
Towards A Generic, Service-Oriented F ramework for Distributed Real-Time Systems

Muhammad Umer Tariq1, Mohammad Abdullah Al Faruque2, Santiago Grijalva3, Marilyn Wolf4

1,3,4Department of Electrical and Computer

Engineering, Georgia Institute of Technology,
Atla n ta , U SA.

1m.umer.tariq@gatech.edu
3,4{sgrijalva, wolf}@ece.gatech.edu

2Department of Electrical Engineering and
Computer Science, University of California,

Irvine, USA.
2mohammad.alfaruque@uci.edu

Abstract Continuously increasing complexity and scale of
distributed real-time systems have exposed the limitations of
their existing development methodologies. This fact is evident
by the unsustainable rate of increase in the development and
maintenance costs of such systems. In this paper, we present a
generic, service-oriented framework for distributed real-time
systems. The proposed framework can potentially serve as the
basis for a widely applicable, cross-domain toolset, thus,
decreasing the development and maintenance costs for
distributed real-time systems. The proposed framework
consists of a generic, service-oriented deployment platform
that abstracts away the details of implementation platform and
an associated development methodology. The proposed
framework makes extensive use of the existing service-oriented
technologies such as Web Services. However, it also extends
these technologies for application to distributed real-time
systems by introducing QoS-aware service deployment and
service monitoring phases. This paper presents the details of
the proposed framework as well as a case-study of the
application of the proposed framework to the domain of smart
grid.

Keywo rds-rea l-time systems; service-o rien ted compu ting;
smart grid; cyber-physical systems; web services

I. INTRODUCTION

Continuously increasing complexity of distributed real-
time systems has exposed the limitations of existing
development techniques in tackling this complexity.
Because of these limitations, development and maintenance
costs for these systems are increasing at an unsustainable
rate. Moreover, widespread availability of economical
communication and computation infrastructure has enabled
the emergence of a new category of wide-area real-time
systems such as smart power grid [1] and vehicular
networks [2]. The scale of these systems cannot be easily
managed by existing set of development techniques for
distributed real-time systems. In order to successfully
handle the increased complexity and scale of distributed
real-time systems, a new set of design techniques and
associated tools are required. However, there is a wide
variety of distributed real-time systems with varying
geographic scale and varying strictness of timing
constraints. Designing a domain-specific toolset to handle
each of these examples of distributed real-time systems will
be highly inefficient [3] [4]. This has created interest in a
unifying, generic framework for distributed real-time
systems that can form the basis of highly effective, cross-

domain design methodologies and toolsets [5]. For instance,
such a framework could serve as the foundation of a widely
applicable model-driven toolset for distributed real-time
systems.
Over the last decade, service-oriented computing (SOC)

paradigm [6] has seen considerable success in the field of
enterprise integration and electronic commerce. SOC
paradigm divides application developers into three distinct
roles: service providers, service consumers, and service
brokers. Service providers implement, describe, and publish
their services in the directories maintained by service
brokers. Service consumers discover the required services
by contacting the service broker. Once service consumers
have discovered a service, they can interact directly with the
service providers according to the service description. SOC
enables loose coupling between the components of the
systems. This loose coupling of components results in
creating systems that are more flexible and manageable.
Traditional distributed, real-time systems such as

avionics and automotive systems did not follow a service-
oriented approach. However, the growing complexity of
distributed real-time systems and the emergence of wide-
area real-time systems such as smart power grid are
rendering traditional real-time system design methodologies
ineffective. Service-oriented computing presents a
promising approach to handle the growing complexity and
scale of real-time systems. However, the service-oriented
computing techniques standardized in the field of enterprise
integration applications cannot be directly applied to real-
time applications. In the recent past, efforts have been made
to apply service-oriented computing to the domain of
industrial automation. These efforts have resulted in a
standard known as Device Profile for Web Services
(DPWS), which brings the service-oriented computing
concepts from enterprise computing to the world of
resource-constrained embedded devices [7]. However, the
focus of these efforts has been the interoperability of
networked embedded devices rather than provision of
mechanisms that support the use of service-oriented
computing in real-time systems with hard timing
constraints. Moreover, these efforts do not address the need
for a generic framework that can capture the application of
service-oriented computing to the whole spectrum of real-
time systems with varying scales and varying strictness of
timing constraints.

REACTION 2012 27

In this paper, we present a service-oriented framework
for distributed real-time system that is generic enough to be
applied to real-time systems of varying scales and multiple
domains. Due to its universal and generic nature, it can
serve as the basis for widely applicable design techniques
and tools. Moreover, it can serve as the common foundation
of model-driven development and operation toolsets for
various diverse application domains such as smart power
grid, smart irrigation networks, and robotics. We present the
key entities and XML documents involved in our
framework. We explain the proposed framework through a
case study of its application to a canonical smart grid
scenario.
 The proposed framework does not just represent a direct

translation of service-oriented architecture concepts (service
description, service publication, service discovery, service
binding and service interaction) from enterprise computing
domain to real-time systems domain. Actually, the
framework is much more fundamental and represents a
unified approach to tackle various types of distributed real-
time systems. The framework considers service as the basic
modeling entity. The framework proposes a resource-aware
service deployment step and supports QoS-aware interaction
of various services.
The rest of the paper is organized as follows. Section II

outlines some related work. Section III presents an overview
of the traditional service-oriented computing that utilizes a
set of standards known as Web Services. Section IV
describes the set of unique challenges faced in the
application of service-oriented computing to distributed
real-time systems. Section V presents the details of the
proposed framework. Section VI presents a case-study for
the application of the proposed framework to distributed
real-time systems. Section VII outlines some of the
advantages of the proposed framework. Section VIII
presents the conclusion and future work.

II. RELATED WORK

 A cross-domain framework to model the behavior of
real-time computer systems has been the focus of much
attention recently because of its potential for providing a set
of widely applicable tools that can help tackle the problem
of continuously rising development and maintenance costs
of embedded real-time systems. Reference [5] presents a
model of the behavior of real-time system based on three
basic concepts of computational component, state and
message. Our proposed framework is not in conflict with
these concepts. Actually, it builds on these concepts and
introduces the concept of service as the central entity. This
allows our proposed framework to incorporate the rich set of
concepts available in the domain of service-oriented
computing into the development of real-time systems.
A number of recent research projects have explored the

application of SOC paradigm to distributed real-time
systems [8][9][10]. These efforts have focused on porting
Web Service technologies to resource-constraint devices,
resulting in Device Profile for Web Services (DPWS) [7].
These efforts do not concentrate on enhancing the
traditional SOC paradigm with mechanisms that will allow

its application to real-time systems with timing constraints.
Moreover, for the most part, these efforts have been focused
on the domain of industrial automation. Our proposed
service-oriented framework tries to incorporate the
contribution made by these projects but it also aims to be
more generic and widely applicable in nature. Our proposed
service-oriented framework for distributed real-time systems
is based on certain enhancements to SOC paradigm (such as
resource-aware service deployment and QoS-aware service
monitoring) that will allow it to handle the complete
lifecycle of a wide-range of distributed real-time systems
with varying level of strictness in their timing constraints.
QoS-aware service-oriented computing has been a topic

of interest in the traditional service-oriented computing
research community. For instance, [11] presents WS-QoS
framework that enables QoS-aware service discovery and
service monitoring. WS-QoS framework is not directly
applicable to the development of embedded real-time
systems as it does not tackle the service deployment on a
platform with limited resources. Our proposed framework
overcomes this deficiency of WS-QoS framework by
providing a QoS-aware service deployment step.

III. TRADITIONAL SERVICE-ORIENTED COMPUTING

Traditionally, service-oriented computing has been
applied for enterprise integration applications. Various
standardization efforts have played a significant role in the
successful implementation of service-oriented computing
paradigm. These efforts have resulted in a set of standards
known as Web Services that deal with the three major
aspects of service-oriented computing [6].

Figure 1. Service-oriented computing through Web Services.

A. Service Description

Web Services Description Language (WSDL) is the
standard that deals with service description. WSDL defines
the syntax of XML documents that describe Web Services.
WSDL document defines the interface of a service as a set of
input and output messages.

REACTION 2012 28

B. Ser vice Discovery

Universal Description Discovery and Integration
(UDDI) is the standard that deals with the service discovery
process. UDDI is based on a business registry, which is
essentially a directory of available services. UDDI provides
an API for publishing service descriptions in the registry
and querying the registry for required services.

C. Ser vice Inter a ction

Simple Object Access Protocol (SOAP) provides a
message format that can be used by a service to exchange
messages with another service. SOAP message consists of
an envelope, where each envelope contains two parts: a
header and a body. SOAP message acts as a generic
conveyer of information between services. In the case of
Web Services, SOAP messages are generally transported
using HTTP. However, a binding could be defined to other
transport protocols as well. A binding defines how a SOAP
message is transported from one service to another using the
transport protocol primitives.

IV. SERVICE-ORIENTED COMPUTING FOR REAL-TIME
SYSTEMS

Service-oriented computing has been successfully
applied in business enterprise integration applications using
the Web Services standard. However, real-time systems
have certain distinct characteristics that are not handled by
the existing standards and technologies available for
service-oriented computing paradigm. In this section, we
present a set of additional capabilities that are needed to
successfully apply SOC paradigm to distributed real-time
applications.

A. Ser vice Descr iption

For the application of service-oriented computing to
real-time systems, service must be treated as a modeling
entity. Service description should not only include its
interface in terms of messages that it can receive and send,
but it should also include QoS properties of these messages
as well as the platform resources required to deploy a
service on a certain platform.

B. Ser vice Deployment

Service deployment capability should be able to read in
QoS- and resource-aware service description and decide
whether it can be deployed on a certain computing platform.
Once the deployment decision has been made based on the
service description and resources available on a platform,
there should be a mechanism to actually deploy a service on
the platform. This mechanism could be off-line or on-line
depending on the type of the real-time system. This
mechanism will involve transferring the service logic or
service code on to the platform and provisioning the
required communication and computation resources of the
platform to the service.

C. Ser vice Discovery

Real-time systems require QoS-aware service discovery.
Service providers and service consumers should not only

agree on the messages forming the interface between them
but also the timing properties associated with these
messages.

D. Ser vice Monitoring

When the services have been deployed and they start
exchanging messages with each other through a
communication medium, a run-time facility must
continuously monitor these message exchanges. This
monitoring capability can result in the timely detection of
violations of QoS constraints for different services as a result
of some failure or excessive delays in the communication
network. This detection capability can be used to notify the
application software of a QoS failure, allowing the
application software to take a mitigating action based on the
nature of real-time application.

V. PROPOSED SERVICE-ORIENTED FRAMEWORK

In this section, we present the details of our proposed
framework that can provide the capabilities discussed in the
last section and thus, enable the application of SOC
paradigm to real-time systems. The proposed framework
consists of a generic service-oriented platform and an
associated development methodology. Our proposed
framework makes the maximum use of the existing
standards and technologies available as a part of the Web
Services. However, it extends some of these technologies to
provide the capabilities discussed in the last section. For
instance, this framework extends traditional Web Services
framework by adding a deployment proxy and a QoS proxy
to ensure that platform resources are not overloaded and
QoS failures are detected in a timely manner.

Figure 2. A generic, service-oriented platform for distributed real-time

systems.

A. Generic Service-Oriented Platform

The proposed generic service-oriented platform abstracts
away the heterogeneous implementation platforms used for
distributed real-time systems and presents a generic

REACTION 2012 29

interface for development of service-oriented real-time
systems. Fig. 2 presents the proposed generic service-
oriented platform. The proposed platform defines two types
of entities: platform components and XML documents.
Following are the major platform components: Deployment
Proxy, QoS Proxy, SOAP Engine, Transport Engine,
Communication Controller, Scheduler, Control I/O.
Following are some of the XML documents required:
PlatformRequirementDocument, PlatformOfferDocument,
QoSOfferDocument, QoSRequirementDocument.

1) XML- b a se d D o c u me n ts

PlatformRequirementDocument defines the
platform resources that a service needs in order to be
successfully deployed on a platform.
PlatformOfferDocument defines the currently free resources
that are available on a certain platform. QoSOfferDocument
defines various QoS aspects that a service offers to provide
to its consumers. QoSRequiremetDocument defines the QoS
requirements that a service needs from another service.

2) Platform Components

Deployment Proxy provides the interface that is used
by the administrator to deploy a new service on the
proposed service-oriented platform. Administrator contacts
the Deployment Proxy with PlatformRequirementDocument
of a service. Deployment Proxy consults the
PlatformOfferDocument of the platform and decides
whether the service can be deployed on the platform. Once
it has been decided that there are enough resources to
deploy a service, Development Proxy follows a protocol to
transfer the code for the service on to the platform.
QoS Proxy monitors the messages exchanged by the

service and informs the service in a well-defined and timely
manner of any violations of constraints identified in
QoSRequirementDocument and QoSOfferDocument. Our
proposed platform allows services to exchange SOAP
messages. SOAP Engine takes care of binding SOAP
messages to lower-level transport protocol. Tra nspor t
Engine handles the processing related to a certain
networking technology such as TCP, UDP or some other
similar transport protocol.
The proposed platform has to meet various real-time

constraints on its processes. Therefore, the platform must be
built over a real-time computing base. Scheduler represents
the real-time operating system facilities that enable the
timely processing of various tasks in the proposed service-
oriented platform. Control I/O block allows the platform to
do the sensing and control actions in order to control a
physical process. This capability allows the proposed
service-oriented platform to participate in a control system.

B. Ser vice-Or iented Development Methodology

The proposed service-oriented framework for distributed
real-time systems identifies a development methodology
that makes use of the service-oriented platform described in
the last section. Fig. 3 shows the main steps involved in the
proposed service-oriented development methodology.

The platform porting step involves abstracting away an
implementation platform by porting the generic service-
oriented platform to that particular implementation platform.
In the service modelling step, the distributed real-time
system is modelled as a set of interacting services. The
requirements of the real-time system drive this modelling
process. In the service implementation phase, the code for
the services is developed. In the service description step,
concrete XML-based documents are defined. In the service
deployment phase, an appropriate platform is identified that
can provide sufficient resources to the service and the
service is deployed on it through its Deployment Proxy. In
the service discovery phase, each service publishes itself to
a directory and these directories are used by services to
discover their partner services. Both the service deployment
and service discovery phases could occur off-line or online
depending on the nature of distributed real-time application.

Figure 3. A generic service-oriented methodology for real-time systems.

In the service interaction phase, each service sends a
SOAP message. SOAP message passes through the QoS
Proxy to check for QoS violations. SOAP Engine deals with
transforming the SOAP messages to the underlying
transport protocols available on the implementation
platform. On the receiving end, the message is again
checked by the QoS Proxy for any QoS violations. In case a
message is not received in time, QoS Proxy informs the
service about this delay through an exception or a similar
mechanism. This allows the service to take appropriate
action if needed. This capability allows the proposed
service-oriented framework to be used in a closed-loop
control system with unpredictable network delays. The
service update phase exists to help in upgrading and
maintaining an existing distributed real-time system. In the
service update phase, modifications are made to the service

REACTION 2012 30

descriptions and service logic and the service deployment
phase is repeated to re-deploy such services on the
implementation platform.

VI. CASE STUDY

This section explains the ideas presented in this paper
through a case study of applying the proposed service-
oriented framework to a simplified but canonical scenario of
smart grid. The scenario consists of a power system with a
generator, a load and a controller. In the absence of storage
capacity in a power system, generation must match the load
at all times to keep the frequency stable and to ensure the
safe operation of power system [12]. Usually, the load
changes according to the demands put on the system by the
user and the generation must keep changing to match the
load. However, certain renewable energy sources such as
wind and solar are intermittent in nature because of the
natural variations in the wind and solar intensity. One
approach for maintaining the generation-load balance in the
presence of intermittent generation resources is to
continuously update the controller about the generation level
of an intermittent generation resource, which in turn sends a
signal to a load asking it to change its consumption level.
We consider the development of such an application

through our proposed service-oriented framework for
distributed real-time systems. We assume that there is a
computation node associated with each of the components
(generator, load, and controller) and these computation
nodes are connected to each other through a communication
network. We also assume that through a process of platform
porting, each computation node supports the proposed
generic service-oriented platform. In the service modelling
step, we identify the following services: genUpdateService,
loadControlService, and controlCenterService.
genUpdateService sends the generation level of the
generator to the controlCenterService every T seconds. The
controlCenterService receives the generator status from
genUpdateService every T seconds and sends out a message
to the loadControlService every T second. In case the
controlCenterService does not receive a message in time
from the genUpdateService, it prepares an appropriate
message for the laodControlService. Loa dContr olSer vice
receives a message from the controlCenterService every T
seconds and changes the power consumption level
appropriately. In case the consumption level cannot be
changed, the loadControlService sends a response back to
the controlCenterService.
In the service implementation phase, code is developed

for each of the three services in an appropriate development
environment. In the service description phase, XML
documents such as Ser viceDescriptionDocument,
PlatformRequirementDocument, QoSOfferDocument and
QoSRequirementDocument are developed for each of the
three services. In service deployment phase, each of the
service is deployed on the appropriate computation node
through the corresponding Deployment Proxy. Once the
services have been deployed, they publish themselves to an
appropriate directory. In this case study, control centre
could be an appropriate location for the service directory.

Services also try to discover their partner services using the
appropriate directory. Once, the services have discovered
each other, they start sending SOAP messages to one
another. In this service interaction phase, QoS Proxy, at
each computation node, informs the service in a well-
defined timely manner if an expected message is not
received according to the QoSRequirementDocument. This
allows the service to take appropriate remedial measures.
For instance, in the case of controlCenterService, when the
message from genUpdateService does not arrive in time,
controlCentreService uses other control centre capabilities
(such as state estimation) to generate an appropriate
message to be sent out to the loadControlService.

Figure 4. Case study.

Now, let us assume that the intermittent generation
resource has some associated storage capability that allows
extra energy generated to be stored and used later. In order
to control this resource, we shall need to develop a new
service named storageControlService. We go through the
service modeling, service implementation, and service
description phases for this new service. Let us assume that
this service will be deployed on the same computation node,
which contains the genUpdateService. Then, in the service
deployment phase, Deployment Proxy of the corresponding
computation node will make sure that
PlatformRequirementDocument of storageControlService
and PlatformOfferDocument of the corresponding
computation node are compatible with each other. If enough
resources are available, the new service will be deployed on

REACTION 2012 31

the same computation node that contains the
genUpdateService.

VII. ADVANTAGES OF THE PROPOSED FRAMEWORK

In this section, we present the various advantages that
can be obtained by utilizing the proposed generic, service-
oriented framework.

A. Cross-Domain Tools

The proposed generic, service-oriented framework can
acts as the foundation for a set of tools (such as model-
driven toolsets) that can be applied across multiple domains
of distributed real-time systems. The wide applicability of
such a toolset will ensure that sufficient investment is made
in improving the quality of this toolset without increasing
the cost of such a toolset.

B. Support for Closed-Loop Control Systems

The proposed framework helps to reduce the
unpredictability in the delays faced by control messages and
also supports the timely notification of the failure of the
communication network in delivering an expected control
message. This allows the use of this framework in
development of wide-area, closed-loop control systems.

C. Better Lifecycle Ma na gement

The proposed framework supports a resource-aware
deployment of a service on a certain implementation
platform. This capability is really useful in upgrading the
deployed systems as new services can be deployed with the
confidence that they would not interfere with the correct
operation of existing services.

VIII. CONCLUSION AND FUTURE WORK

We have proposed a generic, service-oriented
framework for distributed real-time systems. The proposed
framework builds on the service-oriented technologies
available in the enterprise computing domain and suggests
certain extension to these technologies that can make them
effective for the domain of real-time systems. The proposed
framework can serve as the basis of a widely applicable,
cross-domain toolset for design, development, and operation
of distributed real-time systems. Such a toolset can be really
useful for the cost-effective development of reliable and
maintainable distributed real-time systems.

In the future, we plan to further explore the ideas
presented in this paper through an ns-3 based simulation
infrastructure [13]. This simulation infrastructure will
extend the core ns-3 simulator with a middleware object that
mimics the generic service-oriented platform presented in
this paper. This will be followed by the RTOS-based
implementation of the service-oriented platform proposed in
this paper.

REFERENCES

[1] K. Tomosovic, D.E. Bakken, V. Venkatasubramanian and A. Bose,

Com
Proceeding of the IEEE, vol. 93, no. 5, pp.965-979, May 2005.

[2] H. Moustafa and Y. Zhang, Vehicular Networks: Techniques,
Standards, and Applications. Auerbach Publications, 2005.

[3] M.U. Tariq, S. Grijalva, and M. Wolf Towards a Distributed,
Service-
IEEE/ACM International Conference on Cyber-Physical Systems
(ICCPS 11), IEEE Press, 2011, pp. 35-44,
doi:10.1109/ICCPS.2011.16.

[4] M.U. Tariq, H. A. Nasir, A. Muhammad, and M. Wolf Model-

Proc. IEEE/ACM International Conference on Cyber-Physical
Systems (ICCPS 12), IEEE Press, 2012, pp. 151-160,
doi:10.1109/ICCPS.2012.23.

[5] H. Kopetz, Real-Time Systems: Design Principles for Distributed
Embedded Applications, 2nd ed. New York: Springer, 2011.

[6] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design. New Jersey: Prentice Hall, 2005.

[7] (2009) OASIS website. [Online]. Available: http://docs.oasis-
open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html

[8] M. Garcia-Valls, I. Rodriguez-Lopez, and L. Fernandez-Villar,
-Time Reconfiguration

of Service-Oriented Distributed Real-
Transactions on Industrial Informatics, vol. PP, May 2012, pp 1-1,
doi:10.1109/TII.2012.2198662.

[9] (2009) SIRENA website. [Online]. Available: http://www.sirena-
itea.org/

[10] (2010) SOCRADES website. [Online]. Available:
http://www.socrades.eu

[11]
and Monitoring of QoS-aware Web services with the WS-QoS

Web Intelligence (WI 04), IEEE Press, 2004, pp. 152-158,
doi:10.1109/WI.2004.10084.

[12] P. Kundur, Power System Stability and Control. New York:
McGraW-Hill, 1994.

[13] (2012) ns-3 website. [Online]. Available: http://www.nsnam.org/

REACTION 2012 32

