
Experimental Evaluation of the Real-Time Performance of Publish-Subscribe

Middlewares

Tizar Rizano, Luca Abeni, Luigi Palopoli

Dipartimento di Scienza e Ingegneria dell’Informazione

University of Trento, Trento, Italy

tizar.rizano@unitn.it, luca.abeni@unitn.it, luigi.palopoli@unitn.it

Abstract—The integration of the complex network of mod-
ules composing a modern distributed embedded systems calls
for a middleware solution striking a good tradeoff between
conflicting needs such as: modularity, architecture indepen-
dence, re-use, easy access to the limited hardware resources
and ability to respect real–time constraints. Several middleware
architectures proposed in the last years offer reliable and easy
to use abstractions and intuitive publish-subscribe mechanism
that can simplify system development to a good degree. How-
ever, a complete compliance with the different requirements
of assistive robotics application (first and foremost real–time
constraints) remains to be investigated. This paper evaluates
the performance of these solutions in terms of latency and
scalability.

I. INTRODUCTION

The recent developments in sensing and battery technolo-

gies and in embedded computing devices are creating the

premises for the development of low cost robotic applica-

tions for a consumer market. The ever-increasing presence

of robot vacuum cleaners in our homes, of robotic toys

amusing our children, of robotic drones shooting impressive

pictures from surprising points of view are witnesses of a

clear market trend. At the forefront of this movement are

robots created to assist older adults or people with different

disabilities. One of the basic needs that can effectively be

addressed by assistive robots is personal mobility.

These embedded systems integrate several modules and

rely on different types of sensors that convey information

on the surrounding environment. For example, they can use

video sensors to detect moving objects or obstacles, or can

use gyroscopes encoders, 3D cameras and RFID readers for

localisation purposes. The same level of complexity is on the

software architecture, that can include modules for video-

analysis, mission planning, short term planning and control.

All these services might interact with other components such

as a geo spatial database that stores relevant information

about the environment (in this case, the geo spatial database

maintains a consistent description of the environment, where

each model inserts additional information layers).

The integration of this complex network of modules

calls for a middleware solution striking a good tradeoff

between conflicting needs such as: modularity, architecture

independence, re-use, easy access to the limited hardware

resources and real–time constraints.

Several middleware architectures proposed in the last

years offer reliable and easy to use abstractions and intuitive

publish-subscribe mechanism that can simplify the devel-

opment of complex robotic applications to a good degree.

Examples are OpenDDS1, which implements a standard

proposed by the Object Management Group[1], ZeroMQ [2],

which implements a publish-subscribe paradigm to support

concurrent programming over socket connections using a

publish-subscribe paradigm and is freely available2, and

ORTE [3], which implements a publish-subscribe mecha-

nism over a real–time Ethernet connection (in particular, it

is compliant with the RTPS - Real-Time Publish-Subscribe

- protocol).

The three mentioned solutions have different reasons of

interest: OpenDDS builds on top of the decennial experience

made by the CORBA community and offers powerful ab-

stractions, ZeroMQ is extremely lightweight and potentially

interesting for its easy adaptation to embedded architectures,

and ORTE is a product has been developed for a special care

for its real–time performance.

Based on some previous experience [4], this paper eval-

uates the performance of the three middlewares in terms

of latency, scalability, and communication throughput. This

comparison will be used as a cornerstone for the devel-

opment of a reliable software architecture for the DALi

cognitive walker (cWalker), an embedded device designed

to assist adults with non-severe cognitive abilities in the

navigation of complex and crowded environments (e.g., an

airport or a mall), which challenge the sense of direction and

generate anxiety. However, this work is not limited to the

cWalker, but is aimed at increasing the diffusion of real–time

middlewares in a large class of robotic applications.

The rest of the paper is organised as follow. Section II

offers a high level overview of the case study. Section III,

shortly describes the three middleware analysed in the paper

and compares their features. Section IV, reports the experi-

mental results on the performance comparison between the

1http://www.opendds.org
2http://www.zeromq.org

❘❊❆❈❚■❖◆ ✷✵✶✸ ✶

Short Term

Planner

People

Detection

Kinect
3D

Cameras

Wheel

Encoder

Localisation

Environment

Reconstruction

Inertial

Platforms
RFID

Reader

Haptics

Control
Brakes

Control

Electric

Brakes

Haptic

Interfaces

SENSORS

FUNCTIONALITIES

ACTUATORS

MAPSLong Term

Planner

Audio/Visual

Interface

Occupation

Maps

Environment

Cameras

HMI USER

Figure 1. Simplified functional scheme of the DALi cWalker.

three different alternatives. Finally, Section V, presents some

conclusions and a short discussion of future work directions.

II. CASE–STUDY

An important motivational example for this work has

been offered to us by a cooperative European project 3

coordinated by the University of Trento. The objective of

the project is the development of a robotic assistant to help

older adults with emerging cognitive impairments navigate

large and challenging environments (e.g., a shopping mall,

or an airport). Because the main focus of the project is

to compensate for cognitive deficiencies, the assistant is

called cWalker (cognitive walker). A simplified scheme of

the most important functionalities of the cWalker is shown

in Figure 1. The cWalker prompts the user for a sequence

of target points in the environment that he/she wants to visit

through a visual interface. The Long Term Planner finds the

most convenient path using the map of the environment and

the real–time information on the state of the place, which

is acquired querying remote sensors (e.g., the surveillance

cameras). When the users starts to move, the walker guides

her/him along the path using electro-actuated brakes [5],

haptic interfaces and audio/video interfaces. The guidance

requires a real–time localisation system which tracks the

position of the cWalker while it moves. Along the way,

the cWalker localises the user in the environment, detects

anomalies and the motion of people in the surroundings and

plans deviation from the planned path when required (e.g.,

to avoid accidents or such behaviours as could violate the

social rules). These tasks are performed by a Short–Term

planner.

A description of the different functionalities is beyond

the goals of the present paper, and can be found in previous

work [4].

3http://www.ict-dali.eu

Short Term

Planner

People

Tracker
Localisation

Haptics

Control
Brakes

Control

Long Term

Planner

Audio/Visual

Interface

Heat

Maps

100ms

500ms

10ms

60s

300s

Figure 2. Publish-Subscribe architecture for some of DALi’s components.

III. PUBLISH-SUBSCRIBE MIDDLEWARES

The functional architecture described in Figure 1 suggests

the following considerations:

1) Many of the components are re-usable across a wide

family of applications and systems (e.g., the localisa-

tion module and the people tracker);

2) The computational demand and the physical con-

straints call for a distributed hardware implementation,

in which the functionalities could be deployed in dif-

ferent nodes in different implementations or operating

conditions (e.g., in response to a system failure);

3) The different components require varied expertise; the

resulting development team is large and heteroge-

neous.

These requirements can be fulfilled by adopting a middle-

ware infrastructure that implements publish-subscribe func-

tionalities. Moreover, this solution simplifies the develop-

ment and testing of the various modules, by permitting to

decouple their development.

Figure 2 shows a possible implementation scheme for the

communication between some of the modules. As an exam-

ple, the people tracker publishes a sequence of positions and

velocity of the people within the reach of the sensors with a

periodicity of 100ms and this topic is subscribed to by the

short term planner. The localisation module publishes a new

position of the cWalker every 10ms and this information

is used by various subscribers (at least those shown in

the figure). Similarly in the graph one can read the topics

published and subscribed to by other modules.

Since the cWalker modules are characterised by some

real-time constraints (as shown in the previous example), the

middleware implementing the publish-subscribe mechanism

needs to be predictable and has to provide reasonable upper

❘❊❆❈❚■❖◆ ✷✵✶✸ ✷

bounds for the communication latencies without compromis-

ing the throughput. Hence, the middleware has to be explic-

itly designed to support real-time communications. While

the idea of real-time publish-subscribe communication is not

new [6], a systematic comparison of multiple open-source

alternatives is still missing.

The Object Management Group (OMG) published various

standards regarding real-time data exchange based on a

publish-subscribe protocol. In particular, the Data Distribu-

tion Service (DDS) standard defines a service for distributing

application data between tasks (in distributed applications),

and the Real-Time Publish-Subscribe (RTPS) standard de-

fines an application-level protocol based on UDP/IP, which

can be used for the real-time communications required by

DDS.

The DDS specification defines both an application level

interface for a service implementing the publish-subscribe

functionalities (in real-time systems) and an additional layer

that allows distributed data to be shared between applications

based on DDS. The first interface (Data-Centric Publish-

Subscribe - DCPS) is in charge of efficiently delivering the

proper information to the proper recipients (according the

publish-subscribe) and introduces a global data space to be

used by applications for exchanging data.

The second part of the standard (Data-Local Reconstruc-

tion Layer - DLRL) is a higher level software layer based

on DCPS and uses it to construct local object models on top

of the global data space.

DDS does not specify a specific “wire protocol” to be

used for data exchange and control, hence different DDS

implementations can use different (and incompatible) pro-

tocols, being them TCP-based, UDP-based, or something

different (for example, 2 modules running on the same node

can communicate through shared memory to improve the

performance).

RTPS is a possible wire protocol to be used by DDS

(technically speaking, it is an application-level protocol,

generally based on UDP). The RTPS protocol has been

designed focusing on real-time requirements, hence it allows

to trade the reliability of message delivery for low latencies.

As a result, it often implements real-time communications on

top of unreliable and connectionless transport protocols such

as UDP (although TCP can also be used - see OpenDDS

below). The protocol supports publication and subscription

timing parameters and properties to allow some performance

vs reliability trade-offs.

When using DDS, a publisher and a subscriber commu-

nicate by writing/reading data identified by two parameters:

topic and type: the topic is a label that identifies each data

flow while the type describes the data format.

To provide good real-time performance (and to properly

scale, without having the communication latency affected by

the number of publishers or subscribers), DDS and RTPS

do not rely on an active service that receives messages from

the publishers and forwards them to the proper subscribers.

Instead, peer-to-peer connections between each publisher

and the interested subscribers are created, based on a naming

service that can be provided by some dedicated daemon.

Finally, DDS provides automatic data serialisation through

an Interface Definition Language (IDL) compiler, so that

components running on different architectures can easily

interoperate and communicate (notice, however, that this

feature is not strictly needed in the DALi context, since the

distributed architecture is based on uniform nodes).

One of the goals of this evaluation is to quantify the

overhead (if any) introduced by the various DDS and RTPS

abstractions, in order to understand their costs and their ben-

efits. Hence, three different middlewares (ranging from one

that is fully compliant with DDS to one that is not compliant

with any standard) have been considered: OpenDDS, ORTE,

and ZeroMQ.

OpenDDS is fully compliant with the DDS standard

forces to use the IDL compiler to serialise the data to be

exchanged. ORTE is less flexible, but still implements the

RTPS protocol (and is explicitly focused on respecting real-

time constraints). Finally, ZeroMQ is not compliant with any

specific standard, does not provide a naming service, but

relies on simplicity to provide good performance. Hence,

comparing the three middlewares allows to evaluate the

cost and the benefits of the various features described in

the standards and to estimate the overhead that the various

features and abstractions might introduce. In more details:

OpenDDS

is an implementation of DDS v1.2 using RTPS

as a “wire protocol” (according to the DDS-RTPS

standard v2.1). Both UDP and TCP can be used as

a transport protocol below RTPS. It is implemented

using the C++ language and is based on CORBA

(using ACE/TAO) for the naming and discovery

service and for serialising the data (through the

TAO IDL). This allows OpenDDS to provide cross

platform portability and to easily implement the

DCPS layer;

ORTE (the Open Real-Time Ethernet)

is a lighter implementation of the RTPS protocol

which does not rely on external software and di-

rectly implement RTPS using UDP sockets. Seriali-

sation can be performed directly by the application.

It is implemented using the C language;

ZeroMQ

is an open source based messaging library imple-

mented in C++ providing support for the publish-

subscribe communication paradigm over TCP. Se-

rialisation is not considered. It is not compliant

with any standard, and does not provide any kind

of naming service (which is then application’s

responsibility). It exports an object-oriented API

with bindings for various languages e.g. C, C++,

❘❊❆❈❚■❖◆ ✷✵✶✸ ✸

python and Java.

IV. PERFORMANCE EVALUATION

The three middlewares have been compared by evaluating

their performance in terms of both worst case and average

real-time latencies.

This evaluation has been performed by using some test

programs implementing publish-subscribe communication,

and using a setup similar to the one described in Figure 2.

Since the specific middleware that will be used in the

DALi walker has not been decided yet (but only the needed

features have been identified), an abstraction layer providing

the needed publish-subscribe functionalities has been devel-

oped. Such an abstraction layer exports a simplified API

that allow to create publishers and subscribers, publish and

receive topics, and perform all the operations needed by the

various DALi modules.

In particular, the abstraction layer is written in C++ and

its API is composed by:

• A class modelling global data space abstraction, where

data is published and received by the subscribers;

• A class modelling a Publisher. This class can be instan-

tiated once a global data space has been defined, and

can publish a topic on such a data space;

• A class modelling a Subscriber. Similarly to the pub-

lisher class, this class can be instantiated only once

a global data space has been defined, and receives

messages concerning a specified topic from such a data

space.

The global data space class only provide a constructor,

a destructor, and two methods to create a Publisher or

a Subscriber. When creating a Publisher, it is possible to

specify a name for the topic it publishes; the Publisher class

then provides a publish() method that allows to send

messages for this topic. When creating a Subscriber, it is

possible to specify the name of the topic to subscribe to; the

Subscriber class then provides a register_callback()

method that allows to specify a callback to be invoked when

a message for the specified topic is received.

The C++ classes then hide all of the implementation

details (and the middleware API), allowing to write code

using the publish-subscribe paradigm without relying on a

specific middleware. The abstraction layer currently supports

the three middlewares considered in this paper, but extending

it to other middlewares based on the publish-subscribe

paradigm should be simple.

Some preliminary experiments measured the performance

of the middleware without considering the effects of the

network (by running the experiments on a single node) and

revealed that ORTE seems to perform slightly better than the

other middlewares when only few subscribers are active, but

ZeroMQ scales better [4]. In any case, on an Intel i7 CPU

running at 2.8GHz the worst-case measured latency was

smaller than 1ms, for all the middlewares.

In this paper, the experiments have been performed using

a setup that is more similar to the DALi hardware and

software architecture. First of all, the embedded boards that

will probably be used in the DALi cWalker (pandaboards4,

based on an OMAP4460 - powered by an ARM core running

at 1Ghz) have been used. Moreover, the experiments are

performed on two identical pandaboards connected via fast

ethernet switch (100 Mbps); hence, network effects have

been accounted for in the experiments. The two boards run

Ubuntu 12.04 with the 3.2.0 Linux kernel.

A first set of experiments, still based on the simple test

programs used in the previous paper, compare the real-

time performance of the three middlewares by measuring

the latency between the generation of a message (from the

publisher) and its arrival to the subscribers - this will be

referred as “publish-subscribe latency”. With respect to the

previous experiments, the ones reported here are based on

the pandaboard setup described above. First, some “single

node” experiments (similar to the previous ones) have been

run, and then the measurement have been repeated with

the publisher running on one board and the subscribers

running on the other one. As in the previous experiments, the

middleware abstraction layer has been used to easily repeat

the same tests with different middlewares.

The publisher is implemented as a single-threaded process

scheduled with SCHED_FIFO and the maximum real-time

priority. Each subscriber (maximum 4 subscribers) is also a

high priority (SCHED_FIFO, maximum real-time priority)

process. However, the process is multi-threaded, since all of

the tested middlewares create at least two threads for each

subscribers: main thread and the subscriber listener thread.

For OpenDDS, there is an extra thread that run its ORB and

several threads for non-CORBA transport IO. OpenDDS and

ORTE are configured to use UDP as their transport protocol.

However, ZeroMQ is configured to use TCP since UDP is

not officially supported.

Figure 3 reports the results (worst-case and average la-

tencies as a function of the number of subscribers) obtained

when running publisher and subscribers on the same node.

Respect to the results obtained on the x86-based PC, the

worst-case latencies are about 10 times larger, and the ORTE

behaviour is slightly worse than the ZeroMQ one (in the

previous experiments, ORTE behaved better than ZeroMQ

for small numbers of subscribers, but ZeroMQ scaled better).

Figure 4 reports the results of the same experiment exe-

cuted in a distributed environment (publisher and subscribers

on 2 different nodes). It is immediately possible to notice

that the latencies increase even more, and only ZeroMQ

stays below 10 ms in both average and worst case latencies

for all the numbers of subscribers. Again, confirming the

result obtained in [4] ORTE performs well with a limited

number of subscribers while ZeroMQ scales better than the

4http://www.pandaboard.org

❘❊❆❈❚■❖◆ ✷✵✶✸ ✹

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4

L
a

te
n

c
y
 [

u
s
]

Number of Subscribers

Orte, average
OpenDDS, average

ZeroMQ, average
Orte, max

OpenDDS, max
ZeroMQ, max

Figure 3. Single node Publisher/Subscriber latency as a function of the
number of subscribers.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 3 4

L
a

te
n

c
y
 [

u
s
]

Number of Subscribers

Orte, average
OpenDDS, average

ZeroMQ, average
Orte, max

OpenDDS, max
ZeroMQ, max

Figure 4. Multi node Publisher/Subscriber latency as a function of the
number of subscribers.

other middlewares even in the distributed scenario.

Finally, Figure 5 reports the latencies as a function of

the message size, showing that the average latencies of all

middlewares scale well with message size up to 1000 bytes.

After running the first experiments with a simplified test

application, a more realistic test case based on Figure 2 has

been used to compare the three middlewares. The test is

composed by 8 processes emulating the 8 software modules

that will run on the cWalker: the People Tracker (PT), the

Localization module (LOC), the Heat Maps (HM), the Short

Term Planner (STP), the Long Term Planner (LTP), the

Brakes Control (BC), the Haptics Control (HC) and the

Audio Visual Interface (AVI). All the modules are modelled

as periodic real-time tasks running with the periods indicated

in Figure 2, subscribing to some topics, and eventually

producing messages at each activation.

Each task/software module is statically assigned to a

pandaboard, and different ways to distribute the tasks have

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700 800 900 1000

L
a

te
n

c
y
 [

u
s
]

Message Size [byte]

Orte, average
OpenDDS, average

ZeroMQ, average
Orte, max

OpenDDS, max
ZeroMQ, max

Figure 5. Multi node Publisher/Subscriber latency as a function of the
message size

Mapping protocol max avg stdev

ZeroMQ 1740 523.41 183.68
1 ORTE 7599 712.39 260.39

OpenDDS 6135 2016.79 470.46

ZeroMQ 6752 2368.42 427.55
2 ORTE 10170 4563.44 832.93

OpenDDS 11268 4952.68 680.27

ZeroMQ 7851 3720.68 680.27
3 ORTE 11940 5092.19 410.39

OpenDDS 11482 6179.72 295.92

Table I
LATENCY IN MICROSECONDS

been tested. In particular, the results obtained with three

different mappings of modules to embedded boards will be

reported:

• Mapping 1: All modules run on pandaboard 1

• Mapping 2: The AVI, HM, and LTP modules run on

pandaboard 1 while BC, HC, PT, LOC, and STP run

on pandaboard 2

• Mapping 3: The AVI module runs on pandaboard 1

while all the other modules (BC, HC, PT, LOC, STP,

HM, and LTP) run on pandaboard 2.

The worst-case and average latencies measured the output

of the AVI module are reported in Table I. This set of

experiments show the effect of distributed processes on the

performance of the middlewares. The average latencies of

all middlewares stay below the minimum period of the

modules (10 ms). However, the worst case latencies of

all middlewares except ZeroMQ are above the minimum

period.

V. CONCLUSIONS

This paper presents the performance evaluation of three

open-source publish-subscriber middlewares. The evalua-

tion focuses on their real-time performance, to identify

the solution that best suits the needs of modern robotic

❘❊❆❈❚■❖◆ ✷✵✶✸ ✺

applications based on distributed embedded architectures.

The experimental setup was designed taking inspiration from

an existing robotic application.

Based on the result of the experiments, ZeroMQ is shown

as the most suitable middleware for DALi application.

Although the average latencies of both ORTE and OpenDDS

are below the minimum period required by DALi applica-

tion, their worst case latencies is above it. However, Their

latencies remain below 7 ms for 99% of the time.

The goals of future investigations are manifold. One of the

most important is to extend the analysis to other middleware

solutions explicitly developed for robot applications such as

ROS [7] and OROCOS [8].

REFERENCES

[1] OMG, “Data distribution service for real-time systems – ver-
sion 1.2,” The Object Management Group, Tech. Rep., 2007.

[2] P. Hintjens, ZeroMQ: Messaging for Many Applications.
O’Reilly, 2013.

[3] P. Smolik, Z. Sebek, and Z. Hanzalek, “Orte–open source
implementation of real-time publish-subscribe protocol,” in
Proc. 2nd International Workshop on Real-Time LANs in the
Internet Age, 2003, pp. 68–72.

[4] T. Rizano, L. Abeni, and L. Palopoli, “Middleware for robotics
in assisted living: A case study,” in Proceedings of the 15th
Real-Time Linux Workshop, Lugano, Switzerland, October
2013.

[5] D. Fontanelli, A. Giannitrapani, L. Palopoli, and D. Prat-
tichizzo, “Unicycle steering by brakes: a passive guidance
support for an assistive cart,” in Proceedings of the 52nd IEEE
Conference on Decision and Control, Firenze, Italy, December
2013.

[6] R. Rajkumar, M. Gagliardi, and L. Sha, “The real-time pub-
lisher/subscriber inter-process communication model for dis-
tributed real-time systems: design and implementation,” in
Proceedings of the 1st Real-Time Technology and Applications
Symposium (RTAS95), 1995, pp. 66–75.

[7] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot op-
erating system,” in ICRA workshop on open source software,
vol. 3, no. 3.2, 2009.

[8] H. Bruyninckx, “Open robot control software: the orocos
project,” in Robotics and Automation, 2001. Proceedings 2001
ICRA. IEEE International Conference on, vol. 3. IEEE, 2001,
pp. 2523–2528.

❘❊❆❈❚■❖◆ ✷✵✶✸ ✻

