ineffective it is rapidly lost (Fig. 6.7B),
whereas the stochastic extinction of hosts takes much longer, especially in large popu-
lations. When CRISPR-Cas drives viruses to extinction, the absence of new infections
renders CRISPR-Cas useless and eventually causes its loss. That would not be the case
if new viruses were introduced stochastically before Cas loss occurred.

The fate of the cas genes is determined by the effectiveness of the CRISPR-Cas im-
mune system. With the parameters used in Fig. 6.7, Eq. (6.6) predicts that a minimum
fraction of immune encounters pmin = 0.505 is required in order to retain CRISPR-
Cas. Such a degree of immune encounters is achieved if the viral mutation rate is
µ < 0.03 (at a = 0.05) or µ < 0.04(at a = 0.1) (Fig. 6.7C). The coincidence between
these values and the boundary of the CRISPR-Cas maintenance region (Fig. 6.7A) sup-
ports the idea of an efficacy threshold given by Eq. (6.6).

6.4.4 Population size, fitness cost, burst size and the number of proto-spacers

To study the effect of the population size on the efficacy and evolutionary fate of
CRISPR-Cas, we focused on the encounter parameter b that is inversely proportional
to the time average population size in the model. By varying parameter b across one
order of magnitude, we find that CRISPR-Cas fails to provide immunity in large pop-
ulations, and as a result, large populations lose CRISPR-Cas loci (Fig. 6.8). This is a
direct consequence of the increase in the viral diversity reflected in Eq. (6.3) and the
resulting decrease in CRISPR-induced adaptive immunity predicted by Eq. (6.1).
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Figure 6.7: The maintenance of a costly CRISPR-Cas system depends on its effec-
tiveness. A) Fraction of simulations where host and virus coexist and cas genes are
maintained after 103 generations (color bar), as a function of a and µ. The small black
region at the upper left corner corresponds to viral extinction. The main black region
corresponds to the loss of cas genes. B) The average duration of CAS maintenance
in the population. In the white region, where the virus gets extinct, CRISPR becomes
useless and cas genes are lost unless periodic reinfections occur. C) Fraction of en-
counters between virus and CAS+ hosts with an immune outcome. The dashed line at
the bottom corresponds to the innate immunity s = 0.1. The dashed line at the top cor-
responds to the 90% probability of an immune encounter at which the viral productivity
is below one for M = 10 and causes viral extinction.
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Figure 6.8: Large population size leads to CAS loss. Upper panel: fraction of simula-
tions where cas genes are retained (red) and lost (blue) as a function of the population
size parameter (inverse encounter rate b−1). Lower panels: typical evolution of single
realizations in small (b−1 = 102, left) and large (b−1 = 103, right) populations. A)
Number of viruses (red), CAS+ hosts (blue) and CAS− hosts (green). B) Fraction of
immune encounters. C) Fraction of hosts that conserve CAS.
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A closer examination of the explicit dynamics of the model yields further insight
into the mechanism of CRISPR-Cas loss (Fig. 6.8). There is an initial phase where
the degree of immunity is high in both small and large populations. However, the
increasing viral diversity reached in large populations leads to a gradual decrease in
the efficacy of CRISPR, resulting in the eventual loss of CRISPR-Cas. Again, it is the
increasing diversity of viruses, reflected by the total number Nt of proto-spacers in the
viral population, which gradually makes the immunological memory ineffectual.

The effect of other biological parameters on the maintenance of cas genes is sum-
marized in Fig. 6.9. The evolutionary outcome does not depend on the value of the
CRISPR-Cas fitness cost as long as it is moderately high. Even for a small fitness
costs, an ineffective CRISPR system becomes an almost neutral trait that may be lost
through neutral drift and population bottlenecks. This feature seems to explain the loss
of CRISPR-Cas at small fitness costs and moderate mutation rates (Fig. 6.9A) even
when Eq. (6.6) predicts its retention. To summarize, the magnitude of the fitness cost
for CRISPR-Cas does not qualitatively affect the outcome of virus-host interaction.
The viral burst size does not seem to perceptibly affect the results either (Fig. 6.9B).
In contrast, changes in the number Ns of proto-spacers per virus dramatically change
the evolutionary fate of CRISPR-Cas. It is easy to see that the greater the number of
proto-spacers per virus, the more difficult it is for the virus to escape the immune mem-
ory. This dependence translates into a sharp transition in the long-term maintenance of
CRISPR when immunity becomes greater than the threshold value pmin as the number
of proto-spacers increases slightly.

6.5 Discussion

The model described here seems to be more realistic than the previous models of
CRISPR-Cas evolution because it includes changing population sizes of both the hosts
and the viruses coupled to the explicit dynamics of the CRISPR array and thus pro-
vides for explicit analysis of the population dynamics within a stochastic agent based
predator-prey framework which reduces to an LV system in the large population limit.
This general modelling framework provides for an explicit analysis of the virus and
host population dynamics and leads to several non-trivial results.

Although it might seem counter-intuitive, CRISPR-Cas immunity stabilizes the
virus-host system for intermediate values of the viral mutation rate, i.e. promotes the
long-term virus-host coexistence, rather than leading to the extinction of the virus. Al-
ternatively, if the mutation rate is fixed, this stabilization only occurs for intermediate
values of the host and virus population size. In large populations CRISPR-Cas is lost,
due to the increase in viral diversity, whereas when populations are small, stochastic
extinction reduces the mean lifetime of the system. This observation links the present
results to those of our earlier modelling study of CRISPR-Cas in which we have shown
that the immunological memory provided by CRISPR-Cas can be effective only at
moderate virus diversities (Weinberger et al. 2012). This result has been suggested to
explain the ubiquity of CRISPR-Cas in hypethermophiles as opposed to the substan-
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Figure 6.9: The effect of the fitness cost (A), burst size (B) and number of proto-spacers
per virus (C) on the evolutionary fate of CRISPR-Cas. A) Fraction of simulations
where CRISPR-Cas is retained after 103 generations, as a function of the mutation
rate µ and fitness cost c. Cases of stochastic host extinction before CRISPR-Cas is
lost are also included. The white dots correspond to the threshold values predicted
by Eq. (6.6). B) Fraction of simulations with CRISPR-Cas conservation at different
values of the mutation rate and the burst size (M ). The black band to the left is due
to viral extinction. The main black area corresponds to CRISPR-Cas loss. C) Frac-
tion of simulations with viral extinction (black), CRISPR-Cas conservation (red) and
CRISPR-Cas loss (blue) at increasing values of the number of proto-spacers per viral
genome. Parameter values: a = 0.05, (µ = 0.01 in C).
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tially lower prevalence in mesophiles given that the rates of mutation fixation are much
lower in hypthermophiles (both hosts and viruses) than in mesophiles (Zeldovich et al.
2007; Drake 2009). The present findings offer a complementary and simpler perspec-
tive on the difference in the prevalence of CRISPR-Cas between hypethermophiles and
mesophiles: extremely large populations in which CRISPR-Cas apparently becomes
useless are known only for mesophiles whereas hyperthermophiles typically exist as
smaller populations (Fuhrman 2002; Schrenl et al. 2003; Whitaker and Banfield 2006;
Wilmes et al. 2009) in which CRISPR-Cas immunity is predicted to be efficient.

Because the mean lifetime of the system (LV-stabilization) has a sharp peak at
intermediate values of the viral mutation rate, the maximum total virus yield before
either viruses or hosts become extinct is reached at a certain intermediate value of the
viral mutation rate. Such a value is neither as high as to make CRISPR-Cas ineffective
nor as low as to allow CRISPR to extinguish the virus.

Counter-intuitively, in the present model, CRISPR-Cas immunity does not specif-
ically promote viral diversity in the sense of driving positive selection for emergence
of new spacers, presumably because the selection pressure on any single spacer is too
weak. In fact, when the viral mutation rate is sufficiently low, the clonal bloom dy-
namics results in slightly reduced viral diversity compared to a freely evolving (with-
out pressure to escape adaptive immunity) population. Virus diversity is directly pro-
portional to the mutation rate and the population size, and accordingly, CRISPR-Cas
promotes virus diversity only inasmuch as the immunity leads to an increase in the
population size.

The model results indicate that the efficacy of CRISPR increases with the number of
proto-spacers per viral genome. Because maintenance of CRISPR-Cas is a threshold
phenomenon, a small decrease in can lead to CRISPR-Cas loss. This finding might
explain, at least in part, why the Protospacer-Associated motif (PAM) the presence of
which in a viral genome is essential for a proto-spacer acquisition has a low information
content (i.e. consists of only two or three nucleotides) (Mojica et al. 2009; Fischer
et al. 2012): it is critical for the host to be able to use multiple proto-spacers. The
fact that the specificity in the selection of proto-spacers exists at all, might reflect the
trade-off between the benefits of the utilization of multiple proto-spacers for efficient
immunity and the avoidance of autoimmunity. Clearly, the mechanisms of self-nonself
discrimination in CRISPR-Cas require further, detailed exploration.
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Conclusions and open questions

Natural History [...] is either the beginning or the end of physical science.
—Sir John Herschel.

7.1 Lethal defection in persistent infections

The concept of fitness is central to evolutionary theory. Individuals in a population sur-
vive and reproduce according to their fitness, so that fitness determines –together with
chance– the evolutionary fate of different genetic variants. However, an operative defi-
nition of fitness is not always straightforward: several traits may contribute to fitness, in
a way that vary with environmental conditions and evolutionary constraints. As soon
as the simplest evolutionary toy models are left behind, multiple selection pressures
differentially affect traits contributing to fitness. The interplay between selective pres-
sures and fitness traits gives rise to novel, sometimes non-intuitive phenomenology, as
it is the case described in Chapter 2.

A successful viral cycle comprises multiple steps, which depending on the envi-
romental conditions may result in different selection pressures. In its simplest form,
viral survival requires cell infection, protein expression, genome replication and virion
assembly. In persistent infections, the virus stays for long periods of time inside the
same cell, thus the selective pressure on infectivity (the ability to infect new cells) is
relaxed. Moreover, if viral proteins are shared inside the cell, defective genomes that
are unable to produce viable proteins can survive provided they are accompanied by
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the wt. In these conditions, wt and defective viruses compete inside the cell in equal
conditions, which may result in the stochastic extinction of the former and fixation of a
defective virus. Eventually, this leads to the extinction of the viral population, because
even in persistent infections the virus must infect new cells from time to time. This
phenomenon is termed lethal defection.

Lethal defection is just an example of the complex outcomes arising from evolution
under multiple selective pressures. It requires infections to be persistent and defective
genomes to be unable to provide complementation or establish productive infections.
In contrast, the process of genome segmentation described in Chapter 4 can take place
if infections are lythic and defective genomes remain infective and capable of mu-
tual complementation. Thus, two apparently unrelated phenomena –lethal defection
and genome segmentation– may share a common origin in the basal production of de-
fective genomes, with physiological details and environmental conditions making the
difference.

The model in Chapter 2 is a toy model, and as such, far too simple to account
for all the potential subtleties involved in lethal defection. However, its simplicity
allows for an easy understanding of the stochastic extinction process and emphasizes
its conceptual significance: the intermittent lack of selection on a trait may lead to its
loss. If such a trait becomes essential from time to time, its loss implies the eventual
extinction of the population. These lethal-defection-like phenomena may jeopardize a
population if the timescale in which a neutral trait is lost is faster than the timescale in
which such a trait becomes essential.

Mutation rate, MOI, population size and cell lifespan during persistent infections
are key factors that control the aforementioned timescales. It can be expected that,
in natural conditions, viruses have evolved to avoid stochastic extinction by adjusting
mutation rates and other biological parameters. In doing so, each time a virus-free cell
population becomes infected at a low MOI, the viral population gets rid of defective
genomes.

The effect of the mutation rate and the MOI in the sensitivity of RNA viruses to
lethal defection has been recently studied by Moreno et al. (2012). They treated four
different viruses with small to moderate doses of the mutagen 5-fluorouracil (FU) at
different MOIs. Interestingly, they found that the antiviral activity of FU was more
pronounced at low MOI in the case of the negative strand RNA viruses, while there
was no dependence with the MOI in positive strand picornaviruses. They interpreted
such a different behavior on the basis that positive strand viruses show a lower ten-
dency to establish interactions in trans (i.e. to share proteins inside the cell). Thus,
an extended model of lethal defection that included coinfections, variable degrees of
protein sharing, and multiple classes of defective interfering genotypes, was proposed
to account for their experimental results. Such a work shows how the relatively simple
idea of lethal defection can be developed into more complete models, which combined
with laboratory experiments contribute to the design of novel antiviral strategies.
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7.2 Optimal drug combination in antiviral therapies

An area of research where the evolutionary response of viral populations to multiple
selective pressures plays a central role is the development of novel antiviral therapies.
Let us see why. Single antiviral drugs impose single selective pressures that viruses
face (with relative ease) by acquiring resistance mutations. In contrast, the use of addi-
tional drugs brings along a scenario with multiple selective pressures that, if properly
managed, complicates viral adaptation. In such a line of thinking, the appropiateness
of sequential versus combined protocols involving two antiviral drugs can be system-
atically explored by means of simple evolutionary models that take into account the
action mechanism of each drug. Such models are especially appealing as a guide to
the design of preliminary in vitro assays, where the absence of an immune system and
structural complexities improves their predictive ability.

In experiments comparing sequential versus combination therapies, a very simple
model can be derived if several conditions hold. First, replication mechanisms do not
include provirus phases (as retroviruses) or latency steps (as herpesviruses), which
would require a careful evaluation of time delays. Second, the viral load decreases
when the therapy is applied, so that competition for resources relaxes, and resource
limitation does not need to be considered in the model. Third, the multiplicity of infec-
tion (MOI) is low, which might result in diminished complementation or interference
by defective genomes.

Under such conditions, intracellular viral dynamics can be modeled as a series
of genome replicative cycles, with each cycle resulting in several copies made from
the templates obtained in the previous one. Thus, the exact meaning of a replicative
cycle depends on the replication mechanism of the virus: for single-stranded RNA
(ssRNA) genomes, the replicative cycle refers to the synthesis of multiple genomic
strands from each complementary strand; whereas for double-stranded DNA (dsDNA)
genomes with semiconservative replication, the replicative cycle is just the semicon-
servative replication itself.

The hypotheses above, together with the known action of the two antiviral drugs,
can be synthesized in a few dynamical equations that allow predicting the response of
the viral population to different protocols and drug doses. As a first result, therapies
involving two similar drugs (two inhibitors or two mutagens) are more efficient when
administered in a combined way. However, if an inhibitor and a mutagen are used, the
sequential protocol may be preferable depending on the drug doses and clinical criteria
(maximal reduction of viral titer versus prevention of viral resistance), as schematically
depicted in Fig. 7.1 (Perales et al. 2012). The root of this dose-dependent behavior lies
at the double role that mutagens play. The exposure of the virus to mutagenic drugs
increases the mutation rate. In lythic infections at low MOIs, no complementation
takes place and defective mutants behave as lethal (no phenomenon resembling lethal
defection takes place). At the same time, an increase in the mutation rate accelerates
the appearance of mutants that are resistant to the inhibitor, thus leading to a nonlin-
ear interaction between the two drugs that could yield unwanted effects (Iranzo et al.
2011).
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Figure 7.1: Optimal protocol choice in multidrug therapies. According to theoretical
models, the optimal protocol for drug administration in multidrug therapies depends on
the action mechanism of the drugs. If two inhibitors (or two mutagens) are to be used,
their efficiency is optimized through simultaneous administration (combined protocol).
However, for mixed inhibitor-mutagen therapies the optimal protocol depends on the
nature of the virus and drug doses: the lower panel shows this dependence for foot-and-
mouth disase virus (FMDV) with guanidine as inhibitor and ribavirin as mutagen. Blue
region (C): combined protocol performs better than sequential administration; red re-
gion (S): sequential protocol—first inhibitor, second mutagen—performs the best; gray
region (Ext): at high drug doses, the virus becomes easily extinct with both protocols;
pink region (*): combined protocol is more effective in reducing the viral titer but it
produces resistant mutants with higher probability than the sequential protocol. The se-
quential protocol when the mutagen is provided before the inhibitor is not considered
because its performance is always worse than the others.
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According to Figure 7.1, the optimal protocol for the administration of an inhibitor
and a mutagen depends on drug doses. In addition, the dose combinations for which a
sequential or a combined protocol is preferred vary depending on biological properties
of the virus. This means that for different viruses the drug doses that make the sequen-
tial therapy more effective (red regions in Fig. 7.1) may change. In practice, a given
protocol is suitable if it becomes advantageous for a wide range of drug combinations.
In the particular case of a sequential inhibitor-mutagen protocol, it is expected to be
more suitable when applied to viruses with a small to moderate yield and a replication
mechanism that produces many copies from the same template (e.g., ssRNA viruses
with replication via minus strands that each produce many plus strand RNA copies).

One of such viruses is hepatitis C virus (HCV), a leading cause of chronic hepatitis,
cirrhosis, and liver cancer in the Western world (Rosen 2011). Preliminar experiments
with HCV, treated with the mutagen ribavirin and a survey of available inhibitors, seem
to confirm that sequential administration performs the best for a wide range of drug
doses. The quantitative assessment of viral parameters and the subsequent application
of a mathematical model to anti-HCV therapy is, at present, ongoing work.

Future perspectives include the translation of different viral replication mechanisms
into dynamical equations similar to those in Chapter 3. It is known, moreover, that mu-
tations that render the virus resistant to drugs may also entail a great fitness cost in the
absence of such drugs (Cong et al. 2007; Sierra et al. 2007). A simple modification of
the model equations shows that such a fitness cost usually makes the sequential proto-
col more profitable, which calls upon an evaluation of multidrug therapies in the light
of resistance cost. Finally, the simulation of an in vivo situation certainly entails addi-
tional difficulties such as the interaction with the immune system, or environmental and
individual characteristics. For the moment, the predictions of any model, once tested
in vitro, should be taken only as a rough guide to apply one or another administration
protocol and to infer minimum drug doses in in vivo assays.

7.3 Genome segmentation and the origin of multipartite viruses

Multipartite viruses are formed by a variable number of genomic segments packed in
independent viral capsids. This fact poses stringent conditions on their transmission
mode, demanding, in particular, a high MOI for successful propagation (many viral
particules must enter the same cell in order to ensure that at least one representative
of each segment is present). Due to their enigmatic nature and the unclear benefits of
the multipartite strategy, the origin of multipartite viruses represents an evolutionary
puzzle.

Experiments on viral evolution carried out by Garcı́a-Arriaza et al. (2004) report
an instance of spontaneous transition from a non-segmented virus to a bipartite form.
Such a finding provides some clues on how multipartite viruses could have originated.
A tentative mechanism can be summarized as follows. First, shortened, defective ge-
nomes spontaneously appear as a result of large deletions. Some of those defective
genomes, that still conserve a subset of functional genes, constitute putative segments.
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Segments are capable of replication, provided they are complemented with the genes
they lack; moreover, their gene products can complement other segments. The accu-
mulation of genomic segments gives rise to a nascent multipartite form of the virus,
i.e. a set of segments that collectively code for all genes. Such a set of segments and
the full virus compete for replication inside and transmission across cells. Under cer-
tain conditions, the segments reach fixation and the original virus becomes extinct: the
transition from a full-genome to a multipartite virus has taken place.

The first step of the process, namely the generation of defective genomes that may
constitute putative segments, is extensively documented in the literature (Bangham and
Kirkwood 1990; Roux et al. 1991). On the other hand, subsequent competition be-
tween the full virus and the complementary set of segments is a key step that requires
careful evaluation. The outcome of such a competition critically depends on two fac-
tors: (1) the MOI, and (2) the selective forces favouring genome segmentation. Even
though the nature of the latter remains a matter of discussion, enhanced virion stabil-
ity, faster genome replication, and greater mutational robustness have been proposed
as reasonable advantages of a multipartite strategy. For any of them, a minimum value
of the MOI is required so that segments outcompete the full-genome virus. We found
in Chapter 4 that such a critical MOI dramatically increases with the number of seg-
ments, in such a way that, under realistic conditions, the aforementioned mechanism
can only explain the origin of multipartite viruses with a small number –two or three–
of segments.

In the light of our results, alternative hypotheses are required to explain the ori-
gin of multipartite viruses of the family Nanoviridae, which are composed of six or
eight segments. One possible mechanism is based on the idea that capsids and genome
size coevolve, the former decreasing in size as the latter becomes segmented. If the
advantage of a multipartite strategy relies on a greater stability of the viral particle, it
can be expected that once the capsid gets adjusted to the segment size, the chemical
interaction between genome and capsid increases and so does the relative fitness advan-
tage of further segmentation (Fig. 7.2(a)). A second mechanism would consist on the
occurrence of one or two “true” segmentation events followed by the acquisition of ad-
ditional segments through the capture of useful genes from other viruses (Fig. 7.2(b)).
At this respect, the search for horizontal gene tranfer in the available viral genomic data
raises as a complementary approach to test such a hypothesis. While the strength of
our theoretical approach lies in its generality and simplicity, the combination of mod-
els, bioinformatic tools and phylogenetic analysis become appealing when it comes to
unveil the evolutionary history of particular viral families.

An aspect that has not been considered yet is the reversibility of the segmentation
process, i.e. the recovery of a full genome from a multipartite virus. This was indeed
observed by Garcı́a-Arriaza et al. (2006), in the context of the experimental transition
to a bipartite virus already mentioned. In their experiment, recombination between
both segments gave rise to a full genome, that could be selected for by imposing a very
low MOI. It is interesting to test if the model developed in Chapter 4 is compatible with
such an experimental observation, and what does it predict in natural conditions. To
that end, let us denote with r the recombination rate, and assume that the evolutionary
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Figure 7.2: Alternative mechanisms for the origin of highly multipartite viruses.
(a) Multipartite viruses with many segments may be the result of a coevolutionary pro-
cess between capsid and genome, such that as the capsid gets adapted to the segment
size, the fitness advantage of further segmentation increases. (b) Some of the segments
may be not the result of a segmentation event, but useful genes captured from an exter-
nal source.

conditions are largely favourable to the bipartite form. In such a case, the fraction of
full genomes (resulting from recombination) in the population is pwt = σr/2 (here σ is
the relative degradation of the wt). According to Garcı́a-Arriaza et al. (2006), reason-
able values for the parameters are σ = 0.1 and r = 2·10−4, which renders pwt = 10−5

(below their experimental detection limit). If the MOI is reduced to a very small value,
no cell will be infected by more than one particle at a time. Therefore, all single seg-
ments will be removed, as they will not find complementing counterparts. In contrast,
if at least one wt viral particle manages to infect a cell, it will grow and eventually, after
several generations, it will become detectable. If the number of cells to be infected is
N and we assume that exactly one virion infects each cell, the probability that at lest
one wt genome is recovered becomes 1 − (1 − σr/2)N . The number of cells used by
Garcı́a-Arriaza et al. (2006) in the experiments was N = 106, so that the probability
of recovering the wt was higher than 99.99%. As a result, it can be concluded that
reversion to the wt at low MOI is almost sure in laboratory conditions. However, the
situation in nature is probably quite different, since the number of susceptible cells to
be infected during natural bottlenecks is much smaller (indeed, the concept of a natural
bottleneck is related to that of a small number of chances to start an infection). For
instance, if N is reduced to 1000 susceptible cells, reversion probability drops below
1%. In the long term, viral capsid and genomic segments experience a coevolutionary
process—the capsid becomes smaller to fit the segment size—, such that a full genome
can hardly be packed into a single capsid. Due to the fact that capsid shapes are dis-
crete (Luque et al. 2010), the coevolutionary process leading to capsid downsizing is
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discontinuous. After such a process has taken place, reversion of a natural multipartite
virus to a non-segmented form is no more possible.

It must be noted that once multipartite viruses have been generated, and given that
the process is not reversible in natural conditions, they can persist at MOIs much
smaller than those required for their fixation. This makes possible that multipartite
viruses with many segments persist: even if the present framework does not explain
the origin of Nanoviridae, once they have appeared (through whatever mechanism)
their survival is guaranteed at moderate (realistic) MOIs. Still, such moderate MOIs
are only attained in plants, which explains why multipartite viruses are not found in-
fecting animals.

From a broader perspective, the framework here proposed for genome segmentation
in multipartite viruses is formally equivalent to the Black Queen Hypothesis (BQH) for
reductive evolution in prokaryotic genomes (Morris et al. 2012). The BQH states that
some Cyanobacteria strains have selectively lost genes whose products are provided
by other species in the microbial community. The loss of genes coding for extracel-
lular proteins becomes favourable if there is a cost associated to their expression and
somebody else already produces (and shares) the protein. Eventually, the BQH predicts
a labour distribution in the microbial community that is analogous to the distribution
of functions among different segments in multipartite viruses. The population of seg-
ments inside a cell is, therefore, equivalent to a community where each segment is
specialized in a single function and all functions must be performed in order to com-
plete a successful infection cycle. But the reciprocal is also true: as well as a minimum
MOI is required for the multipartite virus to appear and persist, the survival of a micro-
bial population under the BQH requires that representative samples of the population
travel together when spreading to new areas. This example shows how some of the
ideas developed in viral evolution may be applicable to the ecology of communities
and vice-versa. It seems that even if the scales vary greatly, the relationships among
the members of an ecosystem, let it be genomic, viral, microbial or eukaryotic, remain
surprisingly similar.

7.4 Dynamics of transposable elements on prokaryotic genomes

Transposable elements (TEs) are widespread in genomes. Formerly considered detri-
mental selfish elements, nowadays they are also though to contribute to genome plastic-
ity through promoting recombination and the interchange of genetic material (Kazazian
2004; Oliver and Greene 2009; Werren 2011; Pál and Papp 2013). At a small scale,
their insertion can alter gene expression; at a greater scale, they facilitate large genomic
rearrangements that change the architecture of the genome. Hence, understanding the
dynamics of TEs is relevant to the study of genome evolution.

It has been postulated that TEs in a genome form a complex ecosystem, with differ-
ent classes of TEs playing distinct ecological roles. For instance, transposition of de-
fective TEs requires complementation by functional TEs, and different TEs may com-
pete for the cellular resources –namely binding to certain DNA-interacting molecules–
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needed for transposition. From this perspective, the dynamics of TEs in a genome
would resemble some of the features observed in other ecosystems, such as popula-
tions of viral quasispecies. Yet, a remarkable difference arises from the fact that, since
TEs live inside a genome, they may be subject to a selection pressure at the level of the
host genome.

In Chapter 5 we have investigated the dynamics of 36 IS families (the simplest kind
of TE in prokaryotes) by comparing their abundance distributions with the predictions
of various evolutionary models. Surprisingly, we found that a very simple model with
as few as two parameters was enough to reproduce the observed distributions. At odds
with the a priori expectation, neither complex “ecological” interactions (i.e. comple-
mentation, competition, interference, etc.) nor purifying selection at the host genome
level are required to explain the overall abundances of ISs. In turn, IS abundances seem
to be the result of a neutral process involving duplications, deletions, and HGT.

Our results are compatible with a scenario where the IS dynamics is biased towards
deletions. In such a scenario, the selfish proliferative tendency of ISs is counteracted
by deletions and inactivating mutations, which take place at a greater rate than dupli-
cations. This differs from the traditional view, stating that IS explosions are prevented
by purifying selection. Although further work is required to discern between both
hypotheses, we point out that: (1) purifying selection alone, if weak—as our data and
some authors suggest—, may be insufficient to control ISs even in the absence of HGT;
and (2) the large number of nonfunctional IS elements detected in some genomes may
be the hallmark of a deletion-biased dynamics.

The fit of the genomic data to the model gives us estimates for the duplication, dele-
tion, and HGT rates. It is worth to mention that, even if their transposition mechanisms
vary at the molecular level, the 36 IS families display quite similar values of the esti-
mated dynamical rates. Such a finding suggests that some kind of stabilizing selection
is behind the values we observe. Indeed, duplication, deletion, and HGT rates balance
according to a critical relation that allows for long term coexistence of ISs and their
hosts. This is the case for most genomes studied, although a minority of them show
signs of being out of equilibrium. In the framework of a deletion-biased IS control,
imbalances among the factors that govern the IS dynamics trigger transient episodes of
IS expansion, which result in a punctuated dynamics for ISs.

Nothing has been said in Chapter 5 about IS diversity at the genome level. Some
preliminar results on that issue are described in the next lines, although they are still
a matter of further study. For the sake of simplicity, we characterize the IS diversity
in a genome by the number of different IS families that the genome contains. The in-
tragenomic abundance of each family is not considered, just their presence or absence.
Therefore, the term “family abundance” within this paragraph refers to the number
of genomes where a given family is present. The distribution of genomic diversity,
i.e. the fraction of genomes that host a given number of different families, is plotted
in figure 7.3. Randomization of the data shows that the observed distribution does not
correspond to a random allocation of families (see details in Appendix C). Indeed,
the observed distribution shows an increased proportion of genomes that are richer or
poorer in families than expected.



108 Conclusions and open questions

5 10 15 20
# different families

0,001

0,01

0,1

F
ra

ct
io

n
 o

f 
g

en
o

m
es

Figure 7.3: Distribution of genomic diversity: fraction of genomes that contain a given
number of different IS families. The histogram corresponds to the real data. The dashed
blue line is the expected distribution for a random allocation of families. The red
line is the distribution generated by a preferential acquisition process with parameter
q = 0.75.

In order to shed light into the factors that may cause the observed distribution we
looked for possible correlations between genome sizes and diversity, as well as co-
occurrences between pairs of IS families. If genomic diversity correlated with the
genome size, larger genomes would host a greater number of families than expected by
chance, thus causing a deviation in the diversity distribution. However, no significant
correlation of this kind seems to be present (see Appendix C). In contrast, the study
of family co-occurrences reveals a nontrivial pattern: co-occurrences among abundant
families are less abundant than expected, while rare families show some significant co-
occurrences (a null model is obtained through redistribution of families, while keeping
constant the original family abundances and the genomic diversity distribution, as ex-
plained in Appendix C). The co-occurrence pattern is depicted in Fig. 7.4. Such a
systematic pattern is somehow intriguing, since its dependence with the family abun-
dance seems to point at a general underlying cause rather than at specific interactions
between IS families.

It is remarkable that both, the diversity distribution and the family co-occurrence
pattern, may be explained by a simple model of preferential acquisition of families –
analogous to a preferential attachment process. In such a model, explained with detail
in Appendix C, the probability that a genome receives new IS’s via HGT is propor-
tional to the number of families it hosts. Such an idea can be easily applied to the
neutral model by writting γ(x) = γ(1 + qx)/Q, where x is the number of families
in the genome and Q = 1 + q〈x〉 is a normalization factor. Normalization assures
that after averaging over all genomes the observed HGT rate remains the same as in
the “basic” neutral model. Simulations of the infection process under this assumption
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Figure 7.4: Standarized co-occurrence matrix between pairs of IS families. For each
pair, a co-occurrence index is calculated based on the cosine distance (see Appendix C).
By simulating a null model, the mean and standard deviation of each co-occurrence
index are obtained. The figure shows the standarized values of the co-occurrence in-
dexes, after substraction of the simulated mean and division by the standard deviation.
Families are ordered according to their abundance (from more frequent to rarer), while
numerical labels in the axes correspond to the alphabetical ordering of families. Red
(green) indicates fewer (more) co-occurrences than expected.

produce diversity distributions that resemble the real one when q takes values around
0.75. Moreover, a co-occurrence pattern similar to the one previously described is gen-
erated. In any case, the biological interpretation of a preferential acquisition pattern, or
even the possibility that it reflects some degree of selection that is not captured by the
analysis of single abundance distributions, remains to be investigated.

Finally, a complete characterization of the IS dynamics would require to quantify
the actual dynamical rates –duplication, deletion and HGT–, for which there are no
accurate estimates yet. We circumvented this difficulty by using relative ratios instead
of absolute rates. Nevertheless, a better knowledge of the absolute rates would be
desirable for a series of reasons. First, it would allow a numerical estimation of the
fitness cost associated to IS elements; moreover, it would inform us about the feasibility
of studying the IS dynamics in the laboratory; finally, it would set a timescale for IS-
related events, that could be used to detect genomes whose ISs are out of equilibrium
and decouple isolated episodes of IS expansion from those due to fast genome-scale
evolution. Our modelling approach to IS dynamics provides a starting point for the
determination of the absolute dynamical rates, as it predicts how the IS composition of
two closely related genomes will diverge in time. A future line of work will consist of
comparing the divergence on IS composition with the genetic distance for a series of
related prokaryotic genomes. Such an approach seems promising for connecting the
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timescales of IS-related events and neutral mutations. Ultimately, that would shed light
on which is the pace of transpositions in the context of the molecular clock.

7.5 Prokaryotic adaptive immunity through CRISPR-Cas system

A stochastic, agent-based mathematical model was developed in Chapter 6 to explore
the coevolution of the prokaryotic adaptive immunity system, CRISPR-Cas, and lytic
viruses. The analysis of the model shows tha CRISPR-Cas immunity can stabilize the
virus-host coexistence, rather than lead to the extinction of the virus. In the model,
CIRSPR-Cas immunity does not specifically promote viral diversity, presumably be-
cause the selection pressure on each single proto-spacer is too weak. However, the
overall virus diversity in the presence of CRISPR-Cas grows due to the increase of
the host and, accordingly, the virus population size. Above a threshold value of total
viral diversity, which is proportional to the viral mutation rate and population size, the
CRISPR-Cas system becomes ineffective and is lost by the hosts due to the associated
fitness cost.

The previous modelling study carried out by Weinberger et al. (2012) has sug-
gested that the ubiquity of CRISPR-Cas in hyperthermophiles—organisms that thrive
in extremely hot environments—, which contrasts its comparative low prevalence in
mesophiles—those growing best in moderate temperatures—, is due to lower rates of
mutation fixation in thermal habitats. The findings exposed in Chapter 6 offer a com-
plementary, simpler perspective on this contrast through the much larger population
sizes of mesophiles compared to hyperthermophiles, because of which CRISPR-Cas
can become ineffective in mesophiles.

The efficacy of CRISPR-Cas sharply increases with the number of proto-spacers
per viral genome. This finding might explain the low information content of the
Protospacer-Associated Motif (PAM) that is required for spacer acquisition by CRISPR-
Cas because a higher specificity would restrict the number of spacers available to
CRISPR-Cas and so hamper the immune response. The very existence of the PAM
migth reflect the trade-off between the requirement of multiple spacers for efficient
immunity and avoidance of autoimmunity. Clearly, the mechanism of self-nonself dis-
crimination by CRISPR-Cas requires further, detailed exploration.
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A
Materials and Methods of Chapter 3

This Appendix contains the experimental Material and Methods relative to Chapter 3,
as well as some mathematical calculations about the model exposed there. The exper-
iments described in the first and second sections were carried out by Dr. Celia Perales
at the laboratory of Prof. Esteban Domingo (Centro de Biologı́a Molecular Severo
Ochoa), with whom we collaborated in this work.

A.1 Cells and viruses

The origin of BHK-21 cells and procedures for cell growth in Dulbecco’s modifica-
tion of Eagle’s medium (DMEM), and for plaque assays in semisolid agar have been
previously described (Domingo et al. 1980; Sobrino et al. 1983). FMDV C-S8c1 is
a plaque-purified derivative of serotype C isolate C1 Santa Pau-Sp70 (Sobrino et al.
1983). An infectious clone of FMDV C-S8c1, termed pMT28 was constructed by re-
combining into a pGEM-1 plasmid subclones that represented the C-S8c1 genome, as
described (Garcı́a-Arriaza et al. 2004; Toja et al. 1999). Thus, FMDV pMT28 used
in the experiments is the progeny of infectious transcripts that express the standard
FMDV C-S8c1. To control for the absence of contamination, mock-infected cells were
cultured and their supernatants were titrated in parallel with the infected cultures; no
signs of infectivity or cytopathology in the cultures or in the control plaque assays were
observed in any of the experiments.
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A.2 Treatment with ribavirin (R) and guanidine hydrochloride (GU)

A solution of GU in DMEM was prepared at a concentration of 50 mM, sterilized by
filtration, and stored at 4◦C. A solution of R in PBS was prepared at a concentration of
100 mM, sterilized by filtration, and stored at −70◦C. Prior to use, the stock solutions
were diluted in DMEM to reach the desired concentration. For infections of BHK-
21 cells with FMDV in the presence of GU, no pretreatment of the cell monolayer
with GU was performed. For infections in the presence of R, cell monolayers were
pretreated during 7 h with 5 mM R prior to infection. After addition of FMDV and
washing of the cell monolayers, infections were allowed to continue in the presence
of a combination of [GU+R] or sequential passages, consisting of a first passage in
the presence of GU and a second passage in the presence of R. For the combination
treatment, the infections were carried out at an MOI of 0.4 PFU/cell. For the sequential
treatment the initial infection in the presence of increasing concentrations of GU was
carried out also at an MOI of 0.4 PFU/cell. The second infection in the presence of
5 mM R was carried out at an MOI of 1.1, 2.0 ×10−2, 2.2 ×10−4 and 1.2 ×10−4

PFU/cell, for GU 3, 6, 12 and 20 mM GU, respectively. Infections in the absence of
GU, R or a combination of GU+R, and mock-infected cells were maintained in parallel;
no evidence of contamination of cells with virus was observed at any time.

A.3 Complete solution of Equation 3.1

The dynamics of the model system can be written in compact form through the vector
n(g), whose components are the number of individuals in each of the classes v and V
after g replication cycles,

n(g + 1) = mAn(g) (A.1)

with A being the transition matrix of the system,

A =

(
iβ 0

i(α− β) α

)
(A.2)

and where we have defined α = 1 − w and β = 1 − µ − w. This dynamical system
can be exactly solved for the initial condition n(0) = {S0, 0} to yield the population
of each viral class after g cycles,

v(g) = S0(im)gβg

V (g) = S0im
g
(
α−β
α−iβ

)
[αg − (iβ)g]

(A.3)

from where the exact expression for the total number of viable elements is obtained
(Eq. [3.2]).
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A.4 Approximate analytic expression for CCS

The expression obtained from Eq. [3.3] yields the dependence between w and i in an
essential non-algebraic way, so it can be only numerically solved. However, if we
assume that µ � 1, an expansion in powers of µ yields the following approximate
dependence for the points on curve CCS :

wc = 1− kγ

kγ − iG +mG(1− w0)G (iG + γµ0/(1− w0))
, (A.4)

where γ = [i+ iG(iG− i−G)]/(1− i). Given the amount of mutagen i, the sequential
treatment causes a larger decrease in the viral titer for values of w > wc, while the
combined treatment is more efficient for w < wc. The preferred therapy changes as
well if the value of w is fixed and the amount of inhibitor increases. For values of i
close to one the combined treatment is better, while the sequential treatment will be
preferred above a certain amount of inhibitor. Curve [A.4] has two important limits,
absence of inhibitor (i → 1) and large doses of inhibitor (i → 0). In the former case,
both treatments become equivalent for values of w → 1 (see Fig. 3.3(f)), a situation
where all genomes produced under replication would be non-viable. Actually, w = 1
cannot be empirically tested, since the complete extinction of the population occurs at
values of w below one, as will be shown. On the other hand, there is a saturation effect
when the amount of inhibitor is very high, in the sense that additional decreases in w
diminish the viral titer but do not change the preference for one or another therapy:

wi→0 ≡ lim
i→0

wc =
mGw0(1− w0)G−1

mGw0(1− w0)G−1 + 1
, (A.5)

which is independent of i.





B
Analysis of the multipartite virus model

This appendix details the mathematical developments supporting results and statements
in Chapter 4. In the first section we obtain the fixed points for the evolution equation
corresponding to pure populations, to two coexisting populations, and to all three coex-
isting viral forms, and study the stability of these solutions. The formal expression for
σcrit results from a condition of stability on the point where ∆1 and ∆2 coexist and the
wt is absent. Next, we develop the analytical form of σcrit for the situations where the
infection configuration at a given MOI follows a Poisson or a multinomial distribution.
In the third section we show how the evolution equation can be generalized to the case
of replication rates depending on the segment length, to the situation where segments
can be lost through mutation (thus leading to an increased replication fidelity of shorter
types), and to a scenario where the productivity of viral particles per cell is constant.
In section B.4, we sketch how the equations can be applied to a multipartite virus by
means of the three-partite case. Section B.5 discusses the mathematical form of the
relationship between genome length and degradative advantage.

B.1 Solutions of the evolution equation

Let us begin by explicitely writing all terms involved in the evolution equation when
differential degradation is the only selective pressure favouring single-segment mu-
tants. We recall that
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pn+1 = Z−1 D
∑
a,b,c

Pr(a, b, cpn)Ma,b,c

ab
c

 (B.1)

where

D =

1 0 0
0 1 0
0 0 σ

 ; Ma,b,c

ab
c

 =

min{a, b+ c}
min{b, a+ c}

c

 ≡
 f∆1|a,b,c

f∆2|a,b,c
σ−1fwt|a,b,c


(B.2)

and Z is a normalization factor

Z =

∥∥∥∥D∑
a,b,c

Pr(a, b, c|pn)Ma,b,c

∥∥∥∥
1

(B.3)

The explicit form for the fitness matrices in concordance with our definitions of
conditional fitness fi|a,b,c is

Ma,b,c =



1 0 0
0 1 0
0 0 1

 if c > |a− b|1 0 0
1 0 1
0 0 1

 if c < |a− b| , a < b0 1 1
0 1 0
0 0 1

 if c < |a− b| , a > b

(B.4)

For the calculation of fixed points and their stability, in the remaining of this sec-
tion, we will use the evolution equation in the replicator form, which reads

p
(n+1)
i =

〈fi〉(n)

Z(n)
, i ∈ {∆1,∆2, wt} (B.5)

and where, for the case of diferential degradation,

〈f∆1〉(n) =
∑
a,b,c

Pr(a, b, c|pn) min{a, b+ c} (B.6)

〈f∆2〉(n) =
∑
a,b,c

Pr(a, b, c|pn) min{b, a+ c}

〈fwt〉(n) =
∑
a,b,c

Pr(a, b, c|pn)σc

and the n−th iteration of the normalization factor under the dynamics is
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Z(n) =
∑
i

〈fi〉(n) =
∑
a,b,c

Pr(a, b, c|pn) (σc+ min{a+ b, 2b+ c, 2a+ c}) (B.7)

The sums in previous expressions are extended to all possible natural numbers a, b, c
that are compatible with the multiplicity of infection m (not explicitly written, for
the sake of notation simplicity). The probability of a given infection configuration
(a, b, c), denoted as Pr(a, b, c|p), can follow a Poisson or a multinomial distribution. In
principle, a Poisson distribution would account for a random infection process, which
should be the typical situation. Nonetheless, some viruses are able to actively control
m, what makes multinomial distributions more appropriate in those cases. For the
sake of notation simplicity, we will omit the dependence on p when it does not lead to
confusion.

The evolution equation is symmetric under the interchange of ∆1 and ∆2 (first and
second components of all vectors involved). This property will be useful in the analysis
of the equilibrium points of the system.

Equilibrium states are compositions such that they are fixed points of the replicator
equation. Therefore, they fulfill the condition

p∗i =
〈fi(p∗)〉

Z
, ∀i ∈ {∆1,∆2, wt} (B.8)

The stability of an equilibrium point can be evaluated by looking at the Jacobian
matrix J of the replicator function evaluated at that point. The equilibrium point is
stable if the Jacobian matrix constitutes a contractive application,

J ≡ D
(
〈fi〉
Z

)
p=p∗

is contractive: |λ| < 1 , (B.9)

where D represents the derivation operator and λ is the largest eigenvalue in absolute
value of J evaluated at the fixed point.

In the following sections we study the equilibrium points in the simplex p∆1 +
p∆2 + pwt = 1, which defines the possible population compositions.

B.1.1 Equilibrium points with pure populations

Pure wt population

Let us study the population defined by vector (0, 0, 1)T , that corresponds to a pure wt
population. If p∆1 = p∆2 = 0, only infection configurations with a = b = 0 will
contribute to the sums in the evolution equation. Hence,

p∆1 = p∆2 =

∑
c Pr(0, 0, c) · 0∑
c Pr(0, 0, c)σc

= 0 (B.10)

pwt =

∑
c Pr(0, 0, c)σc∑
c Pr(0, 0, c)σc

= 1
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As a fixed point, it constitutes an equilibrium state of the system. Regarding its stability,
the Jacobian matrix at that point is 1

σ 0 0
0 1

σ 0
− 1
σ − 1

σ 0

 (B.11)

Since the largest eigenvalue 1/σ > 1, this is an unstable equilibrium point. This is
the reason why the fragmented forms cannot become extinct in the framework of our
model. The intuitive explanation is as follows. We are assuming that the population
of cells is infinite and that the MOI can take values larger than one in a non-vanishing
fraction of infection events (that is, co-infection occurs). On the verge of extinction,
when the composition of the population is (ε, ε, 1 − 2ε), with ε → 0, the probability
of co-infecting a cell with a genome in the wt class (which yields complementation)
tends to one. Since the fragmented forms are more stable, then their population would
increase, thus avoiding extinction. Note that this situation does not necessarily hold
if the number of available cells is finite (in which case stochastic extinction of the
fragmented class becomes possible) or if the MOI equals strictly one (thus preventing
complementation).

Pure ∆1 or ∆2 population

A population containing only one class of segments is unable to replicate, as no com-
plementary segment can be found. As a result, the population in the next generation is
zero (total extinction) and remains no more in the simplex.

B.1.2 Equilibrium points with two coexisting populations

Coexistence of ∆1 and ∆2

Let us consider a generic composition with no presence of the wt class, (x, 1− x, 0)T .
In this case, only infection configurations with c = 0 will contribute to the equations.
The evolution equation for ∆1 yields

p∆1 =

∑
a

∑
b>a Pr(a, b, 0) a+

∑
b

∑
a≥b Pr(a, b, 0) b∑

a

∑
b>a Pr(a, b, 0) 2a+

∑
b

∑
a≥b Pr(a, b, 0) 2b

=
1

2
(B.12)

It is straightforward to see that pwt remains zero in the next generation and, as a result,
p∆2 = 1/2. Therefore, equiabundant composition of ∆1 and ∆2 is an equilibrium
point. Moreover, it is reached in just one step from every point in the border pwt = 0.

The stability of the equilibrium point (1/2, 1/2, 0)T is determined by the Jacobian
matrix
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0 0 −σm4β
0 0 −σm4β
0 0 σm

2β

 where β =
∑
a,b

Pr(a, b, 0| 12 ,
1
2 , 0) min{a, b} (B.13)

Hence, the equilibrium point (1/2, 1/2, 0)T will be stable if
∣∣σm

2β

∣∣ < 1. Since all
factors are positive, the stability condition can be written in the form σ < σcrit, where

σcrit =
2

m

∑
a,b

Pr(a, b, 0| 12 ,
1
2 , 0) min{a, b} (B.14)

That condition needs to be fulfilled if a population composed only by single segments
is to resist invasion by the wt virus.

Coexistence of wt and ∆2 (or ∆1)

Let us consider a population lacking the ∆1 class, with composition (0, x, 1− x). The
abundance of class ∆2 in the next generation can be written as

p∆2 =

∑
b,c Pr(0, b, c) min{b, c}∑

b,c Pr(0, b, c)(σc+ min{b, c})
=

β(x)

σmpwt + β(x)
(B.15)

where

β(x) =
∑
b,c

Pr(0, b, c|0, x, 1− x) min{b, c} (B.16)

For (0, x, 1 − x)T to be a fixed point, and considering the symmetry of the evolution
equations with respect to the change ∆1 → ∆2, also (x, 0, 1 − x)T should be a fixed
point with identical stability properties. This leads to the following equation for the
fixed point

σm =
β(x)

x
(B.17)

The Jacobian matrix for this equilibrium point is

 1/σ 0 0
αc(1−x)−x

σ − k αb(1−x)
σ − k αc(1−x)

σ − x− k
− (1+αc)(1−x)

σ + k −αb(1−x)
σ + k −αc(1−x)

σ + x+ k

 (B.18)

where
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k = (m− 1)x(1− x) (B.19)

αb =
∑
b,c

Pr′(0, b− 1, c) min{b, c}

αc =
∑
b,c

Pr′(0, b, c− 1) min{b, c}

and the probabilities Pr′ should be calculated using a distribution with mean m′ = m
in the Poisson case and m′ = m− 1 in the multinomial one.

The eigenvalues of the Jacobian matrix are 1/σ, (αb − αc − σ)(1 − x)/σ, and
0. As the first one is always greater than one, this equilibrium point is unstable. The
second eigenvalue is smaller than one and corresponds to the movement in the absence
of the ∆1 class (the corresponding eigenvector is (0,−1, 1)T ). This implies that the
equilibrium point (0, x, 1− x)T is indeed a saddle point and, in the absence of ∆1, the
population evolves towards it. The case x = 0 recovers the equilibrium point for a pure
wt virus.

B.1.3 Equilibrium point for all populations coexisting

The symmetry of the evolution equations suggests looking for general solutions of the
form (x/2, x/2, 1− x). Let us apply the conditions for a fixed point to this solution:

x

2
= Z−1

∑
a,b,c

Pr(a, b, c|x2 ,
x
2 , 1− x) min{a, b+ c} (B.20)

1− x = Z−1
∑
a,b,c

Pr(a, b, c)σc = Z−1σm(1− x) ,

where the first equation holds for ∆1 and ∆2, and where we have used the fact (in the
second equation) that the mean value of c over all possible infecting configurations is
mpwt.

The second equation yields Z = σm, and substituting in the first equation we
obtain the condition that the fixed point fulfills:

σm =
2β(x)

x
(B.21)

where

β(x) =
∑
a,b,c

Pr(a, b, c|x2 ,
x
2 , 1− x) min{a, b+ c} (B.22)

The previous condition holds in particular for x = 0, corresponding to the equi-
librium point (0, 0, 1)T . The equilibrium point (1/2, 1/2, 0)T is also obtained if σ =
σcrit. An equilibrium point of the form (x/2, x/2, 1− x)T and x < 1 can only exist if
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σ > σcrit. Hence, there is no equilibrium point in the interior of the simplex while the
border point (1/2, 1/2, 0)T remains stable.

The Jacobian matrix determining the stability of the interior point (x/2, x/2, 1 −
x)T has an involved form that we do not reproduce here. Its eigenvalues are

λ0 =
αa(x)− αb(x)

σ
(B.23)

λ1 = λ0(1− x) + x

λ2 = 0

where

αa(x) =
∑
a,b,c

Pr′(a− 1, b, c|x2 ,
x
2 , 1− x) min{a, b+ c} (B.24)

αb(x) =
∑
a,b,c

Pr′(a, b− 1, c|x2 ,
x
2 , 1− x) min{a, b+ c}

For those values of x that satisfy the fixed point condition, one can check that
the largest eigenvalue evaluated at those points fulfils |λ0| < 1, and similarly for λ1.
Therefore, the equilibrium point in the interior of the simplex, when it exists, is stable.

As a summary, there is one equilibrium point containing ∆1 and ∆2, which is
y∗ = (1/2, 1/2, 0)T , and that point is stable for σ ≤ σcrit. There is a bifurcation
for σ = σcrit, so that for σ > σcrit the equilibrium point y∗ becomes unstable and a
new stable equilibrium point z∗ appears in the interior of the simplex. Moreover, as
σ → σ+

crit the stable equilibrium point z∗ → y∗.

B.2 The curve σ = σcrit for Poisson and multinomial MOI distri-
butions

Here we develop the functional form of the critical curve separating coexistence of the
three genomic types from fixation of the segmented forms (i.e. extinction of the wt) in
the case of a multinomial or a Poisson distribution for the infection configuration at a
fixed MOI.

A multinomial probability distribution reads

Pr(a, b, c|p) = δm−(a+b+c)
m!

a! b! c!
pa∆1 p

b
∆2 p

c
wt (B.25)

(here δ is Kronecker’s delta function). Substituting in Eq. B.14 and using the condition
m = a+ b (since c = 0 on the critical curve), σcrit becomes

σcrit =
1

2m

 4

m

∑
a<m/2

a

(
m

a

)
+
m

2

(
m

m/2

) . (B.26)
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This equation cannot be simplified further, though for m� 1 the functional behaviour
reported in Eq. 4.15 of the main text is obtained.

For a Poisson distribution, σcrit reads

σcrit =
2e−m

m

[ ∞∑
b=1

1

(b− 1)!

(m
2

)b(
2
∞∑

a=b+1

1

a!

(m
2

)a
+

1

b!

(m
2

)b)]
. (B.27)

This expression can be simplified with the aid of Bessel functions. The modified
Bessel function of the first kind is defined as

Iα(x) =
∞∑
n=0

1

n!Γ(n+ α+ 1)

(x
2

)2n+α

, (B.28)

such that

∞∑
b=0

1

b!

(m
2

)b 1

(b+ 1)!

(m
2

)b+1

=

∞∑
b=0

1

b!(b+ 1)!

(m
2

)2b+1

= I1(m) . (B.29)

Using the expression for I0(m), the sums in σcrit can be conveniently rewritten, such
that after some algebra, one can finally obtain

σcrit = 1− e−m [I0(m) + I1(m)] . (B.30)

For x� 1, the Bessel functions behave as

e−xIα(x) =
1√
2πx

, (B.31)

so form� 1, we obtain the same asymptotic behaviour obtained with the multinomial
distribution,

σcrit ∼ 1−
√

2

πm
. (B.32)

B.3 Generalizations of the evolution equation

Further generalization of the evolution equation may be introduced by means of mod-
ifications of the fitness matrices Ma,b,c. First of all, if several replication cycles take
place inside the cell, application of the fitness matrix will have to be iterated accord-
ingly. Let G be the number of replication cycles, then iteration of the fitness matrix
will be denoted as Ma,b,c(G). Note that, in general, Ma,b,c(G) 6= MG

a,b,c, as the rela-
tions among a, b and c that rule the choice of the matrix may change from one to the
following iteration.
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B.3.1 Different replication rates

LetR be the replicative advantage of single segments with respect to the wt. The effect
on the evolution equation can be reduced to a change in the fitness matrices, that now
will depend on R. Let us make this dependence explicit by writing Ma,b,c(R,G). If
the time scale is fixed according to the replication rate of the single segments, fitness
matrices for the first replication cycle take the following form:

Ma,b,c(R, 1) =



1 0 0
0 1 0
0 0 R−1

 if c > |a− b|1 0 0
1 0 1
0 0 R−1

 if c < |a− b| , a < b0 1 1
0 1 0
0 0 R−1

 if c < |a− b| , a > b

(B.33)

The issue is how to find Ma,b,c(R,G) for an arbitrary number of cycles G. To
that end, we need to analyse how the application of matrix Ma,b,c(R, 1) affects the
conditions for matrix choice:

a′b′
c′

 = Ma,b,c(R, 1)

ab
c

 =



 a
b

cR−1

 if c > |a− b| a
a+ c
cR−1

 if c < |a− b| , a < bb+ c
c

cR−1

 if c < |a− b| , a > b

(B.34)

Note that c < |a − b| , a < b ⇒ c′ < |a′ − b′| , a′ < b′, and the same holds if
a > b. This means that, for the last two conditions, the fitness matrix can be iterated in
the simple way Ma,b,c(R,G) = Ma,b,c(R)G. However, condition c > |a− b| does not
necessarily imply that c′ > |a′ − b′|. It is easy to see that when this condition holds
initially the fitness matrix can be iterated for just a certain number γ of cycles, and then
a change of matrix must be done. In particular, the value for γ is

γ = int
{

log(c/|a− b|)
logR

}
+ 1 (B.35)

Taking into account all previous considerations a general expression for the product
Ma,b,c(R,G) (a, b, c)T can be obtained:
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Ma,b,c(R,G)

ab
c

 =



 a
a+ cR1−G

cR−G

 if c < |a− b| , a < bb+ cR1−G

b
cR−G

 if c < |a− b| , a > b a
b

cR−G

 if c > |a− b| , G ≤ γ a
a+ cR1−G

cR−G

 if c > |a− b| , G > γ , a < bb+ cR1−G

b
cR−G

 if c > |a− b| , G > γ , a > b

(B.36)

It is possible to write the previous result in a more compact form

Ma,b,c(R,G)

ab
c

 =

min
{
a, b+ cR1−G}

min
{
b, a+ cR1−G}
cR−G

 (B.37)

From this expression, it is straightforward to obtain the conditional fitness

f∆1|a,b,c = min{a, b+ cR1−G} (B.38)

f∆2|a,b,c = min{b, a+ cR1−G}
fwt|a,b,c = σcR−G

B.3.2 Loss of segments through mutation and replication fidelity

Let ρ be the probability that a genomic segment is lost during replication. As a wt
genome contains two segments, the probability that it gives rise to other complete wt
genome is (1−ρ)2. With probability ρ(1−ρ), replication of awt genome will produce a
mutant of class ∆1 or ∆2. On the other hand, a single-segment genome will reproduce
successfully with probability (1− ρ). These transition probabilities can be included in
a transition matrix T

T =

1− ρ 0 ρ(1− ρ)
0 1− ρ ρ(1− ρ)
0 0 (1− ρ)2

 (B.39)

The fitness matrices for the first replication cycle are simply the product of matri-
ces T ·Ma,b,c
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Ma,b,c(ρ, 1) =



1− ρ 0 ρ(1− ρ)
0 1− ρ ρ(1− ρ)
0 0 (1− ρ)2

 if c > |a− b|1− ρ 0 ρ(1− ρ)
1− ρ 0 (1− ρ)(1 + ρ)

0 0 (1− ρ)2

 if c < |a− b| , a < b0 1− ρ (1− ρ)(1 + ρ)
0 1− ρ ρ(1− ρ)
0 0 (1− ρ)2

 if c < |a− b| , a > b

(B.40)

The effect of a single application of Ma,b,c(ρ, 1) is the following

a′b′
c′

 = Ma,b,c(ρ, 1)

ab
c

 =



(1− ρ)(a+ ρc)
(1− ρ)(b+ ρc)
c(1− ρ)2

 if c > |a− b| (1− ρ)(a+ ρc)
(1− ρ)[a+ (1− ρ)c]

c(1− ρ)2

 if c < |a− b| , a < b(1− ρ)[b+ (1− ρ)c]
(1− ρ)(b+ ρc)
c(1− ρ)2

 if c < |a− b| , a > b

(B.41)
It can be checked that condition c < |a− b| , a < b⇒ c′ < |a′ − b′| , a′ < b′, and

the same holds if a > b. that means that, in such cases, Ma,b,c(ρ,G) = Ma,b,c(ρ, 1)G.
However, if c > |a− b|, the initial matrix can only be iterated for a number γ of cycles
such that d(1− ρ)γ > |a− b|. From here we can extract γ:

γ = int
{

log(|a− b|/c)
log(1− ρ)

}
+ 1 (B.42)

By applying the previous reasoning, the general expression for the product
Ma,b,c(ρ,G) (a, b, c)T can be obtained

Ma,b,c(ρ,G)

ab
c

 =



(1− ρ)G

 a+ c
(
1− (1− ρ)G

)
a+ c+ cρ(1− ρ)G−1

c(1− ρ)G

 if c < |a− b| ,
a < b

(1− ρ)G

 a+ c
(
1− (1− ρ)G

)
b+ cρ

(
1− (1− ρ)G

)
c(1− ρ)G

 if c > |a− b| ,
G ≤ γ

(1− ρ)G

 a+ c
(
1− (1− ρ)G

)
a+ c+ cρ(1− ρ)G−1

c(1− ρ)G

 if c > |a− b| ,
G > γ , a < b

(B.43)
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while the two remaining cases for a > b can be obtained by writing b instead of a and
switching the first and second vector components.

A simpler expression can be attained by using a minimum function

Ma,b,c(ρ,G)

ab
c

 = (1− ρ)G

min
{
a, b+ c(1− ρ)G−1

}
+ c
(
1− (1− ρ)G

)
min

{
b, a+ c(1− ρ)G−1

}
+ c
(
1− (1− ρ)G

)
c(1− ρ)G


(B.44)

Conditional fitness can be derived directly from here and becomes

f∆1|a,b,c = (1− ρ)G
[
min{a, b+ c(1− ρ)1−G}+ c

(
1− (1− ρ)G

)]
(B.45)

f∆2|a,b,c = (1− ρ)G
[
min{b, a+ c(1− ρ)1−G}+ c

(
1− (1− ρ)G

)]
fwt|a,b,c = σc(1− ρ)2G

B.3.3 Constant per-cell viral productivity

The reproductive ratio Πi of class i is defined as the number of particles of that class
produced per cell and per infecting particle of such class. The critical curve separating
the regions of coexistence and extinction of the wt can be obtained from the condition
that the reproductive ratio Πwt of the wt and that of the segmented forms, Π∆1 =
Π∆2 ≡ Π∆ take equal values. Indeed, if for two classes i and j one has Πi > Πj , then
the fraction of class i increases at the expense of class j. Let us consider a population of
bipartite classes at equilibrium. If a small amount ofwt virus is added, the reproductive
ratios are obtained from

Πwt =
〈fwt〉
mε

=
σ
∑
a,b,c Pr

(
a, b, c| 1−ε2 , 1−ε

2 , ε
)

c
za,b,c

mε
(B.46)

Π∆ =

∑
a,b,c Pr

(
a, b, c| 1−ε2 , 1−ε

2 , ε
) min{a,b+c}

za,b,c

m/2
, (B.47)

where ε is the average fraction of wt particles infecting a cell. The critical curve is
obtained in the limit ε → 0. Setting Πwt = Π∆ and discarding terms of order ε and
larger, we obtain

σcrit =
Pr (a, b > 0|1/2, 1/2)

m
∑
a,b

Pr′(a,b|1/2,1/2)
1+min{a+b,2a+1,2b+1

. (B.48)

The probability inside the sum has to be calculated for m′ = m in the case of a Pois-
son distribution and for m′ = m − 1 in the case of a multinomial distribution. The
numerical solution of Eq. (B.48) has been obtained in both cases, and represented in
Figure B.1 together with the asymptotic solution calculated in Chapter 4.
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Figure B.1: Evolutionary regions depending on selective pressures (σ and MOI) un-
der cell-limited resources. Solid circles: multinomial MOI distribution; open squares:
Poisson MOI distribution. Dashed line: asymptotic behaviour as obtained in a situa-
tion of unlimited cellular resources. Compare these results with those represented in
Figure 4.3.

B.4 Evolution with three segments

In this section we expand the model to describe genomes that can be fragmented into
three segments. According to the presence or absence of each segment there are now
seven possible viral classes: three single-segment classes (denoted as A1, A2 and A3),
three two-segment classes (denoted as B1, B2 and B3, that lack first, second and third
segment, respectively), and the wt virus, which contains the whole genome and thus
does not require complementation. All incomplete classes can be complemented by the
wt. Moreover, a two-segment class Bi can also be complemented by a different two-
segment class (Bj , j 6= i) or by the complementary single segmentAi. Single-segment
class Ai can be complemented by their complementary Bi or by a set of classes that
jointly contain all segments j 6= i. In each cell, the offspring produced by a given class
will be the minimum among the number of copies of that class that infected the cell
and the total number of copies for each genomic segment that can be found inside the
cell.

The infection configuration ~v = (a1, a2, a3, b1, b2, b3, c) is defined as the number
of segments of each class that infect the cell (the identity of each class is the intuitive
one: ai for class Ai, bi for class Bi and c for the wt). Degradation of each class is
proportional to the number of segments they have, being zero for the single segments,
(1− σ)/2 for the two-segment classes and 1− σ for the wt.

Specifically, the conditional fitness in the three segment setting takes the following
form

, 
-
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Figure B.2: Transitions to increasingly fragmented forms for genomes with multiple
segments in the case of a cubic relationship between degradative advantage and num-
ber of segments. We represent the critical value of the MOI required for fixation of
single-segment classes (thick line on the left), for σ = 0.5. Other lines indicate further
transitions: from double-single coexistence to triple-double-single, and so on. Com-
pare these results with those represented in Figure 4.4(b).

fwt|~v = σc (B.49)

fBi|~v =
1 + σ

2
min{bi, ai +

∑
j 6=i

bj + c}

fAi|~v = min{ai, aj +
∑
k 6=j

bk + c ∀j 6= i} (B.50)

Once conditional fitness are defined, the replicator equation that rules the evolution
of the population can be expressed in the same way as in the two segment setting.

B.5 On the relationship between genome length and degrada-
tive advantage

In our analyses of genomes with multiple segments, we have assumed an inverse linear
relationship between the length of a genome (the number of segments is contains) and
its selective advantage. Though this might be a reasonable assumption if one believes
that the speed at which the elements of a genome are degraded is constant, other sce-
narios are possible. In order to assess the robustness of our model under changes in this
relationship, we have studied the situation where the relevant ingredient for stability is
how genomes are packed inside capsids. A shorter genome occupies a smaller volume,
thus reducing the interaction with the capsid. Let us further assume that there is a linear
relationship between volume and stability. In this case, the selective advantage σn of a
genome with n segments takes the form
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σn = 1− (n1/3 − 1)(1− σ)

N1/3 − 1
, (B.51)

where we have imposed σ1 = 1 and σN = σ, which hold by definition. We have
numerically studied this scenario for genomes with different number of segments and
analysed the values of MOI at which the transition to fragmented forms with an in-
creasing number of segments occurs. The results are depicted in Figure B.2. Though
some quantitative differences arise, the qualitative results are robust.





C
Bioinformatics, statistics and additional
calculations for Chapter 5

This appendix contains information about the bioinformatics and statistical methods,
as well as some analytical calculations and additional results concerning Chapter 5.
The extraction and classification of IS data from prokaryotic genome sequences (sec-
tion C.1) was carried out by Dr. Manuel J. Gómez and Dr. Francisco J. López de Saro
(Centro de Astrobiologı́a), wih whom we collaborated in this work.

C.1 IS data retrieval and classification

File collections containing orientation and coordinates of protein coding genes (*.ptt),
predicted protein sequences (*.faa) and chromosomal nucleotide sequences (*.fna) of
partially and completely sequenced prokaryotic genetic elements were downloaded
from the bacterial section of the NCBI Genome database, on October 24, 2012, as
well as a summary file containing a table that linked accession numbers, replicon type
(chromosome, plasmid) and taxonomic name. The working, curated data set consisted
of 2074 completely sequenced, circular, bacterial chromosomes, out of which 1811
contained at least one IS (harboured by 1685 species or strains).

The whole collection of predicted proteins from the genomic data set (6, 055, 750
sequences) was aligned with HMMER 3.0 against the Pfam 26.0 database1 of domain
profiles (Punta et al. 2012), using domain-specific score thresholds to filter the hits. The

1pfam.sanger.ac.uk
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output of HMMER was processed with a Perl script to reconstruct protein architectures
using a positional comeptition strategy to assemble the predicted protein domains and
allowing no overlaps. IS-related proteins were identified by comparing the new anno-
tations against a list of 286 architectures that were considered as characteristic of pro-
teins ecnoded by IS elements and that were composed by a restricted collection of Pfam
domains . The architecture list was generated by manually extracting IS-encoded pro-
tein descriptions from the Pfam and the ISfinder databases (www-is.biotoul.fr/is.html)
(Punta et al. 2012; Siguier et al. 2006). We were able to identify 82, 516 IS-associated
genes. Once IS-related proteins had been identified in the set of bacterial genomes, IS
elements were predicted following a strategy, articulated in four steps, that took into
account that ISs can be composed of several genes and that they can appear in chro-
mosomes as tandem insertion, difficulting the definition of their boundaries. In the first
step, clusters of consecutive IS genes (separated by intergenic distance≤ 500 bp) were
identified in all genomes to calculate distance distributions for all possible pairs of IS-
related gene types (as defined by the architecture of the corresponding gene products).
In the second step, cluster detection was repeated, this time restricting the allowed in-
tergenic distances to gene pair-specific distance ranges, deduced from the previous step
(mean±2SD). Clusters detected in this step had ten genes at most. In the third step, the
resulting collection of clusters was used to manually derive a list of 209 clusters that
were accepted as representatives of the genetic organization of complete IS elements,
on the basis of correspondence to described IS structures , abundance (assuming that
highly abundant and distributed clusters should correspond to complete IS elements),
and length (in terms of number of genes). Each of these clusters was classified as be-
longing to a particular IS family. Accepted clusters had three genes at most. In the
fourth step, each IS gene cluster detected in the second step was decomposed into all
possible collections of non-overlapping accepted sub-clusters to identify the collection
that maximized the length of sub-clusters. Each sub-cluster from the optimal collection
was then assigned to a particular IS family following the correspondences established
in the list of accepted clusters. 57, 515 sub-clusters were detected, each of them repre-
senting a complete IS, that comprised 69, 438 (84%) of the IS-related genes.

C.2 Data pre-processing

In order to compare the genomic data with the models we assume that the dynamics
of a particular IS family is similar in all genomes. Therefore, the genomic frequencies
observed for a given IS family can be interpreted on the basis of the probability pk
of finding a genome with k copies in a population of independent genomes. We also
assume that different IS families behave independently, so that it is possible to analyse
them separately. In order to minimize the possible bias introduced by closely related
strains, we restricted our analysis to a dataset composed of only one strain per species.
Athough genomes from distinct species may be not completely independent, the av-
eraging on many non-related groups compensates for that. As a confirmation, taking
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one genome per genus and repeating the analysis did not change our results. The full
dataset with multiple strains per species was only used to detect outliers.

Some extra pre-processing of the genomic data is required, resulting from the fact
that the HGT-deletion ratio β is correlated to the fraction of genomes that contain the IS
family of interest. That implies that estimation of β may be biased if the absence of an
IS in some genomes is not due to the natural gain-loss dynamics but to other factors that
make the IS unable to settle down in such genomes. In order to minimise that risk, we
excluded from this study those genomes which do not contain any IS family at all. The
remaining dataset contains 1079 bacterial chromosomes (harboured by 1014 species).
As it is quite a large number, special cases of genomes that may be non-invadable by
certain IS families are not expected to introduce a significant bias into the estimation
of β. Alternatively, IS familes that are very specific to certain genomes can be detected
through their poor fits.

Genomes belonging to the main phyla Proteobacteria and Firmicutes + Tenericutes
were analysed separately at a first stage of the work. Since we obtained similar results
in both groups, we pooled the data from all phyla in a single dataset.

C.3 Parameter estimation, goodness of fit test and model com-
parison

IS families that appear in fewer than 20 genomes were discarded, thus preventing un-
reliable estimations associated to small datasets. The following parameter estimation
was done independently for each of the 36 remaining IS families. First, the frequency
distribution of the family was extracted from the genomic data. Then, for each model a
maximum likelihood approach was applied to determine the parameters that best fit the
model to the data. As a numerical optimization algorithm, we used the simplex method
implemented in MATLAB2.

Some care must be taken in order to evaluate the role of selection. The key diffi-
culty is the fact that parameter estimation in the selection model is confused by multiple
local maxima in the likelihood function. Since local maxima with similar values are
distributed along the whole parameter range, parameter estimation becomes strongly
dependent on their initial guesses. As a result, an a priori estimation of some parame-
ters is required before the selection model can be fitted to the data. Because the neutral
model is a particular case of the selection model, we took α from the neutral setting
and tried to refine the fit by adding selection. Alternatively, we explored the selection
model by choosing a qualitatively different range of values of α, between 102 and 103

(as suggested in (Bichsel et al. 2012)); and also the case of a small (but greater than
one) α = 2.

The goodness of the fits was evaluated by means of a likelihood ratio test that
compared the observed and expected frequencies for each abundance interval. This
test is similar to a Chi-square test, but more suitable if any of the differences between

2MATLAB version 7.6.0.324 (R2008a). Natick, Massachusetts: The Mathworks Inc.
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the observed and expected frequencies is greater than the expected frequency. Differ-
ent abundance intervals have been defined for each IS family in such a way that at least
two occurrences are expected for each interval (alternative criteria have been tried with-
out major changes in results). The p-values associated to the test statistics have been
numerically computed by simulating a sampling process on the expected distribution.
Comparison between neutral and selection models was done in terms of the corrected
Akaike Information Criterion (Akaike 1974), both models containing two degrees of
freedom (because α is fixed in the model with selection).

The results of the fits to the neutral model are shown in Table C.1. It shows the fit
parameters and the p-value associated to the goodness of fit test for two variants of the
model: either with a single HGT rate β (“One HGT rate”, as explained in Chapter 3) or
with different HGT rates in empty and IS hosting genomes (“Two HGT rates”, param-
eter β0 accounts for HGT rate in empty genomes). The latter scenario would account,
for instance, for IS families that provide the host genome with some kind of resistance
against the entry of additional IS copies. The last column in the table contains the dif-
ference in the corrected Akaike Information Criterion for both models (with two and
three degrees of freedom, respectively). Since we are dealing with nested models, the
∆AICc is equivalent to a likelihood ratio test and follows a Chi-squared distribution
with one degree of freedom. Therefore, ∆AICc > 6.64 implies that the “two HGT
rates” model is more probable to be true at a (non-corrected by multiple comparisons)
significance level of 0.01.

Table C.2 contains the results of the fit to the model with selection. The case where
the value of α was taken from the neutral fit rendered selection parameters σ ≤ 10−5

and it is not included in the table. In the scenarios with α = 103 and α = 2, the
∆AICc values show that the fits to the model with selection are as good as—but not
better than—those to the neutral model.

C.4 Detection of outlier genomes

For each IS family, outliers are genomes that contain a large copy number, so large
that it cannot be explained by any of the models. Specifically, let us define Pk as the
probability of having k or more copies, Pk =

∑
i≥k pi. The probability that a genome

with k or more copies is found in a sample of G genomes is sk = 1 − (1 − Pk)N .
The value of sk is indeed the significance level, already corrected by the sample size
(Šidák 1967). It can be set to the desired value in order to numerically obtain the
copy threshold ks. Thus, genomes with more than ks copies are outliers at a corrected
significance level s. Copy thresholds are different accross IS families, thus detection
of outliers was carried out independently for each family. We tried s = 0.05 and
s = 0.01 with similar results. As we looked for outliers in the full dataset (including
more than one strain per species), we took a sample size N = 1811 chromosomes.
That is a conservative choice, since the actual number of independent instances in the
dataset may be smaller; however, similar results were obtained by setting N = 1079
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Table C.1: Fit of the data to the neutral models.

One HGT rate Two HGT rates

N α β p α β β0 p ∆AICc

IS1 46 0.95 0.01 0.44 0.97 -0.18 0.02 0.48 -0.77
IS110 529 0.91 0.27 0.53 0.88 0.46 0.22 0.64 5.00
IS1182 227 0.88 0.10 0.34 0.90 0.02 0.10 0.36 -1.46
IS380 67 0.92 0.02 0.54 0.92 0.06 0.02 0.53 -2.15
IS1595 135 0.86 0.06 0.35 0.94 -0.33 0.08 0.63 9.33
IS1634 34 0.93 0.01 0.58 0.87 0.41 0.01 0.58 -0.48
IS200 422 0.77 0.26 0.29 0.84 0.02 0.30 0.52 5.00
IS200/IS605 105 0.78 0.05 0.58 0.72 0.35 0.05 0.58 -1.21
IS21 498 0.81 0.30 0.02 0.89 -0.08 0.39 0.33 23.9
IS256 376 0.92 0.16 0.59 0.93 0.11 0.16 0.57 -1.56
IS3 702 0.91 0.40 0.29 0.92 0.38 0.41 0.31 -1.91
IS30 243 0.89 0.10 0.46 0.91 -0.01 0.11 0.53 -0.67
IS481 63 0.87 0.03 0.51 9,86 0.09 0.02 0.51 -2.11
IS4a 57 0.91 0.02 0.68 0.91 0.05 0.02 0.67 -2.21
IS4b 40 0.90 0.02 0.50 0.82 0.42 0.01 0.52 -0.31
IS5a 264 0.92 0.10 0.53 0.94 -0.02 0.12 0.60 0.22
IS5a/b 135 0.82 0.06 0.35 0.92 -0.32 0.08 0.50 7.46
IS5b 285 0.93 0.11 0.61 0.90 0.33 0.09 0.48 3.83
IS5c 54 0.91 0.02 0.43 0.94 -0.18 0.02 0.57 -0.92
IS5d 53 0.95 0.02 0.60 0.96 -0.01 0.02 0.75 -2.21
IS6 103 0.87 0.04 0.54 0.86 0.12 0.04 0.45 -1.87
IS607 52 0.88 0.02 0.54 0.85 0.17 0.02 0.58 -1.86
IS630 253 0.95 0.08 0.67 0.95 0.04 0.09 0.73 -1.75
IS66a 177 0.90 0.07 0.64 0.90 0.07 0.07 0.64 -2.07
IS66b 31 0.93 0.01 0.14 0.98 -0.42 0.02 0.51 2.60
IS701 106 0.91 0.04 0.26 0.91 0.04 0.04 0.61 -2.12
IS91 86 0.82 0.04 0.43 0.92 -0.35 0.05 0.64 4.15
IS982 04 0.95 0.03 0.50 0.94 0.13 0.03 0.55 -1.56
ISAs1 91 0.92 0.03 0.48 0.88 0.26 0.03 0.54 -0.25
ISAzo13 22 0.80 0.01 0.50 0.70 0.31 0.01 0.58 -2.27
ISL3 277 0.91 0.11 0.41 0.93 -0.03 0.13 0.54 1.10
ISNCYa 166 0.86 0.08 0.23 0.64 1.00 0.05 0.54 24.0
ISTnp1 351 0.92 0.14 0.62 0.92 0.15 0.14 0.61 -2.03
PDDEXK 102 0.91 0.04 0.66 0.88 0.20 0.03 0.67 -0.99
Tn3 98 0.69 0.06 0.52 0.48 0.54 0.05 0.54 1.25
Tn7 64 0.42 0.05 0.55 0.31 0.22 0.05 0.56 -1.99

Parameter β0 is the HGT rate to empty genomes. The p-values correspond to the
goodness of fit tests. ∆AICc > 6.64 implies that the second model is more probable
to be true at a (non-corrected) significance level of 0.01.
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Table C.2: Fit of the data to the selection models.

α = 103 α = 2

β σ ∆AICc β σ ∆AICc

IS1 15 57 -2.6E-5 0.03 0.06 -2.9E-5
IS110 293 102 4.2E-6 0.59 0.11 3.1E-6
IS1182 112 135 1.1E-5 0.22 0.15 8.8E-6
IS1380 25 85 6.4E-6 0.05 0.09 5.3E-6
IS1595 68 164 1.9E-6 0.14 0.19 1.3E-6
IS1634 12 77 4.4E-7 0.02 0.08 -1.8E-6
IS200 333 294 8.3E-6 0.67 0.36 8.0E-6
IS200/IS605 69 283 1.8E-6 0.14 0.35 1.6E-6
IS21 367 241 5.2E-6 0.73 0.29 4.7E-6
IS256 171 87 9.8E-6 0.34 0.09 8.3E-6
IS3 436 95 1.7E-6 0.87 0.10 1.4E-6
IS30 116 122 3.2E-6 0.23 0.14 9.5E-7
IS481 29 144 1.5E-6 0.06 0.16 1.3E-6
IS4a 22 95 6.0E-6 0.04 0.10 5.3E-6
IS4b 17 114 2.7E-6 0.03 0.13 2.0E-6
IS5a 111 86 1.7E-5 0.22 0.09 1.0E-5
IS5a/b 79 225 1.7E-6 0.16 0.27 9.1E-7
IS5b 120 80 4.6E-6 0.24 0.09 1.1E-6
IS5c 22 104 1.0E-6 0.04 0.11 -1.4E-6
IS5d 17 49 -1.9E-4 0.03 0.05 -2.0E-4
IS6 49 145 3.3E-7 0.10 0.16 -3.7E-7
IS607 23 130 3.2E-6 0.05 0.14 2.8E-6
IS630 90 53 -6.8E-4 0.18 0.06 -6.8E-4
IS66a 80 118 1.9E-6 0.16 0.13 -1.6E-6
IS66b 11 76 1.7E-5 0.02 0.08 1.5E-5
IS701 44 100 2.2E-5 0.09 0.11 2.0E-5
IS91 48 217 1.6E-6 0.10 0.26 1.4E-6
IS982 31 53 -1.6E-4 0.06 0.06 -1.6E-4
ISAs1 36 93 2.5E-6 0.07 0.10 2.9E-7
ISAzo10 13 252 3.4E-6 0.03 0.30 3.3E-6
ISL3 124 100 9.3E-6 0.25 0.11 6.5E-6
ISNCYa 87 160 1.5E-6 0.17 0.18 2.6E-7
ISTnp1 155 83 1.9E-5 0.31 0.09 1.6E-5
PDDEXK 42 103 1.1E-5 0.08 0.11 8.6E-6
Tn3 83 450 5.8E-7 0.16 0.59 5.6E-7
Tn7 113 1368 2.3E-7 0.22 2.16 2.2E-7

The ∆AICc values correspond to the comparison between the neutral model and the
models with selection.
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(the number of different species). Notice that the correction for sample size implies
that the significance threshold per genome, in all these conditions, is close to 10−5.

C.5 Independent estimation of α and β

The critical relation sets an implicit constraint if a stationary abundance distribution
is to be established. When it comes to study the critical relation, such a constraint
may give rise to a false correlation if the fitting algorithm estimates α and β jointly.
In order to avoid that, we used an alternative approach that provides an independent
(although less precise) estimation of the parameters. First, the HGT-deletion ratio was
estimated as β = F (1)/F (0), where F (1) and F (0) are the frequencies of genomes
with one and no copies, respectively. Next, we discarded genomes with no copies
and estimated α only from “infected” genomes. These parameter values were used to
test the critical relation. By simulating non-stationary genomes we checked that the
independent estimation algorithm does not give rise to false correlations.

C.6 Derivation of the critical condition α + γ = 1

Let us consider the scenario defined by the free-parameter neutral model. The copy
number distribution in such a scenario is defined by the equation 5.1 in the main text.
In correspondence, the average number of copies per genome for a particular IS family
is equal to

〈k〉 =
β β0

(1− α)
(
β0 + (β − β0)(1− α)β/α

) (C.1)

Let us explore the possibility that the HGT rate is proportional to the abundance of
the IS, expressed as its average copy number. Specifically, we write β = γ〈krangle
and β0 = γ0〈krangle, where the proportionality constants γ and γ0 will be called the
relative HGT-deletion ratios. Substitution of these assumptions in eq. (C.1) results in a
fixed point equation, that after some manipulation takes the following form:

(γ0 − γ)(1− α)γ〈k〉/α = γ0

(
1− γ

1− α

)
(C.2)

If both HGT rates are equal, then γ0 = γ. In such a case, a stationary state where
〈k〉 is finite and greater than zero can only be reached if

0 = γ

(
1− γ

1− α

)
what leads to the condition α+ γ = 1.
Therefore, in the neutral model with HGT-deletion ratio proportional to the average

copy number and β = β0, the relation α + γ = 1 determines the critical condition for
the stability of the system. If α + γ < 1 the IS’s will become extinct, whereas if
α+ γ > 1 an explosive proliferation of copies will take place.
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C.7 Transposition ratchet in small populations

In this section, the effect of weak selection on the IS copy number is analized. Even
if selection acts against the expansion of IS’s, the stochastic dynamics in finite popula-
tions of genomes may lead to the fixation of genomes with greater copy number.

Let us consider a Moran process on a population with effective size N . Moreover,
we will assume that the duplication rate r � N−1, and the same for the deletion rate d.
Under this assumption, the copy number in the population is homogeneous and mutants
with increased (or reduced) copy number either become fixed or get extinct before the
next mutant appears.

Starting with an homogenous population of genomes that contain k copies, we are
interested in obtaining the probabilities that the population evolves towards states with
k+1 and k−1 copies. Let us denote those probabilities as ρ+

k and ρ−k , respectively. We
focus on the case where the genome fitness decreases linearly with the copy number
as fk = 1 − sk (here s is the fitness cost of a single copy). For the Moran process
considered, the transition probabilities can be calculated analytically as the product of
the mutation rate and the fixation probability:

ρ+
k = kr

1− fk/fk+1

1− (fk/fk+1)
N

=
kr

N

(
1− N − 1

2
s

)
+O(Ns)2 (C.3)

ρ−k = kd
1− fk/fk−1

1− (fk/fk−1)
N

=
kd

N

(
1 +

N − 1

2
s

)
+O(Ns)2 (C.4)

In conditions of weak selection, s << N−1, the terms of higher order in Ns can
be neglected. Thus, it is straightforward to obtain the ratio between both transition
probabilities, that does not depend on the actual copy number.

ρ+

ρ−
= α (1− (N − 1) s) (C.5)

where α = r/d is the duplication-deletion ratio.
An interesting consequence is the prediction of IS expansions in finite populations

when selection is weak and α � 1 (notice that this holds even if there is no HGT).
This phenomenon may allow for discrimination between the supercritical and subcrit-
ical scenarios. In the former case (characterized by α � 1) selection, even if weak, is
essential for controlling the copy number. In the latter, deletion alone compensates for
IS proliferation and weak selection, even if present, can be neglected without qualita-
tive consequences.

C.8 Genomic diversity and family co-occurrences

The IS diversity of a genome is defined as the number of different IS families hosted
by that genome. This definition, that does not consider the intragenomic abundances
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of each IS, is motivated by the fact that the mechanism determining the presence of the
IS in the genome (horizontal transfer) plays only a minor role in determining the IS
abundance (mainly driven by duplication-deletion processes).

Based on the above definition of genomic diversity, we call diversity distribution
to the fraction of genomes displaying a given diversity, i.e. a given number of different
families. The diversity distribution of the experimental data is shown in figure 7.3 of
the main text.

In order to check if the observed diversity distribution corresponds to a process of
random, independent acquisition events, the following randomization procedure was
applied. First, each IS family was associated a presence probability equal to the fraction
of genomes where it appears. Then, for a number of empty genomes, we simulated an
IS acquisition process in which every genome incorporates every IS family according
to its presence probability. The diversity distribution obtained in this way is plotted
as a dashed, blue line in figure 7.3 of the main text. Notice that the procedure here
exposed is analogous to a random reshuffling of the IS family content among genomes,
averaged over a large number of realizations.

The real diversity distribution is markedly different to the randomized one. The real
distribution contains a larger fraction of genomes with diversity higher and lower than
expected by chance. In trying to search for possible causes, we explored a possible
correlation between diversity and genome size, as well as correlations among family
occurrences themselves.

Inspired by the classic species-area relation of ecology we looked for a genomic
analogue in the form of a power-law relation between the diversity and the genome
size. To that end, the 1079 diversity-size points corresponding to chromosomes from
different species in the dataset were logarithmically transformed. After transformation,
both variables, genome size and number of families, were standardized by substraction
of their means (14.93 and 1.45, respectively) and division by their standard deviations
(0.54 and 0.76). Finally, a principal component analysis (PCA) was carried out on
the data. Let us recall that in the context of a random model where both variables
(diversity and genome size) are subject to fluctuations, a PCA rather than a correlation
test is the best choice for the study of correlations. Moreover, standardization of the
data is convenient as diversity and genome size are measured in different units.

A plot of the standarized data with the direction or the first principal component is
represented in figure C.1. The relative weigth of the first component is s = 0.53, very
close to the expected value s = 0.5 for two-dimensional datasets with no correlation.
It remains the same if the data are not logaritmically transformed. Thus, we conclude
that the dataset shows no linear or power-law correlations between genome size and
number of different families.

The study of correlations among family occurrences was addressed by calculating
a normalized similitude matrix, that contains information on the similitude of the ge-
nome location between pairs of families. Prior to the calculation, each IS family is
expressed as a binary vector with 1233 elements. Each element corresponds to a ge-
nome in the dataset, takes the value one if that genome contains the family and zero
otherwise. As similitude indexes for pairs of families several choices are possible,
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Figure C.1: Principal component analysis of the dataset containing genome sizes and
number of different families per genome. The variables (genome size and number of
families) were standarized by substraction of their means (14.93 and 1.45) and division
by their standard deviations (0.54 and 0.76). The dashed line shows the direction of
the first principal component. The relative weigth of this component is s = 0.53, close
to the expected value s = 0.5 for two-dimensional datasets with no correlation.

based on the cosine associated to the vectors, the Spearman coefficient, the Hamming
distance and the Jaccard index (the number of co-occurrences divided by the number
of genomes where any of the families appears). The results in all cases are qualitatively
the same. The similitude matrix for the real data may be biased by the non-random dis-
tribution of genomic diversity. In order to remove this bias, a null model that conserves
the observed diversity distribution must be built. Such a model was obtained through
a random redistribution of families within genomes, while keeping constant the orig-
inal family abundances and the diversity distribution. This process, that removes any
genuine co-occurrence pattern among IS families, was repeated in order to obtain 103

datasets of the null model. By using such datasets, the mean and the standard deviation
of the similitude index for each pair of families was computed. Finally, normalized
values for all similitude indexes were calculated by substracting the mean values to
the observe ones and dividing by the standard deviations. The matrix built in this way
(figure 7.4, main text) indicates the deviation between the observed similitude index
and the expected one in units of standard deviation. Values greater (smaller) than zero
correspond to pairs of families with more (fewer) co-occurrences than expected if their
behaviors were independent of each other. The IS families in figure 7.4 are ordered ac-
cording to their abundance, what makes evident a global pattern of negative (positive)
co-occurrence among abundant (rare) families.

C.9 The preferential acquisition model

The observed diversity distribution contains a greater fraction of genomes with high
and low number of different families than expected by chance. This suggests that the
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Figure C.2: Standarized co-occurrence matrix between pairs of IS families in a simu-
lation of the preferential acquisition model (q = 0.75). For each pair, a co-occurrence
index is calculated based on the cosine distance. By simulating a null model, the mean
and standard deviation of each co-occurrence index are obtained. The figure shows
the standarized values of the co-occurrence indexes, after substraction of the simu-
lated mean and division by the standard deviation. Families are ordered according to
their abundance (from more frequent to rarer), while numerical labels in the axes cor-
respond to the alphabetical ordering of families. Red (green) indicates fewer (more)
co-occurrences than expected.

acquisition of new families through HGT is easier the greater the number of families
already in the genome.

In order to test that idea we have simulated the following process of IS gain, that
we call the preferential acquisition model. Starting with a set of G empty genomes,
we choose at every step a particular genome with probability πx, that depends on the
number of families that the genome hosts.

πx = (1 + qx)/Q (C.6)

Here x is the number of different IS families in the genome and Q is a normalization
factor. We take a linear relation between πx and x as the simplest possible choice.
The proportionality factor q is a new parameter that tunes the effect of diversity on
the acquisition probability. By setting q = 0 an independent acquisition process is
recovered.

Once a genome has been chosen, an IS family is selected for infection. Family
selection is done according to the relative family abundances in the original dataset. If
the genome already contains the selected family nothing happens. Otherwise, the new
family is added to the genome. The preferential acquisition process is iterated until
the average number of family occurrences is the same as in the original dataset. That
allows us to compare the simulated diversity distribution with the real one. The best fit
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is obtained for q = 0.75± 0.1. It corresponds to the red curve in figure 7.3 of the main
text.

We have also addressed the possibility that the non-trivial co-occurrence pattern
among families may be a by-product of the preferential acquisition process. To that
end, we have processed the simulated datasets as described in the previous section.
The result is a co-occurrence matrix where frequent families have fewer co-occurrences
than expected, in a similar fashion as in the real data (compare figure C.2 with figure 7.4
in the main text).

The preferential acquisition model as described so far is not completely satisfactory
as it is not stationary. That means that if the process is iterated enough times a final
situation with all genomes containing all families is reached. It is easy to overcome
this problem by complementing the preferential acquisition process with the subcritical
neutral dynamics. Now, the subcritical duplication-deletion process removes families
in the long term, thus avoiding total saturation of genomes. We have implemented
this full model by writting the HGT-deletion ratio for each genome as a function of its
diversity. Let us take a particular IS family with a mean abundance of 〈k〉, the HGT-
deletion ratio in a genome hosting x different families becomes β = γ〈k〉(1 + qx)/Q,
where Q = 1 + q〈x〉.

Simulations of the full model reveal that the stationary diversity distribution de-
pends on the initial state of the population. In particular, the experimentally observed
distribution is a valid stationary state of the full model with q = 0.75. On the other
hand, if one starts with the experimental diversity distribution and sets q = 0, the
distribution evolves until the random diversity distribution is recovered. Thus, prefer-
ential acquisition of IS families is required to maintain a diversity distribution like the
experimental one.



D
Analytic calculations for the CRISPR-Cas model

This appendix details the mathematical developments supporting results and statements
in Chapter 6. In the first section, we analyse the Lotka-Volterra equations that approx-
imate our stochastic agent based predator-prey model in the limit of large populations
and negligible fluctuations. Next, we present an estimation of the fraction of immune
encounters, which can be expressed as a function of two key observables: the number
of spacers per host genome and the total number of proto-spacers in the viral popula-
tion. The last section explores the conditions required for CRISPR-Cas maintenance,
by studying the stability of mean-field three species dynamics.

D.1 Lotka-Volterra dynamics in the absence of CRISPR-Cas

When the population size is large and fluctuations can be neglected, the stochastic
agent based predator-prey model described in the main text can be approximated by
a classical Lotka-Volterra (LV) system. Let Nb be the number of hosts and Nv the
number of viruses. In the absence of CRISPR-Cas, neither adaptive immunity nor
fitness cost have to be taken into account. In addition, mechanisms allowing for Cas
gain/loss are not considered. The dynamical equations in the mean-field approximation
read

{
Ṅb = Nb

(
1− b (1− s)Nv

)
,

Ṅv = Nv
(
b (M −Ms− s)Nb − d

)
.

(D.1)
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The non-trivial fixed point (N∗b , N
∗
v ) of the dynamics is given by

(N∗b , N
∗
v ) =

(
d

b (M −Ms− s)
,

1

b (1− s)

)
. (D.2)

The fixed point corresponds to a limit cycle in the LV dynamics. The behavior of a
population close to that point can be described in terms of cycles with period 2π/

√
d.

It follows from Eq. (D.2) that the inverse of the encounter rate, b determines the size of
the population. As a consequence, due to the dynamics of the Lotka-Volterra system,
the encounter rate per host is independent of b.

Note that the stationary state host population size is substantially greater than unity
only when d� b (M −Ms− s). Also, fluctuations in discrete, finite size LV systems
eventually lead to the extinction of the population. The limit cycle in the canonical
LV system is marginally stable and therefore the extinction probability in such systems
depends on the initial condition: the closer to the fixed point, the longer the population
survives. Moreover, the survival time in finite canonical LV systems scales linearly
with the system size. As a result, an inverse relation between parameter b and the
survival time can be expected in the absence of CRISPR-Cas. In contrast, the mean
survival time of a non-canonical LV system with a stable limit cycle is expected to
grow exponentially with the system size.

Finally, if a fitness cost c is assigned to hosts the stationary population size for the
virus becomes N∗v =

(
b (1− s)(1 + c)

)−1
, while N∗b remains unchanged. The period

of the oscilations around the equilibrium point is 2π/
√
d (1 + c).

D.2 Estimation of the adaptive immune probability pc

The probability pc of a CRISPR-mediated immune encounter can be calculated as one
minus the probability that none of the spacers in the host genome coincide with the
proto-spacers of the virus. Let si be the i-th proto-spacer in a virus genome (that
contains Ns proto-spacers) and S the set of all different proto-spacers in the viral pop-
ulation (the cardinality if S is Nt). Host spacers will be denoted as mi. For a genome
with L spacers, the adaptive immunity can be written as

pc = 1−
Ns∏
i=1

L∏
j=1

(1− Prob{si = mj}) = 1−
Ns∏
i=1

(1− Fsi)L, (D.3)

where Fs has been defined as the probability of finding spacer s in a random sampling
of the whole set of spacers in the host population. The use of Fs in the Eq. (D.3) implies
that genomic correlations between spacers are neglected. Under the assumption that
Fs � 1, it makes sense to define fs(L) = LFs as the probability that a host with a
total of L spacers contains the spacer s. Note that this assumption is reasonable unless
a spacer is present at a high frequency. The next step is to define the probability Gs of
finding proto-spacer s in the complete set S of viral proto-spacers. With this definitiion
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it can be written:

pc = 1−
Ns∏
i=1

∑
k∈S

Pr{si = k}(1− fk(L)) = 1−
Ns∏
i=1

∑
k∈S

Gk(1− fk(L)). (D.4)

If genomic correlations between proto-spacers in viral genomes are neglected, the pre-
vious expression becomes:

pc = 1−

(∑
k∈S

Gk(1− fk(L))

)Ns

.

If viral genomes do not contain repeated proto-spacers, the fraction of genomes that
contain the proto-spacer k can be expressed as a new variable gk = NsGk. After
making the change of variables and the expression for pc becomes

pc = 1− (1− χ)Ns (D.5)

The immune parameter χ can be expressed in several ways as a function of the genomic
spacer distributions (f and g) or the global ones (F and G):

χ = N−1
s

∑
k∈S

fkgk = L
∑
k∈S

FkGk. (D.6)

Further insight can be gained if the average values 〈fg〉 (and the same for F and
G) are used in Eq. (D.6). The immune parameter χ then becomes

χ =
Nt
Ns
〈fg〉 = NtL 〈FG〉,

where Nt is the total number of distinct proto-spacers. Averages of products between
f and g can be written as a function of their correlation in a simple way

〈fg〉 = C(f, g)σ(f)σ(g) + 〈f〉〈g〉,

where C(f, g) denotes the correlation coefficient and σ the standard deviation. Let us
define the coefficients of variation (CV ) for f and g as their standard deviations divided
by their means. It is easy to see that 〈f〉 = L/Nt and 〈g〉 = Ns/Nt. Substituting these
values one gets the final expression or χ

χ =
L

Nt

(
1 + C(f, g) CV(f) CV(g)

)
, (D.7)

which in combination with expression (D.5) gives the estimated probability of an adap-
tive immune encounter for a host with L spacers. The total immunity, p, is obtained by
adding the probability of an innate immune encounter

p = s+ pc(1− s). (D.8)
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D.3 CRISPR-Cas conservation in a three species LV model

To derive the conditions of CRISPR-Cas maintenance in the host population, we intro-
duce the three species model, i.e. the mean field approximation of the full stochastic
agent based model which is valid when fluctuations can be ignored and the fraction
of immune encounters for CAS+ hosts is taken as a constant parameter p. We allow
for non-saturated horizontal transfer by adding an extra parameter K, which plays the
role of a Michaelis constant for the horizontal transfer rate as a function of the host
population size. The population size Nb+ of CAS+ hosts, Nb− of CAS− hosts, and
Nv of viruses obey the dynamic equations

Ṅb+ = Nb+

(
1−λ
1+c + σNb−

K+Nb++Nb−
− b (1− p)Nv

)
,

Ṅb− = Nb−

(
1− σNb+

K+Nb++Nb−
− b (1− s)Nv

)
+ λNb+

1+c ,

Ṅv = Nv
(
b (M −Mp− p)Nb+ + b (M −Ms− s)Nb− − d

)
.

(D.9)

There is a simple solution with N∗b+ = 0, corresponding to the loss of CRISPR-Cas
in the population. On the other hand, the solution where CRISPR-Cas is maintained
takes a complicated form, with CAS+ and CAS− hosts coexisting in the population.
The condition for of CRISPR-Cas the maintenance can be obtained by looking at the
stability of the Nb+ = 0 solution to Eqs. (D.9). Specifically, it becomes unstable (and
thus CRISPR-Cas is maintained) when

1− p
1− s

<
1− λ
1 + c

+
σ

1 +K/N∗b−
, (D.10)

whereN∗b− = d/(b(M−s−Ms)) is the equilibrium abundance of CAS− hosts, which
is identical to that in Eq. (D.2).

Therefore CRISPR-Cas is maintained when it provides an average immunity greater
than,

pmin = 1−
(

1− λ
1 + c

+
σ

1 +K/N∗b−

)
(1− s). (D.11)

A scenario with saturated horizontal transfer is recovered if N∗b− � K. In such a
case, the CRISPR efficacy threshold becomes pmin = 1−((1−λ)/(1+c)+σ)(1−s).
By comparing this value with the general expression in Eq. (D.11), it can be concluded
that the saturated horizontal transfer scenario is the most favorable for CRISPR-Cas
maintenance.



Glossary

Combination therapy: treatment that consists of the administration of two or more
drugs.

Complementation: increase of viral progeny production mediated by gene products
supplied by another virus (in quasispecies, supplied by closely related variants).
The same concept can be applied to populations of selfish genetic elements, such
as transposable elements.

Complexity of a mutant spectrum: number of mutations and genomic sequences in
a viral population. It is often quantified by pairwise genetic distances, mutation
frequency (calculated by dividing the number of different mutations by the total
number of nucleotides sequenced), and Shannon entropy (poportion of differ-
ent genomes in the population). New technologies should allow a quantitative
characterization of quasispecies complexity in terms of phenotypic diversity.

Consensus sequence: in a set of aligned nucleotide or amino acid sequences, the one
that results from taking the most common residue at each position.

Defective: this term has several meanings. In viral populations, it may refer to mutant
genomes that can replicate either on their own or under complementation, usually
in the presence of the wild type. They can interfere actively with replication of
the standard virus if the latter sequester nonfunction or poorly functional trans-
acting products expressed by the defectors. In the model of lethal defection, for
instance, defectors have lost their ability to infect susceptible cells.

Error rate: term used as a synonimous of mutation rate in the context of viral repli-
cation.

Error threshold: a theoretical average error rate that sets a maximum limit for main-
tenance of the genetic information encoded by a replicating system. Error rates
above the error threshold lead to loss of genetic information, also termed error
catastrophe.
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Fitness: when referred to in regard to viruses (or bacteria), fitness means the replica-
tive capacity measured relative to some virus variant (or bacterian strain) taken
as a reference. Fitness is environment-dependent.

Fixation: in population genetics, fixation is the result of any process by which an
allele or genetic variant that represents a fraction of the population spreads to
the whole population, while the alternative alleles disappear. The term can be
generalized to refer to variants of a virus, the presence/absence of a gene, or
qualitative phenotypical traits.

Horizontal gene transfer (HGT): transfer of genetic material between organisms
through mechanisms other than vertical (from parent to offspring) inheritance.

Insertion sequence (IS): a class of transposable elements found in prokaryotes, char-
acterized by their small size and the fact that they only code for proteins impli-
cated in transposition.

Interference: this term has several meanings in biology. In this thesis, it means the
capacity of viral genomes to reduce he replicative activity of higher fitness ge-
nomes through trans-acting interactions. It can be regarded as the converse of
complementation.

Lethal mutagenesis: viral extinction achieved through an excess of mutations, often
promoted by mutagenic nucleotide analogs during viral genome replication,

Master sequence: the genomic nucleotide sequence that dominates a mutant spectrum
because of its superior fitness. It may or may not be identical to the consensus
sequence. The most abundant genome may still be a minority relative to the en-
semble of los frequency variants. Owing to the abundance of quasineutral muta-
tions and epistatic interactions in viral genomes, there might be a large ensemble
of sequences of almost identical fitness that compose a “master phenotype”.

Monotherapy: treatment that consists of the administration of a single drug.

Multipartite virus: a peculiar class of virus whose genome consists of several frag-
ments (termed segments), each of them being separately encapsidated. At least
one representative of each segment must simultaneously infect a cell in order to
develop a successful infection.

Multiplicity of infection (MOI): in a viral infection, average number of viral parti-
cles that enter the same cell. In experimental settings, it is computed as the ratio
of infectious particles to the number of target cells.

Mutant spectrum: the ensemble of mutant genomes that compose a viral quasis-
pecies. It is also termed mutant swarm or mutant cloud.

Mutation frequency: the proportion of mutated sites in a population of genomes. It is
often calculated by dividing the number of different mutations found in a mutant
spectrum by the total number of nucleotides sequenced.
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Mutation rate: the frequency of occurrence of a mutation during genome replication.

Purifying selection: also termed negative selection, it is the selective removal of alle-
les or genetic variants that are deleterious.

Rate of evolution: the frequency of mutations that become dominant (i.e., are repre-
sented in the consensus sequence) as a function of time. In the case of viruses,
it may refer to evolution within a host individual or upon epidemic expansion of
the virus.

Stabilizing selection: a type of natural selection in which genetic diversity decreases
as the population stabilizes on a particular trait value. It may be the result of
purifying selection acting against extreme values of the trait.

Trans-acting: in molecular biology, any kind of action that comes from a different
source. In this thesis, it often alludes to proteins that may act on genomes other
than those coding for them. Proteins that act in trans may be “shared” inside the
cell.

Transposable element (TE): a DNA sequence able to move along the genome that
hosts it. The process by which a TE changes its genomic location is termed trans-
position, and it can produce a duplication of the TE. There are multiple families
of TEs, differing on their size, gene content, and trasposisiton mechanism.

Viral quasispecies: a set of viral genomes that belong to a replicative unit, subject to
genetic variation, competition, and selection, and which acts as a unit of selec-
tion. It has been extended to denote ensembles of similar viral genomes gener-
ated by a mutation-selection process.

Wild type (wt): term that refers to the typical form of a species (or virus) as it occurs
in nature. It is commonly used in contrast to non-standard, mutant forms.
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Abstract

This thesis deals with the mathematical modeling of evolutionary processes that take
place in heterogeneous populations. Its leitmotif is the response of complex ensem-
bles of replicating entities to multiple—and often opposite—selection pressures. Even
though the specific problems here addressed belong to different organizational levels—
genome, population and community—all of them can be conceptualized as the evolu-
tion of a heterogeneous population—let it be a population of genomic elements, viruses
or prokaryotic hosts and phages—facing a complex environment. As a result, the math-
ematical tools required for their study are quite similar. In contrast, the strategies that
each population has discovered to perpetuate vary according to the different evolution-
ary challenges and environmental constraints that the population experiences.

Along this thesis, there has been a special interest on connecting theoretical mod-
els with experimental results. To that end, most of the work presented here has been
motivated either by laboratory findings or by the bioinformatic analysis of sequenced
genomes. We strongly believe that such a multidisciplinary approach is necessary in
order to improve our knowledge on how evolution works. Moreover, experiments are
a must when it comes to propose antiviral strategies based on theoretical predictions.

This thesis is structured in two main blocks. The first one focuses on studying
instances of viral evolution under the action of mutagenic drugs, paying particular at-
tention to their possible application to the development of novel antiviral therapies.
Within this block, we first discuss the phenomenon of lethal defection, by which de-
fective individuals that appear in a viral population after treatment with small doses of
a mutagenic drug can lead to the stochastic extinction of the virus. We analyze the fac-
tors required for this phenomenon to occur, and find two key contitions: first, the size
of the intracellular viral population must be relatively small; second, the viral infection
must be persistent. If both conditions are fulfilled, lethal defection becomes possible.
Next, we study the optimal way of combining mutagens and inhibitors in multidrug
antiviral treatments. According to our model, that has later been experimentally tested,
the optimal protocol for drug administration depends in a predictable way on the ac-
tion mechanism of the drugs and the drug doses. When a mutagen and an inhibitor are
selected, the best choice for most drug doses is a sequential inhibitor-mutagen therapy.
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The convenience of a sequential protocol has strong implications for clinical practice,
as it allows to reduce the risk of side-effects and undesired interactions among drugs.

The second block of the thesis is devoted to the study of the evolutionary forces
that shape genome structure. Based on experimental observations, we propose a mech-
anism through which multipartite viruses could have originated. Interestingly, the path-
way leading to genome segmentation shares some steps with lethal defection, but each
outcome is reached at specific environmental conditions. Going deeper at the genomic
scale, we dedicate a chapter to analyse the abundance distribution of transposable ele-
ments in prokaryotic genomes, with the aim of determining the key processes involved
in their spreading. We explicitly explore the hypothesis that transposable elements
follow a neutral dynamics, so that they entail a negligible fitness cost for their host
genomes. We also propose a mechanism for explaining transient episodes of trans-
poson proliferation (punctuations), that according to some authors would be of great
relevance for understanding evolution at greater scales. In the final part of this block,
a higher level of organization is studied. There, an agent based coevolutionary model
based on Lotka-Volterra interactions is used to investigate the evolutionary dynamics of
the prokaryotic antiviral immunity system CRISPR-Cas. We examine the environmen-
tal factors that are responsible of its maintenance of loss, concluding that there exists
a critical value of viral diversity that makes CRISPR-Cas useless. According to that,
CRISPR-Cas is preferentially found in prokaryotes that live in extreme environments,
where phage populations are small and not very diverse.

In sum, this thesis shows how biological populations at a variety of scales share
some properties that derive from their fast evolution and high adaptability, that giving
rise to a series of (sometimes counterintuitive) characteristic evolutionary phenomena
where opposite selection pressures come into play. A common set of mathematical and
computational tools can be employed to study such populations and build models that,
once experimentally validated, provide useful knowledge with applications that range
from understanding genome evolution to developing novel antiviral therapies.



Resumen

Esta tesis trata de la aplicación de modelos matemáticos sencillos al estudio de los
procesos evolutivos que tienen lugar en poblaciones heterogéneas. Su hilo conductor
se plasma en el análisis una serie de fenómenos que surgen cuando un cojunto de en-
tidades capaces de replicarse se enfrenta a múltiples presiones de selección. Si bien
desde el punto de vista biológico los casos aquı́ referidos ocurren a distintos nive-
les de organización (genoma, población y comunidad) todos ellos responden a un
mismo patrón conceptual: la dinámica evolutiva de una población heterogénea (sea
ésta formada por elementos genómicos, virus o bacterias y fagos) en un contexto am-
biental complejo. Dicha unidad conceptual permite utilizar un reducido número de
herramientas matemáticas y computacionales para abordar una gran variedad de situa-
ciones. En cada una de estas situaciones, por el contrario, las estrategias concretas que
cada población haya desarrollado variarán en función de los distintos retos evolutivos
y restricciones ambientales a los que la población se haya visto sujeta.

A lo largo de la tesis se ha prestado un interés especial por conectar modelos
teóricos con observaciones experimentales. Por esta razón, la mayor parte del tra-
bajo aquı́ presentado ha sido motivado bien por resultados de laboratorio, bien por
el análisis bioinformático de secuencias genómicas. Creemos firmemente que una
aproximación multidisciplinar es fundamental para entender mejor cómo funciona la
evolución. Además, la verificación experimental es un deber cuando se pretende pro-
poner nuevas estrategias terapéuticas a partir de predicciones teóricas.

La tesis está estructurada en dos grandes bloques. El primero se centra en el es-
tudio de la evolución viral bajo la acción de fármacos mutagénicos, prestándose una
especial atención a sus posibles aplicaciones en el desarrollo de terapias antivirales.
Dentro de este bloque se discute el fenómeno denominado ”defección letal”, que con-
siste en la extinción estocástica de una población de virus provocada por la acción de
genomas virales defectivos que se originan al exponer a la población a dosis pequeñas
de mutágeno. Tras analizar las condiciones que pueden dar lugar a este fenómeno,
encontramos dos requisitos esenciales: primero, que la infección viral sea persistente;
segundo, que el número de genomas virales dentro de las células infectadas sea relati-
vamente pequeño. En tales circunstancias, puede esperarse que la extinción viral por
defección letal tenga lugar de manera natural. A continuación, pasamos a estudiar la
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forma óptima de combinar mutágenos e inhibidores de la replicación en una terapia
antiviral múltiple. Según nuestro modelo, posteriormente validado en el laboratorio,
el protocolo de administración óptimo puede dictaminarse a partir del mecanismo de
acción de los fármacos utilizados y de su dosis. En particular, cuando se combina un
inhibidor con un mutágeno, la mejor elección para la mayorı́a de las dosis consiste en
un tratamiento secuencial inhibidor-mutágeno. Este resultado encierra un gran valor
clı́nico, ya que una terapia secuencial reducirı́a el riesgo de efectos secundarios e inter-
acciones no deseadas entre fármacos.

El segundo bloque de la tesis está dedicado al estudio de las fuerzas evolutivas que
dan forma a los genomas. Basándonos en observaciones experimentales, comenzamos
este bloque poniendo a prueba un mecanismo que podrı́a haber dado lugar a la aparición
de los virus multipartitos (virus con un genoma fragmentado en varios segmentos que
se empaquetan por separado). Es interesante señalar que el proceso que lleva a la seg-
mentación del genoma viral comparte algunos pasos con la defección letal, aunque
el resultado del proceso es totalmente distinto según cuáles sean las condiciones ex-
ternas. Con la intención de profundizar en el estudio de la estructura y composición
de los genomas, dedicamos un capı́tulo a analizar las distribuciones de abundancia de
ciertos elementos móviles (transposones) en genomas bacterianos. Con este análisis
pretendemos dilucidar cuáles son los procesos clave implicados en su proliferación,
mantenimiento y desaparición. De manera explı́cita, examinamos la hipótesis según
la cual los transposones siguen una dinámica neutral, sin que su presencia suponga un
coste apreciable para el genoma que los contiene. Proponemos además un mecanismo
para explicar los episodios transitorios de proliferación que se observan en algunos
transposones y que, según algunos autores, podrı́an ser de gran relevancia para en-
tender la evolución a escalas mayores. Para cerrar el bloque, afrontamos un sistema
perteneciente a un nivel de organización superior: una comunidad de procariotas (bac-
terias o arqueas) y fagos en coevolución. Para este fin planteamos un modelo basado en
agentes inspirado en una interacción de tipo Lotka-Volterra entra depredadores y pre-
sas, y lo aplicamos al estudio de la dinámica evolutiva del sistema CRISPR-Cas, que
proporciona a los procarioatas que lo poseen inmunidad frente a los fagos. El resultado
principal de este apartado es que existe un valor crı́tico de diversidad viral por encima
del cual el sistema CRISPR-Cas se vuelve incapaz de proveer inmunidad y, puesto que
su mantenimiento implica un coste, acaba por perderse. En consecuencia, y de acuerdo
con las observaciones experimentales, el sistema CRISPR-Cas se encuentra presente
de forma mayoritaria en procariotas que habitan ambientes extremos, en los cuales las
poblaciones de fagos son pequeñas y poco diversas.

En conclusión, esta tesis muestra cómo poblaciones de elementos que se replican,
pertenecientes a distintas escalas biológicas, comparten ciertas propiedades que derivan
de su rápida tasa de evolución y elevada adaptabilidad, y que a su vez dan lugar a una
serie de fenómenos evolutivos caracterı́sticos (y a veces no intuitivos) en los que en-
tran en juego presiones de selección opuestas. Para estudiar la dinámica evolutiva de
tales poblaciones puede emplearse un conjunto de herramientas matemáticas y com-
putacionales comunes, generando modelos que, una vez validados, pueden aplicarse
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a un amplio rango de problemas en biologı́a, desde la evolución del genoma hasta el
desarrollo de nuevas terapias antivirales.
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López-Sánchez M. J., Sauvage E., Da Cunha V., Clermont D., Ratsima Hariniaina
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